WO2024161673A1 - Electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery - Google Patents

Electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
WO2024161673A1
WO2024161673A1 PCT/JP2023/018335 JP2023018335W WO2024161673A1 WO 2024161673 A1 WO2024161673 A1 WO 2024161673A1 JP 2023018335 W JP2023018335 W JP 2023018335W WO 2024161673 A1 WO2024161673 A1 WO 2024161673A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
protective film
secondary battery
electrolyte secondary
lithium
Prior art date
Application number
PCT/JP2023/018335
Other languages
French (fr)
Japanese (ja)
Inventor
卓矢 高橋
正司 石川
和位 副田
Original Assignee
株式会社アイ・エレクトロライト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アイ・エレクトロライト filed Critical 株式会社アイ・エレクトロライト
Priority to JP2024519806A priority Critical patent/JP7511306B1/en
Publication of WO2024161673A1 publication Critical patent/WO2024161673A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrode for a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery.
  • lithium-ion secondary batteries As electrochemical devices to be installed in mobile phones, electric vehicles and the like.
  • lithium-ion secondary batteries enable devices to be made smaller and lighter, have good charging and discharging efficiency and have high energy density, and are therefore used, for example, as power sources for mobile devices, notebook PCs, home appliances and even hybrid and electric vehicles. They are also attracting new attention as power storage devices for storing generated electricity when combined with natural energy systems such as solar and wind power generation.
  • the electrodes that make up a lithium-ion secondary battery are made up of active materials that absorb and release lithium ions to input and output energy, conductive assistants to ensure electrical conductivity within the electrode, binders to bond the active materials and conductive agents, and current collecting layers to connect to external circuits outside the battery.
  • the characteristics of lithium-ion secondary batteries depend heavily on the electrodes, and are greatly influenced by the characteristics of each material itself and how the materials are combined.
  • lithium transition metal oxides with a high nickel (Ni) content have been investigated in recent years as the positive electrode active material for lithium-ion secondary batteries in order to increase capacity.
  • Increasing the capacity of the positive electrode active material improves the energy density per weight and reduces the amount of material used, making it possible to reduce battery costs.
  • electrodes are manufactured by turning the above-mentioned active material, conductive agent, and binder into a paint (slurry) using water or an organic solvent, and coating the positive electrode on an aluminum current collector layer, and the negative electrode on a copper or aluminum current collector layer.
  • NMP N-methyl-N-pyrrolidone
  • Patent Document 1 examines the addition of a neutralizing agent to the high pH slurry to neutralize it to a pH level at which corrosion of the aluminum current collecting layer does not occur.
  • the present invention was developed in consideration of the above problems, and its purpose is to solve the problem of suppressing the corrosion reaction of the aluminum current collecting layer in the aqueous cathode manufacturing process, and further suppressing the decrease in battery capacity and output characteristics.
  • the inventors conducted extensive research to solve the above problems and discovered that by applying an aqueous slurry containing an alkaline silicate to the aluminum current collecting layer, it is possible to form a protective film on the aluminum current collecting layer that is corrosion-resistant to the high pH aqueous slurry, thereby preventing a decrease in battery capacity and output characteristics, and thus completing the present invention.
  • the present invention provides an electrode for a non-aqueous electrolyte secondary battery, comprising an electrode mixture layer on an aluminum current collecting layer,
  • the electrode mixture constituting the electrode mixture layer contains an active material, a binder, and a protective film forming agent
  • the active material is an active material capable of electrochemically absorbing and desorbing alkali metal ions, or an active material capable of electrochemically alloying and dealloying alkali metal ions
  • the protective film forming agent includes an alkali silicate
  • the protective film formed by the protective film forming agent is present on the surface of the aluminum current collecting layer.
  • the protective film forming agent contains at least an alkali silicate represented by M 2 O.nSiO 2 , where M contains at least one of Li, Na, and K, and n is 1.6 or more and 8.0 or less.
  • the weight ratio of the protective film forming agent in the electrode mixture is preferably in the range of more than 0.1% and not more than 1%.
  • the protective film on the surface of the aluminum current collecting layer contains at least a Si—O bond having a bond energy in the range of 102 to 107 eV in a Si2p3 /2 spectrum, as determined by X-ray photoelectron spectroscopy (XPS) analysis using an X-ray source of MgK ⁇ rays.
  • XPS X-ray photoelectron spectroscopy
  • the aluminum current collecting layer is preferably pure aluminum or an alloy of aluminum and one or more additive elements.
  • the active material is a lithium oxide represented by Li x MO 2 , LiM 2 O 4 , or Li 4 M 5 O 12 (x is 1 to 2, and M is a transition metal) containing at least one transition metal;
  • a lithium polyanion compound represented by LiMPO 4 (M is a transition metal) and containing at least one transition metal; a lithium inorganic compound selected from a lithium sulfur compound, a lithium selenium compound, and a lithium fluoride compound;
  • the non-aqueous electrolyte secondary battery of the present invention includes a positive electrode and a negative electrode, the positive electrode and the negative electrode being separated by an insulating layer, and at least one of the positive electrode and the negative electrode being an electrode for the non-aqueous electrolyte secondary battery of the present invention.
  • the present invention makes it possible to manufacture electrodes in an aqueous process using positive and negative electrode active material containing alkaline ions such as lithium and sodium while suppressing corrosion of the aluminum current collecting layer. Furthermore, even though the electrodes manufactured in an aqueous process are produced, it is possible to suppress the decrease in battery capacity and output characteristics.
  • a non-aqueous electrolyte secondary battery using such electrodes can be provided at a lower cost than conventional batteries.
  • FIG. 1 is a set of photographs showing the results of visual observation of the surfaces of electrode mixture layers of (A) Comparative Example 2 and (B) Example 1, (C) Example 2, and (D) Example 3 produced based on the present invention.
  • FIG. 2 is a photograph showing the results of visual observation of the surface of the electrode mixture layer of (E) Comparative Example 3, and (F) Example 4, (G) Example 5, and (H) Example 6 produced based on the present invention.
  • FIG. 3 is a set of photographs showing the results of visual observation of the surfaces of the electrode mixture layers of (I) Comparative Example 4, and (J) Example 7, (K) Example 8, and (L) Example 9 produced based on the present invention.
  • FIG. 1 is a set of photographs showing the results of visual observation of the surfaces of electrode mixture layers of (A) Comparative Example 2 and (B) Example 1, (C) Example 2, and (D) Example 3 produced based on the present invention.
  • FIG. 2 is a photograph showing the results of visual observation of the surface of the electrode mixture layer of (E) Compar
  • FIG. 4 is a photograph showing the results of visual observation of the surface of the electrode mixture layer in Comparative Example 1.
  • FIG. 5 shows SEM images of the surfaces of the electrode mixture layers of (A) Comparative Example 2, (B) Example 1, (C) Example 2, and (D) Example 3.
  • FIG. 6 shows SEM images of the electrode mixture layer surfaces of (E) Comparative Example 3, (F) Example 4, (G) Example 5, and (H) Example 6.
  • FIG. 7 shows SEM images of the electrode mixture layer surfaces of (I) Comparative Example 4, (J) Example 7, (K) Example 8, and (L) Example 9.
  • FIG. 8 is an SEM observation image of the surface of the electrode mixture layer of Comparative Example 1 (M).
  • FIG. 9 shows the results of XPS measurement of Si2p 3/2 spectrum on the surface of the aluminum current collecting layer in Comparative Example 1, Comparative Example 2, Example 1, and Example 1 after charging and discharging, and in Example 2 and Example 3.
  • FIG. 10 shows the results of XPS measurement of Si2p 3/2 spectrum on the aluminum current collecting layer surface of Comparative Example 1, Comparative Example 3, Example 4, and Example 4 after charging and discharging, and of Examples 5 and 6.
  • FIG. 11 shows the results of XPS measurement of Si2p 3/2 spectrum on the surface of the aluminum current collecting layer of Comparative Example 1, Comparative Example 4, Example 7, and Example 7 after charging and discharging, and of Examples 8 and 9.
  • the positive and negative electrodes of the nonaqueous electrolyte secondary battery of the present invention contain a protective film forming agent, an active material capable of electrochemically absorbing and desorbing alkali ions, or an active material capable of electrochemically alloying and dealloying alkali metal ions, and a binder.
  • the protective film forming agent contains an alkali silicate, and forms a protective film that suppresses corrosion reactions on the surface of the aluminum current collecting layer.
  • an alkali silicate represented by M 2 O.nSiO 2 can be used as the protective film forming agent.
  • M is Li, Na, or K.
  • the alkali species may be used alone or in combination of two or more. When two or more types are used in combination, the combination and mixing ratio of the alkali species can be selected arbitrarily.
  • n is 1.6 or more and 8.0 or less, and preferably 2.5 or more and 7.5 or less. It is preferable to use an aqueous solution in which the alkali silicate is dissolved in water, and the weight ratio of the alkali silicate in the aqueous solution is 10 to 80%.
  • Al current collecting layer As the material used for the aluminum current collecting layer, pure aluminum or an alloy containing aluminum and one or more additive elements can be used.
  • pure aluminum for example, materials such as A1050, A1070, A1085, A1100, A1235, 1N30, 1N90, and 1N99, which have an aluminum weight ratio of 99% or more as specified by the JIS standard, can be used.
  • aluminum alloy materials such as A3003, A3103, A3203, A3004, A3104, A3005, and A3105 of Al-Mn alloys and A8021 and A8079 of Al-Fe alloys can be used.
  • any of rolled foils, punched foils, meshes, foams, and the like can be used, and the thickness is in the range of 1 ⁇ m to 2 mm. When using rolled foil, the thickness is preferably 5 to 20 ⁇ m.
  • the aluminum current collecting layer may be surface-treated or coated with carbon, fluorine, tungsten, zirconium, or the like.
  • ⁇ Active material> As an active material capable of electrochemically absorbing and desorbing alkali ions or an active material capable of electrochemically alloying and dealloying alkali ions, in the case of a positive electrode, lithium oxides or lithium polyanion compounds represented by LiCoO 2 , LiMn 1-a Fe a PO 4 , LiNi 2-b Mn b O 4 , and Li c Ni d Mn e Co f M 1-d-e-f O 2 can be used. In the above, it is possible to use the above-mentioned active material even if the ratio of the constituent elements is slightly different from the ratio described in the exemplified chemical formula.
  • M is one or more elements selected from the group consisting of Na, K, Al, Mg, Ti, Fe, V, Cr, Nb, Mo, W, Cu, Zn, Ga, In, Sn, Zr, Ru, and La, 0 ⁇ a ⁇ 1.0 0 ⁇ b ⁇ 2.0 0.8 ⁇ c ⁇ 2.0 0 ⁇ d ⁇ 1.0 0 ⁇ e ⁇ 1.0 0 ⁇ f ⁇ 1.0 0 ⁇ d+e+f ⁇ 1.0
  • lithium sulfur compounds, lithium selenium compounds, lithium fluoride compounds, etc. can be used.
  • Sodium oxide, sodium polyanion compounds, and sodium Prussian blue analogues can also be used.
  • a lithium titanium oxide typified by the compound represented by Li4Ti5O12
  • transition metal oxides such as CuO, Cu2O, MnO2, MoO3, V2O5, CrO3, MoO3 , Fe2O3 , Ni2O3 , and CoO3 can be used .
  • active materials doped with elements such as aluminum, boron, fluorine, chromium, zirconium, molybdenum, magnesium, sodium , and iron, and active material particles whose surfaces are treated or coated with carbon, Al2O3 , Li3PO4 , LiNbO3 , TiO2 , SiO2 , etc. can also be used.
  • the active material may be one of the above materials, or two or more of them may be used in combination. At least two materials selected from the materials usable for the positive electrode may be used in combination for the positive electrode, and at least two materials selected from the materials usable for the negative electrode may be used in combination for the negative electrode.
  • the mixture ratio of the materials constituting the active material may be any ratio.
  • the active material is preferably in a particulate form, in which case the particle size is preferably about 100 nm to 50 ⁇ m, and more preferably in the range of 200 nm to 20 ⁇ m. If the particle size is less than 100 nm, it is likely to be difficult to disperse the slurry, and if the particle size exceeds 50 ⁇ m, the battery characteristics are likely to deteriorate.
  • At least one of the positive electrode and the negative electrode is an electrode of the present invention.
  • suitable active materials for use in the electrode include graphite, non-graphitizable carbon, easily graphitizable carbon, lithium, etc.
  • the positive and negative electrodes for the non-aqueous electrolyte secondary battery of the present invention are provided with a binder.
  • the binder is preferably contained in the electrodes at a weight ratio of 0.1% to 20%. More preferably, the binder is contained in the electrodes at a weight ratio of 0.5% to 10%. If the weight ratio of the binder is small, the adhesive strength decreases and the battery life decreases. If the weight ratio is large, the battery resistance increases.
  • an aqueous emulsion solution As the binder, an aqueous emulsion solution, an aqueous polymer solution, an aqueous polymer dispersion, etc. can be used.
  • synthetic resin emulsions such as "polyacrylic acid copolymer resin emulsion", “conjugated diene polymer emulsion”, and “fluorine-containing copolymer emulsion” can be preferably used.
  • the aqueous polymer solution “water-soluble polyacrylic acid copolymer” can be used.
  • aqueous polymer dispersion As the aqueous polymer dispersion, “aqueous dispersion of fluorine-containing copolymer” can be used.
  • Polyacrylic acid copolymer resin emulsion refers to an emulsion of a copolymer resin obtained by emulsion polymerization of acrylic acid monomer and other reactive monomers in water.
  • the other reactive monomers include vinylidene fluoride monomer; styrene monomer; ethylenically unsaturated monomers containing a nitrile group, such as acrylonitrile, methacrylonitrile, ⁇ -chloroacrylonitrile, crotononitrile, ⁇ -ethylacrylonitrile, ⁇ -cyanoacrylate, vinylidene cyanide, fumaronitrile, and other ⁇ , ⁇ -unsaturated nitrile monomers; monofunctional monomers such as methacrylic acid and acrylic acid, fumaric acid, maleic acid, itaconic acid, citraconic acid, mesaconic acid, glutaconic acid, 1,2,3,6-tetrahydrophthalic acid, 3-methyl-1,
  • Examples of the other reactive monomers include ethylenically unsaturated monomers containing carboxylic acids, such as trihydrophthalic acid, exo-3,6-epoxy-1,2,3,6-tetrahydrophthalic acid, and himic acid; anhydrides of the ethylenically unsaturated monomers containing carboxylic acids; saponification products of the anhydrides; ethylenically unsaturated monomers containing ketone groups, such as methyl vinyl ketone, ethyl vinyl ketone, isopropyl vinyl ketone, isobutyl vinyl ketone, t-butyl vinyl ketone, and hexyl vinyl ketone; ethylenically unsaturated monomers containing organic acid vinyl ester groups, such as vinyl acetate, vinyl propionate, vinyl butyrate, trimethyl vinyl acetate, vinyl caproate, vinyl caprylate, vinyl laurate, vinyl palmitate, and vinyl stearate; and the like.
  • modified products include epoxy modified products, carboxy modified products, isocyanate modified products, and hydrogen modified products.
  • an emulsion of styrene butadiene copolymer rubber can be suitably used.
  • the emulsion of styrene butadiene copolymer rubber is a particle of a copolymer of styrene and butadiene, and has a copolymer component derived from styrene and a copolymer component derived from butadiene.
  • the content of the copolymer component derived from styrene is preferably 50 to 80 mol % based on the total copolymer components constituting the styrene butadiene copolymer.
  • the content of the copolymer component derived from butadiene is preferably 20 to 50 mol % based on the total copolymer components.
  • the styrene-butadiene copolymer may have other reactive monomers in addition to the copolymerization components derived from styrene and the copolymerization components derived from butadiene.
  • the other reactive monomers for example, those mentioned above as components of the emulsion of the polyacrylic acid copolymer resin can be used.
  • the content of the other reactive monomer is preferably 1 to 30 mol% based on the total copolymerization components constituting the styrene-butadiene copolymer.
  • the styrene-butadiene copolymer may be any of a random copolymer, a block copolymer, and a graft copolymer.
  • the styrene-butadiene copolymer may also be carboxy-modified.
  • Styrene-butadiene copolymer rubber emulsion is an emulsion of rubber particles obtained by emulsion polymerization of styrene monomer, butadiene monomer, and, if necessary, other reactive monomers in water, and is sometimes called latex or synthetic rubber latex.
  • butadiene rubber BR
  • isoprene rubber IR
  • chloroprene rubber CR
  • nitrile rubber NBR
  • butyl rubber IIR
  • ethylene propylene rubber EPDM
  • natural rubber NR
  • a "fluorine-containing copolymer” is a copolymer that contains at least one polymer of a fluorine-containing monomer in the molecule.
  • fluorine-containing copolymers include copolymers of polyvinylidene fluoride (PVDF) and polyvinyl alcohol (PVA), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), polyvinylidene fluoride-hexafluoropropylene (PVdF-co-HFP), ethylene-tetrafluoroethylene copolymer (ETFE), polychlorotrifluoroethylene (PCTFE), propylene-tetrafluoroethylene copolymer, and ethylene-chlorotrifluoroethylene copolymer (ECTFE).
  • PVDF polyvinylidene fluoride
  • PVA polyvinyl
  • a “fluorine-containing copolymer emulsion” is an emulsion of a copolymer resin obtained by emulsion polymerization in water of one type of fluorine-containing monomer and another reactive monomer, or two or more types of fluorine-containing monomers.
  • a "water dispersion of a fluorine-containing copolymer” is an aqueous solution of a copolymer resin obtained by copolymerizing one type of fluorine-containing monomer and another reactive monomer, or two or more types of fluorine-containing monomers, or a dispersion in which the copolymer resin is dispersed in water.
  • reactive monomers include PVA, hexafluoropropylene, ethylene, propylene, etc.
  • the content (solids concentration) of polyacrylic acid copolymer resin, styrene butadiene copolymer rubber, or fluorine-containing copolymer in the polyacrylic acid copolymer resin emulsion, styrene butadiene copolymer rubber emulsion, fluorine-containing copolymer emulsion, or fluorine-containing copolymer aqueous dispersion is preferably 0.1 to 80% by weight, and more preferably 0.5 to 65% by weight.
  • the solids concentration of the binder is preferably 0.5 to 95% by mass, and more preferably 1.0 to 85% by mass.
  • the solids concentration is the mass ratio of the binder to the mass of the aqueous solution containing the binder.
  • the slurry (electrode mixture slurry) for producing the electrode for a non-aqueous electrolyte secondary battery of the present invention contains a protective film forming agent, an active material, and a binder, and uses water as a solvent.
  • the slurry for producing the electrode for the non-aqueous electrolyte secondary battery of the present invention preferably has a total solids concentration of 50 to 95% by weight, excluding water, including the active material, binder, protective film forming agent, etc. If the water content is low, the slurry viscosity will be high, resulting in variation in the coating thickness, etc. If the water content is high, the time required for drying will be long and the coating speed will be reduced.
  • the slurry can be prepared, for example, by the following two methods.
  • Method 1 The active material, water-soluble thickener, etc. are mixed in powder form, water is added, and the mixture is kneaded. Then, a protective film forming agent is added, and the mixture is further kneaded. Finally, a binder is added, and the mixture is kneaded.
  • Method 2 An aqueous solution containing a water-soluble thickener and a water-soluble polymer binder is prepared in advance at a predetermined weight percentage. Then, an active material is added to this aqueous solution and kneaded. Finally, a protective film forming agent is added and kneaded.
  • the weight ratio of the protective film forming agent in the electrode mixture is in the range of more than 0.1% and 1% or less.
  • the mixing or kneading method may be, for example, mixing using various grinders, mixers, stirrers, etc., or dispersion using ultrasonic waves.
