WO2024161267A1 - Semiconductor device, display device, display module, electronic apparatus, and method for manufacturing semiconductor device - Google Patents

Semiconductor device, display device, display module, electronic apparatus, and method for manufacturing semiconductor device Download PDF

Info

Publication number
WO2024161267A1
WO2024161267A1 PCT/IB2024/050781 IB2024050781W WO2024161267A1 WO 2024161267 A1 WO2024161267 A1 WO 2024161267A1 IB 2024050781 W IB2024050781 W IB 2024050781W WO 2024161267 A1 WO2024161267 A1 WO 2024161267A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
insulating layer
oxide
conductive layer
transistor
Prior art date
Application number
PCT/IB2024/050781
Other languages
French (fr)
Japanese (ja)
Inventor
國武寛司
村川努
倉田求
澤井寛美
Original Assignee
株式会社半導体エネルギー研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社半導体エネルギー研究所 filed Critical 株式会社半導体エネルギー研究所
Publication of WO2024161267A1 publication Critical patent/WO2024161267A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/123Connection of the pixel electrodes to the thin film transistors [TFT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/129Chiplets
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/90Assemblies of multiple devices comprising at least one organic light-emitting element
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/20Changing the shape of the active layer in the devices, e.g. patterning

Definitions

  • One embodiment of the present invention relates to a semiconductor device and a manufacturing method thereof.
  • One embodiment of the present invention relates to a transistor and a manufacturing method thereof.
  • One embodiment of the present invention relates to a display device, a display module, and an electronic device that include the semiconductor device.
  • one embodiment of the present invention is not limited to the above technical field.
  • Examples of the technical field of one embodiment of the present invention include semiconductor devices, display devices, light-emitting devices, power storage devices, memory devices, electronic devices, lighting devices, input devices (e.g., touch sensors), input/output devices (e.g., touch panels), driving methods thereof, or manufacturing methods thereof.
  • a semiconductor device is a device that utilizes semiconductor characteristics, and refers to a circuit including a semiconductor element (transistor, diode, photodiode, etc.), a device having such a circuit, etc. Also, it refers to any device that can function by utilizing semiconductor characteristics. For example, an integrated circuit, a chip including an integrated circuit, and an electronic component that houses a chip in a package are examples of semiconductor devices. Also, memory devices, display devices, light-emitting devices, lighting devices, and electronic devices may themselves be semiconductor devices and each may have a semiconductor device.
  • Semiconductor devices having transistors are widely used in electronic devices. For example, in display devices, by reducing the area occupied by transistors, the pixel size can be reduced and higher definition can be achieved. For this reason, there is a demand for miniaturization of transistors.
  • Devices requiring high-definition display devices such as those for virtual reality (VR), augmented reality (AR), substitute reality (SR), and mixed reality (MR), are being actively developed.
  • VR virtual reality
  • AR augmented reality
  • SR substitute reality
  • MR mixed reality
  • display devices for example, light-emitting devices having organic EL (Electro Luminescence) elements or light-emitting diodes (LEDs: Light Emitting Diodes) have been developed.
  • organic EL Electro Luminescence
  • LEDs Light Emitting Diodes
  • Patent document 1 discloses a high-definition display device that uses organic EL elements.
  • An object of one embodiment of the present invention is to provide a transistor having a small size.
  • an object of the present invention is to provide a transistor having a small channel length.
  • an object of the present invention is to provide a transistor having a large on-state current.
  • an object of the present invention is to provide a transistor having good electrical characteristics.
  • an object of the present invention is to provide a semiconductor device having a small occupancy area.
  • an object of the present invention is to provide a semiconductor device having a small wiring resistance.
  • an object of the present invention is to provide a semiconductor device or display device having low power consumption.
  • an object of the present invention is to provide a highly reliable transistor, semiconductor device, or display device.
  • an object of the present invention is to provide a display device that can be easily made high-definition.
  • an object of the present invention is to provide a display device capable of displaying at high luminance.
  • an object of the present invention is to provide a method for manufacturing a semiconductor device or display device with high productivity.
  • an object of the present invention is to provide a novel transistor, semiconductor device, display device, and a manufacturing method thereof.
  • One aspect of the present invention includes a first transistor, a second transistor, and a first insulating layer, the first transistor having a first conductive layer, a second insulating layer on the first conductive layer, a first oxide layer on the first conductive layer and on the second insulating layer, a second conductive layer on the first oxide layer, a third insulating layer on the first oxide layer, and a third conductive layer on the third insulating layer, the second insulating layer having a first opening overlapping the first conductive layer, the first oxide layer having a first region overlapping the first conductive layer on the first conductive layer, a second region covering the side of the first opening of the second insulating layer, and a third region located on the second insulating layer and having an upper surface covered by the second conductive layer, the third insulating layer and the third conductive layer each having a region located inside the first opening of the second insulating layer, and the second The transistor has a second oxide layer on the second insulating layer, a fourth conductive layer and
  • the film thickness of the first region of the first oxide layer is 0.7 to 1.3 times the film thickness of the first oxide layer in the third region.
  • the second insulating layer has a fifth insulating layer and a sixth insulating layer
  • the fifth insulating layer has a fourth opening whose top surface shape is the same or roughly the same as the first opening
  • the first oxide layer has a region located on the fifth insulating layer and a region covering the side of the fourth opening of the fifth insulating layer
  • the side edge of the fifth insulating layer has a region that is the same or roughly the same as the side edge of the first oxide layer
  • the third insulating layer and the third conductive layer each have a region located inside the fourth opening of the fifth insulating layer
  • the second oxide layer is located on the sixth insulating layer
  • the side edge of the sixth insulating layer has a region that is the same or roughly the same as the side edge of the second oxide layer.
  • the second insulating layer has one or more of a silicon nitride film, a silicon nitride oxide film, and a hafnium oxide film, and that the fifth insulating layer and the sixth insulating layer are both one selected from a silicon oxide film and a silicon oxynitride film.
  • the second insulating layer preferably has one of a silicon nitride film and a silicon oxynitride film, and a hafnium oxide film on top of one of the silicon nitride film and the silicon oxynitride film, and the fifth insulating layer and the sixth insulating layer are both preferably one selected from a silicon oxide film and a silicon oxynitride film.
  • the sidewall of the second opening in the first insulating layer has an area located outside the sidewall of the first opening in the second insulating layer.
  • the second conductive layer has a fourth opening in a region overlapping with the first conductive layer, and the third insulating layer and the third conductive layer each have a region provided inside the fourth opening.
  • the sidewall of the fourth opening in the second conductive layer has an area located outside the sidewall of the first opening in the second insulating layer.
  • the first conductive layer has a recess and at least a portion of the first oxide layer is provided within the recess.
  • the first region of the first oxide layer contacts the upper surface of the first conductive layer.
  • the second conductive layer contacts the upper surface of the third region of the first oxide layer.
  • the second transistor has a seventh conductive layer, and the second oxide layer is arranged so as to overlap at least a portion of the seventh conductive layer with the second insulating layer sandwiched therebetween.
  • one aspect of the present invention is a display device that includes any one of the semiconductor devices described above and a light-emitting element, and the light emission luminance of the light-emitting element is controlled by at least one of the first transistor and the second transistor.
  • one aspect of the present invention is a display device having the semiconductor device described in any one of the above and a light-emitting element, the semiconductor device having a third transistor having silicon in a channel formation region, the light emission luminance of the light-emitting element being controlled by at least one of the first transistor and the second transistor, and having a first layer including the third transistor, a second layer located on the first layer and including the first transistor and the second transistor, and a third layer located on the second layer and including the light-emitting element.
  • one aspect of the present invention is a display module that includes any one of the semiconductor devices described above, a light-emitting element, and at least one of a connector and an integrated circuit, and the light emission luminance of the light-emitting element is controlled by at least one of the first transistor and the second transistor.
  • one aspect of the present invention is an electronic device that includes any one of the semiconductor devices described above, a light-emitting element, at least one of a connector and an integrated circuit, and at least one of a housing, a battery, a camera, a speaker, and a microphone, and the light emission luminance of the light-emitting element is controlled by at least one of the first transistor and the second transistor.
  • one aspect of the present invention includes forming a first conductive layer and a second conductive layer, forming a first insulating layer on the first conductive layer and on the second conductive layer, forming a first opening in the first insulating layer in a region overlapping with the first conductive layer by removing a portion of the first insulating layer, performing half etching on a region of the first conductive layer that is not covered by the first insulating layer, forming a first oxide layer on the first conductive layer, the second conductive layer, and the first insulating layer, the first oxide layer having a region covering the side of the first opening in the first insulating layer, forming a third conductive layer on the first oxide layer, forming a fourth conductive layer and a fifth conductive layer by removing a portion of the third conductive layer, removing a portion of the first oxide layer using the fourth conductive layer as a mask to form a second oxide layer, removing a portion of the first oxide layer using the fifth conductive layer as a mask to
  • a method for manufacturing a semiconductor device includes forming a second insulating layer on the oxide layer and the third oxide layer, forming a second opening and a third opening in the second insulating layer by removing a portion of the second insulating layer, removing a region of the fourth conductive layer that overlaps with the second opening of the second insulating layer, and forming a sixth conductive layer and a seventh conductive layer by removing a region of the fifth conductive layer that overlaps with the third opening of the second insulating layer, forming a third insulating layer on the second oxide layer, the third oxide layer, and the second insulating layer, the third insulating layer having a region covering the side of the second opening of the second insulating layer and a region covering the side of the third opening of the second insulating layer, forming an eighth conductive layer on the third insulating layer, and removing a portion of the eighth conductive layer by chemical mechanical polishing to form a ninth conductive layer on the second oxide layer and a tenth conductive layer
  • a recess is formed in the first conductive layer by half etching performed in a region of the first conductive layer that is not covered by the first insulating layer, and the first oxide layer has a region formed within the recess.
  • a fourth opening is provided in the fourth conductive layer by removing a region of the fourth conductive layer that overlaps with the second opening in the second insulating layer, and that the third insulating layer has a region that covers the side of the fourth opening in the fourth conductive layer.
  • the third conductive layer is formed using atomic layer deposition.
  • a transistor with a small size can be provided.
  • a transistor with a small channel length can be provided.
  • a transistor with a large on-state current can be provided.
  • a transistor with good electrical characteristics can be provided.
  • a semiconductor device with a small occupation area can be provided.
  • a semiconductor device with low wiring resistance can be provided.
  • a semiconductor device or display device with low power consumption can be provided.
  • a highly reliable transistor, semiconductor device, or display device can be provided.
  • a display device that can easily be made high-definition can be provided.
  • a display device that can display at high luminance can be provided.
  • a method for manufacturing a semiconductor device or display device with high productivity can be provided.
  • a novel transistor, semiconductor device, display device, and a manufacturing method thereof can be provided.
  • FIG 1A and 1B are top views illustrating an example of a semiconductor device
  • FIG 1C is a cross-sectional view illustrating an example of the semiconductor device
  • 2A and 2B are cross-sectional views showing an example of a transistor
  • Fig. 3A is a top view illustrating an example of a transistor
  • Fig. 3B is a cross-sectional view illustrating an example of a transistor
  • Figs. 3C and 3D are top views illustrating an example of a transistor
  • 4A and 4B are a top view and a cross-sectional view illustrating an example of a transistor
  • 5A to 5F are cross-sectional views showing an example of a transistor
  • 6A to 6C are cross-sectional views showing an example of a method for manufacturing a semiconductor device.
  • FIG. 7A and 7B are cross-sectional views illustrating an example of a method for manufacturing a semiconductor device.
  • 8A and 8B are cross-sectional views showing an example of a method for manufacturing a semiconductor device.
  • 9A and 9B are cross-sectional views illustrating an example of a method for manufacturing a semiconductor device.
  • 10A and 10B are top views illustrating an example of a transistor.
  • 11A and 11B are perspective views showing an example of a display device.
  • Fig. 12A is a block diagram illustrating an example of the configuration of a display module
  • Fig. 12B is a plan view illustrating an example of the configuration of a pixel circuit
  • Fig. 12C and Fig. 12D are circuit diagrams illustrating an example of a configuration including a pixel circuit.
  • FIG. 12A is a block diagram illustrating an example of the configuration of a display module
  • Fig. 12B is a plan view illustrating an example of the configuration of a pixel circuit
  • FIG. 13 is a cross-sectional view showing an example of a display device.
  • FIG. 14 is a cross-sectional view showing an example of a display device.
  • FIG. 15 is a cross-sectional view showing an example of a display device.
  • FIG. 16 is a cross-sectional view showing an example of a display device.
  • FIG. 17 is a cross-sectional view showing an example of a display device.
  • 18A to 18G are diagrams showing an example of a pixel.
  • 19A to 19K are diagrams showing an example of a pixel.
  • 20A to 20F are diagrams showing configuration examples of a light-emitting device.
  • 21A to 21C are diagrams showing configuration examples of a light-emitting device.
  • 22A to 22D are diagrams showing an example of an electronic device.
  • 23A to 23F are diagrams showing an example of an electronic device.
  • 24A to 24G are diagrams showing an example of an electronic device.
  • ordinal numbers “first” and “second” are used for convenience and do not limit the number of components or the order of the components (e.g., the order of processes or the order of stacking).
  • an ordinal number attached to a component in one place in this specification may not match an ordinal number attached to the same component in another place in this specification or in the claims.
  • film and “layer” can be interchanged depending on the circumstances.
  • conductive layer can be changed to the term “conductive film.”
  • insulating film can be changed to the term “insulating layer.”
  • a transistor is a type of semiconductor element that can perform functions such as amplifying current or voltage and switching operations that control conduction or non-conduction.
  • transistor includes IGFETs (Insulated Gate Field Effect Transistors) and thin film transistors (TFTs).
  • source and drain may be interchanged when transistors of different polarity are used, or when the direction of current changes during circuit operation. For this reason, in this specification, the terms “source” and “drain” can be used interchangeably.
  • electrically connected includes cases where the connection is made via "something that has some kind of electrical action.”
  • something that has some kind of electrical action is not particularly limited as long as it allows the transmission and reception of electrical signals between the connected objects.
  • something that has some kind of electrical action includes electrodes or wiring, as well as switching elements such as transistors, resistive elements, coils, and other elements with various functions.
  • the off-state current refers to a leakage current between the source and drain when a transistor is in an off state (also referred to as a non-conducting state or a cut-off state).
  • the off-state refers to a state in which the voltage Vgs between the gate and source of an n-channel transistor is lower than the threshold voltage Vth (higher than Vth for a p-channel transistor).
  • the normally-on characteristic refers to a state in which a channel exists and current flows through the transistor even when no voltage is applied to the gate.
  • the normally-off characteristic refers to a state in which no current flows through the transistor when no potential is applied to the gate or when a ground potential is applied to the gate.
  • the top surface shape of a certain component refers to the contour shape of the component when viewed from a planar view (also referred to as a top view).
  • a planar view refers to a view from the normal direction of the surface on which the component is formed or the surface of the support (e.g., substrate) on which the component is formed.
  • top surface shapes roughly match means that at least a portion of the contours of the stacked layers overlap. For example, this includes cases where the upper and lower layers are processed using the same mask pattern, or where a portion of the mask pattern is the same. However, strictly speaking, the contours may not overlap, and the upper layer may be located inside the lower layer, or outside the lower layer, in which case it may also be said that "top surface shapes roughly match.” Furthermore, when the top surface shapes match or roughly match, it can also be said that the edges are aligned or roughly matched, or that the side edges are aligned or roughly matched.
  • a tapered shape refers to a shape in which at least a part of the side of the structure is inclined with respect to the substrate surface or the surface to be formed.
  • the side of the structure, the substrate surface, and the surface to be formed do not necessarily need to be completely flat, and may be approximately planar with a fine curvature, or approximately planar with fine irregularities.
  • an oxynitride refers to a material whose composition contains more oxygen than nitrogen.
  • An oxynitride refers to a material whose composition contains more nitrogen than oxygen.
  • SIMS secondary ion mass spectrometry
  • XPS X-ray photoelectron spectroscopy
  • SIMS is suitable when the content of the target element is high (e.g., 0.5 atomic% or more, or 1 atomic% or more).
  • SIMS is suitable when the content of the target element is low (e.g., 0.5 atomic% or less, or 1 atomic% or less).
  • a device fabricated using a metal mask or an FMM may be referred to as a device with an MM (metal mask) structure.
  • a device fabricated without using a metal mask or an FMM may be referred to as a device with an MML (metal maskless) structure.
  • SBS Side By Side
  • the SBS structure allows the materials and configuration to be optimized for each light-emitting element, which increases the freedom to select materials and configurations and makes it easier to improve brightness and reliability.
  • holes or electrons may be referred to as “carriers”.
  • the hole injection layer or electron injection layer may be referred to as the "carrier injection layer”
  • the hole transport layer or electron transport layer may be referred to as the “carrier transport layer”
  • the hole block layer or electron block layer may be referred to as the "carrier block layer”.
  • the above-mentioned carrier injection layer, carrier transport layer, and carrier block layer may not be clearly distinguishable.
  • one layer may have two or three functions among the carrier injection layer, carrier transport layer, and carrier block layer.
  • the light-emitting element has an EL layer between a pair of electrodes.
  • the EL layer has at least a light-emitting layer.
  • the layers (also called functional layers) that the EL layer has include a light-emitting layer, a carrier injection layer (a hole injection layer and an electron injection layer), a carrier transport layer (a hole transport layer and an electron transport layer), and a carrier block layer (a hole block layer and an electron block layer).
  • the light-receiving element also called a light-receiving device
  • one of the pair of electrodes may be referred to as a pixel electrode, and the other as a common electrode.
  • the sacrificial layer (which may also be referred to as a mask layer) is located at least above the light-emitting layer (more specifically, the layer that is processed into an island shape among the layers that make up the EL layer) and has the function of protecting the light-emitting layer during the manufacturing process.
  • step discontinuity refers to the phenomenon in which a layer, film, or electrode is separated due to the shape of the surface on which it is formed (e.g., a step, etc.).
  • the semiconductor device of this embodiment has transistors of at least two types of structures on the same plane.
  • the transistors of the two types of structures can be formed by sharing some of the processes. For example, by applying one type of transistor to a transistor that requires a large on-current and applying the other type of transistor to a transistor that requires high saturation characteristics, a high-performance semiconductor device can be obtained. More specifically, a vertical transistor with an extremely short channel length is applied to a transistor that requires a large on-current. On the other hand, a planar transistor with a long channel length and a backgate is applied to a transistor that requires high saturation characteristics.
  • Fig. 1A shows a top view of a transistor 100
  • Fig. 1B shows a top view of a transistor 200
  • Fig. 1C shows cross-sectional views of the transistor 100 and the transistor 200.
  • Fig. 1C can also be said to be a cross-sectional view in the channel length direction of the transistor 200.
  • Fig. 2A shows an enlarged view of the transistor 100
  • Fig. 2B shows an enlarged view of the transistor 200.
  • Any of the gate, drain, or source of transistor 100 may be electrically connected to any of the gate, drain, or source of transistor 200.
  • an insulating layer 275 is provided on the insulating layer 222, on the oxide layer 230B of the transistor 100, and on the oxide layer 230A of the transistor 200, and an insulating layer 280 is provided on the insulating layer 275.
  • the insulating layer 275 is located on the oxide layer 230B with the conductive layer 242C and the insulating layer 271C sandwiched therebetween.
  • the insulating layer 275 is located on the oxide layer 230A with the conductive layer 242A, the conductive layer 242B, the insulating layer 271A, and the insulating layer 271B sandwiched therebetween.
  • the conductive layer 265 of the transistor 100 and the conductive layer 260 of the transistor 200 are provided in the openings of the insulating layer 275 and the insulating layer 280.
  • the transistor 100 includes a conductive layer 205B, an oxide layer 230B on the conductive layer 205B, a conductive layer 242C on the oxide layer 230B, an insulating layer 255 on the oxide layer 230B, and a conductive layer 265 on the insulating layer 255.
  • the insulating layer 221, the insulating layer 224B, and the insulating layer 271C can also be considered as components of the transistor 100.
  • FIG. 1C shows an example in which insulating layer 221 has a laminated structure of insulating layer 220 and insulating layer 222 on insulating layer 220.
  • the structure of insulating layer 221 is not limited to this. For example, it may have a structure using only insulating layer 220 or insulating layer 222, or it may have a structure having an additional insulating layer in addition to insulating layer 220 and insulating layer 222.
  • Opening 341 is provided so as to penetrate insulating layer 221 and insulating layer 224B
  • opening 343 is provided so as to penetrate conductive layer 242
  • opening 345 is provided so as to penetrate insulating layer 271C, insulating layer 275, and insulating layer 280.
  • opening 343 and opening 345 can be formed, for example, by etching using the same mask.
  • opening 343 and opening 345 can be opened, for example, at the same time, so that the sides of the openings may be continuous. Note that, in order to make the figures easier to see, the symbols for opening 341, opening 343, and opening 345 are not shown in Figures 1A and 1C, but are shown in Figure 2A, etc.
  • the "side” of an opening can also be expressed as the “sidewall” of the opening.
  • Opening 341, opening 343, and opening 345 each overlap with conductive layer 205B. Also, opening 341 and opening 343 have overlapping regions. Also, opening 343 and opening 345 have overlapping regions.
  • the oxide layer 230B has a first region that overlaps with the conductive layer 205B on the conductive layer 205B.
  • the first region covers the upper surface of the conductive layer 205B.
  • the oxide layer 230 is preferably in contact with the upper surface of the conductive layer 205B in the first region.
  • the oxide layer 230B also has a second region that covers the side surface of the opening 341 of the insulating layer 221.
  • the second region may also cover the side surface of the opening 341 of the insulating layer 224B in addition to the side surface of the opening 341 of the insulating layer 221.
  • the oxide layer 230B is located on the insulating layer 221 and the insulating layer 224B and has a third region that overlaps with the conductive layer 242. It is preferable that the conductive layer 242 be in contact with the upper surface of the third region of the oxide layer 230B.
  • the first region, the second region, and the third region are preferably a continuous film formed in the same film formation process. Therefore, the first region, the second region, and the third region have, for example, approximately the same film thickness. However, depending on the film formation conditions, the formed film may have a film thickness distribution depending on the region. In the oxide layer 230B, the film thickness in the first region is, for example, 0.7 to 1.3 times the film thickness in the third region.
  • the oxide layer 230B, the insulating layer 255, and the conductive layer 265 each have a region that is provided inside the opening 341 of the insulating layer 221.
  • the region of the oxide layer 230B that is provided inside the opening 341 may have a portion in common with at least one of the first and third regions described above.
  • the oxide layer 230B is provided so as to cover the side surfaces of the insulating layer 221 and the insulating layer 224B.
  • the oxide layer 230B, the insulating layer 255, and the conductive layer 265 each have an area that is provided inside the opening 341 of the insulating layer 224B.
  • the insulating layer 255 is provided within the opening 341 to cover the oxide layer 230B.
  • the insulating layer 255 and the conductive layer 265 each have a region provided inside the opening 343 of the conductive layer 242C, a region provided inside the opening 345 of the insulating layer 271C, a region provided inside the opening 345 of the insulating layer 275, and a region provided inside the opening 345 of the insulating layer 280.
  • the conductive layer 265 is provided so as to be embedded inside the opening 345. It is preferable that the insulating layer 255, the conductive layer 265, and the insulating layer 280 have the same or approximately the same height at their upper surfaces.
  • the insulating layer 255 functions as a gate insulating layer for the transistor 100.
  • the conductive layer 265 functions as a gate electrode for the transistor 100.
  • the conductive layer 205B functions as one of the source electrode and drain electrode of the transistor 100.
  • the conductive layer 242C functions as the other of the source electrode and drain electrode of the transistor 100.
  • the oxide layer 230B has a channel formation region in the transistor 100.
  • a region in contact with the conductive layer 205B functions as one of the source region and the drain region
  • a region in contact with the conductive layer 242C functions as the other of the source region and the drain region
  • a region that functions as a channel formation region is provided between the source region and the drain region.
  • At least one of the regions in the oxide layer 230B located between the side surface of the opening 341 in the insulating layer 221 and the conductive layer 265, and the regions located between the side surface of the opening 341 in the insulating layer 224B and the conductive layer 265 functions as a channel formation region of the transistor 100.
  • the opening diameter in the insulating layer 221 or the insulating layer 224B corresponds to the channel width of the transistor 100. The diameter of these openings may vary in the depth direction.
  • any one of the diameters at the highest position, the diameter at the lowest position, or half the sum of the diameters at the highest position and the lowest position of the insulating layer 221 or the insulating layer 224B in a cross-sectional view may be used.
  • the diameter of the opening may be the diameter at the highest point of the insulating layer 220, the diameter at the lowest point of the insulating layer 222, half the sum of the diameters at the highest and lowest points of the insulating layer 220, half the sum of the diameters at the highest and lowest points of the insulating layer 222, etc.
  • Figure 2A shows the channel length L100 and channel width W100 of transistor 100.
  • channel length L100 can be said to be the shortest distance between the part of oxide layer 230B that contacts conductive layer 242C and the part that contacts conductive layer 205B.
  • insulating layer 2223 has a layered structure of insulating layer 220, insulating layer 222, and insulating layer 224B.
  • the channel formation region of the oxide layer 230B changes depending on the configuration of the insulating layer 223. For example, depending on the configuration of the insulating layer 223, only a part of the region of the oxide layer 230B that contacts the insulating layer 223 may become the channel formation region, and the channel length L100 may be shorter than the length shown in FIG. 2A.
  • an oxide insulating film in the portion of the insulating layer 223 that contacts the channel formation region of the oxide layer 230B.
  • an insulating film that releases oxygen when heated e.g., a silicon oxide film, a silicon oxynitride film, etc.
  • oxygen vacancies in the channel formation region can be suitably reduced.
  • an insulating film through which at least one of oxygen and hydrogen does not easily diffuse can be used on either the top or bottom of the insulating film, or on both sides. It is preferable to use an insulating film through which both oxygen and hydrogen do not easily diffuse.
  • a silicon nitride film, a silicon nitride oxide film, an aluminum oxide film, a hafnium oxide film, or the like can be used here. This makes it possible to efficiently supply oxygen to the channel formation region of the oxide layer 230B and to suppress the diffusion of hydrogen into the channel formation region. Therefore, the electrical characteristics of the transistor 100 can be stabilized.
  • the insulating layer 224B may have an oxide insulating film, and at least one of the insulating layers 220 and 222 may be an insulating film through which oxygen and hydrogen do not easily diffuse. More specifically, for example, the insulating layer 224B may be a stack of an oxide insulating film and an insulating film through which oxygen and hydrogen do not easily diffuse, in that order from the bottom.
  • the insulating layer 222 may be an oxide insulating film
  • the insulating layer 220 may be an insulating film through which oxygen and hydrogen are unlikely to diffuse.
  • the insulating layer 224B may be configured to have, for example, an insulating film through which oxygen and hydrogen are unlikely to diffuse.
  • the channel length L100 of the transistor 100 corresponds to the length of the side of the opening 341 of the insulating layer 223 in a cross-sectional view.
  • the channel length L100 is determined by the thickness of the insulating layer 223 and the angle ⁇ 100 between the side of the opening 341 of the insulating layer 223 and the surface on which the insulating layer 223 is to be formed (here, the upper surface of the conductive layer 205B). Therefore, for example, the channel length L100 can be set to a value smaller than the limit resolution of the exposure device, and a transistor of a fine size can be realized.
  • a transistor with an extremely small channel length that could not be realized with a conventional exposure device for mass production of flat panel displays (for example, a minimum line width of about 2 ⁇ m or 1.5 ⁇ m).
  • a transistor with a channel length of less than 10 nm without using an extremely expensive exposure device used in cutting-edge LSI technology.
  • the channel length L100 can be, for example, 5 nm or more, 7 nm or more, or 10 nm or more, and less than 3 ⁇ m, 2.5 ⁇ m or less, 2 ⁇ m or less, 1.5 ⁇ m or less, 1.2 ⁇ m or less, 1 ⁇ m or less, 500 nm or less, 300 nm or less, 200 nm or less, 100 nm or less, 50 nm or less, 30 nm or less, or 20 nm or less.
  • the channel length L100 can be 100 nm or more and 1 ⁇ m or less.
  • the on-state current of the transistor 100 can be increased.
  • the transistor 100 By using the transistor 100, a circuit capable of high-speed operation can be manufactured. Furthermore, the area occupied by the circuit can be reduced. Therefore, a small-sized semiconductor device can be obtained. For example, when the semiconductor device of one embodiment of the present invention is applied to a large display device or a high-definition display device, even if the number of wirings is increased, signal delay in each wiring can be reduced and display unevenness can be suppressed. Furthermore, since the area occupied by the circuit can be reduced, the frame of the display device can be narrowed.
  • the channel length L100 can be controlled by adjusting the thickness and angle ⁇ 100 of the insulating layer 223.
  • the thickness of the insulating layer 223 can be at least thicker than the oxide layer 230B.
  • it can be 2 nm or more, 5 nm or more, 10 nm or more, or 50 nm or more, and 500 nm or less, 400 nm or less, 300 nm or less, 200 nm or less, or 150 nm or less.
  • the thickness of the insulating layer 220 can be, for example, 1 nm to 100 nm, 2 nm to 50 nm, 2 nm to 20 nm, or 2 nm to 10 nm.
  • the thickness of the insulating layer 222 can be, for example, 2 nm to 200 nm, 3 nm to 100 nm, 5 nm to 50 nm, or 8 nm to 30 nm.
  • the thickness of the insulating layer 222 can be, for example, thicker than the insulating layer 220.
  • the thickness of the insulating layer 224B can be, for example, 2 nm to 300 nm, 3 nm to 200 nm, 5 nm to 100 nm, or 8 nm to 50 nm.
  • the thickness of the insulating layer 224B can be, for example, thicker than the insulating layer 220.
  • the side of the opening 341 in the insulating layer 223 is preferably vertical or tapered.
  • the angle ⁇ 100 is preferably 90 degrees or less. By reducing the angle ⁇ 100, the coverage of the layer (e.g., oxide layer 230B) provided on the insulating layer 223 can be improved.
  • an example is shown in which the side of the opening 341 in the insulating layer 223 is vertical (angle ⁇ 100 is 90 degrees).
  • the angle ⁇ 100 can be, for example, 30 degrees or more, 35 degrees or more, 40 degrees or more, 45 degrees or more, 50 degrees or more, 55 degrees or more, 60 degrees or more, 65 degrees or more, or 70 degrees or more, and 90 degrees or less, 85 degrees or less, or 80 degrees or less.
  • the angle ⁇ 100 may also be 75 degrees or less, 70 degrees or less, 65 degrees or less, or 60 degrees or less.
  • the side of opening 343 in conductive layer 242C is located outside the side of opening 341 in insulating layer 221.
  • the side of opening 345 in insulating layer 275 and insulating layer 280 is located outside the side of opening 341 in insulating layer 221.
  • FIGS. 3A and 3B show a top view and a cross-sectional view of the transistor 100.
  • the transistor 100 shown in FIGS. 3A and 3B has different dimensions from the transistor 100 shown in FIGS. 1A and 1C in order to make it easier to explain the opening 341.
  • the top shape of the opening 341 in the insulating layer 221 and the insulating layer 224B, the top shape of the opening 343 in the conductive layer 242C, and the top shape of the opening 345 in the insulating layer 271C, the insulating layer 275, and the insulating layer 280 can each be circular.
  • the channel width W100 of the transistor 100 is equal to the circumference of the opening 343. In this way, when the top shape of the opening is circular, a transistor with a smaller channel width can be realized compared to other shapes.
  • the top surface shapes of openings 341, 343, and 345 are concentric circles.
  • the conductive layer 242C is located outside the opening 341. Therefore, it is preferable that the end of the conductive layer 242C on the opening 343 side is located outside the side end of the insulating layer 221 on the opening 341 side. In addition, it is preferable that the side end of the conductive layer 242C on the opening 343 side is located outside the side end of the insulating layer 224B on the opening 341 side. By making the opening diameter of the opening 343 larger than that of the opening 341, the opening 343 can be located outside the opening 341.
  • the end of conductive layer 242C on the opening 343 side may coincide or approximately coincide with the end of opening 341.
  • the openings 343 and 345 can be formed using the same mask. Therefore, for example, the opening diameter of the opening 345 is the same or approximately the same as the opening diameter of the opening 343.
  • at least one of the side end of the conductive layer 242C on the opening 343 side, the side end of the insulating layer 271C on the opening 345 side, the side end of the insulating layer 275 on the opening 345 side, and the side end of the insulating layer 280 on the opening 345 side is the same or approximately the same. It is preferable that the side end of the insulating layer 275 on the opening 345 side has an area located outside the side end of the insulating layer 221 on the opening 341 side. It is also preferable that the side end of the insulating layer 280 on the opening 345 side has an area located outside the side end of the insulating layer 221 on the opening 341 side.
  • the diameter of one opening may be larger than the diameter of the other opening depending on the etching conditions, etc.
  • Figures 4A and 4B show a top view and a cross-sectional view of the transistor 100.
  • Figures 4A and 4B are modifications of Figures 3A and 3B.
  • the centers of the top surface shapes of openings 341 and 343 may be misaligned.
  • the top surface shape of opening 341 is circular.
  • the top surface shape of opening 343 is also circular, and the opening diameter is larger than that of opening 341.
  • the centers of the circles of the top surface shapes of openings 341 and 343 do not coincide.
  • opening 341 is located inside opening 343 when viewed from above.
  • the oxide layer 230B has a variation in channel length L100, i.e., a variation in the shortest distance between the portion of the oxide layer 230B that contacts the conductive layer 205B and the portion that contacts the conductive layer 242C. Therefore, the configuration shown in Figures 3A and 3B can suppress the variation in channel length compared to the configuration shown in Figures 4A and 4B. On the other hand, the configuration shown in Figures 4A and 4B may be easier to fabricate compared to Figures 3A and 3B.
  • the diameter of the opening is equal to or greater than the limit resolution of the exposure device.
  • the diameter can be, for example, 20 nm or more, 50 nm or more, 100 nm or more, 200 nm or more, 300 nm or more, 400 nm or more, or 500 nm or more, and less than 5.0 ⁇ m, 4.5 ⁇ m or less, 4.0 ⁇ m or less, 3.5 ⁇ m or less, 3.0 ⁇ m or less, 2.5 ⁇ m or less, 2.0 ⁇ m or less, 1.5 ⁇ m or less, or 1.0 ⁇ m or less.
  • the top surface shape of the openings provided in each layer is not limited, and can be, for example, a circle, an ellipse, a triangle, a quadrangle (including a rectangle, a diamond, and a square), a pentagon, a star-shaped polygon, or any other polygon with rounded corners.
  • the polygon may be either a concave polygon (a polygon with at least one interior angle exceeding 180 degrees) or a convex polygon (a polygon with all interior angles less than 180 degrees).
  • a circle is not limited to a perfect circle.
  • the top surface shape of an opening in a film can refer to the shape of the top surface end or the shape of the bottom surface end on the opening side of the film.
  • Figures 3C and 3D each show a top view of the transistor 100.
  • Figure 3C shows an example in which the top shapes of the openings 341, 343, and 345 are rectangular.
  • Figure 3D shows an example in which the top shapes of the openings 341, 343, and 345 are elliptical.
  • each island-shaped layer can be, for example, a circle, an ellipse, a triangle, a quadrangle (including a rectangle, a diamond, and a square), a pentagon, a star-shaped polygon, or any other polygon with rounded corners.
  • the source electrode and drain electrode are located at different heights, and the current flowing through the oxide layer flows in the height direction.
  • the channel length direction has a component in the height direction (vertical direction), so the transistor 100 can also be called a VFET (Vertical Field Effect Transistor), vertical transistor, vertical channel transistor, vertical channel transistor, etc.
  • VFET Vertical Field Effect Transistor
  • the transistor 100 can have a source electrode, an oxide layer, and a drain electrode stacked on top of each other, the area occupied can be significantly reduced compared to a so-called planar type transistor in which the oxide layer is arranged in a planar shape.
  • FIG. 5A shows an enlarged view of the area surrounded by the two-dot chain line in FIG. 1C in the transistor 100. Also, FIG. 5B and FIG. 5C show modified examples of FIG. 5A.
  • the conductive layer 205B shown in Figures 5A and 5B has a recess at a position overlapping the opening.
  • the conductive layer 205B may not have a recess.
  • the oxide layer 230B is provided in contact with the bottom and side surfaces of the recess in the conductive layer 205B. Also, in Figures 5A and 5B, the oxide layer 230B is in contact with the top surface of the conductive layer 205B and has a region located inside the recess in the conductive layer 205B.
  • the region of the oxide layer 230B that contacts the side surface of the insulating layer 224B overlaps with the conductive layer 265.
  • the region of the oxide layer 230B that contacts the side surface of the insulating layer 224B faces the conductive layer 265.
  • the region of the oxide layer 230B that contacts the side surface of the insulating layer 224B functions as a channel formation region of the transistor 100.
  • the region of the oxide layer 230B that contacts the side of the insulating layer 224B and the region that contacts the side of the insulating layer 222 overlaps with the conductive layer 265.
  • the region of the oxide layer 230B that contacts the side of the insulating layer 224B and the region that contacts the side of the insulating layer 222 face the conductive layer 265. Therefore, compared to the configuration shown in FIG. 5C, the region (offset region) to which the gate electric field is difficult to apply can be reduced, which is preferable. Furthermore, in FIG.
  • the region of the oxide layer 230B that contacts the side of the insulating layer 220 also overlaps with the conductive layer 265 (faces the conductive layer 265), so compared to the configuration shown in FIG. 5A, the offset region can be reduced, which is preferable. This makes it possible to suppress the decrease in field effect mobility caused by the offset region.
  • the etching selectivity with respect to the conductive layer 205B is high during etching to form an opening in the insulating layer 220, so that the conductive layer 205B is prevented from being broken and reliability can be improved.
  • the transistor 200 includes a conductive layer 205A, an insulating layer 221, an insulating layer 224A, an oxide layer 230A, a conductive layer 242A, a conductive layer 242B, an insulating layer 250, and a conductive layer 260. Furthermore, the insulating layer 271A and the insulating layer 271B can also be considered as components of the transistor 200. In addition, in the configuration example shown in FIGS. 1B and 1C, an example is shown in which the insulating layer 221 has a stacked structure of an insulating layer 220 and an insulating layer 222 over the insulating layer 220.
  • the insulating layer 250 functions as a gate insulating layer (also referred to as a first gate insulating layer) of the transistor 200.
  • the conductive layer 260 functions as a gate electrode (also referred to as a first gate electrode) of the transistor 200.
  • the insulating layer 220, the insulating layer 222, and the insulating layer 224A function as a back gate insulating layer (also referred to as a second gate insulating layer) of the transistor 200.
  • the conductive layer 205A functions as a back gate electrode (also referred to as a second gate electrode) of the transistor 200.
  • the conductive layer 242A functions as one of the source electrode and drain electrode of the transistor 200.
  • the conductive layer 242B functions as the other of the source electrode and drain electrode of the transistor 200.
  • the oxide layer 230A has a fourth region and a fifth region and a sixth region that are provided so as to sandwich the fourth region.
  • the fourth region can function as a channel formation region
  • the fifth region can function as one of the source region and the drain region
  • the sixth region can function as the other of the source region and the drain region.
  • At least a part of the fourth region overlaps with the conductive layer 260.
  • One of the fifth region and the sixth region overlaps with the conductive layer 242A, and the other overlaps with the conductive layer 242B.
  • At least a part of the first region overlaps with the conductive layer 260 via the insulating layer 250, and overlaps with the conductive layer 205A via the insulating layer 220, the insulating layer 222, and the insulating layer 224A.
  • opening 346 is provided so as to penetrate insulating layer 275 and insulating layer 280. To make the figures easier to see, opening 346 is not shown in Figures 1B and 1C, but is shown in Figure 2B etc.
  • the insulating layer 250 and the conductive layer 260 have a region provided inside the opening 346 of the insulating layer 275 and a region provided inside the opening 346 of the insulating layer 280.
  • Opening 346 overlaps conductive layer 205A.
  • the insulating layer 250 is provided to cover the upper surface of the oxide layer 230A, the side of the conductive layer 242A, the side of the conductive layer 242B, the side of the insulating layer 271A, the side of the insulating layer 271B, the side of the opening 346 of the insulating layer 275, and the side of the opening 346 of the insulating layer 280.
  • the conductive layer 260 is provided so as to be embedded inside the opening 346. It is preferable that the insulating layer 250, the conductive layer 260, and the insulating layer 280 have the same or approximately the same height at their upper surfaces.
  • Figure 5D shows a cross-sectional view of the transistor 200 in the channel width direction.
  • Figure 5E shows an enlarged view of the area surrounded by the dashed line in Figure 5D, and a modified example of Figure 5E is shown in Figure 5F.
  • the insulating layer 275 and the insulating layer 280 have an opening that reaches the insulating layer 222. Note that there are cases where an opening does not need to be provided in the insulating layer 275. In this case, an opening that reaches the insulating layer 275 is provided in the insulating layer 280.
  • a recess may be provided in the insulating layer 222. Alternatively, an opening that reaches the insulating layer 220 may be provided in the insulating layer 222.
  • An insulating layer 250 is provided to cover the opening that reaches the oxide layer 230A and the opening that reaches the insulating layer 222 or the insulating layer 220, and a conductive layer 260 is provided on the insulating layer 250.
  • a conductive layer 260 is provided on the insulating layer 250.
  • the channel length of the transistor 200 can be determined by the width of the conductive layer 260, so there is a higher degree of freedom in designing the channel length compared to the transistor 100, which is a vertical transistor. For example, when a semiconductor device has multiple transistors 200, the channel lengths of all the transistors 200 may be the same, or the channel lengths of some of the transistors 200 may be different from the channel lengths of the other transistors 200. By making the channel length of the transistor 200 longer than the channel length of the transistor 100, the transistor 200 can be made to have good saturation characteristics.
  • the channel formation region is a high-resistance region with a low carrier concentration because it has fewer oxygen vacancies or a lower impurity concentration than the source and drain regions. Therefore, the channel formation region can be said to be i-type (intrinsic) or substantially i-type.
  • the source and drain regions are low-resistance regions with high carrier concentrations due to a large number of oxygen vacancies or high concentrations of impurities such as hydrogen, nitrogen, and metal elements.
  • the source and drain regions are n-type regions (low-resistance regions) with a high carrier concentration compared to the channel formation region.
  • the carrier concentration of the channel formation region is preferably 1 ⁇ 10 18 cm ⁇ 3 or less, less than 1 ⁇ 10 17 cm ⁇ 3 , less than 1 ⁇ 10 16 cm ⁇ 3 , less than 1 ⁇ 10 15 cm ⁇ 3 , less than 1 ⁇ 10 14 cm ⁇ 3 , less than 1 ⁇ 10 13 cm ⁇ 3 , less than 1 ⁇ 10 12 cm ⁇ 3 , less than 1 ⁇ 10 11 cm ⁇ 3 , or less than 1 ⁇ 10 10 cm ⁇ 3 .
  • the lower limit of the carrier concentration of the channel formation region is not particularly limited, but may be, for example, 1 ⁇ 10 ⁇ 9 cm ⁇ 3 .
  • the impurity concentration in the oxide layer 230A and the oxide layer 230B is reduced to reduce the defect state density.
  • a low impurity concentration and a low defect state density are referred to as high purity intrinsic or substantially high purity intrinsic.
  • An oxide semiconductor (or metal oxide) with a low carrier concentration may be referred to as a high purity intrinsic or substantially high purity intrinsic oxide semiconductor (or metal oxide).
  • the impurity concentration in the oxide layer 230B In order to stabilize the electrical characteristics of the transistor 100, it is effective to reduce the impurity concentration in the oxide layer 230B. In order to stabilize the electrical characteristics of the transistor 200, it is effective to reduce the impurity concentration in the oxide layer 230A. In order to reduce the impurity concentrations of the oxide layers 230A and 230B, it is preferable to also reduce the impurity concentration in the adjacent films.
  • impurities include hydrogen, nitrogen, alkali metals, alkaline earth metals, iron, nickel, silicon, and the like.
  • the impurities in the oxide layer 230A refer to, for example, anything other than the main component constituting the oxide layer 230A. For example, an element with a concentration of less than 0.1 atomic % can be said to be an impurity. The same applies to impurities in the oxide layer 230B.
  • the concentrations of metal elements and impurity elements such as hydrogen and nitrogen detected in each region may change continuously within each region, not limited to a gradual change from region to region. In other words, the concentrations of metal elements and impurity elements such as hydrogen and nitrogen may decrease in the region closer to the channel formation region.
  • Insulating layer 216, conductive layer 205A, and conductive layer 205B are provided on insulating layer 215. Conductive layer 205A and conductive layer 205B are provided so as to be embedded in the openings of insulating layer 216. It is preferable that insulating layer 216, conductive layer 205A, and conductive layer 205B have the same or approximately the same height at the top surface.
  • An insulating layer 221 is provided on the insulating layer 216, the conductive layer 205A, and the conductive layer 205B.
  • Insulating layer 224B, oxide layer 230B, conductive layer 242C, and insulating layer 271C are stacked in this order on insulating layer 221 so that at least a portion of them overlap conductive layer 205B.
  • the insulating layer 224B, the oxide layer 230B, the conductive layer 242C, and the insulating layer 271C can be processed collectively into an island shape. This can increase the productivity of the semiconductor device.
  • the side edge of the conductive layer 242C has an area that coincides or roughly coincides with the side edge of the oxide layer 230B.
  • the side edge of the insulating layer 224B has an area that coincides or roughly coincides with the side edge of the oxide layer 230B.
  • FIG. 1C When processing the layers into an island shape all at once, for example, a structure as shown in FIG. 1C can be realized. Specifically, in a cross-sectional view of the transistor 100, the side end of the conductive layer 242C coincides or roughly coincides with the side end of the oxide layer 230B. Furthermore, the side end of the insulating layer 224B coincides or roughly coincides with the side end of the oxide layer 230B.
  • An insulating layer 271C may be provided on the conductive layer 242C.
  • the insulating layer 271C can function as an etching stopper that protects the conductive layer 242C in the process of processing the conductive layer 242C into an island shape at once.
  • An insulating layer 275 is provided to cover the side surfaces of insulating layer 224B, oxide layer 230B, conductive layer 242C, and insulating layer 271C, as well as the top surface of insulating layer 271C, and an insulating layer 280 is provided to cover insulating layer 275.
  • insulating layer 275 covers the upper surface of conductive layer 242C with insulating layer 271C sandwiched therebetween.
  • the insulating layer 255 is provided in contact with the side surface of the conductive layer 242C, the side surface of the insulating layer 271C, the side surface of the insulating layer 275, and the side surface of the insulating layer 280.
  • the conductive layer 265 is provided on the insulating layer 255.
  • Insulating layer 224A and oxide layer 230A are laminated in this order on insulating layer 221 so that at least a portion of them overlaps conductive layer 205A.
  • Conductive layer 242A and conductive layer 242B are provided on oxide layer 230A and spaced apart from each other.
  • the insulating layer 224A, the oxide layer 230A, and the conductive layer (conductive layer 242D) that will become the conductive layer 242A and the conductive layer 242B can be processed into an island shape all at once (conductive layer 242D will be described in detail later in FIG. 7A, etc.). This can improve the productivity of the semiconductor device.
  • the side edge of the conductive layer 242 has an area that coincides or roughly coincides with the side edge of the oxide layer 230A.
  • the side edge of the insulating layer 224A has an area that coincides or roughly coincides with the side edge of the oxide layer 230A.
  • one side end of the conductive layer 242A coincides or roughly coincides with one side end of the oxide layer 230A
  • one side end of the conductive layer 242B coincides or roughly coincides with the other side end of the oxide layer 230A.
  • the side end of the insulating layer 224A coincides or roughly coincides with the side end of the oxide layer 230A.
  • An insulating layer 271A may be provided on conductive layer 242A, and an insulating layer 271B may be provided on conductive layer 242B.
  • the insulating layer (insulating layer 271D) that becomes insulating layer 271A and insulating layer 271B can function as an etching stopper that protects conductive layer 242D (conductive layer that becomes conductive layer 242A and conductive layer 242B) in the process of processing the conductive layer into an island shape at once (insulating layer 271D will be described in detail later in FIG. 7A, etc.).
  • Conductive layer 242A, conductive layer 242B, and conductive layer 242C can be formed by processing the same conductive layer. Also, insulating layer 271A, insulating layer 271B, and insulating layer 271C can be formed by processing the same insulating layer.
  • An insulating layer 275 is provided to cover the side surfaces of insulating layer 224A, oxide layer 230A, conductive layer 242A, conductive layer 242B, insulating layer 271A, and insulating layer 271B, as well as the top surfaces of insulating layer 271A and insulating layer 271B, and an insulating layer 280 is provided to cover insulating layer 275.
  • insulating layer 275 has a region that covers the upper surface of conductive layer 242A with insulating layer 271A sandwiched therebetween, and a region that covers the upper surface of conductive layer 242B with insulating layer 271B sandwiched therebetween.
  • Insulating layer 255 and insulating layer 250 can be formed by processing the same insulating layer.
  • the side surfaces of the inner walls of the openings 345 and 346 are preferably vertical or tapered.
  • the angle between the side surfaces of the inner walls of the openings 345 and 346 and the surface on which the insulating layer 271 is to be formed is vertical or close to vertical, it is preferable to form the insulating layers that become the insulating layers 255 and 250 using a film formation method with high coverage.
  • the structure of a transistor in which the electric field of at least the first gate electrode electrically surrounds the channel formation region is called a surrounded channel (S-channel) structure.
  • the S-channel structure disclosed in this specification has a structure different from the Fin type structure and the planar type structure.
  • the S-channel structure disclosed in this specification can also be regarded as a type of Fin type structure.
  • the Fin type structure refers to a structure in which the gate electrode is arranged to surround at least two or more sides of the channel (specifically, two, three, or four sides, etc.).
  • the channel formation region can be electrically surrounded. Since the S-channel structure electrically surrounds the channel formation region, it can be said that it is substantially the same structure as a GAA (Gate All Around) structure or a LGAA (Lateral Gate All Around) structure.
  • the transistor 200 By making the transistor 200 have an S-channel structure, a GAA structure, or a LGAA structure, the channel formation region formed at or near the interface between the oxide layer 230A and the insulating layer 250 can be the entire bulk of the oxide layer 230A. Therefore, it is possible to improve the current density flowing through the transistor, and it is expected to improve the on-current of the transistor or the field effect mobility of the transistor.
  • insulating layers 282, 283, and 284 are provided on the transistor 100 and the transistor 200.
  • an insulating layer 241 is provided on the side of the openings provided in the insulating layers 282, 283, and 284, etc., and it is preferable that the conductive layers 205A to 240G are embedded inside the insulating layer 241.
  • Each of conductive layers 240A, 240B, 240C, 240D, 240E, 240F, and 240G can be configured to be electrically connected to other conductive layers via a conductive layer located above insulating layer 284.
  • FIGS. 10A and 10B show modified examples of the configurations of transistors 100 and 200 as viewed from the top.
  • each layer constituting the semiconductor device of this embodiment, the transistor 100, and the transistor 200 may have a single-layer structure or a stacked-layer structure.
  • ⁇ Oxide layer 230A and oxide layer 230B> a metal oxide that functions as a semiconductor (hereinafter also referred to as an oxide semiconductor) is preferably used.
  • the oxide layer 230A and the oxide layer 230B have a channel formation region, which is i-type (intrinsic) or substantially i-type.
  • the oxide layer 230A and the oxide layer 230B further have a source region and a drain region, which are n-type regions (low resistance regions) with a higher carrier concentration than the channel formation region.
  • Oxide layer 230A and oxide layer 230B can be formed in the same process using the same material.
  • the crystallinity of the semiconductor material used for the oxide layer 230A and the oxide layer 230B is not particularly limited, and any of an amorphous semiconductor, a single crystal semiconductor, and a semiconductor having crystallinity other than single crystal (a microcrystalline semiconductor, a polycrystalline semiconductor, or a semiconductor having a crystalline region in part) may be used.
  • the use of a single crystal semiconductor or a semiconductor having crystallinity is preferable because it can suppress deterioration of the transistor characteristics.
  • the band gap of a metal oxide that functions as a semiconductor is preferably 2.0 eV or more, and more preferably 2.5 eV or more.
  • a metal oxide with a large band gap By using a metal oxide with a large band gap, the off-current of a transistor can be reduced.
  • a transistor having a metal oxide in a channel formation region in this way is called an OS transistor. Since an OS transistor has a small off-current, the power consumption of a semiconductor device can be sufficiently reduced. Furthermore, since an OS transistor has high frequency characteristics, the semiconductor device can operate at high speed.
  • metal oxides that can be used for the oxide layer 230A and the oxide layer 230B include indium oxide, gallium oxide, and zinc oxide.
  • the metal oxide preferably contains at least indium (In) or zinc (Zn).
  • the metal oxide preferably contains two or three elements selected from indium, element M, and zinc.
  • the element M is a metal element or semi-metal element that has a high bond energy with oxygen, for example, a metal element or semi-metal element that has a higher bond energy with oxygen than indium.
  • element M examples include aluminum, gallium, tin, yttrium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, zirconium, molybdenum, hafnium, tantalum, tungsten, lanthanum, cerium, neodymium, magnesium, calcium, strontium, barium, boron, silicon, germanium, and antimony.
  • the element M of the metal oxide is preferably one or more of the above elements, more preferably one or more selected from aluminum, gallium, tin, and yttrium, and even more preferably gallium.
  • metal elements and metalloid elements may be collectively referred to as "metal elements", and the "metal element" described in this specification may include metalloid elements.
  • the oxide layer 230A and the oxide layer 230B may be, for example, indium zinc oxide (In-Zn oxide, also referred to as IZO (registered trademark)), indium tin oxide (In-Sn oxide), indium titanium oxide (In-Ti oxide), indium gallium oxide (In-Ga oxide), indium gallium aluminum oxide (In-Ga-Al oxide), indium gallium tin oxide (In-Ga-Sn oxide), gallium zinc oxide (Ga-Zn oxide, also referred to as GZO), aluminum zinc oxide (Al-Zn oxide, also referred to as AZO), indium aluminum Indium zinc oxide (In-Al-Zn oxide, also written as IAZO), indium tin zinc oxide (In-Sn-Zn oxide, also written as ITZO (registered trademark)), indium titanium zinc oxide (In-Ti-Zn oxide), indium gallium zinc oxide (In-Ga-Zn oxide, also written as IGZO), indium gallium
  • the field effect mobility of the transistor can be increased.
  • a transistor with a large on-current can be realized.
  • the metal oxide may contain one or more metal elements having a large periodic number instead of or in addition to indium.
  • metal elements having a large periodic number include metal elements belonging to the fifth period and metal elements belonging to the sixth period. Specific examples of the metal elements include yttrium, zirconium, silver, cadmium, tin, antimony, barium, lead, bismuth, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, and europium. Note that lanthanum, cerium, praseodymium, neodymium, promethium, samarium, and europium are called light rare earth elements.
  • the metal oxide may also contain one or more nonmetallic elements.
  • the carrier concentration may increase or the band gap may be narrowed, which may increase the field effect mobility of the transistor.
  • nonmetallic elements include carbon, nitrogen, phosphorus, sulfur, selenium, fluorine, chlorine, bromine, and hydrogen.
  • the metal oxide becomes highly crystalline, and the diffusion of impurities in the metal oxide can be suppressed. Therefore, fluctuations in the electrical characteristics of the transistor can be suppressed, and reliability can be improved.
  • the formation of oxygen vacancies in the metal oxide can be suppressed. Therefore, carrier generation due to oxygen vacancies can be suppressed, and a transistor with a small off-current can be obtained. Furthermore, fluctuations in the electrical characteristics of the transistor can be suppressed, and reliability can be improved.
  • the electrical characteristics and reliability of the transistor vary depending on the composition of the metal oxide applied to the oxide layer 230A and the oxide layer 230B. Therefore, by varying the composition of the metal oxide according to the electrical characteristics and reliability required of the transistor, a semiconductor device that combines excellent electrical characteristics and high reliability can be obtained.
  • the metal oxide is an In-M-Zn oxide
  • the atomic ratio of In in the In-M-Zn oxide is equal to or greater than the atomic ratio of M.
  • the nearby composition includes a range of ⁇ 30% of the desired atomic ratio.
  • the atomic ratio of In in the In-M-Zn oxide may be less than the atomic ratio of M.
  • the total proportion of the atomic numbers of the metal elements can be regarded as the proportion of the atomic number of element M.
  • the ratio of the number of indium atoms to the sum of the numbers of atoms of all metal elements contained may be referred to as the indium content. The same applies to other metal elements.
  • the metal oxide can be formed by sputtering or atomic layer deposition (ALD).
  • ALD atomic layer deposition
  • the composition of the metal oxide after film formation may differ from the composition of the target.
  • the zinc content in the metal oxide after film formation may decrease to about 50% compared to the target.
  • Oxide layer 230A and oxide layer 230B may have a stacked structure having two or more metal oxide layers.
  • the two or more metal oxide layers in oxide layer 230A and oxide layer 230B may have the same or approximately the same composition.
  • By having a stacked structure of metal oxide layers with the same composition for example, they can be formed using the same sputtering target, thereby reducing manufacturing costs.
  • the two or more metal oxide layers in the oxide layer 230A and the oxide layer 230B may have different compositions.
  • gallium, aluminum, or tin as the element M.
  • a stacked structure of any one selected from indium oxide, indium gallium oxide, and IGZO and any one selected from IAZO, IAGZO, and ITZO (registered trademark) can be used.
  • the oxide layer 230A and the oxide layer 230B preferably have a metal oxide layer having crystallinity.
  • a metal oxide having crystallinity examples include a CAAC (c-axis aligned crystal) structure, a polycrystalline structure, and a nano-crystalline (nc: nano-crystal) structure.
  • Oxide layer 230A and oxide layer 230B may have a laminated structure of two or more metal oxide layers with different crystallinity.
  • a laminated structure of a first metal oxide layer and a second metal oxide layer provided on the first metal oxide layer may be configured so that the second metal oxide layer has a region with higher crystallinity than the first metal oxide layer.
  • the second metal oxide layer may have a region with lower crystallinity than the first metal oxide layer.
  • the first metal oxide layer and the second metal oxide layer may have different compositions, or may have the same or approximately the same composition.
  • the thickness of oxide layer 230A and oxide layer 230B is preferably 1 nm or more and 200 nm or less, more preferably 3 nm or more and 100 nm or less, even more preferably 5 nm or more and 100 nm or less, even more preferably 10 nm or more and 100 nm or less, even more preferably 10 nm or more and 70 nm or less, even more preferably 15 nm or more and 70 nm or less, even more preferably 15 nm or more and 50 nm or less, even more preferably 20 nm or more and 50 nm or less.
  • oxide semiconductor When an oxide semiconductor is used for the oxide layer 230A and the oxide layer 230B, hydrogen contained in the oxide semiconductor may react with oxygen bonded to a metal atom to become water, and oxygen vacancies ( VO ) may be formed in the oxide semiconductor. Furthermore, a defect in which hydrogen is introduced into the oxygen vacancy (hereinafter referred to as VOH ) may function as a donor and generate electrons that are carriers. In addition, some of the hydrogen may bond with oxygen bonded to a metal atom to generate electrons that are carriers. Therefore, a transistor using an oxide semiconductor containing a large amount of hydrogen is likely to have normally-on characteristics (that is, a threshold voltage has a negative value). Furthermore, hydrogen in an oxide semiconductor is easily mobile due to stress such as heat or an electric field, and therefore, if an oxide semiconductor contains a large amount of hydrogen, the reliability of the transistor may be deteriorated.
  • an oxide semiconductor When an oxide semiconductor is used for the oxide layer 230A and the oxide layer 230B, it is preferable to reduce VOH in the oxide layer 230A and the oxide layer 230B as much as possible to make them highly pure intrinsic or substantially highly pure intrinsic.
  • it is important to remove impurities such as water and hydrogen from the oxide semiconductor (sometimes referred to as dehydration or dehydrogenation treatment) and to supply oxygen to the oxide semiconductor to repair oxygen vacancies.
  • Stable electrical characteristics can be imparted by using an oxide semiconductor with sufficiently reduced impurities such as VOH for a channel formation region of a transistor. Note that supplying oxygen to an oxide semiconductor to repair oxygen vacancies may be referred to as oxygen addition treatment.
  • the carrier concentration of the oxide semiconductor in the region functioning as a channel formation region is preferably 1 ⁇ 10 18 cm ⁇ 3 or less, more preferably less than 1 ⁇ 10 17 cm ⁇ 3 , further preferably less than 1 ⁇ 10 16 cm ⁇ 3 , further preferably less than 1 ⁇ 10 13 cm ⁇ 3 , and further preferably less than 1 ⁇ 10 12 cm ⁇ 3 .
  • the lower limit of the carrier concentration of the oxide semiconductor in the region functioning as a channel formation region is not particularly limited, and can be, for example, 1 ⁇ 10 ⁇ 9 cm ⁇ 3 .
  • the semiconductor device of this embodiment may also be applied to a transistor using another semiconductor material in the channel formation region.
  • another semiconductor material include semiconductors made of single elements, or compound semiconductors.
  • semiconductors made of single elements include silicon and germanium.
  • compound semiconductors include gallium arsenide and silicon germanium.
  • Other examples of compound semiconductors include organic semiconductors and nitride semiconductors.
  • the aforementioned oxide semiconductor is also a type of compound semiconductor. Note that these semiconductor materials may contain impurities as dopants.
  • Silicon that can be used as a semiconductor material for transistors includes single crystal silicon, polycrystalline silicon, microcrystalline silicon, and amorphous silicon.
  • An example of polycrystalline silicon is low temperature polysilicon (LTPS).
  • the semiconductor material of the transistor may have a layered material that functions as a semiconductor.
  • a layered material is a general term for a group of materials that have a layered crystal structure.
  • a layered crystal structure is a structure in which layers formed by covalent or ionic bonds are stacked via bonds weaker than covalent or ionic bonds, such as van der Waals forces.
  • a layered material has high electrical conductivity within a unit layer, that is, high two-dimensional electrical conductivity.
  • Examples of the layered material include graphene, silicene, and chalcogenides.
  • Chalcogenides are compounds containing chalcogen (an element belonging to Group 16).
  • Examples of the chalcogenides include transition metal chalcogenides and Group 13 chalcogenides.
  • transition metal chalcogenides that can be used as semiconductor materials for transistors include molybdenum sulfide (representatively MoS 2 ), molybdenum selenide (representatively MoSe 2 ), molybdenum tellurium (representatively MoTe 2 ), tungsten sulfide (representatively WS 2 ), tungsten selenide (representatively WSe 2 ), tungsten tellurium (representatively WTe 2 ), hafnium sulfide (representatively HfS 2 ), hafnium selenide (representatively HfSe 2 ), zirconium sulfide (representatively ZrS 2 ), zirconium selenide (representatively ZrSe 2 ), and the like.
  • MoS 2 molybdenum sulfide
  • MoSe 2 molybdenum selenide
  • MoTe 2 moly MoTe 2
  • the insulating layer 250 is in contact with a channel formation region of the oxide layer 230A.
  • the insulating layer 255 is in contact with a channel formation region of the oxide layer 230B.
  • the same materials as those that can be used for the insulating layer 250 can be used.
  • the same material as that for the insulating layer 250 may be used, or a different material may be used.
  • the insulating layer 250 preferably has a function of capturing and fixing hydrogen, which can reduce the hydrogen concentration in the channel formation region of the oxide layer 230A. As a result, VOH in the channel formation region can be reduced, and the channel formation region can be made i-type or substantially i-type.
  • the layer in contact with the oxide layer 230A has the function of capturing and fixing hydrogen.
  • the insulating layer 255 has the function of capturing and fixing hydrogen, which can reduce the hydrogen concentration in the channel formation region of the oxide layer 230B.
  • the layer in contact with the oxide layer 230B has the function of capturing and fixing hydrogen.
  • An example of an insulating layer that has the function of capturing and fixing hydrogen is a metal oxide having an amorphous structure.
  • a metal oxide such as magnesium oxide or an oxide containing one or both of aluminum and hafnium.
  • oxygen atoms have dangling bonds, and the dangling bonds may have the property of capturing or fixing hydrogen.
  • metal oxides having an amorphous structure have a high ability to capture or fix hydrogen.
  • a high dielectric constant (high-k) material for the insulating layer 250.
  • An example of a high-k material is an oxide containing one or both of aluminum and hafnium.
  • an oxide containing one or both of aluminum and hafnium as the layer in contact with the oxide layer 230A in the insulating layer 250, it is more preferable to use an oxide having an amorphous structure and containing one or both of aluminum and hafnium, and it is even more preferable to use aluminum oxide having an amorphous structure.
  • aluminum oxide is used as the layer in contact with the oxide layer 230A in the insulating layer 250.
  • the layer in contact with the oxide layer 230A in the insulating layer 250 is an insulating layer containing at least oxygen and aluminum.
  • the aluminum oxide has an amorphous structure.
  • the layer in contact with the oxide layer 230A in the insulating layer 250 has an amorphous structure.
  • the insulating layer 250 may have an insulating layer having a thermally stable structure, such as silicon oxide or silicon oxynitride.
  • the insulating layer 250 may have an insulating layer with a heat-stable structure between a pair of insulating layers that have the function of capturing and fixing hydrogen.
  • Insulating layer 250 preferably has a barrier insulating layer against oxygen. This can suppress oxidation of conductive layer 242A, conductive layer 242B, conductive layer 260, etc.
  • insulating layer 250 has a laminated structure, it is preferable that the layer in contact with conductive layer 242A and conductive layer 242B, and the layer in contact with conductive layer 260 are each a barrier insulating layer against oxygen.
  • the insulating layer 255 has a barrier insulating layer against oxygen, oxidation of the conductive layer 242C and the conductive layer 265 can be suppressed.
  • the layer in contact with the conductive layer 242C and the layer in contact with the conductive layer 265 are each a barrier insulating layer against oxygen.
  • a barrier insulating layer refers to an insulating layer that has barrier properties.
  • barrier properties refer to a function of suppressing the diffusion of the corresponding substance (also called low permeability), or a function of capturing and fixing the corresponding substance (also called gettering).
  • Examples of the barrier insulating layer against oxygen include oxides containing one or both of aluminum and hafnium, magnesium oxide, gallium oxide, indium gallium zinc oxide, silicon nitride, and silicon nitride oxide.
  • Examples of oxides containing one or both of aluminum and hafnium include aluminum oxide, hafnium oxide, oxides containing aluminum and hafnium (hafnium aluminate), and oxides containing hafnium and silicon (hafnium silicate).
  • the barrier insulating layer against oxygen is preferably less permeable to oxygen than at least the insulating layer 280.
  • the layer in the insulating layer 250 that is in contact with the conductive layer 242A and the conductive layer 242B is preferably less permeable to oxygen than at least the insulating layer 280.
  • the layer has a barrier property against oxygen, which can prevent the side surfaces of the conductive layer 242A and the conductive layer 242B from being oxidized and an oxide film from being formed on the side surfaces. This can prevent a decrease in the on-current of the transistor 200 or a decrease in the field effect mobility.
  • the insulating layer 250 is provided in contact with the upper surface of the insulating layer 222, the side of the insulating layer 224A, and the upper surface and side of the oxide layer 230A.
  • the insulating layer 250 has a barrier property against oxygen, so that the layer in contact with these can suppress the desorption of oxygen from the channel formation region of the oxide layer 230A when heat treatment is performed. Therefore, the formation of oxygen vacancies in the oxide layer 230A can be suppressed. Even if the insulating layer 280 contains an excessive amount of oxygen, the oxygen can be suppressed from being excessively supplied to the oxide layer 230A, and an appropriate amount of oxygen can be supplied to the oxide layer 230A through the insulating layer 250. Therefore, the source region and drain region of the oxide layer 230A are excessively oxidized, and the decrease in the on-current of the transistor 200 and the decrease in the field effect mobility can be suppressed.
  • the thickness of the insulating layer 250 is preferably 0.1 nm or more and 30 nm or less, preferably 0.1 nm or more and 20 nm or less, preferably 0.1 nm or more and 10 nm or less, more preferably 0.1 nm or more and 5.0 nm or less, more preferably 0.5 nm or more and 5.0 nm or less, more preferably 1.0 nm or more and less than 5.0 nm, and even more preferably 1.0 nm or more and 3.0 nm or less.
  • the ALD method includes the thermal ALD method, in which the reaction between the precursor and the reactant is carried out using only thermal energy, and the plasma enhanced ALD (PEALD) method, in which a plasma excited reactant is used.
  • the PEALD method may be preferable because it uses plasma, which allows film formation at a lower temperature.
  • the ALD method can deposit atoms one layer at a time, which has the advantages of enabling extremely thin films to be formed, films to be formed on structures with high aspect ratios, films with fewer defects such as pinholes, films with excellent coverage, and films to be formed at low temperatures. Therefore, the insulating layer 250 can be formed with good coverage on the side surfaces of the openings formed in the insulating layer 280, etc., and on the side ends of the conductive layers 242A and 242B, etc., with a thin film thickness as described above.
  • films formed by the ALD method may contain more impurities such as carbon than films formed by other film formation methods.
  • Quantitative determination of impurities can be performed using secondary ion mass spectrometry (SIMS), X-ray photoelectron spectroscopy (XPS), or Auger electron spectroscopy (AES).
  • the insulating layer 275 is preferably a barrier insulating layer against oxygen because it can suppress oxidation of the conductive layers 242A, 242B, 242C, etc.
  • the insulating layer 241 is preferably a barrier insulating layer against oxygen because it can suppress oxidation of the conductive layers 240A to 240G.
  • insulating layer 250 For information about the barrier insulating layer against oxygen, please refer to the description of insulating layer 250.
  • the insulating layer 275 is a barrier insulating layer against hydrogen, it is preferable because it can suppress a decrease in the hydrogen concentration in the source and drain regions of the oxide layer 230A.
  • Barrier insulating layers against hydrogen include oxides such as aluminum oxide, hafnium oxide, and tantalum oxide, and nitrides such as silicon nitride.
  • the insulating layers 215 and 221 are provided under the transistors 100 and 200.
  • the insulating layers 282 and 282 are provided to cover the upper sides of the transistors 100 and 200.
  • the insulating layer 221 has a laminated structure of the insulating layer 220 and the insulating layer 222 on the insulating layer 220.
  • the structure of the insulating layer 221 is not limited to this.
  • the insulating layer 221 may have a structure using only the insulating layer 220 or the insulating layer 222, or may have a further insulating layer in addition to the insulating layer 220 and the insulating layer 222.
  • the insulating layer described in this specification can be used as appropriate as the insulating layer.
  • an insulating layer that has a function of suppressing the diffusion of impurities such as hydrogen and water is an insulating layer that covers one or both of the top and bottom of the transistors 100 and 200. Therefore, it is preferable that at least one of the insulating layers located on the bottom side of the transistors 100 and 200 is an insulating layer that has a function of suppressing the diffusion of hydrogen. In addition, it is preferable that at least one of the insulating layers that covers the top side of the transistors 100 and 200 is an insulating layer that has a function of suppressing the diffusion of hydrogen.
  • an insulating layer that releases oxygen As an insulating layer in contact with the oxide layer 230B and the oxide layer 230A.
  • oxygen can be efficiently supplied to the oxide layer.
  • At least one of the insulating layers 215, 220, 222, 282, and 283 preferably functions as a barrier insulating layer that suppresses diffusion of impurities such as water and hydrogen from the substrate side or from above the transistor to the transistor 100. Therefore, at least one of the insulating layers 215, 220, 222, 282, and 283 preferably has an insulating material that has a function of suppressing diffusion of impurities such as hydrogen atoms, hydrogen molecules, water molecules, nitrogen atoms, nitrogen molecules, nitrogen oxide molecules (N 2 O, NO, NO 2 , etc.), and copper atoms (through which the above impurities are difficult to permeate). Alternatively, it is preferable to have an insulating material that has a function of suppressing diffusion of oxygen (for example, at least one of oxygen atoms and oxygen molecules, etc.) (through which the above oxygen is difficult to permeate).
