WO2024162025A1 - Agent for treating metal surface, method for treating surface of metallic material, and surface-treated metallic material - Google Patents
Agent for treating metal surface, method for treating surface of metallic material, and surface-treated metallic material Download PDFInfo
- Publication number
- WO2024162025A1 WO2024162025A1 PCT/JP2024/001317 JP2024001317W WO2024162025A1 WO 2024162025 A1 WO2024162025 A1 WO 2024162025A1 JP 2024001317 W JP2024001317 W JP 2024001317W WO 2024162025 A1 WO2024162025 A1 WO 2024162025A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- surface treatment
- water
- soluble polymer
- treatment agent
- metal material
- Prior art date
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 52
- 239000002184 metal Substances 0.000 title claims abstract description 52
- 239000007769 metal material Substances 0.000 title claims description 58
- 238000000034 method Methods 0.000 title claims description 42
- 229920003169 water-soluble polymer Polymers 0.000 claims abstract description 63
- 239000000178 monomer Substances 0.000 claims abstract description 52
- 239000002335 surface treatment layer Substances 0.000 claims abstract description 42
- 150000003839 salts Chemical class 0.000 claims abstract description 41
- 125000000020 sulfo group Chemical group O=S(=O)([*])O[H] 0.000 claims abstract description 40
- 125000000524 functional group Chemical group 0.000 claims abstract description 25
- 239000002253 acid Substances 0.000 claims abstract description 23
- 125000000129 anionic group Chemical group 0.000 claims abstract description 22
- 239000004094 surface-active agent Substances 0.000 claims abstract description 22
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 19
- 229920001577 copolymer Polymers 0.000 claims abstract description 16
- 239000002736 nonionic surfactant Substances 0.000 claims abstract description 9
- 239000003945 anionic surfactant Substances 0.000 claims abstract description 8
- 239000012756 surface treatment agent Substances 0.000 claims description 57
- 238000011282 treatment Methods 0.000 claims description 39
- 238000000576 coating method Methods 0.000 claims description 32
- 239000010410 layer Substances 0.000 claims description 29
- 239000011248 coating agent Substances 0.000 claims description 26
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 claims description 26
- 125000002947 alkylene group Chemical group 0.000 claims description 24
- 238000001035 drying Methods 0.000 claims description 23
- 230000002265 prevention Effects 0.000 claims description 23
- 229920000642 polymer Polymers 0.000 claims description 20
- 238000004381 surface treatment Methods 0.000 claims description 20
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 12
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 11
- 239000004925 Acrylic resin Substances 0.000 claims description 6
- 229920000178 Acrylic resin Polymers 0.000 claims description 6
- 229920002401 polyacrylamide Polymers 0.000 claims description 6
- 125000003504 2-oxazolinyl group Chemical group O1C(=NCC1)* 0.000 claims description 5
- 239000003431 cross linking reagent Substances 0.000 claims description 5
- 125000003277 amino group Chemical group 0.000 claims description 4
- VPKDCDLSJZCGKE-UHFFFAOYSA-N carbodiimide group Chemical group N=C=N VPKDCDLSJZCGKE-UHFFFAOYSA-N 0.000 claims description 4
- 125000003700 epoxy group Chemical group 0.000 claims description 4
- 239000003822 epoxy resin Substances 0.000 claims description 4
- 229920000647 polyepoxide Polymers 0.000 claims description 4
- 229920001225 polyester resin Polymers 0.000 claims description 3
- 239000004645 polyester resin Substances 0.000 claims description 3
- 229920005672 polyolefin resin Polymers 0.000 claims description 3
- 229920005749 polyurethane resin Polymers 0.000 claims description 3
- 238000000465 moulding Methods 0.000 abstract description 4
- 230000002688 persistence Effects 0.000 abstract 1
- -1 polyoxyethylene chain Polymers 0.000 description 27
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 26
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 24
- 238000012360 testing method Methods 0.000 description 23
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 21
- 239000002585 base Substances 0.000 description 18
- 239000000463 material Substances 0.000 description 18
- 239000000243 solution Substances 0.000 description 17
- 238000006116 polymerization reaction Methods 0.000 description 14
- 239000000314 lubricant Substances 0.000 description 12
- 229910052782 aluminium Inorganic materials 0.000 description 11
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 11
- 229920005989 resin Polymers 0.000 description 10
- 239000011347 resin Substances 0.000 description 10
- 229920000536 2-Acrylamido-2-methylpropane sulfonic acid Polymers 0.000 description 9
- XHZPRMZZQOIPDS-UHFFFAOYSA-N 2-Methyl-2-[(1-oxo-2-propenyl)amino]-1-propanesulfonic acid Chemical compound OS(=O)(=O)CC(C)(C)NC(=O)C=C XHZPRMZZQOIPDS-UHFFFAOYSA-N 0.000 description 9
- 238000005259 measurement Methods 0.000 description 9
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 8
- 235000014113 dietary fatty acids Nutrition 0.000 description 8
- 239000000194 fatty acid Substances 0.000 description 8
- 229930195729 fatty acid Natural products 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 7
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 7
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 7
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 7
- 239000004359 castor oil Substances 0.000 description 7
- 235000019438 castor oil Nutrition 0.000 description 7
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 239000000523 sample Substances 0.000 description 7
- 238000003756 stirring Methods 0.000 description 7
- 230000002459 sustained effect Effects 0.000 description 7
- 238000003786 synthesis reaction Methods 0.000 description 7
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 6
- 150000005215 alkyl ethers Chemical class 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 6
- 239000008367 deionised water Substances 0.000 description 6
- 229910021641 deionized water Inorganic materials 0.000 description 6
- 238000011156 evaluation Methods 0.000 description 6
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 6
- 125000001434 methanylylidene group Chemical group [H]C#[*] 0.000 description 6
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 6
- 229910052708 sodium Inorganic materials 0.000 description 6
- 239000011734 sodium Substances 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 5
- 239000002202 Polyethylene glycol Substances 0.000 description 5
- 238000011109 contamination Methods 0.000 description 5
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 5
- 230000005660 hydrophilic surface Effects 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 229920001223 polyethylene glycol Polymers 0.000 description 5
- 238000010992 reflux Methods 0.000 description 5
- 229920001567 vinyl ester resin Polymers 0.000 description 5
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 5
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 4
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 125000000217 alkyl group Chemical group 0.000 description 4
- 238000004140 cleaning Methods 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 4
- 230000001050 lubricating effect Effects 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 238000007127 saponification reaction Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 238000009423 ventilation Methods 0.000 description 4
- LCPVQAHEFVXVKT-UHFFFAOYSA-N 2-(2,4-difluorophenoxy)pyridin-3-amine Chemical compound NC1=CC=CN=C1OC1=CC=C(F)C=C1F LCPVQAHEFVXVKT-UHFFFAOYSA-N 0.000 description 3
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 3
- 229910019142 PO4 Inorganic materials 0.000 description 3
- 235000021314 Palmitic acid Nutrition 0.000 description 3
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 3
- 230000002378 acidificating effect Effects 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 150000003926 acrylamides Chemical class 0.000 description 3
- ZCDOYSPFYFSLEW-UHFFFAOYSA-N chromate(2-) Chemical compound [O-][Cr]([O-])(=O)=O ZCDOYSPFYFSLEW-UHFFFAOYSA-N 0.000 description 3
- 239000011247 coating layer Substances 0.000 description 3
- 238000009833 condensation Methods 0.000 description 3
- 230000005494 condensation Effects 0.000 description 3
- 229910001873 dinitrogen Inorganic materials 0.000 description 3
- 238000007654 immersion Methods 0.000 description 3
- 239000003112 inhibitor Substances 0.000 description 3
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 3
- 239000011976 maleic acid Substances 0.000 description 3
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 3
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 239000010452 phosphate Substances 0.000 description 3
- CHQMHPLRPQMAMX-UHFFFAOYSA-L sodium persulfate Substances [Na+].[Na+].[O-]S(=O)(=O)OOS([O-])(=O)=O CHQMHPLRPQMAMX-UHFFFAOYSA-L 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 3
- NLVXSWCKKBEXTG-UHFFFAOYSA-N vinylsulfonic acid Chemical compound OS(=O)(=O)C=C NLVXSWCKKBEXTG-UHFFFAOYSA-N 0.000 description 3
- 238000005160 1H NMR spectroscopy Methods 0.000 description 2
- PRAMZQXXPOLCIY-UHFFFAOYSA-N 2-(2-methylprop-2-enoyloxy)ethanesulfonic acid Chemical compound CC(=C)C(=O)OCCS(O)(=O)=O PRAMZQXXPOLCIY-UHFFFAOYSA-N 0.000 description 2
- IUVCFHHAEHNCFT-INIZCTEOSA-N 2-[(1s)-1-[4-amino-3-(3-fluoro-4-propan-2-yloxyphenyl)pyrazolo[3,4-d]pyrimidin-1-yl]ethyl]-6-fluoro-3-(3-fluorophenyl)chromen-4-one Chemical compound C1=C(F)C(OC(C)C)=CC=C1C(C1=C(N)N=CN=C11)=NN1[C@@H](C)C1=C(C=2C=C(F)C=CC=2)C(=O)C2=CC(F)=CC=C2O1 IUVCFHHAEHNCFT-INIZCTEOSA-N 0.000 description 2
- AGBXYHCHUYARJY-UHFFFAOYSA-N 2-phenylethenesulfonic acid Chemical compound OS(=O)(=O)C=CC1=CC=CC=C1 AGBXYHCHUYARJY-UHFFFAOYSA-N 0.000 description 2
- GQTFHSAAODFMHB-UHFFFAOYSA-N 2-prop-2-enoyloxyethanesulfonic acid Chemical compound OS(=O)(=O)CCOC(=O)C=C GQTFHSAAODFMHB-UHFFFAOYSA-N 0.000 description 2
- WIGIPJGWVLNDAF-UHFFFAOYSA-N 8-methyl-1-(8-methylnonoxy)nonane Chemical compound CC(C)CCCCCCCOCCCCCCCC(C)C WIGIPJGWVLNDAF-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerol Natural products OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- XLYOFNOQVPJJNP-ZSJDYOACSA-N Heavy water Chemical compound [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 description 2
- 229920000877 Melamine resin Polymers 0.000 description 2
- 238000005481 NMR spectroscopy Methods 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical group OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 239000003429 antifungal agent Substances 0.000 description 2
- 229940121375 antifungal agent Drugs 0.000 description 2
- 125000002091 cationic group Chemical group 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical compound C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 2
- 238000007598 dipping method Methods 0.000 description 2
- 239000003480 eluent Substances 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 235000011187 glycerol Nutrition 0.000 description 2
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 2
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 239000004711 α-olefin Substances 0.000 description 2
- CMCBDXRRFKYBDG-UHFFFAOYSA-N 1-dodecoxydodecane Chemical compound CCCCCCCCCCCCOCCCCCCCCCCCC CMCBDXRRFKYBDG-UHFFFAOYSA-N 0.000 description 1
- OSSNTDFYBPYIEC-UHFFFAOYSA-N 1-ethenylimidazole Chemical compound C=CN1C=CN=C1 OSSNTDFYBPYIEC-UHFFFAOYSA-N 0.000 description 1
- XLPJNCYCZORXHG-UHFFFAOYSA-N 1-morpholin-4-ylprop-2-en-1-one Chemical compound C=CC(=O)N1CCOCC1 XLPJNCYCZORXHG-UHFFFAOYSA-N 0.000 description 1
- CSHOPPGMNYULAD-UHFFFAOYSA-N 1-tridecoxytridecane Chemical compound CCCCCCCCCCCCCOCCCCCCCCCCCCC CSHOPPGMNYULAD-UHFFFAOYSA-N 0.000 description 1
- DPBJAVGHACCNRL-UHFFFAOYSA-N 2-(dimethylamino)ethyl prop-2-enoate Chemical compound CN(C)CCOC(=O)C=C DPBJAVGHACCNRL-UHFFFAOYSA-N 0.000 description 1
- SEZNOTWNLYDTCY-UHFFFAOYSA-N 2-(hydroxymethylamino)ethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCNCO SEZNOTWNLYDTCY-UHFFFAOYSA-N 0.000 description 1
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- WYGWHHGCAGTUCH-UHFFFAOYSA-N 2-[(2-cyano-4-methylpentan-2-yl)diazenyl]-2,4-dimethylpentanenitrile Chemical compound CC(C)CC(C)(C#N)N=NC(C)(C#N)CC(C)C WYGWHHGCAGTUCH-UHFFFAOYSA-N 0.000 description 1
- 125000000022 2-aminoethyl group Chemical group [H]C([*])([H])C([H])([H])N([H])[H] 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- XEEYSDHEOQHCDA-UHFFFAOYSA-N 2-methylprop-2-ene-1-sulfonic acid Chemical compound CC(=C)CS(O)(=O)=O XEEYSDHEOQHCDA-UHFFFAOYSA-N 0.000 description 1
- SEILKFZTLVMHRR-UHFFFAOYSA-N 2-phosphonooxyethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCOP(O)(O)=O SEILKFZTLVMHRR-UHFFFAOYSA-N 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- KGIGUEBEKRSTEW-UHFFFAOYSA-N 2-vinylpyridine Chemical compound C=CC1=CC=CC=N1 KGIGUEBEKRSTEW-UHFFFAOYSA-N 0.000 description 1
- ZSPTYLOMNJNZNG-UHFFFAOYSA-N 3-Buten-1-ol Chemical compound OCCC=C ZSPTYLOMNJNZNG-UHFFFAOYSA-N 0.000 description 1
- ATVJXMYDOSMEPO-UHFFFAOYSA-N 3-prop-2-enoxyprop-1-ene Chemical compound C=CCOCC=C ATVJXMYDOSMEPO-UHFFFAOYSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- GAWIXWVDTYZWAW-UHFFFAOYSA-N C[CH]O Chemical group C[CH]O GAWIXWVDTYZWAW-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000004115 Sodium Silicate Substances 0.000 description 1
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- ULUAUXLGCMPNKK-UHFFFAOYSA-N Sulfobutanedioic acid Chemical compound OC(=O)CC(C(O)=O)S(O)(=O)=O ULUAUXLGCMPNKK-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 238000010306 acid treatment Methods 0.000 description 1
- 238000012644 addition polymerization Methods 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 150000003973 alkyl amines Chemical class 0.000 description 1
- 125000005037 alkyl phenyl group Chemical group 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229910001870 ammonium persulfate Inorganic materials 0.000 description 1
- 150000003863 ammonium salts Chemical group 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 229940077388 benzenesulfonate Drugs 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 150000001718 carbodiimides Chemical class 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 239000012461 cellulose resin Substances 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000008119 colloidal silica Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- YOQPKXIRWPWFIE-UHFFFAOYSA-N ctk4c8335 Chemical compound CC(=C)C(=O)OCCOP(=O)=O YOQPKXIRWPWFIE-UHFFFAOYSA-N 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 239000013527 degreasing agent Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- GPLRAVKSCUXZTP-UHFFFAOYSA-N diglycerol Chemical compound OCC(O)COCC(O)CO GPLRAVKSCUXZTP-UHFFFAOYSA-N 0.000 description 1
- WMYWOWFOOVUPFY-UHFFFAOYSA-L dihydroxy(dioxo)chromium;phosphoric acid Chemical compound OP(O)(O)=O.O[Cr](O)(=O)=O WMYWOWFOOVUPFY-UHFFFAOYSA-L 0.000 description 1
- 230000005674 electromagnetic induction Effects 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- YCUBDDIKWLELPD-UHFFFAOYSA-N ethenyl 2,2-dimethylpropanoate Chemical compound CC(C)(C)C(=O)OC=C YCUBDDIKWLELPD-UHFFFAOYSA-N 0.000 description 1
- WNMORWGTPVWAIB-UHFFFAOYSA-N ethenyl 2-methylpropanoate Chemical compound CC(C)C(=O)OC=C WNMORWGTPVWAIB-UHFFFAOYSA-N 0.000 description 1
- MEGHWIAOTJPCHQ-UHFFFAOYSA-N ethenyl butanoate Chemical compound CCCC(=O)OC=C MEGHWIAOTJPCHQ-UHFFFAOYSA-N 0.000 description 1
- GFJVXXWOPWLRNU-UHFFFAOYSA-N ethenyl formate Chemical compound C=COC=O GFJVXXWOPWLRNU-UHFFFAOYSA-N 0.000 description 1
- LZWYWAIOTBEZFN-UHFFFAOYSA-N ethenyl hexanoate Chemical compound CCCCCC(=O)OC=C LZWYWAIOTBEZFN-UHFFFAOYSA-N 0.000 description 1
- UIWXSTHGICQLQT-UHFFFAOYSA-N ethenyl propanoate Chemical compound CCC(=O)OC=C UIWXSTHGICQLQT-UHFFFAOYSA-N 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- WGTGQGJDNAGBCC-UHFFFAOYSA-N hex-5-ene-1,2-diol Chemical compound OCC(O)CCC=C WGTGQGJDNAGBCC-UHFFFAOYSA-N 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 238000007602 hot air drying Methods 0.000 description 1
- 229920001477 hydrophilic polymer Polymers 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 238000010409 ironing Methods 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 230000005923 long-lasting effect Effects 0.000 description 1
- 239000010687 lubricating oil Substances 0.000 description 1
- FQPSGWSUVKBHSU-UHFFFAOYSA-N methacrylamide Chemical compound CC(=C)C(N)=O FQPSGWSUVKBHSU-UHFFFAOYSA-N 0.000 description 1
- OMNKZBIFPJNNIO-UHFFFAOYSA-N n-(2-methyl-4-oxopentan-2-yl)prop-2-enamide Chemical compound CC(=O)CC(C)(C)NC(=O)C=C OMNKZBIFPJNNIO-UHFFFAOYSA-N 0.000 description 1
- DYUWTXWIYMHBQS-UHFFFAOYSA-N n-prop-2-enylprop-2-en-1-amine Chemical compound C=CCNCC=C DYUWTXWIYMHBQS-UHFFFAOYSA-N 0.000 description 1
- PSZYNBSKGUBXEH-UHFFFAOYSA-M naphthalene-1-sulfonate Chemical compound C1=CC=C2C(S(=O)(=O)[O-])=CC=CC2=C1 PSZYNBSKGUBXEH-UHFFFAOYSA-M 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- LQAVWYMTUMSFBE-UHFFFAOYSA-N pent-4-en-1-ol Chemical compound OCCCC=C LQAVWYMTUMSFBE-UHFFFAOYSA-N 0.000 description 1
- ABLZXFCXXLZCGV-UHFFFAOYSA-N phosphonic acid group Chemical group P(O)(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 1
- 235000011007 phosphoric acid Nutrition 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 239000003505 polymerization initiator Substances 0.000 description 1
- 229920000259 polyoxyethylene lauryl ether Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920001290 polyvinyl ester Polymers 0.000 description 1
- 235000019353 potassium silicate Nutrition 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- UIIIBRHUICCMAI-UHFFFAOYSA-N prop-2-ene-1-sulfonic acid Chemical compound OS(=O)(=O)CC=C UIIIBRHUICCMAI-UHFFFAOYSA-N 0.000 description 1
- RZKYDQNMAUSEDZ-UHFFFAOYSA-N prop-2-enylphosphonic acid Chemical compound OP(O)(=O)CC=C RZKYDQNMAUSEDZ-UHFFFAOYSA-N 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 238000010526 radical polymerization reaction Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000011342 resin composition Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 229940079827 sodium hydrogen sulfite Drugs 0.000 description 1
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- 229910052911 sodium silicate Inorganic materials 0.000 description 1
- FWFUWXVFYKCSQA-UHFFFAOYSA-M sodium;2-methyl-2-(prop-2-enoylamino)propane-1-sulfonate Chemical compound [Na+].[O-]S(=O)(=O)CC(C)(C)NC(=O)C=C FWFUWXVFYKCSQA-UHFFFAOYSA-M 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 125000000542 sulfonic acid group Chemical group 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- ZTWTYVWXUKTLCP-UHFFFAOYSA-N vinylphosphonic acid Chemical compound OP(O)(=O)C=C ZTWTYVWXUKTLCP-UHFFFAOYSA-N 0.000 description 1
- 239000003021 water soluble solvent Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D7/00—Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
- B05D7/24—Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/08—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D129/00—Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Coating compositions based on hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Coating compositions based on derivatives of such polymers
- C09D129/02—Homopolymers or copolymers of unsaturated alcohols
- C09D129/04—Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D133/00—Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
- C09D133/24—Homopolymers or copolymers of amides or imides
- C09D133/26—Homopolymers or copolymers of acrylamide or methacrylamide
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D201/00—Coating compositions based on unspecified macromolecular compounds
- C09D201/02—Coating compositions based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/47—Levelling agents
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/60—Additives non-macromolecular
- C09D7/63—Additives non-macromolecular organic
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C26/00—Coating not provided for in groups C23C2/00 - C23C24/00
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
- F28F1/12—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D133/00—Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
- C09D133/02—Homopolymers or copolymers of acids; Metal or ammonium salts thereof
Definitions
- the present invention relates to a metal surface treatment agent, a surface treatment method for metal materials, and a surface-treated metal material.
- heat exchangers used in air conditioners and automotive air conditioners are often made from aluminum-containing metal materials.
- Plate fin and fin-and-tube heat exchangers are designed with very narrow gaps between the metal materials (commonly called fins) in the areas where ventilation is required to increase heat exchange efficiency. For this reason, when the air conditioner is operating (cooling), moisture in the air that has dropped below the dew point adheres to the fins as condensation water, causing the spaces between the fins to become clogged. When the spaces between the fins become clogged, the increased ventilation resistance reduces heat exchange efficiency, and the air conditioner may not be able to perform as well as it should.
- the fins used in the ventilation sections of heat exchangers are often made from thin aluminum sheets. This forming process combines bulging, drawing, ironing, punching, hole expansion, bending, corrugating, louver processing, etc., and requires a very high degree of formability.
- a method has been proposed and implemented in which a hydrophilic surface treatment layer is formed on the fin surface, allowing the attached condensation water to flow off as a thin water film, thereby suppressing the increase in ventilation resistance caused by the condensation water.
- Various hydrophilic surface treatments have been proposed in the past, such as inorganic surface treatment layers containing water glass or colloidal silica, or organic surface treatment layers containing hydrophilic polymers such as acrylic resins or cellulose resins.
- it has been proposed and implemented to cover the top layer of the hydrophilic surface treatment layer with a lubricating layer or apply press oil.
- Patent Documents 1 and 2 propose technologies related to surface treatment agents with excellent contamination resistance.
- Patent Document 1 describes a hydrophilic baked coating comprising a plate material made of aluminum or an aluminum alloy, a baked corrosion-resistant layer made of a water-based paint containing polyvinyl alcohol formed on the plate material, and a hydrophilic baked coating film formed on the baked corrosion-resistant layer, the hydrophilic baked coating film containing alumina particles contained in alumina sol, a water-soluble acrylic resin containing sulfonic acid, and polyethylene glycol, the water-soluble sulfur component is 0.5 mg/m 2 or less, the coating amount is 0.3 to 0.8 g/m 2 , the coating amount of the baked corrosion-resistant layer is 0.2 g/m 2 or more, and the baked corrosion-resistant layer contains a pigment for coloring.
- Patent Document 2 describes an aluminum fin material comprising, in this order, an aluminum plate and a hydrophilic coating layer formed on the aluminum plate, the hydrophilic coating layer being made of a resin composition containing a resin A which is a polymer or copolymer and a Zr-based crosslinking agent, the polymer or copolymer of resin A being composed of a monomer having at least one group selected from the group consisting of a sulfonic acid group, an alkali metal salt group of sulfonic acid, and an ammonium salt group of sulfonic acid.
- an object of the present invention in one embodiment, is to provide a metal surface treatment agent capable of forming a surface treatment layer excellent in sustained hydrophilicity, stain resistance, and moldability.
- An object of the present invention in another embodiment, is to provide a method for surface treatment of a metal material using the metal surface treatment agent.
- An object of the present invention in yet another embodiment, is to provide a surface-treated metal material obtained by the surface treatment method.
- a metal surface treatment agent containing a water-soluble resin having, in the same molecule, a monomer unit having a sulfo group and/or a salt thereof and a monomer unit having an anionic functional group other than a sulfo group and a salt thereof, combined with a specific surfactant can form a surface treatment layer that is excellent in long-lasting hydrophilicity, stain resistance, and moldability, and thus completed the present invention.
- a metal surface treatment agent comprising a water-soluble polymer (A) and a surfactant (B),
- the water-soluble polymer (A) is a copolymer containing a monomer unit having a sulfo group and/or a salt thereof and a monomer unit having an anionic functional group other than a sulfo group and a salt thereof, the acid value being 200 to 500 mgKOH/g, the molar fraction of the monomer unit having a sulfo group and/or a salt thereof being 20 mol % or more and 50 mol % or less, and the molar fraction of the monomer unit having an anionic functional group other than a sulfo group and a salt thereof being 50 mol % or more and 80 mol % or less, relative to all monomer units in the copolymer;
- the surfactant (B) includes at least one selected from an anionic surfactant and a nonionic sur
- the metal surface treatment agent according to the above [1] or [2] further comprises at least one water-soluble polymer (C) selected from polyvinyl alcohol and polyacrylamide, and the mass ratio (A/C) of the content of the water-soluble polymer (A) to the content of the water-soluble polymer (C) is 0.1 to 10.
- a surface treatment method for a metal material comprising: [8] (iii) before the step (i), a step of contacting a base rust prevention treatment agent with a surface of a metal material; (iv) a step of drying the metal material contacted with the base rust prevention treatment agent after the step (iii) and before the step (i) to form a base rust prevention treatment layer;
- the surface treatment method for a metal material according to the above [7], [9] The surface treatment method for a metal material according to [8] above, wherein the undercoat rust prevention treatment agent contains at least one polymer selected from an acrylic resin, a polyester resin, a polyurethane resin, a polyolefin resin, and an epoxy resin, the polymer
- a metal surface treatment agent capable of forming a surface treatment layer having excellent sustained hydrophilicity, contamination resistance, and moldability.
- a surface treatment method for a metal material using the metal surface treatment agent it is possible to provide a surface-treated metal material obtained by the surface treatment method.
- a metal surface treatment agent according to one embodiment of the present invention contains a water-soluble polymer (A) and a surfactant (B).
- the water-soluble polymer (A) is a copolymer containing a monomer unit having a sulfo group and/or a salt thereof and a monomer unit having an anionic functional group other than a sulfo group and a salt thereof. Although it is not intended that the present invention be limited by theory, it is believed that the presence of both functional groups in one molecule significantly contributes to the improvement of stain resistance and sustained hydrophilicity.
- the water-soluble polymer (A) can be produced according to a known production method, and is not particularly limited.
- the water-soluble polymer (A) can be produced by copolymerizing a monomer having a sulfo group or a salt thereof with a monomer having an anionic functional group other than the sulfo group and the salt thereof.
- the monomer having a sulfo group or a salt thereof include compounds such as vinyl sulfonic acid, styrene sulfonic acid, sulfoethyl acrylate, sulfoethyl methacrylate, N-methylene sulfonic acid acrylamide, and olefin sulfonic acid such as 2-acrylamido-2-methylpropanesulfonic acid, or salts thereof.
- anionic functional group other than the sulfo group and the salts thereof include, for example, a carboxyl group, a phosphonic acid group, a phosphoric acid group, and salts thereof.
- the monomer having an anionic functional group other than the sulfo group and the salts thereof include compounds such as unsaturated acids or salts thereof, such as (meth)acrylic acid, itaconic acid, maleic acid, 2-(phosphonooxy)ethyl methacrylate, vinylphosphonic acid, and allylphosphonic acid.