  • processing methods using shear force or collision such as mixers, high-speed rotary mixers, shear mixers, blenders, ultrasonic homogenizers, high-pressure homogenizers, and ball mills; and methods using Waring blenders, flash mixers, turbulizers, etc. These methods may also be used in appropriate combination.
  • the slurry may contain a conductive additive to ensure electrical conductivity. Adding a conductive additive reduces the internal resistance of the battery.
  • the conductive additive include metals, carbon materials, conductive polymers, and conductive glass. Of these, carbon materials are preferred, and examples of the conductive additive include nanocarbons such as carbon nanotubes, carbon nanofibers, carbon nanohorns, and fullerenes; acetylene black, furnace black, thermal black, channel black, ketjen black, vulcan, graphene, vapor-grown carbon fiber (VGCF), and graphite. Acetylene black, ketjen black, VGCF, and carbon nanotubes are more preferred.
  • the carbon nanotubes may be single-walled, double-walled, or multi-walled carbon nanotubes.
  • the conductive additive may be used alone or in combination of two or more types.
  • the conductive additive may be treated with an acid or alkali to improve hydrophilicity. There are no particular limitations on the shape, size, or specific surface area of the conductive additive. Any one may be selected depending on the amount added.
  • the slurry may contain a thickener to ensure dispersion and viscosity stability.
  • thickeners include water-soluble polymers such as sodium carboxymethylcellulose, alginic acid, polyacrylic acid, guar gum, and xanthan gum. Of these, alkali metal salts and ammonium salts of carboxymethylcellulose, alginic acid, and polyacrylic acid are preferred because they have excellent dispersion and viscosity stability.
  • These thickeners may be used alone or in combination of two or more types.
  • the water used to prepare the slurry is not particularly limited, and any commonly used water can be used.
  • any commonly used water can be used.
  • tap water, distilled water, ion-exchanged water, pure water, ultrapure water, etc. can be used.
  • ion-exchanged water, pure water, and ultrapure water are preferred.
  • the water may contain an organic solvent (hydrophilic organic solvent) that is uniformly miscible with water.
  • hydrophilic organic solvents include N-methyl-2-pyrrolidone; dimethyl sulfoxide; alcohols such as methanol, ethanol, 2-propanol (IPA), isopropanol, n-butanol, and t-butanol; ketones such as acetone and methyl ethyl ketone (MEK); ethers such as 1,4-dioxane and tetrahydrofuran (THF); N,N-dimethylformamide (DMF), N,N-dimethylacetamide (DMAc), dimethyl sulfoxide (DMSO), acetonitrile, and ethyl acetate.
  • One type of hydrophilic organic solvent may be used, or two or more types may be used. However, from the viewpoints of safety, environmental impact, and ease of handling, it is preferable to use only water without using an organic solvent.
  • the mixing ratio of water to organic solvent may be appropriately determined taking into consideration the type of organic solvent, the affinity between water and organic solvent, etc.
  • the weight ratio of each component in the solid content of the slurry is preferably, for example, 74.0 to 99.3% active material, 0.5 to 10.0% binder, 0.001 to 1.0% protective film forming agent, 0.1 to 10.0% conductive aid, and 0.1 to 5.0% thickener, assuming the total weight of the active material, binder, protective film forming agent, conductive aid, and thickener to be 100%.
  • the electrode for a non-aqueous electrolyte secondary battery of the present invention can be manufactured, for example, by applying the above-mentioned slurry to the surface of a current collector layer, drying, and press molding. This makes it possible to manufacture an electrode for a non-aqueous electrolyte secondary battery in which an electrode mixture layer exists on the current collector layer.
  • the electrode mixture layer is the coating layer part of the electrode after the slurry is applied to a current collector layer such as a foil and dried, and is a combination of an active material, a binder, a protective film forming agent, a conductive assistant, and a thickener.
  • the electrode manufactured by the present invention has a protective film formed on the surface of the aluminum current collector layer.
  • the coating method examples include a method using a knife coater, a comma coater, a die coater, etc.
  • the current collecting layer can be made of pure aluminum foil or an alloy foil made of aluminum and one or more metals.
  • the amount of the slurry applied to the current collecting layer can be set, for example, so that the thickness of the electrode mixture layer after drying is in the range of 0.01 to 0.40 mm, preferably 0.02 to 0.25 mm.
  • the temperature in the drying process can be set appropriately within the range of, for example, 35 to 150°C, preferably 40 to 135°C.
  • the drying method can be selected from hot air drying, air drying, infrared drying, reduced pressure drying, hot plate drying, etc. In the case of reduced pressure drying, the temperature can be set arbitrarily from the above values.
  • the non-aqueous electrolyte secondary battery electrodes thus obtained may be used as the positive and negative electrodes of the secondary battery.
  • the obtained electrode for a non-aqueous electrolyte secondary battery has the following characteristics: A corrosion-resistant protective film is formed on the surface of the aluminum current collecting layer by the alkali silicate, which is a protective film forming agent; The electrode is a smooth electrode with no void defects of 50 ⁇ m or more in the electrode mixture layer containing the active material and binder. With such an electrode, even an electrode made from an aqueous slurry has excellent output characteristics. It is possible to obtain a battery having the above structure.
  • the protective film forming agent forms a corrosion-resistant protective film on the surface of the aluminum current collecting layer, thereby suppressing the corrosion reaction during electrode production.
  • no protective film is formed on the surface of the aluminum current collecting layer, so when a high pH slurry is applied, a corrosion reaction occurs on the surface of the aluminum current collecting layer. Hydrogen gas generated during the corrosion reaction diffuses into the electrode mixture layer, and after drying, the areas where hydrogen gas was present become void defects. These voids break the electronic connection between the active materials in the electrode mixture, resulting in an increase in resistance.
  • the protective film suppresses the corrosion reaction, so excellent output characteristics can be obtained.
  • the protective film on the surface of the aluminum current collecting layer of the electrode for a non-aqueous electrolyte secondary battery obtained by the present invention is characterized by having Si-O bonds.
  • the protective film having Si-O bonds is water-insoluble, it effectively protects the surface of the aluminum current collecting layer and suppresses corrosion of aluminum caused by high pH slurry.
  • the protective film when applied as an electrode for a non-aqueous electrolyte secondary battery, the protective film must be stable against charge and discharge reactions.
  • XPS X-ray photoelectron spectroscopy
  • SEM scanning electron microscope
  • the protective film on the surface of the aluminum current collecting layer is measured by XPS using an X-ray photoelectron spectrometer.
  • the sample for measurement is the aluminum current collecting layer remaining after the composite layer of the prepared electrode is peeled off with pure water.
  • MgK ⁇ radiation is used as the XPS radiation source to analyze the Si2p 3/2 spectrum.
  • the presence or absence of a protective film having Si-O bonds can be determined by whether or not a clear peak is detected in the range of 102 to 107 eV in the XPS measurement.
  • ⁇ SEM Observation> The surface observation of the electrode mixture layer by SEM is carried out using a scanning electron microscope. The prepared electrode is used as a sample for observation. The presence or absence of void defects of 50 ⁇ m or more in the electrode mixture layer formed by the corrosion reaction can be identified by observing the mixture surface.
  • the nonaqueous electrolyte secondary battery of the present invention is a secondary battery comprising a positive electrode and a negative electrode, and containing an electrolyte between the positive electrode and the negative electrode, wherein at least one of the positive electrode and the negative electrode is an electrode of the present invention. It is.
  • a separator is placed between the positive and negative electrodes to prevent short circuits between the electrodes.
  • the current collecting layers of the positive and negative electrodes are connected to an external device. Charging and discharging are switched on and off by operating this device.
  • non-aqueous electrolyte secondary batteries examples include lithium ion secondary batteries, lithium ion capacitors, sodium ion secondary batteries, and sodium ion capacitors, and also include other secondary batteries.
  • Non-aqueous electrolyte secondary batteries have high performance and can be used as safe power storage devices. Therefore, the secondary batteries may be installed in small electronic devices such as mobile phones, notebook computers, personal digital assistants, video cameras, and digital cameras, mobile devices (vehicles) such as electric bicycles, electric automobiles, and trains, power generation devices such as thermal power plants, wind power plants, hydroelectric power plants, nuclear power plants, and geothermal power plants, natural energy storage systems, and the like.
  • the nonaqueous electrolyte secondary battery of the present invention is preferably a lithium ion secondary battery.
  • the positive or negative electrode active material used in the secondary battery contains lithium in the active material structure.
  • the nonaqueous electrolyte secondary battery of the present invention is equipped with the electrodes of the present invention, and therefore exhibits particularly high battery characteristics, including high battery capacity and output characteristics, compared to nonaqueous electrolyte secondary batteries equipped with electrodes obtained from conventional aqueous slurries that do not contain a protective film-forming agent.
  • either the positive electrode or the negative electrode may be the electrode of the present invention, and if one of the positive and negative electrodes is the electrode of the present invention, the other electrode may be manufactured from either an aqueous slurry or an organic solvent slurry.
  • the nonaqueous electrolyte secondary battery of the present invention may be in the form of a cylinder in which rectangular electrodes and a separator are stacked and wound into a wound body, a laminated type in which electrodes are wrapped in separators and stacked and packaged in an aluminum laminate pouch, or a coin type in which electrode pellets and a separator are stacked.
  • the exterior case may be made of stainless steel, aluminum, or the like.
  • Lithium salts or lithium inorganic compounds having lithium ion conductivity are used as the electrolyte.
  • Lithium salts soluble in non-aqueous solvents can be used in the form of electrolytic solutions or gel-like, rubber-like, or sheet-like polymer electrolytes prepared by mixing with organic polymers.
  • lithium inorganic compounds they can be used by forming them with a pressure press or a binder.
  • non-aqueous solvents used in the non-aqueous electrolyte solution include cyclic carbonates such as propylene carbonate, ethylene carbonate, vinylene carbonate, and butylene carbonate; chain carbonates such as diethyl carbonate, dimethyl carbonate, and ethyl methyl carbonate; cyclic ethers such as tetrahydrofuran, 2-methyltetrahydrofuran, and 3-dioxolane; chain ethers such as diethoxyethane and dimethoxyethane; sulfone-based solvents such as sulfolane, ethyl isopropyl sulfone, dimethyl sulfone, and di-normal propyl sulfone; chain esters such as methyl formate, methyl acetate, and methyl propionate; cyclic esters such as ⁇ -butyrolactone and ⁇ -valerolactone; and ace
  • non-aqueous solvents may be used alone or in a mixture of two or more.
  • a combination of a cyclic carbonate and a chain carbonate is preferred.
  • the cyclic carbonate dissolves lithium salts at a high concentration, and the chain carbonate can reduce the viscosity of the electrolyte without reducing the solubility of the lithium salt, so this combination makes it possible to obtain an electrolyte with high ionic conductivity.
  • these mixed solvents have high oxidation-reduction resistance, and are therefore preferred in that there is little concern about continuous electrolysis within the operating voltage range of lithium-ion batteries.
  • the non-aqueous solvent used in the non-aqueous electrolyte may be an ionic liquid.
  • An ionic liquid is a molten salt formed by combining a cation and an anion, and means a salt that exists in a liquid state over a wide temperature range including room temperature.
  • the ionic liquid may be formed by appropriately combining at least one of the following cations and at least one of the following anions.
  • the cation of this ionic liquid is not particularly limited as long as it allows the movement of lithium ions in the electrolyte and enables charging and discharging of the electricity storage device, and examples include imidazolium, pyridinium, pyrrolidinium, piperidinium, tetraalkylammonium, pyrazolium, and tetraalkylphosphonium.
  • imidazolium examples include 1-ethyl-3-methylimidazolium [EMIm + ], 1-butyl-3-methylimidazolium, 1-ethyl-2,3-dimethylimidazolium, 1-allyl-3-methylimidazolium, 1-allyl-3-ethylimidazolium, 1-allyl-3-butylimidazolium, and 1,3-diallylimidazolium.
  • Examples of the pyridinium include 1-propylpyridinium, 1-butylpyridinium, 1-allylpyridinium, 1-ethyl-3-(hydroxymethyl)pyridinium, and 1-ethyl-3-methylpyridinium.
  • Examples of the pyrrolidinium include N-methyl-N-propylpyrrolidinium [MPPyr + ], N-methyl-N-butylpyrrolidinium, N-methyl-N-methoxymethylpyrrolidinium, N-allyl-N-methylpyrrolidinium, and N-allyl-N-propylpyrrolidinium.
  • piperidinium examples include N-methyl-N-propylpiperidinium, N-methyl-N-butylpiperidinium, N-methyl-N-methoxymethylpiperidinium, and N-allyl-N-propylpiperidinium.
  • tetraalkylammonium examples include N,N,N-trimethyl-N-propylammonium and methyltrioctylammonium.
  • Examples of the pyrazolium include 1-ethyl-2,3,5-trimethylpyrazolium, 1-propyl-2,3,5-trimethylpyrazolium, 1-butyl-2,3,5-trimethylpyrazolium, and 1-allyl-2,3,5-trimethylpyrazolium.
  • Examples of the tetraalkylphosphonium include P-butyl-P,P,P-triethylphosphonium and P,P,P-triethyl-P-(2-methoxyethyl)phosphonium.
  • the anions that are combined with these cations to form the ionic liquid may be any anion that allows the movement of lithium ions in the electrolyte and enables charging and discharging of the electricity storage device.
  • These anions may be contained in combination of two or more kinds.
  • the lithium salt used in the non-aqueous electrolyte is not particularly limited, and examples thereof include fluoride-based lithium salts such as LiPF 6 , LiBF 4 , and LiAsF 6 , halide-based lithium salts such as LiClO 4 , LiCl, LiBr, and LiI, and sulfonate-based lithium salts such as LiN(CF 3 SO 2 ) 2 (LiTFSI) and LiN(FSO 2 ) 2 (LiFSI).
  • the lithium salt may be used alone or in a mixture of two or more kinds.
  • the concentration of the lithium salt in the non-aqueous electrolyte is 0.3 to 2.5 mol/dm 3 .
  • organic polymer compound examples include polyethylene oxide, polypropylene oxide, polyvinyl alcohol, polyvinyl butyral, polyvinylpyrrolidone, polyvinylidene carbonate, polyacrylonitrile, and PVDF-HFP.
  • the non-aqueous electrolyte may contain additives to suppress continuous redox decomposition on the positive and negative electrodes.
  • additives include vinylene carbonate, fluoroethylene carbonate, ethylene sulfide, 1,3-propane sultone, 1,3-propene sultone, lithium bisoxalate borate, and lithium difluorooxalate borate.
  • the content of the additive is preferably in the range of 10 to 0.1% by weight of the non-aqueous electrolyte. If the content is too high, it is undesirable because it leads to an increase in the resistance of the secondary battery.
  • These additives form a film on the electrodes to protect the electrode surfaces, and this protective effect mitigates the continuous redox decomposition reaction of the electrolyte on each electrode, which is effective in improving the lifespan.
  • a separator is provided between the positive electrode and the negative electrode to prevent short circuit between them.
  • the separator include porous films containing polyethylene, polypropylene, cellulose, polyvinylidene fluoride (PVDF), polyimide, alumina, silica, etc.
  • PVDF polyvinylidene fluoride
  • holes can be provided by stretching a polymer film, or a fiber or granular polymer or inorganic compound can be molded using a press or a binder.
  • a coating layer may be provided on one or both sides of the separator.
  • the coating layer is a layer of several nm to several ⁇ m made of alumina, zirconia, silica, aramid, PVDF, etc., and is effective in preventing short circuit by improving heat resistance and strength.
  • the positive electrode active material was 94.8 to 95.2% by weight, the conductive assistant was 2% by weight of carbon black, the protective film forming agent was 0.0 to 0.4% by weight of lithium silicate, the thickener was 0.55% by weight of carboxymethylcellulose Na (CMC-Na), and the binder was 2.25% by weight of acrylic emulsion.
  • the slurry was mixed with water as a solvent to prepare the slurry.
  • the positive electrode active material was LiNi 0.8 Mn 0.1 Co 0.1 O 2.
  • the protective film forming agent, lithium silicate is represented by the chemical formula Li 2 O.nSiO 2 , and three types of n were used: 3.5, 4.5, and 7.5.
  • the detailed weight composition of the electrode mixture is shown in Table 1.
  • Electrodes using electrode slurry The obtained electrode slurry was applied by a doctor blade method to one side of a 15 ⁇ m thick pure aluminum foil (material A1085) so that the active material coverage was 20.0 mg/cm 2 to prepare an electrode. The dried electrode was then pressed with a roll press machine so that the positive electrode mixture density was 3.4 g/cc.
  • Corrosion present In the SEM observation area, there is one or more void defects having a diameter of 50 ⁇ m or more on the surface of the electrode mixture layer, or there is exposure of the aluminum current collecting layer when visually confirmed from the surface of the electrode mixture layer.
  • No corrosion There are no pore defects with a diameter of 50 ⁇ m or more on the surface of the electrode mixture layer in the observation area, and there is no exposure of the aluminum current collecting layer when visually confirmed from the surface of the electrode mixture layer.
  • the non-aqueous electrolyte secondary battery electrode obtained above was used as the positive electrode of the battery to fabricate a lithium ion secondary battery having the following configuration.
  • the positive electrode was processed to a size of 12 mm ⁇ , and the negative electrode was processed to a size of 13 mm ⁇ .
  • a CR2032 type coin cell was fabricated in an argon atmosphere with a dew point of -60°C.
  • the materials used are as follows:
  • Positive electrode the positive electrode for the non-aqueous electrolyte
  • Negative electrode lithium metal
  • Electrolyte 1.0 M LiPF6 , an electrolyte, was dissolved in a non-aqueous solvent, ethylene carbonate (EC) and dimethyl carbonate (DMC), mixed in a volume ratio of 3:7, to be used as the electrolyte (hereinafter referred to as 1.0 M LiPF6 /EC:DMC [3:7 volume ratio]).
  • Separator Polyethylene porous film
  • Examples 1 to 3 which contain 0.2 wt%, 0.3 wt%, and 0.4 wt% lithium silicate as a protective film forming agent, respectively, a protective film is formed on the surface of the aluminum current collecting layer of the electrode, and the corrosion reaction can be suppressed even if an electrode is produced by applying an electrode slurry having a high pH exceeding pH 11 to the aluminum current collecting layer.
  • Comparative Example 1 which did not have a protective film forming agent.
  • Comparative Examples 2, 3, and 4 in which the amount of the protective film forming agent was 0.1% by weight, the corrosion was reduced compared to Comparative Example 1, but the corrosion reaction occurred, and it was confirmed that the protective film formation was insufficient.
  • Table 2 by using an electrode mixture containing a protective film forming agent, the electrode according to the present invention having a protective film suppresses or reduces the corrosion reaction, thereby maintaining the electronic connection in the electrode mixture, and it became possible to obtain a high battery capacity and output characteristics compared to the comparative examples.
  • the electrode mixture slurry prepared using lithium oxide or the like according to the present invention as an active material and water as a solvent contains a protective film forming agent, and a protective film is formed on the surface of the aluminum current collecting layer, making it possible to suppress corrosion of the aluminum current collecting layer during electrode preparation, and the resulting electrode has high battery capacity and output characteristics.
  • the present invention makes it possible to change from the conventional electrode manufacturing process using organic solvents to one using water, which is expected to reduce the cost of secondary battery electrodes and, ultimately, secondary batteries.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