  • oxygen for example, at least one of oxygen atoms and oxygen molecules, etc.
  • an insulating layer having a function of suppressing the diffusion of impurities such as water and hydrogen, and oxygen for example, aluminum oxide, magnesium oxide, hafnium oxide, zirconium oxide, oxide containing aluminum and hafnium (hafnium aluminate), oxide containing hafnium and zirconium (hafnium zirconium oxide), gallium oxide, or silicon nitride oxide can be used.
  • silicon nitride which has a higher hydrogen barrier property, as the insulating layer 283 and the insulating layer 220.
  • the insulating layer 282 has aluminum oxide or magnesium oxide, which has a high function of capturing and fixing hydrogen, respectively.
  • hafnium oxide which is a high dielectric constant (high-k) material, which has a high ability to capture or fix hydrogen, as the insulating layer 222.
  • the insulating layer 224A and the insulating layer 224B can be formed in the same process and from the same material.
  • the insulating layer 224A is preferably an oxide since it is in contact with the oxide layer 230A.
  • the insulating layer 224B is preferably an oxide since it is in contact with the oxide layer 230B.
  • the insulating layer 224A and the insulating layer 224B preferably have silicon oxide or silicon oxynitride. This allows oxygen to be supplied from the insulating layer 224A to the oxide layer 230A, thereby reducing oxygen vacancies. Similarly, oxygen can be supplied from the insulating layer 224B to the oxide layer 230B, thereby reducing oxygen vacancies.
  • the insulating layer 224A is preferably processed into an island shape, similar to the oxide layer 230A. As a result, when multiple transistors 200 are provided, an insulating layer 224A of approximately the same size is provided for each transistor 200. As a result, the amount of oxygen supplied from the insulating layer 224A to the oxide layer 230A in each transistor 200 becomes approximately the same. Therefore, it is possible to suppress the variation in the electrical characteristics of the transistors 200 within the substrate surface. However, this is not limited to the above, and similar to the insulating layer 220, the insulating layer 224 may be configured not to be patterned.
  • Each of the insulating layers 216, 280, and 284 preferably has a dielectric constant lower than that of the insulating layer 222.
  • each of the insulating layers 216, 280, and 284 preferably has a dielectric constant lower than that of the insulating layer 220.
  • insulating layer 216, insulating layer 280, and insulating layer 284 each have one or more of silicon oxide, silicon oxynitride, silicon oxide doped with fluorine, silicon oxide doped with carbon, silicon oxide doped with carbon and nitrogen, and silicon oxide having vacancies.
  • silicon oxide and silicon oxynitride are preferred because they are thermally stable.
  • materials such as silicon oxide, silicon oxynitride, and silicon oxide with vacancies are preferred because they can easily form regions containing oxygen that is released by heating.
  • insulating layer 216, insulating layer 280, and insulating layer 284 may each be planarized.
  • the concentration of impurities such as water and hydrogen in the insulating layer 280 is reduced.
  • the insulating layer 280 has an oxide containing silicon, such as silicon oxide or silicon oxynitride.
  • the conductive layer 205A, the conductive layer 205B, and the conductive layers 242A to 242C may each have a single-layer structure or a stacked-layer structure.
  • the conductive layer 205A and the conductive layer 205B can be formed in the same process using the same material.
  • the conductive layers 242A to 242C can be formed in the same process using the same material.
  • Materials that can be used for the conductive layers 205A, 205B, and 242A to 242C include, for example, one or more of chromium, copper, aluminum, gold, silver, zinc, tantalum, titanium, tungsten, manganese, nickel, iron, cobalt, molybdenum, and niobium, and alloys containing one or more of the above-mentioned metals.
  • Low-resistance conductive materials containing one or more of copper, silver, gold, and aluminum can be preferably used for the conductive layers 205A, 205B, and 242A to 242C. Copper or aluminum is particularly preferred because of its excellent mass productivity.
  • the conductive layer 205B and the conductive layers 242A to 242C are conductive layers in contact with the oxide layer, and therefore it is preferable to use a conductive material that is not easily oxidized, a conductive material that maintains low electrical resistance even when oxidized, an oxide conductive material, or a conductive material that has a function of suppressing oxygen diffusion.
  • the conductive material include a conductive material containing nitrogen and a conductive material containing oxygen. This can suppress a decrease in the conductivity of the conductive layer 205B and the conductive layers 242A to 242C.
  • the conductive layer 205A, the conductive layer 205B, and the conductive layers 242A to 242C can each be made of an oxide conductor.
  • oxide conductors include indium oxide, zinc oxide, In-Sn oxide (ITO), In-Zn oxide, In-W oxide, In-W-Zn oxide, In-Ti oxide, In-Ti-Sn oxide, In-Sn-Si oxide (also referred to as ITO containing silicon, ITSO), zinc oxide to which gallium is added, and In-Ga-Zn oxide.
  • ITO In-Sn oxide
  • ITO In-Zn oxide
  • In-W oxide In-W-Zn oxide
  • In-Ti oxide In-Ti-Sn oxide
  • ITSO In-Sn-Si oxide
  • conductive oxides containing indium are preferable because of their high conductivity.
  • a metal oxide that has become a conductor can be called an oxide conductor.
  • the conductive layer 205A, the conductive layer 205B, and the conductive layers 242A to 242C may each have a stacked structure of a conductive film containing the above-mentioned oxide conductor (metal oxide) and a conductive film containing a metal or an alloy.
  • a conductive film containing a metal or an alloy By using a conductive film containing a metal or an alloy, the wiring resistance can be reduced.
  • the conductive layer 205A, the conductive layer 205B, and the conductive layers 242A to 242C may each be a Cu-X alloy film (X is Mn, Ni, Cr, Fe, Co, Mo, Ta, or Ti).
  • X is Mn, Ni, Cr, Fe, Co, Mo, Ta, or Ti.
  • the conductive layer 205A, the conductive layer 205B, and the conductive layers 242A to 242C are preferably made of, for example, titanium, tantalum nitride, titanium nitride, a nitride containing titanium and aluminum, a nitride containing tantalum and aluminum, ruthenium, ruthenium oxide, ruthenium nitride, an oxide containing strontium and ruthenium, or an oxide containing lanthanum and nickel. These are preferable because they are conductive materials that are difficult to oxidize or materials that maintain their conductivity even when oxidized.
  • the conductive layer 205B and the conductive layers 242A to 242C have a stacked structure, it is preferable to use a conductive material that is difficult to oxidize at least for the layer in contact with the oxide layer 230A or the oxide layer 230B.
  • the conductive layer 205A, the conductive layer 205B, and the conductive layers 242A to 242C may each include a nitride conductor.
  • nitride conductors include tantalum nitride and titanium nitride.
  • the conductive layer 205A, the conductive layer 205B, and the conductive layers 242A to 242C can each have a single-layer structure of an oxide conductor film, a stacked structure of a metal film and an oxide conductor film, or a stacked structure of a metal film.
  • An example of an oxide conductor film is an ITSO film.
  • An example of a metal film is a single-layer structure of a tungsten film, a single-layer structure of a titanium film, a single-layer structure of a copper film, and a three-layer structure of a titanium film, an aluminum film, and a titanium film.
  • an ITSO film for the conductive layer 205A, the conductive layer 205B, and the conductive layers 242A to 242C.
  • the conductive layer 242A and the conductive layer 242B are each shown as a two-layer structure.
  • the conductive layer 242A is a laminated film of the conductive layer 242a1 and the conductive layer 242a2 on the conductive layer 242a1
  • the conductive layer 242B is a laminated film of the conductive layer 242b1 and the conductive layer 242b2 on the conductive layer 242b1.
  • a metal nitride for example, a nitride containing tantalum, a nitride containing titanium, a nitride containing molybdenum, a nitride containing tungsten, a nitride containing tantalum and aluminum, or a nitride containing titanium and aluminum.
  • a nitride containing tantalum is particularly preferable.
  • ruthenium, ruthenium oxide, ruthenium nitride, an oxide containing strontium and ruthenium, an oxide containing lanthanum and nickel, or the like may be used. These materials are preferable because they are conductive materials that are difficult to oxidize or materials that maintain their conductivity even when they absorb oxygen.
  • tantalum nitride or titanium nitride can be used for the conductive layer 242a1 and the conductive layer 242b1, and tungsten can be used for the conductive layer 242a2 and the conductive layer 242b2.
  • the conductive layer 260 and the conductive layer 265 may each have a single-layer structure or a laminated structure.
  • materials that can be used for the conductive layer 260 and the conductive layer 265 include one or more of chromium, copper, aluminum, gold, silver, zinc, tantalum, titanium, tungsten, manganese, nickel, iron, cobalt, molybdenum, and niobium, and alloys containing one or more of the above-mentioned metals.
  • a low-resistance conductive material containing one or more of copper, silver, gold, and aluminum can be suitably used. In particular, copper or aluminum is preferable because of its excellent mass productivity.
  • An oxide conductor can be used for the conductive layer 260 and the conductive layer 265.
  • Examples of the oxide conductor include the materials exemplified in the description of the conductive layer 205A, etc.
  • the conductive layer 260 and the conductive layer 265 may have a stacked structure of a conductive film containing the oxide conductor (metal oxide) described above and a conductive film containing a metal or an alloy. By using a conductive film containing a metal or an alloy, the wiring resistance can be reduced.
  • Conductive layer 260 and conductive layer 265 may be made of a Cu-X alloy film (X is Mn, Ni, Cr, Fe, Co, Mo, Ta, or Ti). By using a Cu-X alloy film, the film can be processed by a wet etching process, which reduces manufacturing costs.
  • X is Mn, Ni, Cr, Fe, Co, Mo, Ta, or Ti.
  • a three-layer stacked structure of a titanium film, an aluminum film, and a titanium film for the conductive layer 260 and the conductive layer 265.
  • FIG. 2B shows an example in which the conductive layer 260 has a two-layer structure.
  • the conductive layer 260 shown in FIG. 2B has a conductive layer 260a and a conductive layer 260b arranged on the conductive layer 260a.
  • the conductive layer 260a is preferably arranged so as to surround the bottom and side surfaces of the conductive layer 260b.
  • the conductive layer 260a is preferably made of a conductive material having a function of suppressing the diffusion of impurities such as hydrogen atoms, hydrogen molecules, water molecules, nitrogen atoms, nitrogen molecules ( N2O , NO, NO2 , etc.), nitrogen oxide molecules, copper atoms, etc.
  • impurities such as hydrogen atoms, hydrogen molecules, water molecules, nitrogen atoms, nitrogen molecules ( N2O , NO, NO2 , etc.), nitrogen oxide molecules, copper atoms, etc.
  • it is preferably made of a conductive material having a function of suppressing the diffusion of oxygen (for example, at least one of oxygen atoms and oxygen molecules, etc.).
  • the conductive layer 260a has a function of suppressing the diffusion of oxygen, which can suppress the conductive layer 260b from being oxidized by oxygen contained in the insulating layer 280, etc., and thereby suppressing a decrease in conductivity.
  • a conductive material having a function of suppressing the diffusion of oxygen it is preferable to use, for example, titanium, titanium nitride, tantalum, tantalum nitride, ruthenium, ruthenium oxide, etc.
  • the conductive layer 260b is preferably a conductive layer having high conductivity.
  • the conductive layer 260b may be made of a conductive material containing tungsten, copper, or aluminum as a main component.
  • the conductive layer 260b may also have a layered structure, for example, a layered structure of titanium or titanium nitride and the above-mentioned conductive material.
  • conductive layer 260 and conductive layer 265 are each formed in a self-aligned manner so as to fill an opening formed in insulating layer 280 or the like. By forming them in this manner, conductive layer 260 can be positioned so as to overlap the region between conductive layer 242A and conductive layer 242B without alignment. Similarly, conductive layer 265 can also be positioned at a predetermined position without alignment.
  • Each of the conductive layer 240A, the conductive layer 240B, the conductive layer 240C, the conductive layer 240D, the conductive layer 240E, the conductive layer 240F, and the conductive layer 240G may have a single layer structure or a laminated structure.
  • a conductive material having a function of suppressing the permeation of impurities such as water and hydrogen is preferably used as the layer in contact with the insulating layer 241.
  • a single layer structure or a stacked structure using one or more of tantalum, tantalum nitride, titanium, titanium nitride, ruthenium, and ruthenium oxide can be used. This can suppress impurities such as water and hydrogen from being mixed into the oxide layer 230A, etc. through the conductive layers 240A to 240G.
  • the conductive layers 240A to 240G also function as wirings, it is preferable that the conductive layers have high conductivity.
  • a conductive material containing tungsten, copper, or aluminum as a main component can be used.
  • Conductive layers 240A to 240G preferably have a two-layer structure of, for example, titanium nitride and tungsten.
  • the insulating layers 271A, 271B, and 271C are inorganic insulating layers that function as an etching stopper when the conductive layers 242A, 242B, and 242C are processed, and protect the conductive layers 242A, 242B, and 242C.
  • the insulating layers 271A, 271B, and 271C are in contact with the conductive layers 242A, 242B, and 242C, they are preferably inorganic insulating layers that are unlikely to oxidize the conductive layers 242A, 242B, and 242C.
  • the insulating layer 271A, the insulating layer 271B, and the insulating layer 271C preferably have a two-layer structure, and a nitride insulating film (such as silicon nitride or silicon nitride oxide) is preferably used as a layer in contact with the conductive layer 242A, the conductive layer 242B, and the conductive layer 242C, and an oxide insulating film is preferably formed on the nitride insulating film as an etching stopper.
  • a nitride insulating film such as silicon nitride or silicon nitride oxide
  • an oxide insulating film is preferably formed on the nitride insulating film as an etching stopper.
  • the oxide insulating film for example, an oxide insulating film that can be used for the insulating layer 250 can be used, and specifically, silicon oxide can be mentioned.
  • the semiconductor device of this embodiment has transistors of at least two types of structures formed on the same plane using some common processes.
  • transistors that require a large on-current vertical transistors with an extremely short channel length are used.
  • planar transistors with a long channel length and a backgate are used. This makes it possible to realize a high-performance semiconductor device.
  • the thin films (insulating films, semiconductor films, conductive films, etc.) that make up semiconductor devices can be formed using sputtering, chemical vapor deposition (CVD), vacuum deposition, pulsed laser deposition (PLD), ALD, etc.
  • Sputtering methods include RF sputtering, which uses a high-frequency power supply as the sputtering power source, DC sputtering, which uses a direct current power supply, and pulsed DC sputtering, which changes the voltage applied to the electrodes in a pulsed manner.
  • RF sputtering is mainly used when depositing insulating films
  • DC sputtering is mainly used when depositing metal conductive films.
  • Pulsed DC sputtering is mainly used when depositing compounds such as oxides, nitrides, and carbides using reactive sputtering.
  • CVD methods can also be classified into plasma CVD (PECVD) methods, which use plasma, thermal CVD (TCVD: Thermal CVD) methods, which use heat, and photo CVD (Photo CVD) methods, which use light. They can also be further classified into metal CVD (MCVD: Metal CVD) methods and metal organic CVD (MOCVD: Metal CVD) methods, depending on the source gas used.
  • PECVD plasma CVD
  • TCVD Thermal CVD
  • Photo CVD Photo CVD
  • MCVD Metal CVD
  • MOCVD Metal CVD
  • the plasma CVD method can produce high-quality films at relatively low temperatures.
  • the thermal CVD method is a film formation method that can reduce plasma damage to the workpiece because it does not use plasma.
  • wiring, electrodes, elements (transistors, capacitive elements, etc.) included in a semiconductor device may become charged up by receiving electric charge from the plasma. At this time, the accumulated electric charge may destroy the wiring, electrodes, elements, etc. included in the semiconductor device.
  • thermal CVD method which does not use plasma, such plasma damage does not occur, so the yield of semiconductor devices can be increased.
  • plasma damage does not occur during film formation, so a film with fewer defects can be obtained.
  • the ALD method can be a thermal ALD method in which the reaction between the precursor and reactant is carried out using only thermal energy, or a PEALD method in which a plasma-excited reactant is used.
  • the CVD and ALD methods are different from sputtering methods in which particles emitted from a target or the like are deposited. Therefore, they are film formation methods that are less affected by the shape of the workpiece and have good step coverage.
  • the ALD method has excellent step coverage and excellent thickness uniformity, making it suitable for coating the surfaces of openings with high aspect ratios.
  • the ALD method since the ALD method has a relatively slow film formation speed, it may be preferable to use it in combination with other film formation methods such as the CVD method, which has a fast film formation speed.
  • the CVD method can form a film of any composition by adjusting the flow rate ratio of the source gases.
  • the CVD method can form a film whose composition changes continuously by changing the flow rate ratio of the source gases while forming the film.
  • the time required for film formation can be shortened compared to forming a film using multiple film formation chambers because no time is required for transportation or pressure adjustment. Therefore, the productivity of semiconductor devices can be increased in some cases.
  • a film of any composition can be formed by simultaneously introducing multiple different types of precursors.
  • a film of any composition can be formed by controlling the number of cycles of each precursor.
  • the thin films (insulating films, semiconductor films, conductive films, etc.) constituting the semiconductor device can be formed by wet film formation methods such as spin coating, dip coating, spray coating, inkjet printing, dispensing, screen printing, offset printing, doctor knife method, slit coating, roll coating, curtain coating, or knife coating.
  • the thin film when processing the thin film that constitutes the semiconductor device, a photolithography method or the like can be used.
  • the thin film may be processed by a nanoimprint method, a sandblasting method, a lift-off method, or the like.
  • an island-shaped thin film may be directly formed by a film formation method using a shielding mask such as a metal mask.
  • the light used for exposure can be, for example, i-line (wavelength 365 nm), g-line (wavelength 436 nm), h-line (wavelength 405 nm), or a mixture of these.
  • ultraviolet light, KrF laser light, ArF laser light, etc. can also be used.
  • Exposure can also be performed by immersion exposure technology.
  • Extreme ultraviolet (EUV) light or X-rays can also be used as the light used for exposure.
  • Electron beams can also be used instead of the light used for exposure. Extreme ultraviolet light, X-rays, or electron beams are preferable because they enable extremely fine processing. When exposure is performed by scanning a beam such as an electron beam, a photomask is not required.
  • Dry etching, wet etching, sandblasting, etc. can be used to etch thin films.
  • an insulating layer 216 is formed on an insulating layer 215, and an opening is formed in the insulating layer 216 so as to reach the insulating layer 215.
  • conductive layers that become conductive layers 205A and 205B are formed on the insulating layer 215 and the insulating layer 216.
  • CMP chemical mechanical polishing
  • the insulating layer 215 and the insulating layer 216 can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, or an ALD method.
  • a sputtering method it is not necessary to use molecules containing hydrogen in the deposition gas, and therefore the hydrogen concentration in the insulating layer can be reduced, which is preferable.
  • the insulating layers 215 and 216 are deposited in succession without exposing them to the atmosphere.
  • a multi-chamber deposition apparatus This can reduce the amount of hydrogen in the insulating layers 215 and 216, and can also reduce the incorporation of hydrogen into the films between each deposition process.
  • a recess may be formed in insulating layer 215.
  • the conductive layers that become conductive layer 205A and conductive layer 205B can be formed using a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, a plating method, or the like.
  • a portion of the insulating layer 216 may be removed.
  • insulating layers 220, 222, and 224 are formed on conductive layer 205A, conductive layer 205B, and insulating layer 216 ( Figure 6A).
  • the insulating layer 220, the insulating layer 222, and the insulating layer 224 are processed using a lithography method to provide an opening 341 in the portion of the insulating layer 220, the insulating layer 222, and the insulating layer 224 that overlaps with the conductive layer 205B (FIG. 6B).
  • the opening 341 By providing the opening 341, the upper surface of the conductive layer 205B is exposed.
  • insulating layer 220, insulating layer 222, and insulating layer 224 are opened at the same time.
  • the above processing can be performed using a dry etching method or a wet etching method.
  • the dry etching method is preferred because it is suitable for fine processing.
  • insulating layer 220, insulating layer 222, and insulating layer 224 may be performed under different conditions.
  • the exposed conductive layer 205B is preferably etched.
  • This etching preferably provides a recess in the area of conductive layer 205B that overlaps with opening 341.
  • the depth of the recess is preferably shallower than the film thickness of conductive layer 205B. In other words, this etching preferably does not provide an opening penetrating conductive layer 205B, and conductive layer 205B preferably remains at the bottom of the recess.
  • This type of etching in which the conductive layer 205B film remains in the etched area, is sometimes called half etching.
  • the resist is exposed through a mask.
  • the exposed area is then removed or left using a developer to form a resist mask.
  • a conductive layer, a semiconductor, or an insulating layer can be processed into a desired shape by etching through the resist mask.
  • a resist mask can be formed by exposing the resist using KrF excimer laser light, ArF excimer laser light, EUV (Extreme Ultraviolet) light, or the like.
  • a liquid immersion technique may be used in which a liquid (e.g., water) is filled between the substrate and the projection lens and exposure is performed.
  • an electron beam or an ion beam may be used instead of the light described above.
  • a mask may not be used.
  • the resist mask that is no longer needed after processing can be removed by performing a dry etching process such as ashing using oxygen plasma (hereinafter sometimes referred to as oxygen plasma treatment), a wet etching process, a dry etching process followed by a wet etching process, or a wet etching process followed by a dry etching process.
  • a dry etching process such as ashing using oxygen plasma (hereinafter sometimes referred to as oxygen plasma treatment), a wet etching process, a dry etching process followed by a wet etching process, or a wet etching process followed by a dry etching process.
  • a hard mask made of an insulating layer or a conductive layer may be used under the resist mask. Etching of the insulating layer 224 etc. may be performed after removing the resist mask, or may be performed while leaving the resist mask. In the latter case, the resist mask may disappear during etching. After etching of the insulating layer 220, the hard mask may be removed by etching. On the other hand, if the material of the hard mask does not affect the subsequent process or can be used in the subsequent process, it is not necessarily necessary to remove the hard mask.
  • a configuration may be adopted in which an SOC (Spin On Carbon) film and an SOG (Spin On Glass) film are formed between the workpiece and the resist mask.
  • SOC Spin On Carbon
  • SOG Spin On Glass
  • a SOC film, an SOG film, and a resist mask can be formed in this order on the workpiece, and then lithography can be performed.
  • an etching gas containing halogen can be used, specifically, an etching gas containing one or more of fluorine, chlorine, and bromine can be used.
  • an etching gas containing one or more of fluorine, chlorine, and bromine can be used.
  • C4F6 gas , C5F6 gas , C4F8 gas, CF4 gas, SF6 gas, CHF3 gas, CH2F2 gas, Cl2 gas, BCl3 gas, SiCl4 gas, or BBr3 gas can be used alone or in a mixture of two or more gases.
  • oxygen gas, carbon dioxide gas, nitrogen gas, helium gas, argon gas, hydrogen gas, or hydrocarbon gas can be appropriately added to the above etching gas.
  • a gas containing no halogen gas but a hydrocarbon gas or hydrogen gas can be used as the etching gas.
  • the hydrocarbon used in the etching gas may be one or more of methane ( CH4 ), ethane ( C2H6 ) , propane ( C3H8 ), butane ( C4H10 ), ethylene (C2H4), propylene (C3H6), acetylene (C2H2), and propyne (C3H4 ) .
  • the etching conditions may be appropriately set according to the object to be etched.
  • a capacitively coupled plasma (CCP) etching device having parallel plate electrodes can be used as the dry etching device.
  • the capacitively coupled plasma etching device having parallel plate electrodes may be configured to apply a high frequency voltage to one of the parallel plate electrodes. Or, it may be configured to apply a plurality of different high frequency voltages to one of the parallel plate electrodes. Or, it may be configured to apply a high frequency voltage of the same frequency to each of the parallel plate electrodes. Or, it may be configured to apply a high frequency voltage of different frequencies to each of the parallel plate electrodes.
  • a dry etching device having a high density plasma source can be used.
  • an inductively coupled plasma (ICP) etching device can be used as the dry etching device having a high density plasma source.
  • ICP inductively coupled plasma
  • an oxide layer 230 is formed to cover the upper and side surfaces of the insulating layer 224, the side surfaces of the insulating layer 222, the side surfaces of the insulating layer 220, and the upper surface of the exposed conductive layer 205B, and a conductive layer 242 and an insulating layer 271 are formed in this order on the oxide layer 230 ( Figure 6C).
  • an insulating film into which one or more of oxygen, hydrogen, and water do not easily diffuse can be used as the insulating layer 220 and the insulating layer 222.
  • an insulating film that releases oxygen when heated as one or more of the insulating layer 222 and the insulating layer 224 can be used as the insulating layer 220 and the insulating layer 222.
  • insulating layer 224 is a film having a large etching selectivity with respect to insulating layer 222.
  • silicon oxide or silicon oxynitride may be used as insulating layer 224, and aluminum oxide, hafnium oxide, an oxide containing aluminum and hafnium (hafnium aluminate), an oxide containing hafnium and silicon (hafnium silicate), or hafnium zirconium oxide may be used as insulating layer 222.
  • silicon nitride or silicon nitride oxide may be used as insulating layer 220.
  • the insulating layer 220, the insulating layer 222, and the insulating layer 224 can each be formed using, for example, a sputtering method, a CVD method, an MBE method, a PLD method, or an ALD method.
  • the insulating layer 224 is preferably formed by a sputtering method. This eliminates the need to use hydrogen-containing molecules in the deposition gas, and therefore the hydrogen concentration in the insulating layer 224 can be reduced. Since the oxide layer 230 is provided on and in contact with the insulating layer 224, it is preferable that the hydrogen concentration in the insulating layer 224 is reduced.
  • heat treatment may be performed before the formation of the insulating layer 224.
  • the heat treatment may be performed under reduced pressure, and the insulating layer 224 may be formed continuously without exposure to the air.
  • moisture and hydrogen adsorbed on the surface of the insulating layer 222 can be removed, and the moisture concentration and hydrogen concentration in the insulating layer 222 can be further reduced.
  • the temperature of the heat treatment is preferably 100° C. or higher and 400° C. or lower. In this embodiment, the temperature of the heat treatment is 250° C.
  • the oxide layer 230 can be formed, for example, using a sputtering method, a CVD method, an MBE method, a PLD method, or an ALD method.
  • the oxide layer 230 is formed by a sputtering method
  • oxygen or a mixed gas of oxygen and a noble gas is used as the sputtering gas.
  • the amount of excess oxygen in the oxide film to be formed can be increased.
  • an In-M-Zn oxide target or the like can be used.
  • the proportion of oxygen contained in the sputtering gas is preferably 70% or more, more preferably 80% or more, and even more preferably 100%.
  • an oxygen-excessive oxide semiconductor is formed when the ratio of oxygen contained in the sputtering gas is set to more than 30% and not more than 100%, preferably 70% to 100%.
  • a transistor using an oxygen-excessive oxide semiconductor in a channel formation region can have relatively high reliability.
  • one embodiment of the present invention is not limited thereto.
  • An oxygen-deficient oxide semiconductor is formed when the ratio of oxygen contained in the sputtering gas is set to 1% to 30%, preferably 5% to 20%, when the oxide layer 230 is formed.
  • a transistor using an oxygen-deficient oxide semiconductor in a channel formation region can have relatively high field-effect mobility.
  • the crystallinity of the oxide layer can be improved by forming the oxide layer while heating the substrate.
  • the oxide layer 230 it is preferable to form the oxide layer 230 using the ALD method.
  • the oxide layer By forming the oxide layer using the ALD method, a thin film can be formed with good controllability.
  • the insulating layer 224 and the oxide layer 230 without exposing them to the atmosphere.
  • the heat treatment may be performed within a temperature range in which the oxide layer 230 does not become polycrystallized.
  • the temperature of the heat treatment is preferably 100°C or higher, 250°C or higher, or 350°C or higher, and 650°C or lower, 600°C or lower, or 550°C or lower.
  • the heat treatment is performed in an atmosphere of nitrogen gas or an inert gas, or an atmosphere containing 10 ppm or more, 1% or more, or 10% or more of an oxidizing gas.
  • an atmosphere of nitrogen gas or an inert gas or an atmosphere containing 10 ppm or more, 1% or more, or 10% or more of an oxidizing gas.
  • the heat treatment may be performed under reduced pressure.
  • the heat treatment may be performed in an atmosphere containing 10 ppm or more, 1% or more, or 10% or more of an oxidizing gas to compensate for the oxygen that has been released.
  • the gas used in the heat treatment is preferably highly purified.
  • the amount of moisture contained in the gas used in the heat treatment is preferably 1 ppb or less, more preferably 0.1 ppb or less, and even more preferably 0.05 ppb or less.
  • the heat treatment is performed at a temperature of 450° C. for 1 hour with a flow rate ratio of nitrogen gas and oxygen gas of 4:1.
  • This heat treatment including oxygen gas can reduce impurities such as carbon, water, and hydrogen in the oxide layer 230.
  • impurities such as carbon, water, and hydrogen in the oxide layer 230.
  • the crystallinity of the oxide layer 230 can be improved, and a denser and more compact structure can be obtained.
  • This increases the crystalline region in the oxide layer 230, and reduces the in-plane variation of the crystalline region in the oxide layer 230. Therefore, the in-plane variation of the electrical characteristics of the transistor can be reduced.
  • the insulating layer 224 has a portion that functions as a gate insulating layer of the transistor 200
  • the oxide layer 230 has a portion that functions as a channel formation region of the transistor 200.
  • the transistor 200 formed using the insulating layer 224 and the oxide layer 230 in which the hydrogen concentration is reduced has good reliability and is therefore preferable.
  • the conductive layer 242 is formed on the oxide layer 230 without an etching process or the like, so that the upper surface of the oxide layer 230 can be protected by the conductive layer 242. This makes it possible to suppress the diffusion of impurities into the oxide layer 230 that constitutes the transistor, and improve the electrical characteristics and reliability of the semiconductor device.
  • the conductive layer 242 can be formed using a sputtering method, a CVD method, an MBE method, a PLD method, a plating method or an ALD method.
  • heat treatment may be performed before the conductive layer 242 is formed.
  • the heat treatment may be performed under reduced pressure, and the conductive layer 242 may be formed continuously without exposure to the air. By performing such treatment, moisture and hydrogen adsorbed on the surface of the oxide layer 230A can be removed, and the moisture concentration and hydrogen concentration in the oxide layer 230A can be further reduced.
  • the temperature of the heat treatment is preferably 100° C. or higher and 400° C. or lower. In this embodiment, the temperature of the heat treatment is set to 250° C.
  • the insulating layer 271 can be formed using a method such as sputtering, CVD, MBE, PLD, or ALD.
  • heat treatment may be performed before the insulating layer 271 is formed.
  • the heat treatment may be performed under reduced pressure, and the insulating layer 271 may be formed continuously without exposure to the air. By performing such treatment, moisture and hydrogen adsorbed on the surface of the conductive layer 242 can be removed, and the moisture concentration and hydrogen concentration in the conductive layer 242 can be further reduced.
  • the temperature of the heat treatment is preferably 100° C. or higher and 400° C. or lower. In this embodiment, the temperature of the heat treatment is set to 250° C.
  • the insulating layer 224, the oxide layer 230, the conductive layer 242, and the insulating layer 271 are processed into an island shape using lithography to form insulating layer 224A, insulating layer 224B, oxide layer 230A, oxide layer 230B, conductive layer 242C, conductive layer 242D, insulating layer 271C, and insulating layer 271D ( Figure 7A). Note that in areas where these are not provided, the insulating layer 222 is exposed.
  • a laminated structure of insulating layer 224A, oxide layer 230A, conductive layer 242D, and insulating layer 271D is formed so that at least a portion of the insulating layer 224A overlaps with conductive layer 205A.
  • a laminated structure of insulating layer 224B, oxide layer 230B, conductive layer 242C, and insulating layer 271C is formed so that at least a portion of the insulating layer 224B overlaps with conductive layer 205B.
  • the side end of the insulating layer 271D approximately coincides with the side end of the conductive layer 242D. Furthermore, it is preferable that the side end of the conductive layer 242D approximately coincides with the side end of the oxide layer 230A. Furthermore, it is preferable that the side end of the insulating layer 224A approximately coincides with the side end of the oxide layer 230A. Similarly, it is preferable that the side end of the insulating layer 271C approximately coincides with the side end of the conductive layer 242C.
  • the side end of the conductive layer 242C approximately coincides with the side end of the oxide layer 230B. Furthermore, it is preferable that the side end of the insulating layer 224B approximately coincides with the side end of the oxide layer 230B.
  • an insulating layer 275 can be provided in contact with the side of the insulating layer 224A, the side of the insulating layer 224B, and the top surface of the insulating layer 222 in a process described below.
  • the insulating layer 224A and the insulating layer 224B can be separated from the insulating layer 280 by the insulating layer 275.
  • the above processing can be performed using a dry etching method or a wet etching method.
  • the dry etching method is preferred because it is suitable for fine processing.
  • the insulating layers 271C and 271D formed by processing the insulating layer 271 can function as an etching stopper to protect the conductive layers 242C and 242D when the conductive layer 242, the oxide layer 230, and the insulating layer 224 are processed together.
  • the insulating layer 271, the conductive layer 242, the oxide layer 230, and the insulating layer 224 may be processed under different conditions.
  • a hard mask made of an insulating layer or a conductive layer may be used under a resist mask formed by lithography.
  • a hard mask an insulating layer or a conductive layer that will be the hard mask material is formed on the insulating layer 271, a resist mask is formed thereon, and the hard mask material is etched to form a hard mask of a desired shape.
  • Etching of the insulating layer 271 etc. may be performed after removing the resist mask, or may be performed while leaving the resist mask. In the latter case, the resist mask may disappear during etching.
  • the hard mask may be removed by etching after etching of the oxide layer 230 etc.
  • insulating layer 271 can be processed to form insulating layer 271C and insulating layer 271D, and insulating layer 271C and insulating layer 271D can be used as a hard mask in processing conductive layer 242, oxide layer 230, etc.
  • the hard mask can be processed so that the layer below the hard mask has roughly the same top surface shape as the hard mask itself.
  • the conductive layer 242C and the conductive layer 242D can function as a hard mask in processing the oxide layer 230. That is, the oxide layer 230B and the oxide layer 230A can be formed by processing the oxide layer 230 using the conductive layer 242C and the conductive layer 242D as a hard mask.
  • insulating layer 275 is formed on insulating layer 222 so as to cover the laminated structure of insulating layer 224A, oxide layer 230A, conductive layer 242D, and insulating layer 271D, and the laminated structure of insulating layer 224B, oxide layer 230B, conductive layer 242C, and insulating layer 271C, and further, insulating layer 280 is formed on insulating layer 275 ( Figure 7B).
  • the insulating layer 280 it is preferable to form an insulating layer that will become the insulating layer 280 and then perform a CMP process on the insulating layer to form an insulating film with a flat upper surface.
  • the insulating layer 275 and the insulating layer 280 can each be formed using, for example, a sputtering method, a CVD method, an MBE method, a PLD method, or an ALD method.
  • a silicon nitride film as the insulating layer 275 by using the PEALD method.
  • the laminated structure of oxide layer 230A and conductive layer 242D and the laminated structure of oxide layer 230B and conductive layer 242C can be covered with insulating layer 275, which has the function of suppressing the diffusion of oxygen.
  • the insulating layer 280 by forming silicon oxide using a sputtering method.
  • the insulating layer By forming the insulating layer to be the insulating layer 280 by a sputtering method in an atmosphere containing oxygen, the insulating layer 280 containing excess oxygen can be formed.
  • the hydrogen concentration in the insulating layer 280 can be reduced.
  • a heat treatment may be performed before the formation of the insulating film. The heat treatment may be performed under reduced pressure, and the insulating film may be continuously formed without exposure to the atmosphere.
  • moisture and hydrogen adsorbed on the surface of the insulating layer 275 and the like can be removed, and the moisture concentration and hydrogen concentration in the oxide layer 230A, the insulating layer 224A, the oxide layer 230B, and the insulating layer 224B can be further reduced.
  • the heat treatment conditions described above can be used for the heat treatment.
  • the conductive layer 242D, the insulating layer 271D, the conductive layer 242C, the insulating layer 271C, the insulating layer 275, and the insulating layer 280 are processed by lithography to form the conductive layer 242A, the conductive layer 242B, the insulating layer 271A, the insulating layer 271B, the conductive layer 242C having the opening 343, the insulating layer 271C having the opening 345, and the insulating layer 275 and the insulating layer 280 having the openings 345 and 346 (FIG. 8A).
  • the openings 343 and 345 are provided so as to overlap the area where the conductive layer 205B and the oxide layer 230B overlap.
  • the opening 346 is provided so as to overlap the area where the oxide layer 230A and the conductive layer 205A overlap.
  • a dry etching method or a wet etching method can be used for the above processing.
  • a dry etching method is preferable because it is suitable for fine processing.
  • a dry etching method is suitable for forming an opening with a high aspect ratio because it is possible to perform anisotropic etching. Note that the above description can be referred to for the conditions of the dry etching method and the dry etching apparatus.
  • the insulating layer 271C and the insulating layer 271D can be processed simultaneously.
  • the conductive layer 242C and the conductive layer 242D can be processed simultaneously.
  • the insulating layer 280, the insulating layer 275, the insulating layer 271D, and the conductive layer 242D can be processed under different conditions.
  • the conductive layer 242D is divided into island-shaped conductive layers 242A and 242B.
  • the insulating layer 271D is divided into island-shaped insulating layers 271A and 271B.
  • the width of the opening is preferably fine because it is reflected in the channel length of the transistor 200.
  • the width of the opening is preferably 60 nm or less, 50 nm or less, 40 nm or less, 30 nm or less, 20 nm or less, or 10 nm or less, and 1 nm or more, or 5 nm or more.
  • a lithography method can be performed by depositing an SOC film, an SOG film, and a resist mask in that order on the insulating layer 280.
  • a resist mask with an opening is formed using short-wavelength light such as EUV light or an electron beam, and the SOG film, the SOC film, the insulating layer 280, the insulating layer 275, the insulating layer 271C and the insulating layer 271D, the conductive layer 242C and the conductive layer 242D are processed using the resist mask.
  • the etching process may cause impurities to adhere to the top surface of the oxide layer 230A, the top surface of the oxide layer 230B, the side surfaces of the conductive layers 242A and 242B, the side surfaces of the conductive layer 242C, the side surfaces of the insulating layers 271A and 271B, the side surfaces of the insulating layer 271, the side surfaces of the insulating layer 275, and the side surfaces of the insulating layer 280, or the diffusion of the impurities into these.
  • a process for removing such impurities may be performed.
  • the dry etching may cause damaged areas to be formed on the surfaces of the oxide layer 230A and the oxide layer 230B. Such damaged areas may be removed.
  • Examples of the impurities include components contained in the insulating layer 280, the insulating layer 275, the insulating layer 271C, the insulating layer 271D, the conductive layer 242C, and the conductive layer 242D, components contained in the members of the device used to form the opening, and components contained in the gas or liquid used for etching.
  • Examples of the impurities include hafnium, aluminum, silicon, tantalum, fluorine, and chlorine.
  • impurities such as aluminum and silicon may reduce the crystallinity of the oxide layer 230A and the oxide layer 230B. Therefore, it is preferable that impurities such as aluminum and silicon are removed from the surface and its vicinity in the oxide layer 230A and the oxide layer 230B. It is also preferable that the concentration of the impurities is reduced.
  • the concentration of aluminum atoms in the surface and its vicinity is preferably 5.0 atomic % or less, more preferably 2.0 atomic % or less, more preferably 1.5 atomic % or less, even more preferably 1.0 atomic % or less, and even more preferably less than 0.3 atomic %.
  • impurities such as aluminum and silicon reduce the density of the crystal structure in low-crystallinity regions in the oxide layers 230A and 230B, which causes a large amount of VOH to be formed and makes the transistors more likely to be normally on. Therefore, it is preferable that the low-crystallinity regions in the oxide layers 230A and 230B be reduced or removed.
  • oxide layer 230A and oxide layer 230B have a layered CAAC structure.
  • the oxide layer 230A has a CAAC structure up to the bottom end of the drain.
  • the conductive layer 242A or the conductive layer 242B functions as the drain.
  • the oxide layer 230A near the bottom end of the conductive layer 242A or the conductive layer 242B has a CAAC structure. In this way, even at the drain end, which significantly affects the drain breakdown voltage, the low-crystalline region of the oxide layer 230A is removed, and by having the CAAC structure, the fluctuation in the electrical characteristics of the transistor 200 can be further suppressed. In addition, the reliability of the transistor 200 can be improved.
  • a cleaning process is performed to remove impurities that have adhered to the surface of the oxide layer during the etching process.
  • Cleaning methods include wet cleaning using a cleaning solution (also known as wet etching), plasma treatment using plasma, and cleaning by heat treatment, and the above cleaning methods may be combined as appropriate. Note that the cleaning process may deepen the grooves.
  • wet cleaning may be performed using an aqueous solution of one or more of ammonia water, oxalic acid, phosphoric acid, and hydrofluoric acid diluted with carbonated water or pure water, pure water, carbonated water, etc.
  • ultrasonic cleaning may be performed using these aqueous solutions, pure water, or carbonated water.
  • these cleaning methods may be combined as appropriate.
  • an aqueous solution in which hydrofluoric acid is diluted with pure water may be referred to as diluted hydrofluoric acid
  • an aqueous solution in which ammonia water is diluted with pure water may be referred to as diluted ammonia water.
  • the concentration and temperature of the aqueous solution are adjusted as appropriate depending on the impurities to be removed and the configuration of the semiconductor device to be cleaned.
  • the ammonia concentration of the diluted ammonia water is preferably 0.01% or more and 5% or less, and more preferably 0.1% or more and 0.5% or less.
  • the hydrogen fluoride concentration of the diluted hydrofluoric acid is preferably 0.01 ppm or more and 100 ppm or less, and more preferably 0.1 ppm or more and 10 ppm or less.
  • a frequency of 200 kHz or more it is preferable to use a frequency of 200 kHz or more, and more preferably a frequency of 900 kHz or more. By using such a frequency, damage to the oxide layer, etc. can be reduced.
  • the above cleaning process may be performed multiple times, and the cleaning solution may be changed for each cleaning process.
  • a first cleaning process may be performed using diluted hydrofluoric acid or diluted ammonia water
  • a second cleaning process may be performed using pure water or carbonated water.
  • wet cleaning is performed using diluted ammonia water.
  • impurities attached to the surface of the oxide layer or diffused inside the oxide layer can be removed.
  • crystallinity of the oxide layer can be improved.
  • Heat treatment may be performed after the etching or cleaning.
  • the temperature of the heat treatment is preferably 100° C. or more, 250° C. or more, or 350° C. or more, and 650° C. or less, 600° C. or less, 550° C. or less, or 400° C. or less.
  • the heat treatment is performed in an atmosphere of nitrogen gas or inert gas, or an atmosphere containing 10 ppm or more, 1% or more, or 10% or more of an oxidizing gas.
  • the crystallinity of the oxide layer 230A can be improved.
  • the supplied oxygen reacts with hydrogen remaining in the oxide layer, and the hydrogen can be removed as H 2 O (dehydrated). This prevents hydrogen remaining in the oxide layer from recombining with oxygen vacancies to form VOH .
  • the heat treatment may be performed under reduced pressure. Alternatively, after heat treatment in an oxygen atmosphere, heat treatment may be successively performed in a nitrogen atmosphere without exposure to the air.
  • the sheet resistance may decrease in the region of the oxide layer 230A that overlaps with the conductive layer 242A and the region that overlaps with the conductive layer 242B.
  • the carrier concentration may also increase.
  • the sheet resistance may decrease and the carrier concentration may increase in the region of the oxide layer 230B that overlaps with the conductive layer 242C. Therefore, the resistance of the region of the oxide layer that overlaps with the conductive layer can be reduced in a self-aligned manner.
  • an insulating layer 250f is formed so as to fill the opening, and a conductive layer 260f is formed on the insulating layer 250f (FIG. 8B).
  • the insulating layer 250f and the conductive layer 260f are polished by CMP until the insulating layer 280 is exposed.
  • the portions of the insulating layer 250f and the conductive layer 260f exposed from the opening are removed.
  • the insulating layer 255 and the conductive layer 265 are formed in the openings 343 and 345, and the insulating layer 250 and the conductive layer 260 are formed in the openings 346.
  • the insulating layer 255 is provided in the opening 341 so as to cover the oxide layer 230.
  • the insulating layer 255 is preferably provided in contact with the inner walls of the opening 343 and the inner walls of the opening 345.
  • the conductive layer 265 is arranged so as to fill the opening 341 via the oxide layer 230 and the insulating layer 255, and is arranged so as to fill the openings 343 and 345 via the insulating layer 255. In this manner, the transistor 100 is formed.
  • the insulating layer 250 is preferably provided in contact with the upper surface of the oxide layer 230A, the side of the conductive layer 242A, the side of the conductive layer 242B, the side of the insulating layer 271A, the side of the insulating layer 271B, and the inner wall of the opening 346.
  • the conductive layer 260 is arranged to cover the side of the conductive layer 242A, the side of the conductive layer 242B, the side of the insulating layer 271A, and the side of the insulating layer 271B through the insulating layer 250, and is arranged to fill the opening 346 through the insulating layer 250. In this manner, the transistor 200 is formed.
  • the insulating layer 250f can be formed, for example, by a sputtering method, a CVD method, an MBE method, a PLD method, or an ALD method. It is preferable to form the insulating layer by the ALD method. It is preferable to form the insulating layer 250 and the insulating layer 255 with a thin film thickness, and it is necessary to reduce the variation in the film thickness.
  • the ALD method is a film formation method in which a precursor and a reactant (e.g., an oxidizing agent, etc.) are alternately introduced, and the film thickness can be adjusted by the number of times this cycle is repeated, so that precise film thickness adjustment is possible.
  • the insulating layer 250 and the insulating layer 255 need to be formed with good coverage on the bottom and side surfaces of the opening.
  • layers of atoms can be deposited one by one on the bottom and side surfaces of the opening, so that the insulating layer 250 and the insulating layer 255 can be formed with good coverage on the opening.
  • ozone ( O3 ), oxygen ( O2 ), water ( H2O ), etc. can be used as an oxidizing agent.
  • Ozone ( O3 ), oxygen ( O2 ), etc. that do not contain hydrogen it is possible to reduce hydrogen that diffuses into the oxide layer 230A and hydrogen that diffuses into the oxide layer 230B.
  • the insulating layer 250f can be formed, for example, by depositing aluminum oxide by thermal ALD, silicon oxide by PEALD, and silicon nitride by PEALD to form a three-layer insulating film.
  • a four-layer insulating film can be formed by depositing hafnium oxide between silicon oxide and silicon nitride by thermal ALD.
  • the microwave treatment refers to a treatment using a device having a power source that generates high-density plasma using microwaves, for example.
  • microwave refers to electromagnetic waves having a frequency of 300 MHz or more and 300 GHz or less.
  • the microwave treatment is not necessarily performed after all layers are formed.
  • a microwave treatment may be performed after forming aluminum oxide and silicon oxide, and then a silicon nitride film may be formed.
  • a microwave treatment may be performed after forming aluminum oxide and silicon oxide, and then a hafnium oxide film may be formed, and then a microwave treatment may be performed, and then a silicon nitride film may be formed.
  • the microwave treatment in an atmosphere containing oxygen may be performed multiple times (at least two times or more).
  • the microwave treatment it is preferable to use a microwave treatment device having a power source that generates high-density plasma using microwaves.
  • the frequency of the microwave treatment device is preferably 300 MHz or more and 300 GHz or less, more preferably 2.4 GHz or more and 2.5 GHz or less, and can be, for example, 2.45 GHz.
  • the power of the power source that applies microwaves of the microwave treatment device is preferably 1000 W or more and 10000 W or less, and preferably 2000 W or more and 5000 W or less.
  • the microwave treatment device may have a power source that applies RF to the substrate side.
  • oxygen ions generated by high-density plasma can be efficiently guided into the oxide layer 230A and the oxide layer 230B.
  • the microwave treatment is preferably carried out under reduced pressure, with the pressure being preferably 10 Pa to 1000 Pa, and more preferably 300 Pa to 700 Pa.
  • the treatment temperature is preferably 750° C. or less, and more preferably 500° C. or less, and can be, for example, about 250° C.
  • a heat treatment may be carried out continuously without exposure to the outside air.
  • the temperature of the heat treatment is, for example, preferably 100° C. to 750° C., and more preferably 300° C. to 500° C.
  • the microwave treatment can be performed using oxygen gas and argon gas.
  • the oxygen flow ratio (O 2 /(O 2 +Ar)) is greater than 0% and less than 100%.
  • the oxygen flow ratio (O 2 /(O 2 +Ar)) is greater than 0% and less than 50%. More preferably, the oxygen flow ratio (O 2 /(O 2 +Ar)) is greater than 10% and less than 40%. More preferably, the oxygen flow ratio (O 2 /(O 2 +Ar)) is greater than 10% and less than 30%.
  • oxygen gas By performing microwave treatment in an atmosphere containing oxygen, oxygen gas can be turned into plasma using microwaves or high frequency such as RF, and the oxygen plasma can be applied to the channel formation region of the oxide layer 230A, the channel formation region of the oxide layer 230B, and the like.
  • VOH in the region By the action of plasma, microwaves, or the like, VOH in the region can be divided into oxygen vacancies and hydrogen, and hydrogen can be removed from the region.
  • an insulating film e.g., aluminum oxide having a function of capturing and fixing hydrogen as a layer on the side in contact with the oxide layer 230A and the oxide layer 230B.
  • the oxygen injected into the channel formation region can take various forms, such as oxygen atoms, oxygen molecules, oxygen ions, and oxygen radicals (also called O radicals, which are atoms, molecules, or ions with an unpaired electron).
  • the oxygen injected into the channel formation region may take one or more of the above forms, and is particularly preferably an oxygen radical.
  • the film quality of the insulating layer 250 and the insulating layer 255 can be improved, thereby improving the reliability of the transistor.
  • the conductive layer 242A and the conductive layer 242B can function as a shielding film against the action of microwaves, high frequency waves such as RF, oxygen plasma, and the like.
  • the conductive layer 242A and the conductive layer 242B can be configured to have a function of shielding electromagnetic waves of 300 MHz or more and 300 GHz or less, for example, 2.4 GHz or more and 2.5 GHz or less.
  • the conductive layers 242A and 242B are configured to block the action of microwaves, high frequency waves such as RF, oxygen plasma, and the like, a reduction in VOH and an excessive supply of oxygen can be suppressed in the source and drain regions of the transistor 200, and a decrease in the carrier concentration can be prevented.
  • an insulating layer 250 having a barrier property against oxygen in contact with the side surfaces of the conductive layers 242A, 242B, and 242C and an insulating layer 255 having a barrier property against oxygen in contact with the side surface of the conductive layer 242C, it is possible to prevent an oxide film from being formed on the side surfaces of the conductive layers 242A, 242B, and 242C by microwave processing.
  • the film quality of insulating layer 250 and insulating layer 255 can be improved, thereby improving the reliability of the transistor.
  • thermal energy may be transferred and heating may occur due to electromagnetic interaction between the microwaves and the molecules in the oxide layer 230A or the oxide layer 230B.
  • This type of heating process may be called microwave annealing.
  • microwave annealing By performing microwave processing in an atmosphere containing oxygen, an effect equivalent to that of oxygen annealing may be obtained. It is also considered that the thermal energy is transferred to hydrogen in the oxide layer 230A or the oxide layer 230B, which activates the hydrogen and causes it to be released from the oxide layer 230A.
  • microwave processing may be performed before forming the insulating film, rather than after forming the insulating layer 250f.
  • a heat treatment may be performed while maintaining the reduced pressure state.
  • hydrogen in the insulating film, the oxide layer 230A, and the oxide layer 230B can be efficiently removed.
  • some of the hydrogen may be gettered to the conductive layer 242A, the conductive layer 242B, or the conductive layer 242C.
  • the step of performing the heat treatment may be repeated multiple times while maintaining the reduced pressure state.
  • the heat treatment temperature is preferably 300°C or higher and 500°C or lower.
  • the microwave treatment i.e., microwave annealing, may also serve as the heat treatment. If the oxide layer 230A, etc., is sufficiently heated by the microwave annealing, the heat treatment may not be performed.
  • the diffusion of hydrogen, water, impurities, etc. can be suppressed. Therefore, by performing post-processing such as film formation of the insulating layer 250f or post-treatment such as heat treatment, it is possible to suppress the diffusion of hydrogen, water, impurities, etc. through the insulating layer 250f into the oxide layer 230A.
  • the conductive layer 260f can be formed, for example, by sputtering, CVD, MBE, PLD, plating, or ALD.
  • a titanium nitride film is formed as the conductive layer 260f by ALD, and then a tungsten film is formed by CVD, forming a two-layer conductive film.
  • insulating layer 282 is formed on insulating layer 255, conductive layer 265, insulating layer 250, conductive layer 260, and insulating layer 280, insulating layer 283 is formed on insulating layer 282, and insulating layer 284 is formed on insulating layer 283 ( Figure 9A).
  • the insulating layer 282, the insulating layer 283, and the insulating layer 284 can each be formed by, for example, a sputtering method, a CVD method, an MBE method, a PLD method, or an ALD method.
  • the insulating layer 282, the insulating layer 283, and the insulating layer 284 are each preferably formed by a sputtering method.
  • a sputtering method that does not require the use of molecules containing hydrogen in the film formation gas, the hydrogen concentration in the insulating layer 282, the insulating layer 283, and the insulating layer 284 can be reduced.
  • insulating layer 282 is formed by forming aluminum oxide by pulse DC sputtering using an aluminum target in an atmosphere containing oxygen gas
  • insulating layer 283 is formed by forming silicon nitride by sputtering
  • insulating layer 284 is formed by forming silicon oxide by sputtering.
  • oxygen can be added to the insulating layer 280 while the layer is being deposited. This allows the insulating layer 280 to contain excess oxygen. At this time, it is preferable to deposit the insulating layer 282 while heating the substrate.
  • heat treatment may be performed before the formation of the insulating layer 282.
  • the heat treatment may be performed under reduced pressure, and the insulating layer 282 may be formed continuously without exposure to the air. By performing such treatment, moisture and hydrogen adsorbed on the surface of the insulating layer 280 can be removed, and the moisture concentration and hydrogen concentration in the insulating layer 280 can be further reduced.
  • the temperature of the heat treatment is preferably 100° C. or higher and 400° C. or lower. In this embodiment, the temperature of the heat treatment is set to 250° C.
  • the insulating layer 282 and the insulating layer 283 in succession without exposing them to the air environment.
  • openings are formed in insulating layers 220, 275, 280, 282, 283, and 284 (FIG. 9B). After that, an insulating layer 241 is formed inside the openings, and conductive layers 240A to 240G are formed inside the insulating layer 241.
  • the openings in which conductive layers 240A to 240G are provided may be formed in one step or in multiple steps. In this manner, a semiconductor device of one embodiment of the present invention can be manufactured.
  • the display device of this embodiment can be a high-resolution display device or a large display device. Therefore, the display device of this embodiment can be used in electronic devices with relatively large screens, such as television devices, desktop or notebook personal computers, computer monitors, digital signage, and large game machines such as pachinko machines, as well as in the display units of digital cameras, digital video cameras, digital photo frames, mobile phones, portable game machines, personal digital assistants, and sound reproduction devices.
  • electronic devices with relatively large screens such as television devices, desktop or notebook personal computers, computer monitors, digital signage, and large game machines such as pachinko machines, as well as in the display units of digital cameras, digital video cameras, digital photo frames, mobile phones, portable game machines, personal digital assistants, and sound reproduction devices.
  • the display device of this embodiment can also be a high-definition display device. Therefore, the display device of this embodiment can be used, for example, in the display section of a wristwatch-type or bracelet-type information terminal (wearable device), as well as in the display section of a wearable device that can be worn on the head, such as a head-mounted display (HMD) or other VR device, and a glasses-type AR device.
  • a wearable device such as a head-mounted display (HMD) or other VR device, and a glasses-type AR device.
  • HMD head-mounted display
  • AR device glasses-type AR device
  • the semiconductor device of one embodiment of the present invention can be used for a display device or a module having the display device.
  • the module having the display device include a module in which a connector such as a flexible printed circuit (hereinafter, referred to as FPC) or a TCP (Tape Carrier Package) is attached to the display device, and a module in which an integrated circuit (IC) is mounted by a COG (Chip On Glass) method, a COF (Chip On Film) method, or the like.
  • the display device of this embodiment may also have a function as a touch panel.
  • various detection elements also called sensor elements
  • various detection elements that can detect the proximity or contact of a detectable object such as a finger can be applied to the display device.
  • Sensor types include, for example, capacitance type, resistive film type, surface acoustic wave type, infrared type, optical type, and pressure sensitive type.
  • Examples of the capacitance type include a surface capacitance type and a projected capacitance type.
  • Examples of the projected capacitance type include a self-capacitance type and a mutual capacitance type.
  • the mutual capacitance type is preferable because it allows simultaneous multi-point detection.
  • touch panels include out-cell, on-cell, and in-cell types.
  • an in-cell touch panel is one in which electrodes constituting a detection element are provided on one or both of the substrate supporting the display element and the opposing substrate.
  • Display module 11A shows a perspective view of the display module 150.
  • the display module 150 includes a display device 100A and an FPC 290. Note that the display device included in the display module 150 is not limited to the display device 100A and may be any of display devices 100B to 100E described later.
  • the display module 150 has a substrate 291 and a substrate 299.
  • the display module 150 has a display section 297.
  • the display section 297 is an area that displays an image in the display module 150, and is an area in which light from each pixel provided in a pixel section 294 described later can be viewed.
  • Figure 11B shows a perspective view that shows a schematic configuration on the substrate 291 side.
  • a circuit portion 292 On the substrate 291, a circuit portion 292, a pixel circuit portion 293 on the circuit portion 292, and a pixel portion 294 on the pixel circuit portion 293 are stacked.
  • a terminal portion 295 for connecting to the FPC 290 is provided in a portion of the substrate 291 that does not overlap with the pixel portion 294.
  • the terminal portion 295 and the circuit portion 292 are electrically connected by a wiring portion 296 that is composed of multiple wirings.
  • the pixel section 294 has a number of pixels 294a arranged periodically. An enlarged view of one pixel 294a is shown on the right side of FIG. 11B.
  • the various configurations described in embodiment 3 can be applied to the pixel 294a.
  • FIG. 11B shows an example in which a stripe arrangement is applied to the arrangement of sub-pixels.
  • the pixel circuit section 293 has a number of pixel circuits 293a arranged periodically.
  • One pixel circuit 293a is a circuit that controls the driving of multiple elements in one pixel 294a.
  • One pixel circuit 293a can be configured to have three circuits that control the light emission of one light-emitting element.
  • the pixel circuit 293a can be configured to have at least one selection transistor, one current control transistor (drive transistor), and a capacitance for each light-emitting element. At this time, a gate signal is input to the gate of the selection transistor, and a source signal is input to the source. This realizes an active matrix display device.
  • the circuit portion 292 has a circuit that drives each pixel circuit 293a of the pixel circuit portion 293.
  • a gate line driver circuit sometimes called a gate driver or a scanning line driver circuit
  • a source line driver circuit sometimes called a source driver or a signal line driver circuit
  • it may have at least one of an arithmetic circuit, a memory circuit, a power supply circuit, etc.
  • the FPC 290 functions as wiring for supplying a video signal, a power supply potential, etc. from the outside to the circuit section 292.
  • an IC may be mounted on the FPC 290.
  • the display module 150 can be configured such that one or both of the pixel circuit section 293 and the circuit section 292 are provided overlappingly under the pixel section 294, so that the aperture ratio (effective display area ratio) of the display section 297 can be extremely high.
  • the aperture ratio of the display section 297 can be 40% or more and less than 100%, preferably 50% or more and 95% or less, and more preferably 60% or more and 95% or less.
  • the pixels 294a can be arranged at an extremely high density, so that the resolution of the display section 297 can be extremely high.
  • the pixels 294a are arranged in the display section 297 at a resolution of 2000 ppi or more, preferably 3000 ppi or more, more preferably 5000 ppi or more, and even more preferably 6000 ppi or more, and 20000 ppi or less, or 30000 ppi or less.
  • Such a display module 150 has extremely high resolution and can therefore be suitably used in VR devices such as HMDs or glasses-type AR devices. For example, even in a configuration in which the display section of the display module 150 is viewed through a lens, the display module 150 has an extremely high resolution display section 297, so that even if the display section is enlarged with a lens, the pixels are not visible, allowing for a highly immersive display.
  • the display module 150 is not limited to this and can be suitably used in electronic devices with relatively small display sections. For example, it can be suitably used in the display section of a wearable electronic device such as a wristwatch.
  • Fig. 12A is a block diagram showing a configuration example of the display module 150.
  • Fig. 12A is a diagram explaining a pixel circuit portion 293, a circuit portion 292, a power supply circuit 415, and the like included in the display module 150.
  • the circuit portion 292 includes a gate line driver circuit 411 and a source line driver circuit 413.
  • a plurality of pixel circuits 293a included in the pixel circuit portion 293 are arranged in a matrix.
  • pixel circuit 293a has sub-pixel circuit 430R, sub-pixel circuit 430G, and sub-pixel circuit 430B.
  • Sub-pixel circuit 430R, sub-pixel circuit 430G, and sub-pixel circuit 430B are electrically connected to sub-pixel having light-emitting element 130R, sub-pixel having light-emitting element 130G, and sub-pixel having light-emitting element 130B, respectively.
  • the alphabets that distinguish them may be omitted and they may be referred to as sub-pixel circuit 430.
  • the alphabets that distinguish them may be omitted and they may be referred to as light-emitting element 130.
  • the gate line driving circuit 411 is electrically connected to the pixel circuits 293a via wiring 441. Specifically, the pixel circuits 293a in the same row are electrically connected to the gate line driving circuit 411 by the same wiring 441.
  • the source line driver circuit 413 is electrically connected to the pixel circuits 293a via wiring 443. Specifically, the pixel circuits 293a in the same column are electrically connected to the source line driver circuit 413 by the same wiring 443.
  • the power supply circuit 415 is electrically connected to the pixel circuits 293a via wiring 445.
  • the pixel circuits 293a in the same row can be electrically connected to the power supply circuit 415 via the same wiring 445.
  • the gate line driving circuit 411 has a function of selecting a pixel circuit 293a to which image data is written. Specifically, the gate line driving circuit 411 can select a pixel circuit 293a to which image data is written by outputting a signal to the wiring 441.
  • the gate line driving circuit 411 outputs the signal to the wiring 441 in the first row, then outputs the signal to the wiring 441 in the second row, and outputs the signal in order up to the wiring 441 in the last row, thereby writing image data to the pixel circuit 293a. Therefore, the signal that the gate line driving circuit 411 outputs from the wiring 441 is a gate signal (sometimes called a scanning signal), and the wiring 441 can be called a gate line. Note that the wiring 441 can be called a scanning line.
  • the source line driver circuit 413 has a function of generating image data.
  • the image data is supplied to the pixel circuits 293a via the wiring 443.
  • the image data can be written to all the pixel circuits 293a included in the row selected by the gate line driver circuit 411.
  • the image data can be expressed as a signal. Therefore, the wiring 443 can be called a source line. Note that the wiring 443 may be called a signal line.
  • the power supply circuit 415 has a function of generating a power supply potential and supplying it to the wiring 445.
  • the power supply circuit 415 has a function of generating, for example, a high power supply potential (hereinafter also simply referred to as "high potential” or “VDD”) and supplying it to the wiring 445.
  • the power supply circuit 415 may also have a function of generating a low power supply potential (hereinafter also simply referred to as "low potential” or "VSS").
  • the power supply circuit 415 can output a pulsed signal by sequentially switching between a high power supply potential and a low power supply potential. Alternatively, the pulsed signal can be output by scanning one row at a time.
  • the wiring 445 can be called a power supply line. Furthermore, a current flows from the wiring 445 to a light-emitting element (for example, a light-emitting element 130 described later) through the transistor 452. Therefore, the wiring 445 may be called a current supply line. Furthermore, since a pulsed signal may be supplied to the wiring 445, it may be called a pulse line. By supplying a pulsed potential to wiring 445, it is possible to correct variations in the threshold voltage and mobility of transistor 452.
  • a constant potential signal, a pulse signal, etc. are applied to wiring 441, wiring 443, and wiring 445.
  • Figure 12C is an example of a circuit diagram including a sub-pixel circuit 430 and a light-emitting element 130.
  • the sub-pixel circuit 430 has a transistor 451, a transistor 452, and a capacitance 457.
  • the sub-pixel circuit 430 is a 2Tr1C type pixel circuit.
  • one of the source and drain of the transistor 451 is electrically connected to the wiring 443.
  • the other of the source and drain of the transistor 451 is electrically connected to the gate of the transistor 452.
  • the gate of the transistor 452 is electrically connected to one electrode of the capacitor 457.
  • the gate of the transistor 451 is electrically connected to the wiring 441.
  • One of the source or drain of the transistor 452 is electrically connected to the wiring 445.
  • the other of the source or drain of the transistor 452 is electrically connected to the other electrode of the capacitor 457.
  • the other electrode of the capacitor 457 is electrically connected to one electrode of the light-emitting element 130.
  • the other electrode of the light-emitting element 130 is electrically connected to the wiring 447.
  • the one electrode of the light-emitting element 130 is also called a pixel electrode.
  • the wiring 447 can be shared between all pixel circuits 293a, for example, the other electrode of the light-emitting element 130 can also be called a common electrode.
  • the wiring 441 functions as a scan line
  • the wiring 443 functions as a signal line
  • the wiring 445 functions as a power supply line.
  • the wiring 447 functions as a power supply line, and when a high power supply potential is supplied to the wiring 445, for example, a low power supply potential is supplied to the wiring 447.
  • the wiring 447 can be electrically connected to the power supply circuit 415, for example.
  • the transistor 451 functions as a switch and controls the conductive state or non-conductive state between the wiring 443 and the gate of the transistor 452 based on the potential of the wiring 441. By turning on the transistor 451, image data is written to the sub-pixel circuit 430, and by turning off the transistor 451, the written image data is held.
  • the transistor 452 has a function of controlling the amount of current flowing to the light-emitting element 130 and is also called a driving transistor.
  • the capacitor 457 has a function of holding the gate potential of the transistor 452.
  • the light emission luminance of the light-emitting element 130 is controlled according to the potential corresponding to image data supplied to the gate of the transistor 452. Specifically, when a high power supply potential is supplied to the wiring 445 and a low power supply potential is supplied to the wiring 447, the amount of current flowing from the wiring 445 to the wiring 447 is controlled according to the gate potential of the transistor 452, thereby controlling the light emission luminance of the light-emitting element 130.
  • OS transistors have higher field-effect mobility than, for example, transistors using amorphous silicon. Therefore, by using OS transistors as transistors 451 and transistor 452, the display device 100A can be driven at high speed.
  • the leakage current between the source and drain in an off state (hereinafter also referred to as off-state current) of an OS transistor is extremely small. Therefore, by using an OS transistor as the transistor 451, the charge stored in the capacitor 457 can be held for a long period of time. As a result, the image data written to the sub-pixel circuit 430 can be held for a long period of time, and therefore the frequency of refresh operations (rewriting image data to the sub-pixel circuit 430) can be reduced. Therefore, the power consumption of the display device 100A can be reduced.
  • the source-drain voltage of the transistor 452 which is a driving transistor. Since an OS transistor has a higher withstand voltage between the source and drain than a transistor using silicon (also called a Si transistor), a high voltage can be applied between the source and drain of the OS transistor. Therefore, by using an OS transistor for the transistor 452, it is possible to increase the amount of current flowing through the light-emitting element 130 and increase the emission luminance of the light-emitting element 130.
  • the OS transistor When the transistor is operated in the saturation region, the OS transistor can reduce the change in source-drain current in response to a change in gate-source voltage compared to a Si transistor. Therefore, by using an OS transistor as transistor 452, the current flowing between the source and drain can be precisely determined by changing the gate-source voltage, and the amount of current flowing to the light-emitting element 130 can be controlled. Therefore, the luminance of the light emitted by the light-emitting element 130 can be precisely controlled. This increases the number of gradations that can be expressed by the light-emitting element 130.
  • an OS transistor can flow a more stable current (saturation current) than a Si transistor, even when the source-drain voltage gradually increases. Therefore, by using an OS transistor as transistor 452, a stable current can be flowed to the light-emitting element 130, for example, even when the current-voltage characteristics of the light-emitting element 130 vary. In other words, when an OS transistor is operated in the saturation region, the source-drain current hardly changes even when the source-drain voltage is increased, so that the light emission luminance of the light-emitting element 130 can be stabilized.
  • FIG. 12D shows an example in which the subpixel circuit 430 has a capacitor 457b in addition to the configuration shown in FIG. 12C.
  • One electrode of the capacitor 457b is electrically connected to the other of the source and drain of the transistor 452.
  • the other electrode of the capacitor 457b is electrically connected to the wiring 447.
  • the transistor 100 shown in embodiment 1 is suitable as a switching transistor that is required to hold charge.
  • the transistor 200 has a long channel length and a back gate, and is therefore suitable as a driving transistor that is required to have saturation characteristics.
  • the transistor 100 can be miniaturized more easily than the transistor 200, the number of transistors used in one pixel can be increased by using the transistor 100 for all transistors in a pixel circuit other than the driving transistor. Alternatively, the area occupied by one pixel circuit can be reduced.
  • the transistor 100 may be used as the transistor 451 shown in FIG. 12C and FIG. 12D, and the transistor 200 may be used as the transistor 452.
  • the application of the transistors 100 and 200 is not limited to this.
  • the transistor 100 may be used as the transistors 451 and 452.
  • the transistor 200 may be used as the transistor 451 and the transistor 452.
  • the transistor 200 may be used as the transistor 451, and the transistor 100 may be used as the transistor 452.
  • Display device 100A shows an example of the configuration of a display device 100A.
  • the configuration shown in FIG. 13 includes a transistor 100, a transistor 200, a light-emitting element 130R, a protective layer 131, a colored layer 132R, a colored layer 132G, and an adhesive layer 131 on a substrate 151. 13, a terminal portion for connecting to an FPC and the like are provided on the substrate 151 of the display device 100A.
  • Light-emitting element 130R shown in Figures 11B and 13 is a light-emitting element included in a subpixel that emits red light.
  • Light-emitting element 130G shown in Figure 11B is a light-emitting element included in a subpixel that emits green light
  • light-emitting element 130B is a light-emitting element included in a subpixel that emits blue light.
  • the light emitted by the light-emitting element is extracted to the outside of display device 100A through the colored layer.
  • the light emitted by light-emitting element 130R is extracted as red light to the outside of display device 100A through colored layer 132R.
  • Substrate 151 corresponds to substrate 291 in Figures 11A and 11B.
  • Transistor 100 and transistor 200 have the same structure as that described as configuration example 1 in embodiment 1, and therefore the description is omitted.
  • embodiment 1 can be referred to for details of the stacked structure from insulating layer 215 to insulating layer 284.
  • Transistor 100 is suitable as a switching transistor that is required to hold charge.
  • Transistor 200 has a long channel length and a back gate, and is therefore suitable as a driving transistor that is required to have saturation characteristics.
  • transistor 100 is easier to miniaturize than transistor 200, by using transistor 100 for all transistors in a pixel circuit other than the driving transistor, the number of transistors used in one pixel can be increased. Alternatively, the area occupied by one pixel circuit can be reduced.
  • the conductive layer 242A which functions as the source or drain of the transistor 200, is electrically connected to the pixel electrode 111 of the light-emitting element 130R via the conductive layer 240B, the conductive layer 245, and the conductive layer 246.
  • the source or drain of the transistor 100 may be electrically connected to the pixel electrode 111 of the light-emitting element 130R.
  • the conductive layer 245 is formed inside an opening provided in the insulating layer 285 and the insulating layer 286, and the conductive layer 246 is formed inside an opening provided in the insulating layer 287 and the insulating layer 288.
  • the pixel electrode 111 is provided on the insulating layer 288.
