WO2024162214A1 - Resin molded body - Google Patents
Resin molded body Download PDFInfo
- Publication number
- WO2024162214A1 WO2024162214A1 PCT/JP2024/002451 JP2024002451W WO2024162214A1 WO 2024162214 A1 WO2024162214 A1 WO 2024162214A1 JP 2024002451 W JP2024002451 W JP 2024002451W WO 2024162214 A1 WO2024162214 A1 WO 2024162214A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- resin molded
- resin
- molded body
- thickness
- ratio
- Prior art date
Links
- 229920005989 resin Polymers 0.000 title claims abstract description 294
- 239000011347 resin Substances 0.000 title claims abstract description 294
- 238000007493 shaping process Methods 0.000 claims abstract description 23
- -1 polypropylene Polymers 0.000 claims description 26
- 229920005668 polycarbonate resin Polymers 0.000 claims description 21
- 239000004431 polycarbonate resin Substances 0.000 claims description 20
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 15
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 15
- 239000004743 Polypropylene Substances 0.000 claims description 14
- 229920001155 polypropylene Polymers 0.000 claims description 14
- 239000004793 Polystyrene Substances 0.000 claims description 10
- 229920002223 polystyrene Polymers 0.000 claims description 9
- 229920005992 thermoplastic resin Polymers 0.000 claims description 8
- 239000010410 layer Substances 0.000 abstract description 69
- 239000012792 core layer Substances 0.000 abstract description 48
- 238000000465 moulding Methods 0.000 description 75
- 238000000034 method Methods 0.000 description 42
- 238000005452 bending Methods 0.000 description 39
- 239000000463 material Substances 0.000 description 37
- 230000000052 comparative effect Effects 0.000 description 33
- 230000007423 decrease Effects 0.000 description 32
- 238000010438 heat treatment Methods 0.000 description 25
- 230000008859 change Effects 0.000 description 24
- 238000012360 testing method Methods 0.000 description 20
- 238000007666 vacuum forming Methods 0.000 description 17
- 230000008569 process Effects 0.000 description 14
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 13
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 12
- 229920006351 engineering plastic Polymers 0.000 description 12
- 239000004088 foaming agent Substances 0.000 description 12
- 238000001125 extrusion Methods 0.000 description 11
- 238000013001 point bending Methods 0.000 description 11
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 10
- 239000000956 alloy Substances 0.000 description 8
- 229910045601 alloy Inorganic materials 0.000 description 8
- 229910002092 carbon dioxide Inorganic materials 0.000 description 6
- 239000001569 carbon dioxide Substances 0.000 description 5
- 239000006260 foam Substances 0.000 description 5
- 238000010097 foam moulding Methods 0.000 description 5
- 238000005187 foaming Methods 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 229920003023 plastic Polymers 0.000 description 5
- 239000004033 plastic Substances 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical compound C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 description 4
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 239000010439 graphite Substances 0.000 description 4
- 229910002804 graphite Inorganic materials 0.000 description 4
- 239000004417 polycarbonate Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 230000001276 controlling effect Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000009477 glass transition Effects 0.000 description 3
- 238000001746 injection moulding Methods 0.000 description 3
- 239000011256 inorganic filler Substances 0.000 description 3
- 229910003475 inorganic filler Inorganic materials 0.000 description 3
- 239000000155 melt Substances 0.000 description 3
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 3
- 239000002667 nucleating agent Substances 0.000 description 3
- 229920000515 polycarbonate Polymers 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 239000000454 talc Substances 0.000 description 3
- 229910052623 talc Inorganic materials 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229920005990 polystyrene resin Polymers 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000013585 weight reducing agent Substances 0.000 description 2
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000004419 Panlite Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 229920006231 aramid fiber Polymers 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 229920006026 co-polymeric resin Polymers 0.000 description 1
- 238000002591 computed tomography Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 210000000497 foam cell Anatomy 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920006327 polystyrene foam Polymers 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 238000009966 trimming Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C43/00—Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
- B29C43/32—Component parts, details or accessories; Auxiliary operations
- B29C43/34—Feeding the material to the mould or the compression means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C43/00—Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
- B29C43/32—Component parts, details or accessories; Auxiliary operations
- B29C43/36—Moulds for making articles of definite length, i.e. discrete articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C44/00—Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C44/00—Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
- B29C44/02—Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
- B29C44/04—Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles consisting of at least two parts of chemically or physically different materials, e.g. having different densities
- B29C44/06—Making multilayered articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C51/00—Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
- B29C51/14—Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor using multilayered preforms or sheets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/36—Layered products comprising a layer of synthetic resin comprising polyesters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/18—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/22—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
- B32B5/32—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed at least two layers being foamed and next to each other
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/04—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
- C08J9/12—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
Definitions
- This disclosure relates to a resin molded body formed from a foamed resin sheet.
- foamed resins have been attracting attention as they can increase convenience by reducing the weight of resin molded bodies and reduce carbon dioxide emissions.
- foamed resins There are two methods for molding foamed resins: physical foam molding and chemical foam molding.
- Chemical foam molding uses a chemical foaming agent as the foaming agent. Chemical foaming agents have a high environmental impact and are not preferred from the perspective of protecting the global environment.
- physical foam molding uses a physical foaming agent such as nitrogen or carbon dioxide as the foaming agent.
- Physical foaming agents have a small environmental impact and are preferred from the perspective of protecting the global environment.
- Physical foam molding includes a method for foaming highly heat-resistant engineering plastics and super engineering plastics, in which molten resin of engineering plastics and super engineering plastics is shear-kneaded and dissolved with high-pressure supercritical fluid.
- Patent Document 1 discloses a method for producing a foamed molded body using a physical foaming agent such as nitrogen or carbon dioxide at a relatively low pressure, rather than a high-pressure supercritical fluid. This method makes it possible to form fine foam cells in a resin molded body through a relatively simple process using a low-pressure physical foaming agent without using a special high-pressure device. Patent Document 1 also discloses methods for forming a foamed molded body using injection molding and extrusion molding.
- a physical foaming agent such as nitrogen or carbon dioxide
- Injection molding can produce foamed molded products with complex shapes.
- the surface layer of the molten resin flows inside the mold while cooling and solidifying. At that time, a relatively thin non-foamed skin layer is formed on the surface of the foamed molded product.
- extrusion molding has fewer restrictions on mold size and load than injection molding, and is suitable for continuously producing foamed molded products of a single shape and thickness.
- sheet-like foamed molded products obtained by extrusion molding can be shaped into relatively complex shapes or relatively large sizes by vacuum molding, etc.
- Patent Document 2 discloses a method for manufacturing a thermoplastic resin foam sheet. According to this method for manufacturing a thermoplastic resin foam sheet, a skin layer can be easily formed on the surface of a thermoplastic resin foam sheet by extrusion molding.
- Patent Document 3 discloses a method for manufacturing a multi-layer laminate molded body. In the multi-layer laminate molded body, a core layer and a skin layer made of foamed resin are formed by co-extrusion molding.
- Patent Document 2 and Patent Document 3 use general-purpose plastics such as polypropylene or polystyrene, which have relatively low heat resistance and mechanical strength, as the main resin material, and do not form a skin layer for the purpose of heat resistance and mechanical strength.
- general-purpose plastics such as polypropylene or polystyrene, which have relatively low heat resistance and mechanical strength, as the main resin material, and do not form a skin layer for the purpose of heat resistance and mechanical strength.
- Patent Document 4 discloses a coextruded sheet that can suppress surface swelling and cracking of the coextruded sheet that occurs during thermal shaping such as vacuum forming, and can obtain excellent lightness and mechanical strength.
- the coextruded sheet contains polycarbonate resin, which is an engineering plastic with excellent heat resistance and strength.
- the coextruded sheet includes a core layer made of a foamed resin, and a skin layer laminated on each of one and the other main surfaces of the core layer.
- the coextruded sheet aims to improve mechanical strength and surface smoothness by controlling the density and the ratio of the thickness of the core layer and the skin layer, or by controlling the melt volume rate (MVR), etc.
- MVR melt volume rate
- the co-extruded sheet of Patent Document 4 can achieve excellent mechanical strength and surface smoothness, it is necessary to ensure excellent mechanical strength in the shape of the resin molded product after vacuum forming, for example, in thin-walled parts that are relatively thin and difficult to obtain mechanical strength in. In other words, there is still ample room for further study in order to obtain better mechanical strength in resin molded products obtained by vacuum forming, etc., of co-extruded sheets.
- the objective of this disclosure is to provide a resin molded body that has excellent mechanical strength, even if it is a resin molded body with uneven thickness that includes thin-walled portions and is formed by shaping a foamed resin.
- the resin molded body according to the embodiment of the present disclosure is formed by shaping a foamed resin sheet including a foamed layer, a first non-foamed layer laminated on one main surface of the foamed layer, and a second non-foamed layer laminated on the other main surface of the foamed layer.
- the resin molded body may include a thinnest part having the smallest thickness and a thickest part having the largest thickness.
- the thinnest part may have a thickness of 0.5 mm or more.
- the thickest part may have a thickness of 5.0 mm or less.
- a first ratio (M1/M2) between the bending modulus M1 of the thinnest part and the bending modulus M2 of the thickest part may be 0.7 or more.
- a second ratio (t1/t2) between the thickness t1 of the thinnest part and the thickness t2 of the thickest part may be 0.4 or more and 0.9 or less. This prevents unevenness in the thickness of the resin molded body 1, suppresses damage during molding, or damage or holes after molding, and improves vacuum moldability.
- the resin molded body may be made of a thermoplastic resin.
- the density of the resin molded body may be 1.0 g/ cm3 or less.
- the bending modulus of each of the thinnest wall part and the thickest wall part may be 1000 MPa or more. This makes it possible to suppress a decrease in the bending modulus of the resin molded body 1 molded by thermal shaping such as vacuum molding, and to achieve weight reduction.
- the resin molded body of any one of configurations 1 to 4 may contain a polycarbonate resin. This makes it possible to easily perform thermal shaping such as vacuum molding, and to obtain the resin molded body 1 that is excellent in appearance design and mechanical strength.
- the resin molded article may contain at least one selected from the group consisting of polycarbonate resin, polypropylene, polyethylene terephthalate, and polystyrene.
- the ratio between the first ratio and the second ratio may be 4.0 or less.
- the ratio between the first ratio and the second ratio may be greater than 1.0, thereby making it possible to reduce the change in strength due to the thickness of the thinnest part and the thickest part, and to ensure excellent mechanical strength.
- the foamed resin sheet 10 is made of a resin material that can be shaped by vacuum forming or the like.
- the foamed resin sheet 10 only needs to have an area and thickness that allows it to be shaped by vacuum forming or the like. However, it is preferable that the foamed resin sheet 10 has a thickness of 1 to 5 mm. This makes it easy to perform thermal shaping such as vacuum forming.
- the resin material of the foamed resin sheet 10 is not particularly limited, but is, for example, a thermoplastic resin.
- Thermoplastic resins are, for example, general-purpose plastics such as polyethylene terephthalate (PET), polypropylene, or polystyrene, engineering plastics that have a heat resistance of 100°C or more, or super engineering plastics that have a heat resistance of 150°C or more.
- general-purpose plastics such as polyethylene terephthalate (PET), polypropylene, or polystyrene
- engineering plastics that have a heat resistance of 100°C or more
- super engineering plastics that have a heat resistance of 150°C or more.
- the resin material has a deflection temperature under load of 90°C or more. This improves moldability during thermal shaping such as vacuum forming, making it easier to perform thermal shaping.
- the resin material may include at least one selected from the group consisting of general-purpose plastics, engineering plastics, and super engineering plastics.
- ABS resin acrylonitrile-butadiene-styrene copolymer resin
- the resin material mainly contains polycarbonate resin, for example, at 50% by weight or more.
- Polycarbonate resin has excellent heat processability. This makes it possible to easily perform heat shaping such as vacuum molding, particularly heat shaping for deep drawing as described below, and to obtain a resin molded body 1 with excellent appearance design and mechanical strength.
- the deflection temperature under load is determined based on ISO 75-2B (load of 1.81 MPa).
- the foamed resin sheet 10 has a foamed layer (hereinafter referred to as the core layer) 11, a non-foamed layer (hereinafter referred to as the skin layer) 12 laminated on one main surface of the core layer 11, and a skin layer 13 laminated on the other main surface of the core layer 11.
- the core layer a foamed layer
- the skin layer a non-foamed layer laminated on one main surface of the core layer 11
- a skin layer 13 laminated on the other main surface of the core layer 11.
- the core layer 11 is made of a foamed resin.
- the core layer 11 can be formed by physical foaming of a molten resin material.
- the physical foaming agent is, for example, an inert gas such as nitrogen, carbon dioxide, air, or argon.
- the core layer 11 of the present disclosure is preferably foamed using a physical foaming agent such as nitrogen or carbon dioxide with a relatively low pressure, and nitrogen is more preferable. This allows the pressure of the physical foaming agent to be set to a relatively low value of 1 to 6 MPa, and a large number of fine bubbles can be formed. This makes it possible to more reliably suppress expansion and the like when heated at high temperatures during vacuum molding.
- the average bubble diameter of the bubbles is preferably 0.1 mm or more, 1.0 mm or less, and preferably 0.3 mm or less.
- the core layer 11 has a large number of bubbles 111.
- the large number of bubbles have an approximately elliptical shape elongated in the extrusion direction in a cross-sectional view cut in the thickness direction in the direction along the extrusion direction during extrusion molding.
- the bubbles contained near the center of the core layer 11 in the thickness direction have a larger bubble diameter than the bubbles 111 contained near the ends of the core layer 11 in the thickness direction.
- the bubble diameter of the many bubbles 111 gradually decreases from the center of the core layer 11 in the thickness direction toward the ends of the core layer 11 in the thickness direction.
- the skin layer 12 is made of a non-foamed resin. That is, the skin layer 12 is not foamed.
- the skin layer 12 may be extruded from a die outlet in a non-foamed state by a co-extrusion molding method and laminated integrally with the core layer 11.
- the skin layer 12 may be fixed to one main surface of the core layer 11 by adhesion, welding, or the like.
- non-foamed means that the porosity is less than 5%.
- foamed means that the porosity is 5% or more. More specifically, the porosity is calculated as follows.
- a portion of the foamed resin sheet 10 is cut out to produce a sheet piece that is a square of 20 mm x 20 mm in plan view.
- a high-power micro X-ray CT system (Shimadzu Corporation, model number "inspexio SMX-225CTS") is used to CT scan the sheet piece, and a CT cross-sectional image is obtained by cutting the sheet piece in the thickness direction along a line passing through the center point of the sheet piece and the midpoint of a predetermined side in a plan view.
- the detailed measurement conditions are: applied voltage 160 kV, pixel size 0.105 mm/voxel, pixel number 512 x 512 x 512, view number 1200, field of view in the XY direction 53.5 mm, and field of view in the Z direction 48.9 mm.
- the layer with the fewest bubbles among the clear interface is the skin layer 12, and the layer with the most bubbles is the core layer 11.
- the threshold value for the binarization process is obtained from the density histogram obtained by the Otsu method. Then, the white parts of the obtained binarized image are regarded as bubble walls and the black parts as bubbles, and the cross-sectional area of the independent bubbles contained in each section of each row is calculated. In this way, the cross-sectional area of the independent bubbles contained in each section is calculated, and the porosity of each section contained in each row is calculated by dividing the cross-sectional area of each section.
- the five extracted rows are positioned and extracted at the center in the width direction, one end in the width direction, the other end in the width direction, the center between the center in the width direction and one end in the width direction, and the center between the center in the width direction and the other end in the width direction in the cross-sectional image of the core layer 11 and the skin layer 12.
- the skin layer 12 may be made of a thermoplastic resin that can adhere well to the core layer 11. More specifically, the resin material of the skin layer 12 is preferably the same as that of the core layer 11, but may be different from that of the core layer 11 as long as it is highly compatible with the resin material of the core layer 11.
- the skin layer 12 may be made of a reinforced resin that contains an inorganic filler to an extent that does not impair the effects of the present disclosure, or a resin that contains additives such as a flame retardant or a foam nucleating agent. This configuration of the skin layer 12 makes it possible to efficiently improve the strength while reducing the weight and improving the strength. Examples of inorganic fillers include glass fiber, carbon fiber, aramid fiber, talc, and mica.
- the skin layer 12 may be colored by applying paint or pigment, etc., to an extent that does not impair the effects of the present disclosure.
- a decorative film may be provided by adhesion or lamination on the outer surface of the skin layer 12, i.e., the surface opposite to the surface facing one of the main surfaces of the core layer 11. This makes it possible to improve the external design of the resin molded body 1 after the foamed resin sheet 10 is thermally shaped by vacuum forming or the like.
- a layer having another function may be provided on the outer surface of the skin layer 12 or the skin layer 13. This makes it possible to form the foamed resin sheet 10 and the resin molded body 1 with multiple functions.
- Skin layer 13 is the same as skin layer 12, except that it is laminated on the other main surface of core layer 11. Therefore, a detailed description of skin layer 13 is omitted.
- the resin molded body 1 of the present disclosure can be obtained by subjecting the foamed resin sheet 10 described above to thermal shaping, such as vacuum forming.
- thermal shaping such as vacuum forming.
- a method for molding the resin molded body 1 will be specifically described below with reference to Figures 3 to 7. Note that although a molding method using vacuum forming will be described here, the molding method for the resin molded body 1 is not particularly limited.
- the foamed resin sheet 10 is fixed by a jig 101.
- heating plates 102 made of graphite are arranged above and below the foamed resin sheet 10.
- the heating plates 102 are heated in advance to a temperature higher than the glass transition temperature by a high-frequency induction heating device.
- Graphite has a thermal conductivity two to three times higher than that of copper and is lightweight.
- graphite has excellent water repellency, so it is difficult to adhere to molten resin.
- the heating plate 102 made of graphite is suitable for heating the foamed resin sheet 10 while uniformly regulating the thickness of the foamed resin sheet 10.
- the foamed resin sheet 10 is heated so that its thickness is uniform over the entire surface.
- the gap between the heating plate 102 located above and the heating plate 102 located below has a width W of 104% of the thickness of the foamed resin sheet 10. This makes it easier to heat the foamed resin sheet 10 so that the thickness is uniform. From the viewpoint of heating the foamed resin sheet 10 so that the thickness of the foamed resin sheet 10 is uniform, it is preferable that the gap width W be within 104% of the thickness of the foamed resin sheet 10.
- the gap width W may be adjusted by a spacer disposed between the upper heating plate 102 and the lower heating plate 102.
- the foamed resin sheet 10 heated while being regulated to have a uniform thickness in this way has the same bubble structure as the foamed resin sheet 10 before heating shown in FIG. 2.
- the foamed resin sheet 10 after heating has a structure that makes it easy to suppress the occurrence of bulges on the surface of the foamed resin sheet 10 without the bubbles coalescing.
- the foamed resin sheet 10 heated in this way reaches a temperature higher than the glass transition temperature, it is moved directly above the mold 103.
- the temperature of the foamed resin sheet 10 is measured by a temperature sensor at the end of the foamed resin sheet 10. Thereafter, as shown in FIG.
- the upper heating plate 102 and the lower heating plate 102 are removed from the foamed resin sheet 10, and the molten foamed resin sheet 10 is brought into close contact with the upper surface of the mold 103, and the space containing the foamed resin sheet 10 is sealed so that it is airtight.
- suction is applied through the suction hole 104 provided in the mold 103, and the foamed resin sheet 10 is vacuum molded.
- the molded foamed resin sheet 10 is cooled and solidified, and then released from the mold. By trimming off excess parts of the foamed resin sheet 10 thus formed, a resin molded body 1 as shown in FIG. 7 can be obtained.
- the bubbles 111 contained in the resin molded body 1 obtained by such a manufacturing method are crushed in the thickness direction as the resin molded body 1 becomes thinner during molding, and stretch in the direction perpendicular to the thickness, becoming an elliptical disk.
- the resin molded body 1 containing the stretched bubbles becomes denser and changes to a structure similar to a non-foamed structure. This makes it possible to suppress the decrease in bending modulus in the thin-walled part of the resin molded body 1, improve mechanical strength, and improve moldability.
- the resin molded body 1 may be thermally shaped by pressure molding or press molding, not limited to vacuum molding, and the method is not limited as long as the foamed resin sheet 10 can be shaped.
- Pressure molding uses a positive pressure with a higher differential pressure with atmospheric pressure than the negative pressure of a vacuum. Therefore, it is easy to suppress the decrease in strength due to the effect of crushing the bubbles enlarged by heating.
- press molding can be used as a method of controlling the thickness and strength with a mold while suppressing the enlargement of the bubbles.
- vacuum molding, pressure molding, and vacuum pressure molding can be performed with a mold for one side, making them suitable for producing large parts at low cost.