The present invention provides an electrode for a nonaqueous electrolyte secondary battery and a nonaqueous electrolyte secondary battery that can suppress a corrosion reaction in an aluminum current collecting layer and can further suppress decreases in battery capacity and an output characteristic upon employment of a water-based positive electrode manufacturing process. The present invention provides an electrode for a nonaqueous electrolyte secondary battery, the electrode including an electrode mixture layer present on the aluminum current collecting layer. This electrode is characterized in that an electrode mixture forming the electrode mixture layer includes an active material, a binder, and a protective film forming agent, the active material is capable of electrochemically intercalating and de-intercalating alkali metal ions or electrochemically alloying and dealloying alkali metal ions, the protective film forming agent includes an alkali silicate, and a protective film formed by the protective film forming agent is present on the surface of the aluminum current collecting layer.

Description

非水電解質二次電池用電極および非水電解質二次電池Electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
 本発明は、非水電解質二次電池用電極および非水電解質二次電池に関する。 The present invention relates to an electrode for a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery.
 携帯電話機器、電気自動車等に搭載される電気化学デバイスとして、例えば、電気二重層キャパシタ、リチウムイオン二次電池やナトリウムイオン二次電池等の蓄電デバイスが開発されている。これらの中でも、リチウムイオン二次電池は、機器の小型化や軽量化を可能にし、充放電効率がよく、高いエネルギー密度を有しているため、例えば、携帯機器やノート型PC、家電機器、さらにはハイブリッド自動車や電気自動車の電源として使用されている。また、太陽光発電や風力発電などの自然エネルギーシステムと組み合わせ、発電した電力の貯蔵用蓄電デバイスとして新たに注目されている。 Electric double-layer capacitors, lithium-ion secondary batteries, sodium-ion secondary batteries and other power storage devices have been developed as electrochemical devices to be installed in mobile phones, electric vehicles and the like. Of these, lithium-ion secondary batteries enable devices to be made smaller and lighter, have good charging and discharging efficiency and have high energy density, and are therefore used, for example, as power sources for mobile devices, notebook PCs, home appliances and even hybrid and electric vehicles. They are also attracting new attention as power storage devices for storing generated electricity when combined with natural energy systems such as solar and wind power generation.
 リチウムイオン二次電池を構成する電極は、リチウムイオンの吸蔵・放出によりエネルギーを出し入れする活物質、電極内の導電性を確保するための導電助剤、活物質および導電剤を接着するためのバインダー、電池外部の外部回路群と接続するための集電層等から構成される。リチウムイオン二次電池の特性は電極に大きく依存し、それぞれの材料自体の特性と、材料の組み合わせ方とに大きく影響を受ける。 The electrodes that make up a lithium-ion secondary battery are made up of active materials that absorb and release lithium ions to input and output energy, conductive assistants to ensure electrical conductivity within the electrode, binders to bond the active materials and conductive agents, and current collecting layers to connect to external circuits outside the battery. The characteristics of lithium-ion secondary batteries depend heavily on the electrodes, and are greatly influenced by the characteristics of each material itself and how the materials are combined.
 近年、リチウムイオン二次電池等の用途は拡大し、電気自動車のみならず、災害対策や電力事業活用などを想定した定置用蓄電池としても市場の広がりをみせており、電池の高性能化だけでなく低コスト化の要求が高まっている。特に、二次電池の低コスト化を実現するためには、電池作製に使用する各材料だけでなく電池製造プロセスの見直しも必要であり、これまで多くの検討が行われている。 In recent years, the uses of lithium-ion secondary batteries have expanded, and the market is expanding not only for electric vehicles but also as stationary storage batteries for disaster prevention and power business use, and there is a growing demand for batteries that not only have higher performance but also lower costs. In particular, to reduce the cost of secondary batteries, it is necessary to review not only the materials used to make the batteries but also the battery manufacturing process, and much research has been conducted on this issue.
 例えば、リチウムイオン二次電池の正極活物質には、ニッケル(Ni)含有比率の高いリチウム遷移金属酸化物が高容量化のために近年検討が行われている。正極活物質の高容量化によって重量当たりのエネルギー密度が向上し、材料使用量を低減できるため電池コストの低減が可能となっている。一方で、電極は前記記載の活物質、導電剤、バインダーを水または有機溶剤を用いて塗料(スラリー)化し、正極はアルミニウム集電層、負極は銅集電層またはアルミニウム集電層に塗工することによって製造されている。この際、正極はスラリー化においてN-methyl-N-pyrrolidone(NMP)という有機溶剤を使用しており、有機溶剤自身のコストだけでなく回収および精製のコストが最終的な電池コストに影響を及ぼしている。 For example, lithium transition metal oxides with a high nickel (Ni) content have been investigated in recent years as the positive electrode active material for lithium-ion secondary batteries in order to increase capacity. Increasing the capacity of the positive electrode active material improves the energy density per weight and reduces the amount of material used, making it possible to reduce battery costs. Meanwhile, electrodes are manufactured by turning the above-mentioned active material, conductive agent, and binder into a paint (slurry) using water or an organic solvent, and coating the positive electrode on an aluminum current collector layer, and the negative electrode on a copper or aluminum current collector layer. In this case, an organic solvent called N-methyl-N-pyrrolidone (NMP) is used to make the slurry for the positive electrode, and the final battery cost is affected not only by the cost of the organic solvent itself but also by the cost of recovery and purification.
 このような課題に対して、正極製造を有機溶剤から水に置き換えることにより、コスト低減を図る試みが為されている。しかしながら、正極活物質を水中に分散すると活物質内からリチウムイオンが水に溶出し、スラリーのpHが10以上の強アルカリ状態となる。このようなスラリーをアルミニウム集電層に塗工すると、アルミニウムと水酸化物イオンによる腐食反応が進行し、アルミニウム表面から水素ガスが発生する。結果として、塗工層に水素ガスが気泡として混入するため、平滑な電極を得ることができないという課題がある。また、このような電極は乾燥後に気泡が混入していた部分が空隙となり、電極合剤層内の電子パスが断絶されるので電池抵抗を増大させてしまう。 In response to these issues, attempts have been made to reduce costs by replacing organic solvents with water in the manufacture of positive electrodes. However, when the positive electrode active material is dispersed in water, lithium ions are eluted from the active material into the water, and the pH of the slurry becomes strongly alkaline, at 10 or higher. When such a slurry is applied to an aluminum current collecting layer, a corrosion reaction between the aluminum and hydroxide ions progresses, and hydrogen gas is generated from the aluminum surface. As a result, hydrogen gas is mixed into the coating layer as air bubbles, which makes it impossible to obtain a smooth electrode. Furthermore, in such electrodes, the areas where the air bubbles were mixed in become voids after drying, and the electronic path in the electrode mixture layer is interrupted, increasing the battery resistance.
 前記課題の克服のため、特許文献1において、高pHスラリーに中和剤を添加することによってアルミニウム集電層の腐食が発生しないpHまで中和する検討が行われている。 In order to overcome the above-mentioned problems, Patent Document 1 examines the addition of a neutralizing agent to the high pH slurry to neutralize it to a pH level at which corrosion of the aluminum current collecting layer does not occur.
 しかしながら、これら中和反応によるスラリーpHの制御技術では、正極活物質内からのリチウムイオンの溶出を誘発してしまうため電池容量の低下を引き起こしてしまう。また、中和剤を、電極合剤中に重量比率で1%以上添加することも必要であり、エネルギー密度の低下にも寄与している。従って、上記の中和反応によるスラリーpH制御では正極製造の有機溶剤から水系化には検討が不十分であった。 However, these techniques for controlling the slurry pH through neutralization reactions induce the elution of lithium ions from the positive electrode active material, resulting in a decrease in battery capacity. In addition, it is necessary to add a neutralizing agent to the electrode mixture at a weight ratio of 1% or more, which also contributes to a decrease in energy density. Therefore, the above-mentioned slurry pH control through neutralization reactions has not been sufficiently studied to convert the organic solvent used in positive electrode production to an aqueous system.
国際公開第2016/052715号International Publication No. 2016/052715
 本発明は、前記問題点に鑑みなされたものであって、その目的は、正極製造プロセスの水系化において、アルミニウム集電層の腐食反応を抑制し、さらに電池容量および出力特性の低下を抑制する、という課題を解決することにある。 The present invention was developed in consideration of the above problems, and its purpose is to solve the problem of suppressing the corrosion reaction of the aluminum current collecting layer in the aqueous cathode manufacturing process, and further suppressing the decrease in battery capacity and output characteristics.
 本発明者らは、前記課題を解決すべく鋭意検討を行った結果、アルカリ珪酸塩を含んだ水系スラリーをアルミニウム集電層に塗工することにより、高pHの水系スラリーに対して耐食性のある保護膜をアルミニウム集電層に形成可能であり、電池容量および出力特性低下を抑制することを見出し、本発明を完成するに至った。 The inventors conducted extensive research to solve the above problems and discovered that by applying an aqueous slurry containing an alkaline silicate to the aluminum current collecting layer, it is possible to form a protective film on the aluminum current collecting layer that is corrosion-resistant to the high pH aqueous slurry, thereby preventing a decrease in battery capacity and output characteristics, and thus completing the present invention.
 上記目的達成のために、本発明の非水電解質二次電池用電極は、アルミニウム集電層上に電極合剤層が存在する非水電解質二次電池用電極であって、
前記電極合剤層を構成する電極合剤は、活物質、バインダーおよび保護膜形成剤を含み、
前記活物質は、アルカリ金属イオンを電気化学的に吸蔵・脱離可能な活物質、または、アルカリ金属イオンを電気化学的に合金・脱合金化可能な活物質であり、
前記保護膜形成剤は、アルカリ珪酸塩を含み、
前記保護膜形成剤によって形成される保護膜が、前記アルミニウム集電層の表面に存在することを特徴とする。
In order to achieve the above object, the present invention provides an electrode for a non-aqueous electrolyte secondary battery, comprising an electrode mixture layer on an aluminum current collecting layer,
The electrode mixture constituting the electrode mixture layer contains an active material, a binder, and a protective film forming agent,
the active material is an active material capable of electrochemically absorbing and desorbing alkali metal ions, or an active material capable of electrochemically alloying and dealloying alkali metal ions,
The protective film forming agent includes an alkali silicate,
The protective film formed by the protective film forming agent is present on the surface of the aluminum current collecting layer.
 本発明の非水電解質二次電池用電極において、前記保護膜形成剤は、MO・nSiOで表されるアルカリ珪酸塩を少なくとも含有し、MはLi,Na,Kの少なくとも1種を含み、nが1.6以上8.0以下であることが好ましい。 In the electrode for a non-aqueous electrolyte secondary battery of the present invention, it is preferable that the protective film forming agent contains at least an alkali silicate represented by M 2 O.nSiO 2 , where M contains at least one of Li, Na, and K, and n is 1.6 or more and 8.0 or less.
 本発明の非水電解質二次電池用電極において、前記電極合剤中の保護膜形成剤の重量割合は、0.1%を超え1%以下の範囲であることが好ましい。 In the electrode for a non-aqueous electrolyte secondary battery of the present invention, the weight ratio of the protective film forming agent in the electrode mixture is preferably in the range of more than 0.1% and not more than 1%.
 本発明の非水電解質二次電池用電極において、前記アルミニウム集電層表面の保護膜は、X線光電子分光法(XPS)によるMgKα線のX線源を用いた分析により、Si2p3/2スペクトルにおける102~107eVの範囲内に結合エネルギーを有するSi-O結合を少なくとも含むことが好ましい。 In the electrode for a nonaqueous electrolyte secondary battery of the present invention, it is preferable that the protective film on the surface of the aluminum current collecting layer contains at least a Si—O bond having a bond energy in the range of 102 to 107 eV in a Si2p3 /2 spectrum, as determined by X-ray photoelectron spectroscopy (XPS) analysis using an X-ray source of MgKα rays.
 本発明の非水電解質二次電池用電極において、前記アルミニウム集電層は、純アルミニウム、または、アルミニウムと1種以上の添加元素からなる合金であることが好ましい。 In the electrode for a non-aqueous electrolyte secondary battery of the present invention, the aluminum current collecting layer is preferably pure aluminum or an alloy of aluminum and one or more additive elements.
 本発明の非水電解質二次電池用電極において、前記活物質は、LiMO,LiM,Li12(xは1~2、Mは遷移金属)で表され、遷移金属を少なくとも1種含むリチウム酸化物と、
LiMPO(Mは遷移金属)で表され、遷移金属を少なくとも1種含むリチウムポリアニオン化合物と、
リチウム硫黄化合物、リチウムセレン化合物およびリチウムフッ化化合物から選ばれるリチウム無機化合物と、
NaMOまたはNaMO(Mは遷移金属)で表され、遷移金属を少なくとも1種含むナトリウム酸化物と、
NaM(XO,NaMPOまたはNaM(SO(Mは遷移金属、Xは硫黄、リン、シリコンの1種)で表され、遷移金属を少なくとも1種含むナトリウムポリアニオン化合物と、
NaM[M’(CN)](M,M’は遷移金属)で表され、遷移金属を少なくとも1種含むナトリウムプルシアンブルー類似化合物と、
から選ばれる少なくとも1種であることが好ましい。
In the electrode for a non-aqueous electrolyte secondary battery of the present invention, the active material is a lithium oxide represented by Li x MO 2 , LiM 2 O 4 , or Li 4 M 5 O 12 (x is 1 to 2, and M is a transition metal) containing at least one transition metal;
A lithium polyanion compound represented by LiMPO 4 (M is a transition metal) and containing at least one transition metal;
a lithium inorganic compound selected from a lithium sulfur compound, a lithium selenium compound, and a lithium fluoride compound;
A sodium oxide represented by NaMO2 or Na2MO3 (M is a transition metal) and containing at least one transition metal;
a sodium polyanion compound represented by NaM 2 (XO 4 ) 3 , NaMPO 4 or NaM(SO 4 ) 2 (wherein M is a transition metal and X is one of sulfur, phosphorus and silicon) and containing at least one transition metal;
a sodium Prussian blue analogue compound represented by Na 2 M[M′(CN) 6 ] (M and M′ are transition metals) and containing at least one transition metal;
It is preferable that the compound is at least one selected from the group consisting of:
 本発明の非水電解質二次電池は、正極および負極を備え、前記正極と前記負極との間は絶縁層で隔てられており、前記正極および前記負極の少なくとも一方が前記本発明の非水電解質二次電池用電極である。 The non-aqueous electrolyte secondary battery of the present invention includes a positive electrode and a negative electrode, the positive electrode and the negative electrode being separated by an insulating layer, and at least one of the positive electrode and the negative electrode being an electrode for the non-aqueous electrolyte secondary battery of the present invention.
 本発明により、リチウムやナトリウム等のアルカリイオンを含有する正極および負極活物質材料を用いて、アルミニウム集電層の腐食を抑制しながら、水系プロセスで電極を製造することが可能となる。また製造した電極は水系プロセスで作製しているにも関わらず電池容量および出力特性の低下を抑制することができる。このような電極を用いた非水電解質二次電池は、従来と比較して低コストを提供することを可能とする。 The present invention makes it possible to manufacture electrodes in an aqueous process using positive and negative electrode active material containing alkaline ions such as lithium and sodium while suppressing corrosion of the aluminum current collecting layer. Furthermore, even though the electrodes manufactured in an aqueous process are produced, it is possible to suppress the decrease in battery capacity and output characteristics. A non-aqueous electrolyte secondary battery using such electrodes can be provided at a lower cost than conventional batteries.
図1は、(A)比較例2と、本発明に基づき作製した(B)実施例1、(C)実施例2および(D)実施例3の電極合剤層表面における目視観察結果を示す写真である。FIG. 1 is a set of photographs showing the results of visual observation of the surfaces of electrode mixture layers of (A) Comparative Example 2 and (B) Example 1, (C) Example 2, and (D) Example 3 produced based on the present invention. 図2は、(E)比較例3と、本発明に基づき作製した(F)実施例4、(G)実施例5および(H)実施例6の電極合剤層表面における目視観察結果を示す写真である。FIG. 2 is a photograph showing the results of visual observation of the surface of the electrode mixture layer of (E) Comparative Example 3, and (F) Example 4, (G) Example 5, and (H) Example 6 produced based on the present invention. 図3は、(I)比較例4と、本発明に基づき作製した(J)実施例7、(K)実施例8および(L)実施例9の電極合剤層表面における目視観察結果を示す写真である。FIG. 3 is a set of photographs showing the results of visual observation of the surfaces of the electrode mixture layers of (I) Comparative Example 4, and (J) Example 7, (K) Example 8, and (L) Example 9 produced based on the present invention. 図4は、(M)比較例1の電極合剤層表面における目視観察結果を示す写真である。FIG. 4 (M) is a photograph showing the results of visual observation of the surface of the electrode mixture layer in Comparative Example 1. 図5は、(A)比較例2、(B)実施例1、(C)実施例2および(D)実施例3の電極合剤層表面におけるSEM観察画像である。FIG. 5 shows SEM images of the surfaces of the electrode mixture layers of (A) Comparative Example 2, (B) Example 1, (C) Example 2, and (D) Example 3. 図6は、(E)比較例3、(F)実施例4、(G)実施例5および(H)実施例6の電極合剤層表面におけるSEM観察画像である。FIG. 6 shows SEM images of the electrode mixture layer surfaces of (E) Comparative Example 3, (F) Example 4, (G) Example 5, and (H) Example 6. 図7は、(I)比較例4、(J)実施例7、(K)実施例8および(L)実施例9の電極合剤層表面におけるSEM観察画像である。FIG. 7 shows SEM images of the electrode mixture layer surfaces of (I) Comparative Example 4, (J) Example 7, (K) Example 8, and (L) Example 9. 図8は、(M)比較例1の電極合剤層表面におけるSEM観察画像である。FIG. 8 is an SEM observation image of the surface of the electrode mixture layer of Comparative Example 1 (M). 図9は、比較例1、比較例2、実施例1および実施例1の充放電後、実施例2、実施例3のアルミニウム集電層表面におけるSi2p3/2スペクトルXPS測定結果である。FIG. 9 shows the results of XPS measurement of Si2p 3/2 spectrum on the surface of the aluminum current collecting layer in Comparative Example 1, Comparative Example 2, Example 1, and Example 1 after charging and discharging, and in Example 2 and Example 3. 図10は、比較例1、比較例3、実施例4および実施例4の充放電後、実施例5、実施例6のアルミニウム集電層表面におけるSi2p3/2スペクトルXPS測定結果である。FIG. 10 shows the results of XPS measurement of Si2p 3/2 spectrum on the aluminum current collecting layer surface of Comparative Example 1, Comparative Example 3, Example 4, and Example 4 after charging and discharging, and of Examples 5 and 6. 図11は、比較例1、比較例4、実施例7および実施例7の充放電後、実施例8、実施例9のアルミニウム集電層表面におけるSi2p3/2スペクトルXPS測定結果である。FIG. 11 shows the results of XPS measurement of Si2p 3/2 spectrum on the surface of the aluminum current collecting layer of Comparative Example 1, Comparative Example 4, Example 7, and Example 7 after charging and discharging, and of Examples 8 and 9.