  • the light-emitting element 130R of the display device 100A has a pixel electrode 111, an EL layer 113, and a common electrode 115 stacked in this order.
  • the light emitted by the light-emitting element 130R is extracted as red light to the outside of the display device 100A via the colored layer 132R.
  • a light-emitting element having a common EL layer 113 and a colored layer (such as a color filter) are used for each color subpixel.
  • the light-emitting elements of the subpixels that emit light of each color share an EL layer 113 and a common electrode 115.
  • a configuration in which a common EL layer 113 is provided for the subpixels of each color can reduce the number of manufacturing steps compared to a configuration in which a different EL layer is provided for each subpixel of each color.
  • the light-emitting element of each sub-pixel that exhibits light of each color emits white light.
  • the white light emitted by the light-emitting element passes through the colored layer to obtain light of the desired color. It is preferable to use a tandem structure for the light-emitting element that emits white light.
  • a light-emitting element configured to emit white light may emit light of a specific wavelength, such as red, green, or blue, with the light being enhanced.
  • the light-emitting element of the sub-pixel that emits light of each color may be configured to emit blue light.
  • the blue light emitted by the light-emitting element passes through the color conversion layer and the coloring layer to obtain light of the desired color.
  • a pixel electrode 111 is formed for each light-emitting element.
  • the ends of the pixel electrode 111 are covered with an insulating layer 137.
  • the insulating layer 137 functions as a partition wall.
  • the insulating layer 137 can electrically insulate the pixel electrode from the common electrode.
  • the insulating layer 137 can also electrically insulate adjacent light-emitting elements from each other.
  • the insulating layer 137 can be formed in a single layer structure or a laminated structure using one or both of an inorganic insulating material and an organic insulating material.
  • an inorganic insulating film is preferably used as the insulating layer 137.
  • the inorganic insulating film include an oxide insulating film, a nitride insulating film, an oxynitride insulating film, and a nitride oxide insulating film.
  • oxide insulating film examples include a silicon oxide film, an aluminum oxide film, a magnesium oxide film, a gallium oxide film, a germanium oxide film, an yttrium oxide film, a zirconium oxide film, a lanthanum oxide film, a neodymium oxide film, a hafnium oxide film, a tantalum oxide film, a cerium oxide film, a gallium zinc oxide film, and a hafnium aluminate film.
  • nitride insulating film examples include a silicon nitride film and an aluminum nitride film.
  • Examples of the oxynitride insulating film include a silicon oxynitride film, an aluminum oxynitride film, a gallium oxynitride film, an yttrium oxynitride film, and a hafnium oxynitride film.
  • Examples of the nitride oxide insulating film include a silicon nitride oxide film and an aluminum nitride oxide film.
  • An organic insulating film may be used for the insulating layer 137.
  • Materials that can be used for the organic insulating film include acrylic resin, polyimide resin, epoxy resin, polyamide resin, polyimideamide resin, siloxane resin, benzocyclobutene resin, phenolic resin, and precursors of these resins.
  • the insulating layer 137 may have a laminated structure of an organic insulating film and an inorganic insulating film.
  • the protective layer 131 may have a single-layer structure or a laminated structure of two or more layers.
  • the conductivity of the protective layer 131 does not matter. At least one of an insulating film, a semiconductor film, and a conductive film can be used as the protective layer 131.
  • the protective layer 131 has an inorganic film, which prevents oxidation of the common electrode 115 and prevents impurities (such as moisture and oxygen) from entering the light-emitting element, thereby suppressing deterioration of the light-emitting element and improving the reliability of the display device.
  • inorganic insulating films such as an oxide insulating film, a nitride insulating film, an oxynitride insulating film, and a nitride oxide insulating film can be used for the protective layer 131.
  • specific examples of these inorganic insulating films are as given in the description of the insulating layer 137.
  • the protective layer 131 preferably has a nitride insulating film or a nitride oxide insulating film, and more preferably has a nitride insulating film.
  • the protective layer 131 may also be an inorganic film containing In-Sn oxide (also called ITO), In-Zn oxide, Ga-Zn oxide, Al-Zn oxide, or indium gallium zinc oxide (In-Ga-Zn oxide, also called IGZO).
  • ITO In-Sn oxide
  • In-Zn oxide Ga-Zn oxide
  • Al-Zn oxide Al-Zn oxide
  • Indium gallium zinc oxide In-Ga-Zn oxide, also called IGZO
  • the inorganic film preferably has high resistance, specifically, it is preferable that the inorganic film has higher resistance than the common electrode 115.
  • the inorganic film may further contain nitrogen.
  • the protective layer 131 has high transparency to visible light.
  • ITO, IGZO, and aluminum oxide are preferable because they are inorganic materials that have high transparency to visible light.
  • the protective layer 131 may be, for example, a laminated structure of an aluminum oxide film and a silicon nitride film on the aluminum oxide film, or a laminated structure of an aluminum oxide film and an IGZO film on the aluminum oxide film. By using such a laminated structure, it is possible to prevent impurities (such as water and oxygen) from entering the EL layer side.
  • the protective layer 131 may have an organic film.
  • the protective layer 131 may have both an organic film and an inorganic film.
  • organic materials that can be used for the protective layer 131 include the organic insulating materials that can be used for the insulating layer 137.
  • the protective layer 131 may have a two-layer structure formed using different film formation methods. Specifically, the first layer of the protective layer 131 may be formed using the ALD method, and the second layer of the protective layer 131 may be formed using the sputtering method.
  • the protective layer 131 and the substrate 152 are bonded via an adhesive layer 142.
  • the substrate 152 is provided with a colored layer 132R and a colored layer 132G.
  • a solid sealing structure or a hollow sealing structure can be applied to seal the light-emitting element.
  • the space between the substrate 152 and the substrate 151 is filled with the adhesive layer 142, and a solid sealing structure is applied.
  • the space may be filled with an inert gas (such as nitrogen or argon), and a hollow sealing structure may be applied.
  • the adhesive layer 142 may be provided so as not to overlap with the light-emitting element.
  • the space may also be filled with a resin different from the adhesive layer 142 provided in a frame shape.
  • the colored layer is a colored layer that selectively transmits light in a specific wavelength range and absorbs light in other wavelength ranges.
  • a red (R) color filter that transmits light in the red wavelength range
  • a green (G) color filter that transmits light in the green wavelength range
  • a blue (B) color filter that transmits light in the blue wavelength range
  • R red
  • G green
  • B blue
  • a light-shielding layer such as a black matrix may be provided on the surface of the substrate 152 facing the adhesive layer 142.
  • Various optical members may be provided on the outer side of the substrate 152 (the surface opposite to the adhesive layer 142). Examples of the optical members include a polarizing plate, a retardation plate, a light diffusion layer (such as a diffusion film), an anti-reflection layer, and a light-collecting film.
  • Surface protection layers such as an antistatic film that suppresses adhesion of dust, a water-repellent film that makes it difficult for dirt to adhere, a hard coat film that suppresses the occurrence of scratches due to use, and an impact absorbing layer may be provided on the outer side of the substrate 152.
  • a glass layer or a silica layer may be provided as the surface protection layer, which can suppress the occurrence of surface contamination and scratches, and is therefore preferable.
  • Diamond-like carbon (DLC), aluminum oxide (AlO x ), polyester-based materials, polycarbonate-based materials, and the like may be used as the surface protection layer. It is preferable to use a material with high transmittance for visible light for the surface protection layer. It is also preferable to use a material with high hardness for the surface protection layer.
  • the substrate 151 and the substrate 152 can each be made of glass, quartz, ceramics, sapphire, resin, metal, alloy, semiconductor, or the like.
  • a material that transmits light is used for the substrate on the side from which light from the light-emitting element is extracted. If a flexible material is used for the substrate 151 and the substrate 152, the flexibility of the display device can be increased.
  • a polarizing plate may also be used as the substrate 152.
  • the display device 100A is a top emission type. Light emitted by the light emitting elements is emitted to the substrate 152 side. It is preferable to use a material that is highly transparent to visible light for the substrate 152.
  • the pixel electrode 111 contains a material that reflects visible light, and the counter electrode (common electrode 115) contains a material that transmits visible light.
  • the substrates 151 and 152 may each be made of polyester resin such as polyethylene terephthalate (PET) or polyethylene naphthalate (PEN), polyacrylonitrile resin, acrylic resin, polyimide resin, polymethyl methacrylate resin, polycarbonate (PC) resin, polyethersulfone (PES) resin, polyamide resin (nylon, aramid, etc.), polysiloxane resin, cycloolefin resin, polystyrene resin, polyamideimide resin, polyurethane resin, polyvinyl chloride resin, polyvinylidene chloride resin, polypropylene resin, polytetrafluoroethylene (PTFE) resin, ABS resin, cellulose nanofiber, or the like.
  • the substrates 151 and 152 may each be made of glass having a thickness sufficient to provide flexibility.
  • a substrate with high optical isotropy has small birefringence (it can also be said that the amount of birefringence is small).
  • the absolute value of the retardation (phase difference) value of a substrate with high optical isotropy is preferably 30 nm or less, more preferably 20 nm or less, and even more preferably 10 nm or less.
  • films with high optical isotropy examples include triacetyl cellulose (TAC, also known as cellulose triacetate) film, cycloolefin polymer (COP) film, cycloolefin copolymer (COC) film, and acrylic film.
  • TAC triacetyl cellulose
  • COP cycloolefin polymer
  • COC cycloolefin copolymer
  • a film with low water absorption for the substrate.
  • a film with a water absorption rate of 1% or less more preferably a film with a water absorption rate of 0.1% or less, and even more preferably a film with a water absorption rate of 0.01% or less.
  • curing adhesives such as photo-curing adhesives such as ultraviolet curing adhesives, reactive curing adhesives, heat curing adhesives, and anaerobic adhesives.
  • photo-curing adhesives such as ultraviolet curing adhesives, reactive curing adhesives, heat curing adhesives, and anaerobic adhesives.
  • These adhesives include epoxy resin, acrylic resin, silicone resin, phenolic resin, polyimide resin, imide resin, PVC (polyvinyl chloride) resin, PVB (polyvinyl butyral) resin, and EVA (ethylene vinyl acetate) resin.
  • materials with low moisture permeability such as epoxy resin are preferable.
  • Two-part mixed resins may also be used.
  • Adhesive sheets, etc. may also be used.
  • a display device 100B will be described as an example of a configuration different from that of the display device 100A.
  • Fig. 14 shows an example of a configuration of the display device 100B.
  • the configuration shown in Fig. 14 does not include the colored layers 132R and 132G.
  • the display device 100 differs from the display device 100A mainly in that it does not have an EL layer 113 common to the sub-pixels of different colors, but has its own EL layer provided for each sub-pixel of each color.
  • the light-emitting element 130R of the display device 100B has a pixel electrode 111, an EL layer 113R, and a common electrode 115 stacked in this order.
  • the EL layer 113R has a light-emitting layer that emits red light.
  • the light-emitting element 130R emits red light.
  • a light-emitting element that emits green light (EL layer 113G has a light-emitting layer that emits green light) is provided in the sub-pixel that provides green light, and a light-emitting element that emits blue light is provided in the sub-pixel that provides blue light.
  • the EL layer 113R is provided in an island shape.
  • the ends of adjacent EL layers 113R and EL layers 113G overlap.
  • the ends of adjacent EL layers may overlap as shown in FIG. 14, but this is not limited to the above. In other words, adjacent EL layers may not overlap and may be separated from each other.
  • Display device 100C Next, a display device 100C will be described as an example of a display device having a different configuration from the display device 100A.
  • the display device 100C is an example of a display device to which an MML (metal maskless) structure is applied.
  • the display device 100C has a light-emitting element manufactured without using a metal mask.
  • the island-shaped light-emitting layer in the light-emitting element of a display device to which the MML structure is applied is formed by depositing a light-emitting layer on one surface and then processing it using a photolithography method. This makes it possible to realize a high-definition display device or a display device with a high aperture ratio, which has been difficult to achieve until now. Furthermore, since the light-emitting layer can be made separately for each color, a display device with extremely vivid images, high contrast, and high display quality can be realized.
  • a display device is composed of three types of light-emitting elements, one that emits blue light, one that emits green light, and one that emits red light
  • the deposition of the light-emitting layer and processing by photolithography can be repeated three times to form three types of island-shaped light-emitting layers.
  • Devices with an MML structure can be manufactured without using a metal mask, and therefore can exceed the upper limit of definition resulting from the alignment accuracy of the metal mask. Furthermore, when devices are manufactured without using a metal mask, the equipment required for manufacturing the metal mask and the process of cleaning the metal mask can be eliminated. Furthermore, since the same or similar equipment as that used to manufacture transistors can be used for photolithography processing, there is no need to introduce special equipment to manufacture devices with an MML structure. In this way, the MML structure makes it possible to keep manufacturing costs low, and is therefore suitable for mass production of devices.
  • a display device to which the MML structure is applied there is no need to artificially increase the resolution by applying a special pixel arrangement such as a Pentile arrangement, so it is possible to realize a display device with high resolution (for example, 500 ppi or more, 1000 ppi or more, 2000 ppi or more, 3000 ppi or more, or 5000 ppi or more) with a so-called stripe arrangement in which R, G, and B sub-pixels are each arranged in one direction.
  • a special pixel arrangement such as a Pentile arrangement
  • the layered structure from the substrate 151 to the insulating layer 288, and the layered structure from the protective layer 131 to the substrate 152 are similar to those of the display device 100A, and therefore will not be described.
  • a light-emitting element 130R is provided on an insulating layer 288.
  • Light-emitting element 130R has a pixel electrode 111 on insulating layer 288, a layer 133R on pixel electrode 111, a common layer 114 on layer 133R, and a common electrode 115 on common layer 114.
  • Light-emitting element 130R shown in FIG. 15 emits red light.
  • Layer 133R has a light-emitting layer that emits red light.
  • layer 133R and common layer 114 can be collectively referred to as an EL layer.
  • a layer provided in an island shape for each light-emitting element is referred to as layer 133R, and a layer shared by a plurality of light-emitting elements is referred to as common layer 114.
  • the layer 133R may be referred to as an island-shaped EL layer, an EL layer formed in an island shape, etc., without including the common layer 114.
  • the island-shaped EL layer of each light-emitting element is separated from each other.
  • By providing an island-shaped EL layer for each light-emitting element it is possible to suppress leakage current between adjacent light-emitting elements. This makes it possible to prevent unintended light emission caused by crosstalk, and to realize a display device with extremely high contrast.
  • the upper and side surfaces of the pixel electrode 111 are covered with layer 133R. Therefore, the entire area in which the pixel electrode 111 is provided can be used as the light-emitting area of the light-emitting element 130R, thereby increasing the aperture ratio of the pixel.
  • a portion of the top surface and the side surfaces of layer 133R are covered with insulating layers 125 and 127.
  • a common layer 114 is provided on layer 133R and insulating layers 125 and 127, and a common electrode 115 is provided on common layer 114.
  • Common layer 114 and common electrode 115 are each continuous films provided in common to multiple light-emitting elements.
  • the insulating layer 137 shown in FIG. 13 and the like is not provided between the pixel electrode 111 and the layer 133R.
  • the display device 100C does not have an insulating layer (also called a partition, bank, spacer, etc.) that contacts the pixel electrode and covers the upper end of the pixel electrode. Therefore, the distance between adjacent light-emitting elements can be made extremely narrow. This makes it possible to provide a high-definition or high-resolution display device.
  • a mask for forming the insulating layer is not required, which reduces the manufacturing cost of the display device.
  • the layer 133R has a light-emitting layer.
  • the layer 133R preferably has a light-emitting layer and a carrier transport layer (electron transport layer or hole transport layer) on the light-emitting layer.
  • the layer 133R preferably has a light-emitting layer and a carrier block layer (hole block layer or electron block layer) on the light-emitting layer.
  • the layer 133R preferably has a light-emitting layer, a carrier block layer on the light-emitting layer, and a carrier transport layer on the carrier block layer.
  • the surface of the layer 133R is exposed during the manufacturing process of the display device, by providing one or both of the carrier transport layer and the carrier block layer on the light-emitting layer, it is possible to suppress exposure of the light-emitting layer to the outermost surface and reduce damage to the light-emitting layer. This can improve the reliability of the light-emitting element.
  • the common layer 114 has, for example, an electron injection layer or a hole injection layer.
  • the common layer 114 may have a stack of an electron transport layer and an electron injection layer, or a stack of a hole transport layer and a hole injection layer.
  • the common layer 114 is shared by the light-emitting elements that emit light of each color. Note that all of the EL layers of the light-emitting elements may be provided in an island shape, and the common layer 114 may not be included.
  • the side of layer 133R is covered by insulating layer 125.
  • Insulating layer 127 covers the side of layer 133R via insulating layer 125.
  • the insulating layer 125 contacts the side surface of the layer 133R. By configuring the insulating layer 125 to contact the layer 133R, peeling of the layer 133R can be prevented, and the reliability of the light-emitting element can be improved.
  • the insulating layer 127 is provided on the insulating layer 125 so as to fill the recesses in the insulating layer 125. It is preferable that the insulating layer 127 covers at least a portion of the side surface of the insulating layer 125.
  • the gap between adjacent island-shaped layers can be filled, so that the large unevenness in height difference on the surface on which the layers (e.g., carrier injection layer, common electrode, etc.) are formed on the island-shaped layers can be reduced, making it flatter. Therefore, the coverage of the carrier injection layer, common electrode, etc. can be improved.
  • the layers e.g., carrier injection layer, common electrode, etc.
  • the common layer 114 and the common electrode 115 are provided on the layer 133R, the insulating layer 125, and the insulating layer 127. Before the insulating layer 125 and the insulating layer 127 are provided, there is a step due to the region where the pixel electrode and the island-shaped EL layer are provided and the region where the pixel electrode and the island-shaped EL layer are not provided (the region between the light-emitting elements).
  • the step can be flattened by having the insulating layer 125 and the insulating layer 127, and the coverage of the common layer 114 and the common electrode 115 can be improved. Therefore, poor connection due to step disconnection can be suppressed. In addition, it is possible to suppress an increase in electrical resistance due to local thinning of the common electrode 115 due to the step.
  • the upper surface of the insulating layer 127 preferably has a shape with high flatness.
  • the upper surface of the insulating layer 127 may have at least one of a flat surface, a convex curved surface, and a concave curved surface.
  • the upper surface of the insulating layer 127 preferably has a convex curved shape with a large radius of curvature.
  • the insulating layer 125 can be an insulating layer containing an inorganic material.
  • an inorganic insulating film such as an oxide insulating film, a nitride insulating film, an oxynitride insulating film, and a nitride oxide insulating film can be used for the insulating layer 125. Specific examples of these inorganic insulating films are as described above.
  • the insulating layer 125 may have a single layer structure or a laminated structure. In particular, aluminum oxide is preferable because it has a high selectivity with respect to the EL layer in etching and has a function of protecting the EL layer in the formation of the insulating layer 127 described later.
  • the insulating layer 125 may have a laminated structure of a film formed by the ALD method and a film formed by the sputtering method.
  • the insulating layer 125 may have a laminated structure of, for example, an aluminum oxide film formed by the ALD method and a silicon nitride film formed by the sputtering method.
  • the insulating layer 125 preferably has a function as a barrier insulating layer against at least one of water and oxygen.
  • the insulating layer 125 preferably has a function of suppressing the diffusion of at least one of water and oxygen.
  • the insulating layer 125 preferably has a function of capturing or fixing (also called gettering) at least one of water and oxygen.
  • the insulating layer 125 functions as a barrier insulating layer, making it possible to suppress the intrusion of impurities (typically at least one of water and oxygen) that may diffuse from the outside into each light-emitting element. This configuration makes it possible to provide a highly reliable light-emitting element and further a highly reliable display device.
  • impurities typically at least one of water and oxygen
  • the insulating layer 125 preferably has a low impurity concentration. This can prevent impurities from entering the EL layer from the insulating layer 125 and causing deterioration of the EL layer. In addition, by lowering the impurity concentration in the insulating layer 125, the barrier properties against at least one of water and oxygen can be improved. For example, it is desirable that the insulating layer 125 has a sufficiently low hydrogen concentration or a sufficiently low carbon concentration, preferably both.
  • the insulating layer 127 provided on the insulating layer 125 has the function of flattening the unevenness of the insulating layer 125 formed between adjacent light-emitting elements. In other words, the presence of the insulating layer 127 has the effect of improving the flatness of the surface on which the common electrode 115 is formed.
  • an insulating layer containing an organic material can be suitably used.
  • the organic material it is preferable to use a photosensitive organic resin, for example, a photosensitive resin composition containing an acrylic resin.
  • acrylic resin does not only refer to polymethacrylic acid ester or methacrylic resin, but may refer to acrylic polymers in a broad sense.
  • the insulating layer 127 may be made of acrylic resin, polyimide resin, epoxy resin, imide resin, polyamide resin, polyimideamide resin, silicone resin, siloxane resin, benzocyclobutene resin, phenol resin, or precursors of these resins.
  • the insulating layer 127 may be made of organic materials such as polyvinyl alcohol (PVA), polyvinyl butyral, polyvinylpyrrolidone, polyethylene glycol, polyglycerin, pullulan, water-soluble cellulose, or alcohol-soluble polyamide resin.
  • PVA polyvinyl alcohol
  • the photosensitive resin may be a photoresist.
  • the photosensitive organic resin may be either a positive-type material or a negative-type material.
  • the insulating layer 127 may be made of a material that absorbs visible light. By absorbing light emitted from the light-emitting element with the insulating layer 127, it is possible to suppress leakage of light from the light-emitting element to an adjacent light-emitting element through the insulating layer 127 (stray light). This can improve the display quality of the display device. In addition, since the display quality can be improved without using a polarizing plate in the display device, it is possible to reduce the weight and thickness of the display device.
  • Materials that absorb visible light include materials containing pigments such as black, materials containing dyes, resin materials with light absorbing properties (such as polyimide), and resin materials that can be used in color filters (color filter materials).
  • resin materials that can be used in color filters color filter materials.
  • by mixing three or more colors of color filter materials it is possible to create a resin layer that is black or close to black.
  • Display device 100D and display device 100E will be described as examples of configurations different from the display device 100A.
  • Fig. 16 shows an example of the configuration of the display device 100D.
  • Fig. 17 shows an example of the configuration of the display device 100E.
  • the display device 100D has a layered structure from a substrate 301 to an insulating layer 317, instead of the substrate 151 in the display device 100A.
  • the display device 100E has a layered structure from a substrate 301 to an insulating layer 317, instead of the substrate 151 in the display device 100C.
  • the transistor 300 has a channel formation region in the substrate 301.
  • the substrate 301 can be a semiconductor substrate such as a single crystal silicon substrate.
  • the transistor 300 has a part of the substrate 301, a conductive layer 311, a low resistance region 312, an insulating layer 313, and an insulating layer 314.
  • the conductive layer 311 functions as a gate electrode.
  • the insulating layer 313 is located between the substrate 301 and the conductive layer 311 and functions as a gate insulating layer.
  • the low resistance region 312 is a region in which the substrate 301 is doped with impurities, and functions as one of a source and a drain.
  • the insulating layer 314 is provided to cover the side surface of the conductive layer 311.
  • an element isolation layer 315 is provided between two adjacent transistors 300 so as to be embedded in the substrate 301.
  • the source or drain of the transistor 300 is electrically connected to at least one of a conductive layer, wiring, transistor, etc., provided above the transistor 300 by a conductive layer provided in an opening of the insulating layer 316 and the insulating layer 317.
  • Transistor 100 and transistor 200 can be used as transistors that constitute a pixel circuit.
  • Transistor 300 can be used as a transistor that constitutes a pixel circuit, or a transistor that constitutes a driver circuit (gate line driver circuit, source line driver circuit) for driving the pixel circuit.
  • Transistor 300 can be used as a transistor that constitutes various circuits such as an arithmetic circuit or a memory circuit.
  • the arrangement of the sub-pixels is not particularly limited, and various methods can be applied.
  • Examples of the arrangement of the sub-pixels include a stripe arrangement, an S-stripe arrangement, a matrix arrangement, a delta arrangement, a Bayer arrangement, and a Pentile arrangement.
  • the top surface shape of the subpixels shown in the figures in this embodiment corresponds to the top surface shape of the light-emitting region (or light-receiving region).
  • the top surface shape of a subpixel can be, for example, a triangle, a quadrangle (including a rectangle and a square), a polygon such as a pentagon, a polygon with rounded corners, an ellipse, or a circle.
  • circuit layout constituting the subpixel is not limited to the range of the subpixel shown in the figure, but may be arranged outside of it.
  • the pixel 110 shown in FIG. 18A has an S-stripe arrangement.
  • the pixel 110 shown in FIG. 18A is composed of three subpixels, 110a, 110b, and 110c.
  • the pixel 110 shown in FIG. 18B has subpixel 110a having a substantially triangular or trapezoidal top surface shape with rounded corners, subpixel 110b having a substantially triangular or trapezoidal top surface shape with rounded corners, and subpixel 110c having a substantially rectangular or hexagonal top surface shape with rounded corners.
  • Subpixel 110b has a larger light-emitting area than subpixel 110a. In this way, the shape and size of each subpixel can be determined independently. For example, the more reliable the light-emitting element a subpixel has, the smaller its size can be.
  • FIG. 18C shows an example in which pixel 124a having subpixels 110a and 110b and pixel 124b having subpixels 110b and 110c are arranged alternately.
  • Pixels 124a and 124b shown in Figures 18D to 18F are arranged in a delta arrangement.
  • Pixel 124a has two subpixels (subpixels 110a and 110b) in the top row (first row) and one subpixel (subpixel 110c) in the bottom row (second row).
  • Pixel 124b has one subpixel (subpixel 110c) in the top row (first row) and two subpixels (subpixels 110a and 110b) in the bottom row (second row).
  • Figure 18D shows an example in which each subpixel has a generally rectangular top surface shape with rounded corners
  • Figure 18E shows an example in which each subpixel has a circular top surface shape
  • Figure 18F shows an example in which each subpixel has a generally hexagonal top surface shape with rounded corners.
  • each subpixel is arranged inside a close-packed hexagonal region.
  • each subpixel is arranged so that it is surrounded by six other subpixels.
  • subpixels that emit light of the same color are arranged so that they are not adjacent to each other. For example, when focusing on subpixel 110a, three subpixels 110b and three subpixels 110c are arranged alternately to surround it.
  • Figure 18G shows an example in which subpixels of each color are arranged in a zigzag pattern. Specifically, in a plan view, the positions of the top sides of two subpixels arranged in the row direction (e.g., subpixels 110a and 110b, or subpixels 110b and 110c) are misaligned.
  • subpixel 110a is subpixel R that emits red light
  • subpixel 110b is subpixel G that emits green light
  • subpixel 110c is subpixel B that emits blue light.
  • the configuration of the subpixels is not limited to this, and the colors that the subpixels emit and their order of arrangement can be determined appropriately.
  • subpixel 110b may be subpixel R that emits red light
  • subpixel 110a may be subpixel G that emits green light.
  • the finer the pattern to be processed the more the effects of light diffraction cannot be ignored, and this causes a loss of fidelity when the photomask pattern is transferred by exposure, making it difficult to process the resist mask into the desired shape.
  • the photomask pattern is rectangular, a pattern with rounded corners is likely to be formed.
  • the top surface shape of the subpixel may become a polygon with rounded corners, an ellipse, a circle, or the like.
  • the EL layer is processed into an island shape using a resist mask.
  • the resist film formed on the EL layer needs to be cured at a temperature lower than the heat resistance temperature of the EL layer. Therefore, depending on the heat resistance temperature of the material of the EL layer and the curing temperature of the resist material, the resist film may not be cured sufficiently.
  • a resist film that is not cured sufficiently may have a shape that is different from the desired shape during processing.
  • the top surface shape of the EL layer may be a polygon with rounded corners, an ellipse, a circle, or the like. For example, when attempting to form a resist mask with a square top surface shape, a resist mask with a circular top surface shape is formed, and the top surface shape of the EL layer may become circular.
  • OPC Optical Proximity Correction
  • a pixel can be configured to have four types of subpixels.
  • the pixels 110 shown in Figures 19A to 19C are arranged in a stripe pattern.
  • Figure 19A shows an example where each subpixel has a rectangular top surface shape
  • Figure 19B shows an example where each subpixel has a top surface shape that combines two semicircles and a rectangle
  • Figure 19C shows an example where each subpixel has an elliptical top surface shape.
  • the pixels 110 shown in Figures 19D to 19F are arranged in a matrix.
  • Figure 19D shows an example in which each subpixel has a square top surface shape
  • Figure 19E shows an example in which each subpixel has a roughly square top surface shape with rounded corners
  • Figure 19F shows an example in which each subpixel has a circular top surface shape.
  • Figures 19G and 19H show an example in which one pixel 110 is configured with two rows and three columns.
  • the pixel 110 shown in FIG. 19G has three subpixels (subpixels 110a, 110b, 110c) in the top row (first row) and one subpixel (subpixel 110d) in the bottom row (second row).
  • the pixel 110 has subpixel 110a in the left column (first column), subpixel 110b in the center column (second column), subpixel 110c in the right column (third column), and subpixel 110d across these three columns.
  • the pixel 110 shown in FIG. 19H has three subpixels (subpixels 110a, 110b, and 110c) in the top row (first row) and three subpixels 110d in the bottom row (second row).
  • the pixel 110 has subpixels 110a and 110d in the left column (first column), subpixels 110b and 110d in the center column (second column), and subpixels 110c and 110d in the right column (third column).
  • FIG. 19H by aligning the arrangement of the subpixels in the top row and the bottom row, it is possible to efficiently remove dust and the like that may occur in the manufacturing process. Therefore, a display device with high display quality can be provided.
  • Figure 19I shows an example in which one pixel 110 is configured with three rows and two columns.
  • the pixel 110 shown in FIG. 19I has subpixel 110a in the top row (first row), subpixel 110b in the center row (second row), subpixel 110c from the first to second rows, and one subpixel (subpixel 110d) in the bottom row (third row).
  • the pixel 110 has subpixels 110a and 110b in the left column (first column), subpixel 110c in the right column (second column), and subpixel 110d across these two columns.
  • the pixel 110 shown in Figures 19A to 19I is composed of four subpixels: subpixels 110a, 110b, 110c, and 110d.
  • the sub-pixels 110a, 110b, 110c, and 110d can each have a light-emitting element that emits light of a different color.
  • Examples of the sub-pixels 110a, 110b, 110c, and 110d include sub-pixels of four colors: R, G, B, and white (W), sub-pixels of four colors: R, G, B, and Y, or sub-pixels of R, G, B, and infrared light (IR).
  • each pixel 110 shown in Figures 19A to 19I for example, it is preferable that the subpixel 110a is a subpixel R that emits red light, the subpixel 110b is a subpixel G that emits green light, the subpixel 110c is a subpixel B that emits blue light, and the subpixel 110d is any one of the subpixels W that emit white light, Y that emit yellow light, and IR that emits near-infrared light.
  • the pixel 110 shown in Figures 19G and 19H has a stripe layout of R, G, and B, which can improve the display quality.
  • the layout of R, G, and B is a so-called S-stripe layout, which can improve the display quality.
  • the pixel 110 may also have a sub-pixel having a light receiving element.
  • any one of the subpixels 110a to 110d may be a subpixel having a light receiving element.
  • subpixel 110a is a subpixel R that emits red light
  • subpixel 110b is a subpixel G that emits green light
  • subpixel 110c is a subpixel B that emits blue light
  • subpixel 110d is a subpixel S that has a light receiving element.
  • the pixel 110 shown in Figures 19G and 19H has a layout of R, G, and B in a stripe arrangement, which can improve the display quality.
  • the layout of R, G, and B is a so-called S-stripe arrangement, which can improve the display quality.
  • the wavelength of light detected by the subpixel S having a light receiving element is not particularly limited.
  • the subpixel S can be configured to detect either or both of visible light and infrared light.
  • a pixel can be configured to have five types of subpixels.
  • Figure 19J shows an example in which one pixel 110 is configured with two rows and three columns.
  • the pixel 110 shown in FIG. 19J has three subpixels (subpixels 110a, 110b, and 110c) in the top row (first row) and two subpixels (subpixels 110d and 110e) in the bottom row (second row).
  • the pixel 110 has subpixels 110a and 110d in the left column (first column), subpixel 110b in the center column (second column), subpixel 110c in the right column (third column), and subpixel 110e from the second column to the third column.
  • Figure 19K shows an example in which one pixel 110 is configured with three rows and two columns.
  • the pixel 110 shown in FIG. 19K has subpixel 110a in the top row (first row), subpixel 110b in the center row (second row), subpixel 110c from the first row to the second row, and two subpixels (subpixels 110d and 110e) in the bottom row (third row).
  • the pixel 110 has subpixels 110a, 110b, and 110d in the left column (first column), and subpixels 110c and 110e in the right column (second column).
  • subpixel 110a is a subpixel R that emits red light
  • subpixel 110b is a subpixel G that emits green light
  • subpixel 110c is a subpixel B that emits blue light.
  • the pixel 110 shown in Figure 19J has a layout of R, G, and B in a stripe arrangement, which can improve display quality.
  • the pixel 110 shown in Figure 19K has a layout of R, G, and B in a so-called S-stripe arrangement, which can improve display quality.
  • each pixel 110 shown in FIG. 19J and FIG. 19K it is preferable to apply a subpixel S having a light receiving element to at least one of subpixels 110d and 110e.
  • a light receiving element is used for both subpixels 110d and 110e
  • the configurations of the light receiving elements may be different from each other.
  • the wavelength ranges of light detected may be at least partially different from each other.
  • one of subpixels 110d and 110e may have a light receiving element that mainly detects visible light, and the other may have a light receiving element that mainly detects infrared light.
  • each pixel 110 shown in Figures 19J and 19K for example, it is preferable to use a subpixel S having a light receiving element as one of subpixels 110d and 110e, and a subpixel having a light emitting element that can be used as a light source as the other.
  • a subpixel IR that emits infrared light
  • a subpixel S having a light receiving element that detects infrared light as the other.
  • an image can be displayed using the sub-pixels R, G, B, IR, and S, while the sub-pixel IR can be used as a light source to detect the reflected infrared light emitted by the sub-pixel IR at the sub-pixel S.
  • the display device of one embodiment of the present invention can apply various layouts to pixels configured with subpixels having light-emitting elements. Furthermore, the display device of one embodiment of the present invention can apply a configuration in which the pixel has both a light-emitting element and a light-receiving element. Even in this case, various layouts can be applied.
  • the light-emitting device has an EL layer 763 between a pair of electrodes (a lower electrode 761 and an upper electrode 762).
  • the EL layer 763 can be composed of multiple layers, such as a layer 780, a light-emitting layer 771, and a layer 790.
  • the light-emitting layer 771 contains at least a light-emitting substance (also called a light-emitting material).
  • the layer 780 has one or more of a layer containing a substance with high hole injection properties (hole injection layer), a layer containing a substance with high hole transport properties (hole transport layer), and a layer containing a substance with high electron blocking properties (electron block layer).
  • the layer 790 has one or more of a layer containing a substance with high electron injection properties (electron injection layer), a layer containing a substance with high electron transport properties (electron transport layer), and a layer containing a substance with high hole blocking properties (hole block layer).
  • the layers 780 and 790 have the opposite configurations to those described above.
  • a structure having layer 780, light-emitting layer 771, and layer 790 provided between a pair of electrodes can function as a single light-emitting unit, and in this specification, the structure in FIG. 20A is referred to as a single structure.
  • Fig. 20B shows a modified example of the EL layer 763 of the light-emitting device shown in Fig. 20A.
  • the light-emitting device shown in Fig. 20B has a layer 781 on the lower electrode 761, a layer 782 on the layer 781, a light-emitting layer 771 on the layer 782, a layer 791 on the light-emitting layer 771, a layer 792 on the layer 791, and an upper electrode 762 on the layer 792.
  • the layer 781 can be a hole injection layer
  • the layer 782 can be a hole transport layer
  • the layer 791 can be an electron transport layer
  • the layer 792 can be an electron injection layer.
  • the layer 781 can be an electron injection layer
  • the layer 782 can be an electron transport layer
  • the layer 791 can be a hole transport layer
  • the layer 792 can be a hole injection layer.
  • a variation of the single structure is a configuration in which multiple light-emitting layers (light-emitting layers 771, 772, 773) are provided between layer 780 and layer 790.
  • the light-emitting layer in a single-structure light-emitting device may have two layers, or four or more layers.
  • a single-structure light-emitting device may also have a buffer layer between the two light-emitting layers.
  • the buffer layer may be formed, for example, using a material that can be used for a hole transport layer or an electron transport layer.
  • tandem structure a configuration in which multiple light-emitting units (light-emitting unit 763a and light-emitting unit 763b) are connected in series via a charge generation layer 785 (also referred to as an intermediate layer) is referred to as a tandem structure in this specification.
  • the tandem structure may also be referred to as a stack structure.
  • FIGS. 20D and 20F are examples of a display device having a layer 764 that overlaps with the light-emitting device.
  • FIG. 20D is an example in which the layer 764 overlaps with the light-emitting device shown in FIG. 20C
  • FIG. 20F is an example in which the layer 764 overlaps with the light-emitting device shown in FIG. 20E.
  • a conductive film that transmits visible light is used for the upper electrode 762 in order to extract light to the upper electrode 762 side.
  • Layer 764 can be a color conversion layer or a color filter (coloring layer), or both.
  • the light-emitting layers 771, 772, and 773 may be made of light-emitting materials that emit the same color of light, or may even be made of the same light-emitting material.
  • the light-emitting layers 771, 772, and 773 may be made of light-emitting materials that emit blue light.
  • the blue light emitted by the light-emitting device can be extracted.
  • a color conversion layer is provided as the layer 764 shown in FIG. 20D, so that the blue light emitted by the light-emitting device can be converted into light with a longer wavelength, and red or green light can be extracted.
  • both a color conversion layer and a colored layer as the layer 764.
  • a part of the light emitted by the light-emitting device may be transmitted as it is without being converted by the color conversion layer.
  • the colored layer can absorb light other than the desired color, and the color purity of the light emitted by the subpixel can be increased.
  • light-emitting layers 771, 772, and 773 may each use a light-emitting material that emits light of a different color.
  • the lights emitted by light-emitting layers 771, 772, and 773 are complementary in color, white light is obtained.
  • a single-structure light-emitting device preferably has a light-emitting layer having a light-emitting material that emits blue light, and a light-emitting layer having a light-emitting material that emits visible light with a longer wavelength than blue light.
  • a color filter as layer 764 shown in FIG. 20D. By transmitting white light through the color filter, light of the desired color can be obtained.
  • the light-emitting layer has a light-emitting material that emits red (R) light
  • a light-emitting layer has a light-emitting material that emits green (G) light
  • a light-emitting layer has a light-emitting material that emits blue (B) light.
  • the stacking order of the light-emitting layers can be, for example, R, G, B from the anode side, or R, B, G from the anode side.
  • a buffer layer may be provided between R and G or B.
  • a configuration having a light-emitting layer containing a light-emitting material that emits blue (B) light and a light-emitting layer containing a light-emitting material that emits yellow (Y) light is preferable.
  • This configuration is sometimes called a BY single structure.
  • a light-emitting device that emits white light preferably contains two or more types of light-emitting materials.
  • light-emitting materials can be selected such that the emission colors of the two light-emitting layers are complementary to each other. For example, by making the emission color of the first light-emitting layer and the emission color of the second light-emitting layer complementary to each other, a light-emitting device that emits white light as a whole can be obtained.
  • the emission colors of the three or more light-emitting layers can be combined to produce a configuration in which the light-emitting device as a whole emits white light.
  • layers 780 and 790 may each be independently formed into a laminate structure consisting of two or more layers, as shown in Figure 20B.
  • the light-emitting layers 771 and 772 may be made of light-emitting materials that emit the same color of light, or even the same light-emitting material.
  • the light-emitting layers 771 and 772 may be made of light-emitting materials that emit blue light.
  • the blue light emitted by the light-emitting device can be extracted.
  • a color conversion layer is provided as the layer 764 shown in FIG.
  • the blue light emitted by the light-emitting device can be converted into light with a longer wavelength, and red or green light can be extracted.
  • light-emitting layers 771 and 772 may each be made of a light-emitting material that emits light of a different color.
  • white light is obtained. It is preferable to provide a color filter as layer 764 shown in FIG. 20F. When white light passes through the color filter, light of the desired color can be obtained.
  • 20E and 20F show an example in which the light-emitting unit 763a has one light-emitting layer 771 and the light-emitting unit 763b has one light-emitting layer 772, but this is not limiting.
  • Each of the light-emitting unit 763a and the light-emitting unit 763b may have two or more light-emitting layers.
  • the light-emitting device may have three or more light-emitting units. Note that a configuration having two light-emitting units may be referred to as a two-stage tandem structure, and a configuration having three light-emitting units may be referred to as a three-stage tandem structure.
  • light-emitting unit 763a has layer 780a, light-emitting layer 771, and layer 790a
  • light-emitting unit 763b has layer 780b, light-emitting layer 772, and layer 790b.
  • the layers 780a and 780b each have one or more of a hole injection layer, a hole transport layer, and an electron blocking layer. Also, the layers 790a and 790b each have one or more of an electron injection layer, an electron transport layer, and a hole blocking layer.
  • the layers 780a and 790a have the opposite configurations to those described above, and the layers 780b and 790b also have the opposite configurations to those described above.
  • the layer 780a may have a hole injection layer, a hole transport layer on the hole injection layer, and an electron block layer on the hole transport layer.
  • the layer 790a may have an electron transport layer and a hole block layer between the light-emitting layer 771 and the electron transport layer.
  • the layer 780b may have a hole transport layer and an electron block layer on the hole transport layer.
  • the layer 790b may have an electron transport layer, an electron injection layer on the electron transport layer, and a hole block layer between the light-emitting layer 772 and the electron transport layer.
  • the layer 780a may have an electron injection layer, an electron transport layer on the electron injection layer, and a hole block layer on the electron transport layer.
  • Layer 790a may have a hole transport layer and may further have an electron blocking layer between light emitting layer 771 and the hole transport layer.
  • Layer 780b may have an electron transport layer and may further have a hole blocking layer on the electron transport layer.
  • Layer 790b may have a hole transport layer and a hole injection layer on the hole transport layer and may further have an electron blocking layer between light emitting layer 772 and the hole transport layer.
  • the two light-emitting units are stacked via a charge generation layer 785.
  • the charge generation layer 785 has at least a charge generation region.
  • the charge generation layer 785 has the function of injecting electrons into one of the two light-emitting units and injecting holes into the other when a voltage is applied between a pair of electrodes.
  • FIG. 21A An example of a light-emitting device with a tandem structure is shown in Figures 21A to 21C.
  • Figure 21A shows a configuration having three light-emitting units.
  • a plurality of light-emitting units (light-emitting unit 763a, light-emitting unit 763b, and light-emitting unit 763c) are connected in series via charge generation layer 785.
  • Light-emitting unit 763a has layer 780a, light-emitting layer 771, and layer 790a
  • light-emitting unit 763b has layer 780b, light-emitting layer 772, and layer 790b
  • light-emitting unit 763c has layer 780c, light-emitting layer 773, and layer 790c.
  • layer 780c can use a configuration applicable to layers 780a and 780b
  • layer 790c can use a configuration applicable to layers 790a and 790b.
  • light-emitting layer 771, light-emitting layer 772, and light-emitting layer 773 can have light-emitting materials that emit the same color light.
  • light-emitting layer 771, light-emitting layer 772, and light-emitting layer 773 can all have a blue (B) light-emitting material (a so-called B ⁇ B ⁇ B three-stage tandem structure).
  • B blue
  • a ⁇ b means that a light-emitting unit having a light-emitting material that emits light of b is provided on a light-emitting unit having a light-emitting material that emits light of a, via a charge generation layer, and a and b mean colors.
  • light-emitting materials that emit different colors of light can be used for some or all of the light-emitting layers 771, 772, and 773.
  • Examples of combinations of the light-emitting colors of the light-emitting layers 771, 772, and 773 include a configuration in which two of them are blue (B) and the remaining one is yellow (Y), and a configuration in which one of them is red (R), the other is green (G), and the remaining one is blue (B).
  • Figure 21B shows a tandem-type light-emitting device in which light-emitting units having multiple light-emitting layers are stacked.
  • two light-emitting units (light-emitting unit 763a and light-emitting unit 763b) are connected in series via a charge generation layer 785.
  • Light-emitting unit 763a has layer 780a, light-emitting layer 771a, light-emitting layer 771b, light-emitting layer 771c, and layer 790a
  • light-emitting unit 763b has layer 780b, light-emitting layer 772a, light-emitting layer 772b, light-emitting layer 772c, and layer 790b.
  • the structure shown in FIG. 21B can be said to be a two-stage tandem structure of W ⁇ W.
  • the stacking order of the light-emitting materials that are complementary to each other The implementer can select the optimal stacking order as appropriate.
  • a three-stage tandem structure of W ⁇ W ⁇ W or a four-stage or more tandem structure may also be used.
  • examples of light-emitting devices with a tandem structure include a two-stage tandem structure of B ⁇ Y or Y ⁇ B having a light-emitting unit that emits yellow (Y) light and a light-emitting unit that emits blue (B) light, a two-stage tandem structure of R.G ⁇ B or B ⁇ R.G having a light-emitting unit that emits red (R) and green (G) light and a light-emitting unit that emits blue (B) light, and a light-emitting unit that emits yellow (Y) light and a light-emitting unit that emits blue (B) light.
  • Examples of such structures include a three-stage tandem structure of B ⁇ Y ⁇ B having a light-emitting unit that emits blue (B) light, a light-emitting unit that emits yellow-green (YG) light, and a light-emitting unit that emits blue (B) light, in that order; a three-stage tandem structure of B ⁇ YG ⁇ B having a light-emitting unit that emits blue (B) light, a light-emitting unit that emits green (G) light, and a light-emitting unit that emits blue (B) light, in that order; and a three-stage tandem structure of B ⁇ G ⁇ B having a light-emitting unit that emits blue (B) light, a light-emitting unit that emits green (G) light, and a light-emitting unit that emits blue (B) light, in that order.
  • a ⁇ b means that one light-emitting unit has a light-emitting material that emits light of a and a
  • a light-emitting unit having one light-emitting layer may be combined with a light-emitting unit having multiple light-emitting layers.
  • a plurality of light-emitting units (light-emitting unit 763a, light-emitting unit 763b, and light-emitting unit 763c) are connected in series via charge generation layer 785.
  • Light-emitting unit 763a has layer 780a, light-emitting layer 771, and layer 790a
  • light-emitting unit 763b has layer 780b
  • light-emitting layer 772a light-emitting layer 772b
  • light-emitting layer 772c light-emitting layer 772c
  • layer 790b light-emitting unit 763c has layer 780c, light-emitting layer 773, and layer 790c.
  • light-emitting unit 763a is a light-emitting unit that emits blue (B) light
  • light-emitting unit 763b is a light-emitting unit that emits red (R), green (G), and yellow-green (YG) light
  • light-emitting unit 763c is a light-emitting unit that emits blue (B) light.
  • the number of layers of the light-emitting units and the order of the colors can be, for example, from the anode side, a two-layer structure of B and light-emitting unit X, a two-layer structure of B, Y, B, and a three-layer structure of B, X, B.
  • the number of layers of the light-emitting layers in light-emitting unit X and the order of the colors can be, for example, from the anode side, a two-layer structure of R, Y, a two-layer structure of R, G, a two-layer structure of G, R, a three-layer structure of G, R, G, or a three-layer structure of R, G, R.
  • another layer may be provided between the two light-emitting layers.
  • a conductive film that transmits visible light is used for the electrode from which light is extracted. It is preferable to use a conductive film that reflects visible light for the electrode from which light is not extracted. If the display device has a light-emitting device that emits infrared light, it is preferable to use a conductive film that transmits visible light and infrared light for the electrode from which light is extracted, and a conductive film that reflects visible light and infrared light for the electrode from which light is not extracted.
  • a conductive film that transmits visible light may also be used for the electrode on the side from which light is not extracted.
  • the light emitted from the EL layer 763 may be reflected by the reflective layer and extracted from the display device.
  • metals, alloys, electrically conductive compounds, and mixtures thereof can be appropriately used.
  • the material include metals such as aluminum, magnesium, titanium, chromium, manganese, iron, cobalt, nickel, copper, gallium, zinc, indium, tin, molybdenum, tantalum, tungsten, palladium, gold, platinum, silver, yttrium, and neodymium, and alloys containing these in appropriate combinations.
  • examples of the material include indium tin oxide (In-Sn oxide, also referred to as ITO), In-Si-Sn oxide (also referred to as ITSO), indium zinc oxide (In-Zn oxide), and In-W-Zn oxide.
  • examples of the material include alloys containing aluminum (aluminum alloys), such as an alloy of aluminum, nickel, and lanthanum (Al-Ni-La), and alloys containing silver, such as an alloy of silver and magnesium, and an alloy of silver, palladium, and copper (Ag-Pd-Cu, also referred to as APC).
  • Such materials include elements belonging to Group 1 or 2 of the periodic table (e.g., lithium, cesium, calcium, and strontium) that are not listed above, rare earth metals such as europium and ytterbium, and alloys containing appropriate combinations of these, graphene, etc.
  • a micro-optical resonator (microcavity) structure is applied to the light-emitting device. Therefore, it is preferable that one of the pair of electrodes of the light-emitting device has an electrode that is transparent and reflective to visible light (semi-transmissive/semi-reflective electrode), and the other has an electrode that is reflective to visible light (reflective electrode).
  • the light-emitting device has a microcavity structure, the light emitted from the light-emitting layer can be resonated between the two electrodes, thereby intensifying the light emitted from the light-emitting device.
  • the semi-transmissive/semi-reflective electrode can have a laminated structure of a conductive layer that can be used as a reflective electrode and a conductive layer that can be used as an electrode that is transparent to visible light (also called a transparent electrode).
  • the light transmittance of the transparent electrode is 40% or more.
  • the visible light reflectance of the semi-transmissive/semi-reflective electrode is 10% or more and 95% or less, preferably 30% or more and 80% or less.
  • the visible light reflectance of the reflective electrode is 40% or more and 100% or less, preferably 70% or more and 100% or less.
  • the resistivity of these electrodes is preferably 1 ⁇ 10 ⁇ 2 ⁇ cm or less.
  • the light-emitting device has at least a light-emitting layer.
  • the light-emitting device may further have a layer other than the light-emitting layer, the layer including a substance with high hole injection properties, a substance with high hole transport properties, a hole blocking material, a substance with high electron transport properties, an electron blocking material, a substance with high electron injection properties, or a bipolar substance (a substance with high electron transport properties and hole transport properties, also referred to as a bipolar material).
  • the light-emitting device may have a configuration including one or more layers selected from a hole injection layer, a hole transport layer, a hole blocking layer, a charge generation layer, an electron blocking layer, an electron transport layer, and an electron injection layer, in addition to the light-emitting layer.
  • Emitting devices can use either low molecular weight compounds or high molecular weight compounds, and may contain inorganic compounds.
  • the layers constituting the light emitting device can be formed by a deposition method (including vacuum deposition), a transfer method, a printing method, an inkjet method, a coating method, etc.
  • the light-emitting layer has one or more types of light-emitting material.
  • a material that emits light of a color such as blue, purple, blue-purple, green, yellow-green, yellow, orange, or red is appropriately used.
  • a material that emits near-infrared light can also be used as the light-emitting material.
  • Light-emitting materials include fluorescent materials, phosphorescent materials, TADF materials, and quantum dot materials.
  • fluorescent materials include pyrene derivatives, anthracene derivatives, triphenylene derivatives, fluorene derivatives, carbazole derivatives, dibenzothiophene derivatives, dibenzofuran derivatives, dibenzoquinoxaline derivatives, quinoxaline derivatives, pyridine derivatives, pyrimidine derivatives, phenanthrene derivatives, and naphthalene derivatives.
  • Examples of phosphorescent materials include organometallic complexes (particularly iridium complexes) having a 4H-triazole skeleton, a 1H-triazole skeleton, an imidazole skeleton, a pyrimidine skeleton, a pyrazine skeleton, or a pyridine skeleton, organometallic complexes (particularly iridium complexes) having a phenylpyridine derivative having an electron-withdrawing group as a ligand, a platinum complex, and a rare earth metal complex.
  • organometallic complexes particularly iridium complexes having a 4H-triazole skeleton, a 1H-triazole skeleton, an imidazole skeleton, a pyrimidine skeleton, a pyrazine skeleton, or a pyridine skeleton
  • the light-emitting layer may have one or more organic compounds (host material, assist material, etc.) in addition to the light-emitting substance (guest material).
  • the one or more organic compounds one or both of a substance with high hole transport properties (hole transport material) and a substance with high electron transport properties (electron transport material) can be used.
  • hole transport material a substance with high hole transport properties that can be used in the hole transport layer described later can be used.
  • As the electron transport material a substance with high electron transport properties that can be used in the electron transport layer described later can be used.
  • a bipolar material or a TADF material may be used as the one or more organic compounds.
  • the light-emitting layer preferably has, for example, a phosphorescent material and a hole-transporting material and an electron-transporting material, which are a combination that easily forms an exciplex.
  • ExTET Exciplex-Triple Energy Transfer
  • a combination that forms an exciplex that emits light that overlaps with the wavelength of the lowest energy absorption band of the light-emitting substance the energy transfer becomes smooth and light emission can be obtained efficiently.
  • ExTET Exciplex-Triple Energy Transfer
  • the hole injection layer is a layer that injects holes from the anode to the hole transport layer, and contains a substance with high hole injection properties.
  • substances with high hole injection properties include aromatic amine compounds and composite materials that contain a hole transport material and an acceptor material (electron accepting material).
  • the hole transport material a substance with high hole transport properties that can be used in the hole transport layer, which will be described later, can be used.
  • an oxide of a metal belonging to Groups 4 to 8 in the periodic table can be used.
  • Specific examples include molybdenum oxide, vanadium oxide, niobium oxide, tantalum oxide, chromium oxide, tungsten oxide, manganese oxide, and rhenium oxide.
  • molybdenum oxide is particularly preferable because it is stable in the air, has low hygroscopicity, and is easy to handle.
  • an organic acceptor material containing fluorine can also be used.
  • organic acceptor materials such as quinodimethane derivatives, chloranil derivatives, and hexaazatriphenylene derivatives can also be used.
  • a material containing a hole transporting material and an oxide of a metal belonging to Groups 4 to 8 of the periodic table may be used as a substance with high hole injection properties.
  • the hole transport layer is a layer that transports holes injected from the anode by the hole injection layer to the light emitting layer.
  • the hole transport layer is a layer that contains a hole transport material.
  • a hole transport material a substance having a hole mobility of 1 ⁇ 10 ⁇ 6 cm 2 /Vs or more is preferable. Note that other substances can also be used as long as they have a higher hole transporting property than electrons.
  • a substance having a high hole transporting property such as a ⁇ -electron-rich heteroaromatic compound (e.g., a carbazole derivative, a thiophene derivative, a furan derivative, etc.) or an aromatic amine (a compound having an aromatic amine skeleton) is preferable.
  • the electron blocking layer is provided in contact with the light emitting layer.
  • the electron blocking layer is a layer containing a material that has hole transport properties and can block electrons.
  • the electron blocking layer can be made of a material that has electron blocking properties among the hole transport materials described above.
  • the electron blocking layer has hole transport properties, and therefore can also be called a hole transport layer.
  • a layer of the hole transport layer that has electron blocking properties can also be called an electron blocking layer.
  • the electron transport layer is a layer that transports electrons injected from the cathode by the electron injection layer to the light-emitting layer.
  • the electron transport layer is a layer that includes an electron transporting material.
  • As the electron transporting material a substance having an electron mobility of 1 ⁇ 10 ⁇ 6 cm 2 /Vs or more is preferable. Note that, other substances having a higher electron transporting property than holes can also be used.
  • metal complexes having a quinoline skeleton in addition to metal complexes having a quinoline skeleton, metal complexes having a benzoquinoline skeleton, metal complexes having an oxazole skeleton, and metal complexes having a thiazole skeleton, oxadiazole derivatives, triazole derivatives, imidazole derivatives, oxazole derivatives, thiazole derivatives, phenanthroline derivatives, quinoline derivatives having a quinoline ligand, benzoquinoline derivatives, quinoxaline derivatives, dibenzoquinoxaline derivatives, pyridine derivatives, bipyridine derivatives, pyrimidine derivatives, and other substances having a high electron transporting property such as ⁇ -electron deficient heteroaromatic compounds including nitrogen-containing heteroaromatic compounds can be used.
  • the hole blocking layer is provided in contact with the light emitting layer.
  • the hole blocking layer is a layer containing a material that has electron transport properties and can block holes.
  • the hole blocking layer can be made of a material that has hole blocking properties among the above electron transport materials.
  • the hole blocking layer has electron transport properties and can therefore also be called an electron transport layer.
  • the layer of the electron transport layer that has hole blocking properties can also be called a hole blocking layer.
  • the electron injection layer is a layer that injects electrons from the cathode to the electron transport layer, and is a layer that contains a substance with high electron injection properties.
  • a substance with high electron injection properties an alkali metal, an alkaline earth metal, or a compound thereof can be used.
  • a composite material containing an electron transport material and a donor material can also be used.
  • the LUMO level of the material with high electron injection properties has a small difference from the work function value of the material used for the cathode (specifically, 0.5 eV or less).
  • the electron injection layer may be made of, for example, lithium, cesium, ytterbium, lithium fluoride (LiF), cesium fluoride (CsF), calcium fluoride (CaF x , x is an arbitrary number), 8-(quinolinolato)lithium (abbreviation: Liq), 2-(2-pyridyl)phenolatolithium (abbreviation: LiPP), 2-(2-pyridyl)-3-pyridinolatolithium (abbreviation: LiPPy), 4-phenyl-2-(2-pyridyl)phenolatolithium (abbreviation: LiPPP), lithium oxide (LiO x ), alkali metals such as cesium carbonate, alkaline earth metals, or compounds thereof.
  • the electron injection layer may also be made of a laminated structure of two or more layers. As the laminated structure, for example, a structure in which lithium fluoride is used in the first layer and ytterbium is provided in
  • the electron injection layer may contain an electron transporting material.
  • an electron transporting material for example, a compound having an unshared electron pair and an electron-deficient heteroaromatic ring can be used as the electron transporting material.
  • a compound having at least one of a pyridine ring, a diazine ring (pyrimidine ring, pyrazine ring, pyridazine ring), and a triazine ring can be used.
  • the lowest unoccupied molecular orbital (LUMO) level of an organic compound having an unshared electron pair is preferably -3.6 eV or more and -2.3 eV or less.
  • the highest occupied molecular orbital (HOMO) level and the LUMO level of an organic compound can be estimated by CV (cyclic voltammetry), photoelectron spectroscopy, optical absorption spectroscopy, inverse photoelectron spectroscopy, etc.
  • BPhen 4,7-diphenyl-1,10-phenanthroline
  • NBPhen 2,9-di(naphthalene-2-yl)-4,7-diphenyl-1,10-phenanthroline
  • mPPhen2P 2,2'-(1,3-phenylene)bis(9-phenyl-1,10-phenanthroline)
  • HATNA diquinoxalino[2,3-a:2',3'-c]phenazine
  • TmPPPyTz 2,4,6-tris[3'-(pyridin-3-yl)biphenyl-3-yl]-1,3,5-triazine
  • TmPPPyTz 2,4,6-tris[3'-(pyridin-3-yl)biphenyl-3-yl]-1,3,5-triazine
  • TmPPPyTz 2,4,6-tris[3'-(pyridin-3-yl)biphenyl-3-yl]-1,
  • the charge generation layer has at least a charge generation region.
  • the charge generation region preferably contains an acceptor material, for example, a hole transport material and an acceptor material that are applicable to the hole injection layer described above.
  • the charge generation layer preferably has a layer containing a substance with high electron injection properties. This layer can also be called an electron injection buffer layer.
  • the electron injection buffer layer is preferably provided between the charge generation region and the electron transport layer. By providing the electron injection buffer layer, the injection barrier between the charge generation region and the electron transport layer can be alleviated, so that electrons generated in the charge generation region can be easily injected into the electron transport layer.
  • the electron injection buffer layer preferably contains an alkali metal or an alkaline earth metal, and may be configured to contain, for example, an alkali metal compound or an alkaline earth metal compound.
  • the electron injection buffer layer preferably contains an inorganic compound containing an alkali metal and oxygen, or an inorganic compound containing an alkaline earth metal and oxygen, and more preferably contains an inorganic compound containing lithium and oxygen (lithium oxide (Li 2 O) or the like).
  • the electron injection buffer layer may suitably use the above-mentioned materials applicable to the electron injection layer.
  • the charge generation layer preferably has a layer containing a substance with high electron transport properties. This layer can also be called an electron relay layer.
  • the electron relay layer is preferably provided between the charge generation region and the electron injection buffer layer. When the charge generation layer does not have an electron injection buffer layer, the electron relay layer is preferably provided between the charge generation region and the electron transport layer.
  • the electron relay layer has the function of preventing interaction between the charge generation region and the electron injection buffer layer (or the electron transport layer) and smoothly transferring electrons.
  • a phthalocyanine-based material such as copper (II) phthalocyanine (abbreviation: CuPc), or a metal complex having a metal-oxygen bond and an aromatic ligand.
  • charge generation region, electron injection buffer layer, and electron relay layer described above may not be clearly distinguishable from each other due to their cross-sectional shapes or characteristics.
  • the charge generation layer may have a donor material instead of an acceptor material.
  • the charge generation layer may have a layer containing an electron transport material and a donor material that can be used in the electron injection layer described above.
  • the electronic device of this embodiment has a display device of one embodiment of the present invention in a display portion.
  • the display device of one embodiment of the present invention can easily achieve high definition and high resolution. Therefore, the display device can be used in the display portion of various electronic devices.
  • Examples of electronic devices include television sets, desktop or notebook personal computers, computer monitors, digital signage, large game machines such as pachinko machines, and other electronic devices with relatively large screens, as well as digital cameras, digital video cameras, digital photo frames, mobile phones, portable game machines, personal digital assistants, and audio playback devices.
  • the display device of one embodiment of the present invention can be used favorably in electronic devices having a relatively small display unit, since it is possible to increase the resolution.
  • electronic devices include wristwatch-type and bracelet-type information terminals (wearable devices), as well as wearable devices that can be worn on the head, such as VR devices such as head-mounted displays, glasses-type AR devices, and MR devices.
  • the display device of one embodiment of the present invention preferably has an extremely high resolution such as HD (1280 x 720 pixels), FHD (1920 x 1080 pixels), WQHD (2560 x 1440 pixels), WQXGA (2560 x 1600 pixels), 4K (3840 x 2160 pixels), or 8K (7680 x 4320 pixels).
  • an extremely high resolution such as HD (1280 x 720 pixels), FHD (1920 x 1080 pixels), WQHD (2560 x 1440 pixels), WQXGA (2560 x 1600 pixels), 4K (3840 x 2160 pixels), or 8K (7680 x 4320 pixels).
  • HD 1280 x 720 pixels
  • FHD (1920 x 1080 pixels
  • WQHD 2560 x 1440 pixels
  • WQXGA 2560 x 1600 pixels
  • 4K 3840 x 2160 pixels
  • 8K 8K
  • the pixel density (resolution) of the display device of one embodiment of the present invention is preferably 100 ppi or more, preferably 300 ppi or more, more preferably 500 ppi or more, more preferably 1000 ppi or more, more preferably 2000 ppi or more, more preferably 3000 ppi or more, more preferably 5000 ppi or more, and even more preferably 7000 ppi or more.
  • the display device can support various screen ratios such as 1:1 (square), 4:3, 16:9, and 16:10.
  • the electronic device of this embodiment may have a sensor (including the function of sensing, detecting, or measuring force, displacement, position, velocity, acceleration, angular velocity, rotation speed, distance, light, liquid, magnetism, temperature, chemicals, sound, time, hardness, electric field, current, voltage, power, radiation, flow rate, humidity, gradient, vibration, odor, or infrared light).
  • a sensor including the function of sensing, detecting, or measuring force, displacement, position, velocity, acceleration, angular velocity, rotation speed, distance, light, liquid, magnetism, temperature, chemicals, sound, time, hardness, electric field, current, voltage, power, radiation, flow rate, humidity, gradient, vibration, odor, or infrared light).
  • the electronic device of this embodiment can have various functions. For example, it can have a function to display various information (still images, videos, text images, etc.) on the display unit, a touch panel function, a function to display a calendar, date or time, etc., a function to execute various software (programs), a wireless communication function, a function to read out programs or data recorded on a recording medium, etc.
  • a function to display various information still images, videos, text images, etc.
  • a touch panel function a function to display a calendar, date or time, etc.
  • a function to execute various software (programs) a wireless communication function
  • a function to read out programs or data recorded on a recording medium etc.
  • FIG. 22A to 22D An example of a wearable device that can be worn on the head will be described using Figures 22A to 22D.
  • These wearable devices have at least one of the following functions: a function to display AR content, a function to display VR content, a function to display SR content, and a function to display MR content.
  • a function to display AR content a function to display AR content
  • VR content a function to display VR content
  • SR content a function to display SR content
  • MR content a function to display MR content
  • Electronic device 700A shown in FIG. 22A and electronic device 700B shown in FIG. 22B each have a pair of display panels 751, a pair of housings 721, a communication unit (not shown), a pair of mounting units 723, a control unit (not shown), an imaging unit (not shown), a pair of optical members 753, a frame 757, and a pair of nose pads 758.
  • a display device can be applied to the display panel 751. Therefore, the electronic device can display images with extremely high resolution.
  • Each of the electronic devices 700A and 700B can project an image displayed on the display panel 751 onto the display area 756 of the optical member 753. Because the optical member 753 is translucent, the user can see the image displayed in the display area superimposed on the transmitted image visually recognized through the optical member 753. Therefore, each of the electronic devices 700A and 700B is an electronic device capable of AR display.
  • Electronic device 700A and electronic device 700B may be provided with a camera capable of capturing an image of the front as an imaging unit. Furthermore, electronic device 700A and electronic device 700B may each be provided with an acceleration sensor such as a gyro sensor, thereby detecting the orientation of the user's head and displaying an image corresponding to that orientation in display area 756.
  • an acceleration sensor such as a gyro sensor
  • the communication unit has a wireless communication device, and can supply video signals and the like via the wireless communication device.
  • a connector can be provided to which a cable through which a video signal and a power supply potential can be connected.
  • electronic device 700A and electronic device 700B are provided with batteries, which can be charged wirelessly and/or wired.
  • the housing 721 may be provided with a touch sensor module.
  • the touch sensor module has a function of detecting that the outer surface of the housing 721 is touched.
  • the touch sensor module can detect a tap operation or a slide operation by the user and execute various processes. For example, a tap operation can execute processes such as pausing or resuming a video, and a slide operation can execute processes such as fast-forwarding or rewinding. Furthermore, by providing a touch sensor module on each of the two housings 721, the range of operations can be expanded.
  • touch sensors can be used as the touch sensor module.
  • various types can be adopted, such as a capacitance type, a resistive film type, an infrared type, an electromagnetic induction type, a surface acoustic wave type, and an optical type.
  • a photoelectric conversion element (also called a photoelectric conversion element) can be used as the light receiving element.
  • the active layer of the photoelectric conversion element can be made of either or both of an inorganic semiconductor and an organic semiconductor.
  • Electronic device 800A shown in FIG. 22C and electronic device 800B shown in FIG. 22D each have a pair of display units 820, a housing 821, a communication unit 822, a pair of mounting units 823, a control unit 824, a pair of imaging units 825, and a pair of lenses 832.
  • a display device can be applied to the display portion 820. Therefore, an electronic device capable of displaying images with extremely high resolution can be provided. This allows the user to feel a high sense of immersion.
  • the display unit 820 is provided inside the housing 821 at a position that can be seen through the lens 832. In addition, by displaying different images on the pair of display units 820, it is also possible to perform three-dimensional display using parallax.
  • Each of the electronic devices 800A and 800B can be considered electronic devices for VR.
  • a user wearing the electronic device 800A or the electronic device 800B can view the image displayed on the display unit 820 through the lens 832.
  • Electric device 800A and electronic device 800B each preferably have a mechanism that can adjust the left-right positions of lens 832 and display unit 820 so that they are optimally positioned according to the position of the user's eyes. Also, it is preferable that they have a mechanism that adjusts the focus by changing the distance between lens 832 and display unit 820.
  • the mounting unit 823 allows the user to mount the electronic device 800A or electronic device 800B on the head. Note that in FIG. 22C and other figures, the mounting unit 823 is shaped like the temples of glasses, but is not limited to this. The mounting unit 823 only needs to be wearable by the user, and may be shaped like a helmet or band, for example.
  • the imaging unit 825 has a function of acquiring external information.
  • the data acquired by the imaging unit 825 can be output to the display unit 820.
  • An image sensor can be used for the imaging unit 825.
  • multiple cameras may be provided to support multiple angles of view, such as telephoto and wide angle.
  • a distance measuring sensor capable of measuring the distance to an object
  • the imaging unit 825 is one aspect of the detection unit.
  • the detection unit for example, an image sensor or a distance image sensor such as a LIDAR (Light Detection and Ranging) can be used.
  • LIDAR Light Detection and Ranging
  • the electronic device 800A may have a vibration mechanism that functions as a bone conduction earphone.
  • a vibration mechanism that functions as a bone conduction earphone.
  • a configuration having such a vibration mechanism can be applied to one or more of the display unit 820, the housing 821, and the wearing unit 823. This makes it possible to enjoy video and audio by simply wearing the electronic device 800A without the need for separate audio equipment such as headphones, earphones, or speakers.
  • Each of the electronic devices 800A and 800B may have an input terminal.
  • the input terminal can be connected to a cable that supplies a video signal from a video output device or the like, and power for charging a battery provided within the electronic device.
  • the electronic device of one embodiment of the present invention may have a function of wireless communication with the earphone 750.
  • the earphone 750 has a communication unit (not shown) and has a wireless communication function.
  • the earphone 750 can receive information (e.g., audio data) from the electronic device through the wireless communication function.
  • the electronic device 700A shown in FIG. 22A has a function of transmitting information to the earphone 750 through the wireless communication function.
  • the electronic device 800A shown in FIG. 22C has a function of transmitting information to the earphone 750 through the wireless communication function.
  • the electronic device may also have an earphone unit.
  • the electronic device 700B shown in FIG. 22B has an earphone unit 727.
  • the earphone unit 727 and the control unit may be configured to be connected to each other by wire.
  • a portion of the wiring connecting the earphone unit 727 and the control unit may be disposed inside the housing 721 or the attachment unit 723.
  • electronic device 800B shown in FIG. 22D has earphone unit 827.
  • earphone unit 827 and control unit 824 can be configured to be connected to each other by wire.
  • Part of the wiring connecting earphone unit 827 and control unit 824 may be disposed inside housing 821 or mounting unit 823.
  • earphone unit 827 and mounting unit 823 may have magnets. This allows earphone unit 827 to be fixed to mounting unit 823 by magnetic force, which is preferable as it makes storage easier.
  • the electronic device may have an audio output terminal to which earphones or headphones can be connected.
  • the electronic device may also have one or both of an audio input terminal and an audio input mechanism.
  • a sound collection device such as a microphone can be used as the audio input mechanism.
  • the electronic device may be endowed with the functionality of a so-called headset.
  • both glasses-type devices such as electronic device 700A and electronic device 700B
  • goggle-type devices such as electronic device 800A and electronic device 800B
  • the electronic device of one embodiment of the present invention can transmit information to the earphones via wire or wirelessly.
  • the electronic device 6500 shown in FIG. 23A is a portable information terminal that can be used as a smartphone.
  • the electronic device 6500 includes a housing 6501, a display portion 6502, a power button 6503, a button 6504, a speaker 6505, a microphone 6506, a camera 6507, a light source 6508, and the like.
  • the display portion 6502 has a touch panel function.
  • a display device of one embodiment of the present invention can be applied to the display portion 6502.