- the water-soluble polymer (A) may be used alone or in combination of two or more kinds.
- the acid value of the water-soluble polymer (A) is preferably 200 to 500 mgKOH/g, more preferably 200 to 400 mgKOH/g, and even more preferably 200 to 300 mgKOH/g.
- the acid value of the water-soluble polymer (A) can be adjusted, for example, by partially neutralizing the sulfo group or acids other than the sulfo group.
- the acid value is measured in accordance with JIS K0070-1992.
- the molar fraction (A1) of monomer units having a sulfo group and/or a salt thereof relative to all monomer units in the water-soluble polymer (A) is preferably 20 to 50 mol%, more preferably 30 to 50 mol%, and even more preferably 30 to 40 mol%.
- the molar fraction (A2) of monomer units having an anionic functional group other than a sulfo group and a salt thereof is preferably 50 to 80 mol%, more preferably 50 to 70 mol%, and even more preferably 60 to 70 mol%.
- the molar fraction is calculated as follows from the results of 1H-NMR measurement of the water-soluble polymer (A) using a nuclear magnetic resonance analyzer (NMR).
- Measurement may be performed under the same measurement conditions as those described below. 1H-NMR measurement conditions Measuring instrument: JNM-ECX400 (manufactured by JEOL Ltd.) Probe: 40TH5AT/FG2D-5mm (Broadband Gradient Tunable Probe) Measurements: 1H Measurement solvent: deuterium oxide Number of times of accumulation: 16 Peaks in the obtained spectrum are assigned as follows.
- the mole fraction of each monomer unit is calculated from x, y, and z.
- the mole fraction of each monomer unit can be calculated as follows.
- x is the integral value of the peaks derived from methylene protons and methine protons not adjacent to the sulfo group of the monomer unit derived from 2-acrylamido-2-methylpropanesulfonic acid in the water-soluble polymer (A).
- y is the integral value of the peaks derived from the methylene protons and methine protons of the monomer unit derived from acrylic acid in the water-soluble polymer (A).
- z is the integral value of the peaks derived from the methylene protons and methine protons adjacent to the sulfo group of the monomer unit derived from 2-acrylamido-2-methylpropanesulfonic acid in the water-soluble polymer (A).
- the weight average molecular weight Mw of the water-soluble polymer (A) is preferably 14,000 to 300,000, and the polydispersity Mw/Mn of the weight average molecular weight Mw and the number average molecular weight Mn is preferably 1.5 to 5.0.
- the weight average molecular weight Mw of the water-soluble polymer (A) is more preferably 100,000 to 300,000, and the polydispersity Mw/Mn of the weight average molecular weight Mw and the number average molecular weight Mn is more preferably 1.5 to 3.0.
- the weight average molecular weight Mw of the water-soluble polymer (A) is even more preferably 100,000 to 200,000, and the polydispersity Mw/Mn of the weight average molecular weight Mw and the number average molecular weight Mn is even more preferably 2.0 to 3.0.
- the weight average molecular weight and number average molecular weight of the water-soluble polymer (A) are measured by the GPC method.
- the weight average molecular weight in the examples was measured under the following conditions.
- the measurement was carried out using a high-speed GPC device (HLC-8320GPC: manufactured by Tosoh Corporation), and the weight average molecular weight and number average molecular weight were determined using a combination of a SEC column and a guard column. The measurement was carried out under the following conditions.
- SEC column OHpak SB-804HQ (manufactured by SHODEX)
- Guard column OHpak SB-G 6B (manufactured by SHODEX)
- Detector RI (built-in detector in HLC-8320GPC) Standard sample: polyethylene glycol
- Sample injection volume 0.1 M sodium chloride aqueous solution 30 ⁇ L
- Flow rate 0.5mL/min
- Eluent 0.1M sodium chloride aqueous solution
- the surfactant (B) includes at least one selected from an anionic surfactant and a nonionic surfactant having an HLB of 13 or more.
- the surfactant (B) may be used alone or in combination of two or more. Both the anionic surfactant and the nonionic surfactant having an HLB of 13 or more contribute to improving hydrophilicity, but the use of a nonionic surfactant is particularly advantageous in improving moldability.
- the nonionic surfactant is not particularly limited as long as it has an HLB of 13 or more, but is preferably selected from polyoxyalkylene alkyl ethers formed by an ether bond between an alkylene oxide chain consisting of a polyoxyethylene chain (-[CH 2 CH 2 O] n -) and/or a polyoxypropylene chain (-[CH 2 CH 2 CH 2 O] n -) and an alkyl group (C n H 2n+1 ), and more preferably selected from polyoxyethylene alkyl ethers.
- polyoxyalkylene alkyl ethers examples include polyoxyalkylene isodecyl ether, polyoxyalkylene tridecyl ether, polyoxyalkylene lauryl ether, etc.
- polyoxyethylene alkyl ethers examples include polyoxyethylene isodecyl ether, polyoxyethylene lauryl ether, polyoxyethylene oleyl cetyl ether, polyoxyethylene tridecyl ether, etc.
- the HLB of the nonionic surfactant can typically be from 13 to 20, and more typically from 13 to 16. In this specification, HLB refers to a value based on the Griffin method.
- anionic surfactants include sulfate ester type, phosphate ester type, carboxylic acid type, and sulfonic acid type surfactants. In particular, it is preferable to select from sulfonic acid type anionic surfactants.
- sulfonic acid type anionic surfactants include alkyl sulfate ester salts, sodium alkyl sulfonate, sodium alkyl benzene sulfonate, sodium alkyl naphthalene sulfonate, sodium dialkyl sulfosuccinate, sodium alkyl diphenyl ether disulfonate, and sodium alkyl glyceryl ether sulfonate.
- the metal surface treatment agent according to one embodiment of the present invention may contain at least one water-soluble polymer (C) selected from polyvinyl alcohol and polyacrylamide in addition to the water-soluble polymer (A) and the surfactant (B).
- the water-soluble polymer (C) contributes to improving hydrophilicity.
- Polyvinyl alcohol refers to a polymer containing a repeating unit of (-CH 2 CH(OH)-), and can be produced according to a known production method, with no particular limitation.
- polyvinyl alcohol examples include partially and completely saponified products of polyvinyl esters obtained by radical polymerization using vinyl esters as monomers, partially and completely saponified products of copolymers of vinyl esters and other comonomers, and modified products of polyvinyl alcohol.
- vinyl esters include vinyl formate, vinyl acetate, vinyl propionate, vinyl butyrate, vinyl isobutyrate, vinyl pivalate, vinyl versatate, and vinyl caproate. Of these, vinyl acetate is preferred.
- the water-soluble polymer (C) may be used alone or in combination of two or more.
- comonomers there are no particular limitations on the comonomers to be copolymerized with vinyl esters, but examples of the comonomers that may be copolymerized include ⁇ -olefins such as ethylene and propylene; hydroxyl-containing ⁇ -olefins such as 3-buten-1-ol, 4-penten-1-ol, and 5-hexene-1,2-diol, and derivatives thereof such as acylated products; unsaturated acids such as acrylic acid, methacrylic acid, itaconic acid, and maleic acid, their salts, and their mono- or dialkyl esters; nitriles such as acrylonitrile; amides such as methacrylamide and diacetone acrylamide; olefin sulfonic acids or their salts such as ethylene sulfonic acid, allyl sulfonic acid, and methallyl sulfonic acid; and allyl compounds such as ethylene oxide monoallyl
- comonomers may be used alone or in combination of two or more.
- the degree of saponification of polyvinyl alcohol is preferably 90 mol% or more, more preferably 95 mol% or more, and there is no particular upper limit, so it may be 100 mol%.
- the degree of saponification of polyvinyl alcohol is measured in accordance with JIS K6726:1994.
- the weight-average molecular weight of the polyvinyl alcohol is preferably 5,000 to 200,000, and more preferably 5,000 to 100,000, in order to enhance the durability of the surface treatment layer.
- the polyvinyl alcohol is one or more types selected and has a degree of saponification of 90 mol% or more, it is even more preferable that the weight-average molecular weight is 10,000 to 50,000.
- Polyacrylamides include homopolymers of acrylamide compounds and copolymers of acrylamide compounds.
- Copolymers of acrylamide compounds include copolymers of one or more acrylamide monomers with one or more other comonomers.
- the comonomers used here are selected from anionic, nonionic and cationic addition polymerization monomers polymerizable with acrylamide, such as anionic unsaturated monomers such as (meth)acrylic acid, itaconic acid, maleic acid, vinyl sulfonic acid, styrene sulfonic acid, sulfoethyl acrylate, sulfoethyl methacrylate, N-methylenesulfonic acid acrylamide, 2-acrylamido-2-methylpropanesulfonic acid, acid phosphooxyethyl methacrylate or salts thereof; (meth)acrylamide, N-methylol (meth)acrylamide, hydroxyethyl ...
- nonionic unsaturated monomers such as acrylate, vinylpyrrolidone, acroylmorpholine, polyethylene glycol acrylate, and polyethylene glycol acrylate alkylphenyl ether; and cationic unsaturated monomers such as aminoethyl (meth)acrylate, N,N-dimethylaminoethyl acrylate, N-hydroxypropylaminoethyl (meth)acrylate, hydroxymethylaminoethyl methacrylate, vinylimidazole, vinylpyridine, N,N-diallylamine, and N,N-diallyl-N,N-dimethylammonium chloride.
- nonionic unsaturated monomers such as acrylate, vinylpyrrolidone, acroylmorpholine, polyethylene glycol acrylate, and polyethylene glycol acrylate alkylphenyl ether
- cationic unsaturated monomers such as aminoethyl (meth)acrylate, N,N
- the weight average molecular weight of the polyacrylamide is preferably 5,000 to 2,000,000, more preferably 10,000 to 200,000, and even more preferably 50,000 to 200,000.
- the weight average molecular weight of the water-soluble polymer (C) is measured by GPC.
- the weight average molecular weight in the examples was measured under the following conditions.
- the weight average molecular weight was determined by using a high-speed GPC device (HLC-8320GPC: manufactured by Tosoh Corporation) in combination with a SEC column and a guard column. The measurement was performed under the following conditions.
- SEC column TSKgel SuperAWM-H (manufactured by Tosoh Corporation)
- Guard column TSK guard column Super AW-H (manufactured by Tosoh Corporation)
- Detector RI (built-in detector in HLC-8320GPC) Standard sample: polystyrene Sample injection volume: 0.06% DMF solution 30 ⁇ L Flow rate: 0.5mL/min Eluent: DMF/100mM LiBr/60mM H3PO4
- the metal surface treatment agent according to one embodiment of the present invention can contain, in addition to the water-soluble polymer (A) and the surfactant (B), an alkylene oxide adduct (D) having an HLB of less than 13.
- the water-soluble polymer (C) may or may not be used in combination.
- the alkylene oxide adduct (D) particularly contributes to improving moldability. Examples of the alkylene oxide adduct (D) include those derived from polyhydric alcohols, higher alcohols, higher amines, or higher fatty acids.
- polyoxyalkylene glycerin fatty acid esters examples include polyoxyalkylene glycerin fatty acid esters, polyoxyalkylene sorbitan fatty acid esters, polyoxyalkylene sorbitol fatty acid esters, polyoxyalkylene sucrose fatty acid esters, polyoxyalkylene pentaerythritol fatty acid esters, polyoxyalkylene castor oil, polyoxyalkylene hydrogenated castor oil, polyoxyalkylene alkyl ethers, polyoxyalkylene alkylphenyl ethers, polyoxyalkylene alkylamines, and polyoxyalkylene fatty acid amides.
- alkylene oxide adduct (D) particularly, alkylene oxide adducts of castor oil, such as polyoxyalkylene castor oil and polyoxyalkylene hydrogenated castor oil, are preferred.
- the alkylene oxide adduct is a compound in which an alkylene oxide is added to a hydroxyl group of castor oil, glycerin fatty acid ester, or the like.
- the alkylene oxide is usually bonded in a state in which two or more are added.
- the number of carbon atoms in the alkylene group of the alkylene oxide is about 2 to 4, and is preferably ethylene oxide or propylene oxide, and particularly preferably ethylene oxide.
- the number of moles of the alkylene oxide added per mole of the compound to which the alkylene oxide is added is preferably in the range of 5 to 100, and particularly preferably in the range of 10 to 60.
- the alkylene oxide adduct (D) may be used alone or in combination of two or more kinds.
- the HLB of the alkylene oxide adduct (D) can be, for example, 0 or more and less than 13, typically 8 or more and less than 13, and more typically 10 or more and less than 13. As described above, in this specification, HLB refers to a value based on the Griffin method.
- the mass ratio (A/C) of the water-soluble polymer (A) to the water-soluble polymer (C) is preferably 0.1 to 10, more preferably 1.0 to 5.0, and even more preferably 2.0 to 4.0.
- the mass ratio (a/C) of the content of the anionic functional group (a) other than the sulfo group and its salt in the water-soluble polymer (A) to the content of the water-soluble polymer (C) is preferably 0.01 to 3.0, more preferably 0.1 to 1.5, and even more preferably 0.5 to 1.5.
- the mass of the anionic functional group (a) other than the sulfo group and its salt in the water-soluble polymer (A) can be calculated based on the mass of the water-soluble polymer (A), the acid value, the molecular weight of KOH, and the formula weight of the anionic functional group.
- the mass ratio (B/(A+C)) of the content of the surfactant (B) to the total content of the water-soluble polymer (A) and the water-soluble polymer (C) is preferably 0.002 to 0.25, more preferably 0.01 to 0.1, and even more preferably 0.01 to 0.07.
- the mass ratio (D/A) of the water-soluble polymer (A) to the alkylene oxide adduct (D) is preferably 0.001 to 1.0, more preferably 0.01 to 1.0, and even more preferably 0.01 to 0.1.
- the blending ratios of the polymer (A), surfactant (B), water-soluble polymer (C), and alkylene oxide adduct (D) other than the solvent have been explained, but in order to impart various properties to the surface treatment layer formed by the metal surface treatment agent, antioxidants, defoamers, leveling agents, rust inhibitors, antibacterial agents, antifungal agents, antibacterial and antifungal agents, colorants, etc. may be further blended in any ratio as long as the purpose of the present invention and the performance of the surface treatment layer are not impaired.
- the metal surface treatment agent can be prepared, for example, by mixing the above-mentioned components in a desired ratio, adding a required amount of a solvent to the mixture, and stirring.
- the solvent (liquid medium) used in metal surface treatment agents usually contains water as the main component (for example, 70% by mass or more of water based on the mass of the total solvent).
- water-soluble solvents such as water-soluble alcohols such as methanol and ethanol, water-soluble ketones such as acetone, and cellosolves such as methyl cellosolve and ethyl cellosolve may be used in any ratio within the scope of the purpose of this invention and the performance of the surface treatment layer.
- a surface-treated metal material according to one embodiment of the present invention can be obtained by forming a surface treatment layer on a metal surface using the above-mentioned metal surface treatment agent.
- the method for forming the surface treatment layer includes the steps of: (i) contacting the metal surface treatment agent with a surface of a metal material; (ii) After step (i), the method includes a step of drying the metal material that has been contacted with the metal surface treatment agent.
- the method for forming the surface treatment layer is not particularly limited as long as it includes the above steps. Before the step of contacting the metal surface treatment agent with the surface of the metal material, a step of performing a degreasing treatment, a step of forming a base rust prevention treatment layer, etc. may be included.
- Metal materials to which the above-mentioned surface treatment agent can be applied include, but are not limited to, aluminum, steel, stainless steel, titanium, and alloys thereof.
- the above-mentioned surface treatment agent is particularly suitable for application to aluminum-containing metal materials.
- the material constituting the aluminum-containing metal material may be pure aluminum, but may also be an aluminum alloy.
- the above-mentioned surface treatment agent can be used as a material for a heat exchanger (e.g., a fin).
- the surface treatment agent is preferably applicable to the metal material used. Heat exchangers using metal materials to which the surface treatment agent is applied have excellent hydrophilicity, so that water droplets do not remain between the fins. This is useful in that it is possible to suppress a decrease in heat exchange efficiency, and ultimately to improve energy efficiency.
- the surface of the metal material is preferably washed in advance with an acidic or alkaline cleaner.
- An example of the acidic cleaner to be used is an acidic aqueous solution containing at least one of nitric acid, sulfuric acid, and hydrofluoric acid.
- An example of the alkaline cleaner is an alkaline aqueous solution containing at least one of sodium hydroxide, sodium silicate, and sodium phosphate.
- a surfactant may be added to the alkaline aqueous solution to enhance cleaning properties. Examples of methods for cleaning the metal material include an immersion method and a spray method.
- a base rust prevention treatment may be performed after the cleaning step.
- the base rust prevention treatment is not particularly limited, but examples thereof include chemical conversion treatment and/or treatment with an organic rust inhibitor.
- Examples of the chemical conversion treatment agent used in the chemical conversion treatment include conventionally known chromate acid treatment agents, phosphate chromate treatment agents, and non-chromium treatment agents.
- Examples of the organic rust inhibitor include conventionally known resin primers.
- Suitable resin primers include at least one polymer selected from acrylic resins, polyester resins, polyurethane resins, polyolefin resins, and epoxy resins, which has an acid value of 5 to 50 mgKOH/g, and a resin primer containing a crosslinking agent having at least one functional group selected from epoxy groups, amino groups, oxazoline groups, and carbodiimide groups.
- a crosslinking agent having at least one functional group selected from epoxy groups, amino groups, oxazoline groups, and carbodiimide groups include epoxy resins, melamine resins, oxazoline group-containing resins, carbodiimide resins, and the like.
- the method for base rust prevention treatment comprises: (iii) before the step (i), a step of contacting a base rust prevention treatment agent with a surface of a metal material; (iv) after the step (iii) and before the step (i), drying the metal material that has been contacted with the base rust prevention treatment agent to form a base rust prevention treatment layer.
- the method for contacting the base rust prevention treatment agent with the surface of the metal material is not particularly limited, but examples thereof include a dipping method and a spraying method.
- the coating amount of the base rust-proofing treatment layer is preferably 0.5 g/ m2 or more and 5.0 g/ m2 or less, more preferably 1.0 g/ m2 or more and 3.0 g/ m2 or less, and even more preferably 1.0 g/ m2 or more and 2.0 g/ m2 or less.
- the method for contacting the metal surface treatment agent with the surface of the metal material is not particularly limited, but examples thereof include immersion, spraying, roll coating, brush coating, etc.
- the agent temperature may be, for example, about 10 to 50° C.
- the contact time may be, for example, about 3 seconds to 5 minutes.
- the method for drying the metal material that has been brought into contact with the metal surface treatment agent is not particularly limited as long as the solvent (mainly water) in the metal surface treatment agent evaporates.
- a known drying device e.g. Examples of drying methods include drying methods using ovens, batch drying furnaces, continuous hot air circulation drying furnaces, conveyer hot air drying furnaces, and electromagnetic induction heating furnaces using IH heaters.
- the drying temperature is, for example, 150
- the drying temperature can be up to 250° C.
- the drying time can be, for example, from 10 seconds to 60 minutes.
- the coating amount of the surface treatment layer in the surface-treated metal material having the above-mentioned surface treatment layer is preferably 0.05 g/ m2 or more and 20 g/ m2 or less, more preferably 0.1 g/m2 or more and 2.0 g/m2 or less, and even more preferably 0.5 g/ m2 or more and 1.5 g/ m2 or less, from the viewpoints of the uniformity of the surface treatment layer on the metal material surface, and workability and productivity.
- the surface-treated metal material according to one embodiment of the present invention has excellent moldability, and therefore does not require a lubricant contact step or a lubricant layer forming step as a post-treatment step.
- a post-treatment step may be carried out after forming the surface treatment layer.
- the post-treatment step is a step of contacting a lubricant or a lubricant on the surface treatment layer on the surface of the metal material to form a lubricant layer.
- the contact method of the lubricant or lubricant is not particularly limited, but examples thereof include a roll coating method, a spray method, and a dipping method.
- the lubricating oil may be any known lubricant used during molding.
- the lubricant for forming the lubricating layer may be any known lubricant such as water-soluble polyether, polyethylene glycol, polyoxyethylene alkyl ether, or polyoxyethylene hydrogenated castor oil ether.
- a surface treatment agent that combines sustained hydrophilicity, contamination resistance, and moldability can be obtained. Furthermore, the method for forming a surface treatment layer according to the present invention makes it possible to manufacture a surface-treated metal material that has excellent sustained hydrophilicity and moldability without forming a lubricating layer on top of the surface treatment layer, which makes it possible to efficiently manufacture, for example, precoated fin materials for heat exchangers.
- the system was further aged for 1 hour while maintaining the temperature at 80 ° C., and the polymerization reaction was completed.
- the acid value of the reaction solution was adjusted to 300 mg KOH / g with a 32 mass% aqueous sodium hydroxide solution, and polymer A1 was obtained.
- the mole fraction, acid value, weight average molecular weight and polydispersity of each monomer unit of polymer A1 were measured under the above-mentioned conditions (see Table 1).
- Polymers A2 to 19 were obtained by the same operation as in Synthesis Example A1, except that the type and amount of the sulfo group-containing monomer and the monomer unit having an anionic functional group other than a sulfo group and its salt, the polymerization time, and the acid value were changed.
- the weight average molecular weight and polydispersity of the polymers A2 to 19 were measured under the above-mentioned conditions (see Table 1).
- the acid value of the reaction solution was adjusted to 300 mg KOH / g with a 32 mass% aqueous sodium hydroxide solution, and polymer A20 was obtained.
- the mole fraction, acid value, weight average molecular weight, and polydispersity of each monomer unit of polymer A20 were measured under the above-mentioned conditions (see Table 1).
- the acid value of the reaction solution was adjusted to 300 mg KOH / g with a 32 mass% aqueous sodium hydroxide solution, and polymer A21 was obtained.
- the mole fraction, acid value, weight average molecular weight and polydispersity of each monomer unit of polymer A21 were measured under the above-mentioned conditions (see Table 1).
- Surface treatment agents X1 to 36 in each of the Examples and Comparative Examples were prepared by mixing the polymer (A), surfactant (B), water-soluble polymer (C), and alkylene oxide adduct (D) prepared above in the mass blending ratio of the solid contents shown in Table 5, and then mixing and stirring deionized water to a total amount of 1000 g per 100 g of solid content of the resulting mixture.
- the "solid content” referred to here refers to the non-volatile content measured in accordance with JIS K6828-1 (sample weight: 1.0 g, dried at a drying temperature of 110°C for 2 hours).
- each metal surface treatment agent (liquid temperature: 25°C) in Table 5 was applied onto the base rust-proofing layer using a bar coater, and then dried in a hot air circulating drying oven to a PMT of 200°C to prepare test plates having a surface treatment layer with the coating amount shown in Table 6.
- the test plate which had been cooled to room temperature after the surface treatment, was immersed in deionized water at a flow rate of 0.5 L/min for 16 hours. Next, the test plate was sealed in a 10 L sealed container containing 4 g of palmitic acid. Next, the sealed container was heated at 100°C for 8 hours, and five cycles were performed in total to attach palmitic acid to the surface. Thereafter, the test plate was returned to room temperature, and 1 ⁇ L of deionized water was dropped on the surface, and the contact angle was measured using a contact angle measuring instrument (manufactured by Kyowa Interface Science Co., Ltd.: DM-501).
- the deterioration of the contact angle due to the attachment of palmitic acid to the surface of the surface treatment layer was evaluated according to the following criteria.
- the contamination resistance which is the object of the present invention, was evaluated as passing when it was 3 points or more (see Table 7).
- the dynamic friction coefficient of the test plate surface which had been cooled to room temperature after surface treatment, was measured to evaluate moldability.
- the dynamic friction coefficient was measured using a surface property measuring device (SHINTO SCIENTIFIC CO., LTD.: HEYDON TYPE: 14FW).
- the dynamic friction coefficient was evaluated according to the following criteria.
- the moldability which is the objective of the present invention, was evaluated as passing when it was scored 3 points or higher (see Table 7).
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Materials Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Geometry (AREA)
- Metallurgy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Paints Or Removers (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Laminated Bodies (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Abstract
Provided is an agent for treating a metal surface with which it is possible to form a surface treatment layer having excellent hydrophilicity persistence, stain resistance, and molding processability. The present invention is an agent for treating a metal surface that contains a water-soluble polymer (A) and a surfactant (B), wherein the water-soluble polymer (A) is a copolymer containing a monomer unit having a sulfo group and/or a salt thereof and a monomer unit having an anionic functional group other than a sulfo group and salts thereof, the acid value is 200-500 mg KOH/g, the molar fraction of monomer units having a sulfo group and/or a salt thereof to the total monomer units in the copolymer is 20-50 mol% inclusive, the molar fraction of monomer units having an anionic functional group other than a sulfo group and salts thereof to the total monomer units in the copolymer is 50-80 mol%, and the surfactant (B) contains at least one selected from nonionic surfactants having an HBL of 13 or more and anionic surfactants.
Description
本発明は、金属表面処理剤、金属材料の表面処理方法及び表面処理金属材料に関する。
The present invention relates to a metal surface treatment agent, a surface treatment method for metal materials, and a surface-treated metal material.
従来、空調機や自動車用のエアコンディショナーに用いられる熱交換器は、アルミニウム含有金属材料で形成されることが多い。プレートフィン式やフィンアンドチューブ式の熱交換器は、熱交換効率を高めるため通風する部位の金属材料(一般にフィンと呼ばれる)間の間隔を非常に狭く設計している。このため、エアコンディショナーを稼動(冷却)した際に露点以下となった空気中の水分が結露水としてフィン上に付着し、フィン間を閉塞させる。フィン間が閉塞すると、通風抵抗の増大により熱交換効率が低下し、エアコンディショナー本来の性能が得られなくなることもある。
Traditionally, heat exchangers used in air conditioners and automotive air conditioners are often made from aluminum-containing metal materials. Plate fin and fin-and-tube heat exchangers are designed with very narrow gaps between the metal materials (commonly called fins) in the areas where ventilation is required to increase heat exchange efficiency. For this reason, when the air conditioner is operating (cooling), moisture in the air that has dropped below the dew point adheres to the fins as condensation water, causing the spaces between the fins to become clogged. When the spaces between the fins become clogged, the increased ventilation resistance reduces heat exchange efficiency, and the air conditioner may not be able to perform as well as it should.
また、熱交換器の通風部に用いられるフィンは、アルミニウム薄板から成形されることが多い。この成形は張出し、絞り、しごき、打ち抜き、穴拡げ、曲げ、コルゲート加工、ルーバー加工などが組み合わさったもので非常に高度の成形性を要する。
Finally, the fins used in the ventilation sections of heat exchangers are often made from thin aluminum sheets. This forming process combines bulging, drawing, ironing, punching, hole expansion, bending, corrugating, louver processing, etc., and requires a very high degree of formability.
これらの問題を解消する方法として、フィン表面に親水性の表面処理層を形成し、付着した結露水を薄い水膜として流下させ、結露水による通風抵抗の増大を抑制する方法が提案、実施されている。従来、様々な親水性表面処理が提案されており、たとえば、水ガラスやコロイダルシリカ等を含む無機系、またはアクリル系樹脂やセルロース系樹脂などの親水性高分子を含む有機系の表面処理層が挙げられる。また、フィン材の成形時の金型摩耗を防ぐため、親水性表面処理層の上層には、潤滑層の被覆やプレス油の塗油が提案、実施される。
As a method to solve these problems, a method has been proposed and implemented in which a hydrophilic surface treatment layer is formed on the fin surface, allowing the attached condensation water to flow off as a thin water film, thereby suppressing the increase in ventilation resistance caused by the condensation water. Various hydrophilic surface treatments have been proposed in the past, such as inorganic surface treatment layers containing water glass or colloidal silica, or organic surface treatment layers containing hydrophilic polymers such as acrylic resins or cellulose resins. In addition, in order to prevent die wear during molding of the fin material, it has been proposed and implemented to cover the top layer of the hydrophilic surface treatment layer with a lubricating layer or apply press oil.