 以下、本発明の実施の形態について、詳細に説明するが、本発明の範囲はこれらの説明に拘束されることはなく、以下の例示以外についても、本発明の趣旨を損なわない範囲で適宜変更、実施することができる。なお、本明細書において特記しない限り、数値範囲を表す「A~B」は、「A以上、B以下」を意味する。また、「質量」と「重量」、「質量%」と「重量%」は同義語として扱う。 The following provides a detailed explanation of the embodiments of the present invention, but the scope of the present invention is not limited to these explanations, and other than the examples below, appropriate modifications and implementations can be made without impairing the spirit of the present invention. Unless otherwise specified in this specification, "A to B" indicating a numerical range means "A or more, B or less." Furthermore, "mass" and "weight," "mass %" and "weight %" are treated as synonyms.
 本発明の非水電解質二次電池の正極および負極は、保護膜形成剤と、アルカリイオンを電気化学的に吸蔵・脱離可能な活物質、又は、アルカリ金属イオンと電気化学的に合金・脱合金化可能な活物質と、バインダーを含んでいる。保護膜形成剤は、アルカリ珪酸塩を含み、アルミニウム集電層表面に腐食反応を抑制する保護膜を形成する。 The positive and negative electrodes of the nonaqueous electrolyte secondary battery of the present invention contain a protective film forming agent, an active material capable of electrochemically absorbing and desorbing alkali ions, or an active material capable of electrochemically alloying and dealloying alkali metal ions, and a binder. The protective film forming agent contains an alkali silicate, and forms a protective film that suppresses corrosion reactions on the surface of the aluminum current collecting layer.
 <保護膜形成剤>
 保護膜形成剤としては、MO・nSiOで表されるアルカリ珪酸塩を使用することができる。ここで、MはLi、Na、Kである。前記アルカリ種は、1種類を単独で用いてもよいし、2種類以上を併用することが可能である。2種類以上を併用する場合、アルカリ種の組み合わせおよび混合比率は任意に選択することができる。また、nは1.6以上8.0以下であり、2.5以上7.5以下であることが好ましい。アルカリ珪酸塩は水中に溶解した水溶液を使用することが好ましく、水溶液中のアルカリ珪酸塩重量割合は、10~80%である。
<Protective Film Forming Agent>
As the protective film forming agent, an alkali silicate represented by M 2 O.nSiO 2 can be used. Here, M is Li, Na, or K. The alkali species may be used alone or in combination of two or more. When two or more types are used in combination, the combination and mixing ratio of the alkali species can be selected arbitrarily. Moreover, n is 1.6 or more and 8.0 or less, and preferably 2.5 or more and 7.5 or less. It is preferable to use an aqueous solution in which the alkali silicate is dissolved in water, and the weight ratio of the alkali silicate in the aqueous solution is 10 to 80%.
 <アルミニウム集電層>
 アルミニウム集電層に使用される材質としては、純アルミニウムやアルミニウムと1種以上の添加元素を含んだ合金を使用することができる。純アルミニウムとしては、例えばJIS規格で規定されているアルミニウム重量比率が99%以上のA1050、A1070、A1085、A1100、A1235、1N30、1N90、1N99等の材質を使用することができる。アルミニウム合金としては、Al-Mn合金系のA3003、A3103、A3203、A3004、A3104、A3005、A3105等、Al-Fe合金系のA8021、A8079等の材質を使用することができる。アルミニウム集電層の形態は、圧延箔、パンチング加工箔、メッシュ、発泡体等を任意に使用することができ、厚みは1μm~2mmの範囲である。圧延箔を使用する場合、厚みは5~20μmであることが好ましい。前記アルミニウム集電層を、炭素、フッ素、タングステン、ジルコニウム等で表面処理・コーティングしたものも使用することができる。
<Aluminum current collecting layer>
As the material used for the aluminum current collecting layer, pure aluminum or an alloy containing aluminum and one or more additive elements can be used. As the pure aluminum, for example, materials such as A1050, A1070, A1085, A1100, A1235, 1N30, 1N90, and 1N99, which have an aluminum weight ratio of 99% or more as specified by the JIS standard, can be used. As the aluminum alloy, materials such as A3003, A3103, A3203, A3004, A3104, A3005, and A3105 of Al-Mn alloys and A8021 and A8079 of Al-Fe alloys can be used. As the form of the aluminum current collecting layer, any of rolled foils, punched foils, meshes, foams, and the like can be used, and the thickness is in the range of 1 μm to 2 mm. When using rolled foil, the thickness is preferably 5 to 20 μm. The aluminum current collecting layer may be surface-treated or coated with carbon, fluorine, tungsten, zirconium, or the like.
<活物質>
 アルカリイオンを電気化学的に吸蔵・脱離可能な活物質又はアルカリイオンと電気化学的に合金・脱合金化可能な活物質は、正極の場合、LiCoO、LiMn1-aFePO、LiNi2-bMn、LiNiMnCo1-d-e-fで表されるリチウム酸化物やリチウムポリアニオン化合物を使用することができる。前記において、構成する元素の比率が、例示した化学式に記載した比率から多少ずれていても使用することが可能である。ここで、Mは、Na、K、Al,Mg,Ti,Fe,V,Cr,Nb,Mo,W,Cu,Zn,Ga,In,Sn,Zr,RuおよびLaからなる群より選ばれる1以上の元素であり、
 0≦a≦1.0
 0≦b≦2.0
 0.8≦c≦2.0
 0<d≦1.0
 0≦e<1.0
 0≦f<1.0
 0<d+e+f≦1.0
であることが好ましい。またその他に、リチウム硫黄化合物、リチウムセレン化合物、リチウムフッ化化合物等を使用することができる。また、ナトリウム酸化物、ナトリウムポリアニオン化合物、ナトリウムプルシアンブルー類似化合物も使用することができる。
<Active material>
As an active material capable of electrochemically absorbing and desorbing alkali ions or an active material capable of electrochemically alloying and dealloying alkali ions, in the case of a positive electrode, lithium oxides or lithium polyanion compounds represented by LiCoO 2 , LiMn 1-a Fe a PO 4 , LiNi 2-b Mn b O 4 , and Li c Ni d Mn e Co f M 1-d-e-f O 2 can be used. In the above, it is possible to use the above-mentioned active material even if the ratio of the constituent elements is slightly different from the ratio described in the exemplified chemical formula. Here, M is one or more elements selected from the group consisting of Na, K, Al, Mg, Ti, Fe, V, Cr, Nb, Mo, W, Cu, Zn, Ga, In, Sn, Zr, Ru, and La,
0≦a≦1.0
0≦b≦2.0
0.8≦c≦2.0
0<d≦1.0
0≦e<1.0
0≦f<1.0
0<d+e+f≦1.0
In addition, lithium sulfur compounds, lithium selenium compounds, lithium fluoride compounds, etc. can be used. Sodium oxide, sodium polyanion compounds, and sodium Prussian blue analogues can also be used.
 負極の場合は、LiTi12で表される化合物に代表されるリチウムチタン酸化物を用いることができる。また、CuO、CuO、MnO、MoO、V、CrO、MoO、Fe、Ni、CoO等の遷移金属酸化物を用いることができる。 In the case of the negative electrode , a lithium titanium oxide, typified by the compound represented by Li4Ti5O12 , can be used. In addition, transition metal oxides such as CuO, Cu2O, MnO2, MoO3, V2O5, CrO3, MoO3 , Fe2O3 , Ni2O3 , and CoO3 can be used .
 また、活物質に対してアルミニウム、ホウ素、フッ素、クロム、ジルコニウム、モリブデン、マグネシウム、ナトリウム、鉄等の元素をドープしたものや、活物質の粒子表面を炭素、Al、LiPO、LiNbO、TiO、SiO等で表面処理・コートしたものも使用できる。 In addition, active materials doped with elements such as aluminum, boron, fluorine, chromium, zirconium, molybdenum, magnesium, sodium , and iron, and active material particles whose surfaces are treated or coated with carbon, Al2O3 , Li3PO4 , LiNbO3 , TiO2 , SiO2 , etc. can also be used.
 活物質は、前記の材料のうちの1種類を単独で用いてもよいし、2種類以上を併用してもよい。正極には、前記正極に用いることができる材料から選ばれる少なくとも2種類を、負極には、前記負極に用いることができる材料から選ばれる少なくとも2種類を組み合わせて用いることができる。活物質を構成する材料の混合比率は任意であってよい。 The active material may be one of the above materials, or two or more of them may be used in combination. At least two materials selected from the materials usable for the positive electrode may be used in combination for the positive electrode, and at least two materials selected from the materials usable for the negative electrode may be used in combination for the negative electrode. The mixture ratio of the materials constituting the active material may be any ratio.
 複数の材料の混合に用いる装置としては、特に制限はないが、例えば、回転型混合機の場合:円筒型混合機、双子円筒型混合機、二重円錐型混合機、正立方型混合機、鍬形混合機、固定型混合機の場合:螺旋型混合機、リボン型混合機、Muller型混合機、Helicalflight型混合機、Pugmil型混合機、流動化型混合機等を用いることができる。 There are no particular limitations on the equipment used to mix multiple materials, but for example, in the case of rotary mixers, the following can be used: cylindrical mixer, twin cylindrical mixer, double cone mixer, upright cube mixer, hoe-shaped mixer; in the case of stationary mixers, the following can be used: spiral mixer, ribbon mixer, Muller mixer, helical flight mixer, Pugmil mixer, fluidization mixer, etc.
 活物質は粒子形状であることが好ましく、その場合、粒子径は、100nm~50μm程度であることが好ましく、200 nm~20μmの範囲がより好ましい。粒子径が100nm未満であると、スラリーの分散が困難となりやすく、粒子径が50μmを超えると、電池特性の低下が発生しやすい。 The active material is preferably in a particulate form, in which case the particle size is preferably about 100 nm to 50 μm, and more preferably in the range of 200 nm to 20 μm. If the particle size is less than 100 nm, it is likely to be difficult to disperse the slurry, and if the particle size exceeds 50 μm, the battery characteristics are likely to deteriorate.
 本発明の非水電解質二次電池は、正極および負極の少なくとも一方が本発明の電極である。正極または負極のいずれかが本発明の電極ではない場合に、当該電極に用いられる好適な活物質としては、黒鉛、難黒鉛化性炭素、易黒鉛化性炭素、リチウム等が挙げられる。 In the nonaqueous electrolyte secondary battery of the present invention, at least one of the positive electrode and the negative electrode is an electrode of the present invention. When either the positive electrode or the negative electrode is not an electrode of the present invention, suitable active materials for use in the electrode include graphite, non-graphitizable carbon, easily graphitizable carbon, lithium, etc.
<バインダー>
 本発明の非水電解質二次電池用の正極および負極には、バインダーを備えている。バインダーは電極中の重量割合として、0.1%以上20%以下含まれていることが好ましい。より好ましくは、0.5%以上10%以下である。前記バインダーの重量割合が少ないと、接着力が低下し電池寿命が低下する。また重量割合が多いと、電池抵抗が増加する。
<Binder>
The positive and negative electrodes for the non-aqueous electrolyte secondary battery of the present invention are provided with a binder. The binder is preferably contained in the electrodes at a weight ratio of 0.1% to 20%. More preferably, the binder is contained in the electrodes at a weight ratio of 0.5% to 10%. If the weight ratio of the binder is small, the adhesive strength decreases and the battery life decreases. If the weight ratio is large, the battery resistance increases.
 バインダーとしては、エマルジョン水溶液、高分子水溶液、高分子水分散体等を使用することができる。エマルジョンとしては、合成樹脂エマルジョンである「ポリアクリル酸共重合体樹脂エマルジョン」、「共役ジエン系重合体エマルジョン」、「含フッ素共重合体エマルジョン」、高分子水溶液としては、「水溶性ポリアクリル酸共重合体」、高分子水分散体としては「含フッ素共重合体の水分散体」、などの電池用途に開発された樹脂系のものを好ましく用いることができる。 As the binder, an aqueous emulsion solution, an aqueous polymer solution, an aqueous polymer dispersion, etc. can be used. As the emulsion, synthetic resin emulsions such as "polyacrylic acid copolymer resin emulsion", "conjugated diene polymer emulsion", and "fluorine-containing copolymer emulsion" can be preferably used. As the aqueous polymer solution, "water-soluble polyacrylic acid copolymer" can be used. As the aqueous polymer dispersion, "aqueous dispersion of fluorine-containing copolymer" can be used. These are resin-based solutions developed for battery applications.
 「ポリアクリル酸共重合体樹脂のエマルジョン」とは、アクリル酸モノマーおよび他の反応性モノマー等を水中で乳化重合することによって得られる共重合体樹脂のエマルジョンである。前記他の反応性モノマーとしては、フッ化ビニリデンモノマー;スチレンモノマー;アクリロニトリル、メタクリロニトリル、α-クロロアクリロニトリル、クロトンニトリル、α-エチルアクリロニトリル、α-シアノアクリレート、シアン化ビニリデン、フマロニトリル等のα、β-不飽和ニトリルモノマー等の、ニトリル基を含むエチレン性不飽和モノマー;メタアクリル酸、アクリル酸等の単官能モノマー、フマル酸、マレイン酸、イタコン酸、シトラコン酸、メサコン酸、グルタコン酸、1,2,3,6-テトラヒドロフタル酸、3-メチル-1,2,3,6-テトラヒドロフタル酸、4-メチル-1,2,3,6-テトラヒドロフタル酸、メチル-3,6-エンドメチレン-1,2,3,6-テトラヒドロフタル酸、エキソ-3,6-エポキシ-1,2,3,6-テトラヒドロフタル酸、ハイミック酸等の、カルボン酸を含むエチレン性不飽和モノマー;前記カルボン酸を含むエチレン性不飽和モノマーの無水物;前記無水物のケン化物;メチルビニルケトン、エチルビニルケトン、イソプロピルビニルケトン、イソブチルビニルケトン、t-ブチルビニルケトン、ヘキシルビニルケトン等の、ケトン基を含むエチレン性不飽和モノマー;酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、トリメチル酢酸ビニル、カプロン酸ビニル、カプリル酸ビニル、ラウリン酸ビニル、パルミチン酸ビニル、ステアリン酸ビニル等の、有機酸ビニルエステル基を含むエチレン性不飽和モノマー;等を挙げることができる。他の反応性モノマーは、1種を用いてもよいし、2種以上を併用してもよい。 "Polyacrylic acid copolymer resin emulsion" refers to an emulsion of a copolymer resin obtained by emulsion polymerization of acrylic acid monomer and other reactive monomers in water. Examples of the other reactive monomers include vinylidene fluoride monomer; styrene monomer; ethylenically unsaturated monomers containing a nitrile group, such as acrylonitrile, methacrylonitrile, α-chloroacrylonitrile, crotononitrile, α-ethylacrylonitrile, α-cyanoacrylate, vinylidene cyanide, fumaronitrile, and other α,β-unsaturated nitrile monomers; monofunctional monomers such as methacrylic acid and acrylic acid, fumaric acid, maleic acid, itaconic acid, citraconic acid, mesaconic acid, glutaconic acid, 1,2,3,6-tetrahydrophthalic acid, 3-methyl-1,2,3,6-tetrahydrophthalic acid, 4-methyl-1,2,3,6-tetrahydrophthalic acid, methyl-3,6-endomethylene ... Examples of the other reactive monomers include ethylenically unsaturated monomers containing carboxylic acids, such as trihydrophthalic acid, exo-3,6-epoxy-1,2,3,6-tetrahydrophthalic acid, and himic acid; anhydrides of the ethylenically unsaturated monomers containing carboxylic acids; saponification products of the anhydrides; ethylenically unsaturated monomers containing ketone groups, such as methyl vinyl ketone, ethyl vinyl ketone, isopropyl vinyl ketone, isobutyl vinyl ketone, t-butyl vinyl ketone, and hexyl vinyl ketone; ethylenically unsaturated monomers containing organic acid vinyl ester groups, such as vinyl acetate, vinyl propionate, vinyl butyrate, trimethyl vinyl acetate, vinyl caproate, vinyl caprylate, vinyl laurate, vinyl palmitate, and vinyl stearate; and the like. One type of other reactive monomer may be used, or two or more types may be used in combination.
 また、ポリアクリル酸共重合体樹脂の末端部を、特定の官能基によって置換することにより、特定のモノマー等と反応することが可能な変性体とすることもできる。変性体としては、エポキシ変性体、カルボキシ変性体、イソシアネート変性体、水素変性体等を挙げることができる。 Also, by substituting the terminals of the polyacrylic acid copolymer resin with specific functional groups, it is possible to produce a modified product capable of reacting with specific monomers, etc. Examples of modified products include epoxy modified products, carboxy modified products, isocyanate modified products, and hydrogen modified products.
 「共役ジエン系重合体エマルジョン」としては、スチレンブタジエン共重合体ゴムのエマルジョンを好適に用いることができる。スチレンブタジエン共重合体ゴムのエマルジョンとは、スチレンとブタジエンとの共重合体の粒子であり、スチレンに由来する共重合成分と、ブタジエンに由来する共重合成分とを有する。スチレンに由来する共重合成分の含有量は、スチレンブタジエン共重合体を構成する共重合成分全体を基準として、50~80モル%であることが好ましい。ブタジエンに由来する共重合成分の含有量は、前記共重合成分全体を基準として、20~50モル%であることが好ましい。 As the "conjugated diene polymer emulsion", an emulsion of styrene butadiene copolymer rubber can be suitably used. The emulsion of styrene butadiene copolymer rubber is a particle of a copolymer of styrene and butadiene, and has a copolymer component derived from styrene and a copolymer component derived from butadiene. The content of the copolymer component derived from styrene is preferably 50 to 80 mol % based on the total copolymer components constituting the styrene butadiene copolymer. The content of the copolymer component derived from butadiene is preferably 20 to 50 mol % based on the total copolymer components.
 スチレンブタジエン共重合体は、スチレンに由来する共重合成分およびブタジエンに由来する共重合成分以外の他の反応性モノマーを有していてもよい。他の反応性モノマーとしては、例えば、ポリアクリル酸共重合体樹脂のエマルジョンの成分として前述したものを用いることができる。 The styrene-butadiene copolymer may have other reactive monomers in addition to the copolymerization components derived from styrene and the copolymerization components derived from butadiene. As the other reactive monomers, for example, those mentioned above as components of the emulsion of the polyacrylic acid copolymer resin can be used.
 スチレンブタジエン共重合体が前記他の反応性モノマーを有する場合、他の反応性モノマーの含有量は、スチレンブタジエン共重合体を構成する共重合成分全体を基準として、1~30モル%であることが好ましい。スチレンブタジエン共重合体は、ランダム共重合体、ブロック共重合体、グラフト共重合体のいずれであってもよい。また、スチレンブタジエン共重合体は、カルボキシ変性されていてもよい。 When the styrene-butadiene copolymer has the other reactive monomer, the content of the other reactive monomer is preferably 1 to 30 mol% based on the total copolymerization components constituting the styrene-butadiene copolymer. The styrene-butadiene copolymer may be any of a random copolymer, a block copolymer, and a graft copolymer. The styrene-butadiene copolymer may also be carboxy-modified.
 スチレンブタジエン共重合体ゴムのエマルジョンとは、スチレンのモノマーおよびブタジエンのモノマー、並びに、必要に応じて他の反応性モノマーを水中で乳化重合することによって得られるゴム粒子のエマルジョンであり、ラテックスまたは合成ゴムラテックスと称される場合もある。 Styrene-butadiene copolymer rubber emulsion is an emulsion of rubber particles obtained by emulsion polymerization of styrene monomer, butadiene monomer, and, if necessary, other reactive monomers in water, and is sometimes called latex or synthetic rubber latex.
 なお、スチレンブタジエン共重合体ゴムの代わりに、ブタジエンゴム(BR)、イソプレンゴム(IR)、クロロプレンゴム(CR)、ニトリルゴム(NBR)、ブチルゴム(IIR)、エチレンプロピレンゴム(EPDM)、天然ゴム(NR)等を用いることもできる。 In place of styrene-butadiene copolymer rubber, butadiene rubber (BR), isoprene rubber (IR), chloroprene rubber (CR), nitrile rubber (NBR), butyl rubber (IIR), ethylene propylene rubber (EPDM), natural rubber (NR), etc. can also be used.