  • Figure 23B is a schematic cross-sectional view including the end of the housing 6501 on the microphone 6506 side.
  • a transparent protective member 6510 is provided on the display surface side of the housing 6501, and a display panel 6511, optical members 6512, a touch sensor panel 6513, a printed circuit board 6517, a battery 6518, etc. are arranged in the space surrounded by the housing 6501 and the protective member 6510.
  • the display panel 6511, the optical member 6512, and the touch sensor panel 6513 are fixed to the protective member 6510 by an adhesive layer (not shown).
  • a part of the display panel 6511 is folded back, and the FPC 6515 is connected to the folded back part.
  • An IC 6516 is mounted on the FPC 6515.
  • the FPC 6515 is connected to a terminal provided on a printed circuit board 6517.
  • the flexible display of one embodiment of the present invention can be applied to the display panel 6511. Therefore, an extremely lightweight electronic device can be realized.
  • the display panel 6511 is extremely thin, a large-capacity battery 6518 can be mounted while keeping the thickness of the electronic device small.
  • a connection portion with the FPC 6515 on the back side of the pixel portion, an electronic device with a narrow frame can be realized.
  • FIG 23C shows an example of a television device.
  • a display unit 7000 is built into a housing 7101.
  • the housing 7101 is supported by a stand 7103.
  • a display device can be applied to the display portion 7000.
  • the television device 7100 shown in FIG. 23C can be operated using an operation switch provided on the housing 7101 and a separate remote control 7111.
  • the display unit 7000 may be provided with a touch sensor, and the television device 7100 may be operated by touching the display unit 7000 with a finger or the like.
  • the remote control 7111 may have a display unit that displays information output from the remote control 7111.
  • the channel and volume can be operated using the operation keys or touch panel provided on the remote control 7111, and the image displayed on the display unit 7000 can be operated.
  • the television device 7100 is configured to include a receiver and a modem.
  • the receiver can receive general television broadcasts.
  • by connecting to a wired or wireless communication network via the modem it is also possible to perform one-way (from sender to receiver) or two-way (between sender and receiver, or between receivers, etc.) information communication.
  • FIG 23D shows an example of a notebook personal computer.
  • the notebook personal computer 7200 has a housing 7211, a keyboard 7212, a pointing device 7213, an external connection port 7214, and the like.
  • a display unit 7000 is built into the housing 7211.
  • a display device can be applied to the display portion 7000.
  • Figures 23E and 23F show an example of digital signage.
  • the digital signage 7300 shown in FIG. 23E has a housing 7301, a display unit 7000, a speaker 7303, and the like. It can also have LED lamps, operation keys (including a power switch or an operation switch), connection terminals, various sensors, a microphone, and the like.
  • Figure 23F shows a digital signage 7400 attached to a cylindrical pole 7401.
  • the digital signage 7400 has a display unit 7000 that is provided along the curved surface of the pole 7401.
  • a display device of one embodiment of the present invention can be applied to the display portion 7000.
  • the larger the display unit 7000 the more information can be provided at one time. Also, the larger the display unit 7000, the more easily it catches people's attention, which can increase the advertising effectiveness of, for example, advertisements.
  • a touch panel By applying a touch panel to the display unit 7000, not only can images or videos be displayed on the display unit 7000, but the user can also intuitively operate it, which is preferable. Furthermore, when used to provide information such as route information or traffic information, the intuitive operation can improve usability.
  • the digital signage 7300 or the digital signage 7400 can be linked via wireless communication with an information terminal 7311 or an information terminal 7411 such as a smartphone carried by a user.
  • advertising information displayed on the display unit 7000 can be displayed on the screen of the information terminal 7311 or the information terminal 7411.
  • the display on the display unit 7000 can be switched by operating the information terminal 7311 or the information terminal 7411.
  • the digital signage 7300 or the digital signage 7400 can be made to execute a game using the screen of the information terminal 7311 or the information terminal 7411 as an operating means (controller). This allows an unspecified number of users to participate in and enjoy the game at the same time.
  • the electronic device shown in Figures 24A to 24G has a housing 9000, a display unit 9001, a speaker 9003, operation keys 9005 (including a power switch or an operation switch), a connection terminal 9006, a sensor 9007 (including a function to sense, detect, or measure force, displacement, position, speed, acceleration, angular velocity, rotation speed, distance, light, liquid, magnetism, temperature, chemical substance, sound, time, hardness, electric field, current, voltage, power, radiation, flow rate, humidity, gradient, vibration, odor, or infrared light), a microphone 9008, etc.
  • a display device of one embodiment of the present invention can be applied to the display portion 9001.
  • the electronic devices shown in Figures 24A to 24G have various functions. For example, they can have a function of displaying various information (still images, videos, text images, etc.) on the display unit, a touch panel function, a function of displaying a calendar, date or time, a function of controlling processing by various software (programs), a wireless communication function, a function of reading and processing programs or data recorded on a recording medium, etc.
  • the functions of the electronic device are not limited to these, and the electronic device can have various functions.
  • the electronic device may have multiple display units.
  • the electronic device may have a camera or the like to capture still images or videos and store them on a recording medium (external or built into the camera), a function of displaying the captured images on the display unit, etc.
  • FIG. 24A is a perspective view showing a mobile information terminal 9101.
  • the mobile information terminal 9101 can be used as, for example, a smartphone.
  • the mobile information terminal 9101 may be provided with a speaker 9003, a connection terminal 9006, a sensor 9007, and the like.
  • the mobile information terminal 9101 can display text and image information on multiple surfaces.
  • FIG. 24A shows an example in which three icons 9050 are displayed.
  • Information 9051 shown in a dashed rectangle can also be displayed on another surface of the display unit 9001. Examples of the information 9051 include notifications of incoming e-mail, SNS, and telephone calls, titles of e-mail or SNS, sender names, date and time, time, remaining battery power, and radio wave strength.
  • icons 9050 and the like may be displayed at the position where the information 9051 is displayed.
  • Figure 24B is a perspective view showing a mobile information terminal 9102.
  • the mobile information terminal 9102 has a function of displaying information on three or more sides of the display unit 9001.
  • information 9052, information 9053, and information 9054 are displayed on different sides.
  • a user can check information 9053 displayed in a position that can be observed from above the mobile information terminal 9102 while the mobile information terminal 9102 is stored in a breast pocket of clothes. The user can check the display without taking the mobile information terminal 9102 out of the pocket and decide, for example, whether to answer a call.
  • FIG 24C is a perspective view showing a tablet terminal 9103.
  • the tablet terminal 9103 is capable of executing various applications such as mobile phone, e-mail, text browsing and creation, music playback, Internet communication, and computer games, for example.
  • the tablet terminal 9103 has a display unit 9001, a camera 9002, a microphone 9008, and a speaker 9003 on the front side of the housing 9000, operation keys 9005 as operation buttons on the left side of the housing 9000, and a connection terminal 9006 on the bottom.
  • FIG 24D is a perspective view showing a wristwatch-type mobile information terminal 9200.
  • the mobile information terminal 9200 can be used as, for example, a smart watch (registered trademark).
  • the display surface of the display unit 9001 is curved, and display can be performed along the curved display surface.
  • the mobile information terminal 9200 can also perform hands-free conversation by communicating with, for example, a headset capable of wireless communication.
  • the mobile information terminal 9200 can also perform data transmission with other information terminals and charge itself through the connection terminal 9006. Note that charging may be performed by wireless power supply.
  • FIG. 24E to 24G are perspective views showing a foldable mobile information terminal 9201.
  • FIG. 24E is a perspective view of the mobile information terminal 9201 in an unfolded state
  • FIG. 24G is a perspective view of the mobile information terminal 9201 in a folded state
  • FIG. 24F is a perspective view of the mobile information terminal 9201 in a state in the middle of changing from one of FIG. 24E and FIG. 24G to the other.
  • the mobile information terminal 9201 has excellent portability in a folded state, and has excellent display visibility due to a seamless wide display area in an unfolded state.
  • the display unit 9001 of the mobile information terminal 9201 is supported by three housings 9000 connected by hinges 9055.
  • the display unit 9001 can be bent with a radius of curvature of 0.1 mm or more and 150 mm or less.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Optics & Photonics (AREA)
  • Theoretical Computer Science (AREA)
  • Thin Film Transistor (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

Provided is a semiconductor device with a small occupancy area. This semiconductor device has a first transistor, a second transistor, and a first insulating layer. The first transistor includes: a first conductive layer; a second insulating layer having a first opening on the first conductive layer; a first oxide layer provided on the first conductive layer, inside the first opening, and on the second insulating layer; a second conductive layer on the first oxide layer; and a third conductive layer. The second transistor includes a second oxide layer on the second insulating layer, fourth and fifth conductive layers overlapping the second oxide layer, and a sixth conductive layer. The second oxide layer has a first region between a region overlapping the fourth conductive layer and a fifth region overlapping the fifth conductive layer. The first insulating layer includes a second opening on the first conductive layer, and a third opening on the first region. The third conductive layer is positioned inside the second opening. The sixth conductive layer is positioned inside the third opening.

Description

半導体装置、表示装置、表示モジュール及び電子機器、並びに、半導体装置の作製方法Semiconductor device, display device, display module, electronic device, and method for manufacturing semiconductor device
本発明の一態様は、半導体装置、及びその作製方法に関する。本発明の一態様は、トランジスタ、及びその作製方法に関する。本発明の一態様は、半導体装置を有する表示装置、表示モジュール、及び電子機器に関する。 One embodiment of the present invention relates to a semiconductor device and a manufacturing method thereof. One embodiment of the present invention relates to a transistor and a manufacturing method thereof. One embodiment of the present invention relates to a display device, a display module, and an electronic device that include the semiconductor device.
なお、本発明の一態様は、上記の技術分野に限定されない。本発明の一態様の技術分野としては、半導体装置、表示装置、発光装置、蓄電装置、記憶装置、電子機器、照明装置、入力装置(例えば、タッチセンサ)、入出力装置(例えば、タッチパネル)、それらの駆動方法、またはそれらの製造方法を一例として挙げることができる。 Note that one embodiment of the present invention is not limited to the above technical field. Examples of the technical field of one embodiment of the present invention include semiconductor devices, display devices, light-emitting devices, power storage devices, memory devices, electronic devices, lighting devices, input devices (e.g., touch sensors), input/output devices (e.g., touch panels), driving methods thereof, or manufacturing methods thereof.
なお、本明細書等において、半導体装置とは、半導体特性を利用した装置であり、半導体素子(トランジスタ、ダイオード、フォトダイオード等)を含む回路、同回路を有する装置等をいう。また、半導体特性を利用することで機能しうる装置全般をいう。例えば、集積回路、集積回路を備えたチップ、パッケージにチップを収納した電子部品は半導体装置の一例である。また、記憶装置、表示装置、発光装置、照明装置、及び電子機器は、それ自体が半導体装置であり、かつ、それぞれが半導体装置を有している場合がある。 In this specification and the like, a semiconductor device is a device that utilizes semiconductor characteristics, and refers to a circuit including a semiconductor element (transistor, diode, photodiode, etc.), a device having such a circuit, etc. Also, it refers to any device that can function by utilizing semiconductor characteristics. For example, an integrated circuit, a chip including an integrated circuit, and an electronic component that houses a chip in a package are examples of semiconductor devices. Also, memory devices, display devices, light-emitting devices, lighting devices, and electronic devices may themselves be semiconductor devices and each may have a semiconductor device.
トランジスタを有する半導体装置は、電子機器に広く適用されている。例えば、表示装置において、トランジスタの占有面積を小さくすることで、画素サイズを縮小でき、高精細化を図ることができる。そのため、トランジスタの微細化が求められている。 Semiconductor devices having transistors are widely used in electronic devices. For example, in display devices, by reducing the area occupied by transistors, the pixel size can be reduced and higher definition can be achieved. For this reason, there is a demand for miniaturization of transistors.
高精細な表示装置が要求される機器として、例えば、仮想現実(VR:Virtual Reality)、拡張現実(AR:Augmented Reality)、代替現実(SR:Substitutional Reality)、及び、複合現実(MR:Mixed Reality)向けの機器が、盛んに開発されている。 Devices requiring high-definition display devices, such as those for virtual reality (VR), augmented reality (AR), substitute reality (SR), and mixed reality (MR), are being actively developed.
表示装置としては、例えば、有機EL(Electro Luminescence)素子、または発光ダイオード(LED:Light Emitting Diode)を有する発光装置が開発されている。 As display devices, for example, light-emitting devices having organic EL (Electro Luminescence) elements or light-emitting diodes (LEDs: Light Emitting Diodes) have been developed.
特許文献1には、有機EL素子を用いた、高精細な表示装置が開示されている。 Patent document 1 discloses a high-definition display device that uses organic EL elements.
国際公開第2016/038508号International Publication No. 2016/038508
本発明の一態様は、微細なサイズのトランジスタを提供することを課題の一とする。または、チャネル長が小さいトランジスタを提供することを課題の一とする。または、オン電流が大きいトランジスタを提供することを課題の一とする。または、電気特性が良好なトランジスタを提供することを課題の一とする。または、占有面積の小さい半導体装置を提供することを課題の一とする。または、配線抵抗の小さい半導体装置を提供することを課題の一とする。または、消費電力の少ない半導体装置または表示装置を提供することを課題の一とする。または、信頼性の高いトランジスタ、半導体装置、または表示装置を提供することを課題の一とする。または、高精細化が容易な表示装置を提供することを課題の一とする。または、高輝度での表示が可能な表示装置を提供することを課題の一つとする。または、生産性の高い半導体装置または表示装置の作製方法を提供することを課題の一とする。または、新規なトランジスタ、半導体装置、表示装置、及びこれらの作製方法を提供することを課題の一とする。 An object of one embodiment of the present invention is to provide a transistor having a small size. Alternatively, an object of the present invention is to provide a transistor having a small channel length. Alternatively, an object of the present invention is to provide a transistor having a large on-state current. Alternatively, an object of the present invention is to provide a transistor having good electrical characteristics. Alternatively, an object of the present invention is to provide a semiconductor device having a small occupancy area. Alternatively, an object of the present invention is to provide a semiconductor device having a small wiring resistance. Alternatively, an object of the present invention is to provide a semiconductor device or display device having low power consumption. Alternatively, an object of the present invention is to provide a highly reliable transistor, semiconductor device, or display device. Alternatively, an object of the present invention is to provide a display device that can be easily made high-definition. Alternatively, an object of the present invention is to provide a display device capable of displaying at high luminance. Alternatively, an object of the present invention is to provide a method for manufacturing a semiconductor device or display device with high productivity. Alternatively, an object of the present invention is to provide a novel transistor, semiconductor device, display device, and a manufacturing method thereof.
なお、これらの課題の記載は、他の課題の存在を妨げるものではない。本発明の一態様は、必ずしも、これらの課題の全てを解決する必要はないものとする。明細書、図面、請求項の記載から、これら以外の課題を抽出することが可能である。 Note that the description of these problems does not preclude the existence of other problems. One embodiment of the present invention does not necessarily have to solve all of these problems. Problems other than these can be extracted from the description in the specification, drawings, and claims.
本発明の一態様は、第1のトランジスタと、第2のトランジスタと、第1の絶縁層と、を有し、第1のトランジスタは、第1の導電層と、第1の導電層上の第2の絶縁層と、第1の導電層上及び第2の絶縁層上の第1の酸化物層と、第1の酸化物層上の第2の導電層と、第1の酸化物層上の第3の絶縁層と、第3の絶縁層上の第3の導電層と、を有し、第2の絶縁層は、第1の導電層と重なる第1の開口を有し、第1の酸化物層は、第1の導電層上において第1の導電層と重畳する第1の領域と、第2の絶縁層の第1の開口の側面を覆う第2の領域と、第2の絶縁層上に位置し、第2の導電層に上面を覆われる第3の領域と、を有し、第3の絶縁層、及び第3の導電層はそれぞれ、第2の絶縁層の第1の開口の内側に位置する領域を有し、第2のトランジスタは、第2の絶縁層上の第2の酸化物層と、第2の酸化物層上の第4の導電層及び第5の導電層と、第2の酸化物層上の第4の絶縁層と、第4の絶縁層上の第6の導電層と、を有し、第2の酸化物層は、第4の導電層と重なる第4の領域と、第5の導電層と重なる第5の領域と、第3の領域と第4の領域の間に位置する第6の領域と、を有し、第1の絶縁層は、第2の導電層上、第4の導電層上、及び第5の導電層上に位置し、第1の絶縁層は、第1の導電層と重なる第2の開口と、第6の領域と重なる第3の開口と、を有し、第3の絶縁層及び第3の導電層はそれぞれ、第2の開口の内側に位置する領域を有し、第4の絶縁層及び第6の導電層はそれぞれ、第1の絶縁層の第3の開口の内側に位置する領域を有する半導体装置である。 One aspect of the present invention includes a first transistor, a second transistor, and a first insulating layer, the first transistor having a first conductive layer, a second insulating layer on the first conductive layer, a first oxide layer on the first conductive layer and on the second insulating layer, a second conductive layer on the first oxide layer, a third insulating layer on the first oxide layer, and a third conductive layer on the third insulating layer, the second insulating layer having a first opening overlapping the first conductive layer, the first oxide layer having a first region overlapping the first conductive layer on the first conductive layer, a second region covering the side of the first opening of the second insulating layer, and a third region located on the second insulating layer and having an upper surface covered by the second conductive layer, the third insulating layer and the third conductive layer each having a region located inside the first opening of the second insulating layer, and the second The transistor has a second oxide layer on the second insulating layer, a fourth conductive layer and a fifth conductive layer on the second oxide layer, a fourth insulating layer on the second oxide layer, and a sixth conductive layer on the fourth insulating layer, the second oxide layer has a fourth region overlapping the fourth conductive layer, a fifth region overlapping the fifth conductive layer, and a sixth region located between the third region and the fourth region, the first insulating layer is located on the second conductive layer, the fourth conductive layer, and the fifth conductive layer, the first insulating layer has a second opening overlapping the first conductive layer and a third opening overlapping the sixth region, the third insulating layer and the third conductive layer each have a region located inside the second opening, and the fourth insulating layer and the sixth conductive layer each have a region located inside the third opening of the first insulating layer. It is a semiconductor device.
また上記態様において、第1の酸化物層の第1の領域における膜厚は、第1の酸化物層の第3の領域における膜厚の0.7倍以上1.3倍以下であることが好ましい。 In the above aspect, it is preferable that the film thickness of the first region of the first oxide layer is 0.7 to 1.3 times the film thickness of the first oxide layer in the third region.
また上記態様において、第2の絶縁層上に、第5の絶縁層と、第6の絶縁層と、を有し、第5の絶縁層は、第1の開口と上面形状が一致、または概略一致する第4の開口を有し、第1の酸化物層は、第5の絶縁層上に位置する領域と、第5の絶縁層の第4の開口の側面を覆う領域と、を有し、第5の絶縁層の側端部は、第1の酸化物層の側端部と一致または概略一致する領域を有し、第3の絶縁層及び第3の導電層はそれぞれ、第5の絶縁層の第4の開口の内側に位置する領域を有し、第2の酸化物層は、第6の絶縁層上に位置し、第6の絶縁層の側端部は、第2の酸化物層の側端部と一致または概略一致する領域を有することが好ましい。 In the above aspect, it is preferable that the second insulating layer has a fifth insulating layer and a sixth insulating layer, the fifth insulating layer has a fourth opening whose top surface shape is the same or roughly the same as the first opening, the first oxide layer has a region located on the fifth insulating layer and a region covering the side of the fourth opening of the fifth insulating layer, the side edge of the fifth insulating layer has a region that is the same or roughly the same as the side edge of the first oxide layer, the third insulating layer and the third conductive layer each have a region located inside the fourth opening of the fifth insulating layer, and the second oxide layer is located on the sixth insulating layer, and the side edge of the sixth insulating layer has a region that is the same or roughly the same as the side edge of the second oxide layer.
また上記態様において、第2の絶縁層は、窒化シリコン膜、窒化酸化シリコン膜、及び酸化ハフニウム膜の一以上を有し、第5の絶縁層及び第6の絶縁層はともに、酸化シリコン膜及び酸化窒化シリコン膜から選ばれる一であることが好ましい。 In the above aspect, it is preferable that the second insulating layer has one or more of a silicon nitride film, a silicon nitride oxide film, and a hafnium oxide film, and that the fifth insulating layer and the sixth insulating layer are both one selected from a silicon oxide film and a silicon oxynitride film.
また上記態様において、第2の絶縁層は、窒化シリコン膜及び窒化酸化シリコン膜のいずれか一と、窒化シリコン膜及び窒化酸化シリコン膜のいずれか一の上層の酸化ハフニウム膜と、を有し、第5の絶縁層及び第6の絶縁層はともに、酸化シリコン膜及び酸化窒化シリコン膜から選ばれる一であることが好ましい。 In the above aspect, the second insulating layer preferably has one of a silicon nitride film and a silicon oxynitride film, and a hafnium oxide film on top of one of the silicon nitride film and the silicon oxynitride film, and the fifth insulating layer and the sixth insulating layer are both preferably one selected from a silicon oxide film and a silicon oxynitride film.
また上記態様において、第1の絶縁層が有する第2の開口の側壁は、第2の絶縁層が有する第1の開口の側壁よりも外側に位置する領域を有することが好ましい。 Furthermore, in the above aspect, it is preferable that the sidewall of the second opening in the first insulating layer has an area located outside the sidewall of the first opening in the second insulating layer.
また上記態様において、第2の導電層は、第1の導電層と重なる領域に第4の開口を有し、第3の絶縁層及び第3の導電層はそれぞれ、第4の開口の内側に設けられる領域を有することが好ましい。 Furthermore, in the above aspect, it is preferable that the second conductive layer has a fourth opening in a region overlapping with the first conductive layer, and the third insulating layer and the third conductive layer each have a region provided inside the fourth opening.
また上記態様において、第2の導電層が有する第4の開口の側壁は、第2の絶縁層が有する第1の開口の側壁よりも外側に位置する領域を有することが好ましい。 Furthermore, in the above aspect, it is preferable that the sidewall of the fourth opening in the second conductive layer has an area located outside the sidewall of the first opening in the second insulating layer.
また上記態様において、第1の導電層は、凹部を有し、第1の酸化物層の少なくとも一部は、凹部内に設けられることが好ましい。 In the above aspect, it is preferable that the first conductive layer has a recess and at least a portion of the first oxide layer is provided within the recess.
また上記態様において、第1の酸化物層の第1の領域は、第1の導電層の上面と接することが好ましい。 In the above aspect, it is also preferable that the first region of the first oxide layer contacts the upper surface of the first conductive layer.
また上記態様において、第2の導電層は、第1の酸化物層の第3の領域の上面と接することが好ましい。 In the above aspect, it is also preferable that the second conductive layer contacts the upper surface of the third region of the first oxide layer.
また上記態様において、第2のトランジスタは、第7の導電層を有し、第2の酸化物層は、第2の絶縁層を間に挟んで、第7の導電層と少なくとも一部が重なるように配置されることが好ましい。 In the above aspect, it is preferable that the second transistor has a seventh conductive layer, and the second oxide layer is arranged so as to overlap at least a portion of the seventh conductive layer with the second insulating layer sandwiched therebetween.
または本発明の一態様は、上記のいずれか一に記載の半導体装置と、発光素子と、を有し、発光素子の発光輝度は、第1のトランジスタ及び第2のトランジスタの少なくとも一により、制御される表示装置である。 Or, one aspect of the present invention is a display device that includes any one of the semiconductor devices described above and a light-emitting element, and the light emission luminance of the light-emitting element is controlled by at least one of the first transistor and the second transistor.
または本発明の一態様は、上記のいずれか一に記載の半導体装置と、発光素子と、を有し、半導体装置は、チャネル形成領域にシリコンを有する第3のトランジスタを有し、発光素子の発光輝度は、第1のトランジスタ及び第2のトランジスタの少なくとも一により、制御され、第3のトランジスタを含む第1の層と、第1の層上に位置し、第1のトランジスタ及び第2のトランジスタを含む第2の層と、第2の層上に位置し、発光素子を含む第3の層と、を有する表示装置である。 Or, one aspect of the present invention is a display device having the semiconductor device described in any one of the above and a light-emitting element, the semiconductor device having a third transistor having silicon in a channel formation region, the light emission luminance of the light-emitting element being controlled by at least one of the first transistor and the second transistor, and having a first layer including the third transistor, a second layer located on the first layer and including the first transistor and the second transistor, and a third layer located on the second layer and including the light-emitting element.
または本発明の一態様は、上記のいずれか一に記載の半導体装置と、発光素子と、コネクタ及び集積回路のうち少なくとも一方と、を有し、発光素子の発光輝度は、第1のトランジスタ及び第2のトランジスタの少なくとも一により、制御される表示モジュールである。 Or, one aspect of the present invention is a display module that includes any one of the semiconductor devices described above, a light-emitting element, and at least one of a connector and an integrated circuit, and the light emission luminance of the light-emitting element is controlled by at least one of the first transistor and the second transistor.
または本発明の一態様は、上記のいずれか一に記載の半導体装置と、発光素子と、コネクタ及び集積回路のうち少なくとも一方と、筐体、バッテリ、カメラ、スピーカ、及びマイクのうち少なくとも一つと、を有し、発光素子の発光輝度は、第1のトランジスタ及び第2のトランジスタの少なくとも一により、制御される電子機器である。 Or, one aspect of the present invention is an electronic device that includes any one of the semiconductor devices described above, a light-emitting element, at least one of a connector and an integrated circuit, and at least one of a housing, a battery, a camera, a speaker, and a microphone, and the light emission luminance of the light-emitting element is controlled by at least one of the first transistor and the second transistor.
または本発明の一態様は、第1の導電層及び第2の導電層を形成し、第1の導電層上、及び第2の導電層上に第1の絶縁層を形成し、第1の絶縁層の一部を除去することにより、第1の絶縁層において第1の導電層と重なる領域に第1の開口を形成し、第1の導電層において、第1の絶縁層に覆われない領域のハーフエッチングを行い、第1の導電層上、第2の導電層上、及び第1の絶縁層上に第1の酸化物層を形成し、第1の酸化物層は、第1の絶縁層の第1の開口の側面を覆う領域を有し、第1の酸化物層上に、第3の導電層を形成し、第3の導電層の一部を除去することにより、第4の導電層、及び第5の導電層を形成し、第4の導電層をマスクとして第1の酸化物層の一部を除去して第2の酸化物層を形成し、第5の導電層をマスクとして第1の酸化物層の一部を除去して第3の酸化物層を形成し、第2の酸化物層上、及び第3の酸化物層上に第2の絶縁層を形成し、第2の絶縁層の一部を除去することにより、第2の絶縁層に第2の開口、及び第3の開口を形成し、第4の導電層において、第2の絶縁層の第2の開口と重なる領域を除去し、第5の導電層において、第2の絶縁層の第3の開口と重なる領域を除去することにより、第6の導電層、及び第7の導電層を形成し、第2の酸化物層上、第3の酸化物層上、及び第2の絶縁層上に、第3の絶縁層を形成し、第3の絶縁層は、第2の絶縁層の第2の開口の側面を覆う領域と、第2の絶縁層の第3の開口の側面を覆う領域と、を有し、第3の絶縁層上に第8の導電層を形成し、化学的機械研磨を用いて第8の導電層の一部を除去することにより、第2の酸化物層上の第9の導電層と、第3の酸化物層上の第10の導電層と、を形成する半導体装置の作製方法である。 Or one aspect of the present invention includes forming a first conductive layer and a second conductive layer, forming a first insulating layer on the first conductive layer and on the second conductive layer, forming a first opening in the first insulating layer in a region overlapping with the first conductive layer by removing a portion of the first insulating layer, performing half etching on a region of the first conductive layer that is not covered by the first insulating layer, forming a first oxide layer on the first conductive layer, the second conductive layer, and the first insulating layer, the first oxide layer having a region covering the side of the first opening in the first insulating layer, forming a third conductive layer on the first oxide layer, forming a fourth conductive layer and a fifth conductive layer by removing a portion of the third conductive layer, removing a portion of the first oxide layer using the fourth conductive layer as a mask to form a second oxide layer, removing a portion of the first oxide layer using the fifth conductive layer as a mask to form a third oxide layer, and forming a second oxide layer. A method for manufacturing a semiconductor device includes forming a second insulating layer on the oxide layer and the third oxide layer, forming a second opening and a third opening in the second insulating layer by removing a portion of the second insulating layer, removing a region of the fourth conductive layer that overlaps with the second opening of the second insulating layer, and forming a sixth conductive layer and a seventh conductive layer by removing a region of the fifth conductive layer that overlaps with the third opening of the second insulating layer, forming a third insulating layer on the second oxide layer, the third oxide layer, and the second insulating layer, the third insulating layer having a region covering the side of the second opening of the second insulating layer and a region covering the side of the third opening of the second insulating layer, forming an eighth conductive layer on the third insulating layer, and removing a portion of the eighth conductive layer by chemical mechanical polishing to form a ninth conductive layer on the second oxide layer and a tenth conductive layer on the third oxide layer.
また上記態様において、第1の導電層の、第1の絶縁層に覆われない領域において行われるハーフエッチングにより、第1の導電層に凹部が形成され、第1の酸化物層は、凹部内に形成される領域を有することが好ましい。 In the above aspect, it is preferable that a recess is formed in the first conductive layer by half etching performed in a region of the first conductive layer that is not covered by the first insulating layer, and the first oxide layer has a region formed within the recess.
また上記態様において、第4の導電層において、第2の絶縁層の第2の開口と重なる領域を除去することにより、第4の導電層に第4の開口が設けられ、第3の絶縁層は、第4の導電層の第4の開口の側面を覆う領域を有することが好ましい。 In the above aspect, it is preferable that a fourth opening is provided in the fourth conductive layer by removing a region of the fourth conductive layer that overlaps with the second opening in the second insulating layer, and that the third insulating layer has a region that covers the side of the fourth opening in the fourth conductive layer.
また上記態様において、第3の導電層は、原子層堆積法を用いて形成されることが好ましい。 In the above aspect, it is also preferable that the third conductive layer is formed using atomic layer deposition.
本発明の一態様により、微細なサイズのトランジスタを提供できる。または、チャネル長が小さいトランジスタを提供できる。または、オン電流が大きいトランジスタを提供できる。または、電気特性が良好なトランジスタを提供できる。または、占有面積の小さい半導体装置を提供できる。または、配線抵抗の小さい半導体装置を提供できる。または、消費電力の少ない半導体装置または表示装置を提供できる。または、信頼性の高いトランジスタ、半導体装置、または表示装置を提供できる。または、高精細化が容易な表示装置を提供できる。または、高輝度での表示が可能な表示装置を提供できる。または、生産性の高い半導体装置または表示装置の作製方法を提供できる。または、新規なトランジスタ、半導体装置、表示装置、及びこれらの作製方法を提供できる。 According to one embodiment of the present invention, a transistor with a small size can be provided. Or a transistor with a small channel length can be provided. Or a transistor with a large on-state current can be provided. Or a transistor with good electrical characteristics can be provided. Or a semiconductor device with a small occupation area can be provided. Or a semiconductor device with low wiring resistance can be provided. Or a semiconductor device or display device with low power consumption can be provided. Or a highly reliable transistor, semiconductor device, or display device can be provided. Or a display device that can easily be made high-definition can be provided. Or a display device that can display at high luminance can be provided. Or a method for manufacturing a semiconductor device or display device with high productivity can be provided. Or a novel transistor, semiconductor device, display device, and a manufacturing method thereof can be provided.
なお、これらの効果の記載は、他の効果の存在を妨げるものではない。本発明の一態様は、必ずしも、これらの効果の全てを有する必要はない。明細書、図面、請求項の記載から、これら以外の効果を抽出することが可能である。 Note that the description of these effects does not preclude the existence of other effects. One embodiment of the present invention does not necessarily have to have all of these effects. Effects other than these can be extracted from the description in the specification, drawings, and claims.
図1A及び図1Bは、半導体装置の一例を示す上面図である。図1Cは、半導体装置の一例を示す断面図である。
図2A及び図2Bは、トランジスタの一例を示す断面図である。
図3Aは、トランジスタの一例を示す上面図である。図3Bは、トランジスタの一例を示す断面図である。図3C及び図3Dは、トランジスタの一例を示す上面図である。
図4Aは、トランジスタの一例を示す上面図である。図4Bは、トランジスタの一例を示す断面図である。
図5A乃至図5Fは、トランジスタの一例を示す断面図である。
図6A乃至図6Cは、半導体装置の作製方法の一例を示す断面図である。
図7A及び図7Bは、半導体装置の作製方法の一例を示す断面図である。
図8A及び図8Bは、半導体装置の作製方法の一例を示す断面図である。
図9A及び図9Bは、半導体装置の作製方法の一例を示す断面図である。
図10A及び図10Bは、トランジスタの一例を示す上面図である。
図11A及び図11Bは、表示装置の一例を示す斜視図である。
図12Aは、表示モジュールの構成例を説明するブロック図である。図12Bは、画素回路の構成例を説明する平面図である。図12C及び図12Dは、画素回路を含む構成の一例を説明する回路図である。
図13は、表示装置の一例を示す断面図である。
図14は、表示装置の一例を示す断面図である。
図15は、表示装置の一例を示す断面図である。
図16は、表示装置の一例を示す断面図である。
図17は、表示装置の一例を示す断面図である。
図18A乃至図18Gは、画素の一例を示す図である。
図19A乃至図19Kは、画素の一例を示す図である。
図20A乃至図20Fは、発光デバイスの構成例を示す図である。
図21A乃至図21Cは、発光デバイスの構成例を示す図である。
図22A乃至図22Dは、電子機器の一例を示す図である。
図23A乃至図23Fは、電子機器の一例を示す図である。
図24A乃至図24Gは、電子機器の一例を示す図である。
1A and 1B are top views illustrating an example of a semiconductor device, and FIG 1C is a cross-sectional view illustrating an example of the semiconductor device.
2A and 2B are cross-sectional views showing an example of a transistor.
Fig. 3A is a top view illustrating an example of a transistor, Fig. 3B is a cross-sectional view illustrating an example of a transistor, and Figs. 3C and 3D are top views illustrating an example of a transistor.
4A and 4B are a top view and a cross-sectional view illustrating an example of a transistor.
5A to 5F are cross-sectional views showing an example of a transistor.
6A to 6C are cross-sectional views showing an example of a method for manufacturing a semiconductor device.
7A and 7B are cross-sectional views illustrating an example of a method for manufacturing a semiconductor device.
8A and 8B are cross-sectional views showing an example of a method for manufacturing a semiconductor device.
9A and 9B are cross-sectional views illustrating an example of a method for manufacturing a semiconductor device.
10A and 10B are top views illustrating an example of a transistor.
11A and 11B are perspective views showing an example of a display device.
Fig. 12A is a block diagram illustrating an example of the configuration of a display module, Fig. 12B is a plan view illustrating an example of the configuration of a pixel circuit, and Fig. 12C and Fig. 12D are circuit diagrams illustrating an example of a configuration including a pixel circuit.
FIG. 13 is a cross-sectional view showing an example of a display device.
FIG. 14 is a cross-sectional view showing an example of a display device.
FIG. 15 is a cross-sectional view showing an example of a display device.
FIG. 16 is a cross-sectional view showing an example of a display device.
FIG. 17 is a cross-sectional view showing an example of a display device.
18A to 18G are diagrams showing an example of a pixel.
19A to 19K are diagrams showing an example of a pixel.
20A to 20F are diagrams showing configuration examples of a light-emitting device.
21A to 21C are diagrams showing configuration examples of a light-emitting device.
22A to 22D are diagrams showing an example of an electronic device.
23A to 23F are diagrams showing an example of an electronic device.
24A to 24G are diagrams showing an example of an electronic device.
実施の形態について、図面を用いて詳細に説明する。但し、本発明は以下の説明に限定されず、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。 The embodiments will be described in detail with reference to the drawings. However, the present invention is not limited to the following description, and those skilled in the art will easily understand that the form and details can be modified in various ways without departing from the spirit and scope of the present invention. Therefore, the present invention should not be interpreted as being limited to the description of the embodiments shown below.
なお、以下に説明する発明の構成において、同一部分または同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、その繰り返しの説明は省略する。また、同様の機能を指す場合には、ハッチングパターンを同じくし、特に符号を付さない場合がある。 In the configuration of the invention described below, the same parts or parts having similar functions are denoted by the same reference numerals in different drawings, and repeated explanations will be omitted. Also, when referring to similar functions, the same hatching pattern may be used and no particular reference numeral may be used.
また、図面において示す各構成の、位置、大きさ、及び、範囲などは、理解の簡単のため、実際の位置、大きさ、及び、範囲などを表していない場合がある。このため、開示する発明は、必ずしも、図面に開示された位置、大きさ、及び、範囲などに限定されない。 Furthermore, for ease of understanding, the position, size, range, etc. of each component shown in the drawings may not represent the actual position, size, range, etc. Therefore, the disclosed invention is not necessarily limited to the position, size, range, etc. disclosed in the drawings.
なお、本明細書等において、「第1」、「第2」という序数詞は、便宜上用いるものであり、構成要素の数、または、構成要素の順序(例えば、工程順、または積層順)を限定するものではない。また、本明細書のある箇所において構成要素に付す序数詞と、本明細書の他の箇所、または特許請求の範囲において、当該構成要素に付す序数詞と、が一致しない場合がある。 In this specification and the like, the ordinal numbers "first" and "second" are used for convenience and do not limit the number of components or the order of the components (e.g., the order of processes or the order of stacking). In addition, an ordinal number attached to a component in one place in this specification may not match an ordinal number attached to the same component in another place in this specification or in the claims.
なお、「膜」という言葉と、「層」という言葉とは、場合によっては、または、状況に応じて、互いに入れ替えることが可能である。例えば、「導電層」という用語を、「導電膜」という用語に変更することが可能である。または、例えば、「絶縁膜」という用語を、「絶縁層」という用語に変更することが可能である。 Note that the words "film" and "layer" can be interchanged depending on the circumstances. For example, the term "conductive layer" can be changed to the term "conductive film." Or, for example, the term "insulating film" can be changed to the term "insulating layer."
また、トランジスタは半導体素子の一種であり、電流または電圧を増幅する機能、及び、導通または非導通を制御するスイッチング動作などを実現することができる。本明細書におけるトランジスタは、IGFET(Insulated Gate Field Effect Transistor)及び薄膜トランジスタ(TFT:Thin Film Transistor)を含む。 A transistor is a type of semiconductor element that can perform functions such as amplifying current or voltage and switching operations that control conduction or non-conduction. In this specification, the term "transistor" includes IGFETs (Insulated Gate Field Effect Transistors) and thin film transistors (TFTs).
また、「ソース」と「ドレイン」の機能は、異なる極性のトランジスタを採用する場合、または回路動作において電流の方向が変化する場合などには入れ替わることがある。このため、本明細書においては、「ソース」と「ドレイン」の用語は、入れ替えて用いることができるものとする。 Furthermore, the functions of "source" and "drain" may be interchanged when transistors of different polarity are used, or when the direction of current changes during circuit operation. For this reason, in this specification, the terms "source" and "drain" can be used interchangeably.
本明細書等において、「電気的に接続」には、「何らかの電気的作用を有するもの」を介して接続されている場合が含まれる。ここで、「何らかの電気的作用を有するもの」は、接続対象間での電気信号の授受を可能とするものであれば、特に制限を受けない。例えば、「何らかの電気的作用を有するもの」には、電極または配線をはじめ、トランジスタなどのスイッチング素子、抵抗素子、コイル、その他の各種機能を有する素子などが含まれる。 In this specification, "electrically connected" includes cases where the connection is made via "something that has some kind of electrical action." Here, "something that has some kind of electrical action" is not particularly limited as long as it allows the transmission and reception of electrical signals between the connected objects. For example, "something that has some kind of electrical action" includes electrodes or wiring, as well as switching elements such as transistors, resistive elements, coils, and other elements with various functions.
本明細書等において、特に断りがない場合、オフ電流とは、トランジスタがオフ状態(非導通状態、遮断状態、ともいう)にあるときのソース−ドレイン間のリーク電流をいう。オフ状態とは、特に断りがない場合、nチャネル型トランジスタでは、ゲートとソースの間の電圧Vgsがしきい値電圧Vthよりも低い(pチャネル型トランジスタでは、Vthよりも高い)状態をいう。 In this specification and the like, unless otherwise specified, the off-state current refers to a leakage current between the source and drain when a transistor is in an off state (also referred to as a non-conducting state or a cut-off state). Unless otherwise specified, the off-state refers to a state in which the voltage Vgs between the gate and source of an n-channel transistor is lower than the threshold voltage Vth (higher than Vth for a p-channel transistor).
本明細書等において、ノーマリーオン特性とは、ゲートに電圧を印加しなくてもチャネルが存在し、トランジスタに電流が流れてしまう状態のことをいう。また、ノーマリーオフ特性とは、ゲートに電位を印加しない、またはゲートに接地電位を与えたときに、トランジスタに電流が流れない状態のことをいう。 In this specification, the normally-on characteristic refers to a state in which a channel exists and current flows through the transistor even when no voltage is applied to the gate. The normally-off characteristic refers to a state in which no current flows through the transistor when no potential is applied to the gate or when a ground potential is applied to the gate.
本明細書等において、ある構成要素の上面形状とは、平面視(上面視ともいう)における当該構成要素の輪郭形状のことをいう。また平面視とは、当該構成要素の被形成面、または当該構成要素が形成される支持体(例えば基板)の表面の法線方向から見ることをいう。 In this specification, the top surface shape of a certain component refers to the contour shape of the component when viewed from a planar view (also referred to as a top view). A planar view refers to a view from the normal direction of the surface on which the component is formed or the surface of the support (e.g., substrate) on which the component is formed.
本明細書等において「上面形状が概略一致」とは、積層した層と層との間で少なくとも輪郭の一部が重なることをいう。例えば、上層と下層とが、同一のマスクパターン、または一部が同一のマスクパターンにより加工された場合を含む。ただし、厳密には輪郭が重なり合わず、上層が下層の内側に位置すること、または上層が下層の外側に位置することもあり、この場合も「上面形状が概略一致」という場合がある。また、上面形状が一致または概略一致している場合、端部が揃っている、もしくは概略揃っている、または側端部が一致している、もしくは概略一致している、ということもできる。 In this specification, "top surface shapes roughly match" means that at least a portion of the contours of the stacked layers overlap. For example, this includes cases where the upper and lower layers are processed using the same mask pattern, or where a portion of the mask pattern is the same. However, strictly speaking, the contours may not overlap, and the upper layer may be located inside the lower layer, or outside the lower layer, in which case it may also be said that "top surface shapes roughly match." Furthermore, when the top surface shapes match or roughly match, it can also be said that the edges are aligned or roughly matched, or that the side edges are aligned or roughly matched.
なお、本明細書等において、テーパ形状とは、構造の側面の少なくとも一部が、基板面または被形成面に対して傾斜して設けられている形状のことを指す。例えば、傾斜した側面と基板面または被形成面とがなす角(テーパ角ともいう)が0度より大きく90度未満である領域を有すると好ましい。なお、構造の側面、基板面、及び被形成面は、必ずしも完全に平坦である必要はなく、微細な曲率を有する略平面状、または微細な凹凸を有する略平面状であってもよい。 In this specification and the like, a tapered shape refers to a shape in which at least a part of the side of the structure is inclined with respect to the substrate surface or the surface to be formed. For example, it is preferable to have a region in which the angle (also called the taper angle) between the inclined side and the substrate surface or the surface to be formed is greater than 0 degrees and less than 90 degrees. Note that the side of the structure, the substrate surface, and the surface to be formed do not necessarily need to be completely flat, and may be approximately planar with a fine curvature, or approximately planar with fine irregularities.
なお、本明細書等において、酸化窒化物とは、その組成として窒素よりも酸素の含有量が多い材料を指す。窒化酸化物とは、その組成として酸素よりも窒素の含有量が多い材料を指す。 In this specification, an oxynitride refers to a material whose composition contains more oxygen than nitrogen. An oxynitride refers to a material whose composition contains more nitrogen than oxygen.
水素、酸素、窒素などの元素の含有量の分析には、例えば、二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)、またはX線光電子分光法(XPS:X−ray Photoelectron Spectroscopy)を用いることができる。目的の元素の含有率が高い(例えば、0.5atomic%以上、または1atomic%以上)場合は、XPSが適している。一方、目的の元素の含有率が低い(例えば0.5atomic%以下、または1atomic%以下)場合には、SIMSが適している。元素の含有量を比較する際には、SIMSとXPSの両方の分析手法を用いた複合解析を行うことがより好ましい。 To analyze the content of elements such as hydrogen, oxygen, and nitrogen, for example, secondary ion mass spectrometry (SIMS) or X-ray photoelectron spectroscopy (XPS) can be used. XPS is suitable when the content of the target element is high (e.g., 0.5 atomic% or more, or 1 atomic% or more). On the other hand, SIMS is suitable when the content of the target element is low (e.g., 0.5 atomic% or less, or 1 atomic% or less). When comparing the content of elements, it is more preferable to perform a combined analysis using both SIMS and XPS analysis methods.
本明細書等において、AはBと接する、と記載されている場合、Aの少なくとも一部がBと接する。そのため、例えば、AはBと接する領域を有する、と言い換えることができる。 In this specification, when it is stated that A is in contact with B, at least a part of A is in contact with B. Therefore, for example, this can be rephrased as saying that A has an area in contact with B.
本明細書等において、AはB上に位置する、と記載されている場合、Aの少なくとも一部がB上に位置する。そのため、例えば、AはB上に位置する領域を有する、と言い換えることができる。 In this specification and the like, when it is stated that A is located on B, at least a part of A is located on B. Therefore, for example, it can be rephrased as saying that A has a region that is located on B.
本明細書等において、AはBと重なる、と記載されている場合、Aの少なくとも一部がBと重なる。そのため、例えば、AはBと重なる領域を有する、と言い換えることができる。 In this specification, when it is stated that A overlaps with B, at least a portion of A overlaps with B. Therefore, for example, this can be rephrased as saying that A has an area that overlaps with B.
本明細書等において、メタルマスク、またはFMM(ファインメタルマスク、高精細なメタルマスク)を用いて作製されるデバイスをMM(メタルマスク)構造のデバイスと呼称する場合がある。また、本明細書等において、メタルマスク、またはFMMを用いずに作製されるデバイスをMML(メタルマスクレス)構造のデバイスと呼称する場合がある。 In this specification, etc., a device fabricated using a metal mask or an FMM (fine metal mask, high-definition metal mask) may be referred to as a device with an MM (metal mask) structure. Also, in this specification, etc., a device fabricated without using a metal mask or an FMM may be referred to as a device with an MML (metal maskless) structure.
本明細書等では、発光波長が異なる発光素子(発光デバイスともいう)で発光層を作り分ける構造をSBS(Side By Side)構造と呼ぶ場合がある。SBS構造は、発光素子ごとに材料及び構成を最適化することができるため、材料及び構成の選択の自由度が高まり、輝度の向上及び信頼性の向上を図ることが容易となる。 In this specification, a structure in which different light-emitting layers are created for light-emitting elements (also called light-emitting devices) with different emission wavelengths may be referred to as an SBS (Side By Side) structure. The SBS structure allows the materials and configuration to be optimized for each light-emitting element, which increases the freedom to select materials and configurations and makes it easier to improve brightness and reliability.
本明細書等において、正孔または電子を、「キャリア」といって示す場合がある。具体的には、正孔注入層または電子注入層を「キャリア注入層」といい、正孔輸送層または電子輸送層を「キャリア輸送層」といい、正孔ブロック層または電子ブロック層を「キャリアブロック層」という場合がある。なお、上述のキャリア注入層、キャリア輸送層、及びキャリアブロック層は、明確に区別できない場合がある。また、1つの層が、キャリア注入層、キャリア輸送層、及びキャリアブロック層のうち2つまたは3つの機能を兼ねる場合がある。 In this specification and the like, holes or electrons may be referred to as "carriers". Specifically, the hole injection layer or electron injection layer may be referred to as the "carrier injection layer", the hole transport layer or electron transport layer may be referred to as the "carrier transport layer", and the hole block layer or electron block layer may be referred to as the "carrier block layer". Note that the above-mentioned carrier injection layer, carrier transport layer, and carrier block layer may not be clearly distinguishable. Also, one layer may have two or three functions among the carrier injection layer, carrier transport layer, and carrier block layer.
本明細書等において、発光素子は、一対の電極間にEL層を有する。EL層は、少なくとも発光層を有する。ここで、EL層が有する層(機能層ともいう)としては、発光層、キャリア注入層(正孔注入層及び電子注入層)、キャリア輸送層(正孔輸送層及び電子輸送層)、及び、キャリアブロック層(正孔ブロック層及び電子ブロック層)などが挙げられる。本明細書等において、受光素子(受光デバイスともいう)は、一対の電極間に少なくとも光電変換層として機能する活性層を有する。本明細書等では、一対の電極の一方を画素電極と記し、他方を共通電極と記すことがある。 In this specification, the light-emitting element has an EL layer between a pair of electrodes. The EL layer has at least a light-emitting layer. Here, the layers (also called functional layers) that the EL layer has include a light-emitting layer, a carrier injection layer (a hole injection layer and an electron injection layer), a carrier transport layer (a hole transport layer and an electron transport layer), and a carrier block layer (a hole block layer and an electron block layer). In this specification, the light-receiving element (also called a light-receiving device) has at least an active layer that functions as a photoelectric conversion layer between a pair of electrodes. In this specification, one of the pair of electrodes may be referred to as a pixel electrode, and the other as a common electrode.
本明細書等において、犠牲層(マスク層と呼称してもよい)とは、少なくとも発光層(より具体的には、EL層を構成する層のうち、島状に加工される層)の上方に位置し、製造工程中において、当該発光層を保護する機能を有する。 In this specification, the sacrificial layer (which may also be referred to as a mask layer) is located at least above the light-emitting layer (more specifically, the layer that is processed into an island shape among the layers that make up the EL layer) and has the function of protecting the light-emitting layer during the manufacturing process.
本明細書等において、段切れとは、層、膜、または電極が、被形成面の形状(例えば段差など)に起因して分断されてしまう現象を示す。 In this specification, step discontinuity refers to the phenomenon in which a layer, film, or electrode is separated due to the shape of the surface on which it is formed (e.g., a step, etc.).
(実施の形態1)
本実施の形態では、本発明の一態様の半導体装置について図1乃至図5を用いて説明する。
(Embodiment 1)
In this embodiment, a semiconductor device of one embodiment of the present invention will be described with reference to FIGS.
本実施の形態の半導体装置は、同一平面上に、少なくとも2種類の構造のトランジスタを有する。当該2種類の構造のトランジスタは、一部の工程を共通にして形成することができる。例えば、大きいオン電流が求められるトランジスタに一方のトランジスタを適用し、高い飽和特性が求められるトランジスタに他方のトランジスタを適用することにより、高い性能の半導体装置とすることができる。より具体的には、大きいオン電流が求まれるトランジスタにはチャネル長が極めて短い、縦型のトランジスタを適用する。一方、高い飽和特性が求められるトランジスタには、チャネル長が長く、かつ、バックゲートを有するプレーナ型のトランジスタを適用する。 The semiconductor device of this embodiment has transistors of at least two types of structures on the same plane. The transistors of the two types of structures can be formed by sharing some of the processes. For example, by applying one type of transistor to a transistor that requires a large on-current and applying the other type of transistor to a transistor that requires high saturation characteristics, a high-performance semiconductor device can be obtained. More specifically, a vertical transistor with an extremely short channel length is applied to a transistor that requires a large on-current. On the other hand, a planar transistor with a long channel length and a backgate is applied to a transistor that requires high saturation characteristics.
[構成例1]
図1Aに、トランジスタ100の上面図を示し、図1Bに、トランジスタ200の上面図を示し、図1Cに、トランジスタ100及びトランジスタ200の断面図を示す。図1Cは、トランジスタ200のチャネル長方向の断面図ともいえる。図2Aにトランジスタ100の拡大図を示し、図2Bにトランジスタ200の拡大図を示す。
[Configuration Example 1]
Fig. 1A shows a top view of a transistor 100, Fig. 1B shows a top view of a transistor 200, and Fig. 1C shows cross-sectional views of the transistor 100 and the transistor 200. Fig. 1C can also be said to be a cross-sectional view in the channel length direction of the transistor 200. Fig. 2A shows an enlarged view of the transistor 100, and Fig. 2B shows an enlarged view of the transistor 200.
トランジスタ100のゲート、ドレイン、またはソースのいずれかは、トランジスタ200のゲート、ドレイン、またはソースのいずれかと電気的に接続されていてもよい。 Any of the gate, drain, or source of transistor 100 may be electrically connected to any of the gate, drain, or source of transistor 200.
また、図1Cにおいて、絶縁層222上、トランジスタ100の酸化物層230B上、トランジスタ200の酸化物層230A上に絶縁層275が設けられ、絶縁層275上に絶縁層280が設けられている。図1Cにおいては、絶縁層275は、間に導電層242C及び絶縁層271Cを挟んで、酸化物層230B上に位置する。また、図1Cにおいては、絶縁層275は、間に導電層242A、導電層242B、絶縁層271A及び絶縁層271Bを挟んで、酸化物層230A上に位置する。トランジスタ100の導電層265とトランジスタ200の導電層260は、絶縁層275及び絶縁層280の開口内に設けられている。 1C, an insulating layer 275 is provided on the insulating layer 222, on the oxide layer 230B of the transistor 100, and on the oxide layer 230A of the transistor 200, and an insulating layer 280 is provided on the insulating layer 275. In FIG. 1C, the insulating layer 275 is located on the oxide layer 230B with the conductive layer 242C and the insulating layer 271C sandwiched therebetween. In FIG. 1C, the insulating layer 275 is located on the oxide layer 230A with the conductive layer 242A, the conductive layer 242B, the insulating layer 271A, and the insulating layer 271B sandwiched therebetween. The conductive layer 265 of the transistor 100 and the conductive layer 260 of the transistor 200 are provided in the openings of the insulating layer 275 and the insulating layer 280.
<トランジスタ100>
図1A及び図1Cに示すように、トランジスタ100は、導電層205Bと、導電層205B上の酸化物層230Bと、酸化物層230B上の導電層242Cと、酸化物層230B上の絶縁層255と、絶縁層255上の導電層265とを有する。さらに、絶縁層221、絶縁層224B、及び絶縁層271Cのうち一つ以上も、トランジスタ100の構成要素とみなすことができる。
<Transistor 100>
1A and 1C, the transistor 100 includes a conductive layer 205B, an oxide layer 230B on the conductive layer 205B, a conductive layer 242C on the oxide layer 230B, an insulating layer 255 on the oxide layer 230B, and a conductive layer 265 on the insulating layer 255. In addition, one or more of the insulating layer 221, the insulating layer 224B, and the insulating layer 271C can also be considered as components of the transistor 100.
図1Cには、絶縁層221が絶縁層220と、絶縁層220上の絶縁層222との積層構造を有する例を示す。なお、絶縁層221の構造はこれに限らない。例えば絶縁層220と絶縁層222のいずれかのみを用いる構造でもよいし、絶縁層220及び絶縁層222に加えて、さらなる絶縁層を有する構造であってもよい。 FIG. 1C shows an example in which insulating layer 221 has a laminated structure of insulating layer 220 and insulating layer 222 on insulating layer 220. Note that the structure of insulating layer 221 is not limited to this. For example, it may have a structure using only insulating layer 220 or insulating layer 222, or it may have a structure having an additional insulating layer in addition to insulating layer 220 and insulating layer 222.
絶縁層221及び絶縁層224Bを貫くように開口341が設けられており、導電層242を貫くように開口343が設けられており、絶縁層271C、絶縁層275及び絶縁層280を貫くように開口345が設けられている。なお、開口343と開口345は例えば、同じマスクを用いたエッチングにより形成することができる。また開口343と開口345は例えば、一括で開口することができるため、開口の側面がひと続きとなる場合がある。なお図を見やすくするため、開口341、開口343、及び開口345の符号は、図1A及び図1Cには表示せず、図2A等には表示する。 Opening 341 is provided so as to penetrate insulating layer 221 and insulating layer 224B, opening 343 is provided so as to penetrate conductive layer 242, and opening 345 is provided so as to penetrate insulating layer 271C, insulating layer 275, and insulating layer 280. Note that opening 343 and opening 345 can be formed, for example, by etching using the same mask. Also, opening 343 and opening 345 can be opened, for example, at the same time, so that the sides of the openings may be continuous. Note that, in order to make the figures easier to see, the symbols for opening 341, opening 343, and opening 345 are not shown in Figures 1A and 1C, but are shown in Figure 2A, etc.
開口の「側面」は開口の「側壁」と表現することもできる。 The "side" of an opening can also be expressed as the "sidewall" of the opening.
開口341、開口343、及び開口345はそれぞれ、導電層205Bと重畳する。また、開口341と開口343は、重畳する領域を有する。また、開口343と開口345は、重畳する領域を有する。 Opening 341, opening 343, and opening 345 each overlap with conductive layer 205B. Also, opening 341 and opening 343 have overlapping regions. Also, opening 343 and opening 345 have overlapping regions.
酸化物層230Bは、導電層205B上において導電層205Bと重畳する第1の領域を有する。第1の領域は、導電層205Bの上面を覆う。なお酸化物層230は第1の領域において、導電層205Bの上面と接することが好ましい。また、酸化物層230Bは、絶縁層221の開口341の側面を覆う第2の領域を有する。また、第2の領域は、絶縁層221の開口341の側面に加えて、絶縁層224Bの開口341の側面を覆っていてもよい。また、酸化物層230Bは、絶縁層221および絶縁層224B上に位置し、導電層242と重なる第3の領域を有する。導電層242は、酸化物層230Bの第3の領域の上面と接することが好ましい。 The oxide layer 230B has a first region that overlaps with the conductive layer 205B on the conductive layer 205B. The first region covers the upper surface of the conductive layer 205B. Note that the oxide layer 230 is preferably in contact with the upper surface of the conductive layer 205B in the first region. The oxide layer 230B also has a second region that covers the side surface of the opening 341 of the insulating layer 221. The second region may also cover the side surface of the opening 341 of the insulating layer 224B in addition to the side surface of the opening 341 of the insulating layer 221. The oxide layer 230B is located on the insulating layer 221 and the insulating layer 224B and has a third region that overlaps with the conductive layer 242. It is preferable that the conductive layer 242 be in contact with the upper surface of the third region of the oxide layer 230B.
酸化物層230Bにおいて、第1の領域と、第2の領域と、第3の領域と、は同じ成膜工程において形成される、ひと続きの膜であることが好ましい。よって、第1の領域、第2の領域、及び第3の領域は例えば、概略同じ膜厚となる。但し、成膜の条件などによっては、形成される膜厚が、領域により膜厚の分布を有する場合がある。酸化物層230Bにおいて、第1の領域における膜厚は例えば、第3の領域における膜厚の0.7倍以上1.3倍以下である。 In the oxide layer 230B, the first region, the second region, and the third region are preferably a continuous film formed in the same film formation process. Therefore, the first region, the second region, and the third region have, for example, approximately the same film thickness. However, depending on the film formation conditions, the formed film may have a film thickness distribution depending on the region. In the oxide layer 230B, the film thickness in the first region is, for example, 0.7 to 1.3 times the film thickness in the third region.
酸化物層230B、絶縁層255及び導電層265は、絶縁層221の開口341の内側に設けられる領域をそれぞれ、有する。ここで、酸化物層230Bにおいて開口341の内側に設けられている領域は、先に述べた第1の領域及び第3の領域の少なくとも一と共通の部分を有してもよい。また、酸化物層230Bは、絶縁層221、及び絶縁層224Bの側面を覆うように設けられている。 The oxide layer 230B, the insulating layer 255, and the conductive layer 265 each have a region that is provided inside the opening 341 of the insulating layer 221. Here, the region of the oxide layer 230B that is provided inside the opening 341 may have a portion in common with at least one of the first and third regions described above. In addition, the oxide layer 230B is provided so as to cover the side surfaces of the insulating layer 221 and the insulating layer 224B.
また、酸化物層230B、絶縁層255及び導電層265は、絶縁層224Bの開口341の内側に設けられる領域をそれぞれ、有する。 Furthermore, the oxide layer 230B, the insulating layer 255, and the conductive layer 265 each have an area that is provided inside the opening 341 of the insulating layer 224B.
絶縁層255は、開口341内において、酸化物層230Bを覆うように設けられている。 The insulating layer 255 is provided within the opening 341 to cover the oxide layer 230B.
また、絶縁層255及び導電層265は、導電層242Cの開口343の内側に設けられる領域と、絶縁層271Cの開口345の内側に設けられる領域と、絶縁層275の開口345の内側に設けられる領域と、絶縁層280の開口345の内側に設けられる領域と、をそれぞれ有する。 In addition, the insulating layer 255 and the conductive layer 265 each have a region provided inside the opening 343 of the conductive layer 242C, a region provided inside the opening 345 of the insulating layer 271C, a region provided inside the opening 345 of the insulating layer 275, and a region provided inside the opening 345 of the insulating layer 280.
導電層265は、開口345の内部に埋め込まれるように設けられている。絶縁層255、導電層265、及び絶縁層280は、上面の高さが一致または概略一致することが好ましい。 The conductive layer 265 is provided so as to be embedded inside the opening 345. It is preferable that the insulating layer 255, the conductive layer 265, and the insulating layer 280 have the same or approximately the same height at their upper surfaces.
絶縁層255は、トランジスタ100のゲート絶縁層として機能する。導電層265は、トランジスタ100のゲート電極として機能する。 The insulating layer 255 functions as a gate insulating layer for the transistor 100. The conductive layer 265 functions as a gate electrode for the transistor 100.
導電層205Bは、トランジスタ100のソース電極及びドレイン電極の一方として機能する。導電層242Cは、トランジスタ100のソース電極及びドレイン電極の他方として機能する。 The conductive layer 205B functions as one of the source electrode and drain electrode of the transistor 100. The conductive layer 242C functions as the other of the source electrode and drain electrode of the transistor 100.
酸化物層230Bは、トランジスタ100におけるチャネル形成領域を有する。酸化物層230Bにおいて例えば、導電層205Bと接する領域はソース領域及びドレイン領域の一方として機能し、導電層242Cと接する領域はソース領域及びドレイン領域の他方として機能し、ソース領域とドレイン領域の間にチャネル形成領域として機能する領域を有する。 The oxide layer 230B has a channel formation region in the transistor 100. For example, in the oxide layer 230B, a region in contact with the conductive layer 205B functions as one of the source region and the drain region, and a region in contact with the conductive layer 242C functions as the other of the source region and the drain region, and a region that functions as a channel formation region is provided between the source region and the drain region.
酸化物層230Bにおける、絶縁層221の開口341における側面と導電層265との間に位置する領域、及び、絶縁層224Bの開口341における側面と導電層265との間に位置する領域の少なくとも一つが、トランジスタ100のチャネル形成領域として機能する。また開口341において、絶縁層221、または絶縁層224Bにおける開口径がトランジスタ100のチャネル幅に相当する。これらの開口の径は、深さ方向で変化する場合がある。開口径として、断面視における絶縁層221、または絶縁層224Bの最も高い位置の径、最も低い位置の径、または、最も高い位置の径と最も低い位置の径の和の半分の径のいずれかを用いてもよい。また、開口の径として、絶縁層220の最も高い位置の径、絶縁層222の最も低い位置の径、絶縁層220の最も高い位置の径と最も低い位置の径の和の半分の径、絶縁層222の最も高い位置の径と最も低い位置の径の和の半分の径、等を用いてもよい。 At least one of the regions in the oxide layer 230B located between the side surface of the opening 341 in the insulating layer 221 and the conductive layer 265, and the regions located between the side surface of the opening 341 in the insulating layer 224B and the conductive layer 265 functions as a channel formation region of the transistor 100. In addition, in the opening 341, the opening diameter in the insulating layer 221 or the insulating layer 224B corresponds to the channel width of the transistor 100. The diameter of these openings may vary in the depth direction. As the opening diameter, any one of the diameters at the highest position, the diameter at the lowest position, or half the sum of the diameters at the highest position and the lowest position of the insulating layer 221 or the insulating layer 224B in a cross-sectional view may be used. The diameter of the opening may be the diameter at the highest point of the insulating layer 220, the diameter at the lowest point of the insulating layer 222, half the sum of the diameters at the highest and lowest points of the insulating layer 220, half the sum of the diameters at the highest and lowest points of the insulating layer 222, etc.
図2Aに、トランジスタ100のチャネル長L100とチャネル幅W100を示す。図2Aにおいて、チャネル長L100は、酸化物層230Bにおける、導電層242Cと接する部分と、導電層205Bと接する部分と、の最短距離ということができる。 Figure 2A shows the channel length L100 and channel width W100 of transistor 100. In Figure 2A, channel length L100 can be said to be the shortest distance between the part of oxide layer 230B that contacts conductive layer 242C and the part that contacts conductive layer 205B.
また、図2Aにおいては、開口341の外部において、導電層205Bと酸化物層230Bで上下を挟まれる領域に位置する絶縁層を絶縁層223と表す。図2Aにおいて絶縁層223は、絶縁層220、絶縁層222、及び絶縁層224Bの積層構造を有する。 In addition, in FIG. 2A, the insulating layer located outside the opening 341 in the region sandwiched between the conductive layer 205B and the oxide layer 230B is represented as insulating layer 223. In FIG. 2A, insulating layer 223 has a layered structure of insulating layer 220, insulating layer 222, and insulating layer 224B.
トランジスタ100では、絶縁層223の構成によって、酸化物層230Bのチャネル形成領域が変化する。例えば、絶縁層223の構成によっては、酸化物層230Bの絶縁層223と接する領域の一部のみがチャネル形成領域となる場合もあり、チャネル長L100は図2Aに示す長さよりも短くなる場合がある。 In the transistor 100, the channel formation region of the oxide layer 230B changes depending on the configuration of the insulating layer 223. For example, depending on the configuration of the insulating layer 223, only a part of the region of the oxide layer 230B that contacts the insulating layer 223 may become the channel formation region, and the channel length L100 may be shorter than the length shown in FIG. 2A.
例えば、絶縁層223における酸化物層230Bのチャネル形成領域と接する部分に、酸化物絶縁膜を用いることが好ましい。特に、加熱により酸素を放出する絶縁膜(例えば、酸化シリコン膜、酸化窒化シリコン膜など)を用いることが好ましい。酸素を放出する膜が接することにより、チャネル形成領域の酸素欠損を好適に低減することができる。 For example, it is preferable to use an oxide insulating film in the portion of the insulating layer 223 that contacts the channel formation region of the oxide layer 230B. In particular, it is preferable to use an insulating film that releases oxygen when heated (e.g., a silicon oxide film, a silicon oxynitride film, etc.). By contacting the film that releases oxygen, oxygen vacancies in the channel formation region can be suitably reduced.
また、当該絶縁膜の上下の一方または双方に、酸素及び水素の少なくとも一が拡散しにくい絶縁膜を用いることができる。また、酸素及び水素の両方が拡散しにくい絶縁膜を用いることが、好ましい。ここでは例えば、窒化シリコン膜、窒化酸化シリコン膜、酸化アルミニウム膜、酸化ハフニウム膜などを用いることができる。これにより、酸化物層230Bのチャネル形成領域に酸素を効率良く供給し、かつ、水素がチャネル形成領域へと拡散することを抑制できる。したがって、トランジスタ100の電気特性の安定化を図ることができる。 In addition, an insulating film through which at least one of oxygen and hydrogen does not easily diffuse can be used on either the top or bottom of the insulating film, or on both sides. It is preferable to use an insulating film through which both oxygen and hydrogen do not easily diffuse. For example, a silicon nitride film, a silicon nitride oxide film, an aluminum oxide film, a hafnium oxide film, or the like can be used here. This makes it possible to efficiently supply oxygen to the channel formation region of the oxide layer 230B and to suppress the diffusion of hydrogen into the channel formation region. Therefore, the electrical characteristics of the transistor 100 can be stabilized.
一例として、絶縁層224Bを、酸化物絶縁膜を有する構成とし、絶縁層220及び絶縁層222の少なくとも一を、酸素及び水素が拡散しにくい絶縁膜とすればよい。さらに具体的には例えば、絶縁層224Bを、酸化物絶縁膜と、酸素及び水素が拡散しにくい絶縁膜と、を下から順に積層した構成とすればよい。 As an example, the insulating layer 224B may have an oxide insulating film, and at least one of the insulating layers 220 and 222 may be an insulating film through which oxygen and hydrogen do not easily diffuse. More specifically, for example, the insulating layer 224B may be a stack of an oxide insulating film and an insulating film through which oxygen and hydrogen do not easily diffuse, in that order from the bottom.
あるいは一例として、絶縁層222を、酸化物絶縁膜とし、絶縁層220を、酸素及び水素が拡散しにくい絶縁膜とすればよい。このとき、絶縁層224Bは例えば、酸素及び水素が拡散しにくい絶縁膜を有する構成とすればよい。 Alternatively, as an example, the insulating layer 222 may be an oxide insulating film, and the insulating layer 220 may be an insulating film through which oxygen and hydrogen are unlikely to diffuse. In this case, the insulating layer 224B may be configured to have, for example, an insulating film through which oxygen and hydrogen are unlikely to diffuse.
図2Aにおいて、トランジスタ100のチャネル長L100は、断面視における絶縁層223の開口341の側面の長さに相当する。つまり、チャネル長L100は、絶縁層223の厚さ、及び絶縁層223の開口341の側面と絶縁層223の被形成面(ここでは、導電層205Bの上面)とのなす角の角度θ100で決まる。したがって、例えば、チャネル長L100を露光装置の限界解像度よりも小さな値とすることができ、微細なサイズのトランジスタを実現することができる。具体的には、従来のフラットパネルディスプレイの量産用の露光装置(例えば最小線幅2μmまたは1.5μm程度)では実現できなかった、極めて小さいチャネル長のトランジスタを実現することができる。また、最先端のLSI技術で用いられる極めて高額な露光装置を用いることなく、チャネル長が10nm未満のトランジスタを実現することもできる。 2A, the channel length L100 of the transistor 100 corresponds to the length of the side of the opening 341 of the insulating layer 223 in a cross-sectional view. In other words, the channel length L100 is determined by the thickness of the insulating layer 223 and the angle θ100 between the side of the opening 341 of the insulating layer 223 and the surface on which the insulating layer 223 is to be formed (here, the upper surface of the conductive layer 205B). Therefore, for example, the channel length L100 can be set to a value smaller than the limit resolution of the exposure device, and a transistor of a fine size can be realized. Specifically, it is possible to realize a transistor with an extremely small channel length that could not be realized with a conventional exposure device for mass production of flat panel displays (for example, a minimum line width of about 2 μm or 1.5 μm). In addition, it is also possible to realize a transistor with a channel length of less than 10 nm without using an extremely expensive exposure device used in cutting-edge LSI technology.
チャネル長L100は、例えば、5nm以上、7nm以上、または10nm以上であって、3μm未満、2.5μm以下、2μm以下、1.5μm以下、1.2μm以下、1μm以下、500nm以下、300nm以下、200nm以下、100nm以下、50nm以下、30nm以下、または20nm以下とすることができる。例えば、チャネル長L100を、100nm以上1μm以下とすることもできる。 The channel length L100 can be, for example, 5 nm or more, 7 nm or more, or 10 nm or more, and less than 3 μm, 2.5 μm or less, 2 μm or less, 1.5 μm or less, 1.2 μm or less, 1 μm or less, 500 nm or less, 300 nm or less, 200 nm or less, 100 nm or less, 50 nm or less, 30 nm or less, or 20 nm or less. For example, the channel length L100 can be 100 nm or more and 1 μm or less.