上記親水性表面処理層を形成したフィン材を用いた熱交換器であっても、エアコンディショナーの稼働に伴って、建材、食物、生活用品等から揮発、飛散した浮遊物に由来する油性成分を主成分とする汚染物質がフィンの表面に付着し、フィン材の親水性が劣化することもある。エアコンディショナー本来の性能を維持するために、親水性を持続させることが必要である。
Even in heat exchangers that use fin materials with the above-mentioned hydrophilic surface treatment layer, as the air conditioner is in operation, oil-based contaminants derived from floating matter that evaporates and scatters from building materials, food, and household goods can adhere to the surface of the fins, causing the hydrophilicity of the fin material to deteriorate. In order to maintain the original performance of the air conditioner, it is necessary to maintain the hydrophilicity.
フィン材表面に形成される親水性表面処理層に様々な付加機能が提案されている。たとえば、特許文献1、2では耐汚染性に優れる表面処理剤に関する技術が提案されている。具体的には、特許文献1には、アルミニウム又はアルミニウム合金からなる板材と、該板材上に形成されたポリビニルアルコールを含む水系塗料からなる焼付耐食層と、該焼付耐食層上に形成された親水性焼付塗膜とを具備し、該親水性焼付塗膜が、アルミナゾルに含まれるアルミナ粒子とスルホン酸を含む水溶性アクリル樹脂とポリエチレングリコールを含み、水に可溶な硫黄成分が0.5mg/m2以下であり、塗膜量が0.3~0.8g/m2であり、前記焼付耐食層の塗膜量が0.2g/m2以上であり、前記焼付耐食層に着色用の顔料が含まれていることを特徴とする親水性焼付塗膜が記載されている。特許文献2には、アルミニウム板と、前記アルミニウム板上に形成された親水性皮膜層と、をこの順に備え、前記親水性皮膜層は、重合体又は共重合体である樹脂Aと、Zr系架橋剤と、を含む樹脂組成物からなり、前記樹脂Aの重合体又は共重合体は、少なくとも、スルホン酸基、スルホン酸のアルカリ金属塩基、及びスルホン酸のアンモニウム塩基からなる群より選ばれる少なくとも一種の基を有する単量体から構成される、アルミニウム製フィン材が記載されている。
Various additional functions have been proposed for the hydrophilic surface treatment layer formed on the surface of the fin material. For example, Patent Documents 1 and 2 propose technologies related to surface treatment agents with excellent contamination resistance. Specifically, Patent Document 1 describes a hydrophilic baked coating comprising a plate material made of aluminum or an aluminum alloy, a baked corrosion-resistant layer made of a water-based paint containing polyvinyl alcohol formed on the plate material, and a hydrophilic baked coating film formed on the baked corrosion-resistant layer, the hydrophilic baked coating film containing alumina particles contained in alumina sol, a water-soluble acrylic resin containing sulfonic acid, and polyethylene glycol, the water-soluble sulfur component is 0.5 mg/m 2 or less, the coating amount is 0.3 to 0.8 g/m 2 , the coating amount of the baked corrosion-resistant layer is 0.2 g/m 2 or more, and the baked corrosion-resistant layer contains a pigment for coloring. Patent Document 2 describes an aluminum fin material comprising, in this order, an aluminum plate and a hydrophilic coating layer formed on the aluminum plate, the hydrophilic coating layer being made of a resin composition containing a resin A which is a polymer or copolymer and a Zr-based crosslinking agent, the polymer or copolymer of resin A being composed of a monomer having at least one group selected from the group consisting of a sulfonic acid group, an alkali metal salt group of sulfonic acid, and an ammonium salt group of sulfonic acid.
しかしながら、特許文献1では硬度の高い無機成分を含む親水性焼付塗膜が使用される。このため、フィン材の成形時の金型摩耗を抑制するため、親水性焼付塗膜を潤滑層で被覆する必要があった。また、特許文献2に記載の親水性皮膜層は有機系であるが、親水持続性、耐汚染性の観点で改善の余地があった。
上記事情に鑑み、本発明は一実施形態において、親水持続性、耐汚染性及び成形加工性に優れる表面処理層を形成することができる金属表面処理剤を提供することを目的とする。本発明は別の一実施形態において、当該金属表面処理剤を用いた金属材料の表面処理方法を提供することを目的とする。本発明は更に別の一実施形態において、当該表面処理方法によって得られる表面処理金属材料を提供することを目的とする。 However, in Patent Document 1, a hydrophilic baked coating film containing an inorganic component with high hardness is used. Therefore, in order to suppress die wear during molding of the fin material, it was necessary to cover the hydrophilic baked coating film with a lubricating layer. In addition, the hydrophilic coating layer described in Patent Document 2 is organic, but there is room for improvement in terms of hydrophilicity sustainability and contamination resistance.
In view of the above circumstances, an object of the present invention, in one embodiment, is to provide a metal surface treatment agent capable of forming a surface treatment layer excellent in sustained hydrophilicity, stain resistance, and moldability. An object of the present invention, in another embodiment, is to provide a method for surface treatment of a metal material using the metal surface treatment agent. An object of the present invention, in yet another embodiment, is to provide a surface-treated metal material obtained by the surface treatment method.
上記事情に鑑み、本発明は一実施形態において、親水持続性、耐汚染性及び成形加工性に優れる表面処理層を形成することができる金属表面処理剤を提供することを目的とする。本発明は別の一実施形態において、当該金属表面処理剤を用いた金属材料の表面処理方法を提供することを目的とする。本発明は更に別の一実施形態において、当該表面処理方法によって得られる表面処理金属材料を提供することを目的とする。 However, in Patent Document 1, a hydrophilic baked coating film containing an inorganic component with high hardness is used. Therefore, in order to suppress die wear during molding of the fin material, it was necessary to cover the hydrophilic baked coating film with a lubricating layer. In addition, the hydrophilic coating layer described in Patent Document 2 is organic, but there is room for improvement in terms of hydrophilicity sustainability and contamination resistance.
In view of the above circumstances, an object of the present invention, in one embodiment, is to provide a metal surface treatment agent capable of forming a surface treatment layer excellent in sustained hydrophilicity, stain resistance, and moldability. An object of the present invention, in another embodiment, is to provide a method for surface treatment of a metal material using the metal surface treatment agent. An object of the present invention, in yet another embodiment, is to provide a surface-treated metal material obtained by the surface treatment method.
本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、スルホ基及び/又はその塩を有するモノマーユニットと、スルホ基及びその塩以外のアニオン性官能基を有するモノマーユニットを同一分子内に有する水溶性樹脂を、所定の界面活性剤と共に配合した金属表面処理剤が、親水持続性、耐汚染性及び成形加工性に優れた表面処理層を形成することができることを見出し、本発明を完成するに至った。
As a result of intensive research conducted by the inventors to solve the above problems, they discovered that a metal surface treatment agent containing a water-soluble resin having, in the same molecule, a monomer unit having a sulfo group and/or a salt thereof and a monomer unit having an anionic functional group other than a sulfo group and a salt thereof, combined with a specific surfactant, can form a surface treatment layer that is excellent in long-lasting hydrophilicity, stain resistance, and moldability, and thus completed the present invention.
すなわち、本発明は、以下に例示される。
[1]
水溶性ポリマー(A)と、界面活性剤(B)と、を含む金属表面処理剤であって、
前記水溶性ポリマー(A)が、スルホ基及び/又はその塩を有するモノマーユニットとスルホ基及びその塩以外のアニオン性官能基を有するモノマーユニットとを含む共重合体であり、酸価が200~500mgKOH/gであり、前記共重合体中の全モノマーユニットに対する、スルホ基及び/又はその塩を有するモノマーユニットのモル分率が20mol%以上50mol%以下、スルホ基及びその塩以外のアニオン性官能基を有するモノマーユニットのモル分率が50mol%以上80mol%以下であり、
前記界面活性剤(B)が、アニオン性界面活性剤及びHLBが13以上のノニオン性界面活性剤から選ばれる少なくとも一種を含む、
金属表面処理剤。
[2]
前記水溶性ポリマー(A)の重量平均分子量が14,000~300,000であり、重量平均分子量Mwと数平均分子量Mnとの比である多分散度(Mw/Mn)が1.5~5.0である、前記[1]に記載の金属表面処理剤。
[3]
さらに、ポリビニルアルコール及びポリアクリルアミドから選ばれる少なくとも1種の水溶性ポリマー(C)を含み、前記水溶性ポリマー(A)と前記水溶性ポリマー(C)の含有量の質量比(A/C)が、0.1~10である、前記[1]又は[2]に記載の金属表面処理剤。
[4]
前記水溶性ポリマー(A)中の前記スルホ基及びその塩以外のアニオン性官能基(a)と前記水溶性ポリマー(C)の含有量の質量比(a/C)が、0.01~3.0である、前記[3]に記載の金属表面処理剤。
[5]
さらに、HLBが13未満のアルキレンオキシド付加物(D)を含有する、前記[1]~[4]のいずれかに記載の金属表面処理剤。
[6]
前記水溶性ポリマー(A)及び前記水溶性ポリマー(C)の合計含有量に対する前記界面活性剤(B)の含有量の質量比(B/(A+C))が、0.002~0.25である、前記[3]若しくは[4]に記載の金属表面処理剤、又は、[3]に従属する前記[5]に記載の金属表面処理剤。
[7]
(i)前記[1]~[6]のいずれかに記載の金属表面処理剤を金属材料の表面に接触させる工程と、
(ii)前記工程(i)の後に、前記金属表面処理剤を接触させた金属材料を乾燥して表面処理層を形成する工程と、
を含む、金属材料の表面処理方法。
[8]
(iii)前記工程(i)の前に、下地防錆処理剤を金属材料の表面に接触させる工程と、
(iv)前記工程(iii)の後であって、前記工程(i)の前に、前記下地防錆処理剤を接触させた金属材料を乾燥し、下地防錆処理層を形成する工程と、
を含む、前記[7]に記載の金属材料の表面処理方法。
[9]
前記下地防錆処理剤がアクリル樹脂、ポリエステル樹脂、ポリウレタン樹脂、ポリオレフィン樹脂及びエポキシ樹脂から選ばれる少なくとも一種のポリマーであって、酸価が5~50mgKOH/gであるポリマー、並びに、エポキシ基、アミノ基、オキサゾリン基及びカルボジイミド基から選ばれる少なくとも一つの官能基を有する架橋剤を含む、前記[8]に記載の金属材料の表面処理方法。
[10]
前記[7]に記載の金属材料の表面処理方法によって形成された前記表面処理層を有する表面処理金属材料であって、前記表面処理層の皮膜量が0.05g/m2以上20g/m2以下である、表面処理金属材料。
[11]
前記[8]又は[9]に記載の金属材料の表面処理方法によって形成された、前記下地防錆処理層及び前記表面処理層を有する表面処理金属材料であって、前記下地防錆処理層の皮膜量が0.5g/m2以上5.0g/m2以下、前記表面処理層の皮膜量が0.05g/m2以上20g/m2以下、である表面処理金属材料。 That is, the present invention is exemplified as follows.
[1]
A metal surface treatment agent comprising a water-soluble polymer (A) and a surfactant (B),
the water-soluble polymer (A) is a copolymer containing a monomer unit having a sulfo group and/or a salt thereof and a monomer unit having an anionic functional group other than a sulfo group and a salt thereof, the acid value being 200 to 500 mgKOH/g, the molar fraction of the monomer unit having a sulfo group and/or a salt thereof being 20 mol % or more and 50 mol % or less, and the molar fraction of the monomer unit having an anionic functional group other than a sulfo group and a salt thereof being 50 mol % or more and 80 mol % or less, relative to all monomer units in the copolymer;
The surfactant (B) includes at least one selected from an anionic surfactant and a nonionic surfactant having an HLB of 13 or more.
Metal surface treatment agent.
[2]
The metal surface treatment agent according to the above [1], wherein the water-soluble polymer (A) has a weight average molecular weight of 14,000 to 300,000 and a polydispersity (Mw/Mn) which is a ratio of the weight average molecular weight Mw to the number average molecular weight Mn, of 1.5 to 5.0.
[3]
The metal surface treatment agent according to the above [1] or [2] further comprises at least one water-soluble polymer (C) selected from polyvinyl alcohol and polyacrylamide, and the mass ratio (A/C) of the content of the water-soluble polymer (A) to the content of the water-soluble polymer (C) is 0.1 to 10.
[4]
The metal surface treatment agent according to the above [3], wherein a mass ratio (a/C) of the content of the anionic functional group (a) other than the sulfo group and a salt thereof in the water-soluble polymer (A) to the content of the water-soluble polymer (C) is 0.01 to 3.0.
[5]
The metal surface treatment agent according to any one of the above [1] to [4], further comprising an alkylene oxide adduct (D) having an HLB of less than 13.
[6]
The metal surface treatment agent according to the above [3] or [4], or the metal surface treatment agent according to the above [5] which is dependent on [3], wherein a mass ratio (B/(A+C)) of a content of the surfactant (B) to a total content of the water-soluble polymer (A) and the water-soluble polymer (C) is 0.002 to 0.25.
[7]
(i) contacting the metal surface treatment agent according to any one of the above [1] to [6] with the surface of a metal material;
(ii) after the step (i), drying the metal material that has been contacted with the metal surface treatment agent to form a surface treatment layer;
A surface treatment method for a metal material, comprising:
[8]
(iii) before the step (i), a step of contacting a base rust prevention treatment agent with a surface of a metal material;
(iv) a step of drying the metal material contacted with the base rust prevention treatment agent after the step (iii) and before the step (i) to form a base rust prevention treatment layer;
The surface treatment method for a metal material according to the above [7],
[9]
The surface treatment method for a metal material according to [8] above, wherein the undercoat rust prevention treatment agent contains at least one polymer selected from an acrylic resin, a polyester resin, a polyurethane resin, a polyolefin resin, and an epoxy resin, the polymer having an acid value of 5 to 50 mgKOH/g, and a crosslinking agent having at least one functional group selected from an epoxy group, an amino group, an oxazoline group, and a carbodiimide group.
[10]
A surface-treated metal material having a surface treatment layer formed by the surface treatment method for a metal material described in [7] above, wherein the coating amount of the surface treatment layer is 0.05 g/ m2 or more and 20 g/ m2 or less.
[11]
A surface-treated metal material having the base rust prevention treatment layer and the surface treatment layer, formed by the surface treatment method for metal material described in [8] or [9] above, wherein the coating amount of the base rust prevention treatment layer is 0.5 g/ m2 or more and 5.0 g/ m2 or less, and the coating amount of the surface treatment layer is 0.05 g/ m2 or more and 20 g/ m2 or less.
[1]
水溶性ポリマー(A)と、界面活性剤(B)と、を含む金属表面処理剤であって、
前記水溶性ポリマー(A)が、スルホ基及び/又はその塩を有するモノマーユニットとスルホ基及びその塩以外のアニオン性官能基を有するモノマーユニットとを含む共重合体であり、酸価が200~500mgKOH/gであり、前記共重合体中の全モノマーユニットに対する、スルホ基及び/又はその塩を有するモノマーユニットのモル分率が20mol%以上50mol%以下、スルホ基及びその塩以外のアニオン性官能基を有するモノマーユニットのモル分率が50mol%以上80mol%以下であり、
前記界面活性剤(B)が、アニオン性界面活性剤及びHLBが13以上のノニオン性界面活性剤から選ばれる少なくとも一種を含む、
金属表面処理剤。
[2]
前記水溶性ポリマー(A)の重量平均分子量が14,000~300,000であり、重量平均分子量Mwと数平均分子量Mnとの比である多分散度(Mw/Mn)が1.5~5.0である、前記[1]に記載の金属表面処理剤。
[3]
さらに、ポリビニルアルコール及びポリアクリルアミドから選ばれる少なくとも1種の水溶性ポリマー(C)を含み、前記水溶性ポリマー(A)と前記水溶性ポリマー(C)の含有量の質量比(A/C)が、0.1~10である、前記[1]又は[2]に記載の金属表面処理剤。
[4]
前記水溶性ポリマー(A)中の前記スルホ基及びその塩以外のアニオン性官能基(a)と前記水溶性ポリマー(C)の含有量の質量比(a/C)が、0.01~3.0である、前記[3]に記載の金属表面処理剤。
[5]
さらに、HLBが13未満のアルキレンオキシド付加物(D)を含有する、前記[1]~[4]のいずれかに記載の金属表面処理剤。
[6]
前記水溶性ポリマー(A)及び前記水溶性ポリマー(C)の合計含有量に対する前記界面活性剤(B)の含有量の質量比(B/(A+C))が、0.002~0.25である、前記[3]若しくは[4]に記載の金属表面処理剤、又は、[3]に従属する前記[5]に記載の金属表面処理剤。
[7]
(i)前記[1]~[6]のいずれかに記載の金属表面処理剤を金属材料の表面に接触させる工程と、
(ii)前記工程(i)の後に、前記金属表面処理剤を接触させた金属材料を乾燥して表面処理層を形成する工程と、
を含む、金属材料の表面処理方法。
[8]
(iii)前記工程(i)の前に、下地防錆処理剤を金属材料の表面に接触させる工程と、
(iv)前記工程(iii)の後であって、前記工程(i)の前に、前記下地防錆処理剤を接触させた金属材料を乾燥し、下地防錆処理層を形成する工程と、
を含む、前記[7]に記載の金属材料の表面処理方法。
[9]
前記下地防錆処理剤がアクリル樹脂、ポリエステル樹脂、ポリウレタン樹脂、ポリオレフィン樹脂及びエポキシ樹脂から選ばれる少なくとも一種のポリマーであって、酸価が5~50mgKOH/gであるポリマー、並びに、エポキシ基、アミノ基、オキサゾリン基及びカルボジイミド基から選ばれる少なくとも一つの官能基を有する架橋剤を含む、前記[8]に記載の金属材料の表面処理方法。
[10]
前記[7]に記載の金属材料の表面処理方法によって形成された前記表面処理層を有する表面処理金属材料であって、前記表面処理層の皮膜量が0.05g/m2以上20g/m2以下である、表面処理金属材料。
[11]
前記[8]又は[9]に記載の金属材料の表面処理方法によって形成された、前記下地防錆処理層及び前記表面処理層を有する表面処理金属材料であって、前記下地防錆処理層の皮膜量が0.5g/m2以上5.0g/m2以下、前記表面処理層の皮膜量が0.05g/m2以上20g/m2以下、である表面処理金属材料。 That is, the present invention is exemplified as follows.
[1]
A metal surface treatment agent comprising a water-soluble polymer (A) and a surfactant (B),
the water-soluble polymer (A) is a copolymer containing a monomer unit having a sulfo group and/or a salt thereof and a monomer unit having an anionic functional group other than a sulfo group and a salt thereof, the acid value being 200 to 500 mgKOH/g, the molar fraction of the monomer unit having a sulfo group and/or a salt thereof being 20 mol % or more and 50 mol % or less, and the molar fraction of the monomer unit having an anionic functional group other than a sulfo group and a salt thereof being 50 mol % or more and 80 mol % or less, relative to all monomer units in the copolymer;
The surfactant (B) includes at least one selected from an anionic surfactant and a nonionic surfactant having an HLB of 13 or more.
Metal surface treatment agent.
[2]
The metal surface treatment agent according to the above [1], wherein the water-soluble polymer (A) has a weight average molecular weight of 14,000 to 300,000 and a polydispersity (Mw/Mn) which is a ratio of the weight average molecular weight Mw to the number average molecular weight Mn, of 1.5 to 5.0.
[3]
The metal surface treatment agent according to the above [1] or [2] further comprises at least one water-soluble polymer (C) selected from polyvinyl alcohol and polyacrylamide, and the mass ratio (A/C) of the content of the water-soluble polymer (A) to the content of the water-soluble polymer (C) is 0.1 to 10.
[4]
The metal surface treatment agent according to the above [3], wherein a mass ratio (a/C) of the content of the anionic functional group (a) other than the sulfo group and a salt thereof in the water-soluble polymer (A) to the content of the water-soluble polymer (C) is 0.01 to 3.0.
[5]
The metal surface treatment agent according to any one of the above [1] to [4], further comprising an alkylene oxide adduct (D) having an HLB of less than 13.
[6]
The metal surface treatment agent according to the above [3] or [4], or the metal surface treatment agent according to the above [5] which is dependent on [3], wherein a mass ratio (B/(A+C)) of a content of the surfactant (B) to a total content of the water-soluble polymer (A) and the water-soluble polymer (C) is 0.002 to 0.25.
[7]
(i) contacting the metal surface treatment agent according to any one of the above [1] to [6] with the surface of a metal material;
(ii) after the step (i), drying the metal material that has been contacted with the metal surface treatment agent to form a surface treatment layer;
A surface treatment method for a metal material, comprising:
[8]
(iii) before the step (i), a step of contacting a base rust prevention treatment agent with a surface of a metal material;
(iv) a step of drying the metal material contacted with the base rust prevention treatment agent after the step (iii) and before the step (i) to form a base rust prevention treatment layer;
The surface treatment method for a metal material according to the above [7],
[9]
The surface treatment method for a metal material according to [8] above, wherein the undercoat rust prevention treatment agent contains at least one polymer selected from an acrylic resin, a polyester resin, a polyurethane resin, a polyolefin resin, and an epoxy resin, the polymer having an acid value of 5 to 50 mgKOH/g, and a crosslinking agent having at least one functional group selected from an epoxy group, an amino group, an oxazoline group, and a carbodiimide group.
[10]
A surface-treated metal material having a surface treatment layer formed by the surface treatment method for a metal material described in [7] above, wherein the coating amount of the surface treatment layer is 0.05 g/ m2 or more and 20 g/ m2 or less.
[11]
A surface-treated metal material having the base rust prevention treatment layer and the surface treatment layer, formed by the surface treatment method for metal material described in [8] or [9] above, wherein the coating amount of the base rust prevention treatment layer is 0.5 g/ m2 or more and 5.0 g/ m2 or less, and the coating amount of the surface treatment layer is 0.05 g/ m2 or more and 20 g/ m2 or less.
本発明の一実施形態によれば、親水持続性、耐汚染性及び成形加工性に優れた表面処理層を形成可能な金属表面処理剤を提供することができる。本発明の別の一実施形態によれば、当該金属表面処理剤を用いた金属材料の表面処理方法を提供することができる。本発明の更に別の一実施形態によれば、当該表面処理方法によって得られる表面処理金属材料を提供することができる。
According to one embodiment of the present invention, it is possible to provide a metal surface treatment agent capable of forming a surface treatment layer having excellent sustained hydrophilicity, contamination resistance, and moldability. According to another embodiment of the present invention, it is possible to provide a surface treatment method for a metal material using the metal surface treatment agent. According to yet another embodiment of the present invention, it is possible to provide a surface-treated metal material obtained by the surface treatment method.
以下、金属表面処理剤及び表面処理金属材料を含む本発明の実施形態について詳細に説明する。なお、本発明は、その本発明の趣旨から逸脱しない範囲で任意に変更可能であり、下記の実施形態に限定されない。尚、本明細書にて数値範囲を示す「~」は上限値及び下限値も包含する。例えば、「X~Y」はX以上Y以下であることを意味する。
Below, an embodiment of the present invention including a metal surface treatment agent and a surface-treated metal material will be described in detail. Note that the present invention can be modified as desired without departing from the spirit of the present invention, and is not limited to the following embodiment. Note that in this specification, "to" indicating a numerical range includes the upper and lower limits. For example, "X to Y" means greater than or equal to X and less than or equal to Y.
<1.金属表面処理剤>
本発明の一実施形態に係る金属表面処理剤には、水溶性ポリマー(A)と、界面活性剤(B)と、が含まれる。 <1. Metal surface treatment agent>
A metal surface treatment agent according to one embodiment of the present invention contains a water-soluble polymer (A) and a surfactant (B).
本発明の一実施形態に係る金属表面処理剤には、水溶性ポリマー(A)と、界面活性剤(B)と、が含まれる。 <1. Metal surface treatment agent>
A metal surface treatment agent according to one embodiment of the present invention contains a water-soluble polymer (A) and a surfactant (B).
[1-1.水溶性ポリマー(A)]
水溶性ポリマー(A)は、スルホ基及び/又はその塩を有するモノマーユニットとスルホ基及びその塩以外のアニオン性官能基を有するモノマーユニットとを含む共重合体である。理論によって本発明が限定されることを意図するものではないが、一分子中に、両方の官能基を有することで、耐汚染性及び親水持続性の向上に有意に寄与すると考えられる。
水溶性ポリマー(A)は、公知の製法に従って製造することができ、特に制限はない。一般には、スルホ基又はその塩を有するモノマーとスルホ基及びその塩以外のアニオン性の官能基を有するモノマーとを共重合することで、水溶性ポリマー(A)を製造可能である。スルホ基又はその塩を有するモノマーとして、ビニルスルホン酸、スチレンスルホン酸、スルホエチルアクリレート、スルホエチルメタクリレート、N-メチレンスルホン酸アクリルアミド、2-アクリルアミド-2-メチルプロパンスルホン酸等のオレフィンスルホン酸又はその塩などの化合物が例示される。スルホ基及びその塩以外のアニオン性の官能基としては、例えば、カルボキシル基、ホスホン酸基、リン酸基及びこれらの塩が挙げられる。スルホ基及びその塩以外のアニオン性の官能基を有するモノマーには、例えば、(メタ)アクリル酸、イタコン酸、マレイン酸、メタクリル酸2-(ホスホノオキシ)エチル、ビニルホスホン酸、アリルホスホン酸等の不飽和酸類又はその塩などの化合物が例示される。水溶性ポリマー(A)は、一種のみを使用してもよいし、二種以上を組み合わせて使用してもよい。 [1-1. Water-soluble polymer (A)]
The water-soluble polymer (A) is a copolymer containing a monomer unit having a sulfo group and/or a salt thereof and a monomer unit having an anionic functional group other than a sulfo group and a salt thereof. Although it is not intended that the present invention be limited by theory, it is believed that the presence of both functional groups in one molecule significantly contributes to the improvement of stain resistance and sustained hydrophilicity.
The water-soluble polymer (A) can be produced according to a known production method, and is not particularly limited. In general, the water-soluble polymer (A) can be produced by copolymerizing a monomer having a sulfo group or a salt thereof with a monomer having an anionic functional group other than the sulfo group and the salt thereof. Examples of the monomer having a sulfo group or a salt thereof include compounds such as vinyl sulfonic acid, styrene sulfonic acid, sulfoethyl acrylate, sulfoethyl methacrylate, N-methylene sulfonic acid acrylamide, and olefin sulfonic acid such as 2-acrylamido-2-methylpropanesulfonic acid, or salts thereof. Examples of the anionic functional group other than the sulfo group and the salts thereof include, for example, a carboxyl group, a phosphonic acid group, a phosphoric acid group, and salts thereof. Examples of the monomer having an anionic functional group other than the sulfo group and the salts thereof include compounds such as unsaturated acids or salts thereof, such as (meth)acrylic acid, itaconic acid, maleic acid, 2-(phosphonooxy)ethyl methacrylate, vinylphosphonic acid, and allylphosphonic acid. The water-soluble polymer (A) may be used alone or in combination of two or more kinds.