 「含フッ素共重合体」とは、少なくとも1種のフッ素含有モノマーの重合体を分子中に含む共重合体である。含フッ素共重合体としては、例えば、ポリフッ化ビニリデン(PVDF)とポリビニルアルコール(PVA)との共重合体、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)、ポリフッ化ビニリデン-ヘキサフルオロプロピレン(PVdF‐co‐HFP)、エチレン-テトラフルオロエチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、プロピレン-テトラフルオロエチレン共重合体、エチレン-クロロトリフルオロエチレン共重合体(ECTFE)等を挙げることができる。 A "fluorine-containing copolymer" is a copolymer that contains at least one polymer of a fluorine-containing monomer in the molecule. Examples of fluorine-containing copolymers include copolymers of polyvinylidene fluoride (PVDF) and polyvinyl alcohol (PVA), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), polyvinylidene fluoride-hexafluoropropylene (PVdF-co-HFP), ethylene-tetrafluoroethylene copolymer (ETFE), polychlorotrifluoroethylene (PCTFE), propylene-tetrafluoroethylene copolymer, and ethylene-chlorotrifluoroethylene copolymer (ECTFE).
 「含フッ素共重合体エマルジョン」とは、1種のフッ素含有モノマーおよび他の反応性モノマー、もしくは、2種以上のフッ素含有モノマー等を水中で乳化重合することによって得られる共重合体樹脂のエマルジョンである。「含フッ素共重合体の水分散体」とは、1種のフッ素含有モノマーおよび他の反応性モノマー、もしくは、2種以上のフッ素含有モノマー等を共重合してなる共重合体樹脂の水溶液、または、前記共重合体樹脂が水中に分散した分散液である。 A "fluorine-containing copolymer emulsion" is an emulsion of a copolymer resin obtained by emulsion polymerization in water of one type of fluorine-containing monomer and another reactive monomer, or two or more types of fluorine-containing monomers. A "water dispersion of a fluorine-containing copolymer" is an aqueous solution of a copolymer resin obtained by copolymerizing one type of fluorine-containing monomer and another reactive monomer, or two or more types of fluorine-containing monomers, or a dispersion in which the copolymer resin is dispersed in water.
 前記他の反応性モノマーとしては、PVA、ヘキサフルオロプロピレン、エチレン、プロピレン等が挙げられる。 Other reactive monomers include PVA, hexafluoropropylene, ethylene, propylene, etc.
 ポリアクリル酸共重合体樹脂のエマルジョン、スチレンブタジエン共重合体ゴムのエマルジョン、含フッ素共重合体のエマルジョン、もしくは、含フッ素共重合体の水分散体中の、ポリアクリル酸共重合体樹脂、スチレンブタジエン共重合体ゴム、もしくは含フッ素共重合体の含有量(固形分濃度)としては、0.1~80重量%であることが好ましく、0.5~65重量%であることがより好ましい。 The content (solids concentration) of polyacrylic acid copolymer resin, styrene butadiene copolymer rubber, or fluorine-containing copolymer in the polyacrylic acid copolymer resin emulsion, styrene butadiene copolymer rubber emulsion, fluorine-containing copolymer emulsion, or fluorine-containing copolymer aqueous dispersion is preferably 0.1 to 80% by weight, and more preferably 0.5 to 65% by weight.
 バインダーの固形分濃度は、0.5~95質量%であることが好ましく、1.0~85質量%であることがより好ましい。前記固形分濃度とは、バインダーを含んだ水溶液中の質量における、バインダーの質量割合である。 The solids concentration of the binder is preferably 0.5 to 95% by mass, and more preferably 1.0 to 85% by mass. The solids concentration is the mass ratio of the binder to the mass of the aqueous solution containing the binder.
<スラリー(電極合剤スラリー)>
 本発明の非水電解質二次電池用電極を作製するためのスラリー(電極合剤スラリー)は、保護膜形成剤と、活物質と、バインダーとを備えており、溶媒として水を使用する。
<Slurry (electrode mixture slurry)>
The slurry (electrode mixture slurry) for producing the electrode for a non-aqueous electrolyte secondary battery of the present invention contains a protective film forming agent, an active material, and a binder, and uses water as a solvent.
 正極および負極に用いられる前記活物質を水と混合しスラリーを作製すると、活物質構造内からアルカリイオンが溶出し、水溶液中で水酸化リチウムを形成し、pHは10以上となる。このような高pHのスラリーにバインダーを添加し、アルミニウム集電層に塗工すると、アルミニウム集電層表面で腐食反応が発生し、平滑な電極を得ることができない。しかしながら、本発明の保護膜形成剤を含んだ電極においては、アルミニウム集電層表面に耐食性のある保護膜が形成されることで、高pHのスラリーにも関わらず腐食反応を抑制することが可能となる。従って、従来の有機溶剤を用いたスラリーで電極を作製する必要がなくなるため、有機溶剤の回収・リサイクルコストや溶剤自身のコストが不要となり、結果として電池コストを低減することができる。また、水系での製造においては、従来の高pHスラリーに中和剤を添加することによってアルミニウム集電層の腐食が発生しないpHまで中和する手段では、中和剤によって活物質からアルカリイオン溶出を誘発し電池容量を低減させることになってしまう。そして、中和剤の適正添加量は、活物質の種類や添加量によって調整する必要があった。しかし、本発明のように、電極合剤中に含有される保護膜形成剤による保護膜を集電層表面に形成する技術においては、活物質の種類等にかかわらず、添加量を一定にできるという利点もある。 When the active material used for the positive and negative electrodes is mixed with water to prepare a slurry, alkaline ions are eluted from the active material structure, forming lithium hydroxide in the aqueous solution, and the pH becomes 10 or more. If a binder is added to such a high pH slurry and applied to an aluminum current collecting layer, a corrosion reaction occurs on the surface of the aluminum current collecting layer, and a smooth electrode cannot be obtained. However, in an electrode containing the protective film forming agent of the present invention, a corrosion-resistant protective film is formed on the surface of the aluminum current collecting layer, making it possible to suppress the corrosion reaction despite the high pH slurry. Therefore, it is no longer necessary to prepare an electrode with a slurry using a conventional organic solvent, and the cost of recovering and recycling the organic solvent and the cost of the solvent itself are not required, resulting in a reduction in battery costs. In addition, in the case of production using a water-based system, the conventional method of neutralizing a high pH slurry to a pH level at which corrosion of the aluminum current collecting layer does not occur by adding a neutralizing agent induces alkaline ion elution from the active material, resulting in a reduction in battery capacity. The appropriate amount of neutralizing agent to be added had to be adjusted depending on the type and amount of active material. However, in the present invention, a technology in which a protective film is formed on the surface of the current collecting layer using a protective film forming agent contained in the electrode mixture has the advantage that the amount added can be kept constant regardless of the type of active material, etc.
 本発明の非水電解質二次電池用電極を作製するためのスラリーは、水を除いた活物質、バインダー、保護膜形成剤等の総固形分濃度が50~95重量%であることが好ましい。水分量が少ないとスラリー粘性が高くなり、塗工厚み等にバラツキが生じる。水分量が多いと乾燥に要する時間が長くなり、塗工スピードが低下してしまう。 The slurry for producing the electrode for the non-aqueous electrolyte secondary battery of the present invention preferably has a total solids concentration of 50 to 95% by weight, excluding water, including the active material, binder, protective film forming agent, etc. If the water content is low, the slurry viscosity will be high, resulting in variation in the coating thickness, etc. If the water content is high, the time required for drying will be long and the coating speed will be reduced.
 スラリーの調整は、例えば以下の2種類の方法で行うことができる。
[方法1]
 活物質、水溶性増粘剤等を粉体で混合し、水を加えて混錬する。その後、保護膜形成剤を添加した後さらに混錬する。最後にバインダーを添加し混錬する。
[方法2]
 水溶性増粘剤や水溶性高分子バインダーを含んだ水溶液を予め所定の重量%で作製する。その後、本水溶液に活物質を添加し混錬する。最後に、保護膜形成剤を添加し混錬する。
The slurry can be prepared, for example, by the following two methods.
[Method 1]
The active material, water-soluble thickener, etc. are mixed in powder form, water is added, and the mixture is kneaded. Then, a protective film forming agent is added, and the mixture is further kneaded. Finally, a binder is added, and the mixture is kneaded.
[Method 2]
An aqueous solution containing a water-soluble thickener and a water-soluble polymer binder is prepared in advance at a predetermined weight percentage. Then, an active material is added to this aqueous solution and kneaded. Finally, a protective film forming agent is added and kneaded.
 これらの方法であれば、保護膜形成剤を予め電極合剤スラリー中に分散しておくことが可能である。また、保護膜形成剤を均一に分散することにより、アルミニウム集電層の表面に均一に保護膜を形成することができる。なお、保護膜形成剤に含有されるシリカ成分は、電池容量に寄与しないため、添加量は少ない方がエネルギー密度的には好ましい。そこで、電池性能を維持しつつ、保護膜形成剤を電極合剤スラリー中に均一に分散させて保護膜をアルミニウム集電層の表面に均一に形成されるためには、電極合剤中の保護膜形成剤の重量割合は、0.1%を超え1%以下の範囲であることが好ましい。  With these methods, it is possible to disperse the protective film forming agent in advance in the electrode mixture slurry. Furthermore, by uniformly dispersing the protective film forming agent, a uniform protective film can be formed on the surface of the aluminum current collecting layer. Note that the silica component contained in the protective film forming agent does not contribute to the battery capacity, so in terms of energy density, it is preferable to add a small amount. Therefore, in order to uniformly disperse the protective film forming agent in the electrode mixture slurry and form a uniform protective film on the surface of the aluminum current collecting layer while maintaining battery performance, it is preferable that the weight ratio of the protective film forming agent in the electrode mixture is in the range of more than 0.1% and 1% or less.
 上記において、混合や混練の方法は、例えば、各種の粉砕機、混合器、攪拌機等を用いる混合、超音波による分散等の方法を用いることができる。具体的には、ミキサー、高速回転ミキサー、シェアミキサー、ブレンダー、超音波ホモジナイザー、高圧ホモジナイザー、ボールミル等のせん断力或いは衝突による処理方法;ワーリングブレンダー、フラッシュミキサー、タービュライザーなどを用いた方法を挙げることができる。これらの方法は、適宜組み合わせて用いることもできる。 In the above, the mixing or kneading method may be, for example, mixing using various grinders, mixers, stirrers, etc., or dispersion using ultrasonic waves. Specific examples include processing methods using shear force or collision such as mixers, high-speed rotary mixers, shear mixers, blenders, ultrasonic homogenizers, high-pressure homogenizers, and ball mills; and methods using Waring blenders, flash mixers, turbulizers, etc. These methods may also be used in appropriate combination.
 スラリーは、導電性確保のために導電助剤を含有することができる。導電助剤を加えれば電池の内部抵抗低減につながる。導電助剤としては、特に制限はなく、金属、炭素材料、導電性高分子、導電性ガラスなどが挙げられる。このうち、炭素材料が好ましく、例えばカーボンナノチューブ、カーボンナノファイバー、カーボンナノホーン、フラーレン等のナノカーボン;アセチレンブラック、ファーネスブラック、サーマルブラック、チャネルブラック、ケッチェンブラック、バルカン、グラフェン、気相成長カーボンファイバー(VGCF)、黒鉛等が挙げられる。より好ましくは、アセチレンブラック、ケッチェンブラック、VGCF、カーボンナノチューブである。カーボンナノチューブは、単層、二層、多層のいずれのカーボンナノチューブでもよい。導電助剤は、1種単独で用いてもよく、2種以上を併用してもよい。導電助剤は、親水性向上のために、酸処理またはアルカリ処理を行ったものであってもよい。また、導電助剤の形状や大きさ、比表面積には特に制限はなく。添加量に応じて任意のものを選択することができる。 The slurry may contain a conductive additive to ensure electrical conductivity. Adding a conductive additive reduces the internal resistance of the battery. There are no particular limitations on the conductive additive, and examples of the conductive additive include metals, carbon materials, conductive polymers, and conductive glass. Of these, carbon materials are preferred, and examples of the conductive additive include nanocarbons such as carbon nanotubes, carbon nanofibers, carbon nanohorns, and fullerenes; acetylene black, furnace black, thermal black, channel black, ketjen black, vulcan, graphene, vapor-grown carbon fiber (VGCF), and graphite. Acetylene black, ketjen black, VGCF, and carbon nanotubes are more preferred. The carbon nanotubes may be single-walled, double-walled, or multi-walled carbon nanotubes. The conductive additive may be used alone or in combination of two or more types. The conductive additive may be treated with an acid or alkali to improve hydrophilicity. There are no particular limitations on the shape, size, or specific surface area of the conductive additive. Any one may be selected depending on the amount added.
 スラリーは分散および粘性安定性の確保のために、増粘剤等を含有することができる。増粘剤としては、カルボキシルメチルセルロースナトリウム、アルギン酸、ポリアクリル酸、グアーガム、キサンタンガムに代表される水溶性高分子をなどが挙げられる。このうち、カルボキシメチルセルロース、アルギン酸、ポリアクリル酸のいずれかのアルカリ金属塩、アンモニウム塩が分散および粘性安定性に優れているため好ましい。これら増粘剤は、単独で用いいてもよいし、2種以上を併用してもよい。 The slurry may contain a thickener to ensure dispersion and viscosity stability. Examples of thickeners include water-soluble polymers such as sodium carboxymethylcellulose, alginic acid, polyacrylic acid, guar gum, and xanthan gum. Of these, alkali metal salts and ammonium salts of carboxymethylcellulose, alginic acid, and polyacrylic acid are preferred because they have excellent dispersion and viscosity stability. These thickeners may be used alone or in combination of two or more types.
 スラリー作製に用いられる水は特に限定されず、一般的に用いられる水を使用することができる。例えば、水道水、蒸留水、イオン交換水、純水、超純水等を用いることができる。なかでもイオン交換水、純水、超純水が好ましい。 The water used to prepare the slurry is not particularly limited, and any commonly used water can be used. For example, tap water, distilled water, ion-exchanged water, pure water, ultrapure water, etc. can be used. Among these, ion-exchanged water, pure water, and ultrapure water are preferred.
 前記水には、水と均一に混和可能な有機溶媒(親水性有機溶媒)が含まれていてもよい。親水性有機溶媒としては、N-メチル-2-ピロリドン;ジメチルスルホキシド;メタノール、エタノール、2-プロパノール(IPA)、イソプロパノール、n-ブタノール、t-ブタノール等のアルコール類;アセトン、メチルエチルケトン(MEK)などのケトン類;1,4-ジオキサン、テトラヒドロフラン(THF)などのエーテル類;N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMAc)、ジメチルスルホキシド(DMSO)、アセトニトリル、酢酸エチルなどが挙げられる。親水性有機溶媒は、1種類を用いてもよいし、2種類以上を用いてもよい。ただし、安全性、環境への影響、取扱い性等の観点から、有機溶媒を用いずに、水だけの方が好ましい。 The water may contain an organic solvent (hydrophilic organic solvent) that is uniformly miscible with water. Examples of hydrophilic organic solvents include N-methyl-2-pyrrolidone; dimethyl sulfoxide; alcohols such as methanol, ethanol, 2-propanol (IPA), isopropanol, n-butanol, and t-butanol; ketones such as acetone and methyl ethyl ketone (MEK); ethers such as 1,4-dioxane and tetrahydrofuran (THF); N,N-dimethylformamide (DMF), N,N-dimethylacetamide (DMAc), dimethyl sulfoxide (DMSO), acetonitrile, and ethyl acetate. One type of hydrophilic organic solvent may be used, or two or more types may be used. However, from the viewpoints of safety, environmental impact, and ease of handling, it is preferable to use only water without using an organic solvent.
 水と有機溶媒との配合比は、有機溶媒の種類、水と有機溶媒との親和性等を考慮して適宜決定すればよい。 The mixing ratio of water to organic solvent may be appropriately determined taking into consideration the type of organic solvent, the affinity between water and organic solvent, etc.
 前記スラリーの固形分中の各成分の重量比率は、例えば、活物質、バインダー、保護膜形成剤、導電助剤および増粘剤の合計重量を100%とした場合、活物質が74.0~99.3%、バインダーが0.5~10.0%、保護膜形成剤が0.001~1.0%、導電助剤が0.1~10.0%、増粘剤が0.1~5.0%であることが好ましい。 The weight ratio of each component in the solid content of the slurry is preferably, for example, 74.0 to 99.3% active material, 0.5 to 10.0% binder, 0.001 to 1.0% protective film forming agent, 0.1 to 10.0% conductive aid, and 0.1 to 5.0% thickener, assuming the total weight of the active material, binder, protective film forming agent, conductive aid, and thickener to be 100%.
<非水電解質二次電池用電極の製造方法>
 本発明の非水電解質二次電池用電極の製造方法としては、例えば、上述のスラリーを集電体層の表面に塗布し、乾燥、プレス成型させることによって製造することができる。これにより、集電層上に電極合剤層が存在する非水電解質二次電池用電極を製造することができる。前記電極合剤層は、スラリーを箔等の集電層へ塗布・乾燥後の電極における塗工層の部分であり、活物質、バインダー、保護膜形成剤、導電助剤、増粘剤を合わせたものである。また本発明によって作製した電極は、アルミニウム集電層の表面に保護膜を形成している。
<Method of manufacturing electrode for non-aqueous electrolyte secondary battery>
The electrode for a non-aqueous electrolyte secondary battery of the present invention can be manufactured, for example, by applying the above-mentioned slurry to the surface of a current collector layer, drying, and press molding. This makes it possible to manufacture an electrode for a non-aqueous electrolyte secondary battery in which an electrode mixture layer exists on the current collector layer. The electrode mixture layer is the coating layer part of the electrode after the slurry is applied to a current collector layer such as a foil and dried, and is a combination of an active material, a binder, a protective film forming agent, a conductive assistant, and a thickener. In addition, the electrode manufactured by the present invention has a protective film formed on the surface of the aluminum current collector layer.
 前記塗工の方法としては、ナイフコーター、コンマコーター、ダイコーター等を用いた方法を挙げることができる。集電層としては、純アルミニウム箔やアルミニウムと1種以上の金属から成る合金箔を用いることができる。 Examples of the coating method include a method using a knife coater, a comma coater, a die coater, etc. The current collecting layer can be made of pure aluminum foil or an alloy foil made of aluminum and one or more metals.
 前記スラリーの集電層への塗工量は、例えば、乾燥後の電極合剤層の厚みが0.01~0.40mm、好ましくは0.02~0.25mmの範囲となるように設定することができる。 The amount of the slurry applied to the current collecting layer can be set, for example, so that the thickness of the electrode mixture layer after drying is in the range of 0.01 to 0.40 mm, preferably 0.02 to 0.25 mm.
 乾燥工程の温度は、例えば、35~150℃、好ましくは40~135℃の範囲内で適宜設定することができる。また乾燥の方式は熱風乾燥、送風乾燥、赤外線乾燥、減圧乾燥、ホットプレート乾燥等から選択することができる。減圧乾燥の場合、温度は前記値から任意に設定することができる。 The temperature in the drying process can be set appropriately within the range of, for example, 35 to 150°C, preferably 40 to 135°C. The drying method can be selected from hot air drying, air drying, infrared drying, reduced pressure drying, hot plate drying, etc. In the case of reduced pressure drying, the temperature can be set arbitrarily from the above values.
 このようにして得られた非水電解質二次電池用電極は、二次電池の正極および負極として用いてもよい。 The non-aqueous electrolyte secondary battery electrodes thus obtained may be used as the positive and negative electrodes of the secondary battery.