- the mold 103 may be of any shape that is used in known shaping methods, and may be made of any material, such as metal or wood.
- the resin molded body 1 produced by the above-mentioned manufacturing method will thin during molding even if it has a curvature, is bent, or is relatively small, and the air bubbles will be crushed and partially stretched, changing into a structure similar to a non-foamed structure, resulting in an increased density.
- the resin molded body 1 produced by the above-mentioned manufacturing method can suppress the decrease in bending modulus in the thin-walled parts, improve mechanical strength, and also improve moldability.
- the resin molded body 1 thus formed will be described in detail with reference to FIG. 9.
- the resin molded body 1 has the thinnest wall portion 2, which has the smallest thickness, and the thickest wall portion 3, which has the largest thickness.
- the thinnest wall portion 2 has a thickness of 0.5 mm or more, and the thickest wall portion 3 has a thickness of 5.0 mm or less. If the thickness of the thinnest wall portion 2 is too small, the rigidity of the resin molded body 1 may decrease. In addition, defects such as tears may occur in the foamed resin sheet 10 during vacuum molding. If the thickness of the thickest wall portion 3 is too large, the moldability decreases and the weight of the resin molded body 1 increases.
- the thickness of the thinnest wall portion 2 is preferably 1 mm or more, more preferably 1.5 mm or more, and the thickness of the thickest wall portion 3 is preferably 4.5 mm or less, more preferably 4.0 mm or less.
- the thickness of the thinnest part 2 is preferably 1 mm or more and 4.5 mm or less, more preferably 1.5 mm or more and 4.5 mm or less, and even more preferably 1.5 mm or more and 4.0 mm or less.
- the thickness distribution of the resin molded body 1 can be measured using a magnetic thickness gauge, an ultrasonic thickness gauge, or a 3D scanner. This allows the thickness distribution of the resin molded body 1 to be measured without destroying the resin molded body 1.
- the thickness distribution of the resin molded body 1 can be measured using, for example, a 3D scanner-type three-dimensional measuring machine (manufactured by Keyence Corporation, model number "VL-500"). Of the thickness distribution measured in this manner, the point with the smallest thickness can be defined as the thinnest part 2, and the point with the greatest thickness can be defined as the thickest part 3.
- a three-point bending test is performed on each of the thinnest piece and the thickest piece by applying a load to the thinnest part 2 and the thickest part 3 with each point 16 mm from the center in the length direction toward both ends as a fulcrum.
- the three-point bending test can be performed using, for example, a precision universal testing machine (manufactured by Shimadzu Corporation, model number "AGS-J").
- AGS-J model number
- the thinnest wall portion 2 and the thickest wall portion 3 may each have a flexural modulus of 1000 MPa or more. This makes it possible to suppress a decrease in the flexural modulus of the resin constituting the resin molded body 1. From the viewpoint of ease of molding in thermal shaping such as vacuum molding, the flexural modulus of each of the thinnest wall portion 2 and the thickest wall portion 3 is preferably 2800 MPa or less, or 3500 MPa or less even when inorganic filler is contained in the skin layers 12 and 13 of the foamed resin sheet 10 as described above.
- the foamed resin sheet thus produced was heated to 190°C and vacuum molded by the method described above to obtain a test specimen (resin molded body) of Example 1.
- the width of the gap between the upper and lower heating plates was adjusted to be 104% of the thickness of the foamed resin sheet, and when the temperature of the end surface of the foamed resin sheet reached 170°C, the foamed resin sheet was moved directly above the mold.
- a box-shaped mold 103 with a width L1 of 100 mm, a length L2 of 200 mm, and a depth L3 of 40 mm as shown in Figure 10 was used.
- Example 3 the specimen of Example 3 obtained in this manner, the bubbles were enlarged, and the thickness was suppressed from being thinned as shown in Table 1.
- Example 3 In the specimen of Example 3, there were some areas where the thinning after vacuum molding was suppressed and the density was reduced.
- the bending modulus M1 of the thinnest part was 1200 MPa, and the bending modulus M2 of the thickest part was 1100 MPa.
- the ratio Y was 1.09. That is, the bending modulus M1 of the thinnest part was greater than the bending modulus M2 of the thickest part.
- the ratio Z was 1.39, which was greater than 1.0.
- Example 3 it was found that the change in thickness and density of the specimen was suppressed by the molding method in which the thickness of the foamed resin sheet was expanded when heated, and as a result, the mechanical strength was improved.
- Example 5 The specimen of Example 5 was vacuum-formed in the same manner as the specimen of Example 1, except that the depth of the box-shaped mold was 80 mm. Although the thickness changed due to the deep drawing, the density of the specimen of Example 5 was similar to that of the specimen of Example 1.
- the bending modulus M1 of the thinnest part was 1630 MPa
- the bending modulus M2 of the thickest part was 1470 MPa. That is, the ratio Y was 1.11, and the bending modulus of the thinnest part was greater than the bending modulus of the thickest part.
- the ratio Z was 2.71, which was significantly greater than 2.0.
- a detailed observation of the specimen of Example 5 suggested that the thinnest part was closer to the structure of a resin molded product made of a non-foamed resin, and that the mechanical strength was improved.
- Example 6 The specimen of Example 6 was produced in the same manner as in Example 1, except that the resin material was an alloy resin of polycarbonate resin/ABS resin. Therefore, in the specimen of Example 6, the resin materials of the core layer and the skin layer were the same.
- the alloy resin of polycarbonate/ABS was Multilon T-2754 (density: 1.11 g/cm 3 , deflection temperature under load: 118° C., flexural modulus: 2200 MPa) manufactured by Teijin Limited, and a small amount of foaming nucleating agent was added for the purpose of improving the melt tension and making the bubbles finer.
- Example 7 The specimen of Example 7 was produced in the same manner as in Example 1, except that polypropylene (PP) was used as the resin material. Therefore, in the specimen of Example 7, the resin materials of the core layer and the skin layer are the same.
- the polypropylene is Calp 4700G (density: 1.05 g/cm 3 , deflection temperature under load: 118° C., flexural modulus: 3200 MPa) manufactured by Idemitsu Fine Composites Co., Ltd., and talc is added to improve the strength of the resin.
- the polypropylene foamed resin sheet before vacuum molding has an average thickness of 2.5 mm, density: 0.52 g/cm 3 , and flexural modulus: 1840 MPa.
- the flexural modulus M1 of the thinnest part was 1940 MPa
- the flexural modulus of the thickest part was 2490 MPa, which was improved compared to the foamed resin sheet before vacuum molding.
- the ratio Y was 0.78, and it was confirmed that the thickness change and the decrease in mechanical strength were suppressed even when the resin material was changed to polypropylene.
- the flexural modulus M1 of the thinnest part was 1350 MPa
- the flexural modulus M2 of the thickest part was 1740 MPa, which was improved compared to the foamed resin sheet before vacuum molding.
- the ratio Y was 0.78, and it was confirmed that the thickness change and the decrease in mechanical strength were suppressed even when the resin material was changed to polyethylene terephthalate.
- Example 9 the resin material was polystyrene (PS), and the resin material was the same as in Example 1. Therefore, the resin material of the core layer and the skin layer was the same.
- the polystyrene was XC-515 (DicStyrene (registered trademark) manufactured by DIC Corporation, density: 1.04 g/cm 3 , flexural modulus: 3300 MPa).
- the polystyrene foam resin sheet before vacuum molding had an average thickness of 2.5 mm, density: 0.53 g/cm 3 , and flexural modulus: 1830 MPa.
- Comparative Example 1 The specimen of Comparative Example 1 was molded by the conventional manufacturing method described above. That is, as shown in FIG. 13, the foamed resin sheet 10 sagged under its own weight during heating, and the bubbles were united after vacuum molding, resulting in a decrease in density.
- the specimen of Comparative Example 1 had a large change in thickness and a large decrease in density.
- the bending modulus M1 of the thinnest part was 450 MPa
- the bending modulus M2 of the thickest part was 860 MPa. That is, the bending modulus M1 and M2 were significantly lower than the bending modulus of the foamed resin sheet.
- the ratio Y was small at 0.52, and the strength decrease in the thinnest part was large.
- the ratio Z was 1.00, suggesting that the strength decrease due to the thickness change after vacuum molding was large.
- Comparative Example 2 The specimen of Comparative Example 2 was vacuum molded in the same manner as Comparative Example 1, except that a deep-drawing mold was used in the same manner as in Example 2, and the thickness of the foamed resin sheet was 3.0 mm. It is presumed that the density and mechanical strength of the thinnest part of the specimen of Comparative Example 2 were further reduced due to the thicker foamed resin sheet and the use of a deep-drawing mold. In addition, the bending modulus M1 of the thinnest part was 350 MPa, and the bending modulus M2 of the thickest part was 860 MPa. That is, the ratio Y was 0.41, which was smaller than that of Comparative Example 1. The ratio Z was 0.74, and the rigidity of the specimen was also reduced. Thus, it was suggested that the balance between mechanical strength and thickness of the specimen of Comparative Example 2 was deteriorated.
- Comparative Example 3 The specimen of Comparative Example 3 was produced by the same method as Comparative Example 1, except that the resin material was an alloy resin of polycarbonate resin/ABS resin as in Example 5.
- the specimen of Comparative Example 3 had a large change in thickness and a decrease in density as in Comparative Example 1.
- the flexural modulus M1 of the thinnest part was 410 MPa
- the flexural modulus M2 of the thickest part was 790 MPa.
- the ratio Y was 0.52, and the strength decrease in the thinnest part was large.
- the ratio Z was 0.99, and it was confirmed that even if the resin material was changed to polycarbonate/ABS resin, the strength decrease due to the thickness change after vacuum molding was large in the conventional molding method.
- Comparative Example 5 The specimen of Comparative Example 5 was produced by the same method as Comparative Example 1, except that the resin material was polyethylene terephthalate resin as in Example 7. The specimen of Comparative Example 5 had a large change in thickness and a decrease in density as in Comparative Example 1. In addition, the flexural modulus M1 of the thinnest part was 430 MPa, and the flexural modulus M2 of the thickest part was 830 MPa. The ratio Y was 0.52, and the strength decrease in the thinnest part was large. The ratio Z was 0.99, and it was confirmed that even if the resin material was changed to polyethylene terephthalate, the strength decrease due to the thickness change after vacuum molding was large in the conventional molding method.
- Comparative Example 6 The specimen of Comparative Example 6 was produced in the same manner as Comparative Example 1, except that polystyrene resin was used as the resin material as in Example 8.
- the specimen of Comparative Example 5 had a large change in thickness and a decrease in density as in Comparative Example 1.
- the bending modulus M1 of the thinnest part was 620 MPa
- the bending modulus M2 of the thickest part was 1180 MPa.
- the ratio Y was 0.53, and the strength decrease in the thinnest part was large.
- the ratio Z was 1.00, and it was confirmed that even if the resin material was changed to polystyrene resin, the strength decrease due to the thickness change after vacuum molding was large in the conventional molding method.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
- Laminated Bodies (AREA)
Abstract
Provided is a resin molded body having excellent mechanical strength even if said body is a resin molded body containing a thin-walled portion, being of uneven thickness, and being formed by shaping a foamed resin. A resin molded body 1 is formed by shaping a foamed resin sheet 10 including: a core layer 11; a skin layer 12 laminated on one major surface of the core layer 11; and a skin layer 13 laminated on another major surface. The thinnest-walled portion has a thickness of at least 0.5 mm. The thickest-walled portion has a thickness of at most 5.0 mm. The resin molded body 1 includes a thinnest-walled portion 2 having a minimum thickness and a thickest-walled portion 3 having a maximum thickness. A first ratio (M1/M2) of an elastic modulus M1 of the thinnest-walled portion 2 and an elastic modulus M2 of the thickest-walled portion 3 is at least 0.7.
Description
本開示は、発泡樹脂シートを賦形した樹脂成形体に関する。
This disclosure relates to a resin molded body formed from a foamed resin sheet.
近年、発泡樹脂は、樹脂成形体を軽量化することによって利便性を高めることができ、かつ、二酸化炭素排出量を削減することができるとして注目されている。発泡樹脂の成形方法には、物理発泡成形法と化学発泡成形法とがある。化学発泡成形法は、発泡剤として化学発泡剤を用いる。化学発泡剤は、環境負荷が高く、地球環境保護の観点から好まれない。一方で、物理発泡成形法は、発泡剤として窒素や二酸化炭素等といった物理発泡剤を用いる。物理発泡剤は、環境負荷が小さいため、地球環境保護の観点から好ましい。物理発泡成形法には、耐熱性が高いエンジニアリングプラスチック及びスーパーエンジニアリングプラスチックを発泡させる方法として、エンジニアリングプラスチック及びスーパーエンジニアリングプラスチックの溶融樹脂と高圧の超臨界流体とを剪断混錬して溶解させる方法がある。
In recent years, foamed resins have been attracting attention as they can increase convenience by reducing the weight of resin molded bodies and reduce carbon dioxide emissions. There are two methods for molding foamed resins: physical foam molding and chemical foam molding. Chemical foam molding uses a chemical foaming agent as the foaming agent. Chemical foaming agents have a high environmental impact and are not preferred from the perspective of protecting the global environment. On the other hand, physical foam molding uses a physical foaming agent such as nitrogen or carbon dioxide as the foaming agent. Physical foaming agents have a small environmental impact and are preferred from the perspective of protecting the global environment. Physical foam molding includes a method for foaming highly heat-resistant engineering plastics and super engineering plastics, in which molten resin of engineering plastics and super engineering plastics is shear-kneaded and dissolved with high-pressure supercritical fluid.
特許第6139038号公報(特許文献1)は、高圧の超臨界流体ではなく、比較的圧力の低い窒素や二酸化炭素等の物理発泡剤を用いた発泡成形体の製造方法を開示している。この方法によれば、特別な高圧装置を用いることなく低圧の物理発泡剤によって比較的簡便なプロセスで樹脂成型体に微細な発泡セルを形成することができる。また、特許文献1は、射出成形法及び押出成形法によって発泡成形体を成形する方法を開示している。
Patent Publication No. 6139038 (Patent Document 1) discloses a method for producing a foamed molded body using a physical foaming agent such as nitrogen or carbon dioxide at a relatively low pressure, rather than a high-pressure supercritical fluid. This method makes it possible to form fine foam cells in a resin molded body through a relatively simple process using a low-pressure physical foaming agent without using a special high-pressure device. Patent Document 1 also discloses methods for forming a foamed molded body using injection molding and extrusion molding.
射出成形法は、複雑な形状の発泡成形体を得ることができる。しかしながら、金型内を溶融樹脂の表層が冷却固化しながら流動する。その際、発泡成形体の表層には非発泡のスキン層が比較的薄く形成される。一方、押出成形法は、射出成形法よりも金型の大きさや負荷の制限が少なく、単一形状かつ単一厚みの発泡成形体を連続して作製するのに適している。また、押出成形法により得られるシート状の発泡成形体は、真空成形等を施すことにより、ある程度複雑な形状のもの又は比較的大きなサイズのもの等に賦形することができる。ただし、押出成形法は、溶融樹脂がダイス出口から吐出されて冷却固化される際、発泡成形体の表層にスキン層が形成されにくい。
Injection molding can produce foamed molded products with complex shapes. However, the surface layer of the molten resin flows inside the mold while cooling and solidifying. At that time, a relatively thin non-foamed skin layer is formed on the surface of the foamed molded product. On the other hand, extrusion molding has fewer restrictions on mold size and load than injection molding, and is suitable for continuously producing foamed molded products of a single shape and thickness. In addition, sheet-like foamed molded products obtained by extrusion molding can be shaped into relatively complex shapes or relatively large sizes by vacuum molding, etc. However, with extrusion molding, it is difficult for a skin layer to form on the surface of the foamed molded product when the molten resin is discharged from the die outlet and cooled and solidified.
十分な厚みを有するスキン層を形成する方法として、特許第3654697号公報(特許文献2)は、熱可塑性樹脂発泡シートの製造方法を開示している。熱可塑性樹脂発泡シートの製造方法によれば、押出成形によって熱可塑性樹脂発泡シートの表面にスキン層を容易に形成できる。また、特開2000-52370号公報(特許文献3)は、多層積層成形体の製造方法を開示している。多層積層成形体は、共押出成形によって発泡樹脂からなるコア層及びスキン層を形成している。特許文献2の製造方法及び特許文献3の製造方法は、主な樹脂材料としてポリプロピレンまたはポリスチレン等の耐熱性及び機械強度が比較的小さい汎用プラスチックを用いており、耐熱性及び機械強度を目的としてスキン層を形成するものではない。
As a method for forming a skin layer with sufficient thickness, Japanese Patent No. 3654697 (Patent Document 2) discloses a method for manufacturing a thermoplastic resin foam sheet. According to this method for manufacturing a thermoplastic resin foam sheet, a skin layer can be easily formed on the surface of a thermoplastic resin foam sheet by extrusion molding. In addition, Japanese Patent Laid-Open No. 2000-52370 (Patent Document 3) discloses a method for manufacturing a multi-layer laminate molded body. In the multi-layer laminate molded body, a core layer and a skin layer made of foamed resin are formed by co-extrusion molding. The manufacturing methods of Patent Document 2 and Patent Document 3 use general-purpose plastics such as polypropylene or polystyrene, which have relatively low heat resistance and mechanical strength, as the main resin material, and do not form a skin layer for the purpose of heat resistance and mechanical strength.
特許第7100216号公報(特許文献4)は、真空成形等の熱賦形をする際に生じる表面の膨出や共押出シートの割れを抑制することができ、かつ、優れた軽量性及び機械強度を得ることができる共押出シートを開示している。共押出シートは、耐熱性又は強度に優れたエンジニアリングプラスチックであるポリカーボネート樹脂を含む。共押出シートは、発泡樹脂からなるコア層と、コア層の一方及び他方の主面の各々に積層されたスキン層とを含む。共押出シートは、その密度と、コア層及びスキン層の厚みの比率等を制御し、或いは、メルトボリュームレイト(MVR)等を制御することにより、機械強度と表面平滑性の向上を図っている。
Japanese Patent No. 7100216 (Patent Document 4) discloses a coextruded sheet that can suppress surface swelling and cracking of the coextruded sheet that occurs during thermal shaping such as vacuum forming, and can obtain excellent lightness and mechanical strength. The coextruded sheet contains polycarbonate resin, which is an engineering plastic with excellent heat resistance and strength. The coextruded sheet includes a core layer made of a foamed resin, and a skin layer laminated on each of one and the other main surfaces of the core layer. The coextruded sheet aims to improve mechanical strength and surface smoothness by controlling the density and the ratio of the thickness of the core layer and the skin layer, or by controlling the melt volume rate (MVR), etc.
ただし、特許文献4の共押出シートは、優れた機械強度と表面平滑性を得ることができるものの、真空成形後の樹脂成形体の形状、例えば、比較的厚みが小さく、機械強度を得にくい薄肉部においても優れた機械強度を確保する必要がある。すなわち、共押出シートを真空成形等した樹脂成形体において、より優れた機械強度を得るには未だ検討の余地が十分にある。
However, although the co-extruded sheet of Patent Document 4 can achieve excellent mechanical strength and surface smoothness, it is necessary to ensure excellent mechanical strength in the shape of the resin molded product after vacuum forming, for example, in thin-walled parts that are relatively thin and difficult to obtain mechanical strength in. In other words, there is still ample room for further study in order to obtain better mechanical strength in resin molded products obtained by vacuum forming, etc., of co-extruded sheets.
本開示は、薄肉部を含み、発泡樹脂を賦形してなる偏肉の樹脂成形体であっても、優れた機械強度を有する樹脂成形体を提供することを課題とする。
The objective of this disclosure is to provide a resin molded body that has excellent mechanical strength, even if it is a resin molded body with uneven thickness that includes thin-walled portions and is formed by shaping a foamed resin.
上記課題を解決するために、本開示は次のような解決手段を講じた。すなわち、本開示に係る樹脂成形体は、発泡層と発泡層の一方の主面に積層された第1非発泡層と発泡層の他方の主面に積層された第2非発泡層とを含む発泡樹脂シートを賦形してなる。樹脂成形体は、最も厚みが小さい最薄肉部と、最も厚みが大きい最厚肉部とを含んでよい。最薄肉部は、0.5mm以上の厚みを有していてよい。最厚肉部は、5.0mm以下の厚みを有していてよい。最薄肉部の曲げ弾性率M1と最厚肉部の曲げ弾性率M2の第1比率(M1/M2)は、0.7以上であってよい。
In order to solve the above problems, the present disclosure provides the following solution. That is, the resin molded body according to the present disclosure is formed by shaping a foamed resin sheet including a foamed layer, a first non-foamed layer laminated on one main surface of the foamed layer, and a second non-foamed layer laminated on the other main surface of the foamed layer. The resin molded body may include a thinnest part having the smallest thickness, and a thickest part having the largest thickness. The thinnest part may have a thickness of 0.5 mm or more. The thickest part may have a thickness of 5.0 mm or less. A first ratio (M1/M2) between the flexural modulus M1 of the thinnest part and the flexural modulus M2 of the thickest part may be 0.7 or more.