水溶性ポリマー(A)は、スルホ基及び/又はその塩を有するモノマーユニットとスルホ基及びその塩以外のアニオン性官能基を有するモノマーユニットとを含む共重合体である。理論によって本発明が限定されることを意図するものではないが、一分子中に、両方の官能基を有することで、耐汚染性及び親水持続性の向上に有意に寄与すると考えられる。
水溶性ポリマー(A)は、公知の製法に従って製造することができ、特に制限はない。一般には、スルホ基又はその塩を有するモノマーとスルホ基及びその塩以外のアニオン性の官能基を有するモノマーとを共重合することで、水溶性ポリマー(A)を製造可能である。スルホ基又はその塩を有するモノマーとして、ビニルスルホン酸、スチレンスルホン酸、スルホエチルアクリレート、スルホエチルメタクリレート、N-メチレンスルホン酸アクリルアミド、2-アクリルアミド-2-メチルプロパンスルホン酸等のオレフィンスルホン酸又はその塩などの化合物が例示される。スルホ基及びその塩以外のアニオン性の官能基としては、例えば、カルボキシル基、ホスホン酸基、リン酸基及びこれらの塩が挙げられる。スルホ基及びその塩以外のアニオン性の官能基を有するモノマーには、例えば、(メタ)アクリル酸、イタコン酸、マレイン酸、メタクリル酸2-(ホスホノオキシ)エチル、ビニルホスホン酸、アリルホスホン酸等の不飽和酸類又はその塩などの化合物が例示される。水溶性ポリマー(A)は、一種のみを使用してもよいし、二種以上を組み合わせて使用してもよい。 [1-1. Water-soluble polymer (A)]
The water-soluble polymer (A) is a copolymer containing a monomer unit having a sulfo group and/or a salt thereof and a monomer unit having an anionic functional group other than a sulfo group and a salt thereof. Although it is not intended that the present invention be limited by theory, it is believed that the presence of both functional groups in one molecule significantly contributes to the improvement of stain resistance and sustained hydrophilicity.
The water-soluble polymer (A) can be produced according to a known production method, and is not particularly limited. In general, the water-soluble polymer (A) can be produced by copolymerizing a monomer having a sulfo group or a salt thereof with a monomer having an anionic functional group other than the sulfo group and the salt thereof. Examples of the monomer having a sulfo group or a salt thereof include compounds such as vinyl sulfonic acid, styrene sulfonic acid, sulfoethyl acrylate, sulfoethyl methacrylate, N-methylene sulfonic acid acrylamide, and olefin sulfonic acid such as 2-acrylamido-2-methylpropanesulfonic acid, or salts thereof. Examples of the anionic functional group other than the sulfo group and the salts thereof include, for example, a carboxyl group, a phosphonic acid group, a phosphoric acid group, and salts thereof. Examples of the monomer having an anionic functional group other than the sulfo group and the salts thereof include compounds such as unsaturated acids or salts thereof, such as (meth)acrylic acid, itaconic acid, maleic acid, 2-(phosphonooxy)ethyl methacrylate, vinylphosphonic acid, and allylphosphonic acid. The water-soluble polymer (A) may be used alone or in combination of two or more kinds.
水溶性ポリマー(A)の酸価は200~500mgKOH/gであることが好ましく、200~400mgKOH/gであることがより好ましく、200~300mgKOH/gであることが更により好ましい。水溶性ポリマー(A)の酸価は、例えばスルホ基又はスルホ基以外の酸を部分中和することによって調整可能である。酸価はJIS K0070-1992に準拠して測定される。
The acid value of the water-soluble polymer (A) is preferably 200 to 500 mgKOH/g, more preferably 200 to 400 mgKOH/g, and even more preferably 200 to 300 mgKOH/g. The acid value of the water-soluble polymer (A) can be adjusted, for example, by partially neutralizing the sulfo group or acids other than the sulfo group. The acid value is measured in accordance with JIS K0070-1992.
水溶性ポリマー(A)中の全モノマーユニットに対する、スルホ基及び/又はその塩を有するモノマーユニットのモル分率(A1)は20~50mol%が好ましく、30~50mol%がより好ましく、30~40mol%が更により好ましい。スルホ基及びその塩以外のアニオン性官能基を有するモノマーユニットのモル分率(A2)は50~80mol%が好ましく、50~70mol%がより好ましく、60~70mol%が更により好ましい。前記モル分率は、水溶性ポリマー(A)の核磁気共鳴分析装置(NMR)による1H-NMRの測定結果から、以下のように算出される。下記の測定条件と同等の測定条件で測定してもよい。
1H-NMRの測定条件
測定機:JNM-ECX400(日本電子株式会社製)
プローブ:40TH5AT/FG2D-5mm(Broadband Gradient
Tunable Probe)
測定各種:1H
測定溶媒:重水
積算回数:16回
得られたスペクトル中の各ピークは、以下のように帰属する。
・1.5~2.9ppmの範囲における全ピークの積分値=x+y:スルホ基及び/又はその塩を有するモノマーユニット中のスルホ基及び/又はその塩に隣接しないメチレンプロトン及びメチンプロトン(x)、並びにスルホ基及びその塩以外のアニオン性官能基を有するモノマーユニットのメチレンプロトン及びメチンプロトン(y)
・3.0~4.5ppmの範囲における全ピークの積分値=z:スルホ基及び/又はその塩を有するモノマーユニット中のスルホ基及び/又はその塩に隣接するメチレンプロトン及びメチンプロトン(z)
尚、x及びyのケミカルシフトは重複する為、スルホ基及び/又はその塩を有するモノマーユニットの構造に基づきzの積分値からxを算出し、スルホ基及びその塩以外のアニオン性官能基を有するモノマーユニットのyを求める。x、y及びzから、各モノマーユニットのモル分率を算出する。例えば、ポリマー(A)が2-アクリルアミド-2-メチルプロパンスルホン酸とアクリル酸の共重合体である場合は以下のように各モノマーユニットのモル分率が算出可能である。
xは水溶性ポリマー(A)において2-アクリルアミド-2-メチルプロパンスルホン酸に由来するモノマーユニットの、スルホ基に隣接しないメチレンプロトン及びメチンプロトンに由来するピークの積分値である。
yは水溶性ポリマー(A)においてアクリル酸に由来するモノマーユニットのメチレンプロトン及びメチンプロトンに由来するピークの積分値である。
zは水溶性ポリマー(A)において2-アクリルアミド-2-メチルプロパンスルホン酸に由来するモノマーユニットの、スルホ基に隣接するメチレンプロトン及びメチンプロトンに由来するピークの積分値である。
2-アクリルアミド-2-メチルプロパンスルホン酸の分子構造上、プロトン数を考慮すると、x/4=z/2なので、水溶性ポリマー(A)一分子中の全モノマーユニットの数に対する2-アクリルアミド-2-メチルプロパンスルホン酸に由来するユニットのモル分率は、一分子中のプロトン数を考慮すると、(z/2)÷(x/4+y/4)=2z/(x+y)×100(%)で表される。水溶性ポリマーA一分子中の全モノマーユニットの数に対するアクリル酸に由来するユニットのモル分率は、1-2z/(x+y)×100(%)で表される。 The molar fraction (A1) of monomer units having a sulfo group and/or a salt thereof relative to all monomer units in the water-soluble polymer (A) is preferably 20 to 50 mol%, more preferably 30 to 50 mol%, and even more preferably 30 to 40 mol%. The molar fraction (A2) of monomer units having an anionic functional group other than a sulfo group and a salt thereof is preferably 50 to 80 mol%, more preferably 50 to 70 mol%, and even more preferably 60 to 70 mol%. The molar fraction is calculated as follows from the results of 1H-NMR measurement of the water-soluble polymer (A) using a nuclear magnetic resonance analyzer (NMR). Measurement may be performed under the same measurement conditions as those described below.
1H-NMR measurement conditions Measuring instrument: JNM-ECX400 (manufactured by JEOL Ltd.)
Probe: 40TH5AT/FG2D-5mm (Broadband Gradient
Tunable Probe)
Measurements: 1H
Measurement solvent: deuterium oxide Number of times of accumulation: 16 Peaks in the obtained spectrum are assigned as follows.
Integrated value of all peaks in the range of 1.5 to 2.9 ppm=x+y: methylene protons and methine protons (x) that are not adjacent to a sulfo group and/or a salt thereof in a monomer unit having a sulfo group and/or a salt thereof, and methylene protons and methine protons (y) of a monomer unit having an anionic functional group other than a sulfo group and a salt thereof
Integrated value of all peaks in the range of 3.0 to 4.5 ppm=z: methylene protons and methine protons (z) adjacent to the sulfo group and/or a salt thereof in the monomer unit having a sulfo group and/or a salt thereof
Since the chemical shifts of x and y overlap, x is calculated from the integral value of z based on the structure of the monomer unit having a sulfo group and/or a salt thereof, and y of the monomer unit having an anionic functional group other than a sulfo group and a salt thereof is determined. The mole fraction of each monomer unit is calculated from x, y, and z. For example, when the polymer (A) is a copolymer of 2-acrylamido-2-methylpropanesulfonic acid and acrylic acid, the mole fraction of each monomer unit can be calculated as follows.
x is the integral value of the peaks derived from methylene protons and methine protons not adjacent to the sulfo group of the monomer unit derived from 2-acrylamido-2-methylpropanesulfonic acid in the water-soluble polymer (A).
y is the integral value of the peaks derived from the methylene protons and methine protons of the monomer unit derived from acrylic acid in the water-soluble polymer (A).
z is the integral value of the peaks derived from the methylene protons and methine protons adjacent to the sulfo group of the monomer unit derived from 2-acrylamido-2-methylpropanesulfonic acid in the water-soluble polymer (A).
In terms of the molecular structure of 2-acrylamido-2-methylpropanesulfonic acid, taking into account the number of protons, x/4=z/2, so the molar fraction of units derived from 2-acrylamido-2-methylpropanesulfonic acid relative to the number of all monomer units in one molecule of water-soluble polymer (A) is expressed as (z/2)÷(x/4+y/4)=2z/(x+y)×100(%), taking into account the number of protons in one molecule. The molar fraction of units derived from acrylic acid relative to the number of all monomer units in one molecule of water-soluble polymer A is expressed as 1-2z/(x+y)×100(%).
1H-NMRの測定条件
測定機:JNM-ECX400(日本電子株式会社製)
プローブ:40TH5AT/FG2D-5mm(Broadband Gradient
Tunable Probe)
測定各種:1H
測定溶媒:重水
積算回数:16回
得られたスペクトル中の各ピークは、以下のように帰属する。
・1.5~2.9ppmの範囲における全ピークの積分値=x+y:スルホ基及び/又はその塩を有するモノマーユニット中のスルホ基及び/又はその塩に隣接しないメチレンプロトン及びメチンプロトン(x)、並びにスルホ基及びその塩以外のアニオン性官能基を有するモノマーユニットのメチレンプロトン及びメチンプロトン(y)
・3.0~4.5ppmの範囲における全ピークの積分値=z:スルホ基及び/又はその塩を有するモノマーユニット中のスルホ基及び/又はその塩に隣接するメチレンプロトン及びメチンプロトン(z)
尚、x及びyのケミカルシフトは重複する為、スルホ基及び/又はその塩を有するモノマーユニットの構造に基づきzの積分値からxを算出し、スルホ基及びその塩以外のアニオン性官能基を有するモノマーユニットのyを求める。x、y及びzから、各モノマーユニットのモル分率を算出する。例えば、ポリマー(A)が2-アクリルアミド-2-メチルプロパンスルホン酸とアクリル酸の共重合体である場合は以下のように各モノマーユニットのモル分率が算出可能である。
xは水溶性ポリマー(A)において2-アクリルアミド-2-メチルプロパンスルホン酸に由来するモノマーユニットの、スルホ基に隣接しないメチレンプロトン及びメチンプロトンに由来するピークの積分値である。
yは水溶性ポリマー(A)においてアクリル酸に由来するモノマーユニットのメチレンプロトン及びメチンプロトンに由来するピークの積分値である。
zは水溶性ポリマー(A)において2-アクリルアミド-2-メチルプロパンスルホン酸に由来するモノマーユニットの、スルホ基に隣接するメチレンプロトン及びメチンプロトンに由来するピークの積分値である。
2-アクリルアミド-2-メチルプロパンスルホン酸の分子構造上、プロトン数を考慮すると、x/4=z/2なので、水溶性ポリマー(A)一分子中の全モノマーユニットの数に対する2-アクリルアミド-2-メチルプロパンスルホン酸に由来するユニットのモル分率は、一分子中のプロトン数を考慮すると、(z/2)÷(x/4+y/4)=2z/(x+y)×100(%)で表される。水溶性ポリマーA一分子中の全モノマーユニットの数に対するアクリル酸に由来するユニットのモル分率は、1-2z/(x+y)×100(%)で表される。 The molar fraction (A1) of monomer units having a sulfo group and/or a salt thereof relative to all monomer units in the water-soluble polymer (A) is preferably 20 to 50 mol%, more preferably 30 to 50 mol%, and even more preferably 30 to 40 mol%. The molar fraction (A2) of monomer units having an anionic functional group other than a sulfo group and a salt thereof is preferably 50 to 80 mol%, more preferably 50 to 70 mol%, and even more preferably 60 to 70 mol%. The molar fraction is calculated as follows from the results of 1H-NMR measurement of the water-soluble polymer (A) using a nuclear magnetic resonance analyzer (NMR). Measurement may be performed under the same measurement conditions as those described below.
1H-NMR measurement conditions Measuring instrument: JNM-ECX400 (manufactured by JEOL Ltd.)
Probe: 40TH5AT/FG2D-5mm (Broadband Gradient
Tunable Probe)
Measurements: 1H
Measurement solvent: deuterium oxide Number of times of accumulation: 16 Peaks in the obtained spectrum are assigned as follows.
Integrated value of all peaks in the range of 1.5 to 2.9 ppm=x+y: methylene protons and methine protons (x) that are not adjacent to a sulfo group and/or a salt thereof in a monomer unit having a sulfo group and/or a salt thereof, and methylene protons and methine protons (y) of a monomer unit having an anionic functional group other than a sulfo group and a salt thereof
Integrated value of all peaks in the range of 3.0 to 4.5 ppm=z: methylene protons and methine protons (z) adjacent to the sulfo group and/or a salt thereof in the monomer unit having a sulfo group and/or a salt thereof
Since the chemical shifts of x and y overlap, x is calculated from the integral value of z based on the structure of the monomer unit having a sulfo group and/or a salt thereof, and y of the monomer unit having an anionic functional group other than a sulfo group and a salt thereof is determined. The mole fraction of each monomer unit is calculated from x, y, and z. For example, when the polymer (A) is a copolymer of 2-acrylamido-2-methylpropanesulfonic acid and acrylic acid, the mole fraction of each monomer unit can be calculated as follows.
x is the integral value of the peaks derived from methylene protons and methine protons not adjacent to the sulfo group of the monomer unit derived from 2-acrylamido-2-methylpropanesulfonic acid in the water-soluble polymer (A).
y is the integral value of the peaks derived from the methylene protons and methine protons of the monomer unit derived from acrylic acid in the water-soluble polymer (A).
z is the integral value of the peaks derived from the methylene protons and methine protons adjacent to the sulfo group of the monomer unit derived from 2-acrylamido-2-methylpropanesulfonic acid in the water-soluble polymer (A).
In terms of the molecular structure of 2-acrylamido-2-methylpropanesulfonic acid, taking into account the number of protons, x/4=z/2, so the molar fraction of units derived from 2-acrylamido-2-methylpropanesulfonic acid relative to the number of all monomer units in one molecule of water-soluble polymer (A) is expressed as (z/2)÷(x/4+y/4)=2z/(x+y)×100(%), taking into account the number of protons in one molecule. The molar fraction of units derived from acrylic acid relative to the number of all monomer units in one molecule of water-soluble polymer A is expressed as 1-2z/(x+y)×100(%).
水溶性ポリマー(A)の重量平均分子量Mwは14,000~300,000、重量平均分子量Mwと数平均分子量Mnの多分散度Mw/Mnは1.5~5.0が好ましい。水溶性ポリマー(A)の重量平均分子量Mwは100,000~300,000、重量平均分子量Mwと数平均分子量Mnの多分散度Mw/Mnは1.5~3.0がより好ましい。水溶性ポリマー(A)の重量平均分子量Mwは100,000~200,000、重量平均分子量Mwと数平均分子量Mnの多分散度Mw/Mnは2.0~3.0が更により好ましい。
The weight average molecular weight Mw of the water-soluble polymer (A) is preferably 14,000 to 300,000, and the polydispersity Mw/Mn of the weight average molecular weight Mw and the number average molecular weight Mn is preferably 1.5 to 5.0. The weight average molecular weight Mw of the water-soluble polymer (A) is more preferably 100,000 to 300,000, and the polydispersity Mw/Mn of the weight average molecular weight Mw and the number average molecular weight Mn is more preferably 1.5 to 3.0. The weight average molecular weight Mw of the water-soluble polymer (A) is even more preferably 100,000 to 200,000, and the polydispersity Mw/Mn of the weight average molecular weight Mw and the number average molecular weight Mn is even more preferably 2.0 to 3.0.
水溶性ポリマー(A)の重量平均分子量及び数平均分子量はGPC法により測定される。実施例における重量平均分子量の測定は以下の条件で行った。
The weight average molecular weight and number average molecular weight of the water-soluble polymer (A) are measured by the GPC method. The weight average molecular weight in the examples was measured under the following conditions.
高速GPC装置(HLC-8320GPC:東ソー株式会社製)を用いて測定し、SECカラム及びガードカラムの組み合わせにて重量平均分子量及び数平均分子量を求めた。測定は以下の条件で行った。
SECカラム:OHpak SB-804HQ(SHODEX製)
ガードカラム:OHpak SB-G 6B(SHODEX製)
検出器:RI(HLC-8320GPC内蔵検出器)
標準試料:ポリエチレングリコール
試料注入量:0.1M 塩化ナトリウム水溶液30μL
流速:0.5mL/min
溶離液:0.1M 塩化ナトリウム水溶液 The measurement was carried out using a high-speed GPC device (HLC-8320GPC: manufactured by Tosoh Corporation), and the weight average molecular weight and number average molecular weight were determined using a combination of a SEC column and a guard column. The measurement was carried out under the following conditions.
SEC column: OHpak SB-804HQ (manufactured by SHODEX)
Guard column: OHpak SB-G 6B (manufactured by SHODEX)
Detector: RI (built-in detector in HLC-8320GPC)
Standard sample: polyethylene glycol Sample injection volume: 0.1 M sodium chloride aqueous solution 30 μL
Flow rate: 0.5mL/min
Eluent: 0.1M sodium chloride aqueous solution
SECカラム:OHpak SB-804HQ(SHODEX製)
ガードカラム:OHpak SB-G 6B(SHODEX製)
検出器:RI(HLC-8320GPC内蔵検出器)
標準試料:ポリエチレングリコール
試料注入量:0.1M 塩化ナトリウム水溶液30μL
流速:0.5mL/min
溶離液:0.1M 塩化ナトリウム水溶液 The measurement was carried out using a high-speed GPC device (HLC-8320GPC: manufactured by Tosoh Corporation), and the weight average molecular weight and number average molecular weight were determined using a combination of a SEC column and a guard column. The measurement was carried out under the following conditions.
SEC column: OHpak SB-804HQ (manufactured by SHODEX)
Guard column: OHpak SB-G 6B (manufactured by SHODEX)
Detector: RI (built-in detector in HLC-8320GPC)
Standard sample: polyethylene glycol Sample injection volume: 0.1 M sodium chloride aqueous solution 30 μL
Flow rate: 0.5mL/min
Eluent: 0.1M sodium chloride aqueous solution
[1-2.界面活性剤(B)]
界面活性剤(B)は、アニオン性界面活性剤及びHLBが13以上のノニオン性界面活性剤から選ばれる少なくとも一種を含む。界面活性剤(B)は、一種のみを使用してもよいし、二種以上を組み合わせて使用してもよい。アニオン性界面活性剤及びHLBが13以上のノニオン性界面活性剤の何れも、親水性を向上するのに寄与するが、ノニオン性界面活性剤を使用することは特に成形加工性を向上させるのに有利である。
ノニオン性界面活性剤は、HLBが13以上であれば特に制限されるものではないが、例えば、ポリオキシエチレン鎖(-[CH2CH2O]n-)、及び/又は、ポリオキシプロピレン鎖(-[CH2CH2CH2O]n-)等から成るアルキレンオキシド鎖と、アルキル基(CnH2n+1)とのエーテル結合で構成されるポリオキシアルキレンアルキルエーテル類から選ばれることが好ましく、ポリオキシエチレンアルキルエーテル類から選ばれることがより好ましい。ポリオキシアルキレンアルキルエーテルとしては、ポリオキシアルキレンイソデシルエーテル、ポリオキシアルキレントリデシルエーテル、ポリオキシアルキレンラウリルエーテル等が挙げられ、ポリオキシエチレンアルキルエーテルとしてはポリオキシエチレンイソデシルエーテル、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンオレイルセチルエーテル、ポリオキシエチレントリデシルエーテル等が挙げられる。
ノニオン性界面活性剤のHLBは、典型的には13~20とすることができ、より典型的には13~16とすることができる。本明細書において、HLBはグリフィン法に基づく値を指す。 [1-2. Surfactant (B)]
The surfactant (B) includes at least one selected from an anionic surfactant and a nonionic surfactant having an HLB of 13 or more. The surfactant (B) may be used alone or in combination of two or more. Both the anionic surfactant and the nonionic surfactant having an HLB of 13 or more contribute to improving hydrophilicity, but the use of a nonionic surfactant is particularly advantageous in improving moldability.
The nonionic surfactant is not particularly limited as long as it has an HLB of 13 or more, but is preferably selected from polyoxyalkylene alkyl ethers formed by an ether bond between an alkylene oxide chain consisting of a polyoxyethylene chain (-[CH 2 CH 2 O] n -) and/or a polyoxypropylene chain (-[CH 2 CH 2 CH 2 O] n -) and an alkyl group (C n H 2n+1 ), and more preferably selected from polyoxyethylene alkyl ethers. Examples of polyoxyalkylene alkyl ethers include polyoxyalkylene isodecyl ether, polyoxyalkylene tridecyl ether, polyoxyalkylene lauryl ether, etc., and examples of polyoxyethylene alkyl ethers include polyoxyethylene isodecyl ether, polyoxyethylene lauryl ether, polyoxyethylene oleyl cetyl ether, polyoxyethylene tridecyl ether, etc.
The HLB of the nonionic surfactant can typically be from 13 to 20, and more typically from 13 to 16. In this specification, HLB refers to a value based on the Griffin method.
界面活性剤(B)は、アニオン性界面活性剤及びHLBが13以上のノニオン性界面活性剤から選ばれる少なくとも一種を含む。界面活性剤(B)は、一種のみを使用してもよいし、二種以上を組み合わせて使用してもよい。アニオン性界面活性剤及びHLBが13以上のノニオン性界面活性剤の何れも、親水性を向上するのに寄与するが、ノニオン性界面活性剤を使用することは特に成形加工性を向上させるのに有利である。
ノニオン性界面活性剤は、HLBが13以上であれば特に制限されるものではないが、例えば、ポリオキシエチレン鎖(-[CH2CH2O]n-)、及び/又は、ポリオキシプロピレン鎖(-[CH2CH2CH2O]n-)等から成るアルキレンオキシド鎖と、アルキル基(CnH2n+1)とのエーテル結合で構成されるポリオキシアルキレンアルキルエーテル類から選ばれることが好ましく、ポリオキシエチレンアルキルエーテル類から選ばれることがより好ましい。ポリオキシアルキレンアルキルエーテルとしては、ポリオキシアルキレンイソデシルエーテル、ポリオキシアルキレントリデシルエーテル、ポリオキシアルキレンラウリルエーテル等が挙げられ、ポリオキシエチレンアルキルエーテルとしてはポリオキシエチレンイソデシルエーテル、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンオレイルセチルエーテル、ポリオキシエチレントリデシルエーテル等が挙げられる。
ノニオン性界面活性剤のHLBは、典型的には13~20とすることができ、より典型的には13~16とすることができる。本明細書において、HLBはグリフィン法に基づく値を指す。 [1-2. Surfactant (B)]
The surfactant (B) includes at least one selected from an anionic surfactant and a nonionic surfactant having an HLB of 13 or more. The surfactant (B) may be used alone or in combination of two or more. Both the anionic surfactant and the nonionic surfactant having an HLB of 13 or more contribute to improving hydrophilicity, but the use of a nonionic surfactant is particularly advantageous in improving moldability.
The nonionic surfactant is not particularly limited as long as it has an HLB of 13 or more, but is preferably selected from polyoxyalkylene alkyl ethers formed by an ether bond between an alkylene oxide chain consisting of a polyoxyethylene chain (-[CH 2 CH 2 O] n -) and/or a polyoxypropylene chain (-[CH 2 CH 2 CH 2 O] n -) and an alkyl group (C n H 2n+1 ), and more preferably selected from polyoxyethylene alkyl ethers. Examples of polyoxyalkylene alkyl ethers include polyoxyalkylene isodecyl ether, polyoxyalkylene tridecyl ether, polyoxyalkylene lauryl ether, etc., and examples of polyoxyethylene alkyl ethers include polyoxyethylene isodecyl ether, polyoxyethylene lauryl ether, polyoxyethylene oleyl cetyl ether, polyoxyethylene tridecyl ether, etc.
The HLB of the nonionic surfactant can typically be from 13 to 20, and more typically from 13 to 16. In this specification, HLB refers to a value based on the Griffin method.
アニオン性界面活性剤としては、例えば、硫酸エステル型、リン酸エステル型、カルボン酸型、スルホン酸型の界面活性剤が挙げられる。特に、スルホン酸型アニオン性界面活性剤から選ばれることが好ましい。スルホン酸型アニオン性界面活性剤としては、アルキル硫酸エステル塩、アルキルスルホン酸ナトリウム、アルキルベンゼンスルホン酸ナトリウム、アルキルナフタレンスルホン酸ナトリウム、ジアルキルスルホコハク酸ナトリウム、アルキルジフェニルエーテルジスルホン酸ナトリウム、アルキルグリセリルエーテルスルホン酸ナトリウム等が挙げられる。
Examples of anionic surfactants include sulfate ester type, phosphate ester type, carboxylic acid type, and sulfonic acid type surfactants. In particular, it is preferable to select from sulfonic acid type anionic surfactants. Examples of sulfonic acid type anionic surfactants include alkyl sulfate ester salts, sodium alkyl sulfonate, sodium alkyl benzene sulfonate, sodium alkyl naphthalene sulfonate, sodium dialkyl sulfosuccinate, sodium alkyl diphenyl ether disulfonate, and sodium alkyl glyceryl ether sulfonate.