チャネル長L100を小さくすることにより、トランジスタ100のオン電流を高くすることができる。トランジスタ100を用いることにより、高速動作が可能な回路を作製することができる。さらには回路の占有面積を縮小することが可能となる。したがって、小型の半導体装置とすることができる。例えば、本発明の一態様の半導体装置を大型の表示装置、または高精細な表示装置に適用する際、配線数が増加した場合においても、各配線における信号遅延を低減することができ、表示ムラを抑制することができる。また、回路の占有面積を縮小できるため、表示装置の額縁を狭くすることができる。 By reducing the channel length L100, the on-state current of the transistor 100 can be increased. By using the transistor 100, a circuit capable of high-speed operation can be manufactured. Furthermore, the area occupied by the circuit can be reduced. Therefore, a small-sized semiconductor device can be obtained. For example, when the semiconductor device of one embodiment of the present invention is applied to a large display device or a high-definition display device, even if the number of wirings is increased, signal delay in each wiring can be reduced and display unevenness can be suppressed. Furthermore, since the area occupied by the circuit can be reduced, the frame of the display device can be narrowed.
絶縁層223の厚さ及び角度θ100を調整することにより、チャネル長L100を制御することができる。 The channel length L100 can be controlled by adjusting the thickness and angle θ100 of the insulating layer 223.
絶縁層223の厚さは、少なくとも酸化物層230Bよりも厚くすることができる。例えば、2nm以上、5nm以上、10nm以上、または50nm以上であって、500nm以下、400nm以下、300nm以下、200nm以下、150nm以下とすることができる。 The thickness of the insulating layer 223 can be at least thicker than the oxide layer 230B. For example, it can be 2 nm or more, 5 nm or more, 10 nm or more, or 50 nm or more, and 500 nm or less, 400 nm or less, 300 nm or less, 200 nm or less, or 150 nm or less.
絶縁層220の厚さは例えば、1nm以上100nm以下、2nm以上50nm以下、2nm以上20nm以下、または2nm以上10nm以下とすることができる。また、絶縁層222の厚さは例えば、2nm以上200nm以下、3nm以上100nm以下、または5nm以上50nm以下、または8nm以上30nm以下とすることができる。また、絶縁層222の厚さは例えば、絶縁層220より厚くすることができる。 The thickness of the insulating layer 220 can be, for example, 1 nm to 100 nm, 2 nm to 50 nm, 2 nm to 20 nm, or 2 nm to 10 nm. The thickness of the insulating layer 222 can be, for example, 2 nm to 200 nm, 3 nm to 100 nm, 5 nm to 50 nm, or 8 nm to 30 nm. The thickness of the insulating layer 222 can be, for example, thicker than the insulating layer 220.
また、絶縁層224Bの厚さは例えば、2nm以上300nm以下、3nm以上200nm以下、または5nm以上100nm以下、または8nm以上50nm以下とすることができる。また、絶縁層224Bの厚さは例えば、絶縁層220より厚くすることができる。 The thickness of the insulating layer 224B can be, for example, 2 nm to 300 nm, 3 nm to 200 nm, 5 nm to 100 nm, or 8 nm to 50 nm. The thickness of the insulating layer 224B can be, for example, thicker than the insulating layer 220.
絶縁層223の開口341の側面は、垂直形状、または、テーパ形状であることが好ましい。角度θ100は、90度以下であることが好ましい。角度θ100を小さくすることにより、絶縁層223上に設けられる層(例えば、酸化物層230B)の被覆性を高めることができる。また、角度θ100が小さいほど、チャネル長L100を大きくすることができ、角度θ100が大きいほど、チャネル長L100を小さくすることができる。本実施の形態では、絶縁層223の開口341の側面が垂直形状である例を示す(角度θ100が90度)。 The side of the opening 341 in the insulating layer 223 is preferably vertical or tapered. The angle θ100 is preferably 90 degrees or less. By reducing the angle θ100, the coverage of the layer (e.g., oxide layer 230B) provided on the insulating layer 223 can be improved. In addition, the smaller the angle θ100, the larger the channel length L100, and the larger the angle θ100, the smaller the channel length L100. In this embodiment, an example is shown in which the side of the opening 341 in the insulating layer 223 is vertical (angle θ100 is 90 degrees).
角度θ100は、例えば、30度以上、35度以上、40度以上、45度以上、50度以上、55度以上、60度以上、65度以上、または70度以上であって、90度以下、85度以下、または80度以下とすることができる。また、角度θ100は、75度以下、70度以下、65度以下、または60度以下としてもよい。 The angle θ100 can be, for example, 30 degrees or more, 35 degrees or more, 40 degrees or more, 45 degrees or more, 50 degrees or more, 55 degrees or more, 60 degrees or more, 65 degrees or more, or 70 degrees or more, and 90 degrees or less, 85 degrees or less, or 80 degrees or less. The angle θ100 may also be 75 degrees or less, 70 degrees or less, 65 degrees or less, or 60 degrees or less.
図2Aにおいて、導電層242Cの開口343の側面は、絶縁層221の開口341の側面より外側に位置している。また、絶縁層275及び絶縁層280の開口345の側面は、絶縁層221の開口341の側面よりも外側に位置する。開口345及び開口343が開口341よりも外側に位置することにより例えば、開口部341の側面、開口部343の側面、及び開口部345の側面に絶縁層255及び導電層265aを被覆する際の被覆性が高まる場合がある。 2A, the side of opening 343 in conductive layer 242C is located outside the side of opening 341 in insulating layer 221. Also, the side of opening 345 in insulating layer 275 and insulating layer 280 is located outside the side of opening 341 in insulating layer 221. By having openings 345 and 343 located outside opening 341, for example, coverage may be improved when insulating layer 255 and conductive layer 265a are applied to cover the side of opening 341, the side of opening 343, and the side of opening 345.
図3A及び図3Bには、トランジスタ100の上面図と断面図を示す。また、図3A及び図3Bに示すトランジスタ100においては、開口341の説明をしやすくするため、図1A及び図1Cに示すトランジスタ100と寸法などが異なる。 3A and 3B show a top view and a cross-sectional view of the transistor 100. In addition, the transistor 100 shown in FIGS. 3A and 3B has different dimensions from the transistor 100 shown in FIGS. 1A and 1C in order to make it easier to explain the opening 341.
トランジスタ100において、絶縁層221、絶縁層224Bが有する開口341の上面形状、導電層242Cが有する開口343の上面形状、絶縁層271C、絶縁層275、及び絶縁層280が有する開口345の上面形状はそれぞれ、円形とすることができる。このとき、トランジスタ100のチャネル幅W100は、開口343の円周の長さと一致する。このように、開口の上面形状が円形であると、他の形状に比べて、チャネル幅の小さいトランジスタを実現できる。 In the transistor 100, the top shape of the opening 341 in the insulating layer 221 and the insulating layer 224B, the top shape of the opening 343 in the conductive layer 242C, and the top shape of the opening 345 in the insulating layer 271C, the insulating layer 275, and the insulating layer 280 can each be circular. In this case, the channel width W100 of the transistor 100 is equal to the circumference of the opening 343. In this way, when the top shape of the opening is circular, a transistor with a smaller channel width can be realized compared to other shapes.
また、図3A及び図3Bに示すトランジスタ100では、開口341、開口343、及び開口345の上面形状は同心円である。 In addition, in the transistor 100 shown in Figures 3A and 3B, the top surface shapes of openings 341, 343, and 345 are concentric circles.
ここで、導電層242Cが開口341内に配置されると、導電層242Cが絶縁層255と酸化物層230Bの間に配置されてしまうため、トランジスタ100のチャネル形成領域が短くなる、あるいはチャネル形成領域を設けることが難しくなる。よって、導電層242Cは、開口341の外側に位置することが好ましい。よって、導電層242Cの開口343側の端部は、絶縁層221の開口341側の側端部より外側に位置することが好ましい。また、導電層242Cの開口343側の側端部は、絶縁層224Bの開口341側の側端部より外側に位置することが好ましい。開口343の開口径を、開口341より大きくすることにより、開口343を、開口341より外側に位置させることができる。 Here, if the conductive layer 242C is disposed in the opening 341, the conductive layer 242C will be disposed between the insulating layer 255 and the oxide layer 230B, shortening the channel formation region of the transistor 100 or making it difficult to provide a channel formation region. Therefore, it is preferable that the conductive layer 242C is located outside the opening 341. Therefore, it is preferable that the end of the conductive layer 242C on the opening 343 side is located outside the side end of the insulating layer 221 on the opening 341 side. In addition, it is preferable that the side end of the conductive layer 242C on the opening 343 side is located outside the side end of the insulating layer 224B on the opening 341 side. By making the opening diameter of the opening 343 larger than that of the opening 341, the opening 343 can be located outside the opening 341.
あるいは、導電層242Cの開口343側の端部が開口341の端部と一致または概略一致する場合がある。 Alternatively, the end of conductive layer 242C on the opening 343 side may coincide or approximately coincide with the end of opening 341.
また、開口343と開口345は同じマスクを用いて形成することができる。よって、開口345の開口径は例えば、開口343の開口径と一致または概略一致する。この場合には例えば、導電層242Cの開口343側の側端部と、絶縁層271Cの開口345側の側端部、絶縁層275の開口345側の側端部、及び絶縁層280の開口345側の側端部の少なくとも一は、一致または概略一致する。絶縁層275の開口345側の側端部は、絶縁層221の開口341側の側端部よりも外側に位置する領域を有することが好ましい。また、絶縁層280の開口345側の側端部は、絶縁層221の開口341側の側端部よりも外側に位置する領域を有することが好ましい。 Also, the openings 343 and 345 can be formed using the same mask. Therefore, for example, the opening diameter of the opening 345 is the same or approximately the same as the opening diameter of the opening 343. In this case, for example, at least one of the side end of the conductive layer 242C on the opening 343 side, the side end of the insulating layer 271C on the opening 345 side, the side end of the insulating layer 275 on the opening 345 side, and the side end of the insulating layer 280 on the opening 345 side is the same or approximately the same. It is preferable that the side end of the insulating layer 275 on the opening 345 side has an area located outside the side end of the insulating layer 221 on the opening 341 side. It is also preferable that the side end of the insulating layer 280 on the opening 345 side has an area located outside the side end of the insulating layer 221 on the opening 341 side.
なお、開口343と開口345を同じマスクを用いて形成した場合においても、エッチング条件などにより、一方の開口径が他方の開口径より大きくなる場合がある。 Even if openings 343 and 345 are formed using the same mask, the diameter of one opening may be larger than the diameter of the other opening depending on the etching conditions, etc.
図4A及び図4Bには、トランジスタ100の上面図と断面図を示す。図4A及び図4Bは、図3A及び図3Bの変形例である。 Figures 4A and 4B show a top view and a cross-sectional view of the transistor 100. Figures 4A and 4B are modifications of Figures 3A and 3B.
図4A及び図4Bに示すように、開口341の上面形状と開口343の上面形状において、中心がずれる場合がある。図4A及び図4Bにおいて、開口341の上面形状は円形である。また、開口343の上面形状も円形であり、開口径は開口341より大きい。ここで開口341の上面形状と開口343の上面形状において、円の中心は一致していない。このように、円の中心が一致しない場合にも、上面視において開口341が開口343の内側に位置することが好ましい。 As shown in Figures 4A and 4B, the centers of the top surface shapes of openings 341 and 343 may be misaligned. In Figures 4A and 4B, the top surface shape of opening 341 is circular. Furthermore, the top surface shape of opening 343 is also circular, and the opening diameter is larger than that of opening 341. Here, the centers of the circles of the top surface shapes of openings 341 and 343 do not coincide. Thus, even when the centers of the circles do not coincide, it is preferable that opening 341 is located inside opening 343 when viewed from above.
図4A及び図4Bに示す構成では、酸化物層230Bにおいて、チャネル長L100のばらつき、すなわち酸化物層230Bにおいて導電層205Bと接する部分と導電層242Cと接する部分との最短距離のばらつきが生じる。よって、図3A及び図3Bに示す構成では、図4A及び図4Bに示す構成と比較して、チャネル長のばらつきを抑制できる。一方、図4A及び図4Bに示す構成では、図3A及び図3Bと比較して、作製がより容易となる場合がある。 In the configuration shown in Figures 4A and 4B, the oxide layer 230B has a variation in channel length L100, i.e., a variation in the shortest distance between the portion of the oxide layer 230B that contacts the conductive layer 205B and the portion that contacts the conductive layer 242C. Therefore, the configuration shown in Figures 3A and 3B can suppress the variation in channel length compared to the configuration shown in Figures 4A and 4B. On the other hand, the configuration shown in Figures 4A and 4B may be easier to fabricate compared to Figures 3A and 3B.
フォトリソグラフィ法を用いて開口を形成する場合、開口の直径は露光装置の限界解像度以上となる。直径は、例えば、20nm以上、50nm以上、100nm以上、200nm以上、300nm以上、400nm以上、または、500nm以上であって、5.0μm未満、4.5μm以下、4.0μm以下、3.5μm以下、3.0μm以下、2.5μm以下、2.0μm以下、1.5μm以下、または1.0μm以下とすることができる。 When forming an opening using photolithography, the diameter of the opening is equal to or greater than the limit resolution of the exposure device. The diameter can be, for example, 20 nm or more, 50 nm or more, 100 nm or more, 200 nm or more, 300 nm or more, 400 nm or more, or 500 nm or more, and less than 5.0 μm, 4.5 μm or less, 4.0 μm or less, 3.5 μm or less, 3.0 μm or less, 2.5 μm or less, 2.0 μm or less, 1.5 μm or less, or 1.0 μm or less.
各層に設ける開口の上面形状に限定はなく、それぞれ、例えば、円形、楕円形、三角形、四角形(長方形、菱形、正方形を含む)、五角形、星形多角形などの多角形、またはこれら多角形の角が丸い形状とすることができる。なお、多角形としては、凹多角形(少なくとも一つの内角が180度を超える多角形)及び凸多角形(全ての内角が180度以下である多角形)のどちらであってもよい。なお、本明細書等において、円形とは真円に限定されない。 The top surface shape of the openings provided in each layer is not limited, and can be, for example, a circle, an ellipse, a triangle, a quadrangle (including a rectangle, a diamond, and a square), a pentagon, a star-shaped polygon, or any other polygon with rounded corners. The polygon may be either a concave polygon (a polygon with at least one interior angle exceeding 180 degrees) or a convex polygon (a polygon with all interior angles less than 180 degrees). In this specification, a circle is not limited to a perfect circle.
本明細書等において、ある膜における開口の上面形状とは、当該膜の開口側の上面端部の形状または下面端部の形状を指すことができる。 In this specification, the top surface shape of an opening in a film can refer to the shape of the top surface end or the shape of the bottom surface end on the opening side of the film.
図3C及び図3Dにはそれぞれ、トランジスタ100の上面図を示す。図3Cでは、開口341、開口343、及び開口345の上面形状が四角形である例を示す。また、図3Dでは、開口341、開口343、及び開口345の上面形状が楕円形である例を示す。 Figures 3C and 3D each show a top view of the transistor 100. Figure 3C shows an example in which the top shapes of the openings 341, 343, and 345 are rectangular. Figure 3D shows an example in which the top shapes of the openings 341, 343, and 345 are elliptical.
島状に設けられる各層の上面形状に限定は無く、それぞれ、例えば、円形、楕円形、三角形、四角形(長方形、菱形、正方形を含む)、五角形、星形多角形などの多角形、またはこれら多角形の角が丸い形状とすることができる。 There are no limitations on the shape of the top surface of each island-shaped layer, and each can be, for example, a circle, an ellipse, a triangle, a quadrangle (including a rectangle, a diamond, and a square), a pentagon, a star-shaped polygon, or any other polygon with rounded corners.
トランジスタ100は、ソース電極とドレイン電極とが、異なる高さに位置し、酸化物層を流れる電流は、高さ方向に流れる。すなわち、チャネル長方向が高さ方向(縦方向)の成分を有するといえるため、トランジスタ100は、VFET(Vertical Field Effect Transistor)、縦型トランジスタ、縦型チャネルトランジスタ、縦チャネル型トランジスタなどとも呼ぶことができる。 In the transistor 100, the source electrode and drain electrode are located at different heights, and the current flowing through the oxide layer flows in the height direction. In other words, it can be said that the channel length direction has a component in the height direction (vertical direction), so the transistor 100 can also be called a VFET (Vertical Field Effect Transistor), vertical transistor, vertical channel transistor, vertical channel transistor, etc.
トランジスタ100は、ソース電極、酸化物層、及びドレイン電極を、重ねて設けることができるため、酸化物層を平面状に配置した、いわゆるプレーナ型のトランジスタと比較して、占有面積を大幅に縮小できる。 Because the transistor 100 can have a source electrode, an oxide layer, and a drain electrode stacked on top of each other, the area occupied can be significantly reduced compared to a so-called planar type transistor in which the oxide layer is arranged in a planar shape.
図5Aには、トランジスタ100において、図1Cの二点鎖線で囲まれた領域の拡大図を示す。また、図5B及び図5Cには、図5Aの変形例を示す。 FIG. 5A shows an enlarged view of the area surrounded by the two-dot chain line in FIG. 1C in the transistor 100. Also, FIG. 5B and FIG. 5C show modified examples of FIG. 5A.
ここで、図5A及び図5Bに示す導電層205Bは、当該開口と重なる位置に凹部を有する。または、図5Cに示すように、導電層205Bには、凹部が設けられていなくてもよい。 Here, the conductive layer 205B shown in Figures 5A and 5B has a recess at a position overlapping the opening. Alternatively, as shown in Figure 5C, the conductive layer 205B may not have a recess.
図5A及び図5Bに示すように、導電層205Bに凹部が設けられている場合、酸化物層230Bは、導電層205Bの凹部の底面及び側面に接して設けられる。また、図5A及び図5Bでは、酸化物層230Bが導電層205Bの上面と接し、かつ、導電層205Bの凹部の内側に位置する領域を有する。 As shown in Figures 5A and 5B, when a recess is provided in the conductive layer 205B, the oxide layer 230B is provided in contact with the bottom and side surfaces of the recess in the conductive layer 205B. Also, in Figures 5A and 5B, the oxide layer 230B is in contact with the top surface of the conductive layer 205B and has a region located inside the recess in the conductive layer 205B.
図5A、図5B及び図5Cでは、酸化物層230Bにおける、絶縁層224Bの側面と接する領域が、導電層265と重なる。別言すると、酸化物層230Bにおける、絶縁層224Bの側面と接する領域が、導電層265と対向する。酸化物層230Bにおける、絶縁層224Bの側面と接する領域が、トランジスタ100のチャネル形成領域として機能する。絶縁層224Bとして酸化物絶縁膜を用いることにより、チャネル形成領域の酸素欠損を好適に低減できる。 In Figures 5A, 5B, and 5C, the region of the oxide layer 230B that contacts the side surface of the insulating layer 224B overlaps with the conductive layer 265. In other words, the region of the oxide layer 230B that contacts the side surface of the insulating layer 224B faces the conductive layer 265. The region of the oxide layer 230B that contacts the side surface of the insulating layer 224B functions as a channel formation region of the transistor 100. By using an oxide insulating film as the insulating layer 224B, oxygen vacancies in the channel formation region can be suitably reduced.
また、図5A及び図5Bでは、酸化物層230Bにおける、絶縁層224Bの側面と接する領域、及び、絶縁層222の側面と接する領域が、導電層265と重なる。別言すると、酸化物層230Bにおける、絶縁層224Bの側面と接する領域、及び、絶縁層222の側面と接する領域が、導電層265と対向する。そのため、図5Cに示す構成に比べて、ゲート電界がかかりにくい領域(オフセット領域)を少なくすることができ、好ましい。さらに図5Bでは、酸化物層230Bにおける、絶縁層220の側面と接する領域も、導電層265と重なる(導電層265と対向する)ため、図5Aに示す構成に比べて、オフセット領域を少なくすることができ、好ましい。これにより、オフセット領域に起因する電界効果移動度の低下を抑制できる。また、図5Cに示す構成においては、絶縁層220に開口を設けるエッチングにおいて、導電層205Bとのエッチングの選択比が高いため、導電層205Bが分断されることを抑制し、信頼性を高めることができる。 5A and 5B, the region of the oxide layer 230B that contacts the side of the insulating layer 224B and the region that contacts the side of the insulating layer 222 overlaps with the conductive layer 265. In other words, the region of the oxide layer 230B that contacts the side of the insulating layer 224B and the region that contacts the side of the insulating layer 222 face the conductive layer 265. Therefore, compared to the configuration shown in FIG. 5C, the region (offset region) to which the gate electric field is difficult to apply can be reduced, which is preferable. Furthermore, in FIG. 5B, the region of the oxide layer 230B that contacts the side of the insulating layer 220 also overlaps with the conductive layer 265 (faces the conductive layer 265), so compared to the configuration shown in FIG. 5A, the offset region can be reduced, which is preferable. This makes it possible to suppress the decrease in field effect mobility caused by the offset region. In addition, in the configuration shown in FIG. 5C, the etching selectivity with respect to the conductive layer 205B is high during etching to form an opening in the insulating layer 220, so that the conductive layer 205B is prevented from being broken and reliability can be improved.
<トランジスタ200>
図1B及び図1Cに示すように、トランジスタ200は、導電層205A、絶縁層221、絶縁層224A、酸化物層230A、導電層242A、導電層242B、絶縁層250、及び、導電層260を有する。さらに、絶縁層271A及び絶縁層271Bも、トランジスタ200の構成要素とみなすことができる。また、図1B及び図1Cに示す構成例では、絶縁層221が絶縁層220と、絶縁層220上の絶縁層222と、の積層構造を有する例を示す。
<Transistor 200>
1B and 1C, the transistor 200 includes a conductive layer 205A, an insulating layer 221, an insulating layer 224A, an oxide layer 230A, a conductive layer 242A, a conductive layer 242B, an insulating layer 250, and a conductive layer 260. Furthermore, the insulating layer 271A and the insulating layer 271B can also be considered as components of the transistor 200. In addition, in the configuration example shown in FIGS. 1B and 1C, an example is shown in which the insulating layer 221 has a stacked structure of an insulating layer 220 and an insulating layer 222 over the insulating layer 220.
絶縁層250は、トランジスタ200のゲート絶縁層(第1のゲート絶縁層ともいえる)として機能する。導電層260は、トランジスタ200のゲート電極(第1のゲート電極ともいえる)として機能する。 The insulating layer 250 functions as a gate insulating layer (also referred to as a first gate insulating layer) of the transistor 200. The conductive layer 260 functions as a gate electrode (also referred to as a first gate electrode) of the transistor 200.
絶縁層220、絶縁層222、及び絶縁層224Aは、トランジスタ200のバックゲート絶縁層(第2のゲート絶縁層ともいえる)として機能する。導電層205Aは、トランジスタ200のバックゲート電極(第2のゲート電極ともいえる)として機能する。 The insulating layer 220, the insulating layer 222, and the insulating layer 224A function as a back gate insulating layer (also referred to as a second gate insulating layer) of the transistor 200. The conductive layer 205A functions as a back gate electrode (also referred to as a second gate electrode) of the transistor 200.
導電層242Aは、トランジスタ200のソース電極及びドレイン電極の一方として機能する。導電層242Bは、トランジスタ200のソース電極及びドレイン電極の他方として機能する。 The conductive layer 242A functions as one of the source electrode and drain electrode of the transistor 200. The conductive layer 242B functions as the other of the source electrode and drain electrode of the transistor 200.
酸化物層230Aは、第4の領域と、第4の領域を挟むように設けられる第5の領域及び第6の領域と、を有する。トランジスタ200において、第4の領域はチャネル形成領域として機能することができ、第5の領域はソース領域及びドレイン領域の一方として機能することができ、第6の領域はソース領域及びドレイン領域の他方として機能することができる。第4の領域の少なくとも一部は、導電層260と重なる。第5の領域及び第6の領域のうち、一方は導電層242Aと重なり、他方は導電層242Bに重なる。第1の領域の少なくとも一部は、絶縁層250を介して導電層260と重なり、かつ、絶縁層220、絶縁層222、絶縁層224Aを介して、導電層205Aと重なる。 The oxide layer 230A has a fourth region and a fifth region and a sixth region that are provided so as to sandwich the fourth region. In the transistor 200, the fourth region can function as a channel formation region, the fifth region can function as one of the source region and the drain region, and the sixth region can function as the other of the source region and the drain region. At least a part of the fourth region overlaps with the conductive layer 260. One of the fifth region and the sixth region overlaps with the conductive layer 242A, and the other overlaps with the conductive layer 242B. At least a part of the first region overlaps with the conductive layer 260 via the insulating layer 250, and overlaps with the conductive layer 205A via the insulating layer 220, the insulating layer 222, and the insulating layer 224A.
絶縁層275及び絶縁層280を貫くように開口346が設けられている。なお図を見やすくするため、開口346については、図1B及び図1Cには表示せず、図2B等には表示する。 An opening 346 is provided so as to penetrate insulating layer 275 and insulating layer 280. To make the figures easier to see, opening 346 is not shown in Figures 1B and 1C, but is shown in Figure 2B etc.
絶縁層250及び導電層260は、絶縁層275の開口346の内側に設けられる領域と、絶縁層280の開口346の内側に設けられる領域と、を有する。 The insulating layer 250 and the conductive layer 260 have a region provided inside the opening 346 of the insulating layer 275 and a region provided inside the opening 346 of the insulating layer 280.
開口346は導電層205Aと重畳する。 Opening 346 overlaps conductive layer 205A.
絶縁層250は、酸化物層230Aの上面、導電層242Aの側面、導電層242Bの側面、絶縁層271Aの側面、絶縁層271Bの側面、絶縁層275の開口346の側面、及び、絶縁層280の開口346の側面を覆うように設けられている。 The insulating layer 250 is provided to cover the upper surface of the oxide layer 230A, the side of the conductive layer 242A, the side of the conductive layer 242B, the side of the insulating layer 271A, the side of the insulating layer 271B, the side of the opening 346 of the insulating layer 275, and the side of the opening 346 of the insulating layer 280.
導電層260は、開口346の内部に埋め込まれるように設けられている。絶縁層250、導電層260、及び絶縁層280は、上面の高さが一致または概略一致することが好ましい。 The conductive layer 260 is provided so as to be embedded inside the opening 346. It is preferable that the insulating layer 250, the conductive layer 260, and the insulating layer 280 have the same or approximately the same height at their upper surfaces.
図5Dに、トランジスタ200のチャネル幅方向の断面図を示す。また、図5Dにおいて一点鎖線で囲む領域の拡大図を図5Eに示し、図5Eの変形例を図5Fに示す。図5Eに示すように、絶縁層275、及び絶縁層280は、絶縁層222に達する開口を有することが好ましい。なお、絶縁層275に開口を設けなくてもよい場合がある。この場合、絶縁層280には、絶縁層275に達する開口が設けられる。または、図5Fに示すように、絶縁層222に凹部が設けられていてもよい。あるいは、絶縁層222に、絶縁層220に達する開口が設けられていてもよい。 Figure 5D shows a cross-sectional view of the transistor 200 in the channel width direction. Figure 5E shows an enlarged view of the area surrounded by the dashed line in Figure 5D, and a modified example of Figure 5E is shown in Figure 5F. As shown in Figure 5E, it is preferable that the insulating layer 275 and the insulating layer 280 have an opening that reaches the insulating layer 222. Note that there are cases where an opening does not need to be provided in the insulating layer 275. In this case, an opening that reaches the insulating layer 275 is provided in the insulating layer 280. Alternatively, as shown in Figure 5F, a recess may be provided in the insulating layer 222. Alternatively, an opening that reaches the insulating layer 220 may be provided in the insulating layer 222.
酸化物層230Aに達する開口と、絶縁層222または絶縁層220に達する開口と、を覆うように、絶縁層250が設けられ、絶縁層250上に、導電層260が設けられている。絶縁層224Aを島状に設けることで、導電層260の下面の少なくとも一部を、酸化物層230Aの下面より下に設けることができる。これにより、酸化物層230Aの上面及び側面に対向して、導電層260を設けることができるため、導電層260の電界を酸化物層230Aの上面及び側面に作用させることができる。 An insulating layer 250 is provided to cover the opening that reaches the oxide layer 230A and the opening that reaches the insulating layer 222 or the insulating layer 220, and a conductive layer 260 is provided on the insulating layer 250. By providing the insulating layer 224A in an island shape, at least a part of the lower surface of the conductive layer 260 can be provided below the lower surface of the oxide layer 230A. This allows the conductive layer 260 to be provided facing the upper surface and side surface of the oxide layer 230A, so that the electric field of the conductive layer 260 can be applied to the upper surface and side surface of the oxide layer 230A.
トランジスタ200のチャネル長は、導電層260の幅によって決定できるため、縦型トランジスタであるトランジスタ100に比べて、チャネル長の設計の自由度が高い。例えば、半導体装置が複数のトランジスタ200を有する場合、全てのトランジスタ200のチャネル長が同じ長さであってもよく、一部のトランジスタ200のチャネル長が、他のトランジスタ200のチャネル長と異なっていてもよい。トランジスタ100のチャネル長よりもトランジスタ200のチャネル長を長くすることで、トランジスタ200を飽和特性が良好なトランジスタとすることができる。 The channel length of the transistor 200 can be determined by the width of the conductive layer 260, so there is a higher degree of freedom in designing the channel length compared to the transistor 100, which is a vertical transistor. For example, when a semiconductor device has multiple transistors 200, the channel lengths of all the transistors 200 may be the same, or the channel lengths of some of the transistors 200 may be different from the channel lengths of the other transistors 200. By making the channel length of the transistor 200 longer than the channel length of the transistor 100, the transistor 200 can be made to have good saturation characteristics.
各トランジスタにおいて、チャネル形成領域は、ソース領域及びドレイン領域よりも、酸素欠損が少ない、または不純物濃度が低いため、キャリア濃度が低い高抵抗領域である。よって、チャネル形成領域は、i型(真性)または実質的にi型であるということができる。 In each transistor, the channel formation region is a high-resistance region with a low carrier concentration because it has fewer oxygen vacancies or a lower impurity concentration than the source and drain regions. Therefore, the channel formation region can be said to be i-type (intrinsic) or substantially i-type.
また、ソース領域及びドレイン領域は、酸素欠損が多い、または水素、窒素、金属元素などの不純物濃度が高いため、キャリア濃度が高い低抵抗領域である。すなわち、ソース領域及びドレイン領域は、チャネル形成領域と比較してキャリア濃度が高い、n型の領域(低抵抗領域)である。 The source and drain regions are low-resistance regions with high carrier concentrations due to a large number of oxygen vacancies or high concentrations of impurities such as hydrogen, nitrogen, and metal elements. In other words, the source and drain regions are n-type regions (low-resistance regions) with a high carrier concentration compared to the channel formation region.
なお、チャネル形成領域のキャリア濃度は、1×1018cm−3以下、1×1017cm−3未満、1×1016cm−3未満、1×1015cm−3未満、1×1014cm−3未満、1×1013cm−3未満、1×1012cm−3未満、1×1011cm−3未満、または、1×1010cm−3未満であることが好ましい。また、チャネル形成領域のキャリア濃度の下限値については、特に限定は無いが、例えば、1×10−9cm−3とすることができる。 The carrier concentration of the channel formation region is preferably 1×10 18 cm −3 or less, less than 1×10 17 cm −3 , less than 1×10 16 cm −3 , less than 1×10 15 cm −3 , less than 1×10 14 cm −3 , less than 1×10 13 cm −3 , less than 1×10 12 cm −3 , less than 1×10 11 cm −3 , or less than 1×10 10 cm −3 . The lower limit of the carrier concentration of the channel formation region is not particularly limited, but may be, for example, 1×10 −9 cm −3 .
なお、酸化物層230A及び酸化物層230Bのキャリア濃度を低くする場合においては、酸化物層230A及び酸化物層230B中の不純物濃度を低くし、欠陥準位密度を低くする。本明細書等において、不純物濃度が低く、欠陥準位密度の低いことを高純度真性または実質的に高純度真性という。なお、キャリア濃度の低い酸化物半導体(または金属酸化物)を、高純度真性または実質的に高純度真性な酸化物半導体(または金属酸化物)と呼ぶ場合がある。 When the carrier concentration of the oxide layer 230A and the oxide layer 230B is reduced, the impurity concentration in the oxide layer 230A and the oxide layer 230B is reduced to reduce the defect state density. In this specification and the like, a low impurity concentration and a low defect state density are referred to as high purity intrinsic or substantially high purity intrinsic. An oxide semiconductor (or metal oxide) with a low carrier concentration may be referred to as a high purity intrinsic or substantially high purity intrinsic oxide semiconductor (or metal oxide).
トランジスタ100の電気特性を安定にするためには、酸化物層230B中の不純物濃度を低減することが有効である。トランジスタ200の電気特性を安定にするためには、酸化物層230A中の不純物濃度を低減することが有効である。酸化物層230A及び酸化物層230Bの不純物濃度を低減するためには、近接する膜中の不純物濃度も低減することが好ましい。不純物としては、水素、窒素、アルカリ金属、アルカリ土類金属、鉄、ニッケル、シリコン等がある。なお、酸化物層230A中の不純物とは、例えば、酸化物層230Aを構成する主成分以外をいう。例えば、濃度が0.1原子%未満の元素は不純物といえる。酸化物層230B中の不純物についても同様である。 In order to stabilize the electrical characteristics of the transistor 100, it is effective to reduce the impurity concentration in the oxide layer 230B. In order to stabilize the electrical characteristics of the transistor 200, it is effective to reduce the impurity concentration in the oxide layer 230A. In order to reduce the impurity concentrations of the oxide layers 230A and 230B, it is preferable to also reduce the impurity concentration in the adjacent films. Examples of impurities include hydrogen, nitrogen, alkali metals, alkaline earth metals, iron, nickel, silicon, and the like. Note that the impurities in the oxide layer 230A refer to, for example, anything other than the main component constituting the oxide layer 230A. For example, an element with a concentration of less than 0.1 atomic % can be said to be an impurity. The same applies to impurities in the oxide layer 230B.
また、酸化物層230B及び酸化物層230Aにおいて、各領域の境界を明確に検出することが困難な場合がある。各領域内で検出される金属元素、並びに、水素、及び窒素などの不純物元素の濃度は、領域ごとの段階的な変化に限らず、各領域内でも連続的に変化していてもよい。つまり、チャネル形成領域に近い領域であるほど、金属元素、並びに、水素、及び窒素などの不純物元素の濃度が減少していてもよい。 In addition, it may be difficult to clearly detect the boundaries between the regions in the oxide layer 230B and the oxide layer 230A. The concentrations of metal elements and impurity elements such as hydrogen and nitrogen detected in each region may change continuously within each region, not limited to a gradual change from region to region. In other words, the concentrations of metal elements and impurity elements such as hydrogen and nitrogen may decrease in the region closer to the channel formation region.
<半導体装置>
次に、図1Cに示す半導体装置における積層構造について説明する。
<Semiconductor Device>
Next, the stacked structure of the semiconductor device shown in FIG. 1C will be described.
絶縁層216、導電層205A、及び導電層205Bは、絶縁層215上に設けられている。導電層205A及び導電層205Bは、絶縁層216の開口に埋め込まれるように設けられている。絶縁層216、導電層205A、及び導電層205Bは、上面の高さが一致または概略一致することが好ましい。 Insulating layer 216, conductive layer 205A, and conductive layer 205B are provided on insulating layer 215. Conductive layer 205A and conductive layer 205B are provided so as to be embedded in the openings of insulating layer 216. It is preferable that insulating layer 216, conductive layer 205A, and conductive layer 205B have the same or approximately the same height at the top surface.
絶縁層216、導電層205A、及び導電層205B上に、絶縁層221が設けられている。 An insulating layer 221 is provided on the insulating layer 216, the conductive layer 205A, and the conductive layer 205B.
絶縁層221上に、少なくとも一部が導電層205Bと重なるように、絶縁層224B、酸化物層230B、導電層242C、及び絶縁層271Cがこの順で積層されている。 Insulating layer 224B, oxide layer 230B, conductive layer 242C, and insulating layer 271C are stacked in this order on insulating layer 221 so that at least a portion of them overlap conductive layer 205B.
絶縁層224B、酸化物層230B、導電層242C、及び、絶縁層271Cは、一括で島状に加工することができる。これにより、半導体装置の生産性を高めることができる。一括で島状に加工する場合、例えば、導電層242Cの側端部は、酸化物層230Bの側端部と一致または概略一致する領域を有する。また例えば、絶縁層224Bの側端部は、酸化物層230Bの側端部と一致または概略一致する領域を有する。 The insulating layer 224B, the oxide layer 230B, the conductive layer 242C, and the insulating layer 271C can be processed collectively into an island shape. This can increase the productivity of the semiconductor device. When processed collectively into an island shape, for example, the side edge of the conductive layer 242C has an area that coincides or roughly coincides with the side edge of the oxide layer 230B. Also, for example, the side edge of the insulating layer 224B has an area that coincides or roughly coincides with the side edge of the oxide layer 230B.
一括で島状に加工する場合、例えば、図1Cに示すような構造が実現できる。具体的には、トランジスタ100の断面視において、導電層242Cの側端部は、酸化物層230Bの側端部と一致または概略一致する。さらに、絶縁層224Bの側端部は、酸化物層230Bの側端部と一致または概略一致する。 When processing the layers into an island shape all at once, for example, a structure as shown in FIG. 1C can be realized. Specifically, in a cross-sectional view of the transistor 100, the side end of the conductive layer 242C coincides or roughly coincides with the side end of the oxide layer 230B. Furthermore, the side end of the insulating layer 224B coincides or roughly coincides with the side end of the oxide layer 230B.
導電層242C上には、絶縁層271Cが設けられていてもよい。絶縁層271Cは、前述の一括で島状に加工する工程における、導電層242Cを保護するエッチングストッパとして機能することができる。 An insulating layer 271C may be provided on the conductive layer 242C. The insulating layer 271C can function as an etching stopper that protects the conductive layer 242C in the process of processing the conductive layer 242C into an island shape at once.
絶縁層224B、酸化物層230B、導電層242C、及び絶縁層271Cの側面、及び、絶縁層271Cの上面を覆うように、絶縁層275が設けられ、絶縁層275を覆うように、絶縁層280が設けられている。 An insulating layer 275 is provided to cover the side surfaces of insulating layer 224B, oxide layer 230B, conductive layer 242C, and insulating layer 271C, as well as the top surface of insulating layer 271C, and an insulating layer 280 is provided to cover insulating layer 275.
また図1C等において絶縁層275は、絶縁層271Cを間に挟んで導電層242Cの上面を覆っている。 In FIG. 1C etc., insulating layer 275 covers the upper surface of conductive layer 242C with insulating layer 271C sandwiched therebetween.
絶縁層255は、導電層242Cの側面、絶縁層271Cの側面、絶縁層275の側面、及び絶縁層280の側面に接して設けられている。絶縁層255上に、導電層265が設けられている。 The insulating layer 255 is provided in contact with the side surface of the conductive layer 242C, the side surface of the insulating layer 271C, the side surface of the insulating layer 275, and the side surface of the insulating layer 280. The conductive layer 265 is provided on the insulating layer 255.
また、絶縁層221上に、少なくとも一部が導電層205Aと重なるように、絶縁層224A、及び、酸化物層230Aがこの順で積層されている。そして、酸化物層230A上には、導電層242Aと導電層242Bが互いに離隔して設けられている。 Insulating layer 224A and oxide layer 230A are laminated in this order on insulating layer 221 so that at least a portion of them overlaps conductive layer 205A. Conductive layer 242A and conductive layer 242B are provided on oxide layer 230A and spaced apart from each other.
絶縁層224A、酸化物層230A、並びに、導電層242A及び導電層242Bとなる導電層(導電層242D)は、一括で島状に加工することができる(導電層242Dについては後の図7A等で詳述する)。これにより、半導体装置の生産性を高めることができる。一括で島状に加工する場合、例えば、導電層242の側端部は、酸化物層230Aの側端部と一致または概略一致する領域を有する。また例えば、絶縁層224Aの側端部は、酸化物層230Aの側端部と一致または概略一致する領域を有する。 The insulating layer 224A, the oxide layer 230A, and the conductive layer (conductive layer 242D) that will become the conductive layer 242A and the conductive layer 242B can be processed into an island shape all at once (conductive layer 242D will be described in detail later in FIG. 7A, etc.). This can improve the productivity of the semiconductor device. When processed into an island shape all at once, for example, the side edge of the conductive layer 242 has an area that coincides or roughly coincides with the side edge of the oxide layer 230A. Also, for example, the side edge of the insulating layer 224A has an area that coincides or roughly coincides with the side edge of the oxide layer 230A.
一括で島状に加工する場合、例えば、図1Cに示すような構造が実現できる。具体的には、トランジスタ200の断面視において、導電層242Aの側端部の一方は、酸化物層230Aの側端部の一方と一致または概略一致し、導電層242Bの側端部の一方は、酸化物層230Aの側端部の他方と一致または概略一致する。さらに、絶縁層224Aの側端部は、酸化物層230Aの側端部と一致または概略一致する。 When processing into an island shape all at once, for example, a structure as shown in FIG. 1C can be realized. Specifically, in a cross-sectional view of the transistor 200, one side end of the conductive layer 242A coincides or roughly coincides with one side end of the oxide layer 230A, and one side end of the conductive layer 242B coincides or roughly coincides with the other side end of the oxide layer 230A. Furthermore, the side end of the insulating layer 224A coincides or roughly coincides with the side end of the oxide layer 230A.
導電層242A上には、絶縁層271Aが設けられていてもよく、導電層242B上には、絶縁層271Bが設けられていてもよい。絶縁層271A及び絶縁層271Bとなる絶縁層(絶縁層271D)は、前述の一括で島状に加工する工程における、導電層242D(導電層242A及び導電層242Bとなる導電層)を保護するエッチングストッパとして機能することができる(絶縁層271Dについては後の図7A等で詳述する)。 An insulating layer 271A may be provided on conductive layer 242A, and an insulating layer 271B may be provided on conductive layer 242B. The insulating layer (insulating layer 271D) that becomes insulating layer 271A and insulating layer 271B can function as an etching stopper that protects conductive layer 242D (conductive layer that becomes conductive layer 242A and conductive layer 242B) in the process of processing the conductive layer into an island shape at once (insulating layer 271D will be described in detail later in FIG. 7A, etc.).
導電層242A、導電層242B、及び導電層242Cは、同じ導電層から加工して形成することができる。また、絶縁層271A、絶縁層271B、及び絶縁層271Cは、同じ絶縁層から加工して形成することができる。 Conductive layer 242A, conductive layer 242B, and conductive layer 242C can be formed by processing the same conductive layer. Also, insulating layer 271A, insulating layer 271B, and insulating layer 271C can be formed by processing the same insulating layer.
絶縁層224A、酸化物層230A、導電層242A、導電層242B、絶縁層271A、及び絶縁層271Bの側面、並びに、絶縁層271A及び絶縁層271Bの上面を覆うように、絶縁層275が設けられ、絶縁層275を覆うように、絶縁層280が設けられている。 An insulating layer 275 is provided to cover the side surfaces of insulating layer 224A, oxide layer 230A, conductive layer 242A, conductive layer 242B, insulating layer 271A, and insulating layer 271B, as well as the top surfaces of insulating layer 271A and insulating layer 271B, and an insulating layer 280 is provided to cover insulating layer 275.
また図1C等において絶縁層275は、絶縁層271Aを間に挟んで導電層242Aの上面を覆う領域と、絶縁層271Bを間に挟んで導電層242Bの上面を覆う領域と、を有する。 In FIG. 1C etc., insulating layer 275 has a region that covers the upper surface of conductive layer 242A with insulating layer 271A sandwiched therebetween, and a region that covers the upper surface of conductive layer 242B with insulating layer 271B sandwiched therebetween.
絶縁層255と絶縁層250は、同じ絶縁層から加工して形成することができる。 Insulating layer 255 and insulating layer 250 can be formed by processing the same insulating layer.
開口345及び開口346の内壁の側面は、垂直形状、または、テーパ形状であることが好ましい。開口345及び開口346の内壁の側面と、絶縁層271の被形成面との角度が垂直、あるいは垂直の近傍の角度である場合には、被覆性の高い成膜方法を用いて、絶縁層255及び絶縁層250となる絶縁層を形成することが好ましい。開口345及び開口346の内壁の側面と、絶縁層271の被形成面との角度が垂直、あるいは垂直の近傍の角度とすることにより、トランジスタ100及びトランジスタ200の上面からみた面積を縮小することができる。 The side surfaces of the inner walls of the openings 345 and 346 are preferably vertical or tapered. When the angle between the side surfaces of the inner walls of the openings 345 and 346 and the surface on which the insulating layer 271 is to be formed is vertical or close to vertical, it is preferable to form the insulating layers that become the insulating layers 255 and 250 using a film formation method with high coverage. By making the angle between the side surfaces of the inner walls of the openings 345 and 346 and the surface on which the insulating layer 271 is to be formed vertical or close to vertical, the area of the transistors 100 and 200 as viewed from the top can be reduced.
ここで、本明細書等において、少なくとも第1のゲート電極の電界によって、チャネル形成領域を電気的に取り囲むトランジスタの構造を、surrounded channel(S−channel)構造とよぶ。また、本明細書等で開示するS−channel構造は、Fin型構造及びプレーナ型構造とは異なる構造を有する。一方で、本明細書等で開示するS−channel構造は、Fin型構造の一種として捉えることも可能である。なお、本明細書等において、Fin型構造とは、ゲート電極が少なくともチャネルの2面以上(具体的には、2面、3面、または4面等)を包むように配置される構造を示す。Fin型構造、及びS−channel構造を採用することで、短チャネル効果に対する耐性を高める、別言すると短チャネル効果が発生し難いトランジスタとすることができる。 Here, in this specification, the structure of a transistor in which the electric field of at least the first gate electrode electrically surrounds the channel formation region is called a surrounded channel (S-channel) structure. The S-channel structure disclosed in this specification has a structure different from the Fin type structure and the planar type structure. On the other hand, the S-channel structure disclosed in this specification can also be regarded as a type of Fin type structure. In this specification, the Fin type structure refers to a structure in which the gate electrode is arranged to surround at least two or more sides of the channel (specifically, two, three, or four sides, etc.). By adopting the Fin type structure and the S-channel structure, it is possible to increase the resistance to the short channel effect, in other words, to make a transistor in which the short channel effect is less likely to occur.
トランジスタ200を、上記のS−channel構造とすることで、チャネル形成領域を電気的に取り囲むことができる。なお、S−channel構造は、チャネル形成領域を電気的に取り囲んでいる構造であるため、実質的にGAA(Gate All Around)構造、またはLGAA(Lateral Gate All Around)構造と、同等の構造であるともいえる。トランジスタ200をS−channel構造、GAA構造、またはLGAA構造とすることで、酸化物層230Aと絶縁層250との界面または界面近傍に形成されるチャネル形成領域を、酸化物層230Aのバルク全体とすることができる。したがって、トランジスタに流れる電流密度を向上させることが可能となるため、トランジスタのオン電流の向上、またはトランジスタの電界効果移動度を高めることが期待できる。 By making the transistor 200 have the above-mentioned S-channel structure, the channel formation region can be electrically surrounded. Since the S-channel structure electrically surrounds the channel formation region, it can be said that it is substantially the same structure as a GAA (Gate All Around) structure or a LGAA (Lateral Gate All Around) structure. By making the transistor 200 have an S-channel structure, a GAA structure, or a LGAA structure, the channel formation region formed at or near the interface between the oxide layer 230A and the insulating layer 250 can be the entire bulk of the oxide layer 230A. Therefore, it is possible to improve the current density flowing through the transistor, and it is expected to improve the on-current of the transistor or the field effect mobility of the transistor.
さらに、トランジスタ100及びトランジスタ200上には、絶縁層282、絶縁層283、及び絶縁層284が設けられている。絶縁層282、絶縁層283、及び絶縁層284などに設けられた開口には、導電層205Aと電気的に接続される導電層240A、導電層242Aと電気的に接続される導電層240B、導電層260と電気的に接続される導電層240C、導電層242Bと電気的に接続される導電層240D、導電層265と電気的に接続される導電層240E、導電層242Cと電気的に接続される導電層240F、及び、導電層205Bと電気的に接続される導電層240Gが設けられている。絶縁層282、絶縁層283、及び絶縁層284などに設けられた開口の側面には、絶縁層241が設けられていることが好ましく、絶縁層241の内側に導電層205A乃至導電層240Gが埋め込まれていることが好ましい。 Furthermore, insulating layers 282, 283, and 284 are provided on the transistor 100 and the transistor 200. In the openings provided in the insulating layers 282, 283, and 284, etc., a conductive layer 240A electrically connected to the conductive layer 205A, a conductive layer 240B electrically connected to the conductive layer 242A, a conductive layer 240C electrically connected to the conductive layer 260, a conductive layer 240D electrically connected to the conductive layer 242B, a conductive layer 240E electrically connected to the conductive layer 265, a conductive layer 240F electrically connected to the conductive layer 242C, and a conductive layer 240G electrically connected to the conductive layer 205B are provided. It is preferable that an insulating layer 241 is provided on the side of the openings provided in the insulating layers 282, 283, and 284, etc., and it is preferable that the conductive layers 205A to 240G are embedded inside the insulating layer 241.
導電層240A、導電層240B、導電層240C、導電層240D、導電層240E、導電層240F、及び導電層240Gはそれぞれ、絶縁層284より上層に位置する導電層を介して、他の導電層と電気的に接続される構成とすることができる。 Each of conductive layers 240A, 240B, 240C, 240D, 240E, 240F, and 240G can be configured to be electrically connected to other conductive layers via a conductive layer located above insulating layer 284.
また導電層240A乃至導電層240G、導電層205A及び導電層205B、導電層242A乃至導電層242C、導電層260、導電層265、等の導電層の配置は図1A乃至図1Cに示す構成に限られない。例えば図10A及び図10Bには、トランジスタ100及びトランジスタ200の上面からみた構成の変形例を示す。 The arrangement of conductive layers such as conductive layers 240A to 240G, conductive layers 205A and 205B, conductive layers 242A to 242C, conductive layer 260, and conductive layer 265 is not limited to the configurations shown in FIGS. 1A to 1C. For example, FIGS. 10A and 10B show modified examples of the configurations of transistors 100 and 200 as viewed from the top.
[材料]
以下では、本実施の形態の半導体装置に用いることができる材料について説明する。なお、本実施の形態の半導体装置、トランジスタ100、及びトランジスタ200を構成する各層は、単層構造であってもよく、積層構造であってもよい。
[material]
Materials that can be used in the semiconductor device of this embodiment will be described below. Note that each layer constituting the semiconductor device of this embodiment, the transistor 100, and the transistor 200 may have a single-layer structure or a stacked-layer structure.
<酸化物層230A、及び酸化物層230B>
酸化物層230A及び酸化物層230Bには、半導体として機能する金属酸化物(以下、酸化物半導体ともいう)を用いることが好ましい。
<Oxide layer 230A and oxide layer 230B>
For the oxide layer 230A and the oxide layer 230B, a metal oxide that functions as a semiconductor (hereinafter also referred to as an oxide semiconductor) is preferably used.
酸化物層230A及び酸化物層230Bは、チャネル形成領域を有し、当該チャネル形成領域は、i型(真性)または実質的にi型である。酸化物層230A及び酸化物層230Bは、さらに、ソース領域及びドレイン領域を有し、当該ソース領域及び当該ドレイン領域は、チャネル形成領域と比較してキャリア濃度が高い、n型の領域(低抵抗領域)である。 The oxide layer 230A and the oxide layer 230B have a channel formation region, which is i-type (intrinsic) or substantially i-type. The oxide layer 230A and the oxide layer 230B further have a source region and a drain region, which are n-type regions (low resistance regions) with a higher carrier concentration than the channel formation region.
酸化物層230A及び酸化物層230Bは、同一工程、同一材料により形成することができる。 Oxide layer 230A and oxide layer 230B can be formed in the same process using the same material.
酸化物層230A及び酸化物層230Bに用いる半導体材料の結晶性は特に限定されず、非晶質半導体、単結晶半導体、または単結晶以外の結晶性を有する半導体(微結晶半導体、多結晶半導体、または一部に結晶領域を有する半導体)のいずれを用いてもよい。単結晶半導体または結晶性を有する半導体を用いると、トランジスタ特性の劣化を抑制できるため好ましい。 The crystallinity of the semiconductor material used for the oxide layer 230A and the oxide layer 230B is not particularly limited, and any of an amorphous semiconductor, a single crystal semiconductor, and a semiconductor having crystallinity other than single crystal (a microcrystalline semiconductor, a polycrystalline semiconductor, or a semiconductor having a crystalline region in part) may be used. The use of a single crystal semiconductor or a semiconductor having crystallinity is preferable because it can suppress deterioration of the transistor characteristics.
半導体として機能する金属酸化物のバンドギャップは、2.0eV以上が好ましく、2.5eV以上がより好ましい。バンドギャップの大きい金属酸化物を用いることで、トランジスタのオフ電流を低減できる。このように、チャネル形成領域に金属酸化物を有するトランジスタをOSトランジスタと呼ぶ。OSトランジスタは、オフ電流が小さいため、半導体装置の消費電力を十分に低減できる。また、OSトランジスタの周波数特性が高いため、半導体装置を高速に動作させることができる。 The band gap of a metal oxide that functions as a semiconductor is preferably 2.0 eV or more, and more preferably 2.5 eV or more. By using a metal oxide with a large band gap, the off-current of a transistor can be reduced. A transistor having a metal oxide in a channel formation region in this way is called an OS transistor. Since an OS transistor has a small off-current, the power consumption of a semiconductor device can be sufficiently reduced. Furthermore, since an OS transistor has high frequency characteristics, the semiconductor device can operate at high speed.
酸化物層230A及び酸化物層230Bに用いることができる金属酸化物として、例えば、インジウム酸化物、ガリウム酸化物、及び亜鉛酸化物が挙げられる。金属酸化物は、少なくともインジウム(In)または亜鉛(Zn)を含むことが好ましい。また、金属酸化物は、インジウムと、元素Mと、亜鉛と、の中から選ばれる二または三を有することが好ましい。なお、元素Mは、酸素との結合エネルギーが高い金属元素または半金属元素であり、例えば、酸素との結合エネルギーがインジウムよりも高い金属元素または半金属元素である。元素Mとして、具体的には、アルミニウム、ガリウム、スズ、イットリウム、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、ジルコニウム、モリブデン、ハフニウム、タンタル、タングステン、ランタン、セリウム、ネオジム、マグネシウム、カルシウム、ストロンチウム、バリウム、ホウ素、シリコン、ゲルマニウム、及びアンチモンなどが挙げられる。金属酸化物が有する元素Mは、上記元素のいずれか一種または複数種であることが好ましく、アルミニウム、ガリウム、スズ、及びイットリウムから選ばれた一種または複数種であることがより好ましく、ガリウムがさらに好ましい。なお、本明細書等において、金属元素と半金属元素をまとめて「金属元素」と呼ぶことがあり、本明細書等に記載の「金属元素」には半金属元素が含まれることがある。 Examples of metal oxides that can be used for the oxide layer 230A and the oxide layer 230B include indium oxide, gallium oxide, and zinc oxide. The metal oxide preferably contains at least indium (In) or zinc (Zn). The metal oxide preferably contains two or three elements selected from indium, element M, and zinc. The element M is a metal element or semi-metal element that has a high bond energy with oxygen, for example, a metal element or semi-metal element that has a higher bond energy with oxygen than indium. Specific examples of element M include aluminum, gallium, tin, yttrium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, zirconium, molybdenum, hafnium, tantalum, tungsten, lanthanum, cerium, neodymium, magnesium, calcium, strontium, barium, boron, silicon, germanium, and antimony. The element M of the metal oxide is preferably one or more of the above elements, more preferably one or more selected from aluminum, gallium, tin, and yttrium, and even more preferably gallium. In this specification, metal elements and metalloid elements may be collectively referred to as "metal elements", and the "metal element" described in this specification may include metalloid elements.
酸化物層230A及び酸化物層230Bは、例えば、インジウム亜鉛酸化物(In−Zn酸化物、IZO(登録商標)とも記す)、インジウムスズ酸化物(In−Sn酸化物)、インジウムチタン酸化物(In−Ti酸化物)、インジウムガリウム酸化物(In−Ga酸化物)、インジウムガリウムアルミニウム酸化物(In−Ga−Al酸化物)、インジウムガリウムスズ酸化物(In−Ga−Sn酸化物)、ガリウム亜鉛酸化物(Ga−Zn酸化物、GZOとも記す)、アルミニウム亜鉛酸化物(Al−Zn酸化物、AZOとも記す)、インジウムアルミニウム亜鉛酸化物(In−Al−Zn酸化物、IAZOとも記す)、インジウムスズ亜鉛酸化物(In−Sn−Zn酸化物、ITZO(登録商標)とも記す)、インジウムチタン亜鉛酸化物(In−Ti−Zn酸化物)、インジウムガリウム亜鉛酸化物(In−Ga−Zn酸化物、IGZOとも記す)、インジウムガリウムスズ亜鉛酸化物(In−Ga−Sn−Zn酸化物、IGZTOとも記す)、インジウムガリウムアルミニウム亜鉛酸化物(In−Ga−Al−Zn酸化物、IGAZO、IGZAO、またはIAGZOとも記す)などを用いることができる。または、シリコンを含むインジウムスズ酸化物、ガリウムスズ酸化物(Ga−Sn酸化物)、アルミニウムスズ酸化物(Al−Sn酸化物)などを用いることができる。 The oxide layer 230A and the oxide layer 230B may be, for example, indium zinc oxide (In-Zn oxide, also referred to as IZO (registered trademark)), indium tin oxide (In-Sn oxide), indium titanium oxide (In-Ti oxide), indium gallium oxide (In-Ga oxide), indium gallium aluminum oxide (In-Ga-Al oxide), indium gallium tin oxide (In-Ga-Sn oxide), gallium zinc oxide (Ga-Zn oxide, also referred to as GZO), aluminum zinc oxide (Al-Zn oxide, also referred to as AZO), indium aluminum Indium zinc oxide (In-Al-Zn oxide, also written as IAZO), indium tin zinc oxide (In-Sn-Zn oxide, also written as ITZO (registered trademark)), indium titanium zinc oxide (In-Ti-Zn oxide), indium gallium zinc oxide (In-Ga-Zn oxide, also written as IGZO), indium gallium tin zinc oxide (In-Ga-Sn-Zn oxide, also written as IGZTO), indium gallium aluminum zinc oxide (In-Ga-Al-Zn oxide, also written as IGAZO, IGZAO, or IAGZO), etc. can be used. Alternatively, indium tin oxide containing silicon, gallium tin oxide (Ga-Sn oxide), aluminum tin oxide (Al-Sn oxide), etc. can be used.
金属酸化物に含まれる全ての金属元素の原子数の和に対するインジウムの原子数の割合を高くすることにより、トランジスタの電界効果移動度を高めることができる。また、オン電流の大きいトランジスタを実現できる。 By increasing the ratio of the number of indium atoms to the sum of the number of atoms of all metal elements contained in the metal oxide, the field effect mobility of the transistor can be increased. In addition, a transistor with a large on-current can be realized.
なお、金属酸化物は、インジウムに代えて、または、インジウムに加えて、周期の数が大きい金属元素の一種または複数種を有してもよい。金属元素の軌道の重なりが大きいほど、金属酸化物におけるキャリア伝導は大きくなる傾向がある。よって、周期の数が大きい金属元素を含むことで、トランジスタの電界効果移動度を高めることができる場合がある。周期の数が大きい金属元素として、第5周期に属する金属元素、及び第6周期に属する金属元素などが挙げられる。当該金属元素として、具体的には、イットリウム、ジルコニウム、銀、カドミウム、スズ、アンチモン、バリウム、鉛、ビスマス、ランタン、セリウム、プラセオジム、ネオジム、プロメチウム、サマリウム、及びユウロピウムなどが挙げられる。なお、ランタン、セリウム、プラセオジム、ネオジム、プロメチウム、サマリウム、及びユウロピウムは、軽希土類元素と呼ばれる。 Note that the metal oxide may contain one or more metal elements having a large periodic number instead of or in addition to indium. The greater the overlap of the orbits of the metal elements, the greater the carrier conduction in the metal oxide tends to be. Therefore, by including a metal element having a large periodic number, the field effect mobility of the transistor may be increased. Examples of metal elements having a large periodic number include metal elements belonging to the fifth period and metal elements belonging to the sixth period. Specific examples of the metal elements include yttrium, zirconium, silver, cadmium, tin, antimony, barium, lead, bismuth, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, and europium. Note that lanthanum, cerium, praseodymium, neodymium, promethium, samarium, and europium are called light rare earth elements.
また、金属酸化物は、非金属元素の一種または複数種を有してもよい。金属酸化物が非金属元素を有することで、キャリア濃度の増加、またはバンドギャップの縮小などが生じ、トランジスタの電界効果移動度を高めることができる場合がある。非金属元素として、例えば、炭素、窒素、リン、硫黄、セレン、フッ素、塩素、臭素、及び水素などが挙げられる。 The metal oxide may also contain one or more nonmetallic elements. When the metal oxide contains a nonmetallic element, the carrier concentration may increase or the band gap may be narrowed, which may increase the field effect mobility of the transistor. Examples of nonmetallic elements include carbon, nitrogen, phosphorus, sulfur, selenium, fluorine, chlorine, bromine, and hydrogen.
また、金属酸化物に含まれる全ての金属元素の原子数の和に対する亜鉛の原子数の割合を高くすることにより、結晶性の高い金属酸化物となり、金属酸化物中の不純物の拡散を抑制できる。したがって、トランジスタの電気特性の変動が抑制され、信頼性を高めることができる。 Furthermore, by increasing the ratio of the number of zinc atoms to the sum of the numbers of atoms of all metal elements contained in the metal oxide, the metal oxide becomes highly crystalline, and the diffusion of impurities in the metal oxide can be suppressed. Therefore, fluctuations in the electrical characteristics of the transistor can be suppressed, and reliability can be improved.
また、金属酸化物に含まれる全ての金属元素の原子数の和に対する元素Mの原子数の割合を高くすることにより、金属酸化物に酸素欠損が形成されることを抑制できる。したがって、酸素欠損に起因するキャリア生成が抑制され、オフ電流の小さいトランジスタとすることができる。また、トランジスタの電気特性の変動が抑制され、信頼性を高めることができる。 Furthermore, by increasing the ratio of the number of atoms of element M to the sum of the number of atoms of all metal elements contained in the metal oxide, the formation of oxygen vacancies in the metal oxide can be suppressed. Therefore, carrier generation due to oxygen vacancies can be suppressed, and a transistor with a small off-current can be obtained. Furthermore, fluctuations in the electrical characteristics of the transistor can be suppressed, and reliability can be improved.
酸化物層230A及び酸化物層230Bに適用する金属酸化物の組成により、トランジスタの電気特性、及び信頼性が異なる。したがって、トランジスタに求められる電気特性、及び信頼性に応じて金属酸化物の組成を異ならせることにより、優れた電気特性と高い信頼性を両立した半導体装置とすることができる。 The electrical characteristics and reliability of the transistor vary depending on the composition of the metal oxide applied to the oxide layer 230A and the oxide layer 230B. Therefore, by varying the composition of the metal oxide according to the electrical characteristics and reliability required of the transistor, a semiconductor device that combines excellent electrical characteristics and high reliability can be obtained.
金属酸化物がIn−M−Zn酸化物の場合、当該In−M−Zn酸化物におけるInの原子数比はMの原子数比以上であることが好ましい。このようなIn−M−Zn酸化物の金属元素の原子数比として、例えば、In:M:Zn=1:1:1、In:M:Zn=1:1:1.2、In:M:Zn=2:1:3、In:M:Zn=3:1:1、In:M:Zn=3:1:2、In:M:Zn=4:2:3、In:M:Zn=4:2:4.1、In:M:Zn=5:1:3、In:M:Zn=5:1:6、In:M:Zn=5:1:7、In:M:Zn=5:1:8、In:M:Zn=6:1:6、In:M:Zn=5:2:5、及び、これらの近傍の組成が挙げられる。なお、近傍の組成とは、所望の原子数比の±30%の範囲を含む。金属酸化物中のインジウムの原子数比を大きくすることで、トランジスタのオン電流、または電界効果移動度などを高めることができる。 When the metal oxide is an In-M-Zn oxide, it is preferable that the atomic ratio of In in the In-M-Zn oxide is equal to or greater than the atomic ratio of M. Examples of atomic ratios of metal elements in such In-M-Zn oxide include In:M:Zn = 1:1:1, In:M:Zn = 1:1:1.2, In:M:Zn = 2:1:3, In:M:Zn = 3:1:1, In:M:Zn = 3:1:2, In:M:Zn = 4:2:3, In:M:Zn = 4:2:4.1, In:M:Zn = 5:1:3, In:M:Zn = 5:1:6, In:M:Zn = 5:1:7, In:M:Zn = 5:1:8, In:M:Zn = 6:1:6, In:M:Zn = 5:2:5, and compositions close to these. Note that the nearby composition includes a range of ±30% of the desired atomic ratio. By increasing the atomic ratio of indium in the metal oxide, the on-current or field effect mobility of the transistor can be increased.
また、In−M−Zn酸化物におけるInの原子数比はMの原子数比未満であってもよい。このようなIn−M−Zn酸化物の金属元素の原子数比として、例えば、In:M:Zn=1:3:2、In:M:Zn=1:3:3、In:M:Zn=1:3:4、及びこれらの近傍の組成が挙げられる。金属酸化物中のMの原子数の割合を大きくすることで、酸素欠損の生成を抑制することができる。 In addition, the atomic ratio of In in the In-M-Zn oxide may be less than the atomic ratio of M. Examples of atomic ratios of metal elements in such In-M-Zn oxide include In:M:Zn=1:3:2, In:M:Zn=1:3:3, In:M:Zn=1:3:4, and compositions close to these. By increasing the proportion of M atoms in the metal oxide, the generation of oxygen vacancies can be suppressed.
なお、元素Mとして複数の金属元素を有する場合は、当該金属元素の原子数の割合の合計を、元素Mの原子数の割合とすることができる。 When element M contains multiple metal elements, the total proportion of the atomic numbers of the metal elements can be regarded as the proportion of the atomic number of element M.
本明細書等において、含有される全ての金属元素の原子数の和に対するインジウムの原子数の割合を、インジウムの含有率と記す場合がある。他の金属元素においても同様である。 In this specification, the ratio of the number of indium atoms to the sum of the numbers of atoms of all metal elements contained may be referred to as the indium content. The same applies to other metal elements.
金属酸化物の形成には、スパッタリング法、または原子層堆積(ALD:Atomic Layer Deposition)法を好適に用いることができる。なお、金属酸化物をスパッタリング法で形成する場合、成膜後の金属酸化物の組成はターゲットの組成と異なる場合がある。特に亜鉛は、成膜後の金属酸化物における含有率が、ターゲットと比較して50%程度にまで減少する場合がある。 The metal oxide can be formed by sputtering or atomic layer deposition (ALD). When the metal oxide is formed by sputtering, the composition of the metal oxide after film formation may differ from the composition of the target. In particular, the zinc content in the metal oxide after film formation may decrease to about 50% compared to the target.
酸化物層230A及び酸化物層230Bは、2以上の金属酸化物層を有する積層構造としてもよい。酸化物層230A及び酸化物層230Bが有する2以上の金属酸化物層は、組成が互いに同じ、または概略同じであってもよい。組成が同じ金属酸化物層の積層構造とすることで、例えば、同じスパッタリングターゲットを用いて形成できるため、製造コストを削減できる。 Oxide layer 230A and oxide layer 230B may have a stacked structure having two or more metal oxide layers. The two or more metal oxide layers in oxide layer 230A and oxide layer 230B may have the same or approximately the same composition. By having a stacked structure of metal oxide layers with the same composition, for example, they can be formed using the same sputtering target, thereby reducing manufacturing costs.
酸化物層230A及び酸化物層230Bが有する2以上の金属酸化物層は、組成が互いに異なってもよい。例えば、In:M:Zn=1:3:4[原子数比]もしくはその近傍の組成の第1の金属酸化物層と、当該第1の金属酸化物層上に設けられるIn:M:Zn=1:1:1[原子数比]もしくはその近傍の組成の第2の金属酸化物層と、の積層構造を好適に用いることができる。また、元素Mとして、ガリウム、アルミニウム、またはスズを用いることが特に好ましい。例えば、インジウム酸化物、インジウムガリウム酸化物、及びIGZOの中から選ばれるいずれか一と、IAZO、IAGZO、及びITZO(登録商標)の中から選ばれるいずれか一と、の積層構造を用いてもよい。 The two or more metal oxide layers in the oxide layer 230A and the oxide layer 230B may have different compositions. For example, a stacked structure of a first metal oxide layer having a composition of In:M:Zn=1:3:4 [atomic ratio] or a composition close thereto and a second metal oxide layer having a composition of In:M:Zn=1:1:1 [atomic ratio] or a composition close thereto provided on the first metal oxide layer can be suitably used. In addition, it is particularly preferable to use gallium, aluminum, or tin as the element M. For example, a stacked structure of any one selected from indium oxide, indium gallium oxide, and IGZO and any one selected from IAZO, IAGZO, and ITZO (registered trademark) can be used.
酸化物層230A及び酸化物層230Bは、結晶性を有する金属酸化物層を有することが好ましい。結晶性を有する金属酸化物の構造としては、例えば、CAAC(c−axis aligned crystal)構造、多結晶構造、及び、微結晶(nc:nano−crystal)構造が挙げられる。結晶性を有する金属酸化物層を酸化物層230A及び酸化物層230Bに用いることにより、酸化物層230A及び酸化物層230B中の欠陥準位密度を低減でき、信頼性の高い半導体装置を実現できる。 The oxide layer 230A and the oxide layer 230B preferably have a metal oxide layer having crystallinity. Examples of the structure of a metal oxide having crystallinity include a CAAC (c-axis aligned crystal) structure, a polycrystalline structure, and a nano-crystalline (nc: nano-crystal) structure. By using a metal oxide layer having crystallinity for the oxide layer 230A and the oxide layer 230B, the defect level density in the oxide layer 230A and the oxide layer 230B can be reduced, and a highly reliable semiconductor device can be realized.
酸化物層230A及び酸化物層230Bに用いる金属酸化物層の結晶性が高いほど、酸化物層230A及び酸化物層230B中の欠陥準位密度を低減できる。一方、結晶性の低い金属酸化物層を用いることで、大きな電流を流すことができるトランジスタを実現することができる。 The higher the crystallinity of the metal oxide layer used for the oxide layer 230A and the oxide layer 230B, the more the defect state density in the oxide layer 230A and the oxide layer 230B can be reduced. On the other hand, by using a metal oxide layer with low crystallinity, a transistor capable of passing a large current can be realized.
金属酸化物層をスパッタリング法により形成する場合、形成時の基板温度(ステージ温度)が高いほど、結晶性の高い金属酸化物層を形成することができる。また、形成時に用いる成膜ガス全体に対する酸素ガスの流量の割合(以下、酸素流量比ともいう)が高いほど、結晶性の高い金属酸化物層を形成することができる。 When forming a metal oxide layer by sputtering, the higher the substrate temperature (stage temperature) during formation, the more crystalline the metal oxide layer can be formed. Also, the higher the ratio of the flow rate of oxygen gas to the total deposition gas used during formation (hereinafter also referred to as the oxygen flow rate ratio), the more crystalline the metal oxide layer can be formed.
酸化物層230A及び酸化物層230Bは、結晶性が異なる2以上の金属酸化物層の積層構造としてもよい。例えば、第1の金属酸化物層と、当該第1の金属酸化物層上に設けられる第2の金属酸化物層と、の積層構造とし、第2の金属酸化物層は、第1の金属酸化物層より結晶性が高い領域を有する構成とすることができる。または、第2の金属酸化物層は、第1の金属酸化物層より結晶性が低い領域を有する構成とすることができる。このとき、第1の金属酸化物層と第2の金属酸化物層は、互いに異なる組成であってもよく、同じまたは概略同じ組成であってもよい。 Oxide layer 230A and oxide layer 230B may have a laminated structure of two or more metal oxide layers with different crystallinity. For example, a laminated structure of a first metal oxide layer and a second metal oxide layer provided on the first metal oxide layer may be configured so that the second metal oxide layer has a region with higher crystallinity than the first metal oxide layer. Alternatively, the second metal oxide layer may have a region with lower crystallinity than the first metal oxide layer. In this case, the first metal oxide layer and the second metal oxide layer may have different compositions, or may have the same or approximately the same composition.