本開示に係る樹脂成形体によれば、薄肉部を含み、発泡樹脂を賦形してなる偏肉の樹脂成形体であっても、優れた機械強度を得ることができる。
The resin molded body according to the present disclosure can have excellent mechanical strength even if it is a resin molded body with uneven thickness that includes thin-walled parts and is made by shaping a foamed resin.
上述の通り、発泡樹脂からなるコア層と、コア層の一方及び他方の主面に非発泡樹脂からなるスキン層とを積層した発泡樹脂シート10(図1及び図2を参照。詳細は後述する。)を真空成形等の熱賦形をして樹脂成形品1000を成形した場合、比較的厚みが小さくなる薄肉部において機械強度を確保しにくい。本発明者らはそのメカニズムを以下のように考察した。図12に示すように、従来、発泡樹脂シート10の真空成形をする場合、まず、発泡樹脂シート10の端部を治具1001で固定し、発泡樹脂シート10の両面をヒータ1002により樹脂材料のガラス転移温度以上に加熱する。このとき、図13に示すように、発泡樹脂シート10は、溶融状態となって自重に耐えられずに垂れ下がるように変形する。すなわち、発泡樹脂シート10の面積が増大して、その結果、発泡樹脂シート10の板厚が小さくなる。さらに、溶融状態の発泡樹脂シート10に含まれる気泡111は、図14に示すように、加熱により合一化し、或いは、膨張する。その後、上述のように垂れさがるように変形した発泡樹脂シート10は、図15に示すように、金型1003を用いて真空成形され、冷却固化される。その結果、図16に示すように、従来の樹脂成形品1000において、気泡111が不均一に肥大化することによって密度が低下し、且つ、薄肉部の曲げ弾性率が真空成形前の発泡樹脂シート10よりも低下する。これにより、薄肉部において機械強度が確保しにくいものと推察される。なお、非発泡樹脂のみからなるソリッドシートは、加熱により自重変形する。しかしながら、ソリッドシートの薄肉部の密度は変化せず、また、薄肉部における樹脂自体の基本物性に由来する曲げ弾性率は変化しない。
As described above, when a foamed resin sheet 10 (see Figs. 1 and 2; details will be described later) in which a core layer made of a foamed resin and skin layers made of a non-foamed resin are laminated on one and the other main surfaces of the core layer are heat-formed by vacuum forming or the like to form a resin molded product 1000, it is difficult to ensure mechanical strength in the thin-walled portion, which has a relatively small thickness. The inventors have considered the mechanism as follows. As shown in Fig. 12, in the conventional vacuum forming of a foamed resin sheet 10, first, the end of the foamed resin sheet 10 is fixed with a jig 1001, and both sides of the foamed resin sheet 10 are heated by a heater 1002 to a temperature equal to or higher than the glass transition temperature of the resin material. At this time, as shown in Fig. 13, the foamed resin sheet 10 becomes in a molten state and deforms so as to sag down without being able to withstand its own weight. That is, the area of the foamed resin sheet 10 increases, and as a result, the plate thickness of the foamed resin sheet 10 decreases. Furthermore, the air bubbles 111 contained in the foamed resin sheet 10 in a molten state are united or expanded by heating, as shown in Fig. 14. Thereafter, the foamed resin sheet 10, which has been deformed so as to sag as described above, is vacuum-formed using a mold 1003 as shown in FIG. 15, and cooled and solidified. As a result, as shown in FIG. 16, in the conventional resin molded product 1000, the air bubbles 111 are unevenly enlarged, causing a decrease in density, and the bending modulus of the thin-walled portion is lower than that of the foamed resin sheet 10 before vacuum forming. This presumably makes it difficult to ensure mechanical strength in the thin-walled portion. Note that a solid sheet made only of non-foamed resin deforms under its own weight when heated. However, the density of the thin-walled portion of the solid sheet does not change, and the bending modulus of the thin-walled portion, which is derived from the basic physical properties of the resin itself, does not change.
本発明者らは、鋭意検討の結果、発泡樹脂シート10を真空成形等により賦形した樹脂成形体において、最も厚みが小さい最薄肉部における曲げ弾性率と最も厚みが大きい最厚肉部の曲げ弾性率との比率が所定の値を超えれば、偏肉の樹脂成形体であっても最薄肉部における優れた機械強度を確保できることを見出し、以下の通り、本発明を完成させた。
After extensive research, the inventors discovered that in a resin molded product obtained by shaping a foamed resin sheet 10 by vacuum forming or the like, if the ratio of the flexural modulus of the thinnest part to the flexural modulus of the thickest part exceeds a predetermined value, excellent mechanical strength can be ensured in the thinnest part even in a resin molded product with uneven thickness. This led to the completion of the present invention, as described below.
(構成1)
本開示の実施形態に係る樹脂成形体は、発泡層と発泡層の一方の主面に積層された第1非発泡層と発泡層の他方の主面に積層された第2非発泡層とを含む発泡樹脂シートを賦形してなる。樹脂成形体は、最も厚みが小さい最薄肉部と、最も厚みが大きい最厚肉部とを含んでよい。最薄肉部は、0.5mm以上の厚みを有していてよい。最厚肉部は、5.0mm以下の厚みを有していてよい。最薄肉部の曲げ弾性率M1と最厚肉部の曲げ弾性率M2の第1比率(M1/M2)は、0.7以上であってよい。 (Configuration 1)
The resin molded body according to the embodiment of the present disclosure is formed by shaping a foamed resin sheet including a foamed layer, a first non-foamed layer laminated on one main surface of the foamed layer, and a second non-foamed layer laminated on the other main surface of the foamed layer. The resin molded body may include a thinnest part having the smallest thickness and a thickest part having the largest thickness. The thinnest part may have a thickness of 0.5 mm or more. The thickest part may have a thickness of 5.0 mm or less. A first ratio (M1/M2) between the bending modulus M1 of the thinnest part and the bending modulus M2 of the thickest part may be 0.7 or more.
本開示の実施形態に係る樹脂成形体は、発泡層と発泡層の一方の主面に積層された第1非発泡層と発泡層の他方の主面に積層された第2非発泡層とを含む発泡樹脂シートを賦形してなる。樹脂成形体は、最も厚みが小さい最薄肉部と、最も厚みが大きい最厚肉部とを含んでよい。最薄肉部は、0.5mm以上の厚みを有していてよい。最厚肉部は、5.0mm以下の厚みを有していてよい。最薄肉部の曲げ弾性率M1と最厚肉部の曲げ弾性率M2の第1比率(M1/M2)は、0.7以上であってよい。 (Configuration 1)
The resin molded body according to the embodiment of the present disclosure is formed by shaping a foamed resin sheet including a foamed layer, a first non-foamed layer laminated on one main surface of the foamed layer, and a second non-foamed layer laminated on the other main surface of the foamed layer. The resin molded body may include a thinnest part having the smallest thickness and a thickest part having the largest thickness. The thinnest part may have a thickness of 0.5 mm or more. The thickest part may have a thickness of 5.0 mm or less. A first ratio (M1/M2) between the bending modulus M1 of the thinnest part and the bending modulus M2 of the thickest part may be 0.7 or more.
これにより、最薄肉部を含む偏肉化した樹脂成形体1において、成形前の発泡樹脂シートに対する密度の変化を抑制して、樹脂成形体1の機械強度を向上させることができる。
This makes it possible to suppress the change in density of the resin molded body 1, which has an uneven thickness including the thinnest part, relative to the foamed resin sheet before molding, thereby improving the mechanical strength of the resin molded body 1.
(構成2)
構成1の樹脂成形体であって、第1比率(M1/M2)は、2.0以下であってよい。 (Configuration 2)
In the resin molded body ofconfiguration 1, the first ratio (M1/M2) may be 2.0 or less.
構成1の樹脂成形体であって、第1比率(M1/M2)は、2.0以下であってよい。 (Configuration 2)
In the resin molded body of
(構成3)
構成1又は2の樹脂成形体であって、最薄肉部の厚みt1と最厚肉部の厚みt2の第2比率(t1/t2)は、0.4以上0.9以下であってよい。これにより、樹脂成形体1の厚みにムラが生じず、成形時のける破損、或いは、成形後の破損や穴開きを抑制することができ、かつ、真空成形性を向上させることができる。 (Configuration 3)
In the resin molded body of configuration 1 or 2, a second ratio (t1/t2) between the thickness t1 of the thinnest part and the thickness t2 of the thickest part may be 0.4 or more and 0.9 or less. This prevents unevenness in the thickness of the resin molded body 1, suppresses damage during molding, or damage or holes after molding, and improves vacuum moldability.
構成1又は2の樹脂成形体であって、最薄肉部の厚みt1と最厚肉部の厚みt2の第2比率(t1/t2)は、0.4以上0.9以下であってよい。これにより、樹脂成形体1の厚みにムラが生じず、成形時のける破損、或いは、成形後の破損や穴開きを抑制することができ、かつ、真空成形性を向上させることができる。 (Configuration 3)
In the resin molded body of
(構成4)
構成1~3のいずれか1つの樹脂成形体であって、樹脂成形体は、熱可塑性樹脂からなってよい。樹脂成形体の密度は、1.0g/cm3以下であってよい。最薄肉部及び最厚肉部の各々の曲げ弾性率は、1000MPa以上であってよい。これにより、真空成形等の熱賦形により成形された樹脂成形体1の曲げ弾性率の低下を抑制することができ、かつ、軽量化を図ることができる。 (Configuration 4)
In the resin molded body of any one ofconfigurations 1 to 3, the resin molded body may be made of a thermoplastic resin. The density of the resin molded body may be 1.0 g/ cm3 or less. The bending modulus of each of the thinnest wall part and the thickest wall part may be 1000 MPa or more. This makes it possible to suppress a decrease in the bending modulus of the resin molded body 1 molded by thermal shaping such as vacuum molding, and to achieve weight reduction.
構成1~3のいずれか1つの樹脂成形体であって、樹脂成形体は、熱可塑性樹脂からなってよい。樹脂成形体の密度は、1.0g/cm3以下であってよい。最薄肉部及び最厚肉部の各々の曲げ弾性率は、1000MPa以上であってよい。これにより、真空成形等の熱賦形により成形された樹脂成形体1の曲げ弾性率の低下を抑制することができ、かつ、軽量化を図ることができる。 (Configuration 4)
In the resin molded body of any one of
(構成5)
構成1~4のいずれか1つの樹脂成形体であって、樹脂成形体は、ポリカーボネート樹脂を含んでよい。これにより、真空成形等の熱賦形を容易にすることができ、かつ、外観意匠性及び機械強度に優れた樹脂成形体1を得ることができる。 (Configuration 5)
In the resin molded body of any one ofconfigurations 1 to 4, the resin molded body may contain a polycarbonate resin. This makes it possible to easily perform thermal shaping such as vacuum molding, and to obtain the resin molded body 1 that is excellent in appearance design and mechanical strength.
構成1~4のいずれか1つの樹脂成形体であって、樹脂成形体は、ポリカーボネート樹脂を含んでよい。これにより、真空成形等の熱賦形を容易にすることができ、かつ、外観意匠性及び機械強度に優れた樹脂成形体1を得ることができる。 (Configuration 5)
In the resin molded body of any one of
(構成6)
構成1~4のいずれか1つの樹脂成形体であって、樹脂成形体は、ポリカーボネート樹脂、ポリプロピレン、ポリエチレンテレフタレート及びポリスチレンからなる群より選ばれる少なくとも1種を含んでよい。 (Configuration 6)
In the resin molded article according to any one ofconfigurations 1 to 4, the resin molded article may contain at least one selected from the group consisting of polycarbonate resin, polypropylene, polyethylene terephthalate, and polystyrene.
構成1~4のいずれか1つの樹脂成形体であって、樹脂成形体は、ポリカーボネート樹脂、ポリプロピレン、ポリエチレンテレフタレート及びポリスチレンからなる群より選ばれる少なくとも1種を含んでよい。 (Configuration 6)
In the resin molded article according to any one of
(構成7)
構成1~6のいずれか1つの樹脂成形体であって、第1比率と第2比率との比率(第1比率/第2比率)は、4.0以下であってよい。 (Configuration 7)
In the resin molded article according to any one ofconfigurations 1 to 6, the ratio between the first ratio and the second ratio (first ratio/second ratio) may be 4.0 or less.
構成1~6のいずれか1つの樹脂成形体であって、第1比率と第2比率との比率(第1比率/第2比率)は、4.0以下であってよい。 (Configuration 7)
In the resin molded article according to any one of
(構成8)
構成1~7のいずれか1つの樹脂成形体であって、第1比率と第2比率との比率(第1比率/第2比率)は、1.0より大きくてよい。これにより、最薄肉部及び最厚肉部の厚みによる強度変化を小さくすることができ、優れた機械強度を確保することができる。 (Configuration 8)
In the resin molded product of any one ofconfigurations 1 to 7, the ratio between the first ratio and the second ratio (first ratio/second ratio) may be greater than 1.0, thereby making it possible to reduce the change in strength due to the thickness of the thinnest part and the thickest part, and to ensure excellent mechanical strength.
構成1~7のいずれか1つの樹脂成形体であって、第1比率と第2比率との比率(第1比率/第2比率)は、1.0より大きくてよい。これにより、最薄肉部及び最厚肉部の厚みによる強度変化を小さくすることができ、優れた機械強度を確保することができる。 (Configuration 8)
In the resin molded product of any one of
以下、本開示の樹脂成形体1の実施形態について、図1~図9を用いて具体的に説明する。なお、図中同一及び相当する構成については同一の符号を付し、同じ説明を繰り返さない。なお、説明を分かりやすくするために、以下で参照する図面においては、構成が簡略化または模式化して示されたり、一部の構成部材が省略されたりしている。
Below, an embodiment of the resin molded body 1 of the present disclosure will be specifically described with reference to Figures 1 to 9. Note that the same or corresponding components in the figures are given the same reference numerals, and the same description will not be repeated. Note that, to make the description easier to understand, the drawings referenced below show simplified or schematic configurations, and some components are omitted.
まず、樹脂成形体1の材料、すなわち、真空成形等によって賦形をされる前の発泡樹脂シート10について説明する。
First, we will explain the material of the resin molded body 1, that is, the foamed resin sheet 10 before it is shaped by vacuum molding or the like.
発泡樹脂シート10は、真空成形等により賦形可能な樹脂材料からなる。発泡樹脂シート10は、真空成形等により賦形が可能な面積及び厚みを有していればよい。ただし、発泡樹脂シート10は、1~5mmの厚みを有していることが好ましい。これにより、真空成形等の熱賦形を容易にすることができる。発泡樹脂シート10の樹脂材料は、特に限定されないが、例えば、熱可塑性樹脂である。熱可塑性樹脂は、例えば、ポリエチレンテレフタレート(PET)、ポリプロピレン又はポリスチレン等の汎用プラスチック、100℃以上の耐熱性能を有するエンジニアリングプラスチック、或いは、150℃以上の耐熱性能を有するスーパーエンジニアリングプラスチックである。ただし、樹脂材料は、90℃以上の荷重たわみ温度を有することが好ましい。これにより、真空成形等の熱賦形時における成形性が向上し、熱賦形が容易になる。樹脂材料は、汎用プラスチック、エンジニアリングプラスチック及びスーパーエンジニアリングプラスチックからなる群から選ばれる少なくとも一種を含めばよく、ポリカーボネート樹脂とアクリロニトリル-ブタジエン-スチレン共重合樹脂(ABS樹脂)とのアロイを用いることもでき、ポリカーボネート樹脂を主として、例えば、50重量%以上含むことが好ましい。ポリカーボネート樹脂は、加熱加工性に優れる。これにより、真空成形等の熱賦形、特に後述するような深絞りの熱賦形を容易にすることができ、かつ、外観意匠性及び機械強度に優れた樹脂成形体1を得ることができる。なお、本開示において、荷重たわみ温度は、ISO75-2B(1.81MPa荷重)に基づいて求められる。
The foamed resin sheet 10 is made of a resin material that can be shaped by vacuum forming or the like. The foamed resin sheet 10 only needs to have an area and thickness that allows it to be shaped by vacuum forming or the like. However, it is preferable that the foamed resin sheet 10 has a thickness of 1 to 5 mm. This makes it easy to perform thermal shaping such as vacuum forming. The resin material of the foamed resin sheet 10 is not particularly limited, but is, for example, a thermoplastic resin. Thermoplastic resins are, for example, general-purpose plastics such as polyethylene terephthalate (PET), polypropylene, or polystyrene, engineering plastics that have a heat resistance of 100°C or more, or super engineering plastics that have a heat resistance of 150°C or more. However, it is preferable that the resin material has a deflection temperature under load of 90°C or more. This improves moldability during thermal shaping such as vacuum forming, making it easier to perform thermal shaping. The resin material may include at least one selected from the group consisting of general-purpose plastics, engineering plastics, and super engineering plastics. An alloy of polycarbonate resin and acrylonitrile-butadiene-styrene copolymer resin (ABS resin) may also be used, and it is preferable that the resin material mainly contains polycarbonate resin, for example, at 50% by weight or more. Polycarbonate resin has excellent heat processability. This makes it possible to easily perform heat shaping such as vacuum molding, particularly heat shaping for deep drawing as described below, and to obtain a resin molded body 1 with excellent appearance design and mechanical strength. In this disclosure, the deflection temperature under load is determined based on ISO 75-2B (load of 1.81 MPa).
図1及び図2に示すように、発泡樹脂シート10は、発泡層(以下、コア層という。)11と、コア層11の一方の主面に積層された非発泡層(以下、スキン層という。)12と、コア層11の他方の主面に積層されたスキン層13とを有している。
As shown in Figures 1 and 2, the foamed resin sheet 10 has a foamed layer (hereinafter referred to as the core layer) 11, a non-foamed layer (hereinafter referred to as the skin layer) 12 laminated on one main surface of the core layer 11, and a skin layer 13 laminated on the other main surface of the core layer 11.
コア層11は、発泡樹脂からなる。コア層11は、溶融した樹脂材料を物理発泡成形することにより形成することができる。物理発泡剤は、例えば、窒素、二酸化炭素、空気、アルゴン等の不活性ガスである。なお、本開示のコア層11は、比較的圧力の低い窒素や二酸化炭素等の物理発泡剤を用いて発泡成形されるのが好ましく、そのうち窒素がより好ましい。これにより、物理発泡剤の圧力を比較的低い1~6MPaに設定することができ、微細な気泡を多数形成することができる。これにより、真空成形時に高温且つ熱した際の膨出等をより確実に抑制することができる。気泡の平均気泡径は、0.1mm以上とするのがよく、1.0mm以下、好ましくは0.3mm以下とするのがよい。図2に示すように、コア層11は、多数の気泡111を有する。多数の気泡は、押出成形時の押出方向に沿う方向で厚み方向に切断した断面視において、押出方向に伸長した略楕円形状を有している。コア層11に含まれる多数の気泡のうち、コア層11の厚み方向中心近傍に含まれる気泡は、コア層11の厚み方向端部近傍に含まれる気泡111に比べて大きい気泡径を有する。多数の気泡111の気泡径は、コア層11の厚み方向中心から厚み方向端部に向かうにつれて徐々に小さくなる。
The core layer 11 is made of a foamed resin. The core layer 11 can be formed by physical foaming of a molten resin material. The physical foaming agent is, for example, an inert gas such as nitrogen, carbon dioxide, air, or argon. The core layer 11 of the present disclosure is preferably foamed using a physical foaming agent such as nitrogen or carbon dioxide with a relatively low pressure, and nitrogen is more preferable. This allows the pressure of the physical foaming agent to be set to a relatively low value of 1 to 6 MPa, and a large number of fine bubbles can be formed. This makes it possible to more reliably suppress expansion and the like when heated at high temperatures during vacuum molding. The average bubble diameter of the bubbles is preferably 0.1 mm or more, 1.0 mm or less, and preferably 0.3 mm or less. As shown in FIG. 2, the core layer 11 has a large number of bubbles 111. The large number of bubbles have an approximately elliptical shape elongated in the extrusion direction in a cross-sectional view cut in the thickness direction in the direction along the extrusion direction during extrusion molding. Of the many bubbles contained in the core layer 11, the bubbles contained near the center of the core layer 11 in the thickness direction have a larger bubble diameter than the bubbles 111 contained near the ends of the core layer 11 in the thickness direction. The bubble diameter of the many bubbles 111 gradually decreases from the center of the core layer 11 in the thickness direction toward the ends of the core layer 11 in the thickness direction.