[1-3.水溶性ポリマー(C)]
本発明の一実施形態に係る金属表面処理剤は、水溶性ポリマー(A)及び界面活性剤(B)に加えて、ポリビニルアルコール及びポリアクリルアミドから選ばれる少なくとも一種の水溶性ポリマー(C)を含むことができる。水溶性ポリマー(C)は、親水性の向上に寄与する。
ポリビニルアルコールは、(-CH2CH(OH)-)の繰り返し単位を含んでいる重合体を表し、公知の製法に従って製造することができ、特に制限はない。ポリビニルアルコールは、例えば、ビニルエステルをモノマーとしてラジカル重合させたポリビニルエステルの部分けん化物及び完全けん化物、ビニルエステルと他のコモノマーとのコポリマーの部分けん化物及び完全けん化物、並びにポリビニルアルコールの変性物が例示される。ビニルエステルとしては、蟻酸ビニル、酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、イソ酪酸ビニル、ピバリン酸ビニル、バーサチック酸ビニル、及びカプロン酸ビニル等が例示される。これらの中でも酢酸ビニルが好ましい。水溶性ポリマー(C)は、一種のみを使用してもよいし、二種以上を組み合わせて使用してもよい。 [1-3. Water-soluble polymer (C)]
The metal surface treatment agent according to one embodiment of the present invention may contain at least one water-soluble polymer (C) selected from polyvinyl alcohol and polyacrylamide in addition to the water-soluble polymer (A) and the surfactant (B). The water-soluble polymer (C) contributes to improving hydrophilicity.
Polyvinyl alcohol refers to a polymer containing a repeating unit of (-CH 2 CH(OH)-), and can be produced according to a known production method, with no particular limitation. Examples of polyvinyl alcohol include partially and completely saponified products of polyvinyl esters obtained by radical polymerization using vinyl esters as monomers, partially and completely saponified products of copolymers of vinyl esters and other comonomers, and modified products of polyvinyl alcohol. Examples of vinyl esters include vinyl formate, vinyl acetate, vinyl propionate, vinyl butyrate, vinyl isobutyrate, vinyl pivalate, vinyl versatate, and vinyl caproate. Of these, vinyl acetate is preferred. The water-soluble polymer (C) may be used alone or in combination of two or more.
本発明の一実施形態に係る金属表面処理剤は、水溶性ポリマー(A)及び界面活性剤(B)に加えて、ポリビニルアルコール及びポリアクリルアミドから選ばれる少なくとも一種の水溶性ポリマー(C)を含むことができる。水溶性ポリマー(C)は、親水性の向上に寄与する。
ポリビニルアルコールは、(-CH2CH(OH)-)の繰り返し単位を含んでいる重合体を表し、公知の製法に従って製造することができ、特に制限はない。ポリビニルアルコールは、例えば、ビニルエステルをモノマーとしてラジカル重合させたポリビニルエステルの部分けん化物及び完全けん化物、ビニルエステルと他のコモノマーとのコポリマーの部分けん化物及び完全けん化物、並びにポリビニルアルコールの変性物が例示される。ビニルエステルとしては、蟻酸ビニル、酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、イソ酪酸ビニル、ピバリン酸ビニル、バーサチック酸ビニル、及びカプロン酸ビニル等が例示される。これらの中でも酢酸ビニルが好ましい。水溶性ポリマー(C)は、一種のみを使用してもよいし、二種以上を組み合わせて使用してもよい。 [1-3. Water-soluble polymer (C)]
The metal surface treatment agent according to one embodiment of the present invention may contain at least one water-soluble polymer (C) selected from polyvinyl alcohol and polyacrylamide in addition to the water-soluble polymer (A) and the surfactant (B). The water-soluble polymer (C) contributes to improving hydrophilicity.
Polyvinyl alcohol refers to a polymer containing a repeating unit of (-CH 2 CH(OH)-), and can be produced according to a known production method, with no particular limitation. Examples of polyvinyl alcohol include partially and completely saponified products of polyvinyl esters obtained by radical polymerization using vinyl esters as monomers, partially and completely saponified products of copolymers of vinyl esters and other comonomers, and modified products of polyvinyl alcohol. Examples of vinyl esters include vinyl formate, vinyl acetate, vinyl propionate, vinyl butyrate, vinyl isobutyrate, vinyl pivalate, vinyl versatate, and vinyl caproate. Of these, vinyl acetate is preferred. The water-soluble polymer (C) may be used alone or in combination of two or more.
ビニルエステルと共重合されるコモノマーには、格別の限定はないが、例えば、エチレンやプロピレン等のα-オレフィン;3-ブテン-1-オール、4-ペンテン-1-オール、5-ヘキセン-1,2-ジオール等のヒドロキシ基含有α-オレフィン類、及びそのアシル化物などの誘導体;アクリル酸、メタクリル酸、イタコン酸、マレイン酸等の不飽和酸類、その塩、そのモノ又はジアルキルエステル;アクリロニトリル等のニトリル類;メタクリルアミド、ジアセトンアクリルアミド等のアミド類;エチレンスルホン酸、アリルスルホン酸、メタアリルスルホン酸等のオレフィンスルホン酸又はその塩;エチレンオキサイドモノアリルエーテルなどのアリル化合物類などが共重合されていてもよい。これらのコモノマーは単独で使用しても良いし、二種以上を組み合わせても良い。コポリマーを製造する際、ビニルエステルモノマー:コモノマー=95:5以下のモル比で重合することが好ましく、90:10~10:90のモル比で重合することがより好ましく、85:15~15:85のモル比で重合することが更により好ましい。
There are no particular limitations on the comonomers to be copolymerized with vinyl esters, but examples of the comonomers that may be copolymerized include α-olefins such as ethylene and propylene; hydroxyl-containing α-olefins such as 3-buten-1-ol, 4-penten-1-ol, and 5-hexene-1,2-diol, and derivatives thereof such as acylated products; unsaturated acids such as acrylic acid, methacrylic acid, itaconic acid, and maleic acid, their salts, and their mono- or dialkyl esters; nitriles such as acrylonitrile; amides such as methacrylamide and diacetone acrylamide; olefin sulfonic acids or their salts such as ethylene sulfonic acid, allyl sulfonic acid, and methallyl sulfonic acid; and allyl compounds such as ethylene oxide monoallyl ether. These comonomers may be used alone or in combination of two or more. When producing the copolymer, it is preferable to polymerize at a molar ratio of vinyl ester monomer:comonomer of 95:5 or less, more preferably at a molar ratio of 90:10 to 10:90, and even more preferably at a molar ratio of 85:15 to 15:85.
ポリビニルアルコールのケン化度は、90mol%以上であることが好ましく、95mol%以上であることがより好ましく、特に上限は設定されず、100mol%でもよい。ポリビニルアルコールのケン化度は、JIS K6726:1994に準拠して測定される。
The degree of saponification of polyvinyl alcohol is preferably 90 mol% or more, more preferably 95 mol% or more, and there is no particular upper limit, so it may be 100 mol%. The degree of saponification of polyvinyl alcohol is measured in accordance with JIS K6726:1994.
ポリビニルアルコールの重量平均分子量は、表面処理層の耐久性を高める点で5,000~200,000であることが好ましく、更には5,000~100,000であることがより好ましい。特に、ポリビニルアルコールから選ばれる1種以上で、且つけん化度が90mol%以上であるものの場合、重量平均分子量が10,000~50,000であることが更に好適である。
The weight-average molecular weight of the polyvinyl alcohol is preferably 5,000 to 200,000, and more preferably 5,000 to 100,000, in order to enhance the durability of the surface treatment layer. In particular, when the polyvinyl alcohol is one or more types selected and has a degree of saponification of 90 mol% or more, it is even more preferable that the weight-average molecular weight is 10,000 to 50,000.
ポリアクリルアミドとしては、アクリルアミド化合物のホモポリマー及びアクリルアミド化合物のコポリマーが挙げられる。アクリルアミド化合物のコポリマーには、アクリルアミドモノマーの1種以上と他のコモノマーの1種以上の共重合体が包含される。ここで用いられるコモノマーは、アクリルアミドと重合可能なアニオン性、ノニオン性、カチオン性の付加重合モノマーから選ばれ、例えば(メタ)アクリル酸、イタコン酸、マレイン酸、ビニルスルホン酸、スチレンスルホン酸、スルホエチルアクリレート、スルホエチルメタクリレート、N-メチレンスルホン酸アクリルアミド、2-アクリルアミド-2-メチルプロパンスルホン酸、アシッドホスホオキシエチルメタクリレート又はこれらの塩等のアニオン性不飽和モノマー;(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド、ヒドロキシエチル(メタ)アクリレート、ビニルピロリドン、アクロイルモルホリン、ポリエチレングリコールアクリレート、ポリエチレングリコールアクリレートアルキルフェニルエーテル等のノニオン性の不飽和モノマー;並びにアミノエチル(メタ)アクリレート、N,N-ジメチルアミノエチルアクリレート、N-ヒドロキシプロピルアミノエチル(メタ)アクリレート、ヒドロキシメチルアミノエチルメタクリレート、ビニルイミダゾール、ビニルピリジン、N,N-ジアリルアミン、N,N-ジアリル-N,N-ジメチルアンモニウムクロリド等のカチオン性不飽和モノマー等から選ぶことができる。
Polyacrylamides include homopolymers of acrylamide compounds and copolymers of acrylamide compounds. Copolymers of acrylamide compounds include copolymers of one or more acrylamide monomers with one or more other comonomers. The comonomers used here are selected from anionic, nonionic and cationic addition polymerization monomers polymerizable with acrylamide, such as anionic unsaturated monomers such as (meth)acrylic acid, itaconic acid, maleic acid, vinyl sulfonic acid, styrene sulfonic acid, sulfoethyl acrylate, sulfoethyl methacrylate, N-methylenesulfonic acid acrylamide, 2-acrylamido-2-methylpropanesulfonic acid, acid phosphooxyethyl methacrylate or salts thereof; (meth)acrylamide, N-methylol (meth)acrylamide, hydroxyethyl ... can be selected from nonionic unsaturated monomers such as acrylate, vinylpyrrolidone, acroylmorpholine, polyethylene glycol acrylate, and polyethylene glycol acrylate alkylphenyl ether; and cationic unsaturated monomers such as aminoethyl (meth)acrylate, N,N-dimethylaminoethyl acrylate, N-hydroxypropylaminoethyl (meth)acrylate, hydroxymethylaminoethyl methacrylate, vinylimidazole, vinylpyridine, N,N-diallylamine, and N,N-diallyl-N,N-dimethylammonium chloride.
ポリアクリルアミドの重量平均分子量は、皮膜の耐久性を高める観点で、5,000~2,000,000であることが好ましく、更には10,000~200,000であることがより好ましく、50,000~200,000であることが更により好ましい。
From the viewpoint of increasing the durability of the coating, the weight average molecular weight of the polyacrylamide is preferably 5,000 to 2,000,000, more preferably 10,000 to 200,000, and even more preferably 50,000 to 200,000.
水溶性ポリマー(C)の重量平均分子量はGPC法により測定される。実施例における重量平均分子量の測定は以下の条件で行った。
The weight average molecular weight of the water-soluble polymer (C) is measured by GPC. The weight average molecular weight in the examples was measured under the following conditions.
高速GPC装置(HLC-8320GPC:東ソー株式会社製)を用いて測定し、SECカラム及びガードカラムの組み合わせにて重量平均分子量を求めた。測定は以下の条件で行った。
SECカラム:TSKgel SuperAWM-H(東ソー株式会社製)
ガードカラム:TSKgurdcolumn SuperAW-H(東ソー株式会社製)
検出器:RI(HLC-8320GPC内蔵検出器)
標準試料:ポリスチレン
試料注入量:0.06%DMF溶液30μL
流速:0.5mL/min
溶離液:DMF/100mM LiBr/60mM H3PO4 The weight average molecular weight was determined by using a high-speed GPC device (HLC-8320GPC: manufactured by Tosoh Corporation) in combination with a SEC column and a guard column. The measurement was performed under the following conditions.
SEC column: TSKgel SuperAWM-H (manufactured by Tosoh Corporation)
Guard column: TSK guard column Super AW-H (manufactured by Tosoh Corporation)
Detector: RI (built-in detector in HLC-8320GPC)
Standard sample: polystyrene Sample injection volume: 0.06% DMF solution 30 μL
Flow rate: 0.5mL/min
Eluent: DMF/100mM LiBr/60mM H3PO4
SECカラム:TSKgel SuperAWM-H(東ソー株式会社製)
ガードカラム:TSKgurdcolumn SuperAW-H(東ソー株式会社製)
検出器:RI(HLC-8320GPC内蔵検出器)
標準試料:ポリスチレン
試料注入量:0.06%DMF溶液30μL
流速:0.5mL/min
溶離液:DMF/100mM LiBr/60mM H3PO4 The weight average molecular weight was determined by using a high-speed GPC device (HLC-8320GPC: manufactured by Tosoh Corporation) in combination with a SEC column and a guard column. The measurement was performed under the following conditions.
SEC column: TSKgel SuperAWM-H (manufactured by Tosoh Corporation)
Guard column: TSK guard column Super AW-H (manufactured by Tosoh Corporation)
Detector: RI (built-in detector in HLC-8320GPC)
Standard sample: polystyrene Sample injection volume: 0.06% DMF solution 30 μL
Flow rate: 0.5mL/min
Eluent: DMF/100mM LiBr/60mM H3PO4
[1-4.アルキレンオキシド付加物(D)]
本発明の一実施形態に係る金属表面処理剤は、水溶性ポリマー(A)及び界面活性剤(B)に加えて、HLBが13未満のアルキレンオキシド付加物(D)を含むことができる。この際、水溶性ポリマー(C)を併用してもよいし、しなくてもよい。アルキレンオキシド付加物(D)は、特に成形加工性の向上に寄与する。
アルキレンオキシド付加物(D)として、例えば、多価アルコール、高級アルコール、高級アミン又は高級脂肪酸から誘導されるものが挙げられる。具体的には、ポリオキシアルキレングリセリン脂肪酸エステル、ポリオキシアルキレンソルビタン脂肪酸エステル、ポリオキシアルキレンソルビトール脂肪酸エステル、ポリオキシアルキレンショ糖脂肪酸エステル、ポリオキシアルキレンペンタエリスリトール脂肪酸エステル、ポリオキシアルキレンひまし油、ポリオキシアルキレン硬化ひまし油、ポリオキシアルキレンアルキルエーテル、ポリオキシアルキレンアルキルフェニルエーテル、ポリオキシアルキレンアルキルアミン、ポリオキシアルキレン脂肪酸アミドなどが挙げられる。アルキレンオキシド付加物(D)としては特に、ポリオキシアルキレンひまし油及びポリオキシアルキレン硬化ひまし油に代表されるひまし油のアルキレンオキシド付加物が好ましい。アルキレンオキシド付加物は、ひまし油やグリセリン脂肪酸エステルなどの水酸基にアルキレンオキシドが付加した化合物である。アルキレンオキシドは通常2つ以上が付加した状態で結合している。アルキレンオキシドのアルキレン基の炭素数は2~4程度であり、好ましくはエチレンオキシド、プロピレンオキシドであり、特に好ましくはエチレンオキシドである。アルキレンオキシドの付加モル数は、アルキレンオキシドが付加される化合物1モルあたり、5~100の範囲が好ましく、特に好ましくは10~60の範囲である。アルキレンオキシド付加物(D)は、一種のみを使用してもよいし、二種以上を組み合わせて使用してもよい。
アルキレンオキシド付加物(D)のHLBは、例えば0以上13未満とすることができ、典型的には8以上13未満とすることができ、より典型的には10以上13未満とすることができる。先述したように、本明細書において、HLBはグリフィン法に基づく値を指す。 [1-4. Alkylene oxide adduct (D)]
The metal surface treatment agent according to one embodiment of the present invention can contain, in addition to the water-soluble polymer (A) and the surfactant (B), an alkylene oxide adduct (D) having an HLB of less than 13. In this case, the water-soluble polymer (C) may or may not be used in combination. The alkylene oxide adduct (D) particularly contributes to improving moldability.
Examples of the alkylene oxide adduct (D) include those derived from polyhydric alcohols, higher alcohols, higher amines, or higher fatty acids. Specific examples include polyoxyalkylene glycerin fatty acid esters, polyoxyalkylene sorbitan fatty acid esters, polyoxyalkylene sorbitol fatty acid esters, polyoxyalkylene sucrose fatty acid esters, polyoxyalkylene pentaerythritol fatty acid esters, polyoxyalkylene castor oil, polyoxyalkylene hydrogenated castor oil, polyoxyalkylene alkyl ethers, polyoxyalkylene alkylphenyl ethers, polyoxyalkylene alkylamines, and polyoxyalkylene fatty acid amides. As the alkylene oxide adduct (D), particularly, alkylene oxide adducts of castor oil, such as polyoxyalkylene castor oil and polyoxyalkylene hydrogenated castor oil, are preferred. The alkylene oxide adduct is a compound in which an alkylene oxide is added to a hydroxyl group of castor oil, glycerin fatty acid ester, or the like. The alkylene oxide is usually bonded in a state in which two or more are added. The number of carbon atoms in the alkylene group of the alkylene oxide is about 2 to 4, and is preferably ethylene oxide or propylene oxide, and particularly preferably ethylene oxide. The number of moles of the alkylene oxide added per mole of the compound to which the alkylene oxide is added is preferably in the range of 5 to 100, and particularly preferably in the range of 10 to 60. The alkylene oxide adduct (D) may be used alone or in combination of two or more kinds.
The HLB of the alkylene oxide adduct (D) can be, for example, 0 or more and less than 13, typically 8 or more and less than 13, and more typically 10 or more and less than 13. As described above, in this specification, HLB refers to a value based on the Griffin method.
本発明の一実施形態に係る金属表面処理剤は、水溶性ポリマー(A)及び界面活性剤(B)に加えて、HLBが13未満のアルキレンオキシド付加物(D)を含むことができる。この際、水溶性ポリマー(C)を併用してもよいし、しなくてもよい。アルキレンオキシド付加物(D)は、特に成形加工性の向上に寄与する。
アルキレンオキシド付加物(D)として、例えば、多価アルコール、高級アルコール、高級アミン又は高級脂肪酸から誘導されるものが挙げられる。具体的には、ポリオキシアルキレングリセリン脂肪酸エステル、ポリオキシアルキレンソルビタン脂肪酸エステル、ポリオキシアルキレンソルビトール脂肪酸エステル、ポリオキシアルキレンショ糖脂肪酸エステル、ポリオキシアルキレンペンタエリスリトール脂肪酸エステル、ポリオキシアルキレンひまし油、ポリオキシアルキレン硬化ひまし油、ポリオキシアルキレンアルキルエーテル、ポリオキシアルキレンアルキルフェニルエーテル、ポリオキシアルキレンアルキルアミン、ポリオキシアルキレン脂肪酸アミドなどが挙げられる。アルキレンオキシド付加物(D)としては特に、ポリオキシアルキレンひまし油及びポリオキシアルキレン硬化ひまし油に代表されるひまし油のアルキレンオキシド付加物が好ましい。アルキレンオキシド付加物は、ひまし油やグリセリン脂肪酸エステルなどの水酸基にアルキレンオキシドが付加した化合物である。アルキレンオキシドは通常2つ以上が付加した状態で結合している。アルキレンオキシドのアルキレン基の炭素数は2~4程度であり、好ましくはエチレンオキシド、プロピレンオキシドであり、特に好ましくはエチレンオキシドである。アルキレンオキシドの付加モル数は、アルキレンオキシドが付加される化合物1モルあたり、5~100の範囲が好ましく、特に好ましくは10~60の範囲である。アルキレンオキシド付加物(D)は、一種のみを使用してもよいし、二種以上を組み合わせて使用してもよい。
アルキレンオキシド付加物(D)のHLBは、例えば0以上13未満とすることができ、典型的には8以上13未満とすることができ、より典型的には10以上13未満とすることができる。先述したように、本明細書において、HLBはグリフィン法に基づく値を指す。 [1-4. Alkylene oxide adduct (D)]
The metal surface treatment agent according to one embodiment of the present invention can contain, in addition to the water-soluble polymer (A) and the surfactant (B), an alkylene oxide adduct (D) having an HLB of less than 13. In this case, the water-soluble polymer (C) may or may not be used in combination. The alkylene oxide adduct (D) particularly contributes to improving moldability.
Examples of the alkylene oxide adduct (D) include those derived from polyhydric alcohols, higher alcohols, higher amines, or higher fatty acids. Specific examples include polyoxyalkylene glycerin fatty acid esters, polyoxyalkylene sorbitan fatty acid esters, polyoxyalkylene sorbitol fatty acid esters, polyoxyalkylene sucrose fatty acid esters, polyoxyalkylene pentaerythritol fatty acid esters, polyoxyalkylene castor oil, polyoxyalkylene hydrogenated castor oil, polyoxyalkylene alkyl ethers, polyoxyalkylene alkylphenyl ethers, polyoxyalkylene alkylamines, and polyoxyalkylene fatty acid amides. As the alkylene oxide adduct (D), particularly, alkylene oxide adducts of castor oil, such as polyoxyalkylene castor oil and polyoxyalkylene hydrogenated castor oil, are preferred. The alkylene oxide adduct is a compound in which an alkylene oxide is added to a hydroxyl group of castor oil, glycerin fatty acid ester, or the like. The alkylene oxide is usually bonded in a state in which two or more are added. The number of carbon atoms in the alkylene group of the alkylene oxide is about 2 to 4, and is preferably ethylene oxide or propylene oxide, and particularly preferably ethylene oxide. The number of moles of the alkylene oxide added per mole of the compound to which the alkylene oxide is added is preferably in the range of 5 to 100, and particularly preferably in the range of 10 to 60. The alkylene oxide adduct (D) may be used alone or in combination of two or more kinds.
The HLB of the alkylene oxide adduct (D) can be, for example, 0 or more and less than 13, typically 8 or more and less than 13, and more typically 10 or more and less than 13. As described above, in this specification, HLB refers to a value based on the Griffin method.
[1-5.配合割合]
前記金属表面処理剤が水溶性ポリマー(C)を含む場合、水溶性ポリマー(A)と水溶性ポリマー(C)の質量比(A/C)は、0.1~10であることが好ましく、1.0~5.0であることがより好ましく、2.0~4.0であることが更により好ましい。 [1-5. Mixture ratio]
When the metal surface treatment agent contains a water-soluble polymer (C), the mass ratio (A/C) of the water-soluble polymer (A) to the water-soluble polymer (C) is preferably 0.1 to 10, more preferably 1.0 to 5.0, and even more preferably 2.0 to 4.0.
前記金属表面処理剤が水溶性ポリマー(C)を含む場合、水溶性ポリマー(A)と水溶性ポリマー(C)の質量比(A/C)は、0.1~10であることが好ましく、1.0~5.0であることがより好ましく、2.0~4.0であることが更により好ましい。 [1-5. Mixture ratio]
When the metal surface treatment agent contains a water-soluble polymer (C), the mass ratio (A/C) of the water-soluble polymer (A) to the water-soluble polymer (C) is preferably 0.1 to 10, more preferably 1.0 to 5.0, and even more preferably 2.0 to 4.0.
前記金属表面処理剤において、水溶性ポリマー(A)中のスルホ基及びその塩以外のアニオン性官能基(a)と水溶性ポリマー(C)の含有量の質量比(a/C)は、0.01~3.0であることが好ましく、0.1~1.5であることがより好ましく、0.5~1.5であることが更により好ましい。水溶性ポリマー(A)中のスルホ基及びその塩以外のアニオン性官能基(a)の質量は、水溶性ポリマー(A)の質量、酸価、KOHの分子量、及びアニオン性官能基の式量に基づき算出可能である。
In the metal surface treatment agent, the mass ratio (a/C) of the content of the anionic functional group (a) other than the sulfo group and its salt in the water-soluble polymer (A) to the content of the water-soluble polymer (C) is preferably 0.01 to 3.0, more preferably 0.1 to 1.5, and even more preferably 0.5 to 1.5. The mass of the anionic functional group (a) other than the sulfo group and its salt in the water-soluble polymer (A) can be calculated based on the mass of the water-soluble polymer (A), the acid value, the molecular weight of KOH, and the formula weight of the anionic functional group.
前記金属表面処理剤において、水溶性ポリマー(A)及び水溶性ポリマー(C)の合計含有量に対する前記界面活性剤(B)の含有量の質量比(B/(A+C))は、0.002~0.25であることが好ましく、0.01~0.1であることがより好ましく、0.01~0.07であることが更により好ましい。
In the metal surface treatment agent, the mass ratio (B/(A+C)) of the content of the surfactant (B) to the total content of the water-soluble polymer (A) and the water-soluble polymer (C) is preferably 0.002 to 0.25, more preferably 0.01 to 0.1, and even more preferably 0.01 to 0.07.
前記金属表面処理剤のHLBが13未満のアルキレンオキシド付加物(D)を含む場合、水溶性ポリマー(A)とアルキレンオキシド付加物(D)の質量比(D/A)は、0.001~1.0であることが好ましく、0.01~1.0であることがより好ましく、0.01~0.1であることが更により好ましい。
When the metal surface treatment agent contains an alkylene oxide adduct (D) whose HLB is less than 13, the mass ratio (D/A) of the water-soluble polymer (A) to the alkylene oxide adduct (D) is preferably 0.001 to 1.0, more preferably 0.01 to 1.0, and even more preferably 0.01 to 0.1.
なお、上述においては、溶媒以外の、ポリマー(A)と、界面活性剤(B)と、水溶性ポリマー(C)と、アルキレンオキシド付加物(D)の配合割合について説明したが、該金属表面処理剤によって形成される表面処理層に各種性能を付与するために、酸化防止剤、消泡剤、レベリング剤、防錆剤、抗菌剤、抗かび剤、抗菌抗かび剤、着色剤等を本発明の趣旨、及び表面処理層の性能を損なわない限り、任意の割合でさらに配合してもよい。
In the above, the blending ratios of the polymer (A), surfactant (B), water-soluble polymer (C), and alkylene oxide adduct (D) other than the solvent have been explained, but in order to impart various properties to the surface treatment layer formed by the metal surface treatment agent, antioxidants, defoamers, leveling agents, rust inhibitors, antibacterial agents, antifungal agents, antibacterial and antifungal agents, colorants, etc. may be further blended in any ratio as long as the purpose of the present invention and the performance of the surface treatment layer are not impaired.
[1-6.製法]
前記金属表面処理剤は、例えば、上記の各成分を所望の割合で混合し、混合物に対して所要量の溶媒を添加し、撹拌することで調製可能である。 [1-6. Manufacturing method]
The metal surface treatment agent can be prepared, for example, by mixing the above-mentioned components in a desired ratio, adding a required amount of a solvent to the mixture, and stirring.
前記金属表面処理剤は、例えば、上記の各成分を所望の割合で混合し、混合物に対して所要量の溶媒を添加し、撹拌することで調製可能である。 [1-6. Manufacturing method]
The metal surface treatment agent can be prepared, for example, by mixing the above-mentioned components in a desired ratio, adding a required amount of a solvent to the mixture, and stirring.
金属表面処理剤に用いられる溶媒(液体媒体)は、水を主成分(例えば、全溶媒の質量を基準として水が70質量%以上)とするのが通常である。但し、塗布後の焼き付け速度の調整や、塗装状態の改善のために、メタノール、エタノール等の水溶性アルコール、アセトン等の水溶性ケトン、メチルセロソルブ、エチルセロソルブ等のセロソルブ等の水溶性溶剤の一種又は二種以上を本発明の趣旨、及び、表面処理層の性能を損なわない範囲で任意の割合で併用してもよい。
The solvent (liquid medium) used in metal surface treatment agents usually contains water as the main component (for example, 70% by mass or more of water based on the mass of the total solvent). However, in order to adjust the baking speed after application and to improve the coating condition, one or more water-soluble solvents such as water-soluble alcohols such as methanol and ethanol, water-soluble ketones such as acetone, and cellosolves such as methyl cellosolve and ethyl cellosolve may be used in any ratio within the scope of the purpose of this invention and the performance of the surface treatment layer.