<非水電解質二次電池用電極>
 得られた非水電解質二次電池用電極は、以下のような特徴を持つ。保護膜形成剤であるアルカリ珪酸塩によって、アルミニウム集電層の表面に耐食性のある保護膜が形成されており、活物質とバインダーを含む電極合剤層に50μm以上の空孔欠陥等が無い平滑な電極であるということである。このような電極により、水系スラリーによって作製した電極であっても優れた出力特性を有した電池を得ることができる。
<Electrode for non-aqueous electrolyte secondary battery>
The obtained electrode for a non-aqueous electrolyte secondary battery has the following characteristics: A corrosion-resistant protective film is formed on the surface of the aluminum current collecting layer by the alkali silicate, which is a protective film forming agent; The electrode is a smooth electrode with no void defects of 50 μm or more in the electrode mixture layer containing the active material and binder. With such an electrode, even an electrode made from an aqueous slurry has excellent output characteristics. It is possible to obtain a battery having the above structure.
 このような出力特性向上の理由として、保護膜形成剤がアルミニウム集電層の表面に耐食性のある保護膜を形成していることで、電極作製時の腐食反応を抑制されていることが考えられる。保護膜形成剤を含まない電極では、アルミニウム集電層の表面には保護膜が形成されないため、高pHのスラリーが塗工されるとアルミニウム集電層の表面で腐食反応が発生する。腐食反応に伴い発生した水素ガスは電極合剤層に拡散し、乾燥後には水素ガスが存在していた部分は空孔欠陥となる。このような空孔は電極合剤中の活物質同士の電子的接続を切ってしまい、結果として抵抗増加を引き起こす。本発明による電極では保護膜によって腐食反応を抑制できるため、優れた出力特性を得ることができる。 The reason for this improved output characteristic is believed to be that the protective film forming agent forms a corrosion-resistant protective film on the surface of the aluminum current collecting layer, thereby suppressing the corrosion reaction during electrode production. In an electrode that does not contain a protective film forming agent, no protective film is formed on the surface of the aluminum current collecting layer, so when a high pH slurry is applied, a corrosion reaction occurs on the surface of the aluminum current collecting layer. Hydrogen gas generated during the corrosion reaction diffuses into the electrode mixture layer, and after drying, the areas where hydrogen gas was present become void defects. These voids break the electronic connection between the active materials in the electrode mixture, resulting in an increase in resistance. In the electrode according to the present invention, the protective film suppresses the corrosion reaction, so excellent output characteristics can be obtained.
<保護膜>
 本発明によって得られた非水電解質二次電池用電極のアルミニウム集電層表面における保護膜は、Si-O結合を有していることを特徴とする。また、Si-O結合を有した保護膜は非水溶性であるためアルミニウム集電層表面を効果的に保護し、高pHスラリーによるアルミニウムの腐食を抑制する。さらに、非水電解質二次電池の電極として適用した場合に、保護膜が充放電反応に対して安定的に存在していなければならない。電極が保護膜を有しており、なおかつ電極合剤層に50μm以上の空孔欠陥がないか否かを特定するには、X線光電子分光法(XPS)および走査型電子顕微鏡(SEM)による分析を用いることができる。XPSにより明確なSi-O結合が得られない場合、電極合剤層に腐食反応による50μm以上の空孔欠陥が形成し、電極の平滑性が損なわれ、電池の出力特性が低下する。
<Protective film>
The protective film on the surface of the aluminum current collecting layer of the electrode for a non-aqueous electrolyte secondary battery obtained by the present invention is characterized by having Si-O bonds. In addition, since the protective film having Si-O bonds is water-insoluble, it effectively protects the surface of the aluminum current collecting layer and suppresses corrosion of aluminum caused by high pH slurry. Furthermore, when applied as an electrode for a non-aqueous electrolyte secondary battery, the protective film must be stable against charge and discharge reactions. To determine whether the electrode has a protective film and whether the electrode mixture layer has no pore defects of 50 μm or more, analysis by X-ray photoelectron spectroscopy (XPS) and scanning electron microscope (SEM) can be used. If clear Si-O bonds are not obtained by XPS, pore defects of 50 μm or more are formed in the electrode mixture layer due to corrosion reactions, the smoothness of the electrode is impaired, and the output characteristics of the battery are reduced.
<XPS測定>
 XPSによるアルミニウム集電層の表面における保護膜の測定は、X線光電子分光器を用いて行う。測定用のサンプルは、作製した電極の合剤層を純水によって剥離し、残存したアルミニウム集電層を用いる。XPS線源としてMgKα線を用い、Si2p3/2スペクトルの分析を行う。
<XPS Measurement>
The protective film on the surface of the aluminum current collecting layer is measured by XPS using an X-ray photoelectron spectrometer. The sample for measurement is the aluminum current collecting layer remaining after the composite layer of the prepared electrode is peeled off with pure water. MgKα radiation is used as the XPS radiation source to analyze the Si2p 3/2 spectrum.
 Si-O結合を有する保護膜は、前記XPS測定において102~107eVの範囲において明瞭なピークが検出されるか否かで存在の有無を特定することができる。 The presence or absence of a protective film having Si-O bonds can be determined by whether or not a clear peak is detected in the range of 102 to 107 eV in the XPS measurement.
<SEM観察>
 SEMによる電極合剤層の表面観察は、走査型電子顕微鏡を用いて行う。観察用のサンプルは、作製した電極をそのまま使用する。
腐食反応によって形成する電極合剤層における50μm以上の空孔欠陥は、合剤表面を観察することで存在の有無を特定することができる。
<SEM Observation>
The surface observation of the electrode mixture layer by SEM is carried out using a scanning electron microscope. The prepared electrode is used as a sample for observation.
The presence or absence of void defects of 50 μm or more in the electrode mixture layer formed by the corrosion reaction can be identified by observing the mixture surface.
<非水電解質二次電池>
 本発明の非水電解質二次電池は、正極および負極を備え、前記正極と前記負極との間に電解質を含む二次電池であって、前記正極および前記負極の少なくとも一方が、本発明の電極である。
<Nonaqueous electrolyte secondary battery>
The nonaqueous electrolyte secondary battery of the present invention is a secondary battery comprising a positive electrode and a negative electrode, and containing an electrolyte between the positive electrode and the negative electrode, wherein at least one of the positive electrode and the negative electrode is an electrode of the present invention. It is.
 非水電解質二次電池には、正極と負極との短絡を防止するために、正極と負極との間にセパレーターが配置される。正極および負極の集電層は外部機器に接続されている。この機器の操作によって充放電の切り替えがなされる。 In non-aqueous electrolyte secondary batteries, a separator is placed between the positive and negative electrodes to prevent short circuits between the electrodes. The current collecting layers of the positive and negative electrodes are connected to an external device. Charging and discharging are switched on and off by operating this device.
 非水電解質二次電池の例として、リチウムイオン二次電池やリチウムイオンキャパシタ、ナトリウムイオン二次電池、ナトリウムイオンキャパシタが挙げられ、さらにはこれら以外の二次電池等も包含される。 Examples of non-aqueous electrolyte secondary batteries include lithium ion secondary batteries, lithium ion capacitors, sodium ion secondary batteries, and sodium ion capacitors, and also include other secondary batteries.
 非水電解質二次電池は、高性能であり、かつ安全性の高い蓄電デバイスとして利用することができる。よって、前記二次電池は、携帯電話機器、ノートパソコン、携帯情報端末、ビデオカメラ、デジタルカメラ等の小型電子機器、電動自転車、電動自動車、電車等の移動用機器(車両)、火力発電、風力発電、水力発電、原子力発電、地熱発電等の発電用機器、自然エネルギー蓄電システム等に搭載されてもよい。 Non-aqueous electrolyte secondary batteries have high performance and can be used as safe power storage devices. Therefore, the secondary batteries may be installed in small electronic devices such as mobile phones, notebook computers, personal digital assistants, video cameras, and digital cameras, mobile devices (vehicles) such as electric bicycles, electric automobiles, and trains, power generation devices such as thermal power plants, wind power plants, hydroelectric power plants, nuclear power plants, and geothermal power plants, natural energy storage systems, and the like.
 本発明の非水電解質二次電池は、リチウムイオン二次電池であることが好ましい。前記二次電池に使用される正極または負極活物質は、活物質構造中にリチウムを含んでいる。 The nonaqueous electrolyte secondary battery of the present invention is preferably a lithium ion secondary battery. The positive or negative electrode active material used in the secondary battery contains lithium in the active material structure.
 本発明の非水電解質二次電池は、本発明の電極を備えるため、保護膜形成剤を含まない従来の水系スラリーから得られる電極を備える非水電解質二次電池と比較し、特に電池容量および出力特性の高い電池特性を示す。 The nonaqueous electrolyte secondary battery of the present invention is equipped with the electrodes of the present invention, and therefore exhibits particularly high battery characteristics, including high battery capacity and output characteristics, compared to nonaqueous electrolyte secondary batteries equipped with electrodes obtained from conventional aqueous slurries that do not contain a protective film-forming agent.
 本発明の非水電解質二次電池は、正極または負極のいずれかが、本発明の電極であればよく、正極負極の一方が本発明の電極であれば、他方の電極は、水系スラリーで製造していても有機溶剤スラリーで製造されていてもよい。 In the nonaqueous electrolyte secondary battery of the present invention, either the positive electrode or the negative electrode may be the electrode of the present invention, and if one of the positive and negative electrodes is the electrode of the present invention, the other electrode may be manufactured from either an aqueous slurry or an organic solvent slurry.
 また、本発明の非水電解質二次電池の形態は、例えば、短冊状の電極とセパレーターとを重ねて巻きとり、巻回体状にした円筒型、電極をセパレーターで包んで積層し、アルミラミネートパウチで包装した積層ラミネート型、電極ペレットとセパレーターを積層したコイン型等が挙げられる。外装ケースは、ステンレス製ケース、アルミ製ケースなどが使用される。 The nonaqueous electrolyte secondary battery of the present invention may be in the form of a cylinder in which rectangular electrodes and a separator are stacked and wound into a wound body, a laminated type in which electrodes are wrapped in separators and stacked and packaged in an aluminum laminate pouch, or a coin type in which electrode pellets and a separator are stacked. The exterior case may be made of stainless steel, aluminum, or the like.
<電解質>
 電解質としては、リチウム塩やリチウムイオン伝導性を有するリチウム無機化合物が用いられる。非水系溶媒に可溶なリチウム塩は電解液または有機高分子との混合により作製されるゲル状、ゴム状、またはシート状のポリマー電解質の形態で使用できる。リチウム無機化合物を電解質とする場合、加圧プレスやバインダー等で成形することで使用できる。
<Electrolytes>
As the electrolyte, lithium salts or lithium inorganic compounds having lithium ion conductivity are used. Lithium salts soluble in non-aqueous solvents can be used in the form of electrolytic solutions or gel-like, rubber-like, or sheet-like polymer electrolytes prepared by mixing with organic polymers. When using lithium inorganic compounds as the electrolyte, they can be used by forming them with a pressure press or a binder.
<非水系溶媒>
 非水系電解液に使用される非水系溶媒としては、例えば、プロピレンカーボネート、エチレンカーボネート、ビニレンカーボネート、ブチレンカーボネート等の環状カーボネート、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート等の鎖状カーボネート、テトラヒドロフラン、2-メチルテトラヒドロフラン、3-ジオキソラン等の環状エーテル;ジエトシキエタン、ジメトキシエタン等の鎖状エーテル類、スルホラン、エチルイソプロピルスルホン、ジメチルスルホン、ジノルマルプロピルスルホン等のスルホン系溶媒、ギ酸メチル、酢酸メチル、プロピオン酸メチル等の鎖状エステル類、γ-ブチロラクトン、γ-バレロラクトン等の環状エステル類、アセトニトリル等が挙げられる。
<Non-aqueous solvent>
Examples of non-aqueous solvents used in the non-aqueous electrolyte solution include cyclic carbonates such as propylene carbonate, ethylene carbonate, vinylene carbonate, and butylene carbonate; chain carbonates such as diethyl carbonate, dimethyl carbonate, and ethyl methyl carbonate; cyclic ethers such as tetrahydrofuran, 2-methyltetrahydrofuran, and 3-dioxolane; chain ethers such as diethoxyethane and dimethoxyethane; sulfone-based solvents such as sulfolane, ethyl isopropyl sulfone, dimethyl sulfone, and di-normal propyl sulfone; chain esters such as methyl formate, methyl acetate, and methyl propionate; cyclic esters such as γ-butyrolactone and γ-valerolactone; and acetonitrile.
 これらの非水系溶媒は、単独で用いてもよいし、2種以上を混合して用いてもよい。混合溶媒とする場合には、環状カーボネートと鎖状カーボネートとの組合せが好ましい。環状カーボネートがリチウム塩を高濃度に溶解し、鎖状カーボネートがリチウム塩の溶解度を低下させずに、電解液の粘度を低下させることができるため、これらの組み合わせによってイオン伝導率が高い電解液を得ることができる。また、これらの混合溶媒は、高い酸化還元耐性を持っており、リチウムイオン電池の作動電圧範囲で、連続的に電気分解される懸念が少ないという点でも好ましい。 These non-aqueous solvents may be used alone or in a mixture of two or more. When preparing a mixed solvent, a combination of a cyclic carbonate and a chain carbonate is preferred. The cyclic carbonate dissolves lithium salts at a high concentration, and the chain carbonate can reduce the viscosity of the electrolyte without reducing the solubility of the lithium salt, so this combination makes it possible to obtain an electrolyte with high ionic conductivity. In addition, these mixed solvents have high oxidation-reduction resistance, and are therefore preferred in that there is little concern about continuous electrolysis within the operating voltage range of lithium-ion batteries.
 前記非水系電解液に使用される非水系溶媒は、イオン液体であってもよい。イオン液体とは、カチオンとアニオンとを組み合わせてなる溶融塩であり、室温を含む幅広い温度領域において液体状態で存在する塩を意味する。イオン液体としては、以下のカチオンの少なくとも1種と、以下のアニオンの少なくとも1種とを適宜組み合わせて構成することができる。 The non-aqueous solvent used in the non-aqueous electrolyte may be an ionic liquid. An ionic liquid is a molten salt formed by combining a cation and an anion, and means a salt that exists in a liquid state over a wide temperature range including room temperature. The ionic liquid may be formed by appropriately combining at least one of the following cations and at least one of the following anions.
 このイオン液体のカチオンとしては、電解液中におけるリチウムイオンの移動を可能とし、蓄電デバイスの充電および放電を可能とするものであれば、特に制限されず、例えば、イミダゾリウム、ピリジニウム、ピロリジニウム、ピペリジニウム、テトラアルキルアンモニウム、ピラゾリウムおよびテトラアルキルホスホニウム等が挙げられる。 The cation of this ionic liquid is not particularly limited as long as it allows the movement of lithium ions in the electrolyte and enables charging and discharging of the electricity storage device, and examples include imidazolium, pyridinium, pyrrolidinium, piperidinium, tetraalkylammonium, pyrazolium, and tetraalkylphosphonium.
 前記イミダゾリウムとしては、例えば、1-エチル-3-メチルイミダゾリウム[EMIm]、1-ブチル-3-メチルイミダゾリウム、1-エチル-2,3-ジメチルイミダゾリウム、1-アリル-3-メチルイミダゾリウム、1-アリル-3-エチルイミダゾリウム、1-アリル-3-ブチルイミダゾリウムおよび1,3-ジアリルイミダゾリウム等が挙げられる。 Examples of the imidazolium include 1-ethyl-3-methylimidazolium [EMIm + ], 1-butyl-3-methylimidazolium, 1-ethyl-2,3-dimethylimidazolium, 1-allyl-3-methylimidazolium, 1-allyl-3-ethylimidazolium, 1-allyl-3-butylimidazolium, and 1,3-diallylimidazolium.
 前記ピリジニウムとしては、例えば、1-プロピルピリジニウム、1-ブチルピリジニウム、1-アリルピリジニウム、1-エチル-3-(ヒドロキシメチル)ピリジニウムおよび1-エチル-3-メチルピリジニウム等が挙げられる。 Examples of the pyridinium include 1-propylpyridinium, 1-butylpyridinium, 1-allylpyridinium, 1-ethyl-3-(hydroxymethyl)pyridinium, and 1-ethyl-3-methylpyridinium.
 前記ピロリジニウムとしては、例えば、N-メチル-N-プロピルピロリジニウム[MPPyr]、N-メチル-N-ブチルピロリジニウム、N-メチル-N-メトキシメチルピロリジニウム、N-アリル-N-メチルピロリジニウム、およびN-アリル-N-プロピルピロリジニウム等が挙げられる。 Examples of the pyrrolidinium include N-methyl-N-propylpyrrolidinium [MPPyr + ], N-methyl-N-butylpyrrolidinium, N-methyl-N-methoxymethylpyrrolidinium, N-allyl-N-methylpyrrolidinium, and N-allyl-N-propylpyrrolidinium.
 前記ピペリジニウムとしては、例えば、N-メチル-N-プロピルピペリジニウム、N-メチル-N-ブチルピペリジニウム、N-メチル-N-メトキシメチルピペリジニウム、およびN-アリル-N-プロピルピペリジニウム等が挙げられる。 Examples of the piperidinium include N-methyl-N-propylpiperidinium, N-methyl-N-butylpiperidinium, N-methyl-N-methoxymethylpiperidinium, and N-allyl-N-propylpiperidinium.
 前記テトラアルキルアンモニウムとしては、例えば、N,N,N-トリメチル-N-プロピルアンモニウム、およびメチルトリオクチルアンモニウム等が挙げられる。 Examples of the tetraalkylammonium include N,N,N-trimethyl-N-propylammonium and methyltrioctylammonium.
 前記ピラゾリウムとしては、例えば、1-エチル-2,3,5-トリメチルピラゾリウム、1-プロピル-2,3,5-トリメチルピラゾリウム、1-ブチル-2,3,5-トリメチルピラゾリウム、および1-アリル-2,3,5-トリメチルピラゾリウム等が挙げられる。 Examples of the pyrazolium include 1-ethyl-2,3,5-trimethylpyrazolium, 1-propyl-2,3,5-trimethylpyrazolium, 1-butyl-2,3,5-trimethylpyrazolium, and 1-allyl-2,3,5-trimethylpyrazolium.
 前記テトラアルキルホスホニウムとしては、例えば、P-ブチル-P,P,P-トリエチルホスホニウム、およびP,P,P-トリエチル-P-(2-メトキシエチル)ホスホニウム等が挙げられる。 Examples of the tetraalkylphosphonium include P-butyl-P,P,P-triethylphosphonium and P,P,P-triethyl-P-(2-methoxyethyl)phosphonium.
 また、これらのカチオンと組み合わされてイオン液体を構成するアニオンとしては、電解液中におけるリチウムイオンの移動を可能とし、蓄電デバイスの充電および放電を可能とするものであればよい。例えば、BF 、PF 、SbF 、NO 、CFSO 、(FSO[ビス(フルオロスルフォニル)イミドアニオン;FSI]、(CFSO[ビス(トリフルオロメチルスルフォニル)イミド;TFSI]、(C2FSO、(CFSO、CFCO 、CCO 、CHCO 、(CN)等が挙げられる。これらのアニオンは2種類以上を含んでいてもよい。 The anions that are combined with these cations to form the ionic liquid may be any anion that allows the movement of lithium ions in the electrolyte and enables charging and discharging of the electricity storage device. For example, BF 4 , PF 6 , SbF 6 , NO 3 , CF 3 SO 3 , (FSO 2 ) 2 N [bis(fluorosulfonyl)imide anion; FSI ], (CF 3 SO 2 ) 2 N [bis(trifluoromethylsulfonyl)imide; TFSI ], (C 2 F 5 SO 2 ) 2 N , (CF 3 SO 2 ) 3 C , CF 3 CO 2 , C 3 F 7 CO 2 , CH 3 CO 2 , (CN) 2 N , etc. These anions may be contained in combination of two or more kinds.
 非水系電解液に使用されるリチウム塩は特に限定されず、例えば、LiPF、LiBF、LiAsF等のフッ化物系リチウム塩、LiClO、LiCl、LiBr、LiI等のハロゲン化物系リチウム塩、LiN(CFSO(LiTFSI)、LiN(FSO(LiFSI)等のスルホン酸塩系リチウム塩が挙げられる。リチウム塩は、単独で用いてもよいし、2種以上を混合して用いてもよい。非水系電解液中におけるリチウム塩の濃度は、0.3~2.5mol/dmである。 The lithium salt used in the non-aqueous electrolyte is not particularly limited, and examples thereof include fluoride-based lithium salts such as LiPF 6 , LiBF 4 , and LiAsF 6 , halide-based lithium salts such as LiClO 4 , LiCl, LiBr, and LiI, and sulfonate-based lithium salts such as LiN(CF 3 SO 2 ) 2 (LiTFSI) and LiN(FSO 2 ) 2 (LiFSI). The lithium salt may be used alone or in a mixture of two or more kinds. The concentration of the lithium salt in the non-aqueous electrolyte is 0.3 to 2.5 mol/dm 3 .