酸化物層230A及び酸化物層230Bの厚さは、1nm以上200nm以下が好ましく、3nm以上100nm以下が好ましく、さらには5nm以上100nm以下が好ましく、さらには10nm以上100nm以下が好ましく、さらには10nm以上70nm以下が好ましく、さらには15nm以上70nm以下が好ましく、さらには15nm以上50nm以下が好ましく、さらには20nm以上50nm以下が好ましい。 The thickness of oxide layer 230A and oxide layer 230B is preferably 1 nm or more and 200 nm or less, more preferably 3 nm or more and 100 nm or less, even more preferably 5 nm or more and 100 nm or less, even more preferably 10 nm or more and 100 nm or less, even more preferably 10 nm or more and 70 nm or less, even more preferably 15 nm or more and 70 nm or less, even more preferably 15 nm or more and 50 nm or less, even more preferably 20 nm or more and 50 nm or less.
酸化物層230A及び酸化物層230Bに酸化物半導体を用いる場合、酸化物半導体に含まれる水素が金属原子と結合する酸素と反応して水になり、酸化物半導体中に酸素欠損(V)が形成される場合がある。さらに、酸素欠損に水素が入った欠陥(以下、VHと記す)はドナーとして機能し、キャリアである電子が生成されることがある。また、水素の一部が金属原子と結合する酸素と結合して、キャリアである電子を生成する場合がある。従って、水素が多く含まれている酸化物半導体を用いたトランジスタは、ノーマリーオン特性(つまり、しきい値電圧がマイナスの値)となりやすい。また、酸化物半導体中の水素は、熱、電界などのストレスによって動きやすいため、酸化物半導体に多くの水素が含まれると、トランジスタの信頼性が悪化する恐れもある。 When an oxide semiconductor is used for the oxide layer 230A and the oxide layer 230B, hydrogen contained in the oxide semiconductor may react with oxygen bonded to a metal atom to become water, and oxygen vacancies ( VO ) may be formed in the oxide semiconductor. Furthermore, a defect in which hydrogen is introduced into the oxygen vacancy (hereinafter referred to as VOH ) may function as a donor and generate electrons that are carriers. In addition, some of the hydrogen may bond with oxygen bonded to a metal atom to generate electrons that are carriers. Therefore, a transistor using an oxide semiconductor containing a large amount of hydrogen is likely to have normally-on characteristics (that is, a threshold voltage has a negative value). Furthermore, hydrogen in an oxide semiconductor is easily mobile due to stress such as heat or an electric field, and therefore, if an oxide semiconductor contains a large amount of hydrogen, the reliability of the transistor may be deteriorated.
酸化物層230A及び酸化物層230Bに酸化物半導体を用いる場合、酸化物層230A中及び酸化物層230B中のVHをできる限り低減し、高純度真性または実質的に高純度真性にすることが好ましい。このように、VHが十分低減された酸化物半導体を得るには、酸化物半導体中の水、水素などの不純物を除去すること(脱水、脱水素化処理と記載する場合がある。)と、酸化物半導体に酸素を供給して酸素欠損を修復することが重要である。VHなどの不純物が十分に低減された酸化物半導体をトランジスタのチャネル形成領域に用いることで、安定した電気特性を付与することができる。なお、酸化物半導体に酸素を供給して酸素欠損を修復することを、加酸素化処理と記す場合がある。 When an oxide semiconductor is used for the oxide layer 230A and the oxide layer 230B, it is preferable to reduce VOH in the oxide layer 230A and the oxide layer 230B as much as possible to make them highly pure intrinsic or substantially highly pure intrinsic. In order to obtain an oxide semiconductor with sufficiently reduced VOH , it is important to remove impurities such as water and hydrogen from the oxide semiconductor (sometimes referred to as dehydration or dehydrogenation treatment) and to supply oxygen to the oxide semiconductor to repair oxygen vacancies. Stable electrical characteristics can be imparted by using an oxide semiconductor with sufficiently reduced impurities such as VOH for a channel formation region of a transistor. Note that supplying oxygen to an oxide semiconductor to repair oxygen vacancies may be referred to as oxygen addition treatment.
酸化物層230A及び酸化物層230Bに酸化物半導体を用いる場合、チャネル形成領域として機能する領域の酸化物半導体のキャリア濃度は、1×1018cm−3以下であることが好ましく、1×1017cm−3未満であることがより好ましく、1×1016cm−3未満であることがさらに好ましく、1×1013cm−3未満であることがさらに好ましく、1×1012cm−3未満であることがさらに好ましい。なお、チャネル形成領域として機能する領域の酸化物半導体のキャリア濃度の下限値については、特に限定は無いが、例えば、1×10−9cm−3とすることができる。 When an oxide semiconductor is used for the oxide layer 230A and the oxide layer 230B, the carrier concentration of the oxide semiconductor in the region functioning as a channel formation region is preferably 1×10 18 cm −3 or less, more preferably less than 1×10 17 cm −3 , further preferably less than 1×10 16 cm −3 , further preferably less than 1×10 13 cm −3 , and further preferably less than 1×10 12 cm −3 . Note that the lower limit of the carrier concentration of the oxide semiconductor in the region functioning as a channel formation region is not particularly limited, and can be, for example, 1×10 −9 cm −3 .
なお、本実施の形態の半導体装置には、チャネル形成領域に他の半導体材料を用いたトランジスタを適用してもよい。当該他の半導体材料としては、例えば、単体元素よりなる半導体、または化合物半導体が挙げられる。単体元素よりなる半導体として、例えば、シリコン、及びゲルマニウムが挙げられる。化合物半導体として、例えば、ヒ化ガリウム、及びシリコンゲルマニウムが挙げられる。その他、化合物半導体として、例えば、有機半導体、及び、窒化物半導体が挙げられる。なお、前述の酸化物半導体も、化合物半導体の一種である。なお、これらの半導体材料に、ドーパントとして不純物が含まれてもよい。 Note that the semiconductor device of this embodiment may also be applied to a transistor using another semiconductor material in the channel formation region. Examples of such another semiconductor material include semiconductors made of single elements, or compound semiconductors. Examples of semiconductors made of single elements include silicon and germanium. Examples of compound semiconductors include gallium arsenide and silicon germanium. Other examples of compound semiconductors include organic semiconductors and nitride semiconductors. Note that the aforementioned oxide semiconductor is also a type of compound semiconductor. Note that these semiconductor materials may contain impurities as dopants.
トランジスタの半導体材料に用いることができるシリコンとして、単結晶シリコン、多結晶シリコン、微結晶シリコン、及び非晶質シリコンが挙げられる。多結晶シリコンとして、例えば、低温ポリシリコン(LTPS:Low Temperature Poly Silicon)が挙げられる。 Silicon that can be used as a semiconductor material for transistors includes single crystal silicon, polycrystalline silicon, microcrystalline silicon, and amorphous silicon. An example of polycrystalline silicon is low temperature polysilicon (LTPS).
トランジスタの半導体材料には、半導体として機能する層状物質を有してもよい。層状物質とは、層状の結晶構造を有する材料群の総称である。層状の結晶構造は、共有結合またはイオン結合によって形成される層が、ファンデルワールス力のような、共有結合またはイオン結合よりも弱い結合を介して積層している構造である。層状物質は、単位層内における電気伝導性が高く、つまり、2次元電気伝導性が高い。半導体として機能し、かつ、2次元電気伝導性の高い材料をチャネル形成領域に用いることで、オン電流の大きいトランジスタを提供することができる。 The semiconductor material of the transistor may have a layered material that functions as a semiconductor. A layered material is a general term for a group of materials that have a layered crystal structure. A layered crystal structure is a structure in which layers formed by covalent or ionic bonds are stacked via bonds weaker than covalent or ionic bonds, such as van der Waals forces. A layered material has high electrical conductivity within a unit layer, that is, high two-dimensional electrical conductivity. By using a material that functions as a semiconductor and has high two-dimensional electrical conductivity in the channel formation region, a transistor with a large on-current can be provided.
上記層状物質として、例えば、グラフェン、シリセン、カルコゲン化物などが挙げられる。カルコゲン化物は、カルコゲン(第16族に属する元素)を含む化合物である。また、カルコゲン化物として、遷移金属カルコゲナイド、13族カルコゲナイドなどが挙げられる。トランジスタの半導体材料として適用可能な遷移金属カルコゲナイドとして、具体的には、硫化モリブデン(代表的にはMoS)、セレン化モリブデン(代表的にはMoSe)、モリブデンテルル(代表的にはMoTe)、硫化タングステン(代表的にはWS)、セレン化タングステン(代表的にはWSe)、タングステンテルル(代表的にはWTe)、硫化ハフニウム(代表的にはHfS)、セレン化ハフニウム(代表的にはHfSe)、硫化ジルコニウム(代表的にはZrS)、セレン化ジルコニウム(代表的にはZrSe)などが挙げられる。 Examples of the layered material include graphene, silicene, and chalcogenides. Chalcogenides are compounds containing chalcogen (an element belonging to Group 16). Examples of the chalcogenides include transition metal chalcogenides and Group 13 chalcogenides. Specific examples of transition metal chalcogenides that can be used as semiconductor materials for transistors include molybdenum sulfide (representatively MoS 2 ), molybdenum selenide (representatively MoSe 2 ), molybdenum tellurium (representatively MoTe 2 ), tungsten sulfide (representatively WS 2 ), tungsten selenide (representatively WSe 2 ), tungsten tellurium (representatively WTe 2 ), hafnium sulfide (representatively HfS 2 ), hafnium selenide (representatively HfSe 2 ), zirconium sulfide (representatively ZrS 2 ), zirconium selenide (representatively ZrSe 2 ), and the like.
<絶縁層250及び絶縁層255>
絶縁層250は、酸化物層230Aのチャネル形成領域と接する。絶縁層255は、酸化物層230Bのチャネル形成領域と接する。
<Insulating Layer 250 and Insulating Layer 255>
The insulating layer 250 is in contact with a channel formation region of the oxide layer 230A. The insulating layer 255 is in contact with a channel formation region of the oxide layer 230B.
以下では、主に、絶縁層250に用いることができる材料について説明する。絶縁層255についても、絶縁層250に用いることができる材料と同様の材料を適用できる。絶縁層255には、絶縁層250と同一の材料を用いてもよく、異なる材料を用いてもよい。 The following mainly describes materials that can be used for the insulating layer 250. For the insulating layer 255, the same materials as those that can be used for the insulating layer 250 can be used. For the insulating layer 255, the same material as that for the insulating layer 250 may be used, or a different material may be used.
絶縁層250は、水素を捕獲及び水素を固着する機能を有することが好ましい。これにより、酸化物層230Aのチャネル形成領域中の水素濃度を低減できる。よって、チャネル形成領域中のVHを低減し、チャネル形成領域をi型または実質的にi型とすることができる。 The insulating layer 250 preferably has a function of capturing and fixing hydrogen, which can reduce the hydrogen concentration in the channel formation region of the oxide layer 230A. As a result, VOH in the channel formation region can be reduced, and the channel formation region can be made i-type or substantially i-type.
絶縁層250が積層構造である場合、酸化物層230Aと接する層が、水素を捕獲及び水素を固着する機能を有することが好ましい。 When the insulating layer 250 has a laminated structure, it is preferable that the layer in contact with the oxide layer 230A has the function of capturing and fixing hydrogen.
また絶縁層255が、水素を捕獲及び水素を固着する機能を有することにより酸化物層230Bのチャネル形成領域中の水素濃度を低減できる。絶縁層250が積層構造である場合、酸化物層230Bと接する層が、水素を捕獲及び水素を固着する機能を有することが好ましい。 In addition, the insulating layer 255 has the function of capturing and fixing hydrogen, which can reduce the hydrogen concentration in the channel formation region of the oxide layer 230B. When the insulating layer 250 has a stacked structure, it is preferable that the layer in contact with the oxide layer 230B has the function of capturing and fixing hydrogen.
水素を捕獲及び水素を固着する機能を有する絶縁層として、アモルファス構造を有する金属酸化物が挙げられる。例えば、酸化マグネシウム、またはアルミニウム及びハフニウムの一方または双方を含む酸化物などの金属酸化物を用いることが好ましい。このようなアモルファス構造を有する金属酸化物では、酸素原子がダングリングボンドを有しており、当該ダングリングボンドで水素を捕獲または固着する性質を有する場合がある。つまり、アモルファス構造を有する金属酸化物は、水素を捕獲または固着する能力が高いといえる。 An example of an insulating layer that has the function of capturing and fixing hydrogen is a metal oxide having an amorphous structure. For example, it is preferable to use a metal oxide such as magnesium oxide or an oxide containing one or both of aluminum and hafnium. In such metal oxides having an amorphous structure, oxygen atoms have dangling bonds, and the dangling bonds may have the property of capturing or fixing hydrogen. In other words, metal oxides having an amorphous structure have a high ability to capture or fix hydrogen.
また、絶縁層250に、高誘電率(high−k)材料を用いることが好ましい。なお、high−k材料の一例として、アルミニウム及びハフニウムの一方または双方を含む酸化物がある。絶縁層250としてhigh−k材料を用いることで、ゲート絶縁層の物理膜厚を保持したまま、トランジスタ動作時に印加するゲート電位の低減化が可能となる。また、ゲート絶縁層として機能する絶縁層の等価酸化膜厚(EOT)の薄膜化が可能となる。 In addition, it is preferable to use a high dielectric constant (high-k) material for the insulating layer 250. An example of a high-k material is an oxide containing one or both of aluminum and hafnium. By using a high-k material for the insulating layer 250, it is possible to reduce the gate potential applied during transistor operation while maintaining the physical film thickness of the gate insulating layer. In addition, it is possible to reduce the equivalent oxide thickness (EOT) of the insulating layer that functions as the gate insulating layer.
以上より、絶縁層250のうち、酸化物層230Aと接する層として、アルミニウム及びハフニウムの一方または双方を含む酸化物を用いることが好ましく、アモルファス構造を有し、アルミニウム及びハフニウムの一方または双方を含む酸化物を用いることがより好ましく、アモルファス構造を有する酸化アルミニウムを用いることがさらに好ましい。本実施の形態では、絶縁層250のうち、酸化物層230Aと接する層として、酸化アルミニウムを用いる。この場合、絶縁層250における酸化物層230Aと接する層は、少なくとも酸素と、アルミニウムと、を有する絶縁層となる。また、当該酸化アルミニウムは、アモルファス構造を有する。この場合、絶縁層250における酸化物層230Aと接する層は、アモルファス構造を有する。 From the above, it is preferable to use an oxide containing one or both of aluminum and hafnium as the layer in contact with the oxide layer 230A in the insulating layer 250, it is more preferable to use an oxide having an amorphous structure and containing one or both of aluminum and hafnium, and it is even more preferable to use aluminum oxide having an amorphous structure. In this embodiment, aluminum oxide is used as the layer in contact with the oxide layer 230A in the insulating layer 250. In this case, the layer in contact with the oxide layer 230A in the insulating layer 250 is an insulating layer containing at least oxygen and aluminum. In addition, the aluminum oxide has an amorphous structure. In this case, the layer in contact with the oxide layer 230A in the insulating layer 250 has an amorphous structure.
さらに、絶縁層250は、酸化シリコンまたは酸化窒化シリコンなどの、熱に対し安定な構造の絶縁層を有していてもよい。 Furthermore, the insulating layer 250 may have an insulating layer having a thermally stable structure, such as silicon oxide or silicon oxynitride.
また、絶縁層250は、一対の、水素を捕獲及び水素を固着する機能を有する絶縁層の間に、熱に対し安定な構造の絶縁層を有していてもよい。 In addition, the insulating layer 250 may have an insulating layer with a heat-stable structure between a pair of insulating layers that have the function of capturing and fixing hydrogen.
また、絶縁層250は、酸素に対するバリア絶縁層を有することが好ましい。これにより、導電層242A、導電層242B、及び、導電層260などの酸化を抑制できる。絶縁層250が積層構造である場合、導電層242A及び導電層242Bと接する層、並びに、導電層260と接する層が、それぞれ、酸素に対するバリア絶縁層であることが好ましい。 Insulating layer 250 preferably has a barrier insulating layer against oxygen. This can suppress oxidation of conductive layer 242A, conductive layer 242B, conductive layer 260, etc. When insulating layer 250 has a laminated structure, it is preferable that the layer in contact with conductive layer 242A and conductive layer 242B, and the layer in contact with conductive layer 260 are each a barrier insulating layer against oxygen.
また絶縁層255が酸素に対するバリア絶縁層を有することにより、導電層242C、及び、導電層265などの酸化を抑制できる。絶縁層255が積層構造である場合、導電層242Cと接する層、並びに、導電層265と接する層が、それぞれ、酸素に対するバリア絶縁層であることが好ましい。 In addition, since the insulating layer 255 has a barrier insulating layer against oxygen, oxidation of the conductive layer 242C and the conductive layer 265 can be suppressed. When the insulating layer 255 has a laminated structure, it is preferable that the layer in contact with the conductive layer 242C and the layer in contact with the conductive layer 265 are each a barrier insulating layer against oxygen.
なお、本明細書等において、バリア絶縁層とは、バリア性を有する絶縁層のことを指す。本明細書等において、バリア性とは、対応する物質の拡散を抑制する機能(透過性が低いともいう)とする。または、対応する物質を、捕獲、及び固着する(ゲッタリングともいう)機能とする。 In this specification, a barrier insulating layer refers to an insulating layer that has barrier properties. In this specification, barrier properties refer to a function of suppressing the diffusion of the corresponding substance (also called low permeability), or a function of capturing and fixing the corresponding substance (also called gettering).
酸素に対するバリア絶縁層としては、例えば、アルミニウム及びハフニウムの一方または双方を含む酸化物、酸化マグネシウム、酸化ガリウム、インジウムガリウム亜鉛酸化物、窒化シリコン、及び窒化酸化シリコンが挙げられる。また、アルミニウム及びハフニウムの一方または双方を含む酸化物として、例えば、酸化アルミニウム、酸化ハフニウム、アルミニウム及びハフニウムを含む酸化物(ハフニウムアルミネート)、並びに、ハフニウム及びシリコンを含む酸化物(ハフニウムシリケート)が挙げられる。 Examples of the barrier insulating layer against oxygen include oxides containing one or both of aluminum and hafnium, magnesium oxide, gallium oxide, indium gallium zinc oxide, silicon nitride, and silicon nitride oxide. Examples of oxides containing one or both of aluminum and hafnium include aluminum oxide, hafnium oxide, oxides containing aluminum and hafnium (hafnium aluminate), and oxides containing hafnium and silicon (hafnium silicate).
酸素に対するバリア絶縁層は、少なくとも絶縁層280よりも酸素を透過しにくいことが好ましい。例えば絶縁層250における導電層242A及び導電層242Bと接する層は、少なくとも絶縁層280よりも酸素を透過しにくいことが好ましい。当該層が酸素に対するバリア性を有することで、導電層242A及び導電層242Bの側面が酸化され、当該側面に酸化膜が形成されることを抑制できる。これにより、トランジスタ200のオン電流の低下、または電界効果移動度の低下を起こすことを抑制できる。 The barrier insulating layer against oxygen is preferably less permeable to oxygen than at least the insulating layer 280. For example, the layer in the insulating layer 250 that is in contact with the conductive layer 242A and the conductive layer 242B is preferably less permeable to oxygen than at least the insulating layer 280. The layer has a barrier property against oxygen, which can prevent the side surfaces of the conductive layer 242A and the conductive layer 242B from being oxidized and an oxide film from being formed on the side surfaces. This can prevent a decrease in the on-current of the transistor 200 or a decrease in the field effect mobility.
図5F等に示すように、絶縁層250は、絶縁層222の上面、絶縁層224Aの側面、及び酸化物層230Aの上面及び側面などに接して設けられる。絶縁層250のうち、これらと接する層が酸素に対するバリア性を有することで、熱処理などを行った際に、酸化物層230Aのチャネル形成領域から酸素が脱離することを抑制できる。よって、酸化物層230Aに酸素欠損が形成されることを抑制できる。また、絶縁層280に過剰な量の酸素が含まれていても、当該酸素が酸化物層230Aに過剰に供給されることを抑制し、絶縁層250を介して、適量の酸素を酸化物層230Aに供給することができる。よって、酸化物層230Aのソース領域及びドレイン領域が過剰に酸化され、トランジスタ200のオン電流の低下、及び、電界効果移動度の低下を抑制できる。 5F, the insulating layer 250 is provided in contact with the upper surface of the insulating layer 222, the side of the insulating layer 224A, and the upper surface and side of the oxide layer 230A. The insulating layer 250 has a barrier property against oxygen, so that the layer in contact with these can suppress the desorption of oxygen from the channel formation region of the oxide layer 230A when heat treatment is performed. Therefore, the formation of oxygen vacancies in the oxide layer 230A can be suppressed. Even if the insulating layer 280 contains an excessive amount of oxygen, the oxygen can be suppressed from being excessively supplied to the oxide layer 230A, and an appropriate amount of oxygen can be supplied to the oxide layer 230A through the insulating layer 250. Therefore, the source region and drain region of the oxide layer 230A are excessively oxidized, and the decrease in the on-current of the transistor 200 and the decrease in the field effect mobility can be suppressed.
絶縁層250の膜厚は、0.1nm以上30nm以下が好ましく、0.1nm以上20nm以下が好ましく、0.1nm以上10nm以下が好ましく、0.1nm以上5.0nm以下がより好ましく、0.5nm以上5.0nm以下がより好ましく、1.0nm以上5.0nm未満がより好ましく、1.0nm以上3.0nm以下がさらに好ましい。 The thickness of the insulating layer 250 is preferably 0.1 nm or more and 30 nm or less, preferably 0.1 nm or more and 20 nm or less, preferably 0.1 nm or more and 10 nm or less, more preferably 0.1 nm or more and 5.0 nm or less, more preferably 0.5 nm or more and 5.0 nm or less, more preferably 1.0 nm or more and less than 5.0 nm, and even more preferably 1.0 nm or more and 3.0 nm or less.
絶縁層250の膜厚を上記のように薄くするには、原子層堆積(ALD:Atomic Layer Deposition)法を用いて成膜することが好ましい。ALD法は、プリカーサ及びリアクタントの反応を熱エネルギーのみで行う熱ALD(Thermal ALD)法、プラズマ励起されたリアクタントを用いるPEALD(Plasma Enhanced ALD)法などがある。PEALD法では、プラズマを利用することで、より低温での成膜が可能となり好ましい場合がある。 To make the insulating layer 250 as thin as described above, it is preferable to form the film using the atomic layer deposition (ALD) method. The ALD method includes the thermal ALD method, in which the reaction between the precursor and the reactant is carried out using only thermal energy, and the plasma enhanced ALD (PEALD) method, in which a plasma excited reactant is used. The PEALD method may be preferable because it uses plasma, which allows film formation at a lower temperature.
ALD法は、一層ずつ原子を堆積することができるため、極薄の成膜が可能、アスペクト比の高い構造への成膜が可能、ピンホールなどの欠陥の少ない成膜が可能、被覆性に優れた成膜が可能、低温での成膜が可能、などの効果がある。よって、絶縁層250を、絶縁層280などに形成された開口の側面、及び導電層242A、242Bの側端部などに被覆性良く、上記のような薄い膜厚で成膜することができる。 The ALD method can deposit atoms one layer at a time, which has the advantages of enabling extremely thin films to be formed, films to be formed on structures with high aspect ratios, films with fewer defects such as pinholes, films with excellent coverage, and films to be formed at low temperatures. Therefore, the insulating layer 250 can be formed with good coverage on the side surfaces of the openings formed in the insulating layer 280, etc., and on the side ends of the conductive layers 242A and 242B, etc., with a thin film thickness as described above.
なお、ALD法で用いるプリカーサには炭素などを含むものがある。このため、ALD法により設けられた膜は、他の成膜法により設けられた膜と比較して、炭素などの不純物を多く含む場合がある。なお、不純物の定量は、二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)、X線光電子分光法(XPS:X−ray Photoelectron Spectroscopy)、またはオージェ電子分光法(AES:Auger Electron Spectroscopy)を用いて行うことができる。 Note that some precursors used in the ALD method contain carbon and the like. For this reason, films formed by the ALD method may contain more impurities such as carbon than films formed by other film formation methods. Quantitative determination of impurities can be performed using secondary ion mass spectrometry (SIMS), X-ray photoelectron spectroscopy (XPS), or Auger electron spectroscopy (AES).
<絶縁層241及び絶縁層275>
絶縁層275は、酸素に対するバリア絶縁層であると、導電層242A、導電層242B、及び、導電層242Cなどの酸化を抑制でき、好ましい。同様に、絶縁層241は、酸素に対するバリア絶縁層であると、導電層240A乃至導電層240Gの酸化を抑制でき、好ましい。
<Insulating Layer 241 and Insulating Layer 275>
The insulating layer 275 is preferably a barrier insulating layer against oxygen because it can suppress oxidation of the conductive layers 242A, 242B, 242C, etc. Similarly, the insulating layer 241 is preferably a barrier insulating layer against oxygen because it can suppress oxidation of the conductive layers 240A to 240G.
酸素に対するバリア絶縁層については、絶縁層250における記載を参照できる。 For information about the barrier insulating layer against oxygen, please refer to the description of insulating layer 250.
また、絶縁層275は、水素に対するバリア絶縁層であると、酸化物層230Aのソース領域及びドレイン領域の水素濃度が低減することを抑制でき、好ましい。 In addition, if the insulating layer 275 is a barrier insulating layer against hydrogen, it is preferable because it can suppress a decrease in the hydrogen concentration in the source and drain regions of the oxide layer 230A.
水素に対するバリア絶縁層として、酸化アルミニウム、酸化ハフニウム、酸化タンタルなどの酸化物、及び窒化シリコンなどの窒化物が挙げられる。 Barrier insulating layers against hydrogen include oxides such as aluminum oxide, hafnium oxide, and tantalum oxide, and nitrides such as silicon nitride.
<絶縁層215、絶縁層221(絶縁層220、絶縁層222)、絶縁層282、及び絶縁層283>
本発明の一態様の半導体装置において、トランジスタ100及びトランジスタ200の下側には、絶縁層215及び絶縁層221が配置される。また、絶縁層282及び絶縁層282は、トランジスタ100及びトランジスタ200の上側を覆って設けられる。
<Insulating Layer 215, Insulating Layer 221 (Insulating Layer 220, Insulating Layer 222), Insulating Layer 282, and Insulating Layer 283>
In the semiconductor device of one embodiment of the present invention, the insulating layers 215 and 221 are provided under the transistors 100 and 200. The insulating layers 282 and 282 are provided to cover the upper sides of the transistors 100 and 200.
以下、絶縁層221が絶縁層220と、絶縁層220上の絶縁層222との積層構造を有する場合について説明する。なお、絶縁層221の構造はこれに限らない。例えば絶縁層220と絶縁層222のいずれかのみを用いる構造でもよいし、絶縁層220及び絶縁層222に加えて、さらなる絶縁層を有する構造であってもよい。絶縁層221が、絶縁層220及び絶縁層に加えて、さらなる絶縁層を有する場合には、当該絶縁層として、本明細書において説明する絶縁層を適宜、用いることができる。 The following describes the case where the insulating layer 221 has a laminated structure of the insulating layer 220 and the insulating layer 222 on the insulating layer 220. Note that the structure of the insulating layer 221 is not limited to this. For example, the insulating layer 221 may have a structure using only the insulating layer 220 or the insulating layer 222, or may have a further insulating layer in addition to the insulating layer 220 and the insulating layer 222. When the insulating layer 221 has a further insulating layer in addition to the insulating layer 220 and the insulating layer, the insulating layer described in this specification can be used as appropriate as the insulating layer.
トランジスタ100及びトランジスタ200に水素、水、等の不純物が混入することを抑制するため、トランジスタ100及びトランジスタ200の上下の一方または双方を覆う絶縁層に、水素、水、等の不純物の拡散を抑制する機能を有する絶縁層を用いることが好ましい。したがって、トランジスタ100及びトランジスタ200の下側に位置する絶縁層の少なくとも一つは、水素の拡散を抑制する機能を有する絶縁層であることが好ましい。また、トランジスタ100及びトランジスタ200の上側を覆う絶縁層の少なくとも一つは、水素の拡散を抑制する機能を有する絶縁層であることが好ましい。 In order to prevent impurities such as hydrogen and water from being mixed into the transistors 100 and 200, it is preferable to use an insulating layer that has a function of suppressing the diffusion of impurities such as hydrogen and water as an insulating layer that covers one or both of the top and bottom of the transistors 100 and 200. Therefore, it is preferable that at least one of the insulating layers located on the bottom side of the transistors 100 and 200 is an insulating layer that has a function of suppressing the diffusion of hydrogen. In addition, it is preferable that at least one of the insulating layers that covers the top side of the transistors 100 and 200 is an insulating layer that has a function of suppressing the diffusion of hydrogen.
また、トランジスタ100の酸化物層230B、及びトランジスタ200の酸化物層230Aに効率的に酸素を供給するため、酸化物層230B及び酸化物層230Aに接する絶縁層として、酸素を放出する絶縁層を用いることが好ましい。また、酸素を放出する絶縁層の上下の一方または双方に酸素が拡散しにくい絶縁膜を設けることにより、酸化物層に酸素を効率的に供給することができる。 In order to efficiently supply oxygen to the oxide layer 230B of the transistor 100 and the oxide layer 230A of the transistor 200, it is preferable to use an insulating layer that releases oxygen as an insulating layer in contact with the oxide layer 230B and the oxide layer 230A. In addition, by providing an insulating film through which oxygen does not easily diffuse on either or both of the top and bottom of the insulating layer that releases oxygen, oxygen can be efficiently supplied to the oxide layer.
絶縁層215、絶縁層220、絶縁層222、絶縁層282、及び、絶縁層283の少なくとも一つは、水、水素などの不純物が、基板側から、または、トランジスタの上方からトランジスタ100に拡散することを抑制するバリア絶縁層として機能することが好ましい。したがって、絶縁層215、絶縁層220、絶縁層222、絶縁層282、及び、絶縁層283の少なくとも一つは、水素原子、水素分子、水分子、窒素原子、窒素分子、酸化窒素分子(NO、NO、NOなど)、銅原子などの不純物の拡散を抑制する機能を有する(上記不純物が透過しにくい)絶縁性材料を有することが好ましい。または、酸素(例えば、酸素原子、及び酸素分子などの少なくとも一)の拡散を抑制する機能を有する(上記酸素が透過しにくい)絶縁性材料を有することが好ましい。 At least one of the insulating layers 215, 220, 222, 282, and 283 preferably functions as a barrier insulating layer that suppresses diffusion of impurities such as water and hydrogen from the substrate side or from above the transistor to the transistor 100. Therefore, at least one of the insulating layers 215, 220, 222, 282, and 283 preferably has an insulating material that has a function of suppressing diffusion of impurities such as hydrogen atoms, hydrogen molecules, water molecules, nitrogen atoms, nitrogen molecules, nitrogen oxide molecules (N 2 O, NO, NO 2 , etc.), and copper atoms (through which the above impurities are difficult to permeate). Alternatively, it is preferable to have an insulating material that has a function of suppressing diffusion of oxygen (for example, at least one of oxygen atoms and oxygen molecules, etc.) (through which the above oxygen is difficult to permeate).
水、水素などの不純物、及び酸素の拡散を抑制する機能を有する絶縁層として例えば、酸化アルミニウム、酸化マグネシウム、酸化ハフニウム、酸化ジルコニウム、アルミニウム及びハフニウムを含む酸化物(ハフニウムアルミネート)、ハフニウム及びジルコニウムを含む酸化物(ハフニウムジルコニウム酸化物)、酸化ガリウム、または窒化酸化シリコンなどを用いることができる。例えば、絶縁層283及び絶縁層220として、より水素バリア性が高い、窒化シリコンなどを用いることが好ましい。また、例えば、絶縁層282は、それぞれ、水素を捕獲及び水素を固着する機能が高い、酸化アルミニウムまたは酸化マグネシウムなどを有することが好ましい。また、例えば、絶縁層222は、水素を捕獲または水素を固着する能力が高く、高誘電率(high−k)材料である、酸化ハフニウムなどを用いることが好ましい。 As an insulating layer having a function of suppressing the diffusion of impurities such as water and hydrogen, and oxygen, for example, aluminum oxide, magnesium oxide, hafnium oxide, zirconium oxide, oxide containing aluminum and hafnium (hafnium aluminate), oxide containing hafnium and zirconium (hafnium zirconium oxide), gallium oxide, or silicon nitride oxide can be used. For example, it is preferable to use silicon nitride, which has a higher hydrogen barrier property, as the insulating layer 283 and the insulating layer 220. Also, for example, it is preferable that the insulating layer 282 has aluminum oxide or magnesium oxide, which has a high function of capturing and fixing hydrogen, respectively. Also, for example, it is preferable to use hafnium oxide, which is a high dielectric constant (high-k) material, which has a high ability to capture or fix hydrogen, as the insulating layer 222.
このような構成にすることで、絶縁層283よりも上側に配置されている層間絶縁膜などから、水、水素などの不純物が、トランジスタ200に拡散することを抑制できる。また、絶縁層220よりも下側に配置されている層間絶縁膜などから、水、水素などの不純物が、トランジスタ200に拡散することを抑制できる。また、絶縁層280、絶縁層224、及び絶縁層250等に含まれる水素を、絶縁層282または絶縁層222に、捕獲及び固着することができる。また、絶縁層282及び絶縁層283を設けることで、絶縁層280などに含まれる酸素が、トランジスタより上方に拡散することを抑制ができる。また、絶縁層222及び絶縁層220を設けることで、絶縁層224などに含まれる酸素が、トランジスタより下方に拡散することを抑制ができる。このように、トランジスタの上下を、水、水素などの不純物、及び酸素の拡散を抑制する機能を有する絶縁層で取り囲む構造にすることで、酸化物半導体に過剰な酸素及び水素が拡散するのを低減することができる。これにより、半導体装置の電気特性、及び信頼性の向上を図ることができる。 By adopting such a configuration, it is possible to suppress the diffusion of impurities such as water and hydrogen from the interlayer insulating film arranged above the insulating layer 283 to the transistor 200. It is also possible to suppress the diffusion of impurities such as water and hydrogen from the interlayer insulating film arranged below the insulating layer 220 to the transistor 200. It is also possible to capture and fix hydrogen contained in the insulating layer 280, the insulating layer 224, the insulating layer 250, and the like to the insulating layer 282 or the insulating layer 222. It is also possible to suppress the diffusion of oxygen contained in the insulating layer 280, and the like, above the transistor by providing the insulating layer 282 and the insulating layer 283. It is also possible to suppress the diffusion of oxygen contained in the insulating layer 224, and the like, above the transistor by providing the insulating layer 222 and the insulating layer 220. In this way, by surrounding the top and bottom of the transistor with an insulating layer having a function of suppressing the diffusion of impurities such as water and hydrogen, and oxygen, it is possible to reduce the diffusion of excess oxygen and hydrogen into the oxide semiconductor. This makes it possible to improve the electrical characteristics and reliability of the semiconductor device.
<絶縁層224A及び絶縁層224B>
絶縁層224A及び絶縁層224Bは、同一工程、同一材料により形成することができる。絶縁層224Aは、酸化物層230Aと接するため、酸化物であることが好ましい。同様に、絶縁層224Bは、酸化物層230Bと接するため、酸化物であることが好ましい。例えば、絶縁層224A及び絶縁層224Bは、酸化シリコンまたは酸化窒化シリコンを有することが好ましい。これにより、絶縁層224Aから酸化物層230Aに酸素を供給し、酸素欠損を低減することができる。同様に、絶縁層224Bから酸化物層230Bに酸素を供給し、酸素欠損を低減することができる。
<Insulating Layer 224A and Insulating Layer 224B>
The insulating layer 224A and the insulating layer 224B can be formed in the same process and from the same material. The insulating layer 224A is preferably an oxide since it is in contact with the oxide layer 230A. Similarly, the insulating layer 224B is preferably an oxide since it is in contact with the oxide layer 230B. For example, the insulating layer 224A and the insulating layer 224B preferably have silicon oxide or silicon oxynitride. This allows oxygen to be supplied from the insulating layer 224A to the oxide layer 230A, thereby reducing oxygen vacancies. Similarly, oxygen can be supplied from the insulating layer 224B to the oxide layer 230B, thereby reducing oxygen vacancies.
絶縁層224Aは、酸化物層230Aと同様に、島状に加工することが好ましい。これにより、複数のトランジスタ200を設ける場合、各々のトランジスタ200に対して、ほぼ同程度の大きさの絶縁層224Aが各々に設けられることになる。これにより、各トランジスタ200において、絶縁層224Aから酸化物層230Aに供給される酸素の量が、同程度になる。よって、基板面内でトランジスタ200の電気特性のばらつきを抑制することができる。ただし、これに限られず、絶縁層220と同様に、絶縁層224をパターン形成しない構成にすることもできる。 The insulating layer 224A is preferably processed into an island shape, similar to the oxide layer 230A. As a result, when multiple transistors 200 are provided, an insulating layer 224A of approximately the same size is provided for each transistor 200. As a result, the amount of oxygen supplied from the insulating layer 224A to the oxide layer 230A in each transistor 200 becomes approximately the same. Therefore, it is possible to suppress the variation in the electrical characteristics of the transistors 200 within the substrate surface. However, this is not limited to the above, and similar to the insulating layer 220, the insulating layer 224 may be configured not to be patterned.
<絶縁層216、絶縁層280、及び絶縁層284>
絶縁層216、絶縁層280、及び絶縁層284は、それぞれ、絶縁層222よりも誘電率が低いことが好ましい。あるいはそれぞれ、絶縁層220よりも誘電率が低いことが好ましい。誘電率が低い材料を層間膜とすることで、配線間に生じる寄生容量を低減できる。
<Insulating Layer 216, Insulating Layer 280, and Insulating Layer 284>
Each of the insulating layers 216, 280, and 284 preferably has a dielectric constant lower than that of the insulating layer 222. Alternatively, each of the insulating layers 216, 280, and 284 preferably has a dielectric constant lower than that of the insulating layer 220. By using a material with a low dielectric constant as an interlayer film, parasitic capacitance generated between wirings can be reduced.
例えば、絶縁層216、絶縁層280、及び絶縁層284は、それぞれ、酸化シリコン、酸化窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素及び窒素を添加した酸化シリコン、及び、空孔を有する酸化シリコンのうち一つまたは複数を有することが好ましい。 For example, it is preferable that insulating layer 216, insulating layer 280, and insulating layer 284 each have one or more of silicon oxide, silicon oxynitride, silicon oxide doped with fluorine, silicon oxide doped with carbon, silicon oxide doped with carbon and nitrogen, and silicon oxide having vacancies.
特に、酸化シリコン及び酸化窒化シリコンは、熱的に安定であるため好ましい。特に、酸化シリコン、酸化窒化シリコン、空孔を有する酸化シリコンなどの材料は、加熱により脱離する酸素を含む領域を容易に形成することができるため好ましい。 In particular, silicon oxide and silicon oxynitride are preferred because they are thermally stable. In particular, materials such as silicon oxide, silicon oxynitride, and silicon oxide with vacancies are preferred because they can easily form regions containing oxygen that is released by heating.
また、絶縁層216、絶縁層280、及び絶縁層284の上面は、それぞれ、平坦化されていてもよい。 Furthermore, the upper surfaces of insulating layer 216, insulating layer 280, and insulating layer 284 may each be planarized.
絶縁層280中の水、水素などの不純物濃度は低減されていることが好ましい。例えば、絶縁層280は、酸化シリコン、酸化窒化シリコンなどのシリコンを含む酸化物を有することが好ましい。 It is preferable that the concentration of impurities such as water and hydrogen in the insulating layer 280 is reduced. For example, it is preferable that the insulating layer 280 has an oxide containing silicon, such as silicon oxide or silicon oxynitride.
<導電層205A、導電層205B、及び、導電層242A乃至導電層242C>
導電層205A、導電層205B、及び、導電層242A乃至導電層242Cは、それぞれ、単層構造であってもよく、積層構造であってもよい。導電層205A及び導電層205Bは、同一工程、同一材料により形成することができる。導電層242A乃至導電層242Cは、同一工程、同一材料により形成することができる。
<Conductive Layer 205A, Conductive Layer 205B, and Conductive Layers 242A to 242C>
The conductive layer 205A, the conductive layer 205B, and the conductive layers 242A to 242C may each have a single-layer structure or a stacked-layer structure. The conductive layer 205A and the conductive layer 205B can be formed in the same process using the same material. The conductive layers 242A to 242C can be formed in the same process using the same material.
導電層205A、導電層205B、及び、導電層242A乃至導電層242Cに用いることができる材料としては、それぞれ、例えば、クロム、銅、アルミニウム、金、銀、亜鉛、タンタル、チタン、タングステン、マンガン、ニッケル、鉄、コバルト、モリブデン、及びニオブの一または複数、並びに前述した金属の一または複数を成分とする合金が挙げられる。導電層205A、導電層205B、及び、導電層242A乃至導電層242Cには、それぞれ、銅、銀、金、及びアルミニウムのうち一または複数を含む、低抵抗な導電性材料を好適に用いることができる。特に、銅またはアルミニウムは量産性に優れるため好ましい。 Materials that can be used for the conductive layers 205A, 205B, and 242A to 242C include, for example, one or more of chromium, copper, aluminum, gold, silver, zinc, tantalum, titanium, tungsten, manganese, nickel, iron, cobalt, molybdenum, and niobium, and alloys containing one or more of the above-mentioned metals. Low-resistance conductive materials containing one or more of copper, silver, gold, and aluminum can be preferably used for the conductive layers 205A, 205B, and 242A to 242C. Copper or aluminum is particularly preferred because of its excellent mass productivity.
導電層205B、及び、導電層242A乃至導電層242Cは、酸化物層と接する導電層であるため、それぞれ、酸化されにくい導電性材料、酸化されても電気抵抗が低く保たれる導電性材料、酸化物導電性材料、または、酸素の拡散を抑制する機能を有する導電性材料を用いることが好ましい。当該導電性材料として、例えば、窒素を含む導電性材料、及び酸素を含む導電性材料が挙げられる。これにより、導電層205B、及び、導電層242A乃至導電層242Cの導電率が低下することを抑制できる。 The conductive layer 205B and the conductive layers 242A to 242C are conductive layers in contact with the oxide layer, and therefore it is preferable to use a conductive material that is not easily oxidized, a conductive material that maintains low electrical resistance even when oxidized, an oxide conductive material, or a conductive material that has a function of suppressing oxygen diffusion. Examples of the conductive material include a conductive material containing nitrogen and a conductive material containing oxygen. This can suppress a decrease in the conductivity of the conductive layer 205B and the conductive layers 242A to 242C.
導電層205A、導電層205B、及び、導電層242A乃至導電層242Cには、それぞれ、酸化物導電体を用いることができる。酸化物導電体として、例えば、酸化インジウム、酸化亜鉛、In−Sn酸化物(ITO)、In−Zn酸化物、In−W酸化物、In−W−Zn酸化物、In−Ti酸化物、In−Ti−Sn酸化物、In−Sn−Si酸化物(シリコンを含むITO、ITSOともいう)、ガリウムを添加した酸化亜鉛、及びIn−Ga−Zn酸化物が挙げられる。特にインジウムを含む導電性酸化物は、導電性が高いため好ましい。 The conductive layer 205A, the conductive layer 205B, and the conductive layers 242A to 242C can each be made of an oxide conductor. Examples of oxide conductors include indium oxide, zinc oxide, In-Sn oxide (ITO), In-Zn oxide, In-W oxide, In-W-Zn oxide, In-Ti oxide, In-Ti-Sn oxide, In-Sn-Si oxide (also referred to as ITO containing silicon, ITSO), zinc oxide to which gallium is added, and In-Ga-Zn oxide. In particular, conductive oxides containing indium are preferable because of their high conductivity.
半導体特性を有する金属酸化物に酸素欠損を形成し、該酸素欠損に水素を添加すると、伝導帯近傍にドナー準位が形成される。この結果、金属酸化物は、導電性が高くなり導電体化する。導電体化された金属酸化物を、酸化物導電体ということができる。 When oxygen vacancies are created in a metal oxide with semiconductor properties and hydrogen is added to the oxygen vacancies, a donor level is formed near the conduction band. As a result, the metal oxide becomes more conductive and becomes a conductor. A metal oxide that has become a conductor can be called an oxide conductor.
導電層205A、導電層205B、及び、導電層242A乃至導電層242Cは、それぞれ、前述の酸化物導電体(金属酸化物)を含む導電膜と、金属または合金を含む導電膜と、の積層構造としてもよい。金属または合金を含む導電膜を用いることで、配線抵抗を小さくすることができる。 The conductive layer 205A, the conductive layer 205B, and the conductive layers 242A to 242C may each have a stacked structure of a conductive film containing the above-mentioned oxide conductor (metal oxide) and a conductive film containing a metal or an alloy. By using a conductive film containing a metal or an alloy, the wiring resistance can be reduced.
導電層205A、導電層205B、及び、導電層242A乃至導電層242Cは、それぞれ、Cu−X合金膜(Xは、Mn、Ni、Cr、Fe、Co、Mo、Ta、またはTi)を適用してもよい。Cu−X合金膜を用いることで、ウェットエッチングプロセスで加工できるため、製造コストを抑制できる。 The conductive layer 205A, the conductive layer 205B, and the conductive layers 242A to 242C may each be a Cu-X alloy film (X is Mn, Ni, Cr, Fe, Co, Mo, Ta, or Ti). By using a Cu-X alloy film, the manufacturing cost can be reduced because it can be processed by a wet etching process.
導電層205A、導電層205B、及び、導電層242A乃至導電層242Cには、それぞれ、例えば、チタン、窒化タンタル、窒化チタン、チタンとアルミニウムを含む窒化物、タンタルとアルミニウムを含む窒化物、ルテニウム、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、ランタンとニッケルを含む酸化物を用いることが好ましい。これらは、酸化されにくい導電性材料、または、酸化されても導電性を維持する材料であるため、好ましい。なお、導電層205B、及び、導電層242A乃至導電層242Cが積層構造である場合、少なくとも酸化物層230Aまたは酸化物層230Bと接する層に、酸化されにくい導電性材料を用いることが好ましい。 The conductive layer 205A, the conductive layer 205B, and the conductive layers 242A to 242C are preferably made of, for example, titanium, tantalum nitride, titanium nitride, a nitride containing titanium and aluminum, a nitride containing tantalum and aluminum, ruthenium, ruthenium oxide, ruthenium nitride, an oxide containing strontium and ruthenium, or an oxide containing lanthanum and nickel. These are preferable because they are conductive materials that are difficult to oxidize or materials that maintain their conductivity even when oxidized. Note that when the conductive layer 205B and the conductive layers 242A to 242C have a stacked structure, it is preferable to use a conductive material that is difficult to oxidize at least for the layer in contact with the oxide layer 230A or the oxide layer 230B.
導電層205A、導電層205B、及び、導電層242A乃至導電層242Cには、それぞれ、窒化物導電体を用いてもよい。窒化物導電体として、例えば、窒化タンタル、及び窒化チタンが挙げられる。 The conductive layer 205A, the conductive layer 205B, and the conductive layers 242A to 242C may each include a nitride conductor. Examples of nitride conductors include tantalum nitride and titanium nitride.
例えば、導電層205A、導電層205B、及び、導電層242A乃至導電層242Cは、それぞれ、酸化物導電体膜の単層構造、金属膜と酸化物導電体膜の積層構造、または、金属膜の積層構造とすることができる。酸化物導電体膜としては、例えば、ITSO膜が挙げられる。金属膜としては、例えば、タングステン膜の単層構造、チタン膜の単層構造、銅膜の単層構造、及び、チタン膜とアルミニウム膜とチタン膜の3層構造が挙げられる。 For example, the conductive layer 205A, the conductive layer 205B, and the conductive layers 242A to 242C can each have a single-layer structure of an oxide conductor film, a stacked structure of a metal film and an oxide conductor film, or a stacked structure of a metal film. An example of an oxide conductor film is an ITSO film. An example of a metal film is a single-layer structure of a tungsten film, a single-layer structure of a titanium film, a single-layer structure of a copper film, and a three-layer structure of a titanium film, an aluminum film, and a titanium film.
また、例えば、導電層205A、導電層205B、及び、導電層242A乃至導電層242CにITSO膜を用いることが好ましい。 In addition, for example, it is preferable to use an ITSO film for the conductive layer 205A, the conductive layer 205B, and the conductive layers 242A to 242C.
図2Bでは、導電層242A及び導電層242Bをそれぞれ2層構造で示している。導電層242Aは、導電層242a1と導電層242a1上の導電層242a2の積層膜であり、導電層242Bは、導電層242b1と導電層242b1上の導電層242b2の積層膜である。このとき、酸化物層230Aに接する層(導電層242a1及び導電層242b1)として、酸化されにくい導電性材料、または、酸素の拡散を抑制する機能を有する導電性材料を用いることが好ましい。これにより、導電層242A及び導電層242Bの導電率が低下することを抑制できる。また、酸化物層230Aから酸素が引き抜かれ、過剰な量の酸素欠損が形成されるのを抑制できる。また、酸化物層230Aに接する層(導電層242a1及び導電層242b1)として、水素を吸い取りやすい(抜き取りやすい)材料を用いると、酸化物層230の水素濃度を低減でき、好ましい。 In FIG. 2B, the conductive layer 242A and the conductive layer 242B are each shown as a two-layer structure. The conductive layer 242A is a laminated film of the conductive layer 242a1 and the conductive layer 242a2 on the conductive layer 242a1, and the conductive layer 242B is a laminated film of the conductive layer 242b1 and the conductive layer 242b2 on the conductive layer 242b1. At this time, it is preferable to use a conductive material that is difficult to oxidize or a conductive material that has a function of suppressing the diffusion of oxygen as the layer in contact with the oxide layer 230A (the conductive layer 242a1 and the conductive layer 242b1). This can suppress the decrease in the conductivity of the conductive layer 242A and the conductive layer 242B. In addition, it can suppress the extraction of oxygen from the oxide layer 230A and the formation of an excessive amount of oxygen vacancy. In addition, it is preferable to use a material that easily absorbs (easily removes) hydrogen as the layer in contact with the oxide layer 230A (conductive layer 242a1 and conductive layer 242b1), as this can reduce the hydrogen concentration in the oxide layer 230.
導電層242a1及び導電層242b1としては、金属窒化物を用いることが好ましく、例えば、タンタルを含む窒化物、チタンを含む窒化物、モリブデンを含む窒化物、タングステンを含む窒化物、タンタル及びアルミニウムを含む窒化物、チタン及びアルミニウムを含む窒化物などを用いることが好ましい。本発明の一態様においては、タンタルを含む窒化物が特に好ましい。また、例えば、ルテニウム、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、ランタンとニッケルを含む酸化物などを用いてもよい。これらの材料は、酸化されにくい導電性材料、または、酸素を吸収しても導電性を維持する材料であるため、好ましい。 For the conductive layer 242a1 and the conductive layer 242b1, it is preferable to use a metal nitride, for example, a nitride containing tantalum, a nitride containing titanium, a nitride containing molybdenum, a nitride containing tungsten, a nitride containing tantalum and aluminum, or a nitride containing titanium and aluminum. In one embodiment of the present invention, a nitride containing tantalum is particularly preferable. In addition, for example, ruthenium, ruthenium oxide, ruthenium nitride, an oxide containing strontium and ruthenium, an oxide containing lanthanum and nickel, or the like may be used. These materials are preferable because they are conductive materials that are difficult to oxidize or materials that maintain their conductivity even when they absorb oxygen.
例えば、導電層242a1及び導電層242b1として、窒化タンタルまたは窒化チタンを用い、導電層242a2及び導電層242b2として、タングステンを用いることができる。 For example, tantalum nitride or titanium nitride can be used for the conductive layer 242a1 and the conductive layer 242b1, and tungsten can be used for the conductive layer 242a2 and the conductive layer 242b2.
<導電層260及び導電層265>
導電層260及び導電層265は、それぞれ、単層構造であってもよく、積層構造であってもよい。導電層260及び導電層265に用いることができる材料としては、例えば、クロム、銅、アルミニウム、金、銀、亜鉛、タンタル、チタン、タングステン、マンガン、ニッケル、鉄、コバルト、モリブデン、及びニオブの一または複数、並びに前述した金属の一または複数を成分とする合金が挙げられる。導電層260及び導電層265には、銅、銀、金、及びアルミニウムのうち一または複数を含む、低抵抗な導電性材料を好適に用いることができる。特に、銅またはアルミニウムは量産性に優れるため好ましい。
<Conductive Layer 260 and Conductive Layer 265>
The conductive layer 260 and the conductive layer 265 may each have a single-layer structure or a laminated structure. Examples of materials that can be used for the conductive layer 260 and the conductive layer 265 include one or more of chromium, copper, aluminum, gold, silver, zinc, tantalum, titanium, tungsten, manganese, nickel, iron, cobalt, molybdenum, and niobium, and alloys containing one or more of the above-mentioned metals. For the conductive layer 260 and the conductive layer 265, a low-resistance conductive material containing one or more of copper, silver, gold, and aluminum can be suitably used. In particular, copper or aluminum is preferable because of its excellent mass productivity.
導電層260及び導電層265には、酸化物導電体を用いることができる。酸化物導電体としては、導電層205A等の説明で例示した材料が挙げられる。 An oxide conductor can be used for the conductive layer 260 and the conductive layer 265. Examples of the oxide conductor include the materials exemplified in the description of the conductive layer 205A, etc.
導電層260及び導電層265は、前述の酸化物導電体(金属酸化物)を含む導電膜と、金属または合金を含む導電膜と、の積層構造としてもよい。金属または合金を含む導電膜を用いることで、配線抵抗を小さくすることができる。 The conductive layer 260 and the conductive layer 265 may have a stacked structure of a conductive film containing the oxide conductor (metal oxide) described above and a conductive film containing a metal or an alloy. By using a conductive film containing a metal or an alloy, the wiring resistance can be reduced.
導電層260及び導電層265は、Cu−X合金膜(Xは、Mn、Ni、Cr、Fe、Co、Mo、Ta、またはTi)を適用してもよい。Cu−X合金膜を用いることで、ウェットエッチングプロセスで加工できるため、製造コストを抑制できる。 Conductive layer 260 and conductive layer 265 may be made of a Cu-X alloy film (X is Mn, Ni, Cr, Fe, Co, Mo, Ta, or Ti). By using a Cu-X alloy film, the film can be processed by a wet etching process, which reduces manufacturing costs.
例えば、導電層260及び導電層265に、チタン膜とアルミニウム膜とチタン膜との3層積層構造を用いることが好ましい。 For example, it is preferable to use a three-layer stacked structure of a titanium film, an aluminum film, and a titanium film for the conductive layer 260 and the conductive layer 265.
図2Bでは、導電層260が2層構造である例を示す。図2Bに示す導電層260は、導電層260aと、導電層260aの上に配置された導電層260bと、を有する。例えば、導電層260aは、導電層260bの底面及び側面を包むように配置されることが好ましい。このとき、導電層260aとして、酸化されにくい導電性材料、または、酸素の拡散を抑制する機能を有する導電性材料を用いることが好ましい。 FIG. 2B shows an example in which the conductive layer 260 has a two-layer structure. The conductive layer 260 shown in FIG. 2B has a conductive layer 260a and a conductive layer 260b arranged on the conductive layer 260a. For example, the conductive layer 260a is preferably arranged so as to surround the bottom and side surfaces of the conductive layer 260b. In this case, it is preferable to use a conductive material that is not easily oxidized or a conductive material that has the function of suppressing the diffusion of oxygen as the conductive layer 260a.
導電層260aは、水素原子、水素分子、水分子、窒素原子、窒素分子(NO、NO、NOなど)、酸化窒素分子、銅原子などの不純物の拡散を抑制する機能を有する導電性材料を用いることが好ましい。または、酸素(例えば、酸素原子、及び酸素分子などの少なくとも一)の拡散を抑制する機能を有する導電性材料を用いることが好ましい。 The conductive layer 260a is preferably made of a conductive material having a function of suppressing the diffusion of impurities such as hydrogen atoms, hydrogen molecules, water molecules, nitrogen atoms, nitrogen molecules ( N2O , NO, NO2 , etc.), nitrogen oxide molecules, copper atoms, etc. Alternatively, it is preferably made of a conductive material having a function of suppressing the diffusion of oxygen (for example, at least one of oxygen atoms and oxygen molecules, etc.).
導電層260aが酸素の拡散を抑制する機能を有することにより、絶縁層280などに含まれる酸素により、導電層260bが酸化して導電率が低下することを抑制できる。酸素の拡散を抑制する機能を有する導電性材料としては、例えば、チタン、窒化チタン、タンタル、窒化タンタル、ルテニウム、酸化ルテニウムなどを用いることが好ましい。 The conductive layer 260a has a function of suppressing the diffusion of oxygen, which can suppress the conductive layer 260b from being oxidized by oxygen contained in the insulating layer 280, etc., and thereby suppressing a decrease in conductivity. As a conductive material having a function of suppressing the diffusion of oxygen, it is preferable to use, for example, titanium, titanium nitride, tantalum, tantalum nitride, ruthenium, ruthenium oxide, etc.
導電層260bは、導電性が高い導電層を用いることが好ましい。例えば、導電層260bは、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることができる。また、導電層260bは積層構造としてもよく、例えば、チタン、または窒化チタンと上記導電性材料との積層構造としてもよい。 The conductive layer 260b is preferably a conductive layer having high conductivity. For example, the conductive layer 260b may be made of a conductive material containing tungsten, copper, or aluminum as a main component. The conductive layer 260b may also have a layered structure, for example, a layered structure of titanium or titanium nitride and the above-mentioned conductive material.
また、導電層260及び導電層265は、それぞれ、絶縁層280などに形成されている開口を埋めるように自己整合的に形成される。このように形成することにより、位置合わせをしなくても、導電層242Aと導電層242Bとの間の領域に重畳して、導電層260を配置することができる。同様に、導電層265も、位置合わせをしなくても所定の位置に配置することができる。 In addition, conductive layer 260 and conductive layer 265 are each formed in a self-aligned manner so as to fill an opening formed in insulating layer 280 or the like. By forming them in this manner, conductive layer 260 can be positioned so as to overlap the region between conductive layer 242A and conductive layer 242B without alignment. Similarly, conductive layer 265 can also be positioned at a predetermined position without alignment.
<導電層240A乃至導電層240G>
導電層240A、導電層240B、導電層240C、導電層240D、導電層240E、導電層240F、及び導電層240Gは、それぞれ、単層構造であってもよく、積層構造であってもよい。
<Conductive layer 240A to conductive layer 240G>
Each of the conductive layer 240A, the conductive layer 240B, the conductive layer 240C, the conductive layer 240D, the conductive layer 240E, the conductive layer 240F, and the conductive layer 240G may have a single layer structure or a laminated structure.
導電層240A乃至導電層240Gのうち、絶縁層241と接する層としては、水、水素などの不純物の透過を抑制する機能を有する導電性材料を用いることが好ましい。例えば、タンタル、窒化タンタル、チタン、窒化チタン、ルテニウム、及び、酸化ルテニウムのうち一つまたは複数を用いた、単層構造または積層構造とすることができる。これにより、水、水素などの不純物が、導電層240A乃至導電層240Gを通じて酸化物層230Aなどに混入することを抑制できる。 Among the conductive layers 240A to 240G, a conductive material having a function of suppressing the permeation of impurities such as water and hydrogen is preferably used as the layer in contact with the insulating layer 241. For example, a single layer structure or a stacked structure using one or more of tantalum, tantalum nitride, titanium, titanium nitride, ruthenium, and ruthenium oxide can be used. This can suppress impurities such as water and hydrogen from being mixed into the oxide layer 230A, etc. through the conductive layers 240A to 240G.
また、導電層240A乃至導電層240Gは、配線としても機能するため、導電性が高い導電層を有することが好ましい。例えば、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることができる。 In addition, since the conductive layers 240A to 240G also function as wirings, it is preferable that the conductive layers have high conductivity. For example, a conductive material containing tungsten, copper, or aluminum as a main component can be used.
導電層240A乃至導電層240Gは、例えば、窒化チタンと、タングステンと、の2層構造であることが好ましい。 Conductive layers 240A to 240G preferably have a two-layer structure of, for example, titanium nitride and tungsten.
<絶縁層271A乃至絶縁層271C>
絶縁層271A、絶縁層271B、及び絶縁層271Cは、導電層242A、導電層242B、及び導電層242Cの加工時にエッチングストッパとして機能し、導電層242A、導電層242B、及び導電層242Cを保護する無機絶縁層である。また、絶縁層271A、絶縁層271B、及び絶縁層271Cは、導電層242A、導電層242B、及び導電層242Cと接するため、導電層242A、導電層242B、及び導電層242Cを酸化させにくい、無機絶縁層であることが好ましい。例えば、絶縁層271A、絶縁層271B、及び絶縁層271Cは、2層構造であることが好ましく、導電層242A、導電層242B、及び導電層242Cと接する層として、窒化物絶縁膜(窒化シリコンまたは窒化酸化シリコンなど)を用い、窒化絶縁膜上に、酸化物絶縁膜をエッチングストッパとして形成することが好ましい。酸化物絶縁膜としては、例えば、絶縁層250に用いることができる酸化絶縁膜を用いることができ、具体的には酸化シリコンが挙げられる。
<Insulating Layers 271A to 271C>
The insulating layers 271A, 271B, and 271C are inorganic insulating layers that function as an etching stopper when the conductive layers 242A, 242B, and 242C are processed, and protect the conductive layers 242A, 242B, and 242C. In addition, since the insulating layers 271A, 271B, and 271C are in contact with the conductive layers 242A, 242B, and 242C, they are preferably inorganic insulating layers that are unlikely to oxidize the conductive layers 242A, 242B, and 242C. For example, the insulating layer 271A, the insulating layer 271B, and the insulating layer 271C preferably have a two-layer structure, and a nitride insulating film (such as silicon nitride or silicon nitride oxide) is preferably used as a layer in contact with the conductive layer 242A, the conductive layer 242B, and the conductive layer 242C, and an oxide insulating film is preferably formed on the nitride insulating film as an etching stopper. As the oxide insulating film, for example, an oxide insulating film that can be used for the insulating layer 250 can be used, and specifically, silicon oxide can be mentioned.
以上のように、本実施の形態の半導体装置は、同一平面上に、一部の工程を共通にして形成された、少なくとも2種類の構造のトランジスタを有する。大きいオン電流が求まれるトランジスタにはチャネル長が極めて短い、縦型のトランジスタを適用する。一方、高い飽和特性が求められるトランジスタには、チャネル長が長く、かつ、バックゲートを有するプレーナ型のトランジスタを適用する。これにより、高い性能の半導体装置を実現できる。 As described above, the semiconductor device of this embodiment has transistors of at least two types of structures formed on the same plane using some common processes. For transistors that require a large on-current, vertical transistors with an extremely short channel length are used. On the other hand, for transistors that require high saturation characteristics, planar transistors with a long channel length and a backgate are used. This makes it possible to realize a high-performance semiconductor device.
[作製方法例]
次に、本発明の一態様の半導体装置の作製方法について図6乃至図9を用いて説明する。
[Example of manufacturing method]
Next, a method for manufacturing a semiconductor device of one embodiment of the present invention will be described with reference to FIGS.
半導体装置を構成する薄膜(絶縁膜、半導体膜、及び、導電膜等)は、スパッタリング法、化学気相堆積(CVD:Chemical Vapor Deposition)法、真空蒸着法、パルスレーザー堆積(PLD:Pulsed Laser Deposition)法、ALD法等を用いて形成することができる。 The thin films (insulating films, semiconductor films, conductive films, etc.) that make up semiconductor devices can be formed using sputtering, chemical vapor deposition (CVD), vacuum deposition, pulsed laser deposition (PLD), ALD, etc.
なお、スパッタリング法にはスパッタリング用電源に高周波電源を用いるRFスパッタリング法、直流電源を用いるDCスパッタリング法、さらにパルス的に電極に印加する電圧を変化させるパルスDCスパッタリング法がある。RFスパッタリング法は主に絶縁膜を成膜する場合に用いられ、DCスパッタリング法は主に金属導電膜を成膜する場合に用いられる。また、パルスDCスパッタリング法は、主に、酸化物、窒化物、炭化物などの化合物をリアクティブスパッタリング法で成膜する際に用いられる。 Sputtering methods include RF sputtering, which uses a high-frequency power supply as the sputtering power source, DC sputtering, which uses a direct current power supply, and pulsed DC sputtering, which changes the voltage applied to the electrodes in a pulsed manner. RF sputtering is mainly used when depositing insulating films, while DC sputtering is mainly used when depositing metal conductive films. Pulsed DC sputtering is mainly used when depositing compounds such as oxides, nitrides, and carbides using reactive sputtering.
また、CVD法は、プラズマを利用するプラズマCVD(PECVD)法、熱を利用する熱CVD(TCVD:Thermal CVD)法、光を利用する光CVD(Photo CVD)法などに分類できる。さらに用いる原料ガスによって金属CVD(MCVD:Metal CVD)法、有機金属CVD(MOCVD:Metal Organic CVD)法に分けることができる。 CVD methods can also be classified into plasma CVD (PECVD) methods, which use plasma, thermal CVD (TCVD: Thermal CVD) methods, which use heat, and photo CVD (Photo CVD) methods, which use light. They can also be further classified into metal CVD (MCVD: Metal CVD) methods and metal organic CVD (MOCVD: Metal CVD) methods, depending on the source gas used.
プラズマCVD法は、比較的低温で高品質の膜が得られる。また、熱CVD法は、プラズマを用いないため、被処理物へのプラズマダメージを小さくすることが可能な成膜方法である。例えば、半導体装置に含まれる配線、電極、素子(トランジスタ、容量素子など)などは、プラズマから電荷を受け取ることでチャージアップする場合がある。このとき、蓄積した電荷によって、半導体装置に含まれる配線、電極、素子などが破壊される場合がある。一方、プラズマを用いない熱CVD法の場合、こういったプラズマダメージが生じないため、半導体装置の歩留まりを高くすることができる。また、熱CVD法では、成膜中のプラズマダメージが生じないため、欠陥の少ない膜が得られる。 The plasma CVD method can produce high-quality films at relatively low temperatures. In addition, the thermal CVD method is a film formation method that can reduce plasma damage to the workpiece because it does not use plasma. For example, wiring, electrodes, elements (transistors, capacitive elements, etc.) included in a semiconductor device may become charged up by receiving electric charge from the plasma. At this time, the accumulated electric charge may destroy the wiring, electrodes, elements, etc. included in the semiconductor device. On the other hand, in the case of thermal CVD method, which does not use plasma, such plasma damage does not occur, so the yield of semiconductor devices can be increased. In addition, in the thermal CVD method, plasma damage does not occur during film formation, so a film with fewer defects can be obtained.
また、ALD法としては、プリカーサ及びリアクタントの反応を熱エネルギーのみで行う熱ALD法、プラズマ励起されたリアクタントを用いるPEALD法などを用いることができる。 Also, the ALD method can be a thermal ALD method in which the reaction between the precursor and reactant is carried out using only thermal energy, or a PEALD method in which a plasma-excited reactant is used.
CVD法及びALD法は、ターゲットなどから放出される粒子が堆積するスパッタリング法とは異なる。したがって、被処理物の形状の影響を受けにくく、良好な段差被覆性を有する成膜方法である。特に、ALD法は、優れた段差被覆性と、優れた厚さの均一性と、を有するため、アスペクト比の高い開口部の表面を被覆する場合などに好適である。ただし、ALD法は、比較的成膜速度が遅いため、成膜速度の速いCVD法などの他の成膜方法と組み合わせて用いることが好ましい場合もある。 The CVD and ALD methods are different from sputtering methods in which particles emitted from a target or the like are deposited. Therefore, they are film formation methods that are less affected by the shape of the workpiece and have good step coverage. In particular, the ALD method has excellent step coverage and excellent thickness uniformity, making it suitable for coating the surfaces of openings with high aspect ratios. However, since the ALD method has a relatively slow film formation speed, it may be preferable to use it in combination with other film formation methods such as the CVD method, which has a fast film formation speed.
また、CVD法では、原料ガスの流量比によって、任意の組成の膜を成膜することができる。例えば、CVD法では、成膜しながら原料ガスの流量比を変化させることによって、組成が連続的に変化した膜を成膜することができる。原料ガスの流量比を変化させながら成膜する場合、複数の成膜室を用いて成膜する場合と比べて、搬送または圧力調整に掛かる時間を要さない分、成膜に掛かる時間を短くすることができる。したがって、半導体装置の生産性を高めることができる場合がある。 In addition, the CVD method can form a film of any composition by adjusting the flow rate ratio of the source gases. For example, the CVD method can form a film whose composition changes continuously by changing the flow rate ratio of the source gases while forming the film. When forming a film while changing the flow rate ratio of the source gases, the time required for film formation can be shortened compared to forming a film using multiple film formation chambers because no time is required for transportation or pressure adjustment. Therefore, the productivity of semiconductor devices can be increased in some cases.
また、ALD法では、異なる複数種のプリカーサを同時に導入することで任意の組成の膜を成膜することができる。または、異なる複数種のプリカーサを導入する場合、各プリカーサのサイクル数を制御することで任意の組成の膜を成膜することができる。 Also, in the ALD method, a film of any composition can be formed by simultaneously introducing multiple different types of precursors. Alternatively, when multiple different types of precursors are introduced, a film of any composition can be formed by controlling the number of cycles of each precursor.
また、半導体装置を構成する薄膜(絶縁膜、半導体膜、及び、導電膜等)は、スピンコート法、ディップコート法、スプレーコート法、インクジェット法、ディスペンス、スクリーン印刷、オフセット印刷、ドクターナイフ法、スリットコート、ロールコート、カーテンコート、またはナイフコート等の湿式の成膜方法により形成することができる。 Furthermore, the thin films (insulating films, semiconductor films, conductive films, etc.) constituting the semiconductor device can be formed by wet film formation methods such as spin coating, dip coating, spray coating, inkjet printing, dispensing, screen printing, offset printing, doctor knife method, slit coating, roll coating, curtain coating, or knife coating.
また、半導体装置を構成する薄膜を加工する際には、フォトリソグラフィ法等を用いることができる。または、ナノインプリント法、サンドブラスト法、リフトオフ法などにより薄膜を加工してもよい。また、メタルマスクなどの遮蔽マスクを用いた成膜方法により、島状の薄膜を直接形成してもよい。 In addition, when processing the thin film that constitutes the semiconductor device, a photolithography method or the like can be used. Alternatively, the thin film may be processed by a nanoimprint method, a sandblasting method, a lift-off method, or the like. Also, an island-shaped thin film may be directly formed by a film formation method using a shielding mask such as a metal mask.
フォトリソグラフィ法としては、代表的には以下の2つの方法がある。1つは、加工したい薄膜上にレジストマスクを形成して、エッチング等により当該薄膜を加工し、レジストマスクを除去する方法である。もう1つは、感光性を有する薄膜を成膜した後に、露光、現像を行って、当該薄膜を所望の形状に加工する方法である。 There are two typical photolithography methods. One is to form a resist mask on the thin film to be processed, process the thin film by etching or other methods, and then remove the resist mask. The other is to form a photosensitive thin film, and then expose and develop it to process the thin film into the desired shape.