[2.表面処理方法及び表面処理金属材料]
本発明の一実施形態に係る表面処理金属材料は、上記金属表面処理剤を用いて、金属表面に表面処理層を形成することにより得る事ができる。 [2. Surface treatment method and surface-treated metal material]
A surface-treated metal material according to one embodiment of the present invention can be obtained by forming a surface treatment layer on a metal surface using the above-mentioned metal surface treatment agent.
本発明の一実施形態に係る表面処理金属材料は、上記金属表面処理剤を用いて、金属表面に表面処理層を形成することにより得る事ができる。 [2. Surface treatment method and surface-treated metal material]
A surface-treated metal material according to one embodiment of the present invention can be obtained by forming a surface treatment layer on a metal surface using the above-mentioned metal surface treatment agent.
表面処理層の形成方法は一実施形態において、
(i)上記金属表面処理剤を金属材料の表面に接触させる工程と、
(ii)工程(i)の後に、該金属表面処理剤を接触させた金属材料を乾燥させる工程を含む。上記工程を含む方法であれば表面処理層の形成方法は特に制限されるものではない。上記金属表面処理剤を金属材料の表面に接触させる工程の前に、脱脂処理を行なう工程、下地防錆処理層を形成する工程等が含まれていてもよい。 In one embodiment, the method for forming the surface treatment layer includes the steps of:
(i) contacting the metal surface treatment agent with a surface of a metal material;
(ii) After step (i), the method includes a step of drying the metal material that has been contacted with the metal surface treatment agent. The method for forming the surface treatment layer is not particularly limited as long as it includes the above steps. Before the step of contacting the metal surface treatment agent with the surface of the metal material, a step of performing a degreasing treatment, a step of forming a base rust prevention treatment layer, etc. may be included.
(i)上記金属表面処理剤を金属材料の表面に接触させる工程と、
(ii)工程(i)の後に、該金属表面処理剤を接触させた金属材料を乾燥させる工程を含む。上記工程を含む方法であれば表面処理層の形成方法は特に制限されるものではない。上記金属表面処理剤を金属材料の表面に接触させる工程の前に、脱脂処理を行なう工程、下地防錆処理層を形成する工程等が含まれていてもよい。 In one embodiment, the method for forming the surface treatment layer includes the steps of:
(i) contacting the metal surface treatment agent with a surface of a metal material;
(ii) After step (i), the method includes a step of drying the metal material that has been contacted with the metal surface treatment agent. The method for forming the surface treatment layer is not particularly limited as long as it includes the above steps. Before the step of contacting the metal surface treatment agent with the surface of the metal material, a step of performing a degreasing treatment, a step of forming a base rust prevention treatment layer, etc. may be included.
[2-1.金属材料]
上記表面処理剤を適用可能な金属材料としては、特に制限はないが、アルミニウム、鉄鋼、ステンレス、チタン、及びこれらの合金が挙げられる。上記表面処理剤は、特にアルミニウム含有金属材料に好適に適用可能である。アルミニウム含有金属材料を構成する材料は、純アルミニウムであってもよいが、アルミニウム合金であってもよい。また、上記表面処理剤は、熱交換器の材料(例えば、フィン)として使用される金属材料に対して好適に適用可能である。上記表面処理剤が適用された金属材料を用いた熱交換器は、親水性に優れているのでフィン間に水滴が滞留することがなく、熱交換効率の低下を抑制でき、延いてはエネルギー効率の改善が図れる点で有用である。 [2-1. Metal materials]
Metal materials to which the above-mentioned surface treatment agent can be applied include, but are not limited to, aluminum, steel, stainless steel, titanium, and alloys thereof. The above-mentioned surface treatment agent is particularly suitable for application to aluminum-containing metal materials. The material constituting the aluminum-containing metal material may be pure aluminum, but may also be an aluminum alloy. In addition, the above-mentioned surface treatment agent can be used as a material for a heat exchanger (e.g., a fin). The surface treatment agent is preferably applicable to the metal material used. Heat exchangers using metal materials to which the surface treatment agent is applied have excellent hydrophilicity, so that water droplets do not remain between the fins. This is useful in that it is possible to suppress a decrease in heat exchange efficiency, and ultimately to improve energy efficiency.
上記表面処理剤を適用可能な金属材料としては、特に制限はないが、アルミニウム、鉄鋼、ステンレス、チタン、及びこれらの合金が挙げられる。上記表面処理剤は、特にアルミニウム含有金属材料に好適に適用可能である。アルミニウム含有金属材料を構成する材料は、純アルミニウムであってもよいが、アルミニウム合金であってもよい。また、上記表面処理剤は、熱交換器の材料(例えば、フィン)として使用される金属材料に対して好適に適用可能である。上記表面処理剤が適用された金属材料を用いた熱交換器は、親水性に優れているのでフィン間に水滴が滞留することがなく、熱交換効率の低下を抑制でき、延いてはエネルギー効率の改善が図れる点で有用である。 [2-1. Metal materials]
Metal materials to which the above-mentioned surface treatment agent can be applied include, but are not limited to, aluminum, steel, stainless steel, titanium, and alloys thereof. The above-mentioned surface treatment agent is particularly suitable for application to aluminum-containing metal materials. The material constituting the aluminum-containing metal material may be pure aluminum, but may also be an aluminum alloy. In addition, the above-mentioned surface treatment agent can be used as a material for a heat exchanger (e.g., a fin). The surface treatment agent is preferably applicable to the metal material used. Heat exchangers using metal materials to which the surface treatment agent is applied have excellent hydrophilicity, so that water droplets do not remain between the fins. This is useful in that it is possible to suppress a decrease in heat exchange efficiency, and ultimately to improve energy efficiency.
[2-2.洗浄工程]
上記金属材料の表面は予め酸性又はアルカリ性洗浄剤で洗浄することが好ましい。使用する酸性洗浄剤の例としては、硝酸、硫酸、及びフッ酸の少なくとも一種を含有する酸性水溶液が挙げられる。アルカリ性洗浄剤の例としては、水酸化ナトリウム、珪酸ナトリウム、及びリン酸ナトリウムの少なくとも一種を含有するアルカリ水溶液を挙げることができる。洗浄性を高めるため、アルカリ水溶液に界面活性剤を添加してもよい。金属材料の洗浄方法としては、例えば、浸漬法及びスプレー法が挙げられる。 [2-2. Cleaning process]
The surface of the metal material is preferably washed in advance with an acidic or alkaline cleaner. An example of the acidic cleaner to be used is an acidic aqueous solution containing at least one of nitric acid, sulfuric acid, and hydrofluoric acid. An example of the alkaline cleaner is an alkaline aqueous solution containing at least one of sodium hydroxide, sodium silicate, and sodium phosphate. A surfactant may be added to the alkaline aqueous solution to enhance cleaning properties. Examples of methods for cleaning the metal material include an immersion method and a spray method.
上記金属材料の表面は予め酸性又はアルカリ性洗浄剤で洗浄することが好ましい。使用する酸性洗浄剤の例としては、硝酸、硫酸、及びフッ酸の少なくとも一種を含有する酸性水溶液が挙げられる。アルカリ性洗浄剤の例としては、水酸化ナトリウム、珪酸ナトリウム、及びリン酸ナトリウムの少なくとも一種を含有するアルカリ水溶液を挙げることができる。洗浄性を高めるため、アルカリ水溶液に界面活性剤を添加してもよい。金属材料の洗浄方法としては、例えば、浸漬法及びスプレー法が挙げられる。 [2-2. Cleaning process]
The surface of the metal material is preferably washed in advance with an acidic or alkaline cleaner. An example of the acidic cleaner to be used is an acidic aqueous solution containing at least one of nitric acid, sulfuric acid, and hydrofluoric acid. An example of the alkaline cleaner is an alkaline aqueous solution containing at least one of sodium hydroxide, sodium silicate, and sodium phosphate. A surfactant may be added to the alkaline aqueous solution to enhance cleaning properties. Examples of methods for cleaning the metal material include an immersion method and a spray method.
[2-3.下地防錆処理]
洗浄工程の後に下地防錆処理を行ってもよい。下地防錆処理としては特に限定されないが、化成処理及び/又は有機防錆剤による処理などが挙げられる。このうち化成処理に使用する化成処理剤としては、例えば、従来公知のクロム酸クロメート処理剤、リン酸クロメート処理剤又はノンクロム処理剤が挙げられる。有機防錆剤としては、例えば、従来公知の樹脂プライマーが挙げられる。好適な樹脂プライマーとしては、アクリル樹脂、ポリエステル樹脂、ポリウレタン樹脂、ポリオレフィン樹脂及びエポキシ樹脂から選ばれる少なくとも一種のポリマーであって、酸価が5~50mgKOH/gであるポリマーと、エポキシ基、アミノ基、オキサゾリン基及びカルボジイミド基から選ばれる少なくとも一つの官能基を有する架橋剤を含む樹脂プライマーが挙げられる。エポキシ基、アミノ基、オキサゾリン基及びカルボジイミド基から選ばれる少なくとも一つの官能基を有する架橋剤としては、例えば、エポキシ樹脂、メラミン樹脂、オキサゾリン基含有樹脂、カルボジイミド樹脂等が挙げられる。
下地防錆処理の方法は一実施形態において、
(iii)前記工程(i)の前に、下地防錆処理剤を金属材料の表面に接触させる工程と、
(iv)前記工程(iii)の後であって、前記工程(i)の前に、前記下地防錆処理剤を接触させた金属材料を乾燥し、下地防錆処理層を形成する工程と、を含む。
下地防錆処理剤を金属材料の表面に接触させる方法としては、特に制限されるものではないが、例えば、浸漬法及びスプレー法が挙げられる。
下地防錆処理層の皮膜量は、0.5g/m2以上5.0g/m2以下とするのが好ましく、1.0g/m2以上3.0g/m2以下とするのがより好ましく、1.0g/m2以上2.0g/m2以下とするが更により好ましい。 [2-3. Base rust prevention treatment]
A base rust prevention treatment may be performed after the cleaning step. The base rust prevention treatment is not particularly limited, but examples thereof include chemical conversion treatment and/or treatment with an organic rust inhibitor. Examples of the chemical conversion treatment agent used in the chemical conversion treatment include conventionally known chromate acid treatment agents, phosphate chromate treatment agents, and non-chromium treatment agents. Examples of the organic rust inhibitor include conventionally known resin primers. Suitable resin primers include at least one polymer selected from acrylic resins, polyester resins, polyurethane resins, polyolefin resins, and epoxy resins, which has an acid value of 5 to 50 mgKOH/g, and a resin primer containing a crosslinking agent having at least one functional group selected from epoxy groups, amino groups, oxazoline groups, and carbodiimide groups. Examples of the crosslinking agent having at least one functional group selected from epoxy groups, amino groups, oxazoline groups, and carbodiimide groups include epoxy resins, melamine resins, oxazoline group-containing resins, carbodiimide resins, and the like.
In one embodiment, the method for base rust prevention treatment comprises:
(iii) before the step (i), a step of contacting a base rust prevention treatment agent with a surface of a metal material;
(iv) after the step (iii) and before the step (i), drying the metal material that has been contacted with the base rust prevention treatment agent to form a base rust prevention treatment layer.
The method for contacting the base rust prevention treatment agent with the surface of the metal material is not particularly limited, but examples thereof include a dipping method and a spraying method.
The coating amount of the base rust-proofing treatment layer is preferably 0.5 g/ m2 or more and 5.0 g/ m2 or less, more preferably 1.0 g/ m2 or more and 3.0 g/ m2 or less, and even more preferably 1.0 g/ m2 or more and 2.0 g/ m2 or less.
洗浄工程の後に下地防錆処理を行ってもよい。下地防錆処理としては特に限定されないが、化成処理及び/又は有機防錆剤による処理などが挙げられる。このうち化成処理に使用する化成処理剤としては、例えば、従来公知のクロム酸クロメート処理剤、リン酸クロメート処理剤又はノンクロム処理剤が挙げられる。有機防錆剤としては、例えば、従来公知の樹脂プライマーが挙げられる。好適な樹脂プライマーとしては、アクリル樹脂、ポリエステル樹脂、ポリウレタン樹脂、ポリオレフィン樹脂及びエポキシ樹脂から選ばれる少なくとも一種のポリマーであって、酸価が5~50mgKOH/gであるポリマーと、エポキシ基、アミノ基、オキサゾリン基及びカルボジイミド基から選ばれる少なくとも一つの官能基を有する架橋剤を含む樹脂プライマーが挙げられる。エポキシ基、アミノ基、オキサゾリン基及びカルボジイミド基から選ばれる少なくとも一つの官能基を有する架橋剤としては、例えば、エポキシ樹脂、メラミン樹脂、オキサゾリン基含有樹脂、カルボジイミド樹脂等が挙げられる。
下地防錆処理の方法は一実施形態において、
(iii)前記工程(i)の前に、下地防錆処理剤を金属材料の表面に接触させる工程と、
(iv)前記工程(iii)の後であって、前記工程(i)の前に、前記下地防錆処理剤を接触させた金属材料を乾燥し、下地防錆処理層を形成する工程と、を含む。
下地防錆処理剤を金属材料の表面に接触させる方法としては、特に制限されるものではないが、例えば、浸漬法及びスプレー法が挙げられる。
下地防錆処理層の皮膜量は、0.5g/m2以上5.0g/m2以下とするのが好ましく、1.0g/m2以上3.0g/m2以下とするのがより好ましく、1.0g/m2以上2.0g/m2以下とするが更により好ましい。 [2-3. Base rust prevention treatment]
A base rust prevention treatment may be performed after the cleaning step. The base rust prevention treatment is not particularly limited, but examples thereof include chemical conversion treatment and/or treatment with an organic rust inhibitor. Examples of the chemical conversion treatment agent used in the chemical conversion treatment include conventionally known chromate acid treatment agents, phosphate chromate treatment agents, and non-chromium treatment agents. Examples of the organic rust inhibitor include conventionally known resin primers. Suitable resin primers include at least one polymer selected from acrylic resins, polyester resins, polyurethane resins, polyolefin resins, and epoxy resins, which has an acid value of 5 to 50 mgKOH/g, and a resin primer containing a crosslinking agent having at least one functional group selected from epoxy groups, amino groups, oxazoline groups, and carbodiimide groups. Examples of the crosslinking agent having at least one functional group selected from epoxy groups, amino groups, oxazoline groups, and carbodiimide groups include epoxy resins, melamine resins, oxazoline group-containing resins, carbodiimide resins, and the like.
In one embodiment, the method for base rust prevention treatment comprises:
(iii) before the step (i), a step of contacting a base rust prevention treatment agent with a surface of a metal material;
(iv) after the step (iii) and before the step (i), drying the metal material that has been contacted with the base rust prevention treatment agent to form a base rust prevention treatment layer.
The method for contacting the base rust prevention treatment agent with the surface of the metal material is not particularly limited, but examples thereof include a dipping method and a spraying method.
The coating amount of the base rust-proofing treatment layer is preferably 0.5 g/ m2 or more and 5.0 g/ m2 or less, more preferably 1.0 g/ m2 or more and 3.0 g/ m2 or less, and even more preferably 1.0 g/ m2 or more and 2.0 g/ m2 or less.
[2-4.接触工程]
上記金属表面処理剤を金属材料の表面に接触させる方法としては、特に制限されるものではないが、例えば、浸漬法、スプレー法、ロールコート法、刷毛塗り等が挙げられる。このときの表面処理剤温度は例えば10~50℃程度とすることができる。接触時間は例えば3秒~5分程度とすることができる。 [2-4. Contact process]
The method for contacting the metal surface treatment agent with the surface of the metal material is not particularly limited, but examples thereof include immersion, spraying, roll coating, brush coating, etc. The agent temperature may be, for example, about 10 to 50° C. The contact time may be, for example, about 3 seconds to 5 minutes.
上記金属表面処理剤を金属材料の表面に接触させる方法としては、特に制限されるものではないが、例えば、浸漬法、スプレー法、ロールコート法、刷毛塗り等が挙げられる。このときの表面処理剤温度は例えば10~50℃程度とすることができる。接触時間は例えば3秒~5分程度とすることができる。 [2-4. Contact process]
The method for contacting the metal surface treatment agent with the surface of the metal material is not particularly limited, but examples thereof include immersion, spraying, roll coating, brush coating, etc. The agent temperature may be, for example, about 10 to 50° C. The contact time may be, for example, about 3 seconds to 5 minutes.
[2-5.乾燥工程]
上記金属表面処理剤を接触させた金属材料を乾燥させる方法としては、該金属表面処理剤中の溶媒(主に水)が蒸発すれば特に制限されない。例示的には、公知の乾燥機器、例えば、オーブン、バッチ式の乾燥炉、連続式の熱風循環式乾燥炉、コンベアー式の熱風乾燥炉、IHヒーターを用いた電磁誘導加熱炉等を用いた乾燥方法等が挙げられる。乾燥温度は例えば150~250℃とすることができる。乾燥時間は例えば10秒~60分間とすることができる。 [2-5. Drying process]
The method for drying the metal material that has been brought into contact with the metal surface treatment agent is not particularly limited as long as the solvent (mainly water) in the metal surface treatment agent evaporates. For example, a known drying device, e.g. Examples of drying methods include drying methods using ovens, batch drying furnaces, continuous hot air circulation drying furnaces, conveyer hot air drying furnaces, and electromagnetic induction heating furnaces using IH heaters. The drying temperature is, for example, 150 The drying temperature can be up to 250° C. The drying time can be, for example, from 10 seconds to 60 minutes.
上記金属表面処理剤を接触させた金属材料を乾燥させる方法としては、該金属表面処理剤中の溶媒(主に水)が蒸発すれば特に制限されない。例示的には、公知の乾燥機器、例えば、オーブン、バッチ式の乾燥炉、連続式の熱風循環式乾燥炉、コンベアー式の熱風乾燥炉、IHヒーターを用いた電磁誘導加熱炉等を用いた乾燥方法等が挙げられる。乾燥温度は例えば150~250℃とすることができる。乾燥時間は例えば10秒~60分間とすることができる。 [2-5. Drying process]
The method for drying the metal material that has been brought into contact with the metal surface treatment agent is not particularly limited as long as the solvent (mainly water) in the metal surface treatment agent evaporates. For example, a known drying device, e.g. Examples of drying methods include drying methods using ovens, batch drying furnaces, continuous hot air circulation drying furnaces, conveyer hot air drying furnaces, and electromagnetic induction heating furnaces using IH heaters. The drying temperature is, for example, 150 The drying temperature can be up to 250° C. The drying time can be, for example, from 10 seconds to 60 minutes.
[2-6.表面処理層の質量]
上記表面処理層を有する表面処理金属材料における該表面処理層の皮膜量は、金属材料表面における表面処理層の均一性、並びに作業性及び生産性の観点から、0.05g/m2以上20g/m2以下とすることが好ましく、0.1g/m2以上2.0g/m2以下とすることがより好ましく、0.5g/m2以上1.5g/m2以下とすることが更により好ましい。 [2-6. Mass of surface treatment layer]
The coating amount of the surface treatment layer in the surface-treated metal material having the above-mentioned surface treatment layer is preferably 0.05 g/ m2 or more and 20 g/ m2 or less, more preferably 0.1 g/m2 or more and 2.0 g/m2 or less, and even more preferably 0.5 g/ m2 or more and 1.5 g/ m2 or less, from the viewpoints of the uniformity of the surface treatment layer on the metal material surface, and workability and productivity.
上記表面処理層を有する表面処理金属材料における該表面処理層の皮膜量は、金属材料表面における表面処理層の均一性、並びに作業性及び生産性の観点から、0.05g/m2以上20g/m2以下とすることが好ましく、0.1g/m2以上2.0g/m2以下とすることがより好ましく、0.5g/m2以上1.5g/m2以下とすることが更により好ましい。 [2-6. Mass of surface treatment layer]
The coating amount of the surface treatment layer in the surface-treated metal material having the above-mentioned surface treatment layer is preferably 0.05 g/ m2 or more and 20 g/ m2 or less, more preferably 0.1 g/m2 or more and 2.0 g/m2 or less, and even more preferably 0.5 g/ m2 or more and 1.5 g/ m2 or less, from the viewpoints of the uniformity of the surface treatment layer on the metal material surface, and workability and productivity.
[2-7.後処理工程]
本発明の一実施形態に係る表面処理金属材料は、成形加工性に優れるため、後処理工程として、潤滑油接触工程又は潤滑層形成工程を必要としないが、上記表面処理層を形成後に後処理工程を実施してもよい。後工程は具体的には、金属材料の表面に有する表面処理層の上に、潤滑油を接触させたり、潤滑剤を接触させて潤滑層を形成させたりする工程である。このようにして、上記表面処理層の上に、潤滑油を接触させた、又は潤滑層を形成させた、複数の表面処理層を有する金属材料を得ることができる。なお、潤滑油や潤滑剤の接触方法としては、特に制限されるものではないが、例えば、ロールコート法、スプレー法、及び浸漬法等が挙げられる。 [2-7. Post-treatment process]
The surface-treated metal material according to one embodiment of the present invention has excellent moldability, and therefore does not require a lubricant contact step or a lubricant layer forming step as a post-treatment step. However, a post-treatment step may be carried out after forming the surface treatment layer. Specifically, the post-treatment step is a step of contacting a lubricant or a lubricant on the surface treatment layer on the surface of the metal material to form a lubricant layer. In this way, a metal material having a plurality of surface treatment layers in which a lubricant is contacted or a lubricant layer is formed on the surface treatment layer can be obtained. The contact method of the lubricant or lubricant is not particularly limited, but examples thereof include a roll coating method, a spray method, and a dipping method.
本発明の一実施形態に係る表面処理金属材料は、成形加工性に優れるため、後処理工程として、潤滑油接触工程又は潤滑層形成工程を必要としないが、上記表面処理層を形成後に後処理工程を実施してもよい。後工程は具体的には、金属材料の表面に有する表面処理層の上に、潤滑油を接触させたり、潤滑剤を接触させて潤滑層を形成させたりする工程である。このようにして、上記表面処理層の上に、潤滑油を接触させた、又は潤滑層を形成させた、複数の表面処理層を有する金属材料を得ることができる。なお、潤滑油や潤滑剤の接触方法としては、特に制限されるものではないが、例えば、ロールコート法、スプレー法、及び浸漬法等が挙げられる。 [2-7. Post-treatment process]
The surface-treated metal material according to one embodiment of the present invention has excellent moldability, and therefore does not require a lubricant contact step or a lubricant layer forming step as a post-treatment step. However, a post-treatment step may be carried out after forming the surface treatment layer. Specifically, the post-treatment step is a step of contacting a lubricant or a lubricant on the surface treatment layer on the surface of the metal material to form a lubricant layer. In this way, a metal material having a plurality of surface treatment layers in which a lubricant is contacted or a lubricant layer is formed on the surface treatment layer can be obtained. The contact method of the lubricant or lubricant is not particularly limited, but examples thereof include a roll coating method, a spray method, and a dipping method.
潤滑油としては、成形加工時に使用される公知のものを用いることができる。また、潤滑層を形成するための潤滑剤としては、例えば、水溶性ポリエーテル、ポリエチレングリコール、ポリオキシエチレンアルキルエーテル、ポリオキシエチレン硬化ヒマシ油エーテルなどの公知の潤滑剤を用いることができる。
The lubricating oil may be any known lubricant used during molding. The lubricant for forming the lubricating layer may be any known lubricant such as water-soluble polyether, polyethylene glycol, polyoxyethylene alkyl ether, or polyoxyethylene hydrogenated castor oil ether.
以上のように、本発明の一実施形態に係る金属表面処理剤を用いて金属材料表面に表面処理層を形成することにより、親水持続性、耐汚染性、及び成型加工性を兼ね備えた表面処理剤を得る事ができる。また、本発明に係る表面処理層の形成方法により、該表面処理層の上層に潤滑層を形成することなく、親水持続性と成型加工性に優れた表面処理金属材料を製造することができるので、例えば、熱交換器用プレコートフィン材の製造を効率よく行なう事が可能となる。
As described above, by forming a surface treatment layer on the surface of a metal material using the metal surface treatment agent according to one embodiment of the present invention, a surface treatment agent that combines sustained hydrophilicity, contamination resistance, and moldability can be obtained. Furthermore, the method for forming a surface treatment layer according to the present invention makes it possible to manufacture a surface-treated metal material that has excellent sustained hydrophilicity and moldability without forming a lubricating layer on top of the surface treatment layer, which makes it possible to efficiently manufacture, for example, precoated fin materials for heat exchangers.
以下、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。
The present invention will be described in more detail below with reference to examples, but the present invention is not limited to these examples.
<水溶性ポリマー(A)の製造>
[合成例A1]
撹拌機、温度計及び還流冷却管を備えた四つ口フラスコに、水150gを仕込み80℃まで昇温した。次いで、撹拌下に、水50g、2-アクリルアミド-2-メチルプロパンスルホン酸ナトリウム塩65g及びアクリル酸35gから成る混合物と、30質量%過硫酸ナトリウム水溶液10gとを、それぞれ、3時間にわたって定量ポンプで連続的に滴下供給し、80℃で重合反応を行った。滴下終了後、更に系を80℃に保ったまま1時間熟成し、重合反応を完了した。反応液の酸価が300mgKOH/gとなるように32質量%水酸化ナトリウム水溶液で調整し、ポリマーA1を得た。先述した条件でポリマーA1の各モノマーユニットのモル分率、酸価、重量平均分子量及び多分散度を測定した(表1参照)。 <Production of Water-Soluble Polymer (A)>
[Synthesis Example A1]
A four-neck flask equipped with a stirrer, a thermometer and a reflux condenser was charged with 150 g of water and heated to 80 ° C. Then, under stirring, a mixture consisting of 50 g of water, 65 g of 2-acrylamido-2-methylpropanesulfonic acid sodium salt and 35 g of acrylic acid, and 10 g of 30 mass% aqueous sodium persulfate solution were continuously dropped by a metering pump over a period of 3 hours, respectively, and a polymerization reaction was carried out at 80 ° C. After the dropwise addition was completed, the system was further aged for 1 hour while maintaining the temperature at 80 ° C., and the polymerization reaction was completed. The acid value of the reaction solution was adjusted to 300 mg KOH / g with a 32 mass% aqueous sodium hydroxide solution, and polymer A1 was obtained. The mole fraction, acid value, weight average molecular weight and polydispersity of each monomer unit of polymer A1 were measured under the above-mentioned conditions (see Table 1).
[合成例A1]
撹拌機、温度計及び還流冷却管を備えた四つ口フラスコに、水150gを仕込み80℃まで昇温した。次いで、撹拌下に、水50g、2-アクリルアミド-2-メチルプロパンスルホン酸ナトリウム塩65g及びアクリル酸35gから成る混合物と、30質量%過硫酸ナトリウム水溶液10gとを、それぞれ、3時間にわたって定量ポンプで連続的に滴下供給し、80℃で重合反応を行った。滴下終了後、更に系を80℃に保ったまま1時間熟成し、重合反応を完了した。反応液の酸価が300mgKOH/gとなるように32質量%水酸化ナトリウム水溶液で調整し、ポリマーA1を得た。先述した条件でポリマーA1の各モノマーユニットのモル分率、酸価、重量平均分子量及び多分散度を測定した(表1参照)。 <Production of Water-Soluble Polymer (A)>
[Synthesis Example A1]
A four-neck flask equipped with a stirrer, a thermometer and a reflux condenser was charged with 150 g of water and heated to 80 ° C. Then, under stirring, a mixture consisting of 50 g of water, 65 g of 2-acrylamido-2-methylpropanesulfonic acid sodium salt and 35 g of acrylic acid, and 10 g of 30 mass% aqueous sodium persulfate solution were continuously dropped by a metering pump over a period of 3 hours, respectively, and a polymerization reaction was carried out at 80 ° C. After the dropwise addition was completed, the system was further aged for 1 hour while maintaining the temperature at 80 ° C., and the polymerization reaction was completed. The acid value of the reaction solution was adjusted to 300 mg KOH / g with a 32 mass% aqueous sodium hydroxide solution, and polymer A1 was obtained. The mole fraction, acid value, weight average molecular weight and polydispersity of each monomer unit of polymer A1 were measured under the above-mentioned conditions (see Table 1).