図2に示すように、スキン層12は、非発泡樹脂からなる。すなわち、スキン層12は、発泡成形されていない。スキン層12は、共押出成形法により、非発泡の状態でダイス出口より押し出され、コア層11と一体的に積層されてもよい。或いは、コア層11を形成した後に、スキン層12をコア層11の一方の主面に接着又は溶着等によって固着させてもよい。なお、本開示において、非発泡とは、空孔率が5%未満であることをいう。また、発泡とは、空孔率が5%以上であることをいう。空孔率は、より具体的に、以下のようにして算出される。まず、発泡樹脂シート10の一部を切り出し、平面視において20mm×20mmの正方形となるシート片を作製する。高出力マイクロX線CTシステム(株式会社島津製作所製、型番「inspeXio SMX-225CTS」)を用いて、シート片をCTスキャンし、平面視においてシート片の中心点と所定の一辺の中点とを通る線に沿って厚み方向に切断したCT断面画像を得る。詳細な測定条件は、印加160kV、pixelサイズ0.105mm/voxel、pixel数512×512×512、ビュー数1200、XY方向の視野53.5mm、及び、Z方向の視野48.9mmである。発泡樹脂シート10の断面視において、スキン層12とコア層11の界面が明確な場合、明確な界面のうち目視で気泡数が少ない層をスキン層12、多い層をコア層11とする。また、スキン層12とコア層11の界面の場合、多数存在する気泡のうち、発泡樹脂シート10の断面を幅方向に16等分した際の各々の仮想境界線上における、樹脂シート1の表面に近い気泡を15個選定し、そのうち発泡樹脂シート10の表面に最も近い気泡を確認する。この最も近い気泡の上端を通り、かつ、厚み方向に直交する仮想線を引く。仮想線よりも厚み方向内方をコア層11とし、厚み方向外方をスキン層12とする。続いてコア層11及びスキン層12の断面を撮影したCT断面画像において、コア層11を厚み方向に20等分、かつ、同一直線状にスキン層12を厚み方向に5等分するように正方形の区画(よって、1区画の1辺の長さは発泡樹脂シート10の厚みに依存する。)を規定し、コア層11の厚み方向に沿って20個の区間が並び、かつ、スキン層12の厚み方向に沿って5個の区画が並ぶ列を、5列抽出する。次に、画像処理ソフト「Image J(アメリカ国立衛生研究所製)」を用いて気泡と気泡壁を二値化する。このとき、二値化処理の閾値は、大津法によって得られた濃度ヒストグラムから求められる。そして、得られた二値化画像の白色部分を気泡壁、黒色部分を気泡とし、各列の各々の区画に含まれる独立気泡の断面積を算出する。このようにして各々の区画に含まれる独立気泡の断面積を算出し、各々の区画の断面積で除することにより、各列に含まれる各々の区画の空孔率を算出する。また、抽出された5つの列は各々、コア層11とスキン層12の断面画像において、幅方向の中央、幅方向の一方の端部、幅方向の他方の端部、幅方向の中央と幅方向の一方の端部との間における中央、及び、幅方向の中央と幅方向の他方の端部との間における中央に位置付けて抽出されている。
As shown in FIG. 2, the skin layer 12 is made of a non-foamed resin. That is, the skin layer 12 is not foamed. The skin layer 12 may be extruded from a die outlet in a non-foamed state by a co-extrusion molding method and laminated integrally with the core layer 11. Alternatively, after the core layer 11 is formed, the skin layer 12 may be fixed to one main surface of the core layer 11 by adhesion, welding, or the like. In this disclosure, non-foamed means that the porosity is less than 5%. Moreover, foamed means that the porosity is 5% or more. More specifically, the porosity is calculated as follows. First, a portion of the foamed resin sheet 10 is cut out to produce a sheet piece that is a square of 20 mm x 20 mm in plan view. A high-power micro X-ray CT system (Shimadzu Corporation, model number "inspexio SMX-225CTS") is used to CT scan the sheet piece, and a CT cross-sectional image is obtained by cutting the sheet piece in the thickness direction along a line passing through the center point of the sheet piece and the midpoint of a predetermined side in a plan view. The detailed measurement conditions are: applied voltage 160 kV, pixel size 0.105 mm/voxel, pixel number 512 x 512 x 512, view number 1200, field of view in the XY direction 53.5 mm, and field of view in the Z direction 48.9 mm. When the interface between the skin layer 12 and the core layer 11 is clear in a cross-sectional view of the foamed resin sheet 10, the layer with the fewest bubbles among the clear interface is the skin layer 12, and the layer with the most bubbles is the core layer 11. In addition, in the case of the interface between the skin layer 12 and the core layer 11, among the many bubbles present, 15 bubbles close to the surface of the resin sheet 1 on each imaginary boundary line when the cross section of the foamed resin sheet 10 is divided into 16 equal parts in the width direction are selected, and among them, the bubble closest to the surface of the foamed resin sheet 10 is confirmed. A virtual line is drawn that passes through the upper end of this closest bubble and is perpendicular to the thickness direction. The inner side of the imaginary line in the thickness direction is the core layer 11, and the outer side in the thickness direction is the skin layer 12. Next, in a CT cross-sectional image obtained by photographing the cross sections of the core layer 11 and the skin layer 12, square sections (the length of one side of each section depends on the thickness of the foamed resin sheet 10) are defined so as to divide the core layer 11 into 20 equal parts in the thickness direction and to divide the skin layer 12 into 5 equal parts in the thickness direction in the same straight line (therefore, the length of one side of each section depends on the thickness of the foamed resin sheet 10). Five rows are extracted in which 20 sections are arranged along the thickness direction of the core layer 11 and 5 sections are arranged along the thickness direction of the skin layer 12. Next, the bubbles and bubble walls are binarized using the image processing software "Image J (manufactured by the National Institutes of Health)". At this time, the threshold value for the binarization process is obtained from the density histogram obtained by the Otsu method. Then, the white parts of the obtained binarized image are regarded as bubble walls and the black parts as bubbles, and the cross-sectional area of the independent bubbles contained in each section of each row is calculated. In this way, the cross-sectional area of the independent bubbles contained in each section is calculated, and the porosity of each section contained in each row is calculated by dividing the cross-sectional area of each section. In addition, the five extracted rows are positioned and extracted at the center in the width direction, one end in the width direction, the other end in the width direction, the center between the center in the width direction and one end in the width direction, and the center between the center in the width direction and the other end in the width direction in the cross-sectional image of the core layer 11 and the skin layer 12.
スキン層12は、コア層11と良好に接着できる熱可塑性樹脂を用いればよい。より具体的に、スキン層12の樹脂材料は、コア層11と同じ樹脂材料であることが特に好ましいが、コア層11の樹脂材料と相溶性の高い樹脂であれば異なっても良い。また、スキン層12は、スキン層12を強化するために、本開示の効果を損なわない程度で無機フィラーを含有する強化樹脂、或いは、難燃剤や発泡核剤等の添加剤を含有する樹脂から構成することができる。これらスキン層12の構成により、効率よく強度を向上させながら、軽量化と強度の向上を図ることができる。無機フィラーは、例えば、ガラス繊維、炭素繊維、アラミド繊維、タルク及びマイカ等である。
The skin layer 12 may be made of a thermoplastic resin that can adhere well to the core layer 11. More specifically, the resin material of the skin layer 12 is preferably the same as that of the core layer 11, but may be different from that of the core layer 11 as long as it is highly compatible with the resin material of the core layer 11. In order to strengthen the skin layer 12, the skin layer 12 may be made of a reinforced resin that contains an inorganic filler to an extent that does not impair the effects of the present disclosure, or a resin that contains additives such as a flame retardant or a foam nucleating agent. This configuration of the skin layer 12 makes it possible to efficiently improve the strength while reducing the weight and improving the strength. Examples of inorganic fillers include glass fiber, carbon fiber, aramid fiber, talc, and mica.
また、スキン層12は、本開示の効果を損なわない程度で、塗料又は顔料等を塗布することにより着色されてもよい。また、スキン層12の外側面、すなわち、コア層11の一方の主面と対向する面とは反対側の面に対して接着又はラミネート法によって加飾フィルムを設けてもよい。これにより、発泡樹脂シート10を真空成形等の熱賦形をしたのち、樹脂成形体1の外観意匠性を向上させることができる。このように、スキン層12、コア層11及びスキン層13からなる3層構造に加え、スキン層12又はスキン層13の外方面に他の機能を有する層を設けてもよい。これにより、発泡樹脂シート10及び樹脂成形体1を多機能に形成することができる。
The skin layer 12 may be colored by applying paint or pigment, etc., to an extent that does not impair the effects of the present disclosure. A decorative film may be provided by adhesion or lamination on the outer surface of the skin layer 12, i.e., the surface opposite to the surface facing one of the main surfaces of the core layer 11. This makes it possible to improve the external design of the resin molded body 1 after the foamed resin sheet 10 is thermally shaped by vacuum forming or the like. In this way, in addition to the three-layer structure consisting of the skin layer 12, the core layer 11, and the skin layer 13, a layer having another function may be provided on the outer surface of the skin layer 12 or the skin layer 13. This makes it possible to form the foamed resin sheet 10 and the resin molded body 1 with multiple functions.
スキン層13は、コア層11の他方の主面に積層されている点を除き、スキン層12と同じである。そのため、スキン層13の具体的な説明は省略する。
Skin layer 13 is the same as skin layer 12, except that it is laminated on the other main surface of core layer 11. Therefore, a detailed description of skin layer 13 is omitted.
本開示の樹脂成形体1は、上述の発泡樹脂シート10を真空成形等の熱賦形をすることにより得ることができる。以下、図3~7を用いて、樹脂成形体1の成形方法を具体的に説明する。なお、ここでは、真空成形を用いた成形方法を説明するが、樹脂成形体1の成形方法は特に限定されない。
The resin molded body 1 of the present disclosure can be obtained by subjecting the foamed resin sheet 10 described above to thermal shaping, such as vacuum forming. A method for molding the resin molded body 1 will be specifically described below with reference to Figures 3 to 7. Note that although a molding method using vacuum forming will be described here, the molding method for the resin molded body 1 is not particularly limited.
まず、図3に示すように、まず、発泡樹脂シート10を治具101により固定する。図4に示すように、発泡樹脂シート10の上方及び下方にグラファイトからなる加熱板102を配置する。加熱板102は、予め高周波誘導加熱装置によりガラス転移温度よりも高温に加熱されている。グラファイトは、銅の2~3倍の高熱伝導率を有し、軽量である。また、グラファイトは、撥水性に優れるため、溶融樹脂に接着しにくい。これにより、グラファイトからなる加熱板102は、発泡樹脂シート10の厚みを均一に規制して加熱することに好適である。すなわち、本開示の樹脂成形体1の成形工程おいて、発泡樹脂シート10は、その厚みが全面的に均一になるように加熱されることが好ましい。上方に位置する加熱板102と下方に位置する加熱板102との間における隙間は、発泡樹脂シート10の厚みに対して104%の幅Wを有する。これにより、発泡樹脂シート10の厚みが均一になるように加熱し易くなる。隙間の幅Wは、発泡樹脂シート10の厚みを均一になるように加熱するという観点から、発泡樹脂シート10の厚みの104%以内とするのがよりよい。なお、隙間の幅Wは、特に図示はしないが、上方の加熱板102と下方の加熱板102との間に配置されたスペーサによって調整されてよい。
First, as shown in FIG. 3, the foamed resin sheet 10 is fixed by a jig 101. As shown in FIG. 4, heating plates 102 made of graphite are arranged above and below the foamed resin sheet 10. The heating plates 102 are heated in advance to a temperature higher than the glass transition temperature by a high-frequency induction heating device. Graphite has a thermal conductivity two to three times higher than that of copper and is lightweight. In addition, graphite has excellent water repellency, so it is difficult to adhere to molten resin. As a result, the heating plate 102 made of graphite is suitable for heating the foamed resin sheet 10 while uniformly regulating the thickness of the foamed resin sheet 10. That is, in the molding process of the resin molded body 1 of the present disclosure, it is preferable that the foamed resin sheet 10 is heated so that its thickness is uniform over the entire surface. The gap between the heating plate 102 located above and the heating plate 102 located below has a width W of 104% of the thickness of the foamed resin sheet 10. This makes it easier to heat the foamed resin sheet 10 so that the thickness is uniform. From the viewpoint of heating the foamed resin sheet 10 so that the thickness of the foamed resin sheet 10 is uniform, it is preferable that the gap width W be within 104% of the thickness of the foamed resin sheet 10. Although not shown in the figure, the gap width W may be adjusted by a spacer disposed between the upper heating plate 102 and the lower heating plate 102.
このように厚みが均一になるように規制されて加熱された発泡樹脂シート10は、図2で示した加熱前の発泡樹脂シート10と同様の気泡構造を有するものと推察される。すなわち、加熱後の発泡樹脂シート10は、気泡が合一化せずに発泡樹脂シート10の表面に膨れが生じるのを抑制し易い構造になっている。このように加熱された発泡樹脂シート10は、ガラス転移温度よりも高温に達したとき、金型103の直上に移動される。なお、発泡樹脂シート10の温度は、発泡樹脂シート10の末端において温度センサーにより計測される。その後、図5に示すように、上方の加熱板102及び下方の加熱板102を発泡樹脂シート10から除去し、溶融状態の発泡樹脂シート10を金型103の上面に密着させ、発泡樹脂シート10を収容する空間が気密になるようにシールする。その直後、図6に示すように、金型103に設けられた吸引孔104を介して吸引し、発泡樹脂シート10の真空成形をする。その後、成形された発泡樹脂シート10を冷却固化させ、離型する。このように成形された発泡樹脂シート10のうち余分な箇所等をトリミングすることにより、図7に示すような樹脂成形体1を得ることができる。
It is presumed that the foamed resin sheet 10 heated while being regulated to have a uniform thickness in this way has the same bubble structure as the foamed resin sheet 10 before heating shown in FIG. 2. In other words, the foamed resin sheet 10 after heating has a structure that makes it easy to suppress the occurrence of bulges on the surface of the foamed resin sheet 10 without the bubbles coalescing. When the foamed resin sheet 10 heated in this way reaches a temperature higher than the glass transition temperature, it is moved directly above the mold 103. The temperature of the foamed resin sheet 10 is measured by a temperature sensor at the end of the foamed resin sheet 10. Thereafter, as shown in FIG. 5, the upper heating plate 102 and the lower heating plate 102 are removed from the foamed resin sheet 10, and the molten foamed resin sheet 10 is brought into close contact with the upper surface of the mold 103, and the space containing the foamed resin sheet 10 is sealed so that it is airtight. Immediately after that, as shown in FIG. 6, suction is applied through the suction hole 104 provided in the mold 103, and the foamed resin sheet 10 is vacuum molded. Thereafter, the molded foamed resin sheet 10 is cooled and solidified, and then released from the mold. By trimming off excess parts of the foamed resin sheet 10 thus formed, a resin molded body 1 as shown in FIG. 7 can be obtained.
図8に示すように、このような製法で得られた樹脂成形体1に含まれる気泡111は、樹脂成形体1が成形時に薄肉化するのに伴って、厚み方向に押し潰されるようにして厚みに対して鉛直方向に伸長し、楕円盤状になる。このように伸長された気泡を含む樹脂成形体1は、密度が高くなり、非発泡構造に似た構造に変化する。これにより、樹脂成形体1は、薄肉部における曲げ弾性率の低下を抑制し、機械強度の向上を図ることができ、また、成形性を向上させることができる。なお、樹脂成形体1は、真空成形に限られず圧空成形又はプレス成形などによって熱賦形されてもよく、発泡樹脂シート10を賦形できればその方法は限定されない。圧空成形は、真空の負圧よりも大気圧との差圧の高い正圧を用いる。そのため、加熱により肥大化した気泡を潰す効果により強度低下を抑制しやすい。あるいは、気泡肥大化を抑制しつつ厚みと強度を金型で制御する方法としてはプレス成形を用いることができる。金型の構成や成形のプロセス上、真空成形、圧空成形又は真空圧空成形は、片面分の金型で成形可能であるため、大型部品を安価に生産するという観点において好適である。また、金型103は、公知の賦形方法に用いられるものであればいかなる形状であってもよく、金属製又は木製等のいかなる材質を用いてよい。
As shown in FIG. 8, the bubbles 111 contained in the resin molded body 1 obtained by such a manufacturing method are crushed in the thickness direction as the resin molded body 1 becomes thinner during molding, and stretch in the direction perpendicular to the thickness, becoming an elliptical disk. The resin molded body 1 containing the stretched bubbles becomes denser and changes to a structure similar to a non-foamed structure. This makes it possible to suppress the decrease in bending modulus in the thin-walled part of the resin molded body 1, improve mechanical strength, and improve moldability. The resin molded body 1 may be thermally shaped by pressure molding or press molding, not limited to vacuum molding, and the method is not limited as long as the foamed resin sheet 10 can be shaped. Pressure molding uses a positive pressure with a higher differential pressure with atmospheric pressure than the negative pressure of a vacuum. Therefore, it is easy to suppress the decrease in strength due to the effect of crushing the bubbles enlarged by heating. Alternatively, press molding can be used as a method of controlling the thickness and strength with a mold while suppressing the enlargement of the bubbles. In terms of the mold configuration and molding process, vacuum molding, pressure molding, and vacuum pressure molding can be performed with a mold for one side, making them suitable for producing large parts at low cost. In addition, the mold 103 may be of any shape that is used in known shaping methods, and may be made of any material, such as metal or wood.
なお、上述した製法で作製した樹脂成形体1は、曲率を有する場合や屈曲している場合、或いは、比較的小さな場合であっても同じように、成形時に薄肉化するとともに、気泡が潰れて一部伸長され、非発泡構造に似た構造に変化するため、密度が高くなる。すなわち、上述した製法で作製した樹脂成形体1であれば、薄肉部における曲げ弾性率の低下を抑制し、機械強度の向上を図ることができ、また、成形性を向上させることができる。
The resin molded body 1 produced by the above-mentioned manufacturing method will thin during molding even if it has a curvature, is bent, or is relatively small, and the air bubbles will be crushed and partially stretched, changing into a structure similar to a non-foamed structure, resulting in an increased density. In other words, the resin molded body 1 produced by the above-mentioned manufacturing method can suppress the decrease in bending modulus in the thin-walled parts, improve mechanical strength, and also improve moldability.
このように成形された樹脂成形体1について、図9を用いて具体的に説明する。
The resin molded body 1 thus formed will be described in detail with reference to FIG. 9.
樹脂成形体1は、最も厚みが小さい最薄肉部2と最も厚みが大きい最厚肉部3とを有する。最薄肉部2は0.5mm以上の厚みを有し、最厚肉部3は5.0mm以下の厚みを有する。最薄肉部2の厚みが小さ過ぎると樹脂成形体1の剛性が低下し得る。また、真空成形時に発泡樹脂シート10に破れ等の不良を引き起こし得る。最厚肉部3の厚みが大き過ぎると成形性が低下し、樹脂成形体1の重量が増す。すなわち、樹脂成形体1の剛性及び成型性を確保し、かつ、軽量化を図るという観点から、最薄肉部2の厚みは、好ましくは1mm以上、より好ましくは1.5mm以上とするのがよく、最厚肉部3の厚みは、好ましくは4.5mm以下、より好ましくは4.0mm以下とするのがよい。最薄肉部2の厚みは、好ましくは1mm以上4.5mm以下であり、より好ましくは1.5mm以上4.5mm以下であり、さらに好ましくは1.5mm以上4.0mm以下とするのがよい。
The resin molded body 1 has the thinnest wall portion 2, which has the smallest thickness, and the thickest wall portion 3, which has the largest thickness. The thinnest wall portion 2 has a thickness of 0.5 mm or more, and the thickest wall portion 3 has a thickness of 5.0 mm or less. If the thickness of the thinnest wall portion 2 is too small, the rigidity of the resin molded body 1 may decrease. In addition, defects such as tears may occur in the foamed resin sheet 10 during vacuum molding. If the thickness of the thickest wall portion 3 is too large, the moldability decreases and the weight of the resin molded body 1 increases. In other words, from the viewpoint of ensuring the rigidity and moldability of the resin molded body 1 and achieving weight reduction, the thickness of the thinnest wall portion 2 is preferably 1 mm or more, more preferably 1.5 mm or more, and the thickness of the thickest wall portion 3 is preferably 4.5 mm or less, more preferably 4.0 mm or less. The thickness of the thinnest part 2 is preferably 1 mm or more and 4.5 mm or less, more preferably 1.5 mm or more and 4.5 mm or less, and even more preferably 1.5 mm or more and 4.0 mm or less.