 上述の非水系電解液と有機高分子化合物とを混合して、ゲル状、ゴム状、あるいは固体シート状の電解質として使用する場合、有機高分子化合物としては、例えば、ポリエチレンオキシド、ポリプロピレンオキシド、ポリビニルアルコール、ポリビニルブチラール、ポリビニルピロリドン、ポリビニリデンカーボネート、ポリアクリロニトリル、PVDF-HFP等を用いることができる。 When the above-mentioned non-aqueous electrolyte solution is mixed with an organic polymer compound and used as a gel-like, rubber-like, or solid sheet-like electrolyte, examples of the organic polymer compound that can be used include polyethylene oxide, polypropylene oxide, polyvinyl alcohol, polyvinyl butyral, polyvinylpyrrolidone, polyvinylidene carbonate, polyacrylonitrile, and PVDF-HFP.
 非水系電解液は、正極および負極上での継続的な酸化還元分解を抑制するために、添加剤を含んでもよい。添加剤としては、ビニレンカーボネート、フルオロエチレンカーボネート、エチレンスルフィド、1,3-プロパンスルトン、1,3-プロペンスルトン、リチウムビスオキサレートボレート、リチウムジフルオロオキサレートボレート等が挙げられる。添加剤の含有量は、非水系電解液に対して、10~0.1重量%の範囲とすることが好ましい。含有量が多過ぎると二次電池の抵抗増大につながり好ましくない。これらの添加物は、電極上に被膜を形成して電極表面を保護する働きがあり、その保護効果によって各電極上における継続的な電解液の酸化還元分解反応を緩和し、寿命向上に有効である。 The non-aqueous electrolyte may contain additives to suppress continuous redox decomposition on the positive and negative electrodes. Examples of additives include vinylene carbonate, fluoroethylene carbonate, ethylene sulfide, 1,3-propane sultone, 1,3-propene sultone, lithium bisoxalate borate, and lithium difluorooxalate borate. The content of the additive is preferably in the range of 10 to 0.1% by weight of the non-aqueous electrolyte. If the content is too high, it is undesirable because it leads to an increase in the resistance of the secondary battery. These additives form a film on the electrodes to protect the electrode surfaces, and this protective effect mitigates the continuous redox decomposition reaction of the electrolyte on each electrode, which is effective in improving the lifespan.
 <セパレーター>
 本発明における非水系電解質二次電池では、正極と負極との短絡を防止するため、これらの間にセパレーターが備えられる。セパレーターとしては、例えば、ポリエチレン、ポリプロピレン、セルロース、ポリフッ化ビニリデン(PVDF)、ポリイミド、アルミナ、シリカ等を含む多孔質フィルムが挙げられる。多孔質フィルムを形成するために、高分子フィルムを延伸することで孔を設ける、または繊維あるいは粒状の高分子、無機化合物をプレスやバインダー等を用いて成形することができる。セパレーターの片面、もしくは両面には、コート層が設けられていてもよい。前記コート層は、アルミナ、ジルコニア、シリカ、アラミド、PVDF等からなる数nm~数μmの層であり、耐熱性向上や強度向上により短絡対策に効果的である。
<Separator>
In the non-aqueous electrolyte secondary battery of the present invention, a separator is provided between the positive electrode and the negative electrode to prevent short circuit between them. Examples of the separator include porous films containing polyethylene, polypropylene, cellulose, polyvinylidene fluoride (PVDF), polyimide, alumina, silica, etc. In order to form a porous film, holes can be provided by stretching a polymer film, or a fiber or granular polymer or inorganic compound can be molded using a press or a binder. A coating layer may be provided on one or both sides of the separator. The coating layer is a layer of several nm to several μm made of alumina, zirconia, silica, aramid, PVDF, etc., and is effective in preventing short circuit by improving heat resistance and strength.
 本発明について、実施例および比較例に基づいてより具体的に説明するが、本発明はこれに限定されるものではない。 The present invention will be explained in more detail based on examples and comparative examples, but the present invention is not limited to these.
<水を溶媒として用いた正極スラリーの製造>
 正極活物質を94.8~95.2重量%、導電助剤にカーボンブラックを2重量%、保護膜形成剤にケイ酸リチウムを0.0~0.4重量%、増粘剤にカルボキシメチルセルロースNa(CMC-Na)を0.55重量%、バインダーにアクリル系エマルジョンを2.25重量%使用し、スラリーの溶媒として水を用いて混合し、作製した。正極活物質は、LiNi0.8Mn0.1Co0.1を用いた。保護膜形成剤であるケイ酸リチウムはLiO・nSiOの化学式で表されるものであり、nは3.5、4.5、7.5の3種類を使用した。詳細な電極合剤の重量組成は、表1に示す。
<Preparation of Positive Electrode Slurry Using Water as Solvent>
The positive electrode active material was 94.8 to 95.2% by weight, the conductive assistant was 2% by weight of carbon black, the protective film forming agent was 0.0 to 0.4% by weight of lithium silicate, the thickener was 0.55% by weight of carboxymethylcellulose Na (CMC-Na), and the binder was 2.25% by weight of acrylic emulsion. The slurry was mixed with water as a solvent to prepare the slurry. The positive electrode active material was LiNi 0.8 Mn 0.1 Co 0.1 O 2. The protective film forming agent, lithium silicate, is represented by the chemical formula Li 2 O.nSiO 2 , and three types of n were used: 3.5, 4.5, and 7.5. The detailed weight composition of the electrode mixture is shown in Table 1.
<電極スラリーのpH測定>
 得られた電極スラリーのpH測定は、pHメーターを10分間スラリーに浸漬することで行った。結果を表1に示す。
<Measurement of pH of electrode slurry>
The pH of the resulting electrode slurry was measured by immersing a pH meter in the slurry for 10 minutes. The results are shown in Table 1.
<電極スラリーを用いた電極の作製>
 得られた電極スラリーを、厚み15μmの純アルミニウム系箔(材質A1085)の片面に、活物質目付量が20.0mg/cmになるようにドクターブレード法によって塗工することで、電極を作製した。その後、乾燥した電極をロールブレス機により、正極合剤密度が3.4g/ccになるように加圧した。
<Preparation of electrodes using electrode slurry>
The obtained electrode slurry was applied by a doctor blade method to one side of a 15 μm thick pure aluminum foil (material A1085) so that the active material coverage was 20.0 mg/cm 2 to prepare an electrode. The dried electrode was then pressed with a roll press machine so that the positive electrode mixture density was 3.4 g/cc.
<電極の腐食状態の評価>
 前記で得られた電極の腐食状態を評価するために、目視、および、SEM(日立ハイテク、FlexSEM 1000II)観察により電極合剤層表面を観察した。SEM観察は、100倍の条件で行った。目視観察結果を示す写真を図1~図4に、SEM観察画像を図5~図8に示す。腐食の有無は、次の基準で評価した。
<Evaluation of electrode corrosion state>
To evaluate the corrosion state of the electrode obtained above, the surface of the electrode mixture layer was observed visually and with an SEM (FlexSEM 1000II, Hitachi High-Tech). The SEM observation was performed at 100x magnification. Photographs showing the results of the visual observation are shown in Figs. 1 to 4, and SEM observation images are shown in Figs. 5 to 8. The presence or absence of corrosion was evaluated according to the following criteria.
 腐食 有:SEM観察領域において電極合剤層表面に50μm径以上の空孔欠陥が一つ以上あること、あるいは、電極合剤層表面から目視確認した際にアルミニウム集電層の露出があること。
 腐食 無:観察領域において電極合剤層表面に50μm径以上の空孔欠陥がないこと、あるいは、電極合剤層表面から目視確認した際にアルミニウム集電層の露出がないこと。
Corrosion present: In the SEM observation area, there is one or more void defects having a diameter of 50 μm or more on the surface of the electrode mixture layer, or there is exposure of the aluminum current collecting layer when visually confirmed from the surface of the electrode mixture layer.
No corrosion: There are no pore defects with a diameter of 50 μm or more on the surface of the electrode mixture layer in the observation area, and there is no exposure of the aluminum current collecting layer when visually confirmed from the surface of the electrode mixture layer.
 結果を表2に示す。比較例1~4(図中(M)、(A)、(E)、(I))では、アルミニウムの腐食反応に伴う水素ガス発生によって、電極合剤に空孔欠陥が形成するとともに、アルミニウム集電層の露出が確認された。実施例1~9では、電極合剤に空孔欠陥およびアルミニウム集電層の露出は確認されず、平滑な電極を得ることができた。 The results are shown in Table 2. In Comparative Examples 1 to 4 (indicated by (M), (A), (E), and (I) in the figure), hydrogen gas was generated due to the corrosion reaction of aluminum, and pore defects were formed in the electrode mixture, and the aluminum current collecting layer was exposed. In Examples 1 to 9, no pore defects or exposed aluminum current collecting layer were observed in the electrode mixture, and smooth electrodes were obtained.
<アルミニウム集電層表面の保護膜成分の存在の評価>
 前記で得られた電極のアルミニウム集電層表面において、保護膜形成剤起因のSi-O結合を有する成分の存在状態を評価するために、XPS(日本電子,JPS-9010MC)MgKα線源を用いることにより分析を実施した。作製した前記電極の合剤層を純水によって剥離し、サンプルを準備した。電池容量および出力特性の評価を行った電極については、後に示すリチウムイオン電池から解体・分解することで取り出し、前記同様に電極合剤層を純水によって剥離し、サンプルを準備した。保護膜形成剤起因の成分の有無は、Si2p3/2スペクトルにおいて102~107eVの範囲内の結合ピークの有無によって評価した。
<Evaluation of the presence of protective film components on the surface of the aluminum current collecting layer>
In order to evaluate the presence of components having Si-O bonds originating from the protective film forming agent on the surface of the aluminum current collecting layer of the electrode obtained above, analysis was performed using an XPS (JEOL, JPS-9010MC) MgKα radiation source. The mixture layer of the prepared electrode was peeled off with pure water to prepare a sample. The electrode for which the battery capacity and output characteristics were evaluated was taken out by dismantling and disassembling from the lithium ion battery described later, and the electrode mixture layer was peeled off with pure water in the same manner as above to prepare a sample. The presence or absence of components originating from the protective film forming agent was evaluated by the presence or absence of a bond peak in the range of 102 to 107 eV in the Si2p 3/2 spectrum.
 結果を表2および図9~11に示す。実施例1~9は、XPS測定の結果、前述の102~107eVの範囲内に結合ピークが明確に観察され、Si-O結合を有する成分の存在が確認できた。一方、比較例1~4においては、該当の結合ピークが乏しいあるいは無いことから、アルミニウム集電層上に前記成分は十分に存在しているとは言えず、SEM観察および目視観察の結果とあわせ、保護膜形成が不十分または無いことが裏付けられた。 The results are shown in Table 2 and Figures 9 to 11. In Examples 1 to 9, the results of XPS measurement showed that a bond peak was clearly observed in the aforementioned range of 102 to 107 eV, confirming the presence of components having Si-O bonds. On the other hand, in Comparative Examples 1 to 4, the corresponding bond peak was scarce or absent, so it cannot be said that the aforementioned components were sufficiently present on the aluminum current collecting layer, and this, together with the results of SEM observation and visual observation, supports the fact that the formation of a protective film was insufficient or nonexistent.
<電池容量および出力特性の評価>
 前記で得られた非水電解質二次電池用電極を電池の正極として用い、次の構成のリチウムイオン二次電池を作製した。前記正極は12mmΦのサイズ、負極は13mmΦのサイズにそれぞれ加工した。これら電極を用いて、露点-60℃のアルゴン雰囲気下において、CR2032型コインセルを作製した。使用した材料を次に示す。
<Evaluation of battery capacity and output characteristics>
The non-aqueous electrolyte secondary battery electrode obtained above was used as the positive electrode of the battery to fabricate a lithium ion secondary battery having the following configuration. The positive electrode was processed to a size of 12 mmΦ, and the negative electrode was processed to a size of 13 mmΦ. Using these electrodes, a CR2032 type coin cell was fabricated in an argon atmosphere with a dew point of -60°C. The materials used are as follows:
 正極:前記非水電解質用正極
 負極:リチウム金属
 電解液:電解質である1.0M LiPFを、非水系溶媒であるエチレンカーボネート(EC)およびジメチルカーボネート(DMC)を体積比3:7で混合した溶媒に溶解したものを電解液として使用した。(以下、1.0M LiPF/EC:DMC[3:7体積比]と記載。)
 セパレーター:ポリエチレン系多孔質フィルム
Positive electrode: the positive electrode for the non-aqueous electrolyte Negative electrode: lithium metal Electrolyte: 1.0 M LiPF6 , an electrolyte, was dissolved in a non-aqueous solvent, ethylene carbonate (EC) and dimethyl carbonate (DMC), mixed in a volume ratio of 3:7, to be used as the electrolyte (hereinafter referred to as 1.0 M LiPF6 /EC:DMC [3:7 volume ratio]).
Separator: Polyethylene porous film
[測定条件]
 前記で作製したリチウムイオン二次電池を用いた、電池容量と出力特性の評価は次の方法で実施した。まず、25℃恒温槽内に評価サンプルを配置し、10時間率(0.1C)電流値で4.3Vまで定電流で充電し、電池電圧が4.3Vに到達後電圧を保持する定電圧充電を行った。定電圧充電は、電流値が0.01Cまで電流値が減衰するまで行った。その後、0.1Cまたは3C電流値で定電流放電を行い、電池電圧が3.0Vに到達した際の各容量を測定した。ここで、0.1C電流で得られた容量を電池容量、3C電流で得られた容量を出力試験で得られる電池容量とする。0.1C容量に対する3C容量の値を比較することで、容量維持率を算出した。また、電池容量は得られた実容量値(mAh)を正極活物質量(g)で除することで算出した。結果を表2に示す。
[Measurement conditions]
The battery capacity and output characteristics were evaluated using the lithium ion secondary battery prepared above by the following method. First, an evaluation sample was placed in a 25°C thermostatic chamber, and charged at a constant current up to 4.3V at a 10-hour rate (0.1C) current value, and constant voltage charging was performed to hold the voltage after the battery voltage reached 4.3V. The constant voltage charging was performed until the current value attenuated to 0.01C. Thereafter, constant current discharge was performed at a current value of 0.1C or 3C, and each capacity was measured when the battery voltage reached 3.0V. Here, the capacity obtained at a current of 0.1C is the battery capacity, and the capacity obtained at a current of 3C is the battery capacity obtained in the output test. The capacity retention rate was calculated by comparing the value of the 3C capacity with the 0.1C capacity. The battery capacity was calculated by dividing the actual capacity value (mAh) obtained by the amount of positive electrode active material (g). The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1および表2、図1~11に示す通り、保護膜形成剤としてケイ酸リチウムを、それぞれ0.2重量%、0.3重量%、0.4重量%備えた実施例1~3、実施例4~6および実施例7~9は、電極のアルミニウム集電層の表面に保護膜が形成されることで、pH11を超える高pHとなる電極スラリーをアルミニウム集電層に塗工して電極を作製したとしても腐食反応を抑制できる結果が得られた。図9~11のアルミニウム集電層表面におけるSi2p3/2スペクトルのXPS測定結果に示す通り、実施例1~3、実施例4~6および実施例7~9では、102~107eVの範囲内にSi-O結合に由来するピークが明確に観察され、保護膜がアルミニウム集電層表面に形成されていることが確認できた。図9~11では、さらに実施例1、実施例4および実施例7について、充放電を行った後のアルミニウム集電層表面におけるXPS測定結果を示した。これら実施例では、充放電後においてもSi-O結合ピークは明確に観察されており、保護膜は充放電反応に対しても安定的に存在していることが確認できた。一方、保護膜形成剤を備えていない比較例1は、腐食反応が発生していることが確認できた。保護膜形成剤の量が0.1重量%である比較例2、比較例3および比較例4においては、比較例1と比較し、腐食が軽減されているものの、腐食反応は発生しており、保護膜形成が十分ではないことが確認された。表2に示す通り、保護膜形成剤を含む電極合剤を用いることで、保護膜を具備する本発明による電極は、腐食反応を抑制あるいは軽減することで電極合剤内の電子的接続を保つため、比較例に対して高い電池容量と出力特性を得ることが可能となった。 As shown in Tables 1 and 2 and Figures 1 to 11, in Examples 1 to 3, Examples 4 to 6, and Examples 7 to 9, which contain 0.2 wt%, 0.3 wt%, and 0.4 wt% lithium silicate as a protective film forming agent, respectively, a protective film is formed on the surface of the aluminum current collecting layer of the electrode, and the corrosion reaction can be suppressed even if an electrode is produced by applying an electrode slurry having a high pH exceeding pH 11 to the aluminum current collecting layer. As shown in the XPS measurement results of the Si2p 3/2 spectrum on the aluminum current collecting layer surface in Figures 9 to 11, in Examples 1 to 3, Examples 4 to 6, and Examples 7 to 9, a peak derived from the Si-O bond was clearly observed in the range of 102 to 107 eV, and it was confirmed that a protective film was formed on the aluminum current collecting layer surface. Figures 9 to 11 further show the XPS measurement results of the aluminum current collecting layer surface after charging and discharging for Examples 1, 4, and 7. In these examples, the Si-O bond peak was clearly observed even after charging and discharging, and it was confirmed that the protective film was stable against the charging and discharging reaction. On the other hand, it was confirmed that a corrosion reaction occurred in Comparative Example 1, which did not have a protective film forming agent. In Comparative Examples 2, 3, and 4, in which the amount of the protective film forming agent was 0.1% by weight, the corrosion was reduced compared to Comparative Example 1, but the corrosion reaction occurred, and it was confirmed that the protective film formation was insufficient. As shown in Table 2, by using an electrode mixture containing a protective film forming agent, the electrode according to the present invention having a protective film suppresses or reduces the corrosion reaction, thereby maintaining the electronic connection in the electrode mixture, and it became possible to obtain a high battery capacity and output characteristics compared to the comparative examples.
 以上の実施例等により、本発明によるリチウム酸化物等を活物質として用い、水を溶媒として作製した電極合剤スラリーは、保護膜形成剤を備え、アルミニウム集電層の表面に保護膜が形成されることで、電極作製時のアルミニウム集電層の腐食を抑制することが可能であり、また、得られる電極は高い電池容量と出力特性を有している。本発明によって、従来の有機溶剤を用いた電極製造プロセスから水を用いる電極製造プロセスに変更することが可能となるため、二次電池用電極ひいては二次電池の低コスト化が期待できる。 The above examples show that the electrode mixture slurry prepared using lithium oxide or the like according to the present invention as an active material and water as a solvent contains a protective film forming agent, and a protective film is formed on the surface of the aluminum current collecting layer, making it possible to suppress corrosion of the aluminum current collecting layer during electrode preparation, and the resulting electrode has high battery capacity and output characteristics. The present invention makes it possible to change from the conventional electrode manufacturing process using organic solvents to one using water, which is expected to reduce the cost of secondary battery electrodes and, ultimately, secondary batteries.
 今回開示された実施の形態はすべての点で例示であって制限的なものでないと考えられるべきである。この発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。