[合成例A2~19]
スルホ基含有モノマー、並びに、スルホ基及びその塩以外のアニオン性官能基を有するモノマーユニットの種類及び使用量、重合時間と酸価を変更した以外は、合成例A1と同様の操作を行い、ポリマーA2~19を得た。先述した条件でポリマーA2~19の重量平均分子量及び多分散度を測定した(表1参照)。なお、表1中のA5、A7、A17において、2-アクリルアミド-2-メチルプロパンスルホン酸が「重合前部分中和」されていると記載されているが、これは、重合前に部分的に水酸化ナトリウム水溶液で中和したことを意味する。また、表1中のA4、A16、A18において、アクリル酸が「重合後部分中和」されていると記載されているが、これは重合後に部分的に水酸化ナトリウム水溶液で中和したことを意味する。 [Synthesis Examples A2 to A19]
Polymers A2 to 19 were obtained by the same operation as in Synthesis Example A1, except that the type and amount of the sulfo group-containing monomer and the monomer unit having an anionic functional group other than a sulfo group and its salt, the polymerization time, and the acid value were changed. The weight average molecular weight and polydispersity of the polymers A2 to 19 were measured under the above-mentioned conditions (see Table 1). In addition, in A5, A7, and A17 in Table 1, it is described that 2-acrylamido-2-methylpropanesulfonic acid is "partially neutralized before polymerization", which means that it was partially neutralized with an aqueous sodium hydroxide solution before polymerization. In addition, in A4, A16, and A18 in Table 1, it is described that acrylic acid is "partially neutralized after polymerization", which means that it was partially neutralized with an aqueous sodium hydroxide solution after polymerization.
スルホ基含有モノマー、並びに、スルホ基及びその塩以外のアニオン性官能基を有するモノマーユニットの種類及び使用量、重合時間と酸価を変更した以外は、合成例A1と同様の操作を行い、ポリマーA2~19を得た。先述した条件でポリマーA2~19の重量平均分子量及び多分散度を測定した(表1参照)。なお、表1中のA5、A7、A17において、2-アクリルアミド-2-メチルプロパンスルホン酸が「重合前部分中和」されていると記載されているが、これは、重合前に部分的に水酸化ナトリウム水溶液で中和したことを意味する。また、表1中のA4、A16、A18において、アクリル酸が「重合後部分中和」されていると記載されているが、これは重合後に部分的に水酸化ナトリウム水溶液で中和したことを意味する。 [Synthesis Examples A2 to A19]
Polymers A2 to 19 were obtained by the same operation as in Synthesis Example A1, except that the type and amount of the sulfo group-containing monomer and the monomer unit having an anionic functional group other than a sulfo group and its salt, the polymerization time, and the acid value were changed. The weight average molecular weight and polydispersity of the polymers A2 to 19 were measured under the above-mentioned conditions (see Table 1). In addition, in A5, A7, and A17 in Table 1, it is described that 2-acrylamido-2-methylpropanesulfonic acid is "partially neutralized before polymerization", which means that it was partially neutralized with an aqueous sodium hydroxide solution before polymerization. In addition, in A4, A16, and A18 in Table 1, it is described that acrylic acid is "partially neutralized after polymerization", which means that it was partially neutralized with an aqueous sodium hydroxide solution after polymerization.
[合成例A20]
撹拌機、温度計及び還流冷却管を備えた四つ口フラスコに、水150gを仕込み80℃まで昇温した。次いで、撹拌下に、水50g、2-アクリルアミド-2-メチルプロパンスルホン酸100gと、30質量%過硫酸ナトリウム水溶液10gとを、それぞれ、3時間にわたって定量ポンプで連続的に滴下供給し、80℃で重合反応を行った。滴下終了後、更に系を80℃に保ったまま1時間熟成し、重合反応を完了した。反応液の酸価が300mgKOH/gとなるように32質量%水酸化ナトリウム水溶液で調整し、ポリマーA20を得た。先述した条件でポリマーA20の各モノマーユニットのモル分率、酸価、重量平均分子量及び多分散度を測定した(表1参照)。 [Synthesis Example A20]
A four-neck flask equipped with a stirrer, a thermometer, and a reflux condenser was charged with 150 g of water and heated to 80 ° C. Then, under stirring, 50 g of water, 100 g of 2-acrylamido-2-methylpropanesulfonic acid, and 10 g of 30 mass% aqueous sodium persulfate solution were continuously added dropwise with a metering pump over a period of 3 hours, and a polymerization reaction was carried out at 80 ° C. After the dropwise addition, the system was further aged for 1 hour while maintaining the temperature at 80 ° C., and the polymerization reaction was completed. The acid value of the reaction solution was adjusted to 300 mg KOH / g with a 32 mass% aqueous sodium hydroxide solution, and polymer A20 was obtained. The mole fraction, acid value, weight average molecular weight, and polydispersity of each monomer unit of polymer A20 were measured under the above-mentioned conditions (see Table 1).
撹拌機、温度計及び還流冷却管を備えた四つ口フラスコに、水150gを仕込み80℃まで昇温した。次いで、撹拌下に、水50g、2-アクリルアミド-2-メチルプロパンスルホン酸100gと、30質量%過硫酸ナトリウム水溶液10gとを、それぞれ、3時間にわたって定量ポンプで連続的に滴下供給し、80℃で重合反応を行った。滴下終了後、更に系を80℃に保ったまま1時間熟成し、重合反応を完了した。反応液の酸価が300mgKOH/gとなるように32質量%水酸化ナトリウム水溶液で調整し、ポリマーA20を得た。先述した条件でポリマーA20の各モノマーユニットのモル分率、酸価、重量平均分子量及び多分散度を測定した(表1参照)。 [Synthesis Example A20]
A four-neck flask equipped with a stirrer, a thermometer, and a reflux condenser was charged with 150 g of water and heated to 80 ° C. Then, under stirring, 50 g of water, 100 g of 2-acrylamido-2-methylpropanesulfonic acid, and 10 g of 30 mass% aqueous sodium persulfate solution were continuously added dropwise with a metering pump over a period of 3 hours, and a polymerization reaction was carried out at 80 ° C. After the dropwise addition, the system was further aged for 1 hour while maintaining the temperature at 80 ° C., and the polymerization reaction was completed. The acid value of the reaction solution was adjusted to 300 mg KOH / g with a 32 mass% aqueous sodium hydroxide solution, and polymer A20 was obtained. The mole fraction, acid value, weight average molecular weight, and polydispersity of each monomer unit of polymer A20 were measured under the above-mentioned conditions (see Table 1).
[合成例A21]
撹拌機、温度計及び還流冷却管を備えた四つ口フラスコに、水150gを仕込み80℃まで昇温した。次いで、撹拌下に、水50g、アクリル酸100gと、30質量%過硫酸ナトリウム水溶液10gとを、それぞれ、3時間にわたって定量ポンプで連続的に滴下供給し、80℃で重合反応を行った。滴下終了後、更に系を80℃に保ったまま1時間熟成し、重合反応を完了した。反応液の酸価が300mgKOH/gとなるように32質量%水酸化ナトリウム水溶液で調整し、ポリマーA21を得た。先述した条件でポリマーA21の各モノマーユニットのモル分率、酸価、重量平均分子量及び多分散度を測定した(表1参照)。 [Synthesis Example A21]
A four-neck flask equipped with a stirrer, a thermometer and a reflux condenser was charged with 150 g of water and heated to 80 ° C. Then, under stirring, 50 g of water, 100 g of acrylic acid and 10 g of 30 mass% aqueous sodium persulfate solution were continuously dripped in by a metering pump over 3 hours, respectively, and a polymerization reaction was carried out at 80 ° C. After the dripping was completed, the system was further aged for 1 hour while being kept at 80 ° C., and the polymerization reaction was completed. The acid value of the reaction solution was adjusted to 300 mg KOH / g with a 32 mass% aqueous sodium hydroxide solution, and polymer A21 was obtained. The mole fraction, acid value, weight average molecular weight and polydispersity of each monomer unit of polymer A21 were measured under the above-mentioned conditions (see Table 1).
撹拌機、温度計及び還流冷却管を備えた四つ口フラスコに、水150gを仕込み80℃まで昇温した。次いで、撹拌下に、水50g、アクリル酸100gと、30質量%過硫酸ナトリウム水溶液10gとを、それぞれ、3時間にわたって定量ポンプで連続的に滴下供給し、80℃で重合反応を行った。滴下終了後、更に系を80℃に保ったまま1時間熟成し、重合反応を完了した。反応液の酸価が300mgKOH/gとなるように32質量%水酸化ナトリウム水溶液で調整し、ポリマーA21を得た。先述した条件でポリマーA21の各モノマーユニットのモル分率、酸価、重量平均分子量及び多分散度を測定した(表1参照)。 [Synthesis Example A21]
A four-neck flask equipped with a stirrer, a thermometer and a reflux condenser was charged with 150 g of water and heated to 80 ° C. Then, under stirring, 50 g of water, 100 g of acrylic acid and 10 g of 30 mass% aqueous sodium persulfate solution were continuously dripped in by a metering pump over 3 hours, respectively, and a polymerization reaction was carried out at 80 ° C. After the dripping was completed, the system was further aged for 1 hour while being kept at 80 ° C., and the polymerization reaction was completed. The acid value of the reaction solution was adjusted to 300 mg KOH / g with a 32 mass% aqueous sodium hydroxide solution, and polymer A21 was obtained. The mole fraction, acid value, weight average molecular weight and polydispersity of each monomer unit of polymer A21 were measured under the above-mentioned conditions (see Table 1).
<界面活性剤(B)>
表2に示す界面活性剤を用意した。尚、ノニオン性界面活性剤のHLBはグリフィン法より求めた。 <Surfactant (B)>
The surfactants shown in Table 2 were prepared. The HLB of the nonionic surfactants was determined by the Griffin method.
表2に示す界面活性剤を用意した。尚、ノニオン性界面活性剤のHLBはグリフィン法より求めた。 <Surfactant (B)>
The surfactants shown in Table 2 were prepared. The HLB of the nonionic surfactants was determined by the Griffin method.
<水溶性ポリマー(C)の製造>
[合成例C1]
還流冷却器、原料投入口、温度計、加圧ガス導入口及び撹拌翼を備えた2Lオートクレーブ反応器に、加圧ガスとして窒素ガスを導入しながら酢酸ビニル50g及びメタノール80gを投入し、開始剤として2,2’-アゾビス(2,4-ジメチルバレロニトリル)の2質量%メタノール溶液30mLを少量ずつ添加した。メタノール溶液を全量添加し終えた後、60℃に加温して重合反応を開始した。反応開始から5時間経過後に未反応の酢酸ビニルを減圧除去し酢酸ビニル樹脂メタノール溶液を調製した。得られた酢酸ビニル樹脂メタノール溶液に10質量%水酸化ナトリウム水溶液を、原料として用いた酢酸ビニル(50g)に対する水酸化ナトリウムのモル比が0.01になるように加え、50℃で1時間けん化した。次いで、メタノールを減圧留去し、遠心分離にて水を除き、乾燥することでけん化度98モル%のポリビニルアルコール(ポリマーC1)を得た。先述した条件で重量平均分子量を測定した(表3参照)。 <Production of Water-Soluble Polymer (C)>
[Synthesis Example C1]
In a 2L autoclave reactor equipped with a reflux condenser, a raw material inlet, a thermometer, a pressurized gas inlet, and a stirring blade, 50 g of vinyl acetate and 80 g of methanol were charged while introducing nitrogen gas as a pressurized gas, and 30 mL of a 2% by mass methanol solution of 2,2'-azobis(2,4-dimethylvaleronitrile) was added little by little as an initiator. After the entire amount of the methanol solution was added, the mixture was heated to 60°C to start the polymerization reaction. After 5 hours had elapsed from the start of the reaction, the unreacted vinyl acetate was removed under reduced pressure to prepare a vinyl acetate resin methanol solution. A 10% by mass aqueous sodium hydroxide solution was added to the obtained vinyl acetate resin methanol solution so that the molar ratio of sodium hydroxide to the vinyl acetate (50 g) used as the raw material was 0.01, and the mixture was saponified at 50°C for 1 hour. Next, methanol was distilled off under reduced pressure, water was removed by centrifugation, and the mixture was dried to obtain a polyvinyl alcohol (polymer C1) with a saponification degree of 98 mol%. The weight average molecular weight was measured under the conditions described above (see Table 3).
[合成例C1]
還流冷却器、原料投入口、温度計、加圧ガス導入口及び撹拌翼を備えた2Lオートクレーブ反応器に、加圧ガスとして窒素ガスを導入しながら酢酸ビニル50g及びメタノール80gを投入し、開始剤として2,2’-アゾビス(2,4-ジメチルバレロニトリル)の2質量%メタノール溶液30mLを少量ずつ添加した。メタノール溶液を全量添加し終えた後、60℃に加温して重合反応を開始した。反応開始から5時間経過後に未反応の酢酸ビニルを減圧除去し酢酸ビニル樹脂メタノール溶液を調製した。得られた酢酸ビニル樹脂メタノール溶液に10質量%水酸化ナトリウム水溶液を、原料として用いた酢酸ビニル(50g)に対する水酸化ナトリウムのモル比が0.01になるように加え、50℃で1時間けん化した。次いで、メタノールを減圧留去し、遠心分離にて水を除き、乾燥することでけん化度98モル%のポリビニルアルコール(ポリマーC1)を得た。先述した条件で重量平均分子量を測定した(表3参照)。 <Production of Water-Soluble Polymer (C)>
[Synthesis Example C1]
In a 2L autoclave reactor equipped with a reflux condenser, a raw material inlet, a thermometer, a pressurized gas inlet, and a stirring blade, 50 g of vinyl acetate and 80 g of methanol were charged while introducing nitrogen gas as a pressurized gas, and 30 mL of a 2% by mass methanol solution of 2,2'-azobis(2,4-dimethylvaleronitrile) was added little by little as an initiator. After the entire amount of the methanol solution was added, the mixture was heated to 60°C to start the polymerization reaction. After 5 hours had elapsed from the start of the reaction, the unreacted vinyl acetate was removed under reduced pressure to prepare a vinyl acetate resin methanol solution. A 10% by mass aqueous sodium hydroxide solution was added to the obtained vinyl acetate resin methanol solution so that the molar ratio of sodium hydroxide to the vinyl acetate (50 g) used as the raw material was 0.01, and the mixture was saponified at 50°C for 1 hour. Next, methanol was distilled off under reduced pressure, water was removed by centrifugation, and the mixture was dried to obtain a polyvinyl alcohol (polymer C1) with a saponification degree of 98 mol%. The weight average molecular weight was measured under the conditions described above (see Table 3).
[合成例C2]
撹拌機、温度計、還流冷却管および窒素ガス導入管を備えた四つ口フラスコに、アクリルアミド234.6g、及びイオン交換水960gを仕込み、窒素ガスを通じて反応系内の酸素を除去した。系内を40℃にし撹拌下に重合開始剤として過硫酸アンモニウム0.25g及び亜硫酸水素ナトリウム0.15gを投入した。90℃まで昇温し、重合反応を行った。系を90℃に保ったまま、2時間熟成し、重合反応を完了し、ポリアクリルアミド(ポリマーC2)を得た。先述した条件で重量平均分子量を測定した(表3参照)。 [Synthesis Example C2]
A four-neck flask equipped with a stirrer, a thermometer, a reflux condenser and a nitrogen gas inlet tube was charged with 234.6 g of acrylamide and 960 g of ion-exchanged water, and oxygen in the reaction system was removed by passing nitrogen gas through it. The system was heated to 40°C, and 0.25 g of ammonium persulfate and 0.15 g of sodium hydrogen sulfite were added as polymerization initiators while stirring. The temperature was raised to 90°C, and the polymerization reaction was carried out. The system was kept at 90°C and aged for 2 hours to complete the polymerization reaction, and polyacrylamide (polymer C2) was obtained. The weight average molecular weight was measured under the above-mentioned conditions (see Table 3).
撹拌機、温度計、還流冷却管および窒素ガス導入管を備えた四つ口フラスコに、アクリルアミド234.6g、及びイオン交換水960gを仕込み、窒素ガスを通じて反応系内の酸素を除去した。系内を40℃にし撹拌下に重合開始剤として過硫酸アンモニウム0.25g及び亜硫酸水素ナトリウム0.15gを投入した。90℃まで昇温し、重合反応を行った。系を90℃に保ったまま、2時間熟成し、重合反応を完了し、ポリアクリルアミド(ポリマーC2)を得た。先述した条件で重量平均分子量を測定した(表3参照)。 [Synthesis Example C2]
A four-neck flask equipped with a stirrer, a thermometer, a reflux condenser and a nitrogen gas inlet tube was charged with 234.6 g of acrylamide and 960 g of ion-exchanged water, and oxygen in the reaction system was removed by passing nitrogen gas through it. The system was heated to 40°C, and 0.25 g of ammonium persulfate and 0.15 g of sodium hydrogen sulfite were added as polymerization initiators while stirring. The temperature was raised to 90°C, and the polymerization reaction was carried out. The system was kept at 90°C and aged for 2 hours to complete the polymerization reaction, and polyacrylamide (polymer C2) was obtained. The weight average molecular weight was measured under the above-mentioned conditions (see Table 3).
<アルキレンオキシド付加物(D)の用意>
表4に示すアルキレンオキシド付加物を用意した。D1、D2の付加モル数は、分子構造から算出可能であり、一分子中に付加されたエチレンオキシド単位(-C2H4O-)の合計数に等しい。 <Preparation of alkylene oxide adduct (D)>
The alkylene oxide adducts shown in Table 4 were prepared. The number of moles of D1 and D2 added can be calculated from the molecular structure, and is equal to the total number of ethylene oxide units (-C 2 H 4 O-) added in one molecule.
表4に示すアルキレンオキシド付加物を用意した。D1、D2の付加モル数は、分子構造から算出可能であり、一分子中に付加されたエチレンオキシド単位(-C2H4O-)の合計数に等しい。 <Preparation of alkylene oxide adduct (D)>
The alkylene oxide adducts shown in Table 4 were prepared. The number of moles of D1 and D2 added can be calculated from the molecular structure, and is equal to the total number of ethylene oxide units (-C 2 H 4 O-) added in one molecule.
<表面処理剤の調製>
各実施例、比較例の表面処理剤X1~36は、上記で用意したポリマー(A)と、界面活性剤(B)と、水溶性ポリマー(C)と、アルキレンオキシド付加物(D)とを、表5に示す固形分の質量配合比となるように混合し、次いで、得られた混合物の固形分量100gに対し、全量が1000gとなるように脱イオン水を配合し、撹拌することにより調製した。ここでいう「固形分量」はJIS K6828-1に準拠して測定される不揮発分を指す(サンプル重量:1.0g、乾燥温度110℃×2時間乾燥)。 <Preparation of Surface Treatment Agent>
Surface treatment agents X1 to 36 in each of the Examples and Comparative Examples were prepared by mixing the polymer (A), surfactant (B), water-soluble polymer (C), and alkylene oxide adduct (D) prepared above in the mass blending ratio of the solid contents shown in Table 5, and then mixing and stirring deionized water to a total amount of 1000 g per 100 g of solid content of the resulting mixture. The "solid content" referred to here refers to the non-volatile content measured in accordance with JIS K6828-1 (sample weight: 1.0 g, dried at a drying temperature of 110°C for 2 hours).
各実施例、比較例の表面処理剤X1~36は、上記で用意したポリマー(A)と、界面活性剤(B)と、水溶性ポリマー(C)と、アルキレンオキシド付加物(D)とを、表5に示す固形分の質量配合比となるように混合し、次いで、得られた混合物の固形分量100gに対し、全量が1000gとなるように脱イオン水を配合し、撹拌することにより調製した。ここでいう「固形分量」はJIS K6828-1に準拠して測定される不揮発分を指す(サンプル重量:1.0g、乾燥温度110℃×2時間乾燥)。 <Preparation of Surface Treatment Agent>
Surface treatment agents X1 to 36 in each of the Examples and Comparative Examples were prepared by mixing the polymer (A), surfactant (B), water-soluble polymer (C), and alkylene oxide adduct (D) prepared above in the mass blending ratio of the solid contents shown in Table 5, and then mixing and stirring deionized water to a total amount of 1000 g per 100 g of solid content of the resulting mixture. The "solid content" referred to here refers to the non-volatile content measured in accordance with JIS K6828-1 (sample weight: 1.0 g, dried at a drying temperature of 110°C for 2 hours).
[試験板の作製]
以下に本発明を、実施例及び比較例を用いて、具体的に説明する。これらの実施例は本発明の説明のために記載するものであり、本発明を何ら限定するものではない。 [Preparation of test plate]
The present invention will be specifically described below using examples and comparative examples. These examples are described for the purpose of explaining the present invention, and are not intended to limit the present invention in any way.
以下に本発明を、実施例及び比較例を用いて、具体的に説明する。これらの実施例は本発明の説明のために記載するものであり、本発明を何ら限定するものではない。 [Preparation of test plate]
The present invention will be specifically described below using examples and comparative examples. These examples are described for the purpose of explaining the present invention, and are not intended to limit the present invention in any way.
<試験材の用意>
JIS H 4000:2014で規定されるA1050の組成をもつ、板厚0.1mmのアルミニウム材(株式会社UACJ製)を用意した。 <Preparation of test materials>
An aluminum material (manufactured by UACJ Corporation) having a composition of A1050 as defined in JIS H 4000:2014 and a plate thickness of 0.1 mm was prepared.
JIS H 4000:2014で規定されるA1050の組成をもつ、板厚0.1mmのアルミニウム材(株式会社UACJ製)を用意した。 <Preparation of test materials>
An aluminum material (manufactured by UACJ Corporation) having a composition of A1050 as defined in JIS H 4000:2014 and a plate thickness of 0.1 mm was prepared.
<表面処理層の形成>
アルカリ脱脂剤「ファインクリーナーFC-4477」(日本パーカライジング株式会社製)を濃度20g/L、浴温度60℃に調整し、15秒間スプレー処理し、表面に付着しているゴミや油を除去した後、表面に残存しているアルカリ分を脱イオン水により洗浄した。その後、水切りし、表面を乾燥させたものを試験材として使用した。 <Formation of Surface Treatment Layer>
The alkaline degreaser "Fine Cleaner FC-4477" (manufactured by Nihon Parkerizing Co., Ltd.) was adjusted to a concentration of 20 g/L and a bath temperature of 60°C, and sprayed for 15 seconds to remove dirt and oil adhering to the surface, and then the alkali remaining on the surface was washed off with deionized water. The water was then drained off, and the surface was dried to use as the test material.
アルカリ脱脂剤「ファインクリーナーFC-4477」(日本パーカライジング株式会社製)を濃度20g/L、浴温度60℃に調整し、15秒間スプレー処理し、表面に付着しているゴミや油を除去した後、表面に残存しているアルカリ分を脱イオン水により洗浄した。その後、水切りし、表面を乾燥させたものを試験材として使用した。 <Formation of Surface Treatment Layer>
The alkaline degreaser "Fine Cleaner FC-4477" (manufactured by Nihon Parkerizing Co., Ltd.) was adjusted to a concentration of 20 g/L and a bath temperature of 60°C, and sprayed for 15 seconds to remove dirt and oil adhering to the surface, and then the alkali remaining on the surface was washed off with deionized water. The water was then drained off, and the surface was dried to use as the test material.
<単層処理の試験板(実施例1~32、比較例1~8)>
前記洗浄された試験材に、表5の各金属表面処理剤をバーコーターで塗布し、熱風循環式乾燥炉で乾燥し、表6に示す実施例、比較例に係る試験板を作製した。尚、各表面処理層はバーコーターの種類と金属表面処理剤の濃度により、皮膜量を表6に示す通りに調整した。乾燥温度は、オーブン中の雰囲気温度とオーブンに入れている時間とで調節し、試験板表面の到達温度(PMT)が200℃となるように設定した。 <Single-layer treated test panels (Examples 1 to 32, Comparative Examples 1 to 8)>
Each metal surface treatment agent in Table 5 was applied to the washed test material with a bar coater and dried in a hot air circulation drying oven to prepare test plates according to the Examples and Comparative Examples shown in Table 6. The amount of film of each surface treatment layer was adjusted as shown in Table 6 depending on the type of bar coater and the concentration of the metal surface treatment agent. The drying temperature was adjusted by the atmospheric temperature in the oven and the time spent in the oven, and was set so that the ultimate temperature (PMT) of the test plate surface was 200°C.
前記洗浄された試験材に、表5の各金属表面処理剤をバーコーターで塗布し、熱風循環式乾燥炉で乾燥し、表6に示す実施例、比較例に係る試験板を作製した。尚、各表面処理層はバーコーターの種類と金属表面処理剤の濃度により、皮膜量を表6に示す通りに調整した。乾燥温度は、オーブン中の雰囲気温度とオーブンに入れている時間とで調節し、試験板表面の到達温度(PMT)が200℃となるように設定した。 <Single-layer treated test panels (Examples 1 to 32, Comparative Examples 1 to 8)>
Each metal surface treatment agent in Table 5 was applied to the washed test material with a bar coater and dried in a hot air circulation drying oven to prepare test plates according to the Examples and Comparative Examples shown in Table 6. The amount of film of each surface treatment layer was adjusted as shown in Table 6 depending on the type of bar coater and the concentration of the metal surface treatment agent. The drying temperature was adjusted by the atmospheric temperature in the oven and the time spent in the oven, and was set so that the ultimate temperature (PMT) of the test plate surface was 200°C.
<複層処理の試験板(実施例33~37)>
(下層)
前記洗浄された試験材に、酸価5~50mgKOH/gのアクリル樹脂エマルションとメラミン樹脂を含む下地防錆処理剤をバーコーターで塗布し、熱風循環式乾燥炉内でPMT200℃となるように乾燥し、表6に示す皮膜量の下地防錆処理層を形成させた。 <Test panels with multi-layer treatment (Examples 33 to 37)>
(Lower layer)
A base rust prevention treatment agent containing an acrylic resin emulsion having an acid value of 5 to 50 mgKOH/g and a melamine resin was applied to the washed test material using a bar coater, and the material was dried in a hot air circulation drying oven to a PMT of 200°C to form a base rust prevention treatment layer with the coating amount shown in Table 6.
(下層)
前記洗浄された試験材に、酸価5~50mgKOH/gのアクリル樹脂エマルションとメラミン樹脂を含む下地防錆処理剤をバーコーターで塗布し、熱風循環式乾燥炉内でPMT200℃となるように乾燥し、表6に示す皮膜量の下地防錆処理層を形成させた。 <Test panels with multi-layer treatment (Examples 33 to 37)>
(Lower layer)
A base rust prevention treatment agent containing an acrylic resin emulsion having an acid value of 5 to 50 mgKOH/g and a melamine resin was applied to the washed test material using a bar coater, and the material was dried in a hot air circulation drying oven to a PMT of 200°C to form a base rust prevention treatment layer with the coating amount shown in Table 6.