樹脂成形体1の厚み分布は、磁気式厚さ計、超音波厚さ計又は3Dスキャナを用いて測定することができる。これにより、樹脂成形体1を破壊することなく樹脂成形体1の厚み分布を測定することができる。本開示において、樹脂成形体1の厚み分布は、例えば、3Dスキャナ型三次元測定機(株式会社キーエンス製、型番「VL-500」)を用いて測定することができる。このように測定された厚み分布のうち、最も厚みが小さい箇所を最薄肉部2と定義し、最も厚みが大きい箇所を最厚肉部3と定義することができる。
The thickness distribution of the resin molded body 1 can be measured using a magnetic thickness gauge, an ultrasonic thickness gauge, or a 3D scanner. This allows the thickness distribution of the resin molded body 1 to be measured without destroying the resin molded body 1. In this disclosure, the thickness distribution of the resin molded body 1 can be measured using, for example, a 3D scanner-type three-dimensional measuring machine (manufactured by Keyence Corporation, model number "VL-500"). Of the thickness distribution measured in this manner, the point with the smallest thickness can be defined as the thinnest part 2, and the point with the greatest thickness can be defined as the thickest part 3.
最薄肉部2の曲げ弾性率M1と最厚肉部3の曲げ弾性率M2との比率M1/M2(以下、比率Yと称する場合がある。)は、0.7以上とするのがよい。これにより、薄肉化した樹脂成形体1における成形前の発泡樹脂シート10からの密度の変化に伴う機械強度の低下を抑止し、樹脂成形体1の機械強度を向上させることができる。比率Yは、1.0以上とするのが好ましい。これにより、さらに樹脂成形体1の機械強度を向上させることができる。なお、比率Yの上限は特に限定されるものではないが、例えば、2.0以下である。比率Yは、好ましくは0.7以上2.0以下であり、さらに好ましくは1.0以上2.0以下である。
The ratio M1/M2 (hereinafter sometimes referred to as ratio Y) of the flexural modulus M1 of the thinnest part 2 to the flexural modulus M2 of the thickest part 3 is preferably 0.7 or more. This prevents the decrease in mechanical strength of the thinned resin molding 1 due to the change in density from the foamed resin sheet 10 before molding, and improves the mechanical strength of the resin molding 1. It is preferable that the ratio Y is 1.0 or more. This further improves the mechanical strength of the resin molding 1. The upper limit of the ratio Y is not particularly limited, but is, for example, 2.0 or less. The ratio Y is preferably 0.7 or more and 2.0 or less, and more preferably 1.0 or more and 2.0 or less.
曲げ弾性率M1及びM2は、3点曲げ試験にて評価された値である。3点曲げ試験は、具体的には以下のように実施される。まず、最薄肉部2を含む平面状の最薄肉片と最厚肉部3を含む平面状の最厚肉片を樹脂成形体1から打ち抜き機を用いて切り出す。最薄肉片及び最厚肉片は各々、10mmの幅と80mmの長さを有する平面視長方形状である。最薄肉片及び最厚肉片の各々において、最薄肉部2及び最厚肉部3は、平面視長方形状の対角線の交点に位置付けられる。最薄肉片及び最厚肉片の各々に対し、長さ方向の中央から長さ方向両端に向かって16mmの各々のポイントを支点として、最薄肉部2及び最厚肉部3に対して荷重を掛けることにより、3点曲げ試験を実施する。本開示において、3点曲げ試験は、例えば、精密型万能試験機(株式会社島津製作所製、型番「AGS-J」)を用いて実施することができる。なお、最薄肉部2又は最厚肉部3が樹脂成形体1の端部又は段差等に位置し、3点曲げ試験を実施できない場合がある。その場合、最薄肉部2及び最厚肉部3は各々、3点曲げ試験が可能な箇所、すなわち、上述の平面視長方形状の最薄肉片及び最厚肉片の切り出しが可能な部位で、かつ、最も厚みが小さい箇所及び最も厚みが大きい箇所と定義することができる。
The bending moduli M1 and M2 are values evaluated in a three-point bending test. The three-point bending test is specifically performed as follows. First, a planar thinnest piece including the thinnest part 2 and a planar thickest piece including the thickest part 3 are cut out from the resin molded body 1 using a punching machine. The thinnest piece and the thickest piece each have a rectangular shape in plan view with a width of 10 mm and a length of 80 mm. In each of the thinnest piece and the thickest piece, the thinnest part 2 and the thickest part 3 are positioned at the intersection of the diagonals of the rectangular shape in plan view. A three-point bending test is performed on each of the thinnest piece and the thickest piece by applying a load to the thinnest part 2 and the thickest part 3 with each point 16 mm from the center in the length direction toward both ends as a fulcrum. In the present disclosure, the three-point bending test can be performed using, for example, a precision universal testing machine (manufactured by Shimadzu Corporation, model number "AGS-J"). In addition, there are cases where the thinnest part 2 or the thickest part 3 is located at the end or step of the resin molded body 1, making it impossible to perform a three-point bending test. In such cases, the thinnest part 2 and the thickest part 3 can be defined as the locations where a three-point bending test is possible, i.e., the locations where the above-mentioned thinnest and thickest rectangular pieces in plan view can be cut out, and where the thickness is smallest and the thickness is largest, respectively.
なお、最薄肉部2又は最厚肉部3の周囲が曲率を有する形状である場合、上述の最薄肉片及び最厚肉片が曲率を有する場合、10mmの幅と80mmの円弧長さを有する円弧状の最薄肉片及び最厚肉片を切り出す。例えば、円弧状の最薄肉片及び最厚肉片の曲率が30m-1以下である場合、上述の平面状の最薄肉片及び最厚肉片と同様に3点曲げ試験を実施することができる。ただし、3点曲げ試験時に最薄肉片及び最厚肉片がズレ動くなどして正確な測定ができない場合、最薄肉部2及び最厚肉部3は各々、曲率が30m-1以下である最薄肉片及び最厚肉片の切り出しが可能な部位で、かつ、最も厚みが小さい箇所及び最も厚みが大きい箇所と定義することができる。
In addition, when the periphery of the thinnest part 2 or the thickest part 3 has a shape with a curvature, the thinnest and thickest pieces are cut out in an arc shape having a width of 10 mm and an arc length of 80 mm. For example, when the curvature of the arc-shaped thinnest and thickest pieces is 30 m -1 or less, a three-point bending test can be performed in the same manner as the planar thinnest and thickest pieces. However, when the thinnest and thickest pieces are displaced during the three-point bending test and accurate measurement cannot be performed, the thinnest and thickest parts 2 and 3 can be defined as the parts where the thinnest and thickest pieces with a curvature of 30 m -1 or less can be cut out and the parts with the smallest and largest thicknesses, respectively.
なお、最薄肉片及び最厚肉片の密度は各々、以下のように算出することができる。まず、最薄肉片及び最厚肉片の各々の幅をマイクロメータを用いて測定し、また、長さをノギスを用いて測定する。これらの幅、長さ及び上述の平均厚みから体積を算出する。最薄肉片及び最厚肉片の各々の平均厚みは、最薄肉片及び最厚肉片の各々を長さ方向に等間隔に10点の厚みを測定し、これら10点の厚みの算術平均値とすることができる。また、電子天秤を用いて最薄肉片及び最厚肉片の各々の重量を測定する。最薄肉片及び最厚肉片の密度は、各々の重量を体積で除することにより算出することができる。
The density of the thinnest and thickest pieces can be calculated as follows. First, the width of each of the thinnest and thickest pieces is measured using a micrometer, and the length is measured using a vernier caliper. The volume is calculated from these widths, lengths, and the average thickness mentioned above. The average thickness of each of the thinnest and thickest pieces can be calculated by measuring the thickness of each of the thinnest and thickest pieces at 10 equally spaced points along the length, and taking the arithmetic mean value of these 10 thicknesses. In addition, the weight of each of the thinnest and thickest pieces is measured using an electronic balance. The density of the thinnest and thickest pieces can be calculated by dividing each weight by the volume.
最薄肉部2の厚みt1と最厚肉部3の厚みt2との比率t1/t2(以下、比率Xと称する場合がある。)は、0.4以上とするのがよい。これにより、樹脂成形体1の厚みにムラが生じない。すなわち、樹脂成形体1の一部が極端に薄い場合における成形時の加熱による破損、或いは、成形後の破損や穴開きを抑制することができる。また、比率Xは、0.7以上とするのがよい。これにより、比率Yを1.0以上にし易くなり、最薄肉部2の強度を向上させることができる。比率Xは、少なくとも1よりも小さければよいが、例えば、0.9以下としてもよい。これにより、真空成形等の熱賦形時における成形性を向上させることができる。比率Xは、好ましくは0.7以上1より小さく、より好ましくは0.7以上0.9以下である。
The ratio t1/t2 (hereinafter sometimes referred to as the ratio X) of the thickness t1 of the thinnest part 2 to the thickness t2 of the thickest part 3 is preferably 0.4 or more. This prevents unevenness in the thickness of the resin molded body 1. In other words, when a part of the resin molded body 1 is extremely thin, damage due to heating during molding, or damage or holes after molding can be suppressed. In addition, the ratio X is preferably 0.7 or more. This makes it easier to make the ratio Y 1.0 or more, and improves the strength of the thinnest part 2. The ratio X should be at least smaller than 1, but may be, for example, 0.9 or less. This improves moldability during thermal shaping such as vacuum molding. The ratio X is preferably 0.7 or more and less than 1, and more preferably 0.7 or more and 0.9 or less.
最薄肉部2及び最厚肉部3の各々は、1000MPa以上の曲げ弾性率を有してもよい。これにより、樹脂成形体1を構成する樹脂の曲げ弾性率の低下を抑制することができる。最薄肉部2及び最厚肉部3の各々の曲げ弾性率は、真空成形等の熱賦形における成形容易性の観点から、2800MPa以下とするのがよく、或いは、上述のように発泡樹脂シート10のスキン層12及びスキン層13に無機フィラーを含有させた場合であっても3500MPa以下とするのがよい。
The thinnest wall portion 2 and the thickest wall portion 3 may each have a flexural modulus of 1000 MPa or more. This makes it possible to suppress a decrease in the flexural modulus of the resin constituting the resin molded body 1. From the viewpoint of ease of molding in thermal shaping such as vacuum molding, the flexural modulus of each of the thinnest wall portion 2 and the thickest wall portion 3 is preferably 2800 MPa or less, or 3500 MPa or less even when inorganic filler is contained in the skin layers 12 and 13 of the foamed resin sheet 10 as described above.
樹脂成形体1は1.0g/cm3以下の密度を有してもよい。これにより、樹脂成形体1の軽量化を図ることができる。
The resin molded body 1 may have a density of 1.0 g/cm3 or less . This allows the resin molded body 1 to be lightweight.
上述の比率Y(M1/M2)と比率X(t1/t2)との比率Y/X(以下、比率Zと称する場合がある。)は、1.0よりも大きくすることが好ましい。比率Zが1.0以下になると、すなわち、比率Xが比率Yよりも大きいと、最薄肉部2及び最厚肉部3の厚みによる強度変化が大きくなり、最薄肉部2の強度が低下し得る。すなわち、比率Yと比率Xのバランスを考慮することにより、樹脂成形体1の優れた機械強度を確保することができる。比率Zの上限は特に限定されないが、4.0以下とすることが好ましい。比率Zを1.0よりも大きく、且つ、4.0以下とすることにより、真空成形等の熱賦形における成形容易性を確保することができる。
The ratio Y/X (hereinafter sometimes referred to as ratio Z) between the above-mentioned ratio Y (M1/M2) and ratio X (t1/t2) is preferably greater than 1.0. If the ratio Z is 1.0 or less, that is, if the ratio X is greater than the ratio Y, the change in strength due to the thickness of the thinnest part 2 and the thickest part 3 becomes large, and the strength of the thinnest part 2 may decrease. In other words, by considering the balance between the ratio Y and the ratio X, it is possible to ensure excellent mechanical strength of the resin molded body 1. There is no particular limit to the upper limit of the ratio Z, but it is preferably 4.0 or less. By making the ratio Z greater than 1.0 and 4.0 or less, it is possible to ensure ease of molding in thermal shaping such as vacuum molding.
樹脂成形体1は、真空成形等の熱賦形により、用途に応じて種々の形状に成形されている。樹脂成形体1は、真空成形等の熱賦形により成形可能な形状であれば、どのような形状に形成されてもよい。樹脂成形体1は、例えば、箱型、三角柱型又は円筒型等に成型される。
The resin molded body 1 is molded into various shapes depending on the application by thermal shaping such as vacuum forming. The resin molded body 1 may be formed into any shape as long as it can be molded by thermal shaping such as vacuum forming. The resin molded body 1 is molded into, for example, a box shape, a triangular prism shape, a cylinder shape, etc.
所定の製品及び部品として活用される樹脂成形体1は、樹脂使用量を削減することができる。その結果、本実施形態に係る樹脂成形体1は、資源利用効率の向上、運送負担の軽減、エネルギー使用量の削減及びCO2排出量の削減に寄与することができる。樹脂成形体1を社会へ提供することにより、国際連合が制定する持続可能な開発目標(SDGs)の17の目標のうち、目標7(エネルギーをみんなにそしてクリーンに)、目標9(産業と技術革新の基盤をつくろう)及び目標11(住み続けられるまちづくりを)の達成に貢献することができる。また、本実施形態に係る樹脂成形体1を溶融させて再利用することが可能であることから、目標12(つくる責任、つかう責任)の達成に貢献することができる。
The resin molded body 1 utilized as a predetermined product and part can reduce the amount of resin used. As a result, the resin molded body 1 according to the present embodiment can contribute to improving resource utilization efficiency, reducing transportation burden, reducing energy consumption, and reducing CO2 emissions. By providing the resin molded body 1 to society, it is possible to contribute to the achievement of Goal 7 (Affordable and Clean Energy), Goal 9 (Industry, Innovation and Infrastructure), and Goal 11 (Sustainable Cities and Communities) out of the 17 goals of the Sustainable Development Goals (SDGs) established by the United Nations. In addition, since the resin molded body 1 according to the present embodiment can be melted and reused, it can contribute to the achievement of Goal 12 (Responsible Consumption and Production).
以上、実施形態について説明したが、本開示は、上記実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて種々の変更が可能である。
Although the embodiments have been described above, the present disclosure is not limited to the above embodiments, and various modifications are possible without departing from the spirit of the present disclosure.
[実施例]
実施例1~5並びに比較例1及び2において、各々発泡樹脂シートを成形した樹脂成形体を作製し、各々の最薄肉部及び最厚肉部に対して上述した3点曲げ試験を行って曲げ弾性率を測定した。なお、下記の表1において、発泡樹脂シートの平均厚みは、以下のように算出した。発泡樹脂シートを幅方向に沿って厚み方向に切断した断面を幅方向に等間隔となるように10点の厚みを測定し、これら10点の厚みの算術平均値を発泡樹脂シートの平均厚みとした。 [Example]
In Examples 1 to 5 and Comparative Examples 1 and 2, a resin molded body was prepared by molding a foamed resin sheet, and the above-mentioned three-point bending test was performed on the thinnest and thickest parts of each body to measure the bending elastic modulus. In Table 1 below, the average thickness of the foamed resin sheet was calculated as follows. The thickness of a cross section of the foamed resin sheet cut in the thickness direction along the width direction was measured at 10 points equidistantly in the width direction, and the arithmetic mean value of the thicknesses at these 10 points was determined as the average thickness of the foamed resin sheet.
実施例1~5並びに比較例1及び2において、各々発泡樹脂シートを成形した樹脂成形体を作製し、各々の最薄肉部及び最厚肉部に対して上述した3点曲げ試験を行って曲げ弾性率を測定した。なお、下記の表1において、発泡樹脂シートの平均厚みは、以下のように算出した。発泡樹脂シートを幅方向に沿って厚み方向に切断した断面を幅方向に等間隔となるように10点の厚みを測定し、これら10点の厚みの算術平均値を発泡樹脂シートの平均厚みとした。 [Example]
In Examples 1 to 5 and Comparative Examples 1 and 2, a resin molded body was prepared by molding a foamed resin sheet, and the above-mentioned three-point bending test was performed on the thinnest and thickest parts of each body to measure the bending elastic modulus. In Table 1 below, the average thickness of the foamed resin sheet was calculated as follows. The thickness of a cross section of the foamed resin sheet cut in the thickness direction along the width direction was measured at 10 points equidistantly in the width direction, and the arithmetic mean value of the thicknesses at these 10 points was determined as the average thickness of the foamed resin sheet.
(実施例1)
実施例1では、ポリカーボネート樹脂(PC)を樹脂材料として共押出成形によって200mmの幅及び400mmの長さを有する発泡樹脂シートを作製した。したがって、コア層及びスキン層の樹脂材料は同じである。コア層は、上述した低圧の物理発泡剤(窒素)を用いて発泡した。なお、ポリカーボネート樹脂は、帝人製パンライトL―1225Y(密度:1.2g/cm3、荷重たわみ温度:143℃、曲げ弾性率2400MPa)であり、溶融張力を向上させて気泡を微細化させる目的で発泡核剤を微量添加した。より具体的には、まず、短軸スクリュシリンダ内部(図示しない)において、コア層を形成する溶融樹脂を窒素を用いて加圧した。次に窒素を溶融樹脂を短軸スクリュシリンダから吐出したのち、ギヤポンプで加圧して発泡を抑制しつつ押し出した。そして、コア層用樹脂と同一圧力に調整されたスキン層用の溶融樹脂をコア層をサンドイッチする形で合流させた。マニホールドからコートハンガーダイにて層流を形成したのち、ダイ先端から発泡樹脂シートに押し出し、冷却ロールにて固化させた。その結果、平均厚み2.5mm、密度0.60g/cm3、曲げ弾性率1330MPaの発泡樹脂シートが得られた。 Example 1
In Example 1, a foamed resin sheet having a width of 200 mm and a length of 400 mm was produced by co-extrusion molding using polycarbonate resin (PC) as the resin material. Therefore, the resin materials of the core layer and the skin layer are the same. The core layer was foamed using the above-mentioned low-pressure physical foaming agent (nitrogen). The polycarbonate resin was Teijin Panlite L-1225Y (density: 1.2 g/cm 3 , deflection temperature under load: 143° C., flexural modulus: 2400 MPa), and a small amount of foaming nucleating agent was added in order to improve the melt tension and make the bubbles finer. More specifically, first, the molten resin forming the core layer was pressurized with nitrogen inside the short-axis screw cylinder (not shown). Next, the molten resin was discharged from the short-axis screw cylinder with nitrogen, and then the resin was extruded while suppressing foaming by pressurizing it with a gear pump. Then, the molten resin for the skin layer, which was adjusted to the same pressure as the resin for the core layer, was merged in a manner sandwiching the core layer. After forming a laminar flow through a coat hanger die from the manifold, the mixture was extruded from the tip of the die into a foamed resin sheet and solidified by a cooling roll. As a result, a foamed resin sheet having an average thickness of 2.5 mm, a density of 0.60 g/cm 3 , and a flexural modulus of 1330 MPa was obtained.
実施例1では、ポリカーボネート樹脂(PC)を樹脂材料として共押出成形によって200mmの幅及び400mmの長さを有する発泡樹脂シートを作製した。したがって、コア層及びスキン層の樹脂材料は同じである。コア層は、上述した低圧の物理発泡剤(窒素)を用いて発泡した。なお、ポリカーボネート樹脂は、帝人製パンライトL―1225Y(密度:1.2g/cm3、荷重たわみ温度:143℃、曲げ弾性率2400MPa)であり、溶融張力を向上させて気泡を微細化させる目的で発泡核剤を微量添加した。より具体的には、まず、短軸スクリュシリンダ内部(図示しない)において、コア層を形成する溶融樹脂を窒素を用いて加圧した。次に窒素を溶融樹脂を短軸スクリュシリンダから吐出したのち、ギヤポンプで加圧して発泡を抑制しつつ押し出した。そして、コア層用樹脂と同一圧力に調整されたスキン層用の溶融樹脂をコア層をサンドイッチする形で合流させた。マニホールドからコートハンガーダイにて層流を形成したのち、ダイ先端から発泡樹脂シートに押し出し、冷却ロールにて固化させた。その結果、平均厚み2.5mm、密度0.60g/cm3、曲げ弾性率1330MPaの発泡樹脂シートが得られた。 Example 1
In Example 1, a foamed resin sheet having a width of 200 mm and a length of 400 mm was produced by co-extrusion molding using polycarbonate resin (PC) as the resin material. Therefore, the resin materials of the core layer and the skin layer are the same. The core layer was foamed using the above-mentioned low-pressure physical foaming agent (nitrogen). The polycarbonate resin was Teijin Panlite L-1225Y (density: 1.2 g/cm 3 , deflection temperature under load: 143° C., flexural modulus: 2400 MPa), and a small amount of foaming nucleating agent was added in order to improve the melt tension and make the bubbles finer. More specifically, first, the molten resin forming the core layer was pressurized with nitrogen inside the short-axis screw cylinder (not shown). Next, the molten resin was discharged from the short-axis screw cylinder with nitrogen, and then the resin was extruded while suppressing foaming by pressurizing it with a gear pump. Then, the molten resin for the skin layer, which was adjusted to the same pressure as the resin for the core layer, was merged in a manner sandwiching the core layer. After forming a laminar flow through a coat hanger die from the manifold, the mixture was extruded from the tip of the die into a foamed resin sheet and solidified by a cooling roll. As a result, a foamed resin sheet having an average thickness of 2.5 mm, a density of 0.60 g/cm 3 , and a flexural modulus of 1330 MPa was obtained.