フォトリソグラフィ法において、露光に用いる光は、例えばi線(波長365nm)、g線(波長436nm)、h線(波長405nm)、またはこれらを混合させた光を用いることができる。そのほか、紫外線、KrFレーザ光、またはArFレーザ光等を用いることもできる。また、液浸露光技術により露光を行ってもよい。また、露光に用いる光として、極端紫外(EUV:Extreme Ultra−violet)光、またはX線を用いてもよい。また、露光に用いる光に換えて、電子ビームを用いることもできる。極端紫外光、X線または電子ビームを用いると、極めて微細な加工が可能となるため好ましい。なお、電子ビームなどのビームを走査することにより露光を行う場合には、フォトマスクは不要である。 In the photolithography method, the light used for exposure can be, for example, i-line (wavelength 365 nm), g-line (wavelength 436 nm), h-line (wavelength 405 nm), or a mixture of these. In addition, ultraviolet light, KrF laser light, ArF laser light, etc. can also be used. Exposure can also be performed by immersion exposure technology. Extreme ultraviolet (EUV) light or X-rays can also be used as the light used for exposure. Electron beams can also be used instead of the light used for exposure. Extreme ultraviolet light, X-rays, or electron beams are preferable because they enable extremely fine processing. When exposure is performed by scanning a beam such as an electron beam, a photomask is not required.
薄膜のエッチングには、ドライエッチング法、ウェットエッチング法、サンドブラスト法などを用いることができる。 Dry etching, wet etching, sandblasting, etc. can be used to etch thin films.
まず、絶縁層215上に絶縁層216を形成し、絶縁層216に絶縁層215に達する開口を形成する。次に、絶縁層215上及び絶縁層216上に、導電層205A及び導電層205Bとなる導電層を形成する。そして、化学機械研磨(CMP:Chemical Mechanical Polishing)処理を行うことで、当該導電膜の一部を除去し、絶縁層216を露出する。その結果、絶縁層216の開口に、導電層205A及び導電層205Bを設けることができる。 First, an insulating layer 216 is formed on an insulating layer 215, and an opening is formed in the insulating layer 216 so as to reach the insulating layer 215. Next, conductive layers that become conductive layers 205A and 205B are formed on the insulating layer 215 and the insulating layer 216. Then, a chemical mechanical polishing (CMP) process is performed to remove a part of the conductive film and expose the insulating layer 216. As a result, the conductive layers 205A and 205B can be provided in the opening of the insulating layer 216.
絶縁層215及び絶縁層216は、それぞれ、スパッタリング法、CVD法、MBE法、PLD法、または、ALD法を用いて形成することができる。スパッタリング法を用いる場合、成膜ガスに水素を含む分子を用いなくてもよいため、絶縁層中の水素濃度を低減でき、好ましい。 The insulating layer 215 and the insulating layer 216 can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, or an ALD method. When a sputtering method is used, it is not necessary to use molecules containing hydrogen in the deposition gas, and therefore the hydrogen concentration in the insulating layer can be reduced, which is preferable.
絶縁層215及び絶縁層216は、大気に暴露することなく連続して成膜することが好ましい。例えば、マルチチャンバー方式の成膜装置を用いることが好ましい。これにより、絶縁層215及び絶縁層216の膜中の水素を少なくでき、さらに、各成膜工程の合間に膜中に水素が混入することを低減できる。 It is preferable to deposit the insulating layers 215 and 216 in succession without exposing them to the atmosphere. For example, it is preferable to use a multi-chamber deposition apparatus. This can reduce the amount of hydrogen in the insulating layers 215 and 216, and can also reduce the incorporation of hydrogen into the films between each deposition process.
なお、絶縁層216に開口を形成する際、絶縁層215に凹部が形成されてもよい。 When forming an opening in insulating layer 216, a recess may be formed in insulating layer 215.
導電層205A及び導電層205Bとなる導電層は、スパッタリング法、CVD法、MBE法、PLD法、ALD法、または、メッキ法などを用いて形成することができる。 The conductive layers that become conductive layer 205A and conductive layer 205B can be formed using a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, a plating method, or the like.
なお、CMP処理を行う際、絶縁層216の一部が除去されてもよい。 Note that when performing the CMP process, a portion of the insulating layer 216 may be removed.
次に、導電層205A、導電層205B、及び、絶縁層216上に、絶縁層220、絶縁層222、及び絶縁層224を形成する(図6A)。 Next, insulating layers 220, 222, and 224 are formed on conductive layer 205A, conductive layer 205B, and insulating layer 216 (Figure 6A).
次に、リソグラフィ法を用いて、絶縁層220、絶縁層222、及び絶縁層224を加工して、絶縁層220、絶縁層222、及び絶縁層224において導電層205Bと重畳する部分に開口341を設ける(図6B)。開口341を設けることにより、導電層205Bの上面が露出する。 Next, the insulating layer 220, the insulating layer 222, and the insulating layer 224 are processed using a lithography method to provide an opening 341 in the portion of the insulating layer 220, the insulating layer 222, and the insulating layer 224 that overlaps with the conductive layer 205B (FIG. 6B). By providing the opening 341, the upper surface of the conductive layer 205B is exposed.
絶縁層220、絶縁層222、及び絶縁層224は、一括で開口されることが好ましい。 It is preferable that insulating layer 220, insulating layer 222, and insulating layer 224 are opened at the same time.
上記加工には、ドライエッチング法またはウェットエッチング法を用いることができる。ドライエッチング法は、微細加工に適しているため好ましい。 The above processing can be performed using a dry etching method or a wet etching method. The dry etching method is preferred because it is suitable for fine processing.
絶縁層220、絶縁層222、及び絶縁層224の加工は、それぞれ異なる条件で行ってもよい。 The processing of insulating layer 220, insulating layer 222, and insulating layer 224 may be performed under different conditions.
なお、絶縁層220、絶縁層222、及び絶縁層224に開口341を設けた後、露出した導電層205Bのエッチングが行われることが好ましい。当該エッチングにより、導電層205Bで開口341と重畳する領域に、凹部が設けられることが好ましい。また、凹部の深さは導電層205Bの膜厚よりも浅いことが好ましい。すなわち、当該エッチングにより、導電層205Bを貫通する開口が設けられず、凹部の底部には、導電層205Bが残存することが好ましい。 Note that, after providing openings 341 in insulating layers 220, 222, and 224, the exposed conductive layer 205B is preferably etched. This etching preferably provides a recess in the area of conductive layer 205B that overlaps with opening 341. Also, the depth of the recess is preferably shallower than the film thickness of conductive layer 205B. In other words, this etching preferably does not provide an opening penetrating conductive layer 205B, and conductive layer 205B preferably remains at the bottom of the recess.
エッチングされた領域において導電層205Bの膜が残存する当該エッチングを、ハーフエッチングと呼ぶ場合がある。 This type of etching, in which the conductive layer 205B film remains in the etched area, is sometimes called half etching.
なお、リソグラフィ法では、まず、マスクを介してレジストを露光する。次に、露光された領域を、現像液を用いて除去または残存させてレジストマスクを形成する。次に、当該レジストマスクを介してエッチング処理することで、導電層、半導体、または絶縁層などを所望の形状に加工することができる。例えば、KrFエキシマレーザ光、ArFエキシマレーザ光、EUV(Extreme Ultraviolet)光などを用いて、レジストを露光することでレジストマスクを形成することができる。また、基板と投影レンズとの間に液体(例えば水)を満たして露光する、液浸技術を用いてもよい。また、前述した光に代えて、電子ビームまたはイオンビームを用いてもよい。なお、電子ビームまたはイオンビームを用いる場合には、マスクを用いなくてもよい場合がある。 In the lithography method, the resist is exposed through a mask. The exposed area is then removed or left using a developer to form a resist mask. Then, a conductive layer, a semiconductor, or an insulating layer can be processed into a desired shape by etching through the resist mask. For example, a resist mask can be formed by exposing the resist using KrF excimer laser light, ArF excimer laser light, EUV (Extreme Ultraviolet) light, or the like. In addition, a liquid immersion technique may be used in which a liquid (e.g., water) is filled between the substrate and the projection lens and exposure is performed. In addition, an electron beam or an ion beam may be used instead of the light described above. In addition, when an electron beam or an ion beam is used, a mask may not be used.
なお、加工後に不要になったレジストマスクは、酸素プラズマを用いたアッシング(以下、酸素プラズマ処理と呼ぶ場合がある。)などのドライエッチング処理を行う、ウェットエッチング処理を行う、ドライエッチング処理後にウェットエッチング処理を行う、またはウェットエッチング処理後にドライエッチング処理を行うことで、除去することができる。 Note that the resist mask that is no longer needed after processing can be removed by performing a dry etching process such as ashing using oxygen plasma (hereinafter sometimes referred to as oxygen plasma treatment), a wet etching process, a dry etching process followed by a wet etching process, or a wet etching process followed by a dry etching process.
さらに、レジストマスクの下に絶縁層または導電層からなるハードマスクを用いてもよい。絶縁層224などのエッチングは、レジストマスクを除去してから行ってもよいし、レジストマスクを残したまま行ってもよい。後者の場合、エッチング中にレジストマスクが消失することがある。絶縁層220のエッチング後にハードマスクをエッチングにより除去してもよい。一方、ハードマスクの材料が後工程に影響が無い、あるいは後工程で利用できる場合、必ずしもハードマスクを除去する必要は無い。 Furthermore, a hard mask made of an insulating layer or a conductive layer may be used under the resist mask. Etching of the insulating layer 224 etc. may be performed after removing the resist mask, or may be performed while leaving the resist mask. In the latter case, the resist mask may disappear during etching. After etching of the insulating layer 220, the hard mask may be removed by etching. On the other hand, if the material of the hard mask does not affect the subsequent process or can be used in the subsequent process, it is not necessarily necessary to remove the hard mask.
また、被加工物とレジストマスクの間に、SOC(Spin On Carbon)膜、及びSOG(Spin On Glass)膜を成膜する構成にしてもよい。SOC膜及びSOG膜をマスクとして用いることで、レジストマスクとの密着性を向上させ、マスクパターンの耐久性を向上させることができる。例えば、被加工物の上に、SOC膜、SOG膜、レジストマスクの順に成膜してリソグラフィ法を行うことができる。 Also, a configuration may be adopted in which an SOC (Spin On Carbon) film and an SOG (Spin On Glass) film are formed between the workpiece and the resist mask. By using the SOC film and the SOG film as a mask, it is possible to improve adhesion with the resist mask and improve the durability of the mask pattern. For example, a SOC film, an SOG film, and a resist mask can be formed in this order on the workpiece, and then lithography can be performed.
ドライエッチング処理用のエッチングガスとしては、ハロゲンを含むエッチングガスを用いることができ、具体的には、フッ素、塩素、及び臭素のうち、一または複数を含むエッチングガスを用いることができる。例えば、エッチングガスとして、Cガス、Cガス、Cガス、CFガス、SFガス、CHFガス、CHガス、Clガス、BClガス、SiClガス、またはBBrガスなどを単独または2以上のガスを混合して用いることができる。また、上記のエッチングガスに酸素ガス、炭酸ガス、窒素ガス、ヘリウムガス、アルゴンガス、水素ガス、または炭化水素ガスなどを適宜添加することができる。また、ドライエッチング処理の被処理物によっては、ハロゲンガスを含まず、炭化水素ガスまたは水素ガスを含むガスを、エッチングガスとして用いることができる。エッチングガスに用いる炭化水素としては、メタン(CH)、エタン(C)、プロパン(C)、ブタン(C10)、エチレン(C)、プロピレン(C)、アセチレン(C)、およびプロピン(C)の一または複数を用いることができる。エッチング条件は、エッチングする対象に合わせて適宜設定することができる。 As the etching gas for the dry etching process, an etching gas containing halogen can be used, specifically, an etching gas containing one or more of fluorine, chlorine, and bromine can be used. For example, as the etching gas, C4F6 gas , C5F6 gas , C4F8 gas, CF4 gas, SF6 gas, CHF3 gas, CH2F2 gas, Cl2 gas, BCl3 gas, SiCl4 gas, or BBr3 gas can be used alone or in a mixture of two or more gases. In addition, oxygen gas, carbon dioxide gas, nitrogen gas, helium gas, argon gas, hydrogen gas, or hydrocarbon gas can be appropriately added to the above etching gas. In addition, depending on the object to be treated in the dry etching process, a gas containing no halogen gas but a hydrocarbon gas or hydrogen gas can be used as the etching gas. The hydrocarbon used in the etching gas may be one or more of methane ( CH4 ), ethane ( C2H6 ) , propane ( C3H8 ), butane ( C4H10 ), ethylene (C2H4), propylene (C3H6), acetylene (C2H2), and propyne (C3H4 ) . The etching conditions may be appropriately set according to the object to be etched.
ドライエッチング装置としては、平行平板型電極を有する容量結合型プラズマ(CCP:Capacitively Coupled Plasma)エッチング装置を用いることができる。平行平板型電極を有する容量結合型プラズマエッチング装置は、平行平板型電極の一方の電極に高周波電圧を印加する構成でもよい。または平行平板型電極の一方の電極に複数の異なった高周波電圧を印加する構成でもよい。または平行平板型電極それぞれに同じ周波数の高周波電圧を印加する構成でもよい。または平行平板型電極それぞれに周波数の異なる高周波電圧を印加する構成でもよい。または高密度プラズマ源を有するドライエッチング装置を用いることができる。高密度プラズマ源を有するドライエッチング装置は、例えば、誘導結合型プラズマ(ICP:Inductively Coupled Plasma)エッチング装置などを用いることができる。エッチング装置は、エッチングする対象に合わせて適宜設定することができる。 As the dry etching device, a capacitively coupled plasma (CCP) etching device having parallel plate electrodes can be used. The capacitively coupled plasma etching device having parallel plate electrodes may be configured to apply a high frequency voltage to one of the parallel plate electrodes. Or, it may be configured to apply a plurality of different high frequency voltages to one of the parallel plate electrodes. Or, it may be configured to apply a high frequency voltage of the same frequency to each of the parallel plate electrodes. Or, it may be configured to apply a high frequency voltage of different frequencies to each of the parallel plate electrodes. Or, a dry etching device having a high density plasma source can be used. As the dry etching device having a high density plasma source, for example, an inductively coupled plasma (ICP) etching device can be used. The etching device can be appropriately set according to the object to be etched.
次に、絶縁層224の上面及び側面、絶縁層222の側面、絶縁層220の側面、及び露出した導電層205Bの上面を覆うように、酸化物層230を形成し、酸化物層230上に、導電層242、及び絶縁層271をこの順番で形成する(図6C)。 Next, an oxide layer 230 is formed to cover the upper and side surfaces of the insulating layer 224, the side surfaces of the insulating layer 222, the side surfaces of the insulating layer 220, and the upper surface of the exposed conductive layer 205B, and a conductive layer 242 and an insulating layer 271 are formed in this order on the oxide layer 230 (Figure 6C).
絶縁層220及び絶縁層222として例えば、酸素、水素、及び水の一以上が拡散しにくい絶縁膜を用いることができる。また、絶縁層222及び絶縁層224の一以上として例えば、加熱により酸素を放出する絶縁膜を用いることが好ましい。 For example, an insulating film into which one or more of oxygen, hydrogen, and water do not easily diffuse can be used as the insulating layer 220 and the insulating layer 222. In addition, it is preferable to use, for example, an insulating film that releases oxygen when heated as one or more of the insulating layer 222 and the insulating layer 224.
また本実施の形態では、絶縁層222上に島状の絶縁層224A及び絶縁層224Bを形成するため、絶縁層224は、絶縁層222とのエッチングの選択比が大きい膜であることが好ましい。例えば、絶縁層224として、酸化シリコンまたは酸化窒化シリコンを用い、絶縁層222として酸化アルミニウム、酸化ハフニウム、アルミニウム及びハフニウムを含む酸化物(ハフニウムアルミネート)、ハフニウム及びシリコンを含む酸化物(ハフニウムシリケート)、または、ハフニウムジルコニウム酸化物を用いればよい。また、この場合には例えば、絶縁層220として窒化シリコンまたは窒化酸化シリコンを用いればよい。 In addition, in this embodiment, since island-shaped insulating layers 224A and 224B are formed on insulating layer 222, it is preferable that insulating layer 224 is a film having a large etching selectivity with respect to insulating layer 222. For example, silicon oxide or silicon oxynitride may be used as insulating layer 224, and aluminum oxide, hafnium oxide, an oxide containing aluminum and hafnium (hafnium aluminate), an oxide containing hafnium and silicon (hafnium silicate), or hafnium zirconium oxide may be used as insulating layer 222. In this case, for example, silicon nitride or silicon nitride oxide may be used as insulating layer 220.
絶縁層220、絶縁層222、及び絶縁層224は、それぞれ、例えば、スパッタリング法、CVD法、MBE法、PLD法、または、ALD法を用いて成膜することができる。 The insulating layer 220, the insulating layer 222, and the insulating layer 224 can each be formed using, for example, a sputtering method, a CVD method, an MBE method, a PLD method, or an ALD method.
絶縁層224は、スパッタリング法を用いて形成することが好ましい。これにより、成膜ガスに水素を含む分子を用いなくてもよいため、絶縁層224中の水素濃度を低減できる。絶縁層224上に接して酸化物層230が設けられるため、絶縁層224の水素濃度は低減されていることが好ましい。 The insulating layer 224 is preferably formed by a sputtering method. This eliminates the need to use hydrogen-containing molecules in the deposition gas, and therefore the hydrogen concentration in the insulating layer 224 can be reduced. Since the oxide layer 230 is provided on and in contact with the insulating layer 224, it is preferable that the hydrogen concentration in the insulating layer 224 is reduced.
なお、絶縁層224の成膜前に、加熱処理を行ってもよい。当該加熱処理は、減圧下で行い、大気に暴露することなく、連続して絶縁層224を成膜してもよい。このような処理を行うことによって、絶縁層222の表面に吸着している水分及び水素を除去し、さらに絶縁層222中の水分濃度及び水素濃度を低減させることができる。ここで、絶縁層222の下面に接して絶縁層220を設けておくことで、当該加熱処理によって、絶縁層220より下方から水分、または水素などの不純物が侵入するのを防ぐことができる。加熱処理の温度は、100℃以上400℃以下が好ましい。本実施の形態では、当該加熱処理の温度を250℃とする。 Note that heat treatment may be performed before the formation of the insulating layer 224. The heat treatment may be performed under reduced pressure, and the insulating layer 224 may be formed continuously without exposure to the air. By performing such treatment, moisture and hydrogen adsorbed on the surface of the insulating layer 222 can be removed, and the moisture concentration and hydrogen concentration in the insulating layer 222 can be further reduced. Here, by providing the insulating layer 220 in contact with the lower surface of the insulating layer 222, it is possible to prevent impurities such as moisture or hydrogen from entering from below the insulating layer 220 by the heat treatment. The temperature of the heat treatment is preferably 100° C. or higher and 400° C. or lower. In this embodiment, the temperature of the heat treatment is 250° C.
酸化物層230は、例えば、スパッタリング法、CVD法、MBE法、PLD法、または、ALD法を用いて成膜することができる。 The oxide layer 230 can be formed, for example, using a sputtering method, a CVD method, an MBE method, a PLD method, or an ALD method.
酸化物層230をスパッタリング法によって成膜する場合は、スパッタリングガスとして、酸素、または、酸素と貴ガスの混合ガスを用いる。スパッタリングガスに含まれる酸素の割合を高めることで、成膜される酸化膜中の過剰酸素を増やすことができる。また、上記の酸化膜をスパッタリング法によって成膜する場合は、In−M−Zn酸化物ターゲットなどを用いることができる。 When the oxide layer 230 is formed by a sputtering method, oxygen or a mixed gas of oxygen and a noble gas is used as the sputtering gas. By increasing the proportion of oxygen contained in the sputtering gas, the amount of excess oxygen in the oxide film to be formed can be increased. In addition, when the above oxide film is formed by a sputtering method, an In-M-Zn oxide target or the like can be used.
酸化物層230の成膜時に、スパッタリングガスに含まれる酸素の一部が絶縁層224に供給される場合がある。したがって、当該スパッタリングガスに含まれる酸素の割合は70%以上が好ましく、80%以上がより好ましく、100%がさらに好ましい。 When the oxide layer 230 is formed, some of the oxygen contained in the sputtering gas may be supplied to the insulating layer 224. Therefore, the proportion of oxygen contained in the sputtering gas is preferably 70% or more, more preferably 80% or more, and even more preferably 100%.
酸化物層230をスパッタリング法で形成する場合、スパッタリングガスに含まれる酸素の割合を、30%を超えて100%以下、好ましくは70%以上100%以下として成膜すると、酸素過剰型の酸化物半導体が形成される。酸素過剰型の酸化物半導体をチャネル形成領域に用いたトランジスタは、比較的高い信頼性が得られる。ただし、本発明の一態様はこれに限定されない。スパッタリングガスに含まれる酸素の割合を1%以上30%以下、好ましくは5%以上20%以下として成膜すると、酸素欠乏型の酸化物半導体が形成される。酸素欠乏型の酸化物半導体をチャネル形成領域に用いたトランジスタは、比較的高い電界効果移動度が得られる。また、基板を加熱しながら成膜を行うことによって、当該酸化物層の結晶性を向上させることができる。 When the oxide layer 230 is formed by a sputtering method, an oxygen-excessive oxide semiconductor is formed when the ratio of oxygen contained in the sputtering gas is set to more than 30% and not more than 100%, preferably 70% to 100%. A transistor using an oxygen-excessive oxide semiconductor in a channel formation region can have relatively high reliability. However, one embodiment of the present invention is not limited thereto. An oxygen-deficient oxide semiconductor is formed when the ratio of oxygen contained in the sputtering gas is set to 1% to 30%, preferably 5% to 20%, when the oxide layer 230 is formed. A transistor using an oxygen-deficient oxide semiconductor in a channel formation region can have relatively high field-effect mobility. In addition, the crystallinity of the oxide layer can be improved by forming the oxide layer while heating the substrate.
または、酸化物層230はALD法を用いて成膜することが好ましい。ALD法を用いて成膜することで、薄い膜を制御性よく成膜することができる。 Alternatively, it is preferable to form the oxide layer 230 using the ALD method. By forming the oxide layer using the ALD method, a thin film can be formed with good controllability.
なお、絶縁層224及び酸化物層230を、大気に暴露することなく成膜することが好ましい。例えば、マルチチャンバー方式の成膜装置を用いることが好ましい。これにより、絶縁層224及び酸化物層230について、各成膜工程の合間に膜中に水素が混入することを低減できる。 Note that it is preferable to form the insulating layer 224 and the oxide layer 230 without exposing them to the atmosphere. For example, it is preferable to use a multi-chamber film formation apparatus. This can reduce the inclusion of hydrogen in the insulating layer 224 and the oxide layer 230 between each film formation process.
次に、加熱処理を行うことが好ましい。加熱処理は、酸化物層230が多結晶化しない温度範囲で行えばよい。加熱処理の温度は、100℃以上、250℃以上、または350℃以上であり、かつ、650℃以下、600℃以下、または550℃以下であると好ましい。 Next, it is preferable to perform heat treatment. The heat treatment may be performed within a temperature range in which the oxide layer 230 does not become polycrystallized. The temperature of the heat treatment is preferably 100°C or higher, 250°C or higher, or 350°C or higher, and 650°C or lower, 600°C or lower, or 550°C or lower.
なお、加熱処理は、窒素ガスもしくは不活性ガスの雰囲気、または酸化性ガスを10ppm以上、1%以上、もしくは10%以上含む雰囲気で行う。例えば、窒素ガスと酸素ガスの混合雰囲気で加熱処理をする場合、酸素ガスを20%程度にすることが好ましい。また、加熱処理は減圧状態で行ってもよい。または、窒素ガスもしくは不活性ガスの雰囲気で加熱処理した後に、脱離した酸素を補うために酸化性ガスを10ppm以上、1%以上、または10%以上含む雰囲気で加熱処理を行ってもよい。 The heat treatment is performed in an atmosphere of nitrogen gas or an inert gas, or an atmosphere containing 10 ppm or more, 1% or more, or 10% or more of an oxidizing gas. For example, when the heat treatment is performed in a mixed atmosphere of nitrogen gas and oxygen gas, it is preferable to set the oxygen gas concentration to about 20%. The heat treatment may be performed under reduced pressure. Alternatively, after the heat treatment in a nitrogen gas or inert gas atmosphere, the heat treatment may be performed in an atmosphere containing 10 ppm or more, 1% or more, or 10% or more of an oxidizing gas to compensate for the oxygen that has been released.
また、上記加熱処理で用いるガスは、高純度化されていることが好ましい。例えば、上記加熱処理で用いるガスに含まれる水分量は、1ppb以下が好ましく、0.1ppb以下がより好ましく、0.05ppb以下がさらに好ましい。高純度化されたガスを用いて加熱処理を行うことで、酸化物層230に水分等が取り込まれることを可能な限り防ぐことができる。 In addition, the gas used in the heat treatment is preferably highly purified. For example, the amount of moisture contained in the gas used in the heat treatment is preferably 1 ppb or less, more preferably 0.1 ppb or less, and even more preferably 0.05 ppb or less. By using a highly purified gas to perform the heat treatment, it is possible to prevent moisture and the like from being taken into the oxide layer 230 as much as possible.
本実施の形態では、加熱処理として、窒素ガスと酸素ガスの流量比を4:1として、450℃の温度で1時間の処理を行う。このような酸素ガスを含む加熱処理によって、酸化物層230中の炭素、水、水素などの不純物を低減できる。このように膜中の不純物を低減することで、酸化物層230の結晶性を向上させ、より密度の高い、緻密な構造にすることができる。これにより、酸化物層230中の結晶領域を増大させ、酸化物層230中における、結晶領域の面内ばらつきを低減できる。よって、トランジスタの電気特性の面内ばらつきを低減できる。 In this embodiment, the heat treatment is performed at a temperature of 450° C. for 1 hour with a flow rate ratio of nitrogen gas and oxygen gas of 4:1. This heat treatment including oxygen gas can reduce impurities such as carbon, water, and hydrogen in the oxide layer 230. By reducing the impurities in the film in this way, the crystallinity of the oxide layer 230 can be improved, and a denser and more compact structure can be obtained. This increases the crystalline region in the oxide layer 230, and reduces the in-plane variation of the crystalline region in the oxide layer 230. Therefore, the in-plane variation of the electrical characteristics of the transistor can be reduced.
また、加熱処理を行うことで、絶縁層216、絶縁層224、及び酸化物層230中の水素が絶縁層222に移動し、絶縁層222内に吸い取られる。別言すると、絶縁層216、絶縁層224、及び酸化物層230中の水素が絶縁層222に拡散する。従って、絶縁層222の水素濃度は高くなるが、絶縁層216、絶縁層224、及び酸化物層230中のそれぞれの水素濃度は低下する。 In addition, by performing the heat treatment, hydrogen in the insulating layer 216, the insulating layer 224, and the oxide layer 230 moves to the insulating layer 222 and is absorbed into the insulating layer 222. In other words, hydrogen in the insulating layer 216, the insulating layer 224, and the oxide layer 230 diffuses into the insulating layer 222. Therefore, the hydrogen concentration in the insulating layer 222 increases, but the hydrogen concentrations in the insulating layer 216, the insulating layer 224, and the oxide layer 230 decrease.
特に、絶縁層224は、トランジスタ200のゲート絶縁層として機能する部分を有し、酸化物層230は、トランジスタ200のチャネル形成領域として機能する部分を有する。水素濃度が低減された絶縁層224、及び酸化物層230を用いて形成されたトランジスタ200は、良好な信頼性を有するため好ましい。 In particular, the insulating layer 224 has a portion that functions as a gate insulating layer of the transistor 200, and the oxide layer 230 has a portion that functions as a channel formation region of the transistor 200. The transistor 200 formed using the insulating layer 224 and the oxide layer 230 in which the hydrogen concentration is reduced has good reliability and is therefore preferable.
酸化物層230の成膜後に、エッチング工程などを挟まずに、酸化物層230上に接して導電層242を成膜することで、酸化物層230の上面を、導電層242で保護することができる。これにより、トランジスタを構成する酸化物層230に不純物が拡散することを抑制でき、半導体装置の電気特性及び信頼性の向上を図ることができる。 After the oxide layer 230 is formed, the conductive layer 242 is formed on the oxide layer 230 without an etching process or the like, so that the upper surface of the oxide layer 230 can be protected by the conductive layer 242. This makes it possible to suppress the diffusion of impurities into the oxide layer 230 that constitutes the transistor, and improve the electrical characteristics and reliability of the semiconductor device.
導電層242は、スパッタリング法、CVD法、MBE法、PLD法、メッキ法またはALD法を用いて成膜することができる。 The conductive layer 242 can be formed using a sputtering method, a CVD method, an MBE method, a PLD method, a plating method or an ALD method.
なお、導電層242の成膜前に、加熱処理を行ってもよい。当該加熱処理は、減圧下で行い、大気に暴露することなく、連続して導電層242を成膜してもよい。このような処理を行うことによって、酸化物層230Aの表面に吸着している水分及び水素を除去し、さらに酸化物層230A中の水分濃度及び水素濃度を低減させることができる。加熱処理の温度は、100℃以上400℃以下が好ましい。本実施の形態では、当該加熱処理の温度を250℃とする。 Note that heat treatment may be performed before the conductive layer 242 is formed. The heat treatment may be performed under reduced pressure, and the conductive layer 242 may be formed continuously without exposure to the air. By performing such treatment, moisture and hydrogen adsorbed on the surface of the oxide layer 230A can be removed, and the moisture concentration and hydrogen concentration in the oxide layer 230A can be further reduced. The temperature of the heat treatment is preferably 100° C. or higher and 400° C. or lower. In this embodiment, the temperature of the heat treatment is set to 250° C.
絶縁層271の成膜は、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて行うことができる。 The insulating layer 271 can be formed using a method such as sputtering, CVD, MBE, PLD, or ALD.
なお、絶縁層271の成膜前に、加熱処理を行ってもよい。当該加熱処理は、減圧下で行い、大気に暴露することなく、連続して絶縁層271を成膜してもよい。このような処理を行うことによって、導電層242の表面に吸着している水分及び水素を除去し、さらに導電層242中の水分濃度及び水素濃度を低減させることができる。加熱処理の温度は、100℃以上400℃以下が好ましい。本実施の形態では、当該加熱処理の温度を250℃とする。 Note that heat treatment may be performed before the insulating layer 271 is formed. The heat treatment may be performed under reduced pressure, and the insulating layer 271 may be formed continuously without exposure to the air. By performing such treatment, moisture and hydrogen adsorbed on the surface of the conductive layer 242 can be removed, and the moisture concentration and hydrogen concentration in the conductive layer 242 can be further reduced. The temperature of the heat treatment is preferably 100° C. or higher and 400° C. or lower. In this embodiment, the temperature of the heat treatment is set to 250° C.
次に、リソグラフィ法を用いて、絶縁層224、酸化物層230、導電層242、及び絶縁層271を島状に加工して、絶縁層224A、絶縁層224B、酸化物層230A、酸化物層230B、導電層242C、導電層242D、絶縁層271C、及び絶縁層271Dを形成する(図7A)。なお、これらが設けられていない部分では、絶縁層222が露出する。 Next, the insulating layer 224, the oxide layer 230, the conductive layer 242, and the insulating layer 271 are processed into an island shape using lithography to form insulating layer 224A, insulating layer 224B, oxide layer 230A, oxide layer 230B, conductive layer 242C, conductive layer 242D, insulating layer 271C, and insulating layer 271D (Figure 7A). Note that in areas where these are not provided, the insulating layer 222 is exposed.
具体的には、少なくとも一部が導電層205Aと重なるように、絶縁層224A、酸化物層230A、導電層242D、及び、絶縁層271Dの積層構造を形成する。また、少なくとも一部が導電層205Bと重なるように、絶縁層224B、酸化物層230B、導電層242C、及び絶縁層271Cの積層構造を形成する。 Specifically, a laminated structure of insulating layer 224A, oxide layer 230A, conductive layer 242D, and insulating layer 271D is formed so that at least a portion of the insulating layer 224A overlaps with conductive layer 205A. Also, a laminated structure of insulating layer 224B, oxide layer 230B, conductive layer 242C, and insulating layer 271C is formed so that at least a portion of the insulating layer 224B overlaps with conductive layer 205B.
絶縁層271、導電層242、酸化物層230、及び絶縁層224を一括で島状に加工することが好ましい。このとき、絶縁層271Dの側端部は、導電層242Dの側端部と概略一致することが好ましい。さらに、導電層242Dの側端部は、酸化物層230Aの側端部と概略一致することが好ましい。さらに、絶縁層224Aの側端部が、酸化物層230Aの側端部と概略一致することが好ましい。同様に、絶縁層271Cの側端部は、導電層242Cの側端部と概略一致することが好ましい。さらに、導電層242Cの側端部は、酸化物層230Bの側端部と概略一致することが好ましい。さらに、絶縁層224Bの側端部が、酸化物層230Bの側端部と概略一致することが好ましい。このような構成にすることで、本発明の一態様に係る半導体装置の工程数を削減することができる。よって、生産性の良好な半導体装置の作製方法を提供することができる。 It is preferable to process the insulating layer 271, the conductive layer 242, the oxide layer 230, and the insulating layer 224 into an island shape at once. At this time, it is preferable that the side end of the insulating layer 271D approximately coincides with the side end of the conductive layer 242D. Furthermore, it is preferable that the side end of the conductive layer 242D approximately coincides with the side end of the oxide layer 230A. Furthermore, it is preferable that the side end of the insulating layer 224A approximately coincides with the side end of the oxide layer 230A. Similarly, it is preferable that the side end of the insulating layer 271C approximately coincides with the side end of the conductive layer 242C. Furthermore, it is preferable that the side end of the conductive layer 242C approximately coincides with the side end of the oxide layer 230B. Furthermore, it is preferable that the side end of the insulating layer 224B approximately coincides with the side end of the oxide layer 230B. By adopting such a configuration, the number of steps of the semiconductor device according to one embodiment of the present invention can be reduced. Therefore, it is possible to provide a method for manufacturing a semiconductor device with good productivity.
絶縁層224を島状に加工することで、後述する工程で、絶縁層224Aの側面、絶縁層224Bの側面、及び絶縁層222の上面に接して絶縁層275を設けることができる。つまり、絶縁層224A及び絶縁層224Bを、絶縁層275によって、絶縁層280と離隔することができる。このような構成にすることで、絶縁層280から絶縁層224または絶縁層224Bを介して、過剰な量の酸素、及び水素などの不純物が、酸化物層230Aまたは酸化物層230Bに混入するのを防ぐことができる。 By processing the insulating layer 224 into an island shape, an insulating layer 275 can be provided in contact with the side of the insulating layer 224A, the side of the insulating layer 224B, and the top surface of the insulating layer 222 in a process described below. In other words, the insulating layer 224A and the insulating layer 224B can be separated from the insulating layer 280 by the insulating layer 275. With this configuration, it is possible to prevent impurities such as excessive oxygen and hydrogen from being mixed into the oxide layer 230A or the oxide layer 230B from the insulating layer 280 via the insulating layer 224 or the insulating layer 224B.
上記加工には、ドライエッチング法またはウェットエッチング法を用いることができる。ドライエッチング法は、微細加工に適しているため好ましい。 The above processing can be performed using a dry etching method or a wet etching method. The dry etching method is preferred because it is suitable for fine processing.
絶縁層271を加工して形成される絶縁層271C及び絶縁層271Dは、導電層242、酸化物層230、及び絶縁層224を一括で加工する際に、導電層242C及び導電層242Dを保護するエッチングストッパとして機能することができる。 The insulating layers 271C and 271D formed by processing the insulating layer 271 can function as an etching stopper to protect the conductive layers 242C and 242D when the conductive layer 242, the oxide layer 230, and the insulating layer 224 are processed together.
絶縁層271、導電層242、酸化物層230、及び絶縁層224の加工は、それぞれ異なる条件で行ってもよい。 The insulating layer 271, the conductive layer 242, the oxide layer 230, and the insulating layer 224 may be processed under different conditions.
さらに、リソグラフィ法で形成するレジストマスクの下に絶縁層または導電層からなるハードマスクを用いてもよい。ハードマスクを用いる場合、絶縁層271上にハードマスク材料となる絶縁層または導電層を形成し、その上にレジストマスクを形成し、ハードマスク材料をエッチングすることで所望の形状のハードマスクを形成することができる。絶縁層271などのエッチングは、レジストマスクを除去してから行ってもよいし、レジストマスクを残したまま行ってもよい。後者の場合、エッチング中にレジストマスクが消失することがある。酸化物層230などのエッチング後にハードマスクをエッチングにより除去してもよい。 Furthermore, a hard mask made of an insulating layer or a conductive layer may be used under a resist mask formed by lithography. When a hard mask is used, an insulating layer or a conductive layer that will be the hard mask material is formed on the insulating layer 271, a resist mask is formed thereon, and the hard mask material is etched to form a hard mask of a desired shape. Etching of the insulating layer 271 etc. may be performed after removing the resist mask, or may be performed while leaving the resist mask. In the latter case, the resist mask may disappear during etching. The hard mask may be removed by etching after etching of the oxide layer 230 etc.
一方、ハードマスクの材料が後工程に影響が無い、あるいは後工程で利用できる場合、必ずしもハードマスクを除去する必要は無い。例えば、絶縁層271を加工して絶縁層271C及び絶縁層271Dを形成し、絶縁層271C及び絶縁層271Dを導電層242、酸化物層230、等の加工においてハードマスクとして用いることもできる。 On the other hand, if the material of the hard mask does not affect subsequent processes or can be used in subsequent processes, it is not necessary to remove the hard mask. For example, insulating layer 271 can be processed to form insulating layer 271C and insulating layer 271D, and insulating layer 271C and insulating layer 271D can be used as a hard mask in processing conductive layer 242, oxide layer 230, etc.
ハードマスクは、ハードマスクの下層をハードマスク自身と概略同じ上面形状に加工することができる。 The hard mask can be processed so that the layer below the hard mask has roughly the same top surface shape as the hard mask itself.
例えば、導電層242C及び導電層242Dは、酸化物層230の加工において、ハードマスクとして機能することができる。すなわち、導電層242C及び導電層242Dをハードマスクとして用いて酸化物層230を加工することにより、酸化物層230B及び酸化物層230Aを形成することができる。 For example, the conductive layer 242C and the conductive layer 242D can function as a hard mask in processing the oxide layer 230. That is, the oxide layer 230B and the oxide layer 230A can be formed by processing the oxide layer 230 using the conductive layer 242C and the conductive layer 242D as a hard mask.
次に、絶縁層222上に接して、絶縁層224A、酸化物層230A、導電層242D、及び、絶縁層271Dの積層構造と、絶縁層224B、酸化物層230B、導電層242C、及び絶縁層271Cの積層構造と、を覆うように、絶縁層275を形成し、さらに、絶縁層275上に絶縁層280を形成する(図7B)。 Next, insulating layer 275 is formed on insulating layer 222 so as to cover the laminated structure of insulating layer 224A, oxide layer 230A, conductive layer 242D, and insulating layer 271D, and the laminated structure of insulating layer 224B, oxide layer 230B, conductive layer 242C, and insulating layer 271C, and further, insulating layer 280 is formed on insulating layer 275 (Figure 7B).
絶縁層280としては、絶縁層280となる絶縁層を形成し、当該絶縁層にCMP処理を行うことで、上面が平坦な絶縁膜を形成することが好ましい。 As the insulating layer 280, it is preferable to form an insulating layer that will become the insulating layer 280 and then perform a CMP process on the insulating layer to form an insulating film with a flat upper surface.
絶縁層275及び絶縁層280は、それぞれ、例えば、スパッタリング法、CVD法、MBE法、PLD法、またはALD法を用いて成膜することができる。 The insulating layer 275 and the insulating layer 280 can each be formed using, for example, a sputtering method, a CVD method, an MBE method, a PLD method, or an ALD method.
例えば、絶縁層275として、PEALD法を用いて窒化シリコンを成膜することが好ましい。または、絶縁層275として、スパッタリング法を用いて、酸化アルミニウムを成膜し、その上にPEALD法を用いて窒化シリコンを成膜することが好ましい。絶縁層275を上記のような構造とすることで、水、水素などの不純物、及び酸素の拡散を抑制する機能の向上を図ることができる。 For example, it is preferable to form a silicon nitride film as the insulating layer 275 by using the PEALD method. Alternatively, it is preferable to form an aluminum oxide film as the insulating layer 275 by using the sputtering method, and then form a silicon nitride film thereon by using the PEALD method. By forming the insulating layer 275 in the above-described structure, it is possible to improve the function of suppressing the diffusion of impurities such as water and hydrogen, and oxygen.
このようにして、酸化物層230Aと導電層242Dの積層構造と、酸化物層230Bと導電層242Cの積層構造と、を酸素の拡散を抑制する機能を有する絶縁層275で覆うことができる。これにより、のちの工程で、絶縁層224A、酸化物層230A、導電層242D、絶縁層224B、酸化物層230B、及び導電層242Cに、絶縁層280などから酸素が直接拡散することを抑制できる。 In this way, the laminated structure of oxide layer 230A and conductive layer 242D and the laminated structure of oxide layer 230B and conductive layer 242C can be covered with insulating layer 275, which has the function of suppressing the diffusion of oxygen. This makes it possible to suppress the direct diffusion of oxygen from insulating layer 280, etc., to insulating layer 224A, oxide layer 230A, conductive layer 242D, insulating layer 224B, oxide layer 230B, and conductive layer 242C in a later process.
また、絶縁層280として、スパッタリング法を用いて酸化シリコンを成膜することが好ましい。絶縁層280となる絶縁層を、酸素を含む雰囲気で、スパッタリング法で成膜することで、過剰酸素を含む絶縁層280を形成することができる。また、成膜ガスに水素を含む分子を用いなくてもよいスパッタリング法を用いることで、絶縁層280中の水素濃度を低減できる。なお、当該絶縁膜の成膜前に、加熱処理を行ってもよい。加熱処理は、減圧下で行い、大気に暴露することなく、連続して当該絶縁膜を成膜してもよい。このような処理を行うことによって、絶縁層275の表面などに吸着している水分及び水素を除去し、さらに酸化物層230A、絶縁層224A、酸化物層230B、及び絶縁層224B中の水分濃度及び水素濃度を低減できる。当該加熱処理には、上述した加熱処理条件を用いることができる。 In addition, it is preferable to form the insulating layer 280 by forming silicon oxide using a sputtering method. By forming the insulating layer to be the insulating layer 280 by a sputtering method in an atmosphere containing oxygen, the insulating layer 280 containing excess oxygen can be formed. In addition, by using a sputtering method that does not require the use of molecules containing hydrogen in the film formation gas, the hydrogen concentration in the insulating layer 280 can be reduced. Note that a heat treatment may be performed before the formation of the insulating film. The heat treatment may be performed under reduced pressure, and the insulating film may be continuously formed without exposure to the atmosphere. By performing such a treatment, moisture and hydrogen adsorbed on the surface of the insulating layer 275 and the like can be removed, and the moisture concentration and hydrogen concentration in the oxide layer 230A, the insulating layer 224A, the oxide layer 230B, and the insulating layer 224B can be further reduced. The heat treatment conditions described above can be used for the heat treatment.
次に、リソグラフィ法を用いて、導電層242D、絶縁層271D、導電層242C、絶縁層271C、絶縁層275、及び絶縁層280を加工して、導電層242Aと、導電層242Bと、絶縁層271Aと、絶縁層271Bと、開口343を有する導電層242Cと、開口345を有する絶縁層271Cと、開口345及び開口346を有する絶縁層275及び絶縁層280と、を形成する(図8A)。開口343及び開口345はそれぞれ、導電層205Bと酸化物層230Bとが重なる領域と、重畳するように設ける。開口346は、酸化物層230Aと導電層205Aとが重なる領域と、重畳するように設ける。 Next, the conductive layer 242D, the insulating layer 271D, the conductive layer 242C, the insulating layer 271C, the insulating layer 275, and the insulating layer 280 are processed by lithography to form the conductive layer 242A, the conductive layer 242B, the insulating layer 271A, the insulating layer 271B, the conductive layer 242C having the opening 343, the insulating layer 271C having the opening 345, and the insulating layer 275 and the insulating layer 280 having the openings 345 and 346 (FIG. 8A). The openings 343 and 345 are provided so as to overlap the area where the conductive layer 205B and the oxide layer 230B overlap. The opening 346 is provided so as to overlap the area where the oxide layer 230A and the conductive layer 205A overlap.
上記加工には、ドライエッチング法またはウェットエッチング法を用いることができる。ドライエッチング法は、微細加工に適しているため好ましい。また、ドライエッチング法は、異方性エッチングが可能であるため、アスペクト比が高い開口を形成するのに好適である。なお、ドライエッチング法の条件、及びドライエッチング装置については、上記の記載を参照することができる。 A dry etching method or a wet etching method can be used for the above processing. A dry etching method is preferable because it is suitable for fine processing. In addition, a dry etching method is suitable for forming an opening with a high aspect ratio because it is possible to perform anisotropic etching. Note that the above description can be referred to for the conditions of the dry etching method and the dry etching apparatus.
絶縁層271Cと絶縁層271Dの加工は、同時に行うことができる。また、導電層242Cと導電層242Dの加工は、同時に行うことができる。絶縁層280、絶縁層275、絶縁層271D、及び導電層242Dの加工は、それぞれ異なる条件で行ってもよい。 The insulating layer 271C and the insulating layer 271D can be processed simultaneously. The conductive layer 242C and the conductive layer 242D can be processed simultaneously. The insulating layer 280, the insulating layer 275, the insulating layer 271D, and the conductive layer 242D can be processed under different conditions.
当該加工により、導電層242Dは、それぞれ島状の、導電層242A及び導電層242Bに分断される。同様に、絶縁層271Dは、それぞれ島状の、絶縁層271A及び絶縁層271Bに分断される。 By this processing, the conductive layer 242D is divided into island-shaped conductive layers 242A and 242B. Similarly, the insulating layer 271D is divided into island-shaped insulating layers 271A and 271B.
上記開口の幅は、トランジスタ200のチャネル長に反映されるため、微細であることが好ましい。例えば、上記開口の幅が、60nm以下、50nm以下、40nm以下、30nm以下、20nm以下、または10nm以下であって、1nm以上、または5nm以上であることが好ましい。このように、上記開口を微細に加工するには、EUV光などの短波長の光、または電子ビームを用いたリソグラフィ法を用いることが好ましい。 The width of the opening is preferably fine because it is reflected in the channel length of the transistor 200. For example, the width of the opening is preferably 60 nm or less, 50 nm or less, 40 nm or less, 30 nm or less, 20 nm or less, or 10 nm or less, and 1 nm or more, or 5 nm or more. In this way, to process the opening finely, it is preferable to use a lithography method using short-wavelength light such as EUV light or an electron beam.
例えば、絶縁層280上に、SOC膜、SOG膜、レジストマスクの順に成膜してリソグラフィ法を行うことができる。EUV光などの短波長の光、または電子ビームを用いて、開口を有するレジストマスクを形成し、当該レジストマスクを用いて、SOG膜、SOC膜、絶縁層280、絶縁層275、絶縁層271C及び絶縁層271D、導電層242C及び導電層242Dを加工する。 For example, a lithography method can be performed by depositing an SOC film, an SOG film, and a resist mask in that order on the insulating layer 280. A resist mask with an opening is formed using short-wavelength light such as EUV light or an electron beam, and the SOG film, the SOC film, the insulating layer 280, the insulating layer 275, the insulating layer 271C and the insulating layer 271D, the conductive layer 242C and the conductive layer 242D are processed using the resist mask.
上記エッチング処理によって、酸化物層230Aの上面、酸化物層230Bの上面、導電層242A、242Bの側面、導電層242Cの側面、絶縁層271A、271Bの側面、絶縁層271の側面、絶縁層275の側面、絶縁層280の側面などへの不純物の付着またはこれらの内部への該不純物の拡散が生じる場合がある。このような不純物を除去する工程を行ってもよい。また、上記ドライエッチングで酸化物層230A及び酸化物層230Bの表面に損傷領域が形成される場合がある。このような損傷領域を除去してもよい。当該不純物としては、例えば、絶縁層280、絶縁層275、絶縁層271C、絶縁層271D、導電層242C、導電層242Dに含まれる成分、上記開口を形成する際に用いられる装置の部材に含まれる成分、及び、エッチングに使用するガスまたは液体に含まれる成分に起因したものが挙げられる。当該不純物としては、例えば、ハフニウム、アルミニウム、シリコン、タンタル、フッ素、塩素などが挙げられる。 The etching process may cause impurities to adhere to the top surface of the oxide layer 230A, the top surface of the oxide layer 230B, the side surfaces of the conductive layers 242A and 242B, the side surfaces of the conductive layer 242C, the side surfaces of the insulating layers 271A and 271B, the side surfaces of the insulating layer 271, the side surfaces of the insulating layer 275, and the side surfaces of the insulating layer 280, or the diffusion of the impurities into these. A process for removing such impurities may be performed. In addition, the dry etching may cause damaged areas to be formed on the surfaces of the oxide layer 230A and the oxide layer 230B. Such damaged areas may be removed. Examples of the impurities include components contained in the insulating layer 280, the insulating layer 275, the insulating layer 271C, the insulating layer 271D, the conductive layer 242C, and the conductive layer 242D, components contained in the members of the device used to form the opening, and components contained in the gas or liquid used for etching. Examples of the impurities include hafnium, aluminum, silicon, tantalum, fluorine, and chlorine.
特に、アルミニウム、シリコンなどの不純物は、酸化物層230A及び酸化物層230Bの結晶性を低下させる場合がある。よって、酸化物層230A及び酸化物層230Bでは、表面及びその近傍において、アルミニウム、シリコンなどの不純物は除去されることが好ましい。また、当該不純物の濃度は低減されていることが好ましい。例えば、酸化物層230A及び酸化物層230Bでは、表面及びその近傍における、アルミニウム原子の濃度が、5.0原子%以下が好ましく、2.0原子%以下がより好ましく、1.5原子%以下がより好ましく、1.0原子%以下がさらに好ましく、0.3原子%未満がさらに好ましい。 In particular, impurities such as aluminum and silicon may reduce the crystallinity of the oxide layer 230A and the oxide layer 230B. Therefore, it is preferable that impurities such as aluminum and silicon are removed from the surface and its vicinity in the oxide layer 230A and the oxide layer 230B. It is also preferable that the concentration of the impurities is reduced. For example, in the oxide layer 230A and the oxide layer 230B, the concentration of aluminum atoms in the surface and its vicinity is preferably 5.0 atomic % or less, more preferably 2.0 atomic % or less, more preferably 1.5 atomic % or less, even more preferably 1.0 atomic % or less, and even more preferably less than 0.3 atomic %.
なお、アルミニウム、シリコンなどの不純物により、酸化物層230A及び酸化物層230Bにおいて、結晶性が低い領域では、結晶構造の緻密さが低下しているため、VHが多量に形成され、トランジスタがノーマリーオン化しやすくなる。よって、酸化物層230A及び酸化物層230Bにおいて、結晶性が低い領域は、低減または除去されていることが好ましい。 Note that impurities such as aluminum and silicon reduce the density of the crystal structure in low-crystallinity regions in the oxide layers 230A and 230B, which causes a large amount of VOH to be formed and makes the transistors more likely to be normally on. Therefore, it is preferable that the low-crystallinity regions in the oxide layers 230A and 230B be reduced or removed.
これに対して、酸化物層230A及び酸化物層230Bでは、層状のCAAC構造を有していることが好ましい。 In contrast, it is preferable that oxide layer 230A and oxide layer 230B have a layered CAAC structure.
また、酸化物層230Aのドレイン下端部までCAAC構造を有することが好ましい。ここで、トランジスタ200において、導電層242Aまたは導電層242Bがドレインとして機能することが好ましい。つまり、導電層242Aまたは導電層242Bの下端部近傍の酸化物層230Aが、CAAC構造を有することが好ましい。このように、ドレイン耐圧に顕著に影響するドレイン端部においても、酸化物層230Aの結晶性の低い領域が除去され、CAAC構造を有することで、トランジスタ200の電気特性の変動をさらに抑制することができる。また、トランジスタ200の信頼性を向上させることができる。 It is also preferable that the oxide layer 230A has a CAAC structure up to the bottom end of the drain. Here, in the transistor 200, it is preferable that the conductive layer 242A or the conductive layer 242B functions as the drain. In other words, it is preferable that the oxide layer 230A near the bottom end of the conductive layer 242A or the conductive layer 242B has a CAAC structure. In this way, even at the drain end, which significantly affects the drain breakdown voltage, the low-crystalline region of the oxide layer 230A is removed, and by having the CAAC structure, the fluctuation in the electrical characteristics of the transistor 200 can be further suppressed. In addition, the reliability of the transistor 200 can be improved.
上記エッチング工程で酸化物層表面に付着した不純物などを除去するために、洗浄処理を行う。洗浄方法としては、洗浄液などを用いたウェット洗浄(ウェットエッチング処理ということもできる)、プラズマを用いたプラズマ処理、熱処理による洗浄などがあり、上記洗浄を適宜組み合わせて行ってもよい。なお、当該洗浄処理によって、上記溝部が深くなる場合がある。 A cleaning process is performed to remove impurities that have adhered to the surface of the oxide layer during the etching process. Cleaning methods include wet cleaning using a cleaning solution (also known as wet etching), plasma treatment using plasma, and cleaning by heat treatment, and the above cleaning methods may be combined as appropriate. Note that the cleaning process may deepen the grooves.
ウェット洗浄としては、アンモニア水、シュウ酸、リン酸、及びフッ化水素酸のうち一つまたは複数を炭酸水または純水で希釈した水溶液、純水、炭酸水などを用いて行ってもよい。または、これらの水溶液、純水、または炭酸水を用いた超音波洗浄を行ってもよい。または、これらの洗浄を適宜組み合わせて行ってもよい。 Wet cleaning may be performed using an aqueous solution of one or more of ammonia water, oxalic acid, phosphoric acid, and hydrofluoric acid diluted with carbonated water or pure water, pure water, carbonated water, etc. Alternatively, ultrasonic cleaning may be performed using these aqueous solutions, pure water, or carbonated water. Alternatively, these cleaning methods may be combined as appropriate.
なお、本明細書等では、フッ化水素酸を純水で希釈した水溶液を希釈フッ化水素酸と呼び、アンモニア水を純水で希釈した水溶液を希釈アンモニア水と呼ぶ場合がある。また、当該水溶液の濃度、温度などは、除去したい不純物、洗浄される半導体装置の構成などによって、適宜調整する。希釈アンモニア水のアンモニア濃度は0.01%以上5%以下が好ましく、0.1%以上0.5%以下がより好ましい。また、希釈フッ化水素酸のフッ化水素濃度は0.01ppm以上100ppm以下が好ましく、0.1ppm以上10ppm以下がより好ましい。 In this specification, an aqueous solution in which hydrofluoric acid is diluted with pure water may be referred to as diluted hydrofluoric acid, and an aqueous solution in which ammonia water is diluted with pure water may be referred to as diluted ammonia water. The concentration and temperature of the aqueous solution are adjusted as appropriate depending on the impurities to be removed and the configuration of the semiconductor device to be cleaned. The ammonia concentration of the diluted ammonia water is preferably 0.01% or more and 5% or less, and more preferably 0.1% or more and 0.5% or less. The hydrogen fluoride concentration of the diluted hydrofluoric acid is preferably 0.01 ppm or more and 100 ppm or less, and more preferably 0.1 ppm or more and 10 ppm or less.
なお、超音波洗浄には、200kHz以上の周波数を用いることが好ましく、900kHz以上の周波数を用いることがより好ましい。当該周波数を用いることで、酸化物層などへのダメージを低減することができる。 For ultrasonic cleaning, it is preferable to use a frequency of 200 kHz or more, and more preferably a frequency of 900 kHz or more. By using such a frequency, damage to the oxide layer, etc. can be reduced.
また、上記洗浄処理を複数回行ってもよく、洗浄処理毎に洗浄液を変更してもよい。例えば、第1の洗浄処理として希釈フッ化水素酸、または希釈アンモニア水を用いた処理を行い、第2の洗浄処理として純水、または炭酸水を用いた処理を行ってもよい。 The above cleaning process may be performed multiple times, and the cleaning solution may be changed for each cleaning process. For example, a first cleaning process may be performed using diluted hydrofluoric acid or diluted ammonia water, and a second cleaning process may be performed using pure water or carbonated water.
上記洗浄処理として、本実施の形態では、希釈アンモニア水を用いてウェット洗浄を行う。当該洗浄処理を行うことで、酸化物層の表面に付着または内部に拡散した不純物を除去することができる。さらに、酸化物層の結晶性を高めることができる。 In the present embodiment, as the above-mentioned cleaning process, wet cleaning is performed using diluted ammonia water. By performing this cleaning process, impurities attached to the surface of the oxide layer or diffused inside the oxide layer can be removed. Furthermore, the crystallinity of the oxide layer can be improved.
上記エッチング後、または上記洗浄後に加熱処理を行ってもよい。加熱処理の温度は、100℃以上、250℃以上、または350℃以上であり、かつ、650℃以下、600℃以下、550℃以下、または400℃以下であると好ましい。なお、加熱処理は、窒素ガスもしくは不活性ガスの雰囲気、または酸化性ガスを10ppm以上、1%以上、もしくは10%以上含む雰囲気で行う。例えば、窒素ガスと酸素ガスの流量比を4:1として、350℃の温度で1時間の処理を行うことが好ましい。これにより、酸化物層に酸素を供給して、酸素欠損の低減を図ることができる。また、このような熱処理を行うことで、酸化物層230Aの結晶性を向上させることができる。さらに、酸化物層中に残存した水素に供給された酸素が反応することで、当該水素をHOとして除去する(脱水化する)ことができる。これにより、酸化物層中に残存していた水素が酸素欠損に再結合してVHが形成されることを抑制できる。また、加熱処理は減圧状態で行ってもよい。または、酸素雰囲気で加熱処理した後に、大気に露出せずに連続して窒素雰囲気で加熱処理を行ってもよい。 Heat treatment may be performed after the etching or cleaning. The temperature of the heat treatment is preferably 100° C. or more, 250° C. or more, or 350° C. or more, and 650° C. or less, 600° C. or less, 550° C. or less, or 400° C. or less. The heat treatment is performed in an atmosphere of nitrogen gas or inert gas, or an atmosphere containing 10 ppm or more, 1% or more, or 10% or more of an oxidizing gas. For example, it is preferable to perform the treatment at a temperature of 350° C. for one hour with a flow rate ratio of nitrogen gas to oxygen gas of 4:1. This allows oxygen to be supplied to the oxide layer, thereby reducing oxygen vacancies. In addition, by performing such heat treatment, the crystallinity of the oxide layer 230A can be improved. Furthermore, the supplied oxygen reacts with hydrogen remaining in the oxide layer, and the hydrogen can be removed as H 2 O (dehydrated). This prevents hydrogen remaining in the oxide layer from recombining with oxygen vacancies to form VOH . The heat treatment may be performed under reduced pressure. Alternatively, after heat treatment in an oxygen atmosphere, heat treatment may be successively performed in a nitrogen atmosphere without exposure to the air.
酸化物層230Aに導電層242A及び導電層242Bが接した状態で、加熱処理を行う場合、酸化物層230Aにおける導電層242Aと重なる領域、及び、導電層242Bと重なる領域は、それぞれシート抵抗が低下することがある。また、キャリア濃度が増加することがある。同様に、酸化物層230Bに導電層242Cが接した状態で、加熱処理を行う場合、酸化物層230Bにおける導電層242Cと重なる領域では、シート抵抗の低下、また、キャリア濃度の増加、等が生じる場合がある。したがって、酸化物層における導電層と重なる領域を、自己整合的に低抵抗化することができる。 When a heat treatment is performed with the oxide layer 230A in contact with the conductive layer 242A and the conductive layer 242B, the sheet resistance may decrease in the region of the oxide layer 230A that overlaps with the conductive layer 242A and the region that overlaps with the conductive layer 242B. The carrier concentration may also increase. Similarly, when a heat treatment is performed with the oxide layer 230B in contact with the conductive layer 242C, the sheet resistance may decrease and the carrier concentration may increase in the region of the oxide layer 230B that overlaps with the conductive layer 242C. Therefore, the resistance of the region of the oxide layer that overlaps with the conductive layer can be reduced in a self-aligned manner.
次に、上記開口を埋めるように、絶縁層250fを成膜し、絶縁層250f上に導電層260fを成膜する(図8B)。その後、CMP処理によって、絶縁層250fと導電層260fとを絶縁層280が露出するまで研磨する。つまり、絶縁層250fと導電層260fの上記開口から露出した部分を除去する。これにより、開口343、及び開口345内に絶縁層255及び導電層265を形成し、開口346内に絶縁層250及び導電層260を形成する。 Next, an insulating layer 250f is formed so as to fill the opening, and a conductive layer 260f is formed on the insulating layer 250f (FIG. 8B). After that, the insulating layer 250f and the conductive layer 260f are polished by CMP until the insulating layer 280 is exposed. In other words, the portions of the insulating layer 250f and the conductive layer 260f exposed from the opening are removed. As a result, the insulating layer 255 and the conductive layer 265 are formed in the openings 343 and 345, and the insulating layer 250 and the conductive layer 260 are formed in the openings 346.
絶縁層255は、開口341内において、酸化物層230を覆うように設けられる。また絶縁層255は、開口343の内壁及び開口345の内壁に接して設けられることが好ましい。また導電層265は、酸化物層230及び絶縁層255を介して開口341を埋め込むように配置され、絶縁層255を介して開口343及び開口345を埋め込むように配置される。このようにして、トランジスタ100が形成される。 The insulating layer 255 is provided in the opening 341 so as to cover the oxide layer 230. The insulating layer 255 is preferably provided in contact with the inner walls of the opening 343 and the inner walls of the opening 345. The conductive layer 265 is arranged so as to fill the opening 341 via the oxide layer 230 and the insulating layer 255, and is arranged so as to fill the openings 343 and 345 via the insulating layer 255. In this manner, the transistor 100 is formed.
絶縁層250は、酸化物層230Aの上面、導電層242Aの側面、導電層242Bの側面、絶縁層271Aの側面、絶縁層271Bの側面、及び開口346の内壁に接して設けられることが好ましい。また、導電層260は、絶縁層250を介して、導電層242Aの側面、導電層242Bの側面、絶縁層271Aの側面、及び絶縁層271Bの側面を覆うように配置され、絶縁層250を介して開口346を埋め込むように配置される。このようにして、トランジスタ200が形成される。 The insulating layer 250 is preferably provided in contact with the upper surface of the oxide layer 230A, the side of the conductive layer 242A, the side of the conductive layer 242B, the side of the insulating layer 271A, the side of the insulating layer 271B, and the inner wall of the opening 346. The conductive layer 260 is arranged to cover the side of the conductive layer 242A, the side of the conductive layer 242B, the side of the insulating layer 271A, and the side of the insulating layer 271B through the insulating layer 250, and is arranged to fill the opening 346 through the insulating layer 250. In this manner, the transistor 200 is formed.
絶縁層250fは、例えば、スパッタリング法、CVD法、MBE法、PLD法、または、ALD法を用いて成膜することができる。当該絶縁膜はALD法を用いて成膜することが好ましい。絶縁層250及び絶縁層255は薄い膜厚で形成することが好ましく、膜厚のバラつきが小さくなるようにする必要がある。これに対して、ALD法は、プリカーサと、リアクタント(例えば酸化剤など)を交互に導入して行う成膜方法であり、このサイクルを繰り返す回数によって膜厚を調節することができるため、精密な膜厚調節が可能である。また、絶縁層250及び絶縁層255は、開口の底面及び側面に、被覆性良く成膜される必要がある。ALD法を用いることで、上記開口の底面及び側面において、原子の層を一層ずつ堆積させることができるため、絶縁層250及び絶縁層255を当該開口に対して良好な被覆性で形成できる。 The insulating layer 250f can be formed, for example, by a sputtering method, a CVD method, an MBE method, a PLD method, or an ALD method. It is preferable to form the insulating layer by the ALD method. It is preferable to form the insulating layer 250 and the insulating layer 255 with a thin film thickness, and it is necessary to reduce the variation in the film thickness. In contrast, the ALD method is a film formation method in which a precursor and a reactant (e.g., an oxidizing agent, etc.) are alternately introduced, and the film thickness can be adjusted by the number of times this cycle is repeated, so that precise film thickness adjustment is possible. In addition, the insulating layer 250 and the insulating layer 255 need to be formed with good coverage on the bottom and side surfaces of the opening. By using the ALD method, layers of atoms can be deposited one by one on the bottom and side surfaces of the opening, so that the insulating layer 250 and the insulating layer 255 can be formed with good coverage on the opening.
絶縁層250fをALD法で成膜する場合、酸化剤として、オゾン(O)、酸素(O)、水(HO)などを用いることができる。水素を含まない、オゾン(O)、酸素(O)などを酸化剤として用いることで、酸化物層230Aに拡散する水素、及び酸化物層230Bに拡散する水素を低減できる。 When the insulating layer 250f is formed by the ALD method, ozone ( O3 ), oxygen ( O2 ), water ( H2O ), etc. can be used as an oxidizing agent. By using ozone ( O3 ), oxygen ( O2 ), etc. that do not contain hydrogen as an oxidizing agent, it is possible to reduce hydrogen that diffuses into the oxide layer 230A and hydrogen that diffuses into the oxide layer 230B.
絶縁層250fとしては、例えば、酸化アルミニウムを熱ALD法によって成膜し、酸化シリコンをPEALD法によって成膜し、窒化シリコンをPEALD法によって成膜して3層構造の絶縁膜を形成することができる。または、酸化シリコンと窒化シリコンの間に、酸化ハフニウムを熱ALD法によって成膜し、4層構造の絶縁膜を形成してもよい。 The insulating layer 250f can be formed, for example, by depositing aluminum oxide by thermal ALD, silicon oxide by PEALD, and silicon nitride by PEALD to form a three-layer insulating film. Alternatively, a four-layer insulating film can be formed by depositing hafnium oxide between silicon oxide and silicon nitride by thermal ALD.
絶縁層250fの成膜後に、酸素を含む雰囲気でマイクロ波処理を行うことが好ましい。ここで、マイクロ波処理とは、例えばマイクロ波を用いて高密度プラズマを発生させる電源を有する装置を用いた処理のことを指す。また、本明細書などにおいて、マイクロ波とは、300MHz以上300GHz以下の周波数を有する電磁波を指すものとする。ただし、絶縁層を積層構造にする場合は、上記マイクロ波処理を、全ての層を成膜した後に行うとは限らない。前述の3層構造の絶縁膜を形成する場合、酸化アルミニウムと酸化シリコンを成膜した後に、マイクロ波処理を行い、その後、窒化シリコンを成膜してもよい。また、前述の4層構造の絶縁膜を形成する場合、酸化アルミニウムと酸化シリコンを成膜した後に、マイクロ波処理を行い、その後、酸化ハフニウムを成膜し、さらにマイクロ波処理を行い、その後、窒化シリコンを成膜してもよい。このように、酸素を含む雰囲気でのマイクロ波処理は、複数回(少なくとも2回以上)の処理としてもよい。 After the insulating layer 250f is formed, it is preferable to perform microwave treatment in an atmosphere containing oxygen. Here, the microwave treatment refers to a treatment using a device having a power source that generates high-density plasma using microwaves, for example. In addition, in this specification and the like, microwave refers to electromagnetic waves having a frequency of 300 MHz or more and 300 GHz or less. However, when the insulating layer has a laminated structure, the microwave treatment is not necessarily performed after all layers are formed. When forming the insulating film having the above-mentioned three-layer structure, a microwave treatment may be performed after forming aluminum oxide and silicon oxide, and then a silicon nitride film may be formed. Also, when forming the insulating film having the above-mentioned four-layer structure, a microwave treatment may be performed after forming aluminum oxide and silicon oxide, and then a hafnium oxide film may be formed, and then a microwave treatment may be performed, and then a silicon nitride film may be formed. In this way, the microwave treatment in an atmosphere containing oxygen may be performed multiple times (at least two times or more).
マイクロ波処理では、例えばマイクロ波を用いた高密度プラズマを発生させる電源を有する、マイクロ波処理装置を用いることが好ましい。ここで、マイクロ波処理装置の周波数は、300MHz以上300GHz以下が好ましく、2.4GHz以上2.5GHz以下がより好ましく、例えば、2.45GHzにすることができる。高密度プラズマを用いることより、高密度の酸素ラジカルを生成することができる。また、マイクロ波処理装置のマイクロ波を印加する電源の電力は、1000W以上10000W以下が好ましく、2000W以上5000W以下が好ましい。また、マイクロ波処理装置は基板側にRFを印加する電源を有してもよい。また、基板側にRFを印加することで、高密度プラズマによって生成された酸素イオンを、効率よく酸化物層230A中及び酸化物層230B中に導くことができる。 In the microwave treatment, it is preferable to use a microwave treatment device having a power source that generates high-density plasma using microwaves. Here, the frequency of the microwave treatment device is preferably 300 MHz or more and 300 GHz or less, more preferably 2.4 GHz or more and 2.5 GHz or less, and can be, for example, 2.45 GHz. By using high-density plasma, high-density oxygen radicals can be generated. In addition, the power of the power source that applies microwaves of the microwave treatment device is preferably 1000 W or more and 10000 W or less, and preferably 2000 W or more and 5000 W or less. In addition, the microwave treatment device may have a power source that applies RF to the substrate side. In addition, by applying RF to the substrate side, oxygen ions generated by high-density plasma can be efficiently guided into the oxide layer 230A and the oxide layer 230B.
また、上記マイクロ波処理は、減圧下で行うことが好ましく、圧力は、10Pa以上1000Pa以下が好ましく、300Pa以上700Pa以下がより好ましい。また、処理温度は、750℃以下が好ましく、500℃以下がより好ましく、例えば250℃程度とすることができる。また、酸素プラズマ処理を行った後に、外気に曝すことなく、連続して加熱処理を行ってもよい。加熱処理の温度は、例えば、100℃以上750℃以下が好ましく、300℃以上500℃以下がより好ましい。 The microwave treatment is preferably carried out under reduced pressure, with the pressure being preferably 10 Pa to 1000 Pa, and more preferably 300 Pa to 700 Pa. The treatment temperature is preferably 750° C. or less, and more preferably 500° C. or less, and can be, for example, about 250° C. After the oxygen plasma treatment, a heat treatment may be carried out continuously without exposure to the outside air. The temperature of the heat treatment is, for example, preferably 100° C. to 750° C., and more preferably 300° C. to 500° C.
また、例えば、上記マイクロ波処理は、酸素ガスとアルゴンガスを用いて行うことができる。ここで、酸素流量比(O/(O+Ar))は、0%より大きく、100%以下とする。好ましくは、酸素流量比(O/(O+Ar))を、0%より大きく、50%以下とする。より好ましくは、酸素流量比(O/(O+Ar))を、10%以上、40%以下とする。さらに好ましくは、酸素流量比(O/(O+Ar))を、10%以上、30%以下とする。このように、酸素を含む雰囲気でマイクロ波処理を行うことで、酸化物層230A中のキャリア濃度を低下させることができる。また、マイクロ波処理において、チャンバーに過剰な量の酸素が導入されないようにすることで、酸化物層230A及び酸化物層230Bでキャリア濃度が過剰に低下することを防ぐことができる。 Also, for example, the microwave treatment can be performed using oxygen gas and argon gas. Here, the oxygen flow ratio (O 2 /(O 2 +Ar)) is greater than 0% and less than 100%. Preferably, the oxygen flow ratio (O 2 /(O 2 +Ar)) is greater than 0% and less than 50%. More preferably, the oxygen flow ratio (O 2 /(O 2 +Ar)) is greater than 10% and less than 40%. More preferably, the oxygen flow ratio (O 2 /(O 2 +Ar)) is greater than 10% and less than 30%. In this way, by performing the microwave treatment in an atmosphere containing oxygen, the carrier concentration in the oxide layer 230A can be reduced. Also, by preventing an excessive amount of oxygen from being introduced into the chamber in the microwave treatment, the carrier concentration in the oxide layer 230A and the oxide layer 230B can be prevented from being excessively reduced.