<複層処理の試験板(実施例38~40)>
(下層)
前記洗浄された試験材に、リン酸クロメート処理剤「アルクロムK702」(日本パーカライジング株式会社製)の4質量%水溶液を、50℃で5秒間スプレーした後、水洗して80℃で1分間乾燥し、表6に示す皮膜量のリン酸クロメート処理層を形成させた。 <Test panels with multi-layer treatment (Examples 38 to 40)>
(Lower layer)
A 4% by mass aqueous solution of a chromate phosphate treatment agent "Alchrom K702" (manufactured by Nihon Parkerizing Co., Ltd.) was sprayed onto the washed test material at 50°C for 5 seconds, followed by rinsing with water and drying at 80°C for 1 minute to form a chromate phosphate treatment layer with the coating amount shown in Table 6.
(下層)
前記洗浄された試験材に、リン酸クロメート処理剤「アルクロムK702」(日本パーカライジング株式会社製)の4質量%水溶液を、50℃で5秒間スプレーした後、水洗して80℃で1分間乾燥し、表6に示す皮膜量のリン酸クロメート処理層を形成させた。 <Test panels with multi-layer treatment (Examples 38 to 40)>
(Lower layer)
A 4% by mass aqueous solution of a chromate phosphate treatment agent "Alchrom K702" (manufactured by Nihon Parkerizing Co., Ltd.) was sprayed onto the washed test material at 50°C for 5 seconds, followed by rinsing with water and drying at 80°C for 1 minute to form a chromate phosphate treatment layer with the coating amount shown in Table 6.
(上層)
次いで、下地防錆処理層の上に、表5の各金属表面処理剤(液温:25℃)をバーコーターで塗布し、熱風循環式乾燥炉内でPMT200℃となるように乾燥し、表6に示す皮膜量の表面処理層を有する試験板を作製した。 (Upper layer)
Next, each metal surface treatment agent (liquid temperature: 25°C) in Table 5 was applied onto the base rust-proofing layer using a bar coater, and then dried in a hot air circulating drying oven to a PMT of 200°C to prepare test plates having a surface treatment layer with the coating amount shown in Table 6.
次いで、下地防錆処理層の上に、表5の各金属表面処理剤(液温:25℃)をバーコーターで塗布し、熱風循環式乾燥炉内でPMT200℃となるように乾燥し、表6に示す皮膜量の表面処理層を有する試験板を作製した。 (Upper layer)
Next, each metal surface treatment agent (liquid temperature: 25°C) in Table 5 was applied onto the base rust-proofing layer using a bar coater, and then dried in a hot air circulating drying oven to a PMT of 200°C to prepare test plates having a surface treatment layer with the coating amount shown in Table 6.
<親水性評価方法>
上記で作製した試験板上に1μLの脱イオン水を滴下し、形成された水滴の接触角を接触角計(協和界面科学株式会社製:DM-501)により測定した。表面処理後に室温まで冷却した試験板の接触角を初期親水性とし、脱イオン水に240時間流水浸漬し、50℃に調整した送風乾燥機内で1時間乾燥させ室温まで冷却した後の試験板の接触角を親水持続性とした。本発明の目的である初期親水性は4点以上、親水持続性は3点以上を合格とした(表7参照)。
<親水性の評価基準>
5点:10°未満
4点:10°以上20°未満
3点:20°以上30°未満
2点:30°以上40°未満
1点:40°以上 <Hydrophilicity Evaluation Method>
1 μL of deionized water was dropped onto the test plate prepared above, and the contact angle of the water droplet formed was measured using a contact angle meter (DM-501, manufactured by Kyowa Interface Science Co., Ltd.). The contact angle of the test plate cooled to room temperature after surface treatment was determined as initial hydrophilicity, and the contact angle of the test plate after immersion in running deionized water for 240 hours, drying for 1 hour in a blower dryer adjusted to 50° C., and cooling to room temperature was determined as sustained hydrophilicity. A score of 4 or more for initial hydrophilicity and a score of 3 or more for sustained hydrophilicity, which are the objectives of the present invention, were determined as pass (see Table 7).
<Evaluation Criteria for Hydrophilicity>
5 points: Less than 10° 4 points: 10° or more and less than 20° 3 points: 20° or more and less than 30° 2 points: 30° or more and less than 40° 1 point: 40° or more
上記で作製した試験板上に1μLの脱イオン水を滴下し、形成された水滴の接触角を接触角計(協和界面科学株式会社製:DM-501)により測定した。表面処理後に室温まで冷却した試験板の接触角を初期親水性とし、脱イオン水に240時間流水浸漬し、50℃に調整した送風乾燥機内で1時間乾燥させ室温まで冷却した後の試験板の接触角を親水持続性とした。本発明の目的である初期親水性は4点以上、親水持続性は3点以上を合格とした(表7参照)。
<親水性の評価基準>
5点:10°未満
4点:10°以上20°未満
3点:20°以上30°未満
2点:30°以上40°未満
1点:40°以上 <Hydrophilicity Evaluation Method>
1 μL of deionized water was dropped onto the test plate prepared above, and the contact angle of the water droplet formed was measured using a contact angle meter (DM-501, manufactured by Kyowa Interface Science Co., Ltd.). The contact angle of the test plate cooled to room temperature after surface treatment was determined as initial hydrophilicity, and the contact angle of the test plate after immersion in running deionized water for 240 hours, drying for 1 hour in a blower dryer adjusted to 50° C., and cooling to room temperature was determined as sustained hydrophilicity. A score of 4 or more for initial hydrophilicity and a score of 3 or more for sustained hydrophilicity, which are the objectives of the present invention, were determined as pass (see Table 7).
<Evaluation Criteria for Hydrophilicity>
5 points: Less than 10° 4 points: 10° or more and less than 20° 3 points: 20° or more and less than 30° 2 points: 30° or more and less than 40° 1 point: 40° or more
<耐汚染性評価方法>
表面処理後に室温まで冷却した試験板を流量0.5L/分の脱イオン水に16時間浸漬した。次に、パルミチン酸を4g入れた10Lの密閉容器に、試験板を封入した。次いで、密閉容器を100℃で8時間加熱する工程を1サイクルとして、計5サイクル行うことで、パルミチン酸を表面に付着させた。その後、試験板を室温に戻して、その表面に1μLの脱イオン水を滴下し、接触角測定器(協和界面科学株式会社製:DM-501)を用いて測定した。表面処理層表面へのパルミチン酸の付着に伴う接触角の劣化を以下に示す基準で評価した。本発明の目的である耐汚染性は3点以上を合格とした(表7参照)。
<耐汚染性の評価基準>
5点:接触角20°未満
4点:20°以上30°未満
3点:30°以上40°未満
2点:40°以上50°未満
1点:50°以上 <Method for evaluating stain resistance>
The test plate, which had been cooled to room temperature after the surface treatment, was immersed in deionized water at a flow rate of 0.5 L/min for 16 hours. Next, the test plate was sealed in a 10 L sealed container containing 4 g of palmitic acid. Next, the sealed container was heated at 100°C for 8 hours, and five cycles were performed in total to attach palmitic acid to the surface. Thereafter, the test plate was returned to room temperature, and 1 μL of deionized water was dropped on the surface, and the contact angle was measured using a contact angle measuring instrument (manufactured by Kyowa Interface Science Co., Ltd.: DM-501). The deterioration of the contact angle due to the attachment of palmitic acid to the surface of the surface treatment layer was evaluated according to the following criteria. The contamination resistance, which is the object of the present invention, was evaluated as passing when it was 3 points or more (see Table 7).
<Evaluation Criteria for Stain Resistance>
5 points: contact angle less than 20° 4 points: 20° or more and less than 30° 3 points: 30° or more and less than 40° 2 points: 40° or more and less than 50° 1 point: 50° or more
表面処理後に室温まで冷却した試験板を流量0.5L/分の脱イオン水に16時間浸漬した。次に、パルミチン酸を4g入れた10Lの密閉容器に、試験板を封入した。次いで、密閉容器を100℃で8時間加熱する工程を1サイクルとして、計5サイクル行うことで、パルミチン酸を表面に付着させた。その後、試験板を室温に戻して、その表面に1μLの脱イオン水を滴下し、接触角測定器(協和界面科学株式会社製:DM-501)を用いて測定した。表面処理層表面へのパルミチン酸の付着に伴う接触角の劣化を以下に示す基準で評価した。本発明の目的である耐汚染性は3点以上を合格とした(表7参照)。
<耐汚染性の評価基準>
5点:接触角20°未満
4点:20°以上30°未満
3点:30°以上40°未満
2点:40°以上50°未満
1点:50°以上 <Method for evaluating stain resistance>
The test plate, which had been cooled to room temperature after the surface treatment, was immersed in deionized water at a flow rate of 0.5 L/min for 16 hours. Next, the test plate was sealed in a 10 L sealed container containing 4 g of palmitic acid. Next, the sealed container was heated at 100°C for 8 hours, and five cycles were performed in total to attach palmitic acid to the surface. Thereafter, the test plate was returned to room temperature, and 1 μL of deionized water was dropped on the surface, and the contact angle was measured using a contact angle measuring instrument (manufactured by Kyowa Interface Science Co., Ltd.: DM-501). The deterioration of the contact angle due to the attachment of palmitic acid to the surface of the surface treatment layer was evaluated according to the following criteria. The contamination resistance, which is the object of the present invention, was evaluated as passing when it was 3 points or more (see Table 7).
<Evaluation Criteria for Stain Resistance>
5 points: contact angle less than 20° 4 points: 20° or more and less than 30° 3 points: 30° or more and less than 40° 2 points: 40° or more and less than 50° 1 point: 50° or more
<成形加工性評価方法>
表面処理後に室温まで冷却した試験板表面の動摩擦係数を測定し、成形加工性を評価した。尚、動摩擦係数は表面性測定器(新東科学株式会社製:HEYDON TYPE:14FW)を用いて測定した。得られた動摩擦係数を以下に示す基準で評価した。本発明の目的である成形加工性は3点以上を合格とした(表7参照)。
<試験条件>
荷重:200g、鋼球:3mmφ、ストローク:10mm、摺動速度:10mm/sec、摺動回数:10往復
<評価基準>
5点:0.2未満
4点:0.2以上0.3未満
3点:0.3以上0.4未満
2点:0.4以上0.5未満
1点:0.5以上 <Method for evaluating moldability>
The dynamic friction coefficient of the test plate surface, which had been cooled to room temperature after surface treatment, was measured to evaluate moldability. The dynamic friction coefficient was measured using a surface property measuring device (SHINTO SCIENTIFIC CO., LTD.: HEYDON TYPE: 14FW). The dynamic friction coefficient was evaluated according to the following criteria. The moldability, which is the objective of the present invention, was evaluated as passing when it was scored 3 points or higher (see Table 7).
<Test conditions>
Load: 200 g, steel ball: 3 mmφ, stroke: 10 mm, sliding speed: 10 mm/sec, number of sliding strokes: 10 reciprocations <Evaluation criteria>
5 points: less than 0.2 4 points: 0.2 or more and less than 0.3 3 points: 0.3 or more and less than 0.4 2 points: 0.4 or more and less than 0.5 1 point: 0.5 or more
表面処理後に室温まで冷却した試験板表面の動摩擦係数を測定し、成形加工性を評価した。尚、動摩擦係数は表面性測定器(新東科学株式会社製:HEYDON TYPE:14FW)を用いて測定した。得られた動摩擦係数を以下に示す基準で評価した。本発明の目的である成形加工性は3点以上を合格とした(表7参照)。
<試験条件>
荷重:200g、鋼球:3mmφ、ストローク:10mm、摺動速度:10mm/sec、摺動回数:10往復
<評価基準>
5点:0.2未満
4点:0.2以上0.3未満
3点:0.3以上0.4未満
2点:0.4以上0.5未満
1点:0.5以上 <Method for evaluating moldability>
The dynamic friction coefficient of the test plate surface, which had been cooled to room temperature after surface treatment, was measured to evaluate moldability. The dynamic friction coefficient was measured using a surface property measuring device (SHINTO SCIENTIFIC CO., LTD.: HEYDON TYPE: 14FW). The dynamic friction coefficient was evaluated according to the following criteria. The moldability, which is the objective of the present invention, was evaluated as passing when it was scored 3 points or higher (see Table 7).
<Test conditions>
Load: 200 g, steel ball: 3 mmφ, stroke: 10 mm, sliding speed: 10 mm/sec, number of sliding strokes: 10 reciprocations <Evaluation criteria>
5 points: less than 0.2 4 points: 0.2 or more and less than 0.3 3 points: 0.3 or more and less than 0.4 2 points: 0.4 or more and less than 0.5 1 point: 0.5 or more
<塗膜密着性評価方法>
表面処理後に室温まで冷却した試験板に、1mm間隔で碁盤目状(10×10=100個)にカット傷を施した。碁盤目状のカット傷に対して、付着性試験(JIS K5600-5-6)で用いられるテープ(IEC 60454-2規格)を貼り付けた後、テープを剥がし、試験板から剥離しなかった該1mm角の塗膜の数を計測した。以下に示す基準で塗膜密着性を評価した。本発明の目的である塗膜密着性は3点以上を合格とした(表7参照)。
<評価基準>
5点:剥離しなかった塗膜数が100個
4点:剥離しなかった塗膜数が90個以上
3点:剥離しなかった塗膜数が70個以上90個未満
2点:剥離しなかった塗膜数が50個以上70個未満
1点:剥離しなかった塗膜数が50個未満 <Coating adhesion evaluation method>
A test plate cooled to room temperature after surface treatment was cut in a grid pattern (10 x 10 = 100 pieces) at 1 mm intervals. Tape (IEC 60454-2 standard) used in adhesion tests (JIS K5600-5-6) was applied to the grid-like cuts, and the tape was then peeled off to count the number of 1 mm square coating films that did not peel off from the test plate. Coating adhesion was evaluated according to the following criteria. A score of 3 or more was deemed to be acceptable for the coating adhesion of the present invention (see Table 7).
<Evaluation criteria>
5 points: 100 coatings that did not peel off 4 points: 90 or more coatings that did not peel off 3 points: 70 to less than 90 coatings that did not peel off 2 points: 50 to less than 70 coatings that did not peel off 1 point: Less than 50 coatings that did not peel off
表面処理後に室温まで冷却した試験板に、1mm間隔で碁盤目状(10×10=100個)にカット傷を施した。碁盤目状のカット傷に対して、付着性試験(JIS K5600-5-6)で用いられるテープ(IEC 60454-2規格)を貼り付けた後、テープを剥がし、試験板から剥離しなかった該1mm角の塗膜の数を計測した。以下に示す基準で塗膜密着性を評価した。本発明の目的である塗膜密着性は3点以上を合格とした(表7参照)。
<評価基準>
5点:剥離しなかった塗膜数が100個
4点:剥離しなかった塗膜数が90個以上
3点:剥離しなかった塗膜数が70個以上90個未満
2点:剥離しなかった塗膜数が50個以上70個未満
1点:剥離しなかった塗膜数が50個未満 <Coating adhesion evaluation method>
A test plate cooled to room temperature after surface treatment was cut in a grid pattern (10 x 10 = 100 pieces) at 1 mm intervals. Tape (IEC 60454-2 standard) used in adhesion tests (JIS K5600-5-6) was applied to the grid-like cuts, and the tape was then peeled off to count the number of 1 mm square coating films that did not peel off from the test plate. Coating adhesion was evaluated according to the following criteria. A score of 3 or more was deemed to be acceptable for the coating adhesion of the present invention (see Table 7).
<Evaluation criteria>
5 points: 100 coatings that did not peel off 4 points: 90 or more coatings that did not peel off 3 points: 70 to less than 90 coatings that did not peel off 2 points: 50 to less than 70 coatings that did not peel off 1 point: Less than 50 coatings that did not peel off
Claims (11)
- 水溶性ポリマー(A)と、界面活性剤(B)と、を含む金属表面処理剤であって、
前記水溶性ポリマー(A)が、スルホ基及び/又はその塩を有するモノマーユニットとスルホ基及びその塩以外のアニオン性官能基を有するモノマーユニットとを含む共重合体であり、酸価が200~500mgKOH/gであり、前記共重合体中の全モノマーユニットに対する、スルホ基及び/又はその塩を有するモノマーユニットのモル分率が20mol%以上50mol%以下、スルホ基及びその塩以外のアニオン性官能基を有するモノマーユニットのモル分率が50mol%以上80mol%以下であり、
前記界面活性剤(B)が、アニオン性界面活性剤及びHLBが13以上のノニオン性界面活性剤から選ばれる少なくとも一種を含む、
金属表面処理剤。 A metal surface treatment agent comprising a water-soluble polymer (A) and a surfactant (B),
the water-soluble polymer (A) is a copolymer containing a monomer unit having a sulfo group and/or a salt thereof and a monomer unit having an anionic functional group other than a sulfo group and a salt thereof, the acid value being 200 to 500 mgKOH/g, the molar fraction of the monomer unit having a sulfo group and/or a salt thereof being 20 mol % or more and 50 mol % or less, and the molar fraction of the monomer unit having an anionic functional group other than a sulfo group and a salt thereof being 50 mol % or more and 80 mol % or less, relative to all monomer units in the copolymer;
The surfactant (B) includes at least one selected from an anionic surfactant and a nonionic surfactant having an HLB of 13 or more.
Metal surface treatment agent. - 前記水溶性ポリマー(A)の重量平均分子量が14,000~300,000であり、重量平均分子量Mwと数平均分子量Mnとの比である多分散度(Mw/Mn)が1.5~5.0である、請求項1に記載の金属表面処理剤。 The metal surface treatment agent according to claim 1, wherein the water-soluble polymer (A) has a weight-average molecular weight of 14,000 to 300,000 and a polydispersity (Mw/Mn) which is the ratio of the weight-average molecular weight Mw to the number-average molecular weight Mn, is 1.5 to 5.0.
- さらに、ポリビニルアルコール及びポリアクリルアミドから選ばれる少なくとも1種の水溶性ポリマー(C)を含み、前記水溶性ポリマー(A)と前記水溶性ポリマー(C)の含有量の質量比(A/C)が、0.1~10である、請求項1に記載の金属表面処理剤。 The metal surface treatment agent according to claim 1, further comprising at least one water-soluble polymer (C) selected from polyvinyl alcohol and polyacrylamide, and the mass ratio (A/C) of the content of the water-soluble polymer (A) to the content of the water-soluble polymer (C) is 0.1 to 10.
- 前記水溶性ポリマー(A)中の前記スルホ基及びその塩以外のアニオン性官能基(a)と前記水溶性ポリマー(C)の含有量の質量比(a/C)が、0.01~3.0である、請求項3に記載の金属表面処理剤。 The metal surface treatment agent according to claim 3, wherein the mass ratio (a/C) of the content of the anionic functional group (a) other than the sulfo group and its salt in the water-soluble polymer (A) to the content of the water-soluble polymer (C) is 0.01 to 3.0.
- さらに、HLBが13未満のアルキレンオキシド付加物(D)を含有する、請求項1に記載の金属表面処理剤。 The metal surface treatment agent according to claim 1, further comprising an alkylene oxide adduct (D) having an HLB of less than 13.
- 前記水溶性ポリマー(A)及び前記水溶性ポリマー(C)の合計含有量に対する前記界面活性剤(B)の含有量の質量比(B/(A+C))が、0.002~0.25である、請求項3に記載の金属表面処理剤。 The metal surface treatment agent according to claim 3, wherein the mass ratio (B/(A+C)) of the content of the surfactant (B) to the total content of the water-soluble polymer (A) and the water-soluble polymer (C) is 0.002 to 0.25.
- (i)請求項1~6のいずれか一項に記載の金属表面処理剤を金属材料の表面に接触させる工程と、
(ii)前記工程(i)の後に、前記金属表面処理剤を接触させた金属材料を乾燥して表面処理層を形成する工程と、
を含む、金属材料の表面処理方法。 (i) contacting the metal surface treatment agent according to any one of claims 1 to 6 with a surface of a metal material;
(ii) after the step (i), drying the metal material that has been contacted with the metal surface treatment agent to form a surface treatment layer;
A surface treatment method for a metal material, comprising: - (iii)前記工程(i)の前に、下地防錆処理剤を金属材料の表面に接触させる工程と、
(iv)前記工程(iii)の後であって、前記工程(i)の前に、前記下地防錆処理剤を接触させた金属材料を乾燥し、下地防錆処理層を形成する工程と、
を含む、請求項7に記載の金属材料の表面処理方法。 (iii) before the step (i), a step of contacting a base rust prevention treatment agent with a surface of a metal material;
(iv) a step of drying the metal material contacted with the base rust prevention treatment agent after the step (iii) and before the step (i) to form a base rust prevention treatment layer;
The method for surface treatment of a metal material according to claim 7, comprising: - 前記下地防錆処理剤がアクリル樹脂、ポリエステル樹脂、ポリウレタン樹脂、ポリオレフィン樹脂及びエポキシ樹脂から選ばれる少なくとも一種のポリマーであって、酸価が5~50mgKOH/gであるポリマー、並びに、エポキシ基、アミノ基、オキサゾリン基及びカルボジイミド基から選ばれる少なくとも一つの官能基を有する架橋剤を含む、請求項8に記載の金属材料の表面処理方法。 The method for treating the surface of a metal material according to claim 8, wherein the undercoat rust prevention treatment agent is at least one polymer selected from acrylic resin, polyester resin, polyurethane resin, polyolefin resin, and epoxy resin, and includes a polymer having an acid value of 5 to 50 mg KOH/g, and a crosslinking agent having at least one functional group selected from an epoxy group, an amino group, an oxazoline group, and a carbodiimide group.
- 請求項7に記載の金属材料の表面処理方法によって形成された前記表面処理層を有する表面処理金属材料であって、前記表面処理層の皮膜量が0.05g/m2以上20g/m2以下である、表面処理金属材料。 A surface-treated metal material having a surface treatment layer formed by the surface treatment method for a metal material according to claim 7, wherein the coating amount of the surface treatment layer is 0.05 g/ m2 or more and 20 g/ m2 or less.
- 請求項8に記載の金属材料の表面処理方法によって形成された前記下地防錆処理層及び前記表面処理層を有する表面処理金属材料であって、前記下地防錆処理層の皮膜量が0.5g/m2以上5.0g/m2以下、前記表面処理層の皮膜量が0.05g/m2以上20g/m2以下、である表面処理金属材料。 9. A surface-treated metal material having the base rust prevention treatment layer and the surface treatment layer formed by the surface treatment method for metal material described in claim 8, wherein the coating weight of the base rust prevention treatment layer is 0.5 g/ m2 or more and 5.0 g/ m2 or less, and the coating weight of the surface treatment layer is 0.05 g/ m2 or more and 20 g/ m2 or less.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023-013427 | 2023-01-31 | ||
JP2023013427A JP2024108831A (en) | 2023-01-31 | 2023-01-31 | Metal surface treatment agent, surface treatment method for metal material, and surface-treated metal material |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024162025A1 true WO2024162025A1 (en) | 2024-08-08 |
Family
ID=92146374
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2024/001317 WO2024162025A1 (en) | 2023-01-31 | 2024-01-18 | Agent for treating metal surface, method for treating surface of metallic material, and surface-treated metallic material |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2024108831A (en) |
WO (1) | WO2024162025A1 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0347570A (en) * | 1989-07-14 | 1991-02-28 | Nippon Parkerizing Co Ltd | Hydrophilic treatment of aluminum fin coil material |
JPH09272819A (en) * | 1996-04-02 | 1997-10-21 | Nippon Parkerizing Co Ltd | Composition for hydrophilic treatment of fin material for heat exchanger |
JPH09296121A (en) * | 1996-05-02 | 1997-11-18 | Nippon Parkerizing Co Ltd | Aqueous agent for surface hydrophilization treatment of metallic material and surface-treating method |
JPH10219191A (en) * | 1997-02-03 | 1998-08-18 | Toyo Ink Mfg Co Ltd | Highly hydrophilic coating material and aluminum fin material made by using it |
JP2011042842A (en) * | 2009-08-21 | 2011-03-03 | Kansai Paint Co Ltd | Substrate treating agent for aluminum fin material |
WO2016170698A1 (en) * | 2015-04-24 | 2016-10-27 | 日本パーカライジング株式会社 | Water-based surface-treating agent, process for producing coating film, and surface-treated material |
-
2023
- 2023-01-31 JP JP2023013427A patent/JP2024108831A/en active Pending
-
2024
- 2024-01-18 WO PCT/JP2024/001317 patent/WO2024162025A1/en unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0347570A (en) * | 1989-07-14 | 1991-02-28 | Nippon Parkerizing Co Ltd | Hydrophilic treatment of aluminum fin coil material |
JPH09272819A (en) * | 1996-04-02 | 1997-10-21 | Nippon Parkerizing Co Ltd | Composition for hydrophilic treatment of fin material for heat exchanger |
JPH09296121A (en) * | 1996-05-02 | 1997-11-18 | Nippon Parkerizing Co Ltd | Aqueous agent for surface hydrophilization treatment of metallic material and surface-treating method |
JPH10219191A (en) * | 1997-02-03 | 1998-08-18 | Toyo Ink Mfg Co Ltd | Highly hydrophilic coating material and aluminum fin material made by using it |
JP2011042842A (en) * | 2009-08-21 | 2011-03-03 | Kansai Paint Co Ltd | Substrate treating agent for aluminum fin material |
WO2016170698A1 (en) * | 2015-04-24 | 2016-10-27 | 日本パーカライジング株式会社 | Water-based surface-treating agent, process for producing coating film, and surface-treated material |
Also Published As
Publication number | Publication date |
---|---|
JP2024108831A (en) | 2024-08-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106660071B (en) | Method for coating aluminum fin material with hydrophilic coating film, aluminum fin material, and aluminum heat exchanger | |
JP5995546B2 (en) | Method for coating hydrophilic film of aluminum fin material, aluminum fin material, and aluminum heat exchanger | |
EP3305847B1 (en) | Aqueous resin dispersion, production method for aqueous resin dispersion, hydrophilization agent, hydrophilization method, metal material, and heat exchanger | |
KR101918879B1 (en) | Surface treatment agent for zinc-plated steel sheets | |
WO2000022188A1 (en) | Hydrophilizing agent for metallic material, hydrophilizing fluid, method of hydrophilizing, metallic material, and heat exchanger | |
KR20180015155A (en) | A hydrophilic treatment agent, a method for forming a hydrophilic film, and a hydrophilic film | |
WO2024162025A1 (en) | Agent for treating metal surface, method for treating surface of metallic material, and surface-treated metallic material | |
KR101820186B1 (en) | Method for passivating metallic surfaces with aqueous compositions comprising surfactants | |
US8986467B2 (en) | Method for passivating metallic surfaces with aqueous compositions comprising surfactants | |
CN113226571B (en) | Hydrophilizing agent, method for forming hydrophilic coating film, and hydrophilic coating film | |
KR20130116251A (en) | Method for passivating a metallic surface using a basic composition | |
JP4834194B2 (en) | Water-based paint composition | |
US9034473B2 (en) | Method for passivating a metallic surface with a basic composition | |
CN107969132B (en) | Aqueous surface treatment agent, method for producing coating film, and surface-treated material | |
JP4562897B2 (en) | Fin material for heat exchanger having non-chromate reaction type underlayer and heat exchanger provided with the same | |
JP4467264B2 (en) | Fin coating composition and fin material | |
KR101626212B1 (en) | The enhancer of hydrophilicity for a heat exchanger containing aluminium | |
CN118786192A (en) | Surface treating agent | |
CN115507570A (en) | Aluminum fin material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 24749979 Country of ref document: EP Kind code of ref document: A1 |