次に、このように作製した発泡樹脂シートを上述の方法により、発泡樹脂シートを190℃に加熱して真空成形し、実施例1の試験体(樹脂成形体)を得た。なお、上方の加熱板と下方の加熱板との間の隙間の幅は、発泡樹脂シートの厚みの104%となるように調整し、発泡樹脂シートの末端表面の温度が170℃に達したところで発泡樹脂シートを金型の直上に移動させた。また、図10に示すような100mmの幅L1、200mmの長さL2及び40mmの深さL3を有する箱型形状の金型103を用いた。
Then, the foamed resin sheet thus produced was heated to 190°C and vacuum molded by the method described above to obtain a test specimen (resin molded body) of Example 1. The width of the gap between the upper and lower heating plates was adjusted to be 104% of the thickness of the foamed resin sheet, and when the temperature of the end surface of the foamed resin sheet reached 170°C, the foamed resin sheet was moved directly above the mold. A box-shaped mold 103 with a width L1 of 100 mm, a length L2 of 200 mm, and a depth L3 of 40 mm as shown in Figure 10 was used.
このようにして得られた試験体について、上述の方法により、最薄肉部と最厚肉部とを決定し、最薄肉部と最厚肉部の各々の厚みを測定した。また、上述の通り、密度を測定するとともに、上述の3点曲げ試験により、最薄肉部と最厚肉部の各々の曲げ弾性率を測定した。なお、3点曲げ試験は、卓上形精密万能試験機(株式会社島津製作所製、型番「AGS-J」)を用いて、試験速度10mm/min、支点間距離32mmの条件で実施した。結果、最薄肉部の曲げ弾性率M1は1400MPaとなり、最厚肉部の曲げ弾性率M2は1800MPaとなり、真空成形前の発泡樹脂シートの曲げ弾性率よりも向上していた。これは、気泡が合一化せずに潰れ、その結果、密度が大きくなったためと推察される。また、比率Yは、0.78であった。このように、上述の方法により真空成形された樹脂成形体は、機械強度を向上させることができた。なお、表1において、最薄肉部及び最厚肉部の密度とは、上述した最薄肉片及び最厚肉片の密度である。
The thinnest and thickest parts of the specimen thus obtained were determined by the method described above, and the thicknesses of the thinnest and thickest parts were measured. As described above, the density was measured, and the bending modulus of the thinnest and thickest parts was measured by the three-point bending test described above. The three-point bending test was performed using a tabletop precision universal testing machine (manufactured by Shimadzu Corporation, model number "AGS-J") at a test speed of 10 mm/min and a support distance of 32 mm. As a result, the bending modulus M1 of the thinnest part was 1400 MPa, and the bending modulus M2 of the thickest part was 1800 MPa, which was improved compared to the bending modulus of the foamed resin sheet before vacuum molding. This is presumably because the air bubbles were crushed without being united, resulting in an increase in density. The ratio Y was 0.78. In this way, the resin molded body vacuum molded by the above method was able to improve its mechanical strength. In Table 1, the densities of the thinnest and thickest parts refer to the densities of the thinnest and thickest pieces described above.
(実施例2)
実施例2の試験体は、真空成形時の金型の深さを60mmとして深絞り成形した以外は、実施例1と同様の方法により、作製された。深絞り成形によって厚みの変化が大きくなり、密度の上昇が抑制された。最薄肉部の曲げ弾性率M1は1250MPaであり、最厚肉部の曲げ弾性率M2は1300MPaとなり、発泡樹脂シートの曲げ弾性率と同等であった。また、比率Yは0.96であり、最薄肉部における強度低下が小さく、さらに、比率Zは1.66であり、1.0よりも十分大きく、深絞り成形においても厚み変化と機械強度の低下が抑制されていることを確認できた。 Example 2
The specimen of Example 2 was produced by the same method as Example 1, except that the mold depth during vacuum forming was set to 60 mm and deep drawing was performed. The change in thickness was large due to deep drawing, and the increase in density was suppressed. The bending modulus M1 of the thinnest part was 1250 MPa, and the bending modulus M2 of the thickest part was 1300 MPa, which was equivalent to the bending modulus of the foamed resin sheet. In addition, the ratio Y was 0.96, and the strength reduction in the thinnest part was small, and the ratio Z was 1.66, which was sufficiently larger than 1.0, and it was confirmed that the thickness change and the reduction in mechanical strength were suppressed even in deep drawing.
実施例2の試験体は、真空成形時の金型の深さを60mmとして深絞り成形した以外は、実施例1と同様の方法により、作製された。深絞り成形によって厚みの変化が大きくなり、密度の上昇が抑制された。最薄肉部の曲げ弾性率M1は1250MPaであり、最厚肉部の曲げ弾性率M2は1300MPaとなり、発泡樹脂シートの曲げ弾性率と同等であった。また、比率Yは0.96であり、最薄肉部における強度低下が小さく、さらに、比率Zは1.66であり、1.0よりも十分大きく、深絞り成形においても厚み変化と機械強度の低下が抑制されていることを確認できた。 Example 2
The specimen of Example 2 was produced by the same method as Example 1, except that the mold depth during vacuum forming was set to 60 mm and deep drawing was performed. The change in thickness was large due to deep drawing, and the increase in density was suppressed. The bending modulus M1 of the thinnest part was 1250 MPa, and the bending modulus M2 of the thickest part was 1300 MPa, which was equivalent to the bending modulus of the foamed resin sheet. In addition, the ratio Y was 0.96, and the strength reduction in the thinnest part was small, and the ratio Z was 1.66, which was sufficiently larger than 1.0, and it was confirmed that the thickness change and the reduction in mechanical strength were suppressed even in deep drawing.
(実施例3)
実施例3の試験体は、2.5mmの平均厚みを有する発泡樹脂シートを加熱時に3.0mmとより厚くなるように成形した以外は、実施例1と同様に成形された。具体的には、まず、図11に示すように、上方の加熱板102と下方の加熱板102との間の隙間の幅Wを3.0mmに調整し、2.5mmの平均厚みを有する発泡樹脂シート10が加熱により膨張して3.0mmとなるように、すなわち、厚みが均一に0.5mm厚くなるようにした。上方の加熱板102、下方の加熱板102及び厚みが膨張した発泡樹脂シート10を金型103の直上に移動させた。このとき、図2に示す発泡樹脂シート10と対比して、気泡が膨張するのに伴って発泡樹脂シート10の厚みが大きくなっているものと推察される。その後、上方の加熱板102及び下方の加熱した104を除去し、真空成形を行った。このようにして得られた実施例3の試験体は、気泡が大きくなるとともに、表1に示すように厚みの薄肉化を抑制できた。 Example 3
The specimen of Example 3 was molded in the same manner as in Example 1, except that the foamed resin sheet having an average thickness of 2.5 mm was molded to be thicker at 3.0 mm when heated. Specifically, as shown in FIG. 11, the width W of the gap between theupper heating plate 102 and the lower heating plate 102 was adjusted to 3.0 mm, so that the foamed resin sheet 10 having an average thickness of 2.5 mm was expanded by heating to 3.0 mm, that is, the thickness was uniformly increased by 0.5 mm. The upper heating plate 102, the lower heating plate 102, and the foamed resin sheet 10 whose thickness had expanded were moved directly above the mold 103. At this time, it is presumed that the thickness of the foamed resin sheet 10 has increased as the bubbles expand, as compared with the foamed resin sheet 10 shown in FIG. 2. Thereafter, the upper heating plate 102 and the lower heated plate 104 were removed, and vacuum molding was performed. In the specimen of Example 3 obtained in this manner, the bubbles were enlarged, and the thickness was suppressed from being thinned as shown in Table 1.
実施例3の試験体は、2.5mmの平均厚みを有する発泡樹脂シートを加熱時に3.0mmとより厚くなるように成形した以外は、実施例1と同様に成形された。具体的には、まず、図11に示すように、上方の加熱板102と下方の加熱板102との間の隙間の幅Wを3.0mmに調整し、2.5mmの平均厚みを有する発泡樹脂シート10が加熱により膨張して3.0mmとなるように、すなわち、厚みが均一に0.5mm厚くなるようにした。上方の加熱板102、下方の加熱板102及び厚みが膨張した発泡樹脂シート10を金型103の直上に移動させた。このとき、図2に示す発泡樹脂シート10と対比して、気泡が膨張するのに伴って発泡樹脂シート10の厚みが大きくなっているものと推察される。その後、上方の加熱板102及び下方の加熱した104を除去し、真空成形を行った。このようにして得られた実施例3の試験体は、気泡が大きくなるとともに、表1に示すように厚みの薄肉化を抑制できた。 Example 3
The specimen of Example 3 was molded in the same manner as in Example 1, except that the foamed resin sheet having an average thickness of 2.5 mm was molded to be thicker at 3.0 mm when heated. Specifically, as shown in FIG. 11, the width W of the gap between the
実施例3の試験体において、真空成形後の薄肉化が抑制された一方は密度が低下している箇所が存在した。また、最薄肉部の曲げ弾性率M1は1200MPaであり、最厚肉部の曲げ弾性率M2は1100MPaとなった。比率Yは、1.09であった。すなわち、最薄肉部の曲げ弾性率M1は、最厚肉部の曲げ弾性率M2よりも大きい。曲げ弾性率M1及びM2は、発泡樹脂シートの曲げ弾性率よりも低下していたものの、全体的に厚みの低下を抑止したことで実施例1の試験体よりも剛性に優れると考えられる。比率Zは、1.39であり、1.0よりも大きくなっていた。実施例3において、加熱時に発泡樹脂シートの厚みを膨張させる成形方法によって、試験体の厚み及び密度の変化を抑制し、その結果、機械強度の向上を図れることが分かった。
In the specimen of Example 3, there were some areas where the thinning after vacuum molding was suppressed and the density was reduced. The bending modulus M1 of the thinnest part was 1200 MPa, and the bending modulus M2 of the thickest part was 1100 MPa. The ratio Y was 1.09. That is, the bending modulus M1 of the thinnest part was greater than the bending modulus M2 of the thickest part. Although the bending moduli M1 and M2 were lower than the bending modulus of the foamed resin sheet, the overall reduction in thickness was suppressed, and it is considered that the rigidity was superior to that of the specimen of Example 1. The ratio Z was 1.39, which was greater than 1.0. In Example 3, it was found that the change in thickness and density of the specimen was suppressed by the molding method in which the thickness of the foamed resin sheet was expanded when heated, and as a result, the mechanical strength was improved.
(実施例4)
実施例4の試験体は、発泡樹脂シートの平均厚みを3.0mmとした以外は、実施例2と同様に深絞り成形により成形された。実施例4の発泡樹脂シートの厚みを実施例2の発泡樹脂シートの厚みよりも大きくしたことにより、真空成形後の厚みの変化を抑制できた。また、最薄肉部の曲げ弾性率M1は1600MPaとなり、最厚肉部の曲げ弾性率M2は1100MPaとなった。すなわち、比率Yは、1.0よりも大きい1.45となっていた。比率Zは1.73であり、2.0に近づいた。すなわち、非発泡樹脂の真空成形品に近い値となり、機械強度の向上が図れていることが示唆された。 Example 4
The specimen of Example 4 was molded by deep drawing in the same manner as in Example 2, except that the average thickness of the foamed resin sheet was 3.0 mm. By making the thickness of the foamed resin sheet of Example 4 larger than that of the foamed resin sheet of Example 2, the change in thickness after vacuum molding could be suppressed. In addition, the bending modulus M1 of the thinnest part was 1600 MPa, and the bending modulus M2 of the thickest part was 1100 MPa. That is, the ratio Y was 1.45, which is greater than 1.0. The ratio Z was 1.73, approaching 2.0. That is, the value was close to that of a vacuum molded product of a non-foamed resin, suggesting that the mechanical strength was improved.
実施例4の試験体は、発泡樹脂シートの平均厚みを3.0mmとした以外は、実施例2と同様に深絞り成形により成形された。実施例4の発泡樹脂シートの厚みを実施例2の発泡樹脂シートの厚みよりも大きくしたことにより、真空成形後の厚みの変化を抑制できた。また、最薄肉部の曲げ弾性率M1は1600MPaとなり、最厚肉部の曲げ弾性率M2は1100MPaとなった。すなわち、比率Yは、1.0よりも大きい1.45となっていた。比率Zは1.73であり、2.0に近づいた。すなわち、非発泡樹脂の真空成形品に近い値となり、機械強度の向上が図れていることが示唆された。 Example 4
The specimen of Example 4 was molded by deep drawing in the same manner as in Example 2, except that the average thickness of the foamed resin sheet was 3.0 mm. By making the thickness of the foamed resin sheet of Example 4 larger than that of the foamed resin sheet of Example 2, the change in thickness after vacuum molding could be suppressed. In addition, the bending modulus M1 of the thinnest part was 1600 MPa, and the bending modulus M2 of the thickest part was 1100 MPa. That is, the ratio Y was 1.45, which is greater than 1.0. The ratio Z was 1.73, approaching 2.0. That is, the value was close to that of a vacuum molded product of a non-foamed resin, suggesting that the mechanical strength was improved.
(実施例5)
実施例5の試験体は、箱型形状の金型の深さを80mmとした以外は、実施例1の試験体と同様に真空成形された。さらに深絞りとなったことで厚みに変化が生じたが、実施例5の試験体の密度は、実施例1の試験体の密度と同程度であった。また、最薄肉部の曲げ弾性率M1は1630MPaとなり、最厚肉部の曲げ弾性率M2は1470MPaとなった。すなわち、比率Yは、1.11となり、最厚肉部の曲げ弾性率よりも最薄肉部の曲げ弾性率の方が大きくなった。比率Zは2.71であり、2.0を大きく上回っていた。実施例5の試験体を詳細に観察すると最薄肉部がより非発泡樹脂からなる樹脂成形品の構造に近似するようになっており、機械強度の向上が図れていることが示唆された。 Example 5
The specimen of Example 5 was vacuum-formed in the same manner as the specimen of Example 1, except that the depth of the box-shaped mold was 80 mm. Although the thickness changed due to the deep drawing, the density of the specimen of Example 5 was similar to that of the specimen of Example 1. In addition, the bending modulus M1 of the thinnest part was 1630 MPa, and the bending modulus M2 of the thickest part was 1470 MPa. That is, the ratio Y was 1.11, and the bending modulus of the thinnest part was greater than the bending modulus of the thickest part. The ratio Z was 2.71, which was significantly greater than 2.0. A detailed observation of the specimen of Example 5 suggested that the thinnest part was closer to the structure of a resin molded product made of a non-foamed resin, and that the mechanical strength was improved.
実施例5の試験体は、箱型形状の金型の深さを80mmとした以外は、実施例1の試験体と同様に真空成形された。さらに深絞りとなったことで厚みに変化が生じたが、実施例5の試験体の密度は、実施例1の試験体の密度と同程度であった。また、最薄肉部の曲げ弾性率M1は1630MPaとなり、最厚肉部の曲げ弾性率M2は1470MPaとなった。すなわち、比率Yは、1.11となり、最厚肉部の曲げ弾性率よりも最薄肉部の曲げ弾性率の方が大きくなった。比率Zは2.71であり、2.0を大きく上回っていた。実施例5の試験体を詳細に観察すると最薄肉部がより非発泡樹脂からなる樹脂成形品の構造に近似するようになっており、機械強度の向上が図れていることが示唆された。 Example 5
The specimen of Example 5 was vacuum-formed in the same manner as the specimen of Example 1, except that the depth of the box-shaped mold was 80 mm. Although the thickness changed due to the deep drawing, the density of the specimen of Example 5 was similar to that of the specimen of Example 1. In addition, the bending modulus M1 of the thinnest part was 1630 MPa, and the bending modulus M2 of the thickest part was 1470 MPa. That is, the ratio Y was 1.11, and the bending modulus of the thinnest part was greater than the bending modulus of the thickest part. The ratio Z was 2.71, which was significantly greater than 2.0. A detailed observation of the specimen of Example 5 suggested that the thinnest part was closer to the structure of a resin molded product made of a non-foamed resin, and that the mechanical strength was improved.
次に、試験体の樹脂材料を、実施例1~5のポリカーボネート樹脂から汎用プラスチックであるポリプロピレン、ポリスチレン又はポリエチレンテレフタラート、或いは、ポリカーボネート樹脂とエンジニアプラスチックであるABS樹脂とのアロイ樹脂に変更し、実施例6~9の試験を行った。
Next, the resin material of the test specimen was changed from the polycarbonate resin of Examples 1 to 5 to general-purpose plastics such as polypropylene, polystyrene, or polyethylene terephthalate, or to an alloy resin of polycarbonate resin and ABS resin, an engineering plastic, and the tests of Examples 6 to 9 were carried out.
(実施例6)
実施例6の試験体は、ポリカーボネート樹脂/ABS樹脂のアロイ樹脂を樹脂材料とした以外は、実施例1と同様の方法により作製された。したがって、実施例6の試験体において、コア層及びスキン層の樹脂材料は同じである。なお、ポリカーボネート/ABSのアロイ樹脂は、帝人株式会社製マルチロンT-2754(密度:1.11g/cm3)、荷重たわみ温度:118℃、曲げ弾性率:2200MPa)であり、溶融張力を向上させて気泡を微細化させる目的で発泡核剤を微量添加した。真空成形前のポリカーボネート/ABS発泡樹脂シートは平均厚み2.5mm、密度0.56g/cm3、曲げ弾性率:1220MPaである。真空成形後の試験体は、最薄肉部の曲げ弾性率M1は1280MPaとなり、最厚肉部の曲げ弾性率は1650MPaとなり、真空成形前の発泡樹脂シートよりも向上していた。また、比率Yは0.78であり、樹脂材料をポリカーボネート/ABSのアロイ樹脂に変更した場合においても、厚み変化と機械強度の低下が抑制されていることを確認できた。 Example 6
The specimen of Example 6 was produced in the same manner as in Example 1, except that the resin material was an alloy resin of polycarbonate resin/ABS resin. Therefore, in the specimen of Example 6, the resin materials of the core layer and the skin layer were the same. The alloy resin of polycarbonate/ABS was Multilon T-2754 (density: 1.11 g/cm 3 , deflection temperature under load: 118° C., flexural modulus: 2200 MPa) manufactured by Teijin Limited, and a small amount of foaming nucleating agent was added for the purpose of improving the melt tension and making the bubbles finer. The polycarbonate/ABS foamed resin sheet before vacuum molding had an average thickness of 2.5 mm, a density of 0.56 g/cm 3 , and a flexural modulus of 1220 MPa. After vacuum molding, the specimen had a flexural modulus M1 of 1280 MPa at the thinnest part and a flexural modulus of 1650 MPa at the thickest part, which were improved compared to the foamed resin sheet before vacuum molding. Furthermore, it was confirmed that the ratio Y was 0.78, and even when the resin material was changed to an alloy resin of polycarbonate/ABS, the change in thickness and the decrease in mechanical strength were suppressed.