 
The embodiments disclosed herein should be considered to be illustrative and not restrictive in all respects. The scope of the present invention is defined by the claims, not the above description, and is intended to include all modifications within the meaning and scope of the claims.

Claims (7)

  1. アルミニウム集電層上に電極合剤層が存在する非水電解質二次電池用電極であって、
    前記電極合剤層を構成する電極合剤は、活物質、バインダーおよび保護膜形成剤を含み、
    前記活物質は、アルカリ金属イオンを電気化学的に吸蔵・脱離可能な活物質、または、アルカリ金属イオンを電気化学的に合金・脱合金化可能な活物質であり、
    前記保護膜形成剤は、アルカリ珪酸塩を含み、
    前記保護膜形成剤によって形成される保護膜が、前記アルミニウム集電層の表面に存在することを特徴とする非水電解質二次電池用電極。
    An electrode for a non-aqueous electrolyte secondary battery, comprising an electrode mixture layer on an aluminum current collecting layer,
    The electrode mixture constituting the electrode mixture layer contains an active material, a binder, and a protective film forming agent,
    the active material is an active material capable of electrochemically absorbing and desorbing alkali metal ions, or an active material capable of electrochemically alloying and dealloying alkali metal ions,
    The protective film forming agent includes an alkali silicate,
    a protective film formed by the protective film forming agent on a surface of the aluminum current collecting layer;
  2. 前記保護膜形成剤は、MO・nSiOで表されるアルカリ珪酸塩を少なくとも含有し、前記MはLi,Na,Kの少なくとも1種を含み、前記nが1.6以上8.0以下である、請求項1に記載の非水電解質二次電池用電極。 2. The electrode for a non-aqueous electrolyte secondary battery according to claim 1 , wherein the protective film forming agent contains at least an alkali silicate represented by M2O.nSiO2 , in which M includes at least one of Li, Na, and K, and n is 1.6 or more and 8.0 or less.
  3. 前記電極合剤中の保護膜形成剤の重量割合は、0.1%を超え1%以下の範囲である、請求項1に記載の非水電解質二次電池用電極。 The electrode for a non-aqueous electrolyte secondary battery according to claim 1, wherein the weight ratio of the protective film forming agent in the electrode mixture is in the range of more than 0.1% and not more than 1%.
  4. 前記アルミニウム集電層の表面に存在する保護膜は、X線光電子分光法(XPS)によるMgKα線のX線源を用いた分析により、Si2p3/2スペクトルにおける102~107eVの範囲内に結合エネルギーを有するSi-O結合を少なくとも含む、請求項1に記載の非水電解質二次電池用電極。 2. The electrode for a nonaqueous electrolyte secondary battery according to claim 1, wherein the protective film present on the surface of the aluminum current collecting layer at least contains a Si—O bond having a bond energy in the range of 102 to 107 eV in a Si2p3 /2 spectrum, as determined by X-ray photoelectron spectroscopy (XPS) analysis using an X-ray source of MgKα radiation.
  5. 前記アルミニウム集電層は、純アルミニウム、または、アルミニウムと1種以上の添加元素からなる合金である、請求項1に記載の非水電解質二次電池用電極。 The electrode for a non-aqueous electrolyte secondary battery according to claim 1, wherein the aluminum current collecting layer is pure aluminum or an alloy of aluminum and one or more additive elements.
  6. 前記活物質は、
    LiMO,LiM,Li12(xは1~2、Mは遷移金属)で表され、遷移金属を少なくとも1種含むリチウム酸化物と、
    LiMPO(Mは遷移金属)で表され、遷移金属を少なくとも1種含むリチウムポリアニオン化合物と、
    リチウム硫黄化合物、リチウムセレン化合物およびリチウムフッ化化合物から選ばれるリチウム無機化合物と、
    NaMOまたはNaMO(Mは遷移金属)で表され、遷移金属を少なくとも1種含むナトリウム酸化物と、
    NaM(XO,NaMPOまたはNaM(SO(Mは遷移金属、Xは硫黄、リン、シリコンの1種)で表され、遷移金属を少なくとも1種含むナトリウムポリアニオン化合物と、
    NaM[M’(CN)](M,M’は遷移金属)で表され、遷移金属を少なくとも1種含むナトリウムプルシアンブルー類似化合物と、
    から選ばれる少なくとも1種である、請求項1に記載の非水電解質二次電池用電極。
    The active material is
    A lithium oxide represented by Li x MO 2 , LiM 2 O 4 , or Li 4 M 5 O 12 (x is 1 to 2, and M is a transition metal) containing at least one transition metal;
    A lithium polyanion compound represented by LiMPO 4 (M is a transition metal) and containing at least one transition metal;
    a lithium inorganic compound selected from a lithium sulfur compound, a lithium selenium compound, and a lithium fluoride compound;
    A sodium oxide represented by NaMO2 or Na2MO3 (M is a transition metal) and containing at least one transition metal;
    a sodium polyanion compound represented by NaM 2 (XO 4 ) 3 , NaMPO 4 or NaM(SO 4 ) 2 (wherein M is a transition metal and X is one of sulfur, phosphorus and silicon) and containing at least one transition metal;
    a sodium Prussian blue analogue compound represented by Na 2 M[M′(CN) 6 ] (M and M′ are transition metals) and containing at least one transition metal;
    2. The electrode for a non-aqueous electrolyte secondary battery according to claim 1, wherein the electrode is at least one selected from the following:
  7.  正極および負極を備え、前記正極と前記負極との間は絶縁層で隔てられており、前記正極および前記負極の少なくとも一方が、請求項1から6のいずれかに記載の非水電解質二次電池用電極である、非水電解質二次電池。

     
    7. A non-aqueous electrolyte secondary battery comprising a positive electrode and a negative electrode, the positive electrode and the negative electrode being separated by an insulating layer, and at least one of the positive electrode and the negative electrode being the electrode for a non-aqueous electrolyte secondary battery according to claim 1.

PCT/JP2023/018335 2023-02-02 2023-05-16 Electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery WO2024161673A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024519806A JP7511306B1 (en) 2023-02-02 2023-05-16 Electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method for producing electrode for non-aqueous electrolyte secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023-014464 2023-02-02
JP2023014464 2023-02-02

Publications (1)

Publication Number Publication Date
WO2024161673A1 true WO2024161673A1 (en) 2024-08-08

Family

ID=92146039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/018335 WO2024161673A1 (en) 2023-02-02 2023-05-16 Electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
WO (1) WO2024161673A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000294252A (en) * 1999-02-25 2000-10-20 Alcatel Positive electrode for lithium rechargeable electrochemical battery having aluminum collector
JP2002270152A (en) * 2001-03-09 2002-09-20 Yuasa Corp Lithium battery
JP2015090858A (en) * 2013-11-07 2015-05-11 旭化成株式会社 Nonaqueous electrolyte secondary battery
JP2018110050A (en) * 2016-12-28 2018-07-12 花王株式会社 Collector for lithium ion battery
JP2019003926A (en) * 2017-06-09 2019-01-10 松本油脂製薬株式会社 Power storage device slurry and use thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000294252A (en) * 1999-02-25 2000-10-20 Alcatel Positive electrode for lithium rechargeable electrochemical battery having aluminum collector
JP2002270152A (en) * 2001-03-09 2002-09-20 Yuasa Corp Lithium battery
JP2015090858A (en) * 2013-11-07 2015-05-11 旭化成株式会社 Nonaqueous electrolyte secondary battery
JP2018110050A (en) * 2016-12-28 2018-07-12 花王株式会社 Collector for lithium ion battery
JP2019003926A (en) * 2017-06-09 2019-01-10 松本油脂製薬株式会社 Power storage device slurry and use thereof

Similar Documents

Publication Publication Date Title
US9831496B2 (en) Nonaqueous electrolytic solution secondary battery
WO2016129629A1 (en) Non-aqueous secondary cell
JP5133020B2 (en) Method for producing positive electrode plate for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the positive electrode plate
JP5231166B2 (en) Method for producing positive plate for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP6805374B2 (en) Electrodes for lithium-ion secondary batteries, their manufacturing methods, and lithium-ion secondary batteries
JP2009038016A (en) Electrode plate for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
WO2011052533A1 (en) Lithium secondary battery
JP6978234B2 (en) Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
WO2022131065A1 (en) Electrode for electrochemical devices and nonaqueous electrolyte secondary battery
EP3425702A1 (en) Positive electrode for lithium ion secondary batteries, and lithium ion secondary battery
JP2017134997A (en) Nonaqueous electrolyte secondary battery
JP2012146590A (en) Positive electrode for nonaqueous electrolyte secondary battery, method for producing positive electrode, and nonaqueous electrolyte secondary battery
US10923705B2 (en) Method of producing negative electrode for nonaqueous electrolyte secondary battery and method of producing nonaqueous electrolyte secondary battery
JP2011086455A (en) Negative electrode material for lithium secondary battery, manufacturing method therefor, and the lithium secondary battery
WO2018220800A1 (en) Electrolyte composition, secondary battery, and method for producing electrolyte sheet
JP6698374B2 (en) Lithium ion secondary battery
WO2023120622A1 (en) Secondary battery positive electrode, production method therefor, and secondary battery
JP2020077620A (en) Binder composition for electrochemical device
TW202109962A (en) Method for producing all-solid-state battery
JP5232353B2 (en) Non-aqueous electrolyte secondary battery electrode composition, electrode and battery using the same
JP2014053168A (en) Slurry for power storage device electrode, power storage device electrode, and power storage device
JP7511306B1 (en) Electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method for producing electrode for non-aqueous electrolyte secondary battery
WO2024161673A1 (en) Electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2023180890A (en) electrochemical device
JP6831699B2 (en) Current collector for lithium-ion batteries

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23919810

Country of ref document: EP

Kind code of ref document: A1