酸素を含む雰囲気でマイクロ波処理を行うことで、マイクロ波、またはRF等の高周波を用いて酸素ガスをプラズマ化し、当該酸素プラズマを酸化物層230Aのチャネル形成領域、酸化物層230Bのチャネル形成領域、等に作用させることができる。プラズマ、マイクロ波などの作用により、当該領域におけるVHを酸素欠損と水素とに分断し、水素を当該領域から除去することができる。ここで、絶縁層250及び絶縁層255となる絶縁層において、酸化物層230A、酸化物層230Bと接する側の層として、水素を捕獲及び水素を固着する機能を有する絶縁膜(例えば、酸化アルミニウムなど)を用いることが好ましい。このような構成にすることで、マイクロ波処理により生じた水素を、絶縁層250及び絶縁層255に捕獲、または固着させることができる。このようにして、チャネル形成領域に含まれるVHを低減できる。以上により、チャネル形成領域中の酸素欠損、及びVHを低減し、キャリア濃度を低下させることができる。また、チャネル形成領域で形成された酸素欠損に、上記酸素プラズマで発生した酸素ラジカルを供給することで、さらに、チャネル形成領域中の酸素欠損を低減し、キャリア濃度を低下させることができる。 By performing microwave treatment in an atmosphere containing oxygen, oxygen gas can be turned into plasma using microwaves or high frequency such as RF, and the oxygen plasma can be applied to the channel formation region of the oxide layer 230A, the channel formation region of the oxide layer 230B, and the like. By the action of plasma, microwaves, or the like, VOH in the region can be divided into oxygen vacancies and hydrogen, and hydrogen can be removed from the region. Here, in the insulating layer that becomes the insulating layer 250 and the insulating layer 255, it is preferable to use an insulating film (e.g., aluminum oxide) having a function of capturing and fixing hydrogen as a layer on the side in contact with the oxide layer 230A and the oxide layer 230B. With such a structure, hydrogen generated by the microwave treatment can be captured or fixed to the insulating layer 250 and the insulating layer 255. In this way, VOH contained in the channel formation region can be reduced. As described above, oxygen vacancies and VOH in the channel formation region can be reduced, and the carrier concentration can be reduced. Moreover, by supplying oxygen radicals generated by the oxygen plasma to oxygen vacancies formed in the channel formation region, it is possible to further reduce the oxygen vacancies in the channel formation region and lower the carrier concentration.
チャネル形成領域中に注入される酸素は、酸素原子、酸素分子、酸素イオン、及び酸素ラジカル(Oラジカルともいう、不対電子をもつ原子、分子、またはイオン)など様々な形態がある。なお、チャネル形成領域中に注入される酸素は、上述の形態のいずれか一または複数であればよく、特に酸素ラジカルであると好適である。また、絶縁層250及び絶縁層255の膜質を向上させることができるため、トランジスタの信頼性が向上する。 The oxygen injected into the channel formation region can take various forms, such as oxygen atoms, oxygen molecules, oxygen ions, and oxygen radicals (also called O radicals, which are atoms, molecules, or ions with an unpaired electron). The oxygen injected into the channel formation region may take one or more of the above forms, and is particularly preferably an oxygen radical. In addition, the film quality of the insulating layer 250 and the insulating layer 255 can be improved, thereby improving the reliability of the transistor.
また、導電層242A及び導電層242Bは、酸素を含む雰囲気でマイクロ波処理を行う際、マイクロ波、RF等の高周波、酸素プラズマなどの作用に対する遮蔽膜として機能することができる。導電層242A及び導電層242Bは、300MHz以上300GHz以下、例えば、2.4GHz以上2.5GHz以下の電磁波を遮蔽する機能を有する構成とすることができる。 In addition, when microwave processing is performed in an atmosphere containing oxygen, the conductive layer 242A and the conductive layer 242B can function as a shielding film against the action of microwaves, high frequency waves such as RF, oxygen plasma, and the like. The conductive layer 242A and the conductive layer 242B can be configured to have a function of shielding electromagnetic waves of 300 MHz or more and 300 GHz or less, for example, 2.4 GHz or more and 2.5 GHz or less.
導電層242A及び導電層242Bをマイクロ波、またはRF等の高周波、酸素プラズマなどの作用を遮蔽する構成とする場合には、トランジスタ200のソース領域及びドレイン領域で、VHの低減、及び過剰な量の酸素供給を抑制し、キャリア濃度の低下を防ぐことができる。 When the conductive layers 242A and 242B are configured to block the action of microwaves, high frequency waves such as RF, oxygen plasma, and the like, a reduction in VOH and an excessive supply of oxygen can be suppressed in the source and drain regions of the transistor 200, and a decrease in the carrier concentration can be prevented.
また、導電層242A、導電層242B、及び導電層242Cの側面に接して、酸素に対するバリア性を有する絶縁層250が、導電層242Cの側面に接して、酸素に対するバリア性を有する絶縁層255が、それぞれ設けられる構成とすることにより、マイクロ波処理によって、導電層242A、導電層242B、及び導電層242Cの側面に酸化膜が形成されることを抑制できる。 In addition, by providing an insulating layer 250 having a barrier property against oxygen in contact with the side surfaces of the conductive layers 242A, 242B, and 242C, and an insulating layer 255 having a barrier property against oxygen in contact with the side surface of the conductive layer 242C, it is possible to prevent an oxide film from being formed on the side surfaces of the conductive layers 242A, 242B, and 242C by microwave processing.
また、絶縁層250fにマイクロ波処理を行うことにより、絶縁層250及び絶縁層255の膜質を向上させることができるため、トランジスタの信頼性が向上する。 In addition, by performing microwave treatment on insulating layer 250f, the film quality of insulating layer 250 and insulating layer 255 can be improved, thereby improving the reliability of the transistor.
なお、マイクロ波処理では、マイクロ波と酸化物層230A中または酸化物層230B中の分子の電磁気的な相互作用により、熱エネルギーが伝達され、加熱される場合がある。このような加熱処理をマイクロ波アニールと呼ぶ場合がある。マイクロ波処理を、酸素を含む雰囲気中で行うことで、酸素アニールと同等の効果が得られる場合がある。また、熱エネルギーが酸化物層230A中または酸化物層230B中の水素に伝わり、これにより活性化した水素が酸化物層230Aから放出されることが考えられる。 In addition, in microwave processing, thermal energy may be transferred and heating may occur due to electromagnetic interaction between the microwaves and the molecules in the oxide layer 230A or the oxide layer 230B. This type of heating process may be called microwave annealing. By performing microwave processing in an atmosphere containing oxygen, an effect equivalent to that of oxygen annealing may be obtained. It is also considered that the thermal energy is transferred to hydrogen in the oxide layer 230A or the oxide layer 230B, which activates the hydrogen and causes it to be released from the oxide layer 230A.
なお、絶縁層250fの成膜後にマイクロ波処理を行わず、当該絶縁膜の成膜前にマイクロ波処理を行ってもよい。 In addition, microwave processing may be performed before forming the insulating film, rather than after forming the insulating layer 250f.
また、絶縁層250fの成膜後のマイクロ波処理後に減圧状態を保ったままで、加熱処理を行ってもよい。このような処理を行うことで、当該絶縁膜中、酸化物層230A中、及び酸化物層230B中の水素を効率よく除去できる。また、水素の一部は、導電層242A、導電層242B、または導電層242Cにゲッタリングされる場合がある。 Furthermore, after the microwave treatment following the formation of the insulating layer 250f, a heat treatment may be performed while maintaining the reduced pressure state. By performing such a treatment, hydrogen in the insulating film, the oxide layer 230A, and the oxide layer 230B can be efficiently removed. Furthermore, some of the hydrogen may be gettered to the conductive layer 242A, the conductive layer 242B, or the conductive layer 242C.
マイクロ波処理後に減圧状態を保ったままで、加熱処理を行うステップを複数回繰り返して行ってもよい。なお、加熱処理温度は、300℃以上500℃以下とすることが好ましい。また、上記マイクロ波処理、すなわちマイクロ波アニールが該加熱処理を兼ねてもよい。マイクロ波アニールにより、酸化物層230Aなどが十分加熱される場合、該加熱処理を行わなくてもよい。 After the microwave treatment, the step of performing the heat treatment may be repeated multiple times while maintaining the reduced pressure state. The heat treatment temperature is preferably 300°C or higher and 500°C or lower. The microwave treatment, i.e., microwave annealing, may also serve as the heat treatment. If the oxide layer 230A, etc., is sufficiently heated by the microwave annealing, the heat treatment may not be performed.
また、マイクロ波処理を行って絶縁層250fの膜質を改質することで、水素、水、不純物等の拡散を抑制できる。従って、絶縁層250fの成膜などの後工程、または熱処理などの後処理により、絶縁層250fを介して、水素、水、不純物等が、酸化物層230Aへ拡散することを抑制できる。 In addition, by modifying the film quality of the insulating layer 250f through microwave processing, the diffusion of hydrogen, water, impurities, etc. can be suppressed. Therefore, by performing post-processing such as film formation of the insulating layer 250f or post-treatment such as heat treatment, it is possible to suppress the diffusion of hydrogen, water, impurities, etc. through the insulating layer 250f into the oxide layer 230A.
導電層260fは、例えば、スパッタリング法、CVD法、MBE法、PLD法、メッキ法または、ALD法を用いて成膜することができる。本実施の形態では、導電層260fとして、ALD法を用いて、窒化チタンを成膜し、さらに、CVD法を用いてタングステンを成膜することで、2層構造の導電膜を形成する。 The conductive layer 260f can be formed, for example, by sputtering, CVD, MBE, PLD, plating, or ALD. In this embodiment, a titanium nitride film is formed as the conductive layer 260f by ALD, and then a tungsten film is formed by CVD, forming a two-layer conductive film.
次に、絶縁層255、導電層265、絶縁層250、導電層260、及び絶縁層280上に、絶縁層282を形成し、絶縁層282上に絶縁層283を形成し、絶縁層283上に絶縁層284を形成する(図9A)。 Next, insulating layer 282 is formed on insulating layer 255, conductive layer 265, insulating layer 250, conductive layer 260, and insulating layer 280, insulating layer 283 is formed on insulating layer 282, and insulating layer 284 is formed on insulating layer 283 (Figure 9A).
絶縁層282、絶縁層283、及び絶縁層284は、それぞれ、例えば、スパッタリング法、CVD法、MBE法、PLD法、またはALD法を用いて成膜することができる。絶縁層282、絶縁層283、及び絶縁層284の成膜は、それぞれ、スパッタリング法を用いて行うことが好ましい。成膜ガスに水素を含む分子を用いなくてもよいスパッタリング法を用いることで、絶縁層282、絶縁層283、及び絶縁層284中の水素濃度を低減できる。 The insulating layer 282, the insulating layer 283, and the insulating layer 284 can each be formed by, for example, a sputtering method, a CVD method, an MBE method, a PLD method, or an ALD method. The insulating layer 282, the insulating layer 283, and the insulating layer 284 are each preferably formed by a sputtering method. By using a sputtering method that does not require the use of molecules containing hydrogen in the film formation gas, the hydrogen concentration in the insulating layer 282, the insulating layer 283, and the insulating layer 284 can be reduced.
本実施の形態では、絶縁層282として、酸素ガスを含む雰囲気でアルミニウムターゲットを用いて、パルスDCスパッタリング法で酸化アルミニウムを成膜し、絶縁層283として、スパッタリング法を用いて、窒化シリコンを成膜し、絶縁層284として、スパッタリング法を用いて、酸化シリコンを成膜する。 In this embodiment, insulating layer 282 is formed by forming aluminum oxide by pulse DC sputtering using an aluminum target in an atmosphere containing oxygen gas, insulating layer 283 is formed by forming silicon nitride by sputtering, and insulating layer 284 is formed by forming silicon oxide by sputtering.
スパッタリング法を用いて、酸素を含む雰囲気で絶縁層282の成膜を行うことで、成膜しながら、絶縁層280に酸素を添加できる。これにより、絶縁層280に過剰酸素を含ませることができる。このとき、基板加熱を行いながら、絶縁層282を成膜することが好ましい。 By depositing the insulating layer 282 in an oxygen-containing atmosphere using a sputtering method, oxygen can be added to the insulating layer 280 while the layer is being deposited. This allows the insulating layer 280 to contain excess oxygen. At this time, it is preferable to deposit the insulating layer 282 while heating the substrate.
なお、絶縁層282の成膜前に、加熱処理を行ってもよい。当該加熱処理は、減圧下で行い、大気に暴露することなく、連続して絶縁層282を成膜してもよい。このような処理を行うことによって、絶縁層280の表面に吸着している水分及び水素を除去し、さらに絶縁層280中の水分濃度及び水素濃度を低減させることができる。加熱処理の温度は、100℃以上400℃以下が好ましい。本実施の形態では、加熱処理の温度を250℃とする。 Note that heat treatment may be performed before the formation of the insulating layer 282. The heat treatment may be performed under reduced pressure, and the insulating layer 282 may be formed continuously without exposure to the air. By performing such treatment, moisture and hydrogen adsorbed on the surface of the insulating layer 280 can be removed, and the moisture concentration and hydrogen concentration in the insulating layer 280 can be further reduced. The temperature of the heat treatment is preferably 100° C. or higher and 400° C. or lower. In this embodiment, the temperature of the heat treatment is set to 250° C.
ここで、絶縁層282及び絶縁層283は、大気環境にさらさずに連続して成膜することが好ましい。大気開放せずに成膜することで、絶縁層282及び絶縁層283上に大気環境からの不純物または水分が付着することを防ぐことができ、絶縁層282及び絶縁層283との界面近傍を清浄に保つことができる。さらに、大気環境にさらさずに連続して絶縁層284も成膜することが好ましい。 Here, it is preferable to deposit the insulating layer 282 and the insulating layer 283 in succession without exposing them to the air environment. By depositing them without exposing them to the air, it is possible to prevent impurities or moisture from the air environment from adhering to the insulating layer 282 and the insulating layer 283, and it is possible to keep the vicinity of the interface between the insulating layer 282 and the insulating layer 283 clean. Furthermore, it is preferable to deposit the insulating layer 284 in succession without exposing it to the air environment.
次に、図9Bに示すように、絶縁層220、275、280、282、283、284に開口を形成する(図9B)。その後、当該開口の内部に絶縁層241を形成し、絶縁層241の内側に、導電層240A乃至導電層240Gを形成する。導電層240A乃至導電層240Gを設ける開口は、一括で形成してもよく、複数回に分けて形成してもよい。以上により、本発明の一態様の半導体装置を作製することができる。 9B, openings are formed in insulating layers 220, 275, 280, 282, 283, and 284 (FIG. 9B). After that, an insulating layer 241 is formed inside the openings, and conductive layers 240A to 240G are formed inside the insulating layer 241. The openings in which conductive layers 240A to 240G are provided may be formed in one step or in multiple steps. In this manner, a semiconductor device of one embodiment of the present invention can be manufactured.
本実施の形態は、他の実施の形態と適宜組み合わせることができる。 This embodiment can be combined with other embodiments as appropriate.
(実施の形態2)
本実施の形態では、本発明の一態様の表示装置について説明する。
(Embodiment 2)
In this embodiment, a display device according to one embodiment of the present invention will be described.
本実施の形態の表示装置は、解像度の高い表示装置または大型の表示装置とすることができる。したがって、本実施の形態の表示装置は、例えば、テレビジョン装置、デスクトップ型もしくはノート型のパーソナルコンピュータ、コンピュータ用などのモニタ、デジタルサイネージ、及び、パチンコ機などの大型ゲーム機などの比較的大きな画面を備える電子機器の他、デジタルカメラ、デジタルビデオカメラ、デジタルフォトフレーム、携帯電話機、携帯型ゲーム機、携帯情報端末、及び、音響再生装置の表示部に用いることができる。 The display device of this embodiment can be a high-resolution display device or a large display device. Therefore, the display device of this embodiment can be used in electronic devices with relatively large screens, such as television devices, desktop or notebook personal computers, computer monitors, digital signage, and large game machines such as pachinko machines, as well as in the display units of digital cameras, digital video cameras, digital photo frames, mobile phones, portable game machines, personal digital assistants, and sound reproduction devices.
また、本実施の形態の表示装置は、高精細な表示装置とすることができる。したがって、本実施の形態の表示装置は、例えば、腕時計型、及び、ブレスレット型などの情報端末機(ウェアラブル機器)の表示部、並びに、ヘッドマウントディスプレイ(HMD)などのVR向け機器、及び、メガネ型のAR向け機器などの頭部に装着可能なウェアラブル機器の表示部に用いることができる。 The display device of this embodiment can also be a high-definition display device. Therefore, the display device of this embodiment can be used, for example, in the display section of a wristwatch-type or bracelet-type information terminal (wearable device), as well as in the display section of a wearable device that can be worn on the head, such as a head-mounted display (HMD) or other VR device, and a glasses-type AR device.
本発明の一態様の半導体装置は、表示装置、または、当該表示装置を有するモジュールに用いることができる。当該表示装置を有するモジュールとしては、当該表示装置にフレキシブルプリント回路基板(Flexible printed circuit、以下、FPCと記す)もしくはTCP(Tape Carrier Package)等のコネクタが取り付けられたモジュール、COG(Chip On Glass)方式もしくはCOF(Chip On Film)方式等により集積回路(IC)が実装されたモジュール等が挙げられる。 The semiconductor device of one embodiment of the present invention can be used for a display device or a module having the display device. Examples of the module having the display device include a module in which a connector such as a flexible printed circuit (hereinafter, referred to as FPC) or a TCP (Tape Carrier Package) is attached to the display device, and a module in which an integrated circuit (IC) is mounted by a COG (Chip On Glass) method, a COF (Chip On Film) method, or the like.
また、本実施の形態の表示装置はタッチパネルとしての機能を有していてもよい。例えば、表示装置には、指などの被検知体の近接または接触を検知できる様々な検知素子(センサ素子ともいえる)を適用することができる。 The display device of this embodiment may also have a function as a touch panel. For example, various detection elements (also called sensor elements) that can detect the proximity or contact of a detectable object such as a finger can be applied to the display device.
センサの方式としては、例えば、静電容量方式、抵抗膜方式、表面弾性波方式、赤外線方式、光学方式、及び、感圧方式が挙げられる。 Sensor types include, for example, capacitance type, resistive film type, surface acoustic wave type, infrared type, optical type, and pressure sensitive type.
静電容量方式としては、例えば、表面型静電容量方式、投影型静電容量方式がある。また、投影型静電容量方式としては、例えば、自己容量方式、相互容量方式がある。相互容量方式を用いると、同時多点検出が可能となるため好ましい。 Examples of the capacitance type include a surface capacitance type and a projected capacitance type. Examples of the projected capacitance type include a self-capacitance type and a mutual capacitance type. The mutual capacitance type is preferable because it allows simultaneous multi-point detection.
タッチパネルとしては、例えば、アウトセル型、オンセル型、及び、インセル型が挙げられる。なお、インセル型のタッチパネルは、表示素子を支持する基板と対向基板のうち一方または双方に、検知素子を構成する電極が設けられた構成をいう。 Examples of touch panels include out-cell, on-cell, and in-cell types. Note that an in-cell touch panel is one in which electrodes constituting a detection element are provided on one or both of the substrate supporting the display element and the opposing substrate.
[表示モジュール]
図11Aに、表示モジュール150の斜視図を示す。表示モジュール150は、表示装置100Aと、FPC290と、を有する。なお、表示モジュール150が有する表示装置は表示装置100Aに限られず、後述する表示装置100B乃至表示装置100Eのいずれかであってもよい。
[Display module]
11A shows a perspective view of the display module 150. The display module 150 includes a display device 100A and an FPC 290. Note that the display device included in the display module 150 is not limited to the display device 100A and may be any of display devices 100B to 100E described later.
表示モジュール150は、基板291及び基板299を有する。表示モジュール150は、表示部297を有する。表示部297は、表示モジュール150における画像を表示する領域であり、後述する画素部294に設けられる各画素からの光を視認できる領域である。 The display module 150 has a substrate 291 and a substrate 299. The display module 150 has a display section 297. The display section 297 is an area that displays an image in the display module 150, and is an area in which light from each pixel provided in a pixel section 294 described later can be viewed.
図11Bに、基板291側の構成を模式的に示した斜視図を示している。基板291上には、回路部292と、回路部292上の画素回路部293と、画素回路部293上の画素部294と、が積層されている。また、基板291上の画素部294と重ならない部分に、FPC290と接続するための端子部295が設けられている。端子部295と回路部292とは、複数の配線により構成される配線部296により電気的に接続されている。 Figure 11B shows a perspective view that shows a schematic configuration on the substrate 291 side. On the substrate 291, a circuit portion 292, a pixel circuit portion 293 on the circuit portion 292, and a pixel portion 294 on the pixel circuit portion 293 are stacked. In addition, a terminal portion 295 for connecting to the FPC 290 is provided in a portion of the substrate 291 that does not overlap with the pixel portion 294. The terminal portion 295 and the circuit portion 292 are electrically connected by a wiring portion 296 that is composed of multiple wirings.
画素部294は、周期的に配列した複数の画素294aを有する。図11Bの右側に、1つの画素294aの拡大図を示している。画素294aには、実施の形態3で説明する各種構成を適用することができる。図11Bでは、副画素の配列にストライプ配列が適用された場合を例に示す。 The pixel section 294 has a number of pixels 294a arranged periodically. An enlarged view of one pixel 294a is shown on the right side of FIG. 11B. The various configurations described in embodiment 3 can be applied to the pixel 294a. FIG. 11B shows an example in which a stripe arrangement is applied to the arrangement of sub-pixels.
画素回路部293は、周期的に配列した複数の画素回路293aを有する。 The pixel circuit section 293 has a number of pixel circuits 293a arranged periodically.
1つの画素回路293aは、1つの画素294aが有する複数の素子の駆動を制御する回路である。1つの画素回路293aは、1つの発光素子の発光を制御する回路が3つ設けられる構成とすることができる。例えば、画素回路293aは、1つの発光素子につき、1つの選択トランジスタと、1つの電流制御用トランジスタ(駆動トランジスタ)と、容量と、を少なくとも有する構成とすることができる。このとき、選択トランジスタのゲートにはゲート信号が、ソースにはソース信号が、それぞれ入力される。これにより、アクティブマトリクス型の表示装置が実現されている。 One pixel circuit 293a is a circuit that controls the driving of multiple elements in one pixel 294a. One pixel circuit 293a can be configured to have three circuits that control the light emission of one light-emitting element. For example, the pixel circuit 293a can be configured to have at least one selection transistor, one current control transistor (drive transistor), and a capacitance for each light-emitting element. At this time, a gate signal is input to the gate of the selection transistor, and a source signal is input to the source. This realizes an active matrix display device.
回路部292は、画素回路部293の各画素回路293aを駆動する回路を有する。例えば、ゲート線駆動回路、(ゲートドライバ、あるいは走査線駆動回路と呼ばれる場合がある)、及び、ソース線駆動回路(ソースドライバ、あるいは信号線駆動回路と呼ばれる場合がある)の一方または双方を有することが好ましい。このほか、演算回路、メモリ回路、及び電源回路等の少なくとも一つを有していてもよい。 The circuit portion 292 has a circuit that drives each pixel circuit 293a of the pixel circuit portion 293. For example, it is preferable to have one or both of a gate line driver circuit (sometimes called a gate driver or a scanning line driver circuit) and a source line driver circuit (sometimes called a source driver or a signal line driver circuit). In addition, it may have at least one of an arithmetic circuit, a memory circuit, a power supply circuit, etc.
FPC290は、外部から回路部292にビデオ信号または電源電位等を供給するための配線として機能する。また、FPC290上にICが実装されていてもよい。 The FPC 290 functions as wiring for supplying a video signal, a power supply potential, etc. from the outside to the circuit section 292. In addition, an IC may be mounted on the FPC 290.
表示モジュール150は、画素部294の下側に画素回路部293及び回路部292の一方または双方が重ねて設けられた構成とすることができるため、表示部297の開口率(有効表示面積比)を極めて高くすることができる。例えば表示部297の開口率は、40%以上100%未満、好ましくは50%以上95%以下、より好ましくは60%以上95%以下とすることができる。また、画素294aを極めて高密度に配置することが可能で、表示部297の精細度を極めて高くすることができる。例えば、表示部297には、2000ppi以上、好ましくは3000ppi以上、より好ましくは5000ppi以上、さらに好ましくは6000ppi以上であって、20000ppi以下、または30000ppi以下の精細度で、画素294aが配置されることが好ましい。 The display module 150 can be configured such that one or both of the pixel circuit section 293 and the circuit section 292 are provided overlappingly under the pixel section 294, so that the aperture ratio (effective display area ratio) of the display section 297 can be extremely high. For example, the aperture ratio of the display section 297 can be 40% or more and less than 100%, preferably 50% or more and 95% or less, and more preferably 60% or more and 95% or less. In addition, the pixels 294a can be arranged at an extremely high density, so that the resolution of the display section 297 can be extremely high. For example, it is preferable that the pixels 294a are arranged in the display section 297 at a resolution of 2000 ppi or more, preferably 3000 ppi or more, more preferably 5000 ppi or more, and even more preferably 6000 ppi or more, and 20000 ppi or less, or 30000 ppi or less.
このような表示モジュール150は、極めて高精細であることから、HMDなどのVR向け機器またはメガネ型のAR向け機器に好適に用いることができる。例えば、レンズを通して表示モジュール150の表示部を視認する構成の場合であっても、表示モジュール150は極めて高精細な表示部297を有するためにレンズで表示部を拡大しても画素が視認されず、没入感の高い表示を行うことができる。また、表示モジュール150はこれに限られず、比較的小型の表示部を有する電子機器に好適に用いることができる。例えば腕時計などの装着型の電子機器の表示部に好適に用いることができる。 Such a display module 150 has extremely high resolution and can therefore be suitably used in VR devices such as HMDs or glasses-type AR devices. For example, even in a configuration in which the display section of the display module 150 is viewed through a lens, the display module 150 has an extremely high resolution display section 297, so that even if the display section is enlarged with a lens, the pixels are not visible, allowing for a highly immersive display. Furthermore, the display module 150 is not limited to this and can be suitably used in electronic devices with relatively small display sections. For example, it can be suitably used in the display section of a wearable electronic device such as a wristwatch.
[表示モジュール及び画素回路の一例]
図12Aは、表示モジュール150の構成例を示すブロック図である。図12Aは、表示モジュール150が有する画素回路部293と、回路部292と、電源回路415等について説明する図である。回路部292は、ゲート線駆動回路411と、ソース線駆動回路413を有する。画素回路部293が有する複数の画素回路293aは、マトリクス状に配列されている。
[Example of a display module and a pixel circuit]
Fig. 12A is a block diagram showing a configuration example of the display module 150. Fig. 12A is a diagram explaining a pixel circuit portion 293, a circuit portion 292, a power supply circuit 415, and the like included in the display module 150. The circuit portion 292 includes a gate line driver circuit 411 and a source line driver circuit 413. A plurality of pixel circuits 293a included in the pixel circuit portion 293 are arranged in a matrix.
図12Bに示すように、画素回路293aは、副画素回路430R、副画素回路430G、及び副画素回路430Bを有する。副画素回路430R、副画素回路430G、及び副画素回路430Bはそれぞれ、発光素子130Rを有する副画素、発光素子130Gを有する副画素、及び、発光素子130Bを有する副画素と電気的に接続される。なお、副画素回路430R、副画素回路430G、及び副画素回路430Bに共通する事項を説明する場合には、これらを区別するアルファベットを省略し、副画素回路430と記載する場合がある。また、発光素子130R、発光素子130G、及び発光素子130Bに共通する事項を説明する場合には、これらを区別するアルファベットを省略し、発光素子130と記載する場合がある。 As shown in FIG. 12B, pixel circuit 293a has sub-pixel circuit 430R, sub-pixel circuit 430G, and sub-pixel circuit 430B. Sub-pixel circuit 430R, sub-pixel circuit 430G, and sub-pixel circuit 430B are electrically connected to sub-pixel having light-emitting element 130R, sub-pixel having light-emitting element 130G, and sub-pixel having light-emitting element 130B, respectively. When describing matters common to sub-pixel circuit 430R, sub-pixel circuit 430G, and sub-pixel circuit 430B, the alphabets that distinguish them may be omitted and they may be referred to as sub-pixel circuit 430. When describing matters common to light-emitting element 130R, light-emitting element 130G, and light-emitting element 130B, the alphabets that distinguish them may be omitted and they may be referred to as light-emitting element 130.
ゲート線駆動回路411は、配線441を介して画素回路293aと電気的に接続される。具体的には、同一行の画素回路293aは、同一の配線441によりゲート線駆動回路411と電気的に接続される。 The gate line driving circuit 411 is electrically connected to the pixel circuits 293a via wiring 441. Specifically, the pixel circuits 293a in the same row are electrically connected to the gate line driving circuit 411 by the same wiring 441.
ソース線駆動回路413は、配線443を介して画素回路293aと電気的に接続される。具体的には、同一列の画素回路293aは、同一の配線443によりソース線駆動回路413と電気的に接続される。 The source line driver circuit 413 is electrically connected to the pixel circuits 293a via wiring 443. Specifically, the pixel circuits 293a in the same column are electrically connected to the source line driver circuit 413 by the same wiring 443.
電源回路415は、配線445を介して画素回路293aと電気的に接続される。例えば、同じ行の画素回路293aを、同一の配線445を介して電源回路415と電気的に接続できる。 The power supply circuit 415 is electrically connected to the pixel circuits 293a via wiring 445. For example, the pixel circuits 293a in the same row can be electrically connected to the power supply circuit 415 via the same wiring 445.
ゲート線駆動回路411は、画像データを書き込む画素回路293aを選択する機能を有する。ゲート線駆動回路411は、具体的には、配線441に信号を出力することにより、画像データを書き込む画素回路293aを選択できる。ここで、ゲート線駆動回路411は、1行目の配線441に上記信号を出力した後、2行目の配線441に上記信号を出力し、最終行の配線441まで順に上記信号を出力することにより、画素回路293aに画像データを書き込むことができる。よって、ゲート線駆動回路411が配線441から出力する信号はゲート信号(走査信号と呼ばれる場合がある)であり、配線441はゲート線ということができる。なお配線441は走査線と呼ばれる場合がある。 The gate line driving circuit 411 has a function of selecting a pixel circuit 293a to which image data is written. Specifically, the gate line driving circuit 411 can select a pixel circuit 293a to which image data is written by outputting a signal to the wiring 441. Here, the gate line driving circuit 411 outputs the signal to the wiring 441 in the first row, then outputs the signal to the wiring 441 in the second row, and outputs the signal in order up to the wiring 441 in the last row, thereby writing image data to the pixel circuit 293a. Therefore, the signal that the gate line driving circuit 411 outputs from the wiring 441 is a gate signal (sometimes called a scanning signal), and the wiring 441 can be called a gate line. Note that the wiring 441 can be called a scanning line.
ソース線駆動回路413は、画像データを生成する機能を有する。画像データは、配線443を介して画素回路293aに供給される。例えば、ゲート線駆動回路411が選択している行に含まれる全ての画素回路293aに画像データを書き込むことができる。ここで、画像データは、信号として表すことができる。よって、配線443は、ソース線ということができる。なお配線443は、信号線と呼ばれる場合がある。 The source line driver circuit 413 has a function of generating image data. The image data is supplied to the pixel circuits 293a via the wiring 443. For example, the image data can be written to all the pixel circuits 293a included in the row selected by the gate line driver circuit 411. Here, the image data can be expressed as a signal. Therefore, the wiring 443 can be called a source line. Note that the wiring 443 may be called a signal line.
電源回路415は、電源電位を生成し、配線445に供給する機能を有する。電源回路415は、例えば高電源電位(以下、単に「高電位」、又は「VDD」ともいう。)を生成し、配線445に供給する機能を有する。また、電源回路415は、低電源電位(以下、単に「低電位」、又は「VSS」ともいう。)を生成する機能を有してもよい。また、電源回路415は、高電源電位と、低電源電位とを、順次切り替えて、パルス状の信号を出力することが出来る。または、パルス状の信号を、1行ずつ、スキャンして、出力することが出来る。配線445に電源電位が供給されることから、配線445は、電源線ということができる。また、配線445からトランジスタ452を介して、発光素子(例えば後述の発光素子130)に電流が流れる。よって配線445は、電流供給線と呼ばれる場合がある。また、配線445には、パルス状の信号が供給される場合があるため、パルス線とよばれる場合がある。配線445にパルス状の電位を供給することにより、トランジスタ452のしきい値電圧及び移動度のばらつきを補正することが可能となる。 The power supply circuit 415 has a function of generating a power supply potential and supplying it to the wiring 445. The power supply circuit 415 has a function of generating, for example, a high power supply potential (hereinafter also simply referred to as "high potential" or "VDD") and supplying it to the wiring 445. The power supply circuit 415 may also have a function of generating a low power supply potential (hereinafter also simply referred to as "low potential" or "VSS"). The power supply circuit 415 can output a pulsed signal by sequentially switching between a high power supply potential and a low power supply potential. Alternatively, the pulsed signal can be output by scanning one row at a time. Since a power supply potential is supplied to the wiring 445, the wiring 445 can be called a power supply line. Furthermore, a current flows from the wiring 445 to a light-emitting element (for example, a light-emitting element 130 described later) through the transistor 452. Therefore, the wiring 445 may be called a current supply line. Furthermore, since a pulsed signal may be supplied to the wiring 445, it may be called a pulse line. By supplying a pulsed potential to wiring 445, it is possible to correct variations in the threshold voltage and mobility of transistor 452.
配線441、配線443、及び配線445には定電位信号、パルス信号、等が与えられる。 A constant potential signal, a pulse signal, etc. are applied to wiring 441, wiring 443, and wiring 445.
図12Cは、副画素回路430と、発光素子130とを含む回路図の一例である。 Figure 12C is an example of a circuit diagram including a sub-pixel circuit 430 and a light-emitting element 130.
副画素回路430は、トランジスタ451、トランジスタ452、及び容量457を有する。つまり、副画素回路430は、2Tr1C型の画素回路である。 The sub-pixel circuit 430 has a transistor 451, a transistor 452, and a capacitance 457. In other words, the sub-pixel circuit 430 is a 2Tr1C type pixel circuit.
副画素回路430において、トランジスタ451のソース又はドレインの一方は、配線443と電気的に接続される。トランジスタ451のソース又はドレインの他方は、トランジスタ452のゲートと電気的に接続される。トランジスタ452のゲートは、容量457の一方の電極と電気的に接続される。トランジスタ451のゲートは、配線441と電気的に接続される。 In the subpixel circuit 430, one of the source and drain of the transistor 451 is electrically connected to the wiring 443. The other of the source and drain of the transistor 451 is electrically connected to the gate of the transistor 452. The gate of the transistor 452 is electrically connected to one electrode of the capacitor 457. The gate of the transistor 451 is electrically connected to the wiring 441.
トランジスタ452のソース又はドレインの一方は、配線445と電気的に接続される。トランジスタ452のソース又はドレインの他方は、容量457の他方の電極と電気的に接続される。容量457の他方の電極は、発光素子130の一方の電極と電気的に接続される。発光素子130の他方の電極は、配線447と電気的に接続される。ここで、発光素子130の一方の電極は、画素電極ともいう。また、配線447は、例えば全ての画素回路293a間で共有できることから、発光素子130の他方の電極は、共通電極ともいうことができる。 One of the source or drain of the transistor 452 is electrically connected to the wiring 445. The other of the source or drain of the transistor 452 is electrically connected to the other electrode of the capacitor 457. The other electrode of the capacitor 457 is electrically connected to one electrode of the light-emitting element 130. The other electrode of the light-emitting element 130 is electrically connected to the wiring 447. Here, the one electrode of the light-emitting element 130 is also called a pixel electrode. In addition, since the wiring 447 can be shared between all pixel circuits 293a, for example, the other electrode of the light-emitting element 130 can also be called a common electrode.
前述のように、配線441は走査線として機能し、配線443は信号線として機能し、配線445は電源線として機能する。また、配線447は電源線として機能し、例えば配線445に高電源電位が供給される場合は、配線447には低電源電位が供給される。配線447は、例えば電源回路415と電気的に接続できる。 As described above, the wiring 441 functions as a scan line, the wiring 443 functions as a signal line, and the wiring 445 functions as a power supply line. The wiring 447 functions as a power supply line, and when a high power supply potential is supplied to the wiring 445, for example, a low power supply potential is supplied to the wiring 447. The wiring 447 can be electrically connected to the power supply circuit 415, for example.
トランジスタ451は、スイッチとしての機能を有し、配線441の電位に基づいて、配線443とトランジスタ452のゲートとの間の導通状態、又は非導通状態を制御する機能を有する。トランジスタ451をオン状態とすることにより、画像データが副画素回路430に書き込まれ、トランジスタ451をオフ状態とすることにより、書き込まれた画像データが保持される。 The transistor 451 functions as a switch and controls the conductive state or non-conductive state between the wiring 443 and the gate of the transistor 452 based on the potential of the wiring 441. By turning on the transistor 451, image data is written to the sub-pixel circuit 430, and by turning off the transistor 451, the written image data is held.
トランジスタ452は、発光素子130に流れる電流量を制御する機能を有し、駆動トランジスタともいう。容量457は、トランジスタ452のゲート電位を保持する機能を有する。発光素子130の発光輝度は、トランジスタ452のゲートに供給される、画像データに対応する電位に応じて制御される。具体的には、配線445に高電源電位が供給され、配線447に低電源電位が供給される場合、トランジスタ452のゲートの電位に応じて、配線445から配線447に流れる電流の大きさが制御され、これにより発光素子130の発光輝度が制御される。 The transistor 452 has a function of controlling the amount of current flowing to the light-emitting element 130 and is also called a driving transistor. The capacitor 457 has a function of holding the gate potential of the transistor 452. The light emission luminance of the light-emitting element 130 is controlled according to the potential corresponding to image data supplied to the gate of the transistor 452. Specifically, when a high power supply potential is supplied to the wiring 445 and a low power supply potential is supplied to the wiring 447, the amount of current flowing from the wiring 445 to the wiring 447 is controlled according to the gate potential of the transistor 452, thereby controlling the light emission luminance of the light-emitting element 130.
トランジスタ451、及びトランジスタ452として、OSトランジスタを用いることが好ましい。OSトランジスタは、例えば非晶質シリコンを用いたトランジスタより、電界効果移動度が高い。よって、トランジスタ451、及びトランジスタ452として、OSトランジスタを用いることにより、表示装置100Aを高速に駆動させることができる。 It is preferable to use OS transistors as transistor 451 and transistor 452. OS transistors have higher field-effect mobility than, for example, transistors using amorphous silicon. Therefore, by using OS transistors as transistors 451 and transistor 452, the display device 100A can be driven at high speed.
また、OSトランジスタは、オフ状態におけるソース−ドレイン間のリーク電流(以下、オフ電流ともいう。)が著しく小さい。よって、トランジスタ451としてOSトランジスタを用いることにより、容量457に蓄積した電荷を長期間保持できる。これにより、副画素回路430に書き込まれた画像データを長期間保持できるため、リフレッシュ動作(副画素回路430への画像データの再書き込み)の頻度を少なくできる。よって、表示装置100Aの消費電力を低減できる。 In addition, the leakage current between the source and drain in an off state (hereinafter also referred to as off-state current) of an OS transistor is extremely small. Therefore, by using an OS transistor as the transistor 451, the charge stored in the capacitor 457 can be held for a long period of time. As a result, the image data written to the sub-pixel circuit 430 can be held for a long period of time, and therefore the frequency of refresh operations (rewriting image data to the sub-pixel circuit 430) can be reduced. Therefore, the power consumption of the display device 100A can be reduced.
ここで、発光素子130の発光輝度を高くする場合、発光素子130に流す電流量を大きくする必要がある。そのためには、駆動トランジスタであるトランジスタ452のソース−ドレイン間電圧を高くする必要がある。OSトランジスタは、シリコンを用いたトランジスタ(Siトランジスタともいう。)と比較して、ソース−ドレイン間において耐圧が高いため、OSトランジスタのソース−ドレイン間には高い電圧を印加できる。したがって、トランジスタ452をOSトランジスタとすることで、発光素子130に流れる電流量を大きくし、発光素子130の発光輝度を高くできる。 Here, to increase the emission luminance of the light-emitting element 130, it is necessary to increase the amount of current flowing through the light-emitting element 130. To achieve this, it is necessary to increase the source-drain voltage of the transistor 452, which is a driving transistor. Since an OS transistor has a higher withstand voltage between the source and drain than a transistor using silicon (also called a Si transistor), a high voltage can be applied between the source and drain of the OS transistor. Therefore, by using an OS transistor for the transistor 452, it is possible to increase the amount of current flowing through the light-emitting element 130 and increase the emission luminance of the light-emitting element 130.
トランジスタが飽和領域で駆動する場合において、OSトランジスタは、Siトランジスタよりも、ゲート−ソース間電圧の変化に対して、ソース−ドレイン間電流の変化を小さくできる。このため、トランジスタ452としてOSトランジスタを適用することによって、ゲート−ソース間電圧の変化によって、ソース−ドレイン間に流れる電流を細かく定めることができるため、発光素子130に流れる電流量を制御できる。このため、発光素子130が射出する光の輝度を、細かく制御できる。よって、発光素子130が表すことができる階調数を多くできる。 When the transistor is operated in the saturation region, the OS transistor can reduce the change in source-drain current in response to a change in gate-source voltage compared to a Si transistor. Therefore, by using an OS transistor as transistor 452, the current flowing between the source and drain can be precisely determined by changing the gate-source voltage, and the amount of current flowing to the light-emitting element 130 can be controlled. Therefore, the luminance of the light emitted by the light-emitting element 130 can be precisely controlled. This increases the number of gradations that can be expressed by the light-emitting element 130.
トランジスタが飽和領域で駆動するときに流れる電流の飽和特性において、OSトランジスタは、ソース−ドレイン間電圧が徐々に高くなった場合においても、Siトランジスタよりも安定した電流(飽和電流)を流すことができる。そのため、OSトランジスタをトランジスタ452として用いることで、例えば、発光素子130の電流−電圧特性にばらつきが生じた場合においても、発光素子130に安定した電流を流すことができる。つまり、OSトランジスタは、飽和領域で駆動する場合において、ソース−ドレイン間電圧を高くしても、ソース−ドレイン間電流がほぼ変化しないため、発光素子130の発光輝度を安定させることができる。 In terms of the saturation characteristics of the current that flows when the transistor is operated in the saturation region, an OS transistor can flow a more stable current (saturation current) than a Si transistor, even when the source-drain voltage gradually increases. Therefore, by using an OS transistor as transistor 452, a stable current can be flowed to the light-emitting element 130, for example, even when the current-voltage characteristics of the light-emitting element 130 vary. In other words, when an OS transistor is operated in the saturation region, the source-drain current hardly changes even when the source-drain voltage is increased, so that the light emission luminance of the light-emitting element 130 can be stabilized.
上記のとおり、トランジスタ452にOSトランジスタを用いることで、「黒浮きの抑制」、「発光輝度の上昇」、「多階調化」、及び「発光素子のばらつきの抑制」等を図ることができる。 As described above, by using an OS transistor for the transistor 452, it is possible to achieve "suppression of black floating," "increase in light emission luminance," "multiple gradations," and "suppression of variation among light-emitting elements," etc.
図12Dには、副画素回路430が図12Cに示す構成に加えて容量457bを有する例を示す。容量457bの一方の電極は、トランジスタ452のソース又はドレインの他方に電気的に接続される。容量457bの他方の電極は、配線447に電気的に接続される。容量457bを配置し、その容量値を調整することにより、トランジスタ452のしきい値電圧及び移動度のばらつきを補正する場合において、より適切にばらつきを補正することが可能となる。 FIG. 12D shows an example in which the subpixel circuit 430 has a capacitor 457b in addition to the configuration shown in FIG. 12C. One electrode of the capacitor 457b is electrically connected to the other of the source and drain of the transistor 452. The other electrode of the capacitor 457b is electrically connected to the wiring 447. By providing the capacitor 457b and adjusting the capacitance value, it becomes possible to more appropriately correct the variations in the threshold voltage and mobility of the transistor 452.
実施の形態1に示すトランジスタ100は、電荷の保持が求められるスイッチングトランジスタとして好適である。トランジスタ200は、チャネル長が長く、かつ、バックゲートを有するため、飽和特性が求められる駆動トランジスタとして好適である。また、トランジスタ100は、トランジスタ200と比べて微細化が容易であるため、画素回路のうち、駆動トランジスタ以外のすべてのトランジスタをトランジスタ100とすることで、1つの画素に用いるトランジスタの数を多くすることができる。または、1つの画素回路の占有面積を小さくすることができる。 The transistor 100 shown in embodiment 1 is suitable as a switching transistor that is required to hold charge. The transistor 200 has a long channel length and a back gate, and is therefore suitable as a driving transistor that is required to have saturation characteristics. In addition, since the transistor 100 can be miniaturized more easily than the transistor 200, the number of transistors used in one pixel can be increased by using the transistor 100 for all transistors in a pixel circuit other than the driving transistor. Alternatively, the area occupied by one pixel circuit can be reduced.
例えば、図12C及び図12Dに示すトランジスタ451としてトランジスタ100を用い、トランジスタ452としてトランジスタ200を用いることができる。なおトランジスタ100及びトランジスタ200の適用例はこの限りではない。例えば、トランジスタ451及びトランジスタ452にトランジスタ100を用いてもよい。あるいは例えば、トランジスタ451及びトランジスタ452にトランジスタ200を用いてもよい。あるいは例えば、トランジスタ451としてトランジスタ200を用い、トランジスタ452としてトランジスタ100を用いてもよい。 For example, the transistor 100 may be used as the transistor 451 shown in FIG. 12C and FIG. 12D, and the transistor 200 may be used as the transistor 452. Note that the application of the transistors 100 and 200 is not limited to this. For example, the transistor 100 may be used as the transistors 451 and 452. Alternatively, for example, the transistor 200 may be used as the transistor 451 and the transistor 452. Alternatively, for example, the transistor 200 may be used as the transistor 451, and the transistor 100 may be used as the transistor 452.
[表示装置100A]
図13には、表示装置100Aが有する構成例を示す。図13に示す構成は、基板151上に、トランジスタ100、トランジスタ200、発光素子130R、保護層131、着色層132R、着色層132G、接着層142、及び、基板152などを有する。なお、図13には示していないが、表示装置100Aの基板151上には、FPCと接続するための端子部などが設けられる。
[Display device 100A]
13 shows an example of the configuration of a display device 100A. The configuration shown in FIG. 13 includes a transistor 100, a transistor 200, a light-emitting element 130R, a protective layer 131, a colored layer 132R, a colored layer 132G, and an adhesive layer 131 on a substrate 151. 13, a terminal portion for connecting to an FPC and the like are provided on the substrate 151 of the display device 100A.
図11B及び図13に示す発光素子130Rは、赤色の光を呈する副画素が有する発光素子である。また、図11Bに示す発光素子130Gは、緑色の光を呈する副画素が有する発光素子であり、発光素子130Bは、青色の光を呈する副画素が有する発光素子である。各副画素において、発光素子の発光は、着色層を介して表示装置100Aの外部に取り出される。例えば、発光素子130Rの発光は、着色層132Rを介して表示装置100Aの外部に赤色の光として取り出される。 Light-emitting element 130R shown in Figures 11B and 13 is a light-emitting element included in a subpixel that emits red light. Light-emitting element 130G shown in Figure 11B is a light-emitting element included in a subpixel that emits green light, and light-emitting element 130B is a light-emitting element included in a subpixel that emits blue light. In each subpixel, the light emitted by the light-emitting element is extracted to the outside of display device 100A through the colored layer. For example, the light emitted by light-emitting element 130R is extracted as red light to the outside of display device 100A through colored layer 132R.
基板151は、図11A及び図11Bにおける基板291に相当する。 Substrate 151 corresponds to substrate 291 in Figures 11A and 11B.
トランジスタ100及びトランジスタ200は、実施の形態1で構成例1として説明した構造と同様であるため、説明は省略する。つまり、絶縁層215から絶縁層284までの積層構造の詳細については、実施の形態1を参照できる。 Transistor 100 and transistor 200 have the same structure as that described as configuration example 1 in embodiment 1, and therefore the description is omitted. In other words, embodiment 1 can be referred to for details of the stacked structure from insulating layer 215 to insulating layer 284.
トランジスタ100は、電荷の保持が求められるスイッチングトランジスタとして好適である。トランジスタ200は、チャネル長が長く、かつ、バックゲートを有するため、飽和特性が求められる駆動トランジスタとして好適である。また、トランジスタ100は、トランジスタ200と比べて微細化が容易であるため、画素回路のうち、駆動トランジスタ以外のすべてのトランジスタをトランジスタ100とすることで、1つの画素に用いるトランジスタの数を多くすることができる。または、1つの画素回路の占有面積を小さくすることができる。 Transistor 100 is suitable as a switching transistor that is required to hold charge. Transistor 200 has a long channel length and a back gate, and is therefore suitable as a driving transistor that is required to have saturation characteristics. In addition, since transistor 100 is easier to miniaturize than transistor 200, by using transistor 100 for all transistors in a pixel circuit other than the driving transistor, the number of transistors used in one pixel can be increased. Alternatively, the area occupied by one pixel circuit can be reduced.
トランジスタ200のソースまたはドレインとして機能する導電層242Aは、導電層240B、導電層245、及び、導電層246を介して、発光素子130Rの画素電極111と電気的に接続されている。なお、画素回路の構成によっては、トランジスタ100のソースまたはドレインと、発光素子130Rの画素電極111と、が電気的に接続される場合もある。 The conductive layer 242A, which functions as the source or drain of the transistor 200, is electrically connected to the pixel electrode 111 of the light-emitting element 130R via the conductive layer 240B, the conductive layer 245, and the conductive layer 246. Depending on the configuration of the pixel circuit, the source or drain of the transistor 100 may be electrically connected to the pixel electrode 111 of the light-emitting element 130R.
導電層245は、絶縁層285及び絶縁層286に設けられた開口の内部に形成されており、導電層246は、絶縁層287及び絶縁層288に設けられた開口の内部に形成されている。画素電極111は、絶縁層288上に設けられている。 The conductive layer 245 is formed inside an opening provided in the insulating layer 285 and the insulating layer 286, and the conductive layer 246 is formed inside an opening provided in the insulating layer 287 and the insulating layer 288. The pixel electrode 111 is provided on the insulating layer 288.
表示装置100Aが有する発光素子130Rは、画素電極111、EL層113、及び共通電極115をこの順で積層して有する。発光素子130Rの発光は、着色層132Rを介して表示装置100Aの外部に赤色の光として取り出される。 The light-emitting element 130R of the display device 100A has a pixel electrode 111, an EL layer 113, and a common electrode 115 stacked in this order. The light emitted by the light-emitting element 130R is extracted as red light to the outside of the display device 100A via the colored layer 132R.
表示装置100Aでは、各色の副画素に、共通のEL層113を有する発光素子と、着色層(カラーフィルタなど)と、が用いられている。 In the display device 100A, a light-emitting element having a common EL layer 113 and a colored layer (such as a color filter) are used for each color subpixel.
各色の光を呈する副画素が有する発光素子は、EL層113と、共通電極115と、をそれぞれ共有して有する。各色の副画素に共通のEL層113を設ける構成は、各色の副画素にそれぞれ異なるEL層を設ける構成に比べて、作製工程数の削減が可能である。 The light-emitting elements of the subpixels that emit light of each color share an EL layer 113 and a common electrode 115. A configuration in which a common EL layer 113 is provided for the subpixels of each color can reduce the number of manufacturing steps compared to a configuration in which a different EL layer is provided for each subpixel of each color.
例えば、各色の光を呈する副画素が有する発光素子は、白色の光を発する。発光素子が発する白色の光が、着色層を透過することで、所望の色の光を得ることができる。白色の光を発する発光素子には、タンデム構造を用いることが好ましい。 For example, the light-emitting element of each sub-pixel that exhibits light of each color emits white light. The white light emitted by the light-emitting element passes through the colored layer to obtain light of the desired color. It is preferable to use a tandem structure for the light-emitting element that emits white light.
なお、マイクロキャビティ構造を適用することで、白色の光を発する構成の発光素子は、赤色、緑色、または青色などの特定の波長の光が強められて発光する場合もある。 In addition, by applying a microcavity structure, a light-emitting element configured to emit white light may emit light of a specific wavelength, such as red, green, or blue, with the light being enhanced.
または、各色の光を呈する副画素が有する発光素子は、青色の光を発する構成であってもよい。発光素子が発する青色の光が、色変換層と着色層とを透過することで、所望の色の光を得ることができる。 Alternatively, the light-emitting element of the sub-pixel that emits light of each color may be configured to emit blue light. The blue light emitted by the light-emitting element passes through the color conversion layer and the coloring layer to obtain light of the desired color.
発光素子の構成及び材料等については、実施の形態5を参照することができる。 For the structure and materials of the light-emitting element, refer to embodiment 5.
画素電極111は、発光素子ごとに形成される。画素電極111の端部は、絶縁層137によって覆われている。絶縁層137は、隔壁として機能する。絶縁層137により、画素電極と共通電極とを電気的に絶縁することができる。また、絶縁層137により、隣接する発光素子同士を電気的に絶縁することができる。 A pixel electrode 111 is formed for each light-emitting element. The ends of the pixel electrode 111 are covered with an insulating layer 137. The insulating layer 137 functions as a partition wall. The insulating layer 137 can electrically insulate the pixel electrode from the common electrode. The insulating layer 137 can also electrically insulate adjacent light-emitting elements from each other.
絶縁層137は、無機絶縁材料及び有機絶縁材料の一方または双方を用いて、単層構造または積層構造で設けることができる。 The insulating layer 137 can be formed in a single layer structure or a laminated structure using one or both of an inorganic insulating material and an organic insulating material.
絶縁層137としては、無機絶縁膜を用いることが好ましい。無機絶縁膜としては、例えば、酸化絶縁膜、窒化絶縁膜、酸化窒化絶縁膜、及び窒化酸化絶縁膜が挙げられる。酸化絶縁膜としては、例えば、酸化シリコン膜、酸化アルミニウム膜、酸化マグネシウム膜、酸化ガリウム膜、酸化ゲルマニウム膜、酸化イットリウム膜、酸化ジルコニウム膜、酸化ランタン膜、酸化ネオジム膜、酸化ハフニウム膜、酸化タンタル膜、酸化セリウム膜、ガリウム亜鉛酸化物膜、及び、ハフニウムアルミネート膜が挙げられる。窒化絶縁膜としては、例えば、窒化シリコン膜、及び窒化アルミニウム膜が挙げられる。酸化窒化絶縁膜としては、例えば、酸化窒化シリコン膜、酸化窒化アルミニウム膜、酸化窒化ガリウム膜、酸化窒化イットリウム膜、及び、酸化窒化ハフニウム膜が挙げられる。窒化酸化絶縁膜としては、例えば、窒化酸化シリコン膜、及び窒化酸化アルミニウム膜が挙げられる。 As the insulating layer 137, an inorganic insulating film is preferably used. Examples of the inorganic insulating film include an oxide insulating film, a nitride insulating film, an oxynitride insulating film, and a nitride oxide insulating film. Examples of the oxide insulating film include a silicon oxide film, an aluminum oxide film, a magnesium oxide film, a gallium oxide film, a germanium oxide film, an yttrium oxide film, a zirconium oxide film, a lanthanum oxide film, a neodymium oxide film, a hafnium oxide film, a tantalum oxide film, a cerium oxide film, a gallium zinc oxide film, and a hafnium aluminate film. Examples of the nitride insulating film include a silicon nitride film and an aluminum nitride film. Examples of the oxynitride insulating film include a silicon oxynitride film, an aluminum oxynitride film, a gallium oxynitride film, an yttrium oxynitride film, and a hafnium oxynitride film. Examples of the nitride oxide insulating film include a silicon nitride oxide film and an aluminum nitride oxide film.
絶縁層137には、有機絶縁膜を用いてもよい。有機絶縁膜に用いることができる材料としては、アクリル樹脂、ポリイミド樹脂、エポキシ樹脂、ポリアミド樹脂、ポリイミドアミド樹脂、シロキサン樹脂、ベンゾシクロブテン系樹脂、フェノール樹脂、及びこれら樹脂の前駆体等が挙げられる。また、絶縁層137を、有機絶縁膜と、無機絶縁膜との積層構造にしてもよい。 An organic insulating film may be used for the insulating layer 137. Materials that can be used for the organic insulating film include acrylic resin, polyimide resin, epoxy resin, polyamide resin, polyimideamide resin, siloxane resin, benzocyclobutene resin, phenolic resin, and precursors of these resins. In addition, the insulating layer 137 may have a laminated structure of an organic insulating film and an inorganic insulating film.
発光素子上に保護層131を有することが好ましい。保護層131を設けることで、発光素子の信頼性を高めることができる。保護層131は単層構造でもよく、2層以上の積層構造であってもよい。 It is preferable to have a protective layer 131 on the light-emitting element. By providing the protective layer 131, the reliability of the light-emitting element can be improved. The protective layer 131 may have a single-layer structure or a laminated structure of two or more layers.
保護層131の導電性は問わない。保護層131としては、絶縁膜、半導体膜、及び、導電膜の少なくとも一種を用いることができる。 The conductivity of the protective layer 131 does not matter. At least one of an insulating film, a semiconductor film, and a conductive film can be used as the protective layer 131.
保護層131が無機膜を有することで、共通電極115の酸化を防止する、発光素子に不純物(水分及び酸素等)が入り込むことを抑制する、等により、発光素子の劣化を抑制し、表示装置の信頼性を高めることができる。 The protective layer 131 has an inorganic film, which prevents oxidation of the common electrode 115 and prevents impurities (such as moisture and oxygen) from entering the light-emitting element, thereby suppressing deterioration of the light-emitting element and improving the reliability of the display device.
保護層131には、例えば、酸化絶縁膜、窒化絶縁膜、酸化窒化絶縁膜、及び窒化酸化絶縁膜等の無機絶縁膜を用いることができる。これらの無機絶縁膜の具体例は、絶縁層137の説明で挙げた通りである。特に、保護層131は、窒化絶縁膜または窒化酸化絶縁膜を有することが好ましく、窒化絶縁膜を有することがより好ましい。 For example, inorganic insulating films such as an oxide insulating film, a nitride insulating film, an oxynitride insulating film, and a nitride oxide insulating film can be used for the protective layer 131. Specific examples of these inorganic insulating films are as given in the description of the insulating layer 137. In particular, the protective layer 131 preferably has a nitride insulating film or a nitride oxide insulating film, and more preferably has a nitride insulating film.
また、保護層131には、In−Sn酸化物(ITOともいう)、In−Zn酸化物、Ga−Zn酸化物、Al−Zn酸化物、またはインジウムガリウム亜鉛酸化物(In−Ga−Zn酸化物、IGZOともいう)等を含む無機膜を用いることもできる。当該無機膜は、高抵抗であることが好ましく、具体的には、共通電極115よりも高抵抗であることが好ましい。当該無機膜は、さらに窒素を含んでいてもよい。 The protective layer 131 may also be an inorganic film containing In-Sn oxide (also called ITO), In-Zn oxide, Ga-Zn oxide, Al-Zn oxide, or indium gallium zinc oxide (In-Ga-Zn oxide, also called IGZO). The inorganic film preferably has high resistance, specifically, it is preferable that the inorganic film has higher resistance than the common electrode 115. The inorganic film may further contain nitrogen.
発光素子の発光を、保護層131を介して取り出す場合、保護層131は、可視光に対する透過性が高いことが好ましい。例えば、ITO、IGZO、及び、酸化アルミニウムは、それぞれ、可視光に対する透過性が高い無機材料であるため、好ましい。 When the light emitted from the light-emitting element is extracted through the protective layer 131, it is preferable that the protective layer 131 has high transparency to visible light. For example, ITO, IGZO, and aluminum oxide are preferable because they are inorganic materials that have high transparency to visible light.
保護層131としては、例えば、酸化アルミニウム膜と、酸化アルミニウム膜上の窒化シリコン膜と、の積層構造、または、酸化アルミニウム膜と、酸化アルミニウム膜上のIGZO膜と、の積層構造等を用いることができる。当該積層構造を用いることで、不純物(水及び酸素等)がEL層側に入り込むことを抑制できる。 The protective layer 131 may be, for example, a laminated structure of an aluminum oxide film and a silicon nitride film on the aluminum oxide film, or a laminated structure of an aluminum oxide film and an IGZO film on the aluminum oxide film. By using such a laminated structure, it is possible to prevent impurities (such as water and oxygen) from entering the EL layer side.
さらに、保護層131は、有機膜を有していてもよい。例えば、保護層131は、有機膜と無機膜の双方を有していてもよい。保護層131に用いることができる有機材料としては、例えば、絶縁層137に用いることができる有機絶縁材料などが挙げられる。 Furthermore, the protective layer 131 may have an organic film. For example, the protective layer 131 may have both an organic film and an inorganic film. Examples of organic materials that can be used for the protective layer 131 include the organic insulating materials that can be used for the insulating layer 137.
保護層131は、異なる成膜方法を用いて形成された2層構造であってもよい。具体的には、ALD法を用いて保護層131の第1層目を形成し、スパッタリング法を用いて保護層131の第2層目を形成してもよい。 The protective layer 131 may have a two-layer structure formed using different film formation methods. Specifically, the first layer of the protective layer 131 may be formed using the ALD method, and the second layer of the protective layer 131 may be formed using the sputtering method.
保護層131と基板152は接着層142を介して接着されている。基板152には、着色層132R及び着色層132Gが設けられている。発光素子の封止には、例えば、固体封止構造または中空封止構造が適用できる。図13では、基板152と基板151との間の空間が、接着層142で充填されており、固体封止構造が適用されている。または、当該空間を不活性ガス(窒素またはアルゴンなど)で充填し、中空封止構造を適用してもよい。このとき、接着層142は、発光素子と重ならないように設けられていてもよい。また、当該空間を、枠状に設けられた接着層142とは異なる樹脂で充填してもよい。 The protective layer 131 and the substrate 152 are bonded via an adhesive layer 142. The substrate 152 is provided with a colored layer 132R and a colored layer 132G. For example, a solid sealing structure or a hollow sealing structure can be applied to seal the light-emitting element. In FIG. 13, the space between the substrate 152 and the substrate 151 is filled with the adhesive layer 142, and a solid sealing structure is applied. Alternatively, the space may be filled with an inert gas (such as nitrogen or argon), and a hollow sealing structure may be applied. In this case, the adhesive layer 142 may be provided so as not to overlap with the light-emitting element. The space may also be filled with a resin different from the adhesive layer 142 provided in a frame shape.
着色層は特定の波長域の光を選択的に透過し、他の波長域の光を吸収する有色層である。例えば、赤色の波長域の光を透過する赤色(R)のカラーフィルタ、緑色の波長域の光を透過する緑色(G)のカラーフィルタ、青色の波長域の光を透過する青色(B)のカラーフィルタなどを用いることができる。各着色層には、金属材料、樹脂材料、顔料、染料のうち一つまたは複数を用いることができる。着色層は、印刷法、インクジェット法、フォトリソグラフィ法を用いたエッチング方法などでそれぞれ所望の位置に形成する。 The colored layer is a colored layer that selectively transmits light in a specific wavelength range and absorbs light in other wavelength ranges. For example, a red (R) color filter that transmits light in the red wavelength range, a green (G) color filter that transmits light in the green wavelength range, and a blue (B) color filter that transmits light in the blue wavelength range can be used. For each colored layer, one or more of a metal material, a resin material, a pigment, and a dye can be used. The colored layers are formed at the desired positions by a printing method, an inkjet method, an etching method using photolithography, or the like.
基板152の接着層142側の面には、ブラックマトリクスなどの遮光層を設けてもよい。また、基板152の外側(接着層142側とは反対の面)には各種光学部材を配置することができる。光学部材としては、偏光板、位相差板、光拡散層(拡散フィルムなど)、反射防止層、及び集光フィルム等が挙げられる。また、基板152の外側には、ゴミの付着を抑制する帯電防止膜、汚れを付着しにくくする撥水性の膜、使用に伴う傷の発生を抑制するハードコート膜、衝撃吸収層等の表面保護層を配置してもよい。例えば、表面保護層として、ガラス層またはシリカ層(SiO層)を設けることで、表面汚染及び傷の発生を抑制することができ、好ましい。また、表面保護層としては、DLC(ダイヤモンドライクカーボン)、酸化アルミニウム(AlO)、ポリエステル系材料、またはポリカーボネート系材料などを用いてもよい。なお、表面保護層には、可視光に対する透過率が高い材料を用いることが好ましい。また、表面保護層には、硬度が高い材料を用いることが好ましい。 A light-shielding layer such as a black matrix may be provided on the surface of the substrate 152 facing the adhesive layer 142. Various optical members may be provided on the outer side of the substrate 152 (the surface opposite to the adhesive layer 142). Examples of the optical members include a polarizing plate, a retardation plate, a light diffusion layer (such as a diffusion film), an anti-reflection layer, and a light-collecting film. Surface protection layers such as an antistatic film that suppresses adhesion of dust, a water-repellent film that makes it difficult for dirt to adhere, a hard coat film that suppresses the occurrence of scratches due to use, and an impact absorbing layer may be provided on the outer side of the substrate 152. For example, a glass layer or a silica layer (SiO x layer) may be provided as the surface protection layer, which can suppress the occurrence of surface contamination and scratches, and is therefore preferable. Diamond-like carbon (DLC), aluminum oxide (AlO x ), polyester-based materials, polycarbonate-based materials, and the like may be used as the surface protection layer. It is preferable to use a material with high transmittance for visible light for the surface protection layer. It is also preferable to use a material with high hardness for the surface protection layer.
基板151及び基板152には、それぞれ、ガラス、石英、セラミックス、サファイア、樹脂、金属、合金、半導体などを用いることができる。発光素子からの光を取り出す側の基板には、該光を透過する材料を用いる。基板151及び基板152に可撓性を有する材料を用いると、表示装置の可撓性を高めることができる。また、基板152として偏光板を用いてもよい。 The substrate 151 and the substrate 152 can each be made of glass, quartz, ceramics, sapphire, resin, metal, alloy, semiconductor, or the like. A material that transmits light is used for the substrate on the side from which light from the light-emitting element is extracted. If a flexible material is used for the substrate 151 and the substrate 152, the flexibility of the display device can be increased. A polarizing plate may also be used as the substrate 152.
表示装置100Aは、トップエミッション型である。発光素子が発する光は、基板152側に射出される。基板152には、可視光に対する透過性が高い材料を用いることが好ましい。画素電極111は可視光を反射する材料を含み、対向電極(共通電極115)は可視光を透過する材料を含む。 The display device 100A is a top emission type. Light emitted by the light emitting elements is emitted to the substrate 152 side. It is preferable to use a material that is highly transparent to visible light for the substrate 152. The pixel electrode 111 contains a material that reflects visible light, and the counter electrode (common electrode 115) contains a material that transmits visible light.
基板151及び基板152としては、それぞれ、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル樹脂、ポリアクリロニトリル樹脂、アクリル樹脂、ポリイミド樹脂、ポリメチルメタクリレート樹脂、ポリカーボネート(PC)樹脂、ポリエーテルスルホン(PES)樹脂、ポリアミド樹脂(ナイロン、アラミド等)、ポリシロキサン樹脂、シクロオレフィン樹脂、ポリスチレン樹脂、ポリアミドイミド樹脂、ポリウレタン樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリプロピレン樹脂、ポリテトラフルオロエチレン(PTFE)樹脂、ABS樹脂、セルロースナノファイバー等を用いることができる。基板151及び基板152に、可撓性を有する程度の厚さのガラスを用いてもよい。 The substrates 151 and 152 may each be made of polyester resin such as polyethylene terephthalate (PET) or polyethylene naphthalate (PEN), polyacrylonitrile resin, acrylic resin, polyimide resin, polymethyl methacrylate resin, polycarbonate (PC) resin, polyethersulfone (PES) resin, polyamide resin (nylon, aramid, etc.), polysiloxane resin, cycloolefin resin, polystyrene resin, polyamideimide resin, polyurethane resin, polyvinyl chloride resin, polyvinylidene chloride resin, polypropylene resin, polytetrafluoroethylene (PTFE) resin, ABS resin, cellulose nanofiber, or the like. The substrates 151 and 152 may each be made of glass having a thickness sufficient to provide flexibility.
なお、表示装置に円偏光板を重ねる場合、表示装置が有する基板には、光学等方性の高い基板を用いることが好ましい。光学等方性が高い基板は、複屈折が小さい(複屈折量が小さい、ともいえる)。 When a circular polarizing plate is laminated on a display device, it is preferable to use a substrate with high optical isotropy as the substrate of the display device. A substrate with high optical isotropy has small birefringence (it can also be said that the amount of birefringence is small).
光学等方性が高い基板のリタデーション(位相差)値の絶対値は、30nm以下が好ましく、20nm以下がより好ましく、10nm以下がさらに好ましい。 The absolute value of the retardation (phase difference) value of a substrate with high optical isotropy is preferably 30 nm or less, more preferably 20 nm or less, and even more preferably 10 nm or less.
光学等方性が高いフィルムとしては、トリアセチルセルロース(TAC、セルローストリアセテートともいう)フィルム、シクロオレフィンポリマー(COP)フィルム、シクロオレフィンコポリマー(COC)フィルム、及びアクリルフィルム等が挙げられる。 Examples of films with high optical isotropy include triacetyl cellulose (TAC, also known as cellulose triacetate) film, cycloolefin polymer (COP) film, cycloolefin copolymer (COC) film, and acrylic film.
また、基板としてフィルムを用いる場合、フィルムが吸水することで、表示装置にしわが発生するなどの形状変化が生じる恐れがある。そのため、基板には、吸水率の低いフィルムを用いることが好ましい。例えば、吸水率が1%以下のフィルムを用いることが好ましく、0.1%以下のフィルムを用いることがより好ましく、0.01%以下のフィルムを用いることがさらに好ましい。 In addition, when a film is used as the substrate, there is a risk that the film will absorb water, causing changes in shape such as wrinkles in the display device. For this reason, it is preferable to use a film with low water absorption for the substrate. For example, it is preferable to use a film with a water absorption rate of 1% or less, more preferably a film with a water absorption rate of 0.1% or less, and even more preferably a film with a water absorption rate of 0.01% or less.
接着層142としては、紫外線硬化型等の光硬化型接着剤、反応硬化型接着剤、熱硬化型接着剤、嫌気型接着剤などの各種硬化型接着剤を用いることができる。これら接着剤としてはエポキシ樹脂、アクリル樹脂、シリコーン樹脂、フェノール樹脂、ポリイミド樹脂、イミド樹脂、PVC(ポリビニルクロライド)樹脂、PVB(ポリビニルブチラル)樹脂、EVA(エチレンビニルアセテート)樹脂等が挙げられる。特に、エポキシ樹脂等の透湿性が低い材料が好ましい。また、二液混合型の樹脂を用いてもよい。また、接着シート等を用いてもよい。 For the adhesive layer 142, various types of curing adhesives can be used, such as photo-curing adhesives such as ultraviolet curing adhesives, reactive curing adhesives, heat curing adhesives, and anaerobic adhesives. These adhesives include epoxy resin, acrylic resin, silicone resin, phenolic resin, polyimide resin, imide resin, PVC (polyvinyl chloride) resin, PVB (polyvinyl butyral) resin, and EVA (ethylene vinyl acetate) resin. In particular, materials with low moisture permeability such as epoxy resin are preferable. Two-part mixed resins may also be used. Adhesive sheets, etc. may also be used.
[表示装置100B]
次に、表示装置100Aと異なる構成例として、表示装置100Bについて説明する。図14には、表示装置100Bが有する構成例を示す。図14に示す構成は、着色層132R、132Gを有さない点、各色の副画素に共通のEL層113を有さず、各色の副画素ごとに、それぞれEL層が設けられている点で、主に表示装置100Aと異なる。
[Display device 100B]
Next, a display device 100B will be described as an example of a configuration different from that of the display device 100A. Fig. 14 shows an example of a configuration of the display device 100B. The configuration shown in Fig. 14 does not include the colored layers 132R and 132G. The display device 100 differs from the