実施例6の試験体は、ポリカーボネート樹脂/ABS樹脂のアロイ樹脂を樹脂材料とした以外は、実施例1と同様の方法により作製された。したがって、実施例6の試験体において、コア層及びスキン層の樹脂材料は同じである。なお、ポリカーボネート/ABSのアロイ樹脂は、帝人株式会社製マルチロンT-2754(密度:1.11g/cm3)、荷重たわみ温度:118℃、曲げ弾性率:2200MPa)であり、溶融張力を向上させて気泡を微細化させる目的で発泡核剤を微量添加した。真空成形前のポリカーボネート/ABS発泡樹脂シートは平均厚み2.5mm、密度0.56g/cm3、曲げ弾性率:1220MPaである。真空成形後の試験体は、最薄肉部の曲げ弾性率M1は1280MPaとなり、最厚肉部の曲げ弾性率は1650MPaとなり、真空成形前の発泡樹脂シートよりも向上していた。また、比率Yは0.78であり、樹脂材料をポリカーボネート/ABSのアロイ樹脂に変更した場合においても、厚み変化と機械強度の低下が抑制されていることを確認できた。 Example 6
The specimen of Example 6 was produced in the same manner as in Example 1, except that the resin material was an alloy resin of polycarbonate resin/ABS resin. Therefore, in the specimen of Example 6, the resin materials of the core layer and the skin layer were the same. The alloy resin of polycarbonate/ABS was Multilon T-2754 (density: 1.11 g/cm 3 , deflection temperature under load: 118° C., flexural modulus: 2200 MPa) manufactured by Teijin Limited, and a small amount of foaming nucleating agent was added for the purpose of improving the melt tension and making the bubbles finer. The polycarbonate/ABS foamed resin sheet before vacuum molding had an average thickness of 2.5 mm, a density of 0.56 g/cm 3 , and a flexural modulus of 1220 MPa. After vacuum molding, the specimen had a flexural modulus M1 of 1280 MPa at the thinnest part and a flexural modulus of 1650 MPa at the thickest part, which were improved compared to the foamed resin sheet before vacuum molding. Furthermore, it was confirmed that the ratio Y was 0.78, and even when the resin material was changed to an alloy resin of polycarbonate/ABS, the change in thickness and the decrease in mechanical strength were suppressed.
(実施例7)
実施例7の試験体は、ポリプロピレン(PP)を樹脂材料とした以外は、実施例1と同様の方法により作製された。したがって、実施例7の試験体において、コア層及びスキン層の樹脂材料は同じである。なお、ポリプロピレンは、出光ファインコンポジット株式会社製カルプ4700G(密度:1.05g/cm3、荷重たわみ温度:118℃、曲げ弾性率:3200MPa)であり、樹脂の強度向上のためにタルクが添加されている。真空成形前のポリプロピレン発泡樹脂シートは、平均厚み:2.5mm、密度:0.52g/cm3、曲げ弾性率:1840MPaである。真空成形後の試験体においては、最薄肉部の曲げ弾性率M1は1940MPaとなり、最厚肉部の曲げ弾性率は2490MPaとなり、真空成形前の発泡樹脂シートよりも向上していた。また、比率Yは、0.78であり、樹脂材料をポリプロピレンに変更した場合においても、厚み変化と機械強度の低下が抑制されていることを確認できた。 (Example 7)
The specimen of Example 7 was produced in the same manner as in Example 1, except that polypropylene (PP) was used as the resin material. Therefore, in the specimen of Example 7, the resin materials of the core layer and the skin layer are the same. The polypropylene is Calp 4700G (density: 1.05 g/cm 3 , deflection temperature under load: 118° C., flexural modulus: 3200 MPa) manufactured by Idemitsu Fine Composites Co., Ltd., and talc is added to improve the strength of the resin. The polypropylene foamed resin sheet before vacuum molding has an average thickness of 2.5 mm, density: 0.52 g/cm 3 , and flexural modulus: 1840 MPa. In the specimen after vacuum molding, the flexural modulus M1 of the thinnest part was 1940 MPa, and the flexural modulus of the thickest part was 2490 MPa, which was improved compared to the foamed resin sheet before vacuum molding. In addition, the ratio Y was 0.78, and it was confirmed that the thickness change and the decrease in mechanical strength were suppressed even when the resin material was changed to polypropylene.
実施例7の試験体は、ポリプロピレン(PP)を樹脂材料とした以外は、実施例1と同様の方法により作製された。したがって、実施例7の試験体において、コア層及びスキン層の樹脂材料は同じである。なお、ポリプロピレンは、出光ファインコンポジット株式会社製カルプ4700G(密度:1.05g/cm3、荷重たわみ温度:118℃、曲げ弾性率:3200MPa)であり、樹脂の強度向上のためにタルクが添加されている。真空成形前のポリプロピレン発泡樹脂シートは、平均厚み:2.5mm、密度:0.52g/cm3、曲げ弾性率:1840MPaである。真空成形後の試験体においては、最薄肉部の曲げ弾性率M1は1940MPaとなり、最厚肉部の曲げ弾性率は2490MPaとなり、真空成形前の発泡樹脂シートよりも向上していた。また、比率Yは、0.78であり、樹脂材料をポリプロピレンに変更した場合においても、厚み変化と機械強度の低下が抑制されていることを確認できた。 (Example 7)
The specimen of Example 7 was produced in the same manner as in Example 1, except that polypropylene (PP) was used as the resin material. Therefore, in the specimen of Example 7, the resin materials of the core layer and the skin layer are the same. The polypropylene is Calp 4700G (density: 1.05 g/cm 3 , deflection temperature under load: 118° C., flexural modulus: 3200 MPa) manufactured by Idemitsu Fine Composites Co., Ltd., and talc is added to improve the strength of the resin. The polypropylene foamed resin sheet before vacuum molding has an average thickness of 2.5 mm, density: 0.52 g/cm 3 , and flexural modulus: 1840 MPa. In the specimen after vacuum molding, the flexural modulus M1 of the thinnest part was 1940 MPa, and the flexural modulus of the thickest part was 2490 MPa, which was improved compared to the foamed resin sheet before vacuum molding. In addition, the ratio Y was 0.78, and it was confirmed that the thickness change and the decrease in mechanical strength were suppressed even when the resin material was changed to polypropylene.
(実施例8)
実施例8の試験体は、ポリエチレンテレフタラート(PET)を樹脂材料とした以外は、実施例1と同様の方法により作製された。したがって、実施例8の試験体において、コア層及びスキン層の樹脂材料は同じである。なお、ポリエチレンテレフタラートは、ユニチカ株式会社製ポリエチレンテレフタラート樹脂SA-1206(密度:1.41g/cm3、曲げ弾性率:2300MPa)である。真空成形前のポリエチレンテレフタラート発泡樹脂シートは、平均厚み:2.5mm、密度:0.7g/cm3、曲げ弾性率:1280MPaである。真空成形後の試験体においては、最薄肉部の曲げ弾性率M1は1350MPaとなり、最厚肉部の曲げ弾性率M2は1740MPaとなり、真空成形前の発泡樹脂シートよりも向上していた。また、比率Yは0.78であり、樹脂材料をポリエチレンテレフタラートに変更した場合においても、厚み変化と機械強度の低下が抑制されていることを確認できた。 (Example 8)
The specimen of Example 8 was produced in the same manner as in Example 1, except that polyethylene terephthalate (PET) was used as the resin material. Therefore, in the specimen of Example 8, the resin materials of the core layer and the skin layer are the same. The polyethylene terephthalate is polyethylene terephthalate resin SA-1206 (density: 1.41 g/cm 3 , flexural modulus: 2300 MPa) manufactured by Unitika Ltd. The polyethylene terephthalate foamed resin sheet before vacuum molding has an average thickness of 2.5 mm, density: 0.7 g/cm 3 , and flexural modulus: 1280 MPa. In the specimen after vacuum molding, the flexural modulus M1 of the thinnest part was 1350 MPa, and the flexural modulus M2 of the thickest part was 1740 MPa, which was improved compared to the foamed resin sheet before vacuum molding. In addition, the ratio Y was 0.78, and it was confirmed that the thickness change and the decrease in mechanical strength were suppressed even when the resin material was changed to polyethylene terephthalate.
実施例8の試験体は、ポリエチレンテレフタラート(PET)を樹脂材料とした以外は、実施例1と同様の方法により作製された。したがって、実施例8の試験体において、コア層及びスキン層の樹脂材料は同じである。なお、ポリエチレンテレフタラートは、ユニチカ株式会社製ポリエチレンテレフタラート樹脂SA-1206(密度:1.41g/cm3、曲げ弾性率:2300MPa)である。真空成形前のポリエチレンテレフタラート発泡樹脂シートは、平均厚み:2.5mm、密度:0.7g/cm3、曲げ弾性率:1280MPaである。真空成形後の試験体においては、最薄肉部の曲げ弾性率M1は1350MPaとなり、最厚肉部の曲げ弾性率M2は1740MPaとなり、真空成形前の発泡樹脂シートよりも向上していた。また、比率Yは0.78であり、樹脂材料をポリエチレンテレフタラートに変更した場合においても、厚み変化と機械強度の低下が抑制されていることを確認できた。 (Example 8)
The specimen of Example 8 was produced in the same manner as in Example 1, except that polyethylene terephthalate (PET) was used as the resin material. Therefore, in the specimen of Example 8, the resin materials of the core layer and the skin layer are the same. The polyethylene terephthalate is polyethylene terephthalate resin SA-1206 (density: 1.41 g/cm 3 , flexural modulus: 2300 MPa) manufactured by Unitika Ltd. The polyethylene terephthalate foamed resin sheet before vacuum molding has an average thickness of 2.5 mm, density: 0.7 g/cm 3 , and flexural modulus: 1280 MPa. In the specimen after vacuum molding, the flexural modulus M1 of the thinnest part was 1350 MPa, and the flexural modulus M2 of the thickest part was 1740 MPa, which was improved compared to the foamed resin sheet before vacuum molding. In addition, the ratio Y was 0.78, and it was confirmed that the thickness change and the decrease in mechanical strength were suppressed even when the resin material was changed to polyethylene terephthalate.
(実施例9)
実施例9では、ポリスチレン(PS)を樹脂材料とした以外は、実施例1と同様の方法により作製された。したがって、コア層及びスキン層の樹脂材料は同じである。なお、ポリスチレンは、DIC株式会社製ディックスチレン(登録商標)、XC-515(密度:1.04g/cm3、曲げ弾性率:3300MPa)である。真空成形前のポリスチレン発泡樹脂シートは。平均厚み:2.5mm、密度:0.53g/cm3、曲げ弾性率:1830MPaである。真空成形後の試験体においては、最薄肉部の曲げ弾性率M1は1930MPaとなり、最厚肉部の曲げ弾性率M2は2480MPaとなり、真空成形前の発泡樹脂シートよりも向上していた。また、比率Yは0.78であり、樹脂材料をポリスチレンに変更した場合においても厚み変化と機械強度の低下が抑制されていることを確認できた。 Example 9
In Example 9, the resin material was polystyrene (PS), and the resin material was the same as in Example 1. Therefore, the resin material of the core layer and the skin layer was the same. The polystyrene was XC-515 (DicStyrene (registered trademark) manufactured by DIC Corporation, density: 1.04 g/cm 3 , flexural modulus: 3300 MPa). The polystyrene foam resin sheet before vacuum molding had an average thickness of 2.5 mm, density: 0.53 g/cm 3 , and flexural modulus: 1830 MPa. In the test specimen after vacuum molding, the flexural modulus M1 of the thinnest part was 1930 MPa, and the flexural modulus M2 of the thickest part was 2480 MPa, which was improved compared to the foam resin sheet before vacuum molding. In addition, the ratio Y was 0.78, and it was confirmed that the thickness change and the decrease in mechanical strength were suppressed even when the resin material was changed to polystyrene.
実施例9では、ポリスチレン(PS)を樹脂材料とした以外は、実施例1と同様の方法により作製された。したがって、コア層及びスキン層の樹脂材料は同じである。なお、ポリスチレンは、DIC株式会社製ディックスチレン(登録商標)、XC-515(密度:1.04g/cm3、曲げ弾性率:3300MPa)である。真空成形前のポリスチレン発泡樹脂シートは。平均厚み:2.5mm、密度:0.53g/cm3、曲げ弾性率:1830MPaである。真空成形後の試験体においては、最薄肉部の曲げ弾性率M1は1930MPaとなり、最厚肉部の曲げ弾性率M2は2480MPaとなり、真空成形前の発泡樹脂シートよりも向上していた。また、比率Yは0.78であり、樹脂材料をポリスチレンに変更した場合においても厚み変化と機械強度の低下が抑制されていることを確認できた。 Example 9
In Example 9, the resin material was polystyrene (PS), and the resin material was the same as in Example 1. Therefore, the resin material of the core layer and the skin layer was the same. The polystyrene was XC-515 (DicStyrene (registered trademark) manufactured by DIC Corporation, density: 1.04 g/cm 3 , flexural modulus: 3300 MPa). The polystyrene foam resin sheet before vacuum molding had an average thickness of 2.5 mm, density: 0.53 g/cm 3 , and flexural modulus: 1830 MPa. In the test specimen after vacuum molding, the flexural modulus M1 of the thinnest part was 1930 MPa, and the flexural modulus M2 of the thickest part was 2480 MPa, which was improved compared to the foam resin sheet before vacuum molding. In addition, the ratio Y was 0.78, and it was confirmed that the thickness change and the decrease in mechanical strength were suppressed even when the resin material was changed to polystyrene.
(比較例1)
比較例1の試験体は、上述の従来の製法により成形された。すなわち、図13に示すように、加熱時に発泡樹脂シート10が自重により垂れ下がり、真空成形後には気泡が合一化して密度が低下した。比較例1の試験体は、厚みの変化が大きく密度が大きく低下していた。また、最薄肉部の曲げ弾性率M1は450MPaとなり、最厚肉部の曲げ弾性率M2は860MPaとなった。すなわち、曲げ弾性率M1及びM2は、発泡樹脂シートの曲げ弾性率よりも大幅に低下していた。また、比率Yは0.52と小さく、最薄肉部における強度低下が大きくなった。さらに、比率Zは1.00であり、真空成形後の厚み変化に伴う強度低下が大きくなっていることが示唆された。 (Comparative Example 1)
The specimen of Comparative Example 1 was molded by the conventional manufacturing method described above. That is, as shown in FIG. 13, the foamedresin sheet 10 sagged under its own weight during heating, and the bubbles were united after vacuum molding, resulting in a decrease in density. The specimen of Comparative Example 1 had a large change in thickness and a large decrease in density. In addition, the bending modulus M1 of the thinnest part was 450 MPa, and the bending modulus M2 of the thickest part was 860 MPa. That is, the bending modulus M1 and M2 were significantly lower than the bending modulus of the foamed resin sheet. In addition, the ratio Y was small at 0.52, and the strength decrease in the thinnest part was large. Furthermore, the ratio Z was 1.00, suggesting that the strength decrease due to the thickness change after vacuum molding was large.
比較例1の試験体は、上述の従来の製法により成形された。すなわち、図13に示すように、加熱時に発泡樹脂シート10が自重により垂れ下がり、真空成形後には気泡が合一化して密度が低下した。比較例1の試験体は、厚みの変化が大きく密度が大きく低下していた。また、最薄肉部の曲げ弾性率M1は450MPaとなり、最厚肉部の曲げ弾性率M2は860MPaとなった。すなわち、曲げ弾性率M1及びM2は、発泡樹脂シートの曲げ弾性率よりも大幅に低下していた。また、比率Yは0.52と小さく、最薄肉部における強度低下が大きくなった。さらに、比率Zは1.00であり、真空成形後の厚み変化に伴う強度低下が大きくなっていることが示唆された。 (Comparative Example 1)
The specimen of Comparative Example 1 was molded by the conventional manufacturing method described above. That is, as shown in FIG. 13, the foamed
(比較例2)
比較例2の試験体は、実施例2と同様に深絞りの金型を使用し、かつ、発泡樹脂シートの厚みを3.0mmとした以外は、比較例1と同様に真空成形された。比較例2の試験体は、発泡樹脂シートの厚みが厚くなり、かつ、深絞りの金型を使用したことにより、最薄肉部の密度や機械強度がより低下したものと推察される。また、最薄肉部の曲げ弾性率M1は350MPaとなり、最厚肉部の曲げ弾性率M2は860MPaとなった。すなわち、比率Yは0.41となり、比較例1よりも小さくなっていた。比率Zは0.74であり、試験体の剛性も低下していた。このように、比較例2の試験体は、機械強度と厚みのバランスが悪化していることが示唆された。 (Comparative Example 2)
The specimen of Comparative Example 2 was vacuum molded in the same manner as Comparative Example 1, except that a deep-drawing mold was used in the same manner as in Example 2, and the thickness of the foamed resin sheet was 3.0 mm. It is presumed that the density and mechanical strength of the thinnest part of the specimen of Comparative Example 2 were further reduced due to the thicker foamed resin sheet and the use of a deep-drawing mold. In addition, the bending modulus M1 of the thinnest part was 350 MPa, and the bending modulus M2 of the thickest part was 860 MPa. That is, the ratio Y was 0.41, which was smaller than that of Comparative Example 1. The ratio Z was 0.74, and the rigidity of the specimen was also reduced. Thus, it was suggested that the balance between mechanical strength and thickness of the specimen of Comparative Example 2 was deteriorated.
比較例2の試験体は、実施例2と同様に深絞りの金型を使用し、かつ、発泡樹脂シートの厚みを3.0mmとした以外は、比較例1と同様に真空成形された。比較例2の試験体は、発泡樹脂シートの厚みが厚くなり、かつ、深絞りの金型を使用したことにより、最薄肉部の密度や機械強度がより低下したものと推察される。また、最薄肉部の曲げ弾性率M1は350MPaとなり、最厚肉部の曲げ弾性率M2は860MPaとなった。すなわち、比率Yは0.41となり、比較例1よりも小さくなっていた。比率Zは0.74であり、試験体の剛性も低下していた。このように、比較例2の試験体は、機械強度と厚みのバランスが悪化していることが示唆された。 (Comparative Example 2)
The specimen of Comparative Example 2 was vacuum molded in the same manner as Comparative Example 1, except that a deep-drawing mold was used in the same manner as in Example 2, and the thickness of the foamed resin sheet was 3.0 mm. It is presumed that the density and mechanical strength of the thinnest part of the specimen of Comparative Example 2 were further reduced due to the thicker foamed resin sheet and the use of a deep-drawing mold. In addition, the bending modulus M1 of the thinnest part was 350 MPa, and the bending modulus M2 of the thickest part was 860 MPa. That is, the ratio Y was 0.41, which was smaller than that of Comparative Example 1. The ratio Z was 0.74, and the rigidity of the specimen was also reduced. Thus, it was suggested that the balance between mechanical strength and thickness of the specimen of Comparative Example 2 was deteriorated.
(比較例3)
比較例3の試験体は、実施例5と同様にポリカーボネート樹脂/ABS樹脂のアロイ樹脂を樹脂材料とした以外は、比較例1と同様の方法により作製された。比較例3の試験体は、比較例1と同様に厚みの変化が大きく、密度が低下していた。また、最薄肉部の曲げ弾性率M1は410MPa、最厚肉部の曲げ弾性率M2は790MPaとなった。比率Yは、0.52となり、最薄肉部における強度低下が大きくなった。比率Zは、0.99であり、樹脂材料をポリカーボネート/ABS樹脂に変更しても、従来の成形法では真空成形後の厚み変化に伴う強度低下が大きくなることが確認できた。 (Comparative Example 3)
The specimen of Comparative Example 3 was produced by the same method as Comparative Example 1, except that the resin material was an alloy resin of polycarbonate resin/ABS resin as in Example 5. The specimen of Comparative Example 3 had a large change in thickness and a decrease in density as in Comparative Example 1. In addition, the flexural modulus M1 of the thinnest part was 410 MPa, and the flexural modulus M2 of the thickest part was 790 MPa. The ratio Y was 0.52, and the strength decrease in the thinnest part was large. The ratio Z was 0.99, and it was confirmed that even if the resin material was changed to polycarbonate/ABS resin, the strength decrease due to the thickness change after vacuum molding was large in the conventional molding method.
比較例3の試験体は、実施例5と同様にポリカーボネート樹脂/ABS樹脂のアロイ樹脂を樹脂材料とした以外は、比較例1と同様の方法により作製された。比較例3の試験体は、比較例1と同様に厚みの変化が大きく、密度が低下していた。また、最薄肉部の曲げ弾性率M1は410MPa、最厚肉部の曲げ弾性率M2は790MPaとなった。比率Yは、0.52となり、最薄肉部における強度低下が大きくなった。比率Zは、0.99であり、樹脂材料をポリカーボネート/ABS樹脂に変更しても、従来の成形法では真空成形後の厚み変化に伴う強度低下が大きくなることが確認できた。 (Comparative Example 3)
The specimen of Comparative Example 3 was produced by the same method as Comparative Example 1, except that the resin material was an alloy resin of polycarbonate resin/ABS resin as in Example 5. The specimen of Comparative Example 3 had a large change in thickness and a decrease in density as in Comparative Example 1. In addition, the flexural modulus M1 of the thinnest part was 410 MPa, and the flexural modulus M2 of the thickest part was 790 MPa. The ratio Y was 0.52, and the strength decrease in the thinnest part was large. The ratio Z was 0.99, and it was confirmed that even if the resin material was changed to polycarbonate/ABS resin, the strength decrease due to the thickness change after vacuum molding was large in the conventional molding method.
(比較例4)
比較例4の試験体は、実施例6と同様にポリプロピレン樹脂を樹脂材料とした以外は、比較例1と同様の方法により作製された。比較例4の試験体は、比較例1と同様に厚みの変化が大きく、密度が低下していた。また、最薄肉部の曲げ弾性率M1は620MPa、最厚肉部の曲げ弾性率M2は1190MPaとなった。比率Yは0.52となり、最薄肉部における強度低下が大きくなった。比率Zは0.99であり、樹脂材料をポリプロピレンに変更し、強度向上のためにタルクを添加しても、従来の成形法では真空成形後の厚み変化に伴う強度低下が大きくなることが確認できた。 (Comparative Example 4)
The specimen of Comparative Example 4 was produced by the same method as Comparative Example 1, except that polypropylene resin was used as the resin material as in Example 6. The specimen of Comparative Example 4 had a large change in thickness and a decrease in density as in Comparative Example 1. In addition, the flexural modulus M1 of the thinnest part was 620 MPa, and the flexural modulus M2 of the thickest part was 1190 MPa. The ratio Y was 0.52, and the strength decrease in the thinnest part was large. The ratio Z was 0.99, and it was confirmed that even if the resin material was changed to polypropylene and talc was added to improve strength, the strength decrease due to the thickness change after vacuum molding was large in the conventional molding method.
比較例4の試験体は、実施例6と同様にポリプロピレン樹脂を樹脂材料とした以外は、比較例1と同様の方法により作製された。比較例4の試験体は、比較例1と同様に厚みの変化が大きく、密度が低下していた。また、最薄肉部の曲げ弾性率M1は620MPa、最厚肉部の曲げ弾性率M2は1190MPaとなった。比率Yは0.52となり、最薄肉部における強度低下が大きくなった。比率Zは0.99であり、樹脂材料をポリプロピレンに変更し、強度向上のためにタルクを添加しても、従来の成形法では真空成形後の厚み変化に伴う強度低下が大きくなることが確認できた。 (Comparative Example 4)
The specimen of Comparative Example 4 was produced by the same method as Comparative Example 1, except that polypropylene resin was used as the resin material as in Example 6. The specimen of Comparative Example 4 had a large change in thickness and a decrease in density as in Comparative Example 1. In addition, the flexural modulus M1 of the thinnest part was 620 MPa, and the flexural modulus M2 of the thickest part was 1190 MPa. The ratio Y was 0.52, and the strength decrease in the thinnest part was large. The ratio Z was 0.99, and it was confirmed that even if the resin material was changed to polypropylene and talc was added to improve strength, the strength decrease due to the thickness change after vacuum molding was large in the conventional molding method.
(比較例5)
比較例5の試験体は、実施例7と同様にポリエチレンテレフタラート樹脂を樹脂材料とした以外は、比較例1と同様の方法により作製された。比較例5の試験体は、比較例1と同様に厚みの変化が大きく、密度が低下していた。また、最薄肉部の曲げ弾性率M1は430MPa、最厚肉部の曲げ弾性率M2は830MPaとなった。比率Yは、0.52となり、最薄肉部における強度低下が大きくなった。比率Zは0.99であり、樹脂材料をポリエチレンテレフタラートに変更しても、従来の成形法では真空成形後の厚み変化に伴う強度低下が大きくなることが確認できた。 (Comparative Example 5)
The specimen of Comparative Example 5 was produced by the same method as Comparative Example 1, except that the resin material was polyethylene terephthalate resin as in Example 7. The specimen of Comparative Example 5 had a large change in thickness and a decrease in density as in Comparative Example 1. In addition, the flexural modulus M1 of the thinnest part was 430 MPa, and the flexural modulus M2 of the thickest part was 830 MPa. The ratio Y was 0.52, and the strength decrease in the thinnest part was large. The ratio Z was 0.99, and it was confirmed that even if the resin material was changed to polyethylene terephthalate, the strength decrease due to the thickness change after vacuum molding was large in the conventional molding method.
比較例5の試験体は、実施例7と同様にポリエチレンテレフタラート樹脂を樹脂材料とした以外は、比較例1と同様の方法により作製された。比較例5の試験体は、比較例1と同様に厚みの変化が大きく、密度が低下していた。また、最薄肉部の曲げ弾性率M1は430MPa、最厚肉部の曲げ弾性率M2は830MPaとなった。比率Yは、0.52となり、最薄肉部における強度低下が大きくなった。比率Zは0.99であり、樹脂材料をポリエチレンテレフタラートに変更しても、従来の成形法では真空成形後の厚み変化に伴う強度低下が大きくなることが確認できた。 (Comparative Example 5)
The specimen of Comparative Example 5 was produced by the same method as Comparative Example 1, except that the resin material was polyethylene terephthalate resin as in Example 7. The specimen of Comparative Example 5 had a large change in thickness and a decrease in density as in Comparative Example 1. In addition, the flexural modulus M1 of the thinnest part was 430 MPa, and the flexural modulus M2 of the thickest part was 830 MPa. The ratio Y was 0.52, and the strength decrease in the thinnest part was large. The ratio Z was 0.99, and it was confirmed that even if the resin material was changed to polyethylene terephthalate, the strength decrease due to the thickness change after vacuum molding was large in the conventional molding method.
(比較例6)
比較例6の試験体は、実施例8と同様にポリスチレン樹脂を樹脂材料とした以外は、比較例1と同様の方法により作製された。比較例5の試験体は比較例1と同様に厚みの変化が大きく、密度が低下していた。また、最薄肉部の曲げ弾性率M1は620MPa、最厚肉部の曲げ弾性率M2は1180MPaとなった。比率Yは、0.53となり、最薄肉部における強度低下が大きくなった。比率Zは1.00であり、樹脂材料をポリスチレン樹脂に変更しても、従来の成形法では真空成形後の厚み変化に伴う強度低下が大きくなることが確認できた。 (Comparative Example 6)
The specimen of Comparative Example 6 was produced in the same manner as Comparative Example 1, except that polystyrene resin was used as the resin material as in Example 8. The specimen of Comparative Example 5 had a large change in thickness and a decrease in density as in Comparative Example 1. In addition, the bending modulus M1 of the thinnest part was 620 MPa, and the bending modulus M2 of the thickest part was 1180 MPa. The ratio Y was 0.53, and the strength decrease in the thinnest part was large. The ratio Z was 1.00, and it was confirmed that even if the resin material was changed to polystyrene resin, the strength decrease due to the thickness change after vacuum molding was large in the conventional molding method.
比較例6の試験体は、実施例8と同様にポリスチレン樹脂を樹脂材料とした以外は、比較例1と同様の方法により作製された。比較例5の試験体は比較例1と同様に厚みの変化が大きく、密度が低下していた。また、最薄肉部の曲げ弾性率M1は620MPa、最厚肉部の曲げ弾性率M2は1180MPaとなった。比率Yは、0.53となり、最薄肉部における強度低下が大きくなった。比率Zは1.00であり、樹脂材料をポリスチレン樹脂に変更しても、従来の成形法では真空成形後の厚み変化に伴う強度低下が大きくなることが確認できた。 (Comparative Example 6)
The specimen of Comparative Example 6 was produced in the same manner as Comparative Example 1, except that polystyrene resin was used as the resin material as in Example 8. The specimen of Comparative Example 5 had a large change in thickness and a decrease in density as in Comparative Example 1. In addition, the bending modulus M1 of the thinnest part was 620 MPa, and the bending modulus M2 of the thickest part was 1180 MPa. The ratio Y was 0.53, and the strength decrease in the thinnest part was large. The ratio Z was 1.00, and it was confirmed that even if the resin material was changed to polystyrene resin, the strength decrease due to the thickness change after vacuum molding was large in the conventional molding method.
また、上述の実施例6~9及び比較例3~5における試験結果の通り、ポリカーボネート樹脂を樹脂材料とした場合だけでなく、ポリカーボネート樹脂とエンジニアプラスチックであるABS樹脂とのアロイ樹脂、或いは、ポリプロピレン、ポリエチレンテレフタラート、ポリスチレンといった汎用プラスチックにおいても同様の結果を得ることができた。なお、PAR及びPPS等のスーパーエンジニアリングプラスチック、並びに、ポリカーボネート樹脂とPAR或いはPPSとのアロイ等、他の樹脂を用いても、同様の結果を得ることが出来た。
Furthermore, as shown in the test results of Examples 6 to 9 and Comparative Examples 3 to 5 above, similar results were obtained not only when polycarbonate resin was used as the resin material, but also when alloy resins of polycarbonate resin and ABS resin, an engineering plastic, or general-purpose plastics such as polypropylene, polyethylene terephthalate, and polystyrene were used. Similar results were also obtained when other resins were used, such as super engineering plastics such as PAR and PPS, and alloys of polycarbonate resin and PAR or PPS.
実施例1の試験体及び比較例1の試験体に対して、10kgの重りを乗せた際の変形の様子を確認した。比較例1の試験体では、最薄肉部となる箱形状部の立壁側面部が折れ曲がって試験体全体が破壊された。一方で、実施例1の試験体は元の形状を保っていた。この結果より、比率Yが0.7以上であれば、樹脂成形体が強い衝撃強度を有することが確認された。すなわち、実施例2~5の試験体を用いた場合であっても同様の結果が得られると考えられる。
The deformation state of the specimen of Example 1 and the specimen of Comparative Example 1 when a weight of 10 kg was placed on them was confirmed. In the specimen of Comparative Example 1, the vertical wall side part of the box-shaped part, which is the thinnest part, was bent and the entire specimen was destroyed. On the other hand, the specimen of Example 1 maintained its original shape. From this result, it was confirmed that if the ratio Y is 0.7 or more, the resin molded body has high impact strength. In other words, it is believed that similar results would be obtained even if the specimens of Examples 2 to 5 were used.
1 樹脂成形体、2 最薄肉部、3 最厚肉部、10 発泡樹脂シート、11 コア層(発泡層)、12 スキン層(非発泡層)、13 スキン層(非発泡層)、111 気泡、t1 最薄肉部の厚み、t2 最厚肉部の厚み、M1 最薄肉部の曲げ弾性率、M2 最厚肉部の曲げ弾性率、X 比率、Y 比率、Z 比率、W 幅
REFERENCE SIGNSLIST 1 resin molded body, 2 thinnest part, 3 thickest part, 10 foamed resin sheet, 11 core layer (foamed layer), 12 skin layer (non-foamed layer), 13 skin layer (non-foamed layer), 111 air bubble, t1 thickness of thinnest part, t2 thickness of thickest part, M1 bending modulus of thinnest part, M2 bending modulus of thickest part, X ratio, Y ratio, Z ratio, W width
REFERENCE SIGNS
Claims (10)
- 発泡層と前記発泡層の一方の主面に積層された第1非発泡層と前記発泡層の他方の主面に積層された第2非発泡層とを含む発泡樹脂シートを賦形した樹脂成形体であって、
前記樹脂成形体は、最も厚みが小さい最薄肉部と、最も厚みが大きい最厚肉部とを含み、
前記最薄肉部は、0.5mm以上の厚みを有し、
前記最厚肉部は、5.0mm以下の厚みを有し、
前記最薄肉部の曲げ弾性率M1と最厚肉部の曲げ弾性率M2の第1比率(M1/M2)は、0.7以上である、樹脂成形体。 A resin molded product obtained by shaping a foamed resin sheet including a foamed layer, a first non-foamed layer laminated on one main surface of the foamed layer, and a second non-foamed layer laminated on the other main surface of the foamed layer,
The resin molded body includes a thinnest part having a smallest thickness and a thickest part having a large thickness,
The thinnest part has a thickness of 0.5 mm or more,
The thickest portion has a thickness of 5.0 mm or less,
A resin molded body, wherein a first ratio (M1/M2) between a flexural modulus M1 of the thinnest portion and a flexural modulus M2 of the thickest portion is 0.7 or more. - 請求項1に記載の樹脂成形体であって、
前記第1比率(M1/M2)は、2.0以下である、樹脂成形体。 The resin molded article according to claim 1,
The resin molded body, wherein the first ratio (M1/M2) is 2.0 or less. - 請求項1に記載の樹脂成形体であって、
前記最薄肉部の厚みt1と最厚肉部の厚みt2の第2比率(t1/t2)は、0.4以上0.9以下である、樹脂成形体。 The resin molded article according to claim 1,
a second ratio (t1/t2) of the thickness t1 of the thinnest portion to the thickness t2 of the thickest portion is 0.4 or greater and 0.9 or less. - 請求項1~3のいずれか1項に記載の樹脂成形体であって、
前記樹脂成形体は、熱可塑性樹脂からなり、
前記樹脂成形体の密度は、1.0g/cm3以下であり、
前記最薄肉部及び前記最厚肉部の各々の曲げ弾性率は、1000MPa以上である、樹脂成形体。 The resin molded article according to any one of claims 1 to 3,
The resin molded body is made of a thermoplastic resin,
The density of the resin molded body is 1.0 g/ cm3 or less,
The resin molded body, wherein the thinnest portion and the thickest portion each have a flexural modulus of elasticity of 1000 MPa or more. - 請求項1~3のいずれか1項に記載の樹脂成形体であって、
前記樹脂成形体は、ポリカーボネート樹脂を含む、樹脂成形体。 The resin molded article according to any one of claims 1 to 3,
The resin molded body includes a polycarbonate resin. - 請求項1~3のいずれか1項に記載の樹脂成形体であって、
前記樹脂成形体は、ポリカーボネート樹脂、ポリプロピレン、ポリエチレンテレフタレート及びポリスチレンからなる群より選ばれる少なくとも1種を含む、樹脂成形体。 The resin molded article according to any one of claims 1 to 3,
The resin molded article includes at least one selected from the group consisting of polycarbonate resin, polypropylene, polyethylene terephthalate, and polystyrene. - 請求項4に記載の樹脂成形体であって、
前記樹脂成形体は、ポリカーボネート樹脂を含む、樹脂成形体。 The resin molded body according to claim 4,
The resin molded body includes a polycarbonate resin. - 請求項4に記載の樹脂成形体であって、
前記樹脂成形体は、ポリカーボネート樹脂、ポリプロピレン、ポリエチレンテレフタレート及びポリスチレンからなる群より選ばれる少なくとも1種を含む、樹脂成形体。 The resin molded body according to claim 4,
The resin molded article includes at least one selected from the group consisting of polycarbonate resin, polypropylene, polyethylene terephthalate, and polystyrene. - 請求項4に記載の樹脂成形体であって、
前記第1比率と第2比率との比率(第1比率/第2比率)は、4.0以下である、樹脂成形体。 The resin molded body according to claim 4,
A resin molded body, wherein a ratio between the first ratio and the second ratio (first ratio/second ratio) is 4.0 or less. - 請求項9に記載の樹脂成形体であって、
前記第1比率と第2比率との比率(第1比率/第2比率)は、1.0より大きい、樹脂成形体。
The resin molded body according to claim 9,
A resin molded article, wherein a ratio between the first ratio and the second ratio (first ratio/second ratio) is greater than 1.0.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023012445 | 2023-01-31 | ||
JP2023-012445 | 2023-01-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024162214A1 true WO2024162214A1 (en) | 2024-08-08 |
Family
ID=91033692
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2024/002451 WO2024162214A1 (en) | 2023-01-31 | 2024-01-26 | Resin molded body |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7482278B1 (en) |
WO (1) | WO2024162214A1 (en) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08174780A (en) * | 1994-10-27 | 1996-07-09 | Jsp Corp | Polycarbonate resin extruded expanded laminated sheet |
JPH08183054A (en) * | 1994-12-28 | 1996-07-16 | Jsp Corp | Polycarbonate resin-extruded foam sheet |
JPH0948871A (en) * | 1995-08-07 | 1997-02-18 | Jsp Corp | Production of polycarbonate resin molded foam |
JP2009034934A (en) * | 2007-08-02 | 2009-02-19 | Daicel Pack Systems Ltd | Laminated sheet for container |
JP2012030401A (en) * | 2010-07-28 | 2012-02-16 | Toyota Boshoku Corp | Multilayer foam base material and method of manufacturing the same |
JP2013057023A (en) * | 2011-09-09 | 2013-03-28 | Tosoh Corp | Foamed container |
WO2018142971A1 (en) * | 2017-01-31 | 2018-08-09 | 東レ株式会社 | Integrally molded body and method for producing same |
US20190166947A1 (en) * | 2017-11-30 | 2019-06-06 | Bauer Hockey Ltd. | Athletic gear or other devices comprising pads or other cushioning components |
WO2021200641A1 (en) * | 2020-03-31 | 2021-10-07 | 株式会社ジェイエスピー | Vehicle seat core material |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5634902B2 (en) | 2011-02-03 | 2014-12-03 | 株式会社エフピコ | Packaging container |
-
2023
- 2023-02-28 JP JP2023029271A patent/JP7482278B1/en active Active
-
2024
- 2024-01-26 WO PCT/JP2024/002451 patent/WO2024162214A1/en unknown
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08174780A (en) * | 1994-10-27 | 1996-07-09 | Jsp Corp | Polycarbonate resin extruded expanded laminated sheet |
JPH08183054A (en) * | 1994-12-28 | 1996-07-16 | Jsp Corp | Polycarbonate resin-extruded foam sheet |
JPH0948871A (en) * | 1995-08-07 | 1997-02-18 | Jsp Corp | Production of polycarbonate resin molded foam |
JP2009034934A (en) * | 2007-08-02 | 2009-02-19 | Daicel Pack Systems Ltd | Laminated sheet for container |
JP2012030401A (en) * | 2010-07-28 | 2012-02-16 | Toyota Boshoku Corp | Multilayer foam base material and method of manufacturing the same |
JP2013057023A (en) * | 2011-09-09 | 2013-03-28 | Tosoh Corp | Foamed container |
WO2018142971A1 (en) * | 2017-01-31 | 2018-08-09 | 東レ株式会社 | Integrally molded body and method for producing same |
US20190166947A1 (en) * | 2017-11-30 | 2019-06-06 | Bauer Hockey Ltd. | Athletic gear or other devices comprising pads or other cushioning components |
WO2021200641A1 (en) * | 2020-03-31 | 2021-10-07 | 株式会社ジェイエスピー | Vehicle seat core material |
Also Published As
Publication number | Publication date |
---|---|
JP2024108991A (en) | 2024-08-13 |
JP7482278B1 (en) | 2024-05-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5378757B2 (en) | Polystyrene resin foamed biaxially stretched sheet, method for producing the same, and molded article made of this sheet | |
JP5226942B2 (en) | Biaxially stretched nylon film for cold forming, laminate packaging material, and method for producing biaxially stretched nylon film for cold forming | |
JP6654626B2 (en) | Subatmospheric morphology control process used for extrusion of extruded polymer foam and parts formed therefrom | |
JP2008044209A (en) | Biaxially stretched nylon film, laminated packaging material and forming method of biaxially stretched nylon film | |
US20110033655A1 (en) | Energy saving honeycomb having enhanced strength | |
JP2013022773A (en) | Biaxially oriented nylon film for cold molding, laminate film, and molding | |
JP2017192972A (en) | Blank material for draw molding of aluminum resin composite laminate board and method for manufacturing three-dimensional molded article using the same | |
WO2024162214A1 (en) | Resin molded body | |
JP7100216B1 (en) | Coextruded sheet | |
JP2007125830A (en) | Laminated expanded sheet of polystyrene-based resin with excellent deep draw forming properties | |
WO2024014391A1 (en) | Co-extruded sheet | |
WO2023188487A1 (en) | Coextruded sheet | |
WO2023189108A1 (en) | Co-extruded sheet and molded resin article | |
WO2024014392A1 (en) | Co-extruded sheet | |
JP2006306030A (en) | Molding | |
WO2023190679A1 (en) | Extrusion-foamed sheet, and inspection method and inspection device for extrusion-foamed sheet | |
JP2024063787A (en) | Resin sheet and resin molded body | |
JP2023152908A (en) | Case | |
JP2024126684A (en) | Resin Sheet | |
CN215512702U (en) | Lightweight sheet | |
JP6577117B2 (en) | In-mold forming label and labeled container | |
JP7417179B1 (en) | Method for manufacturing thermoplastic resin expanded particle molded product | |
JP2006051603A (en) | Polystyrenic resin laminated foamed sheet | |
JP5553539B2 (en) | Embossed carrier tape and manufacturing method thereof | |
JP2014198436A (en) | Laminated foam sheet and container for food product |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 24750163 Country of ref document: EP Kind code of ref document: A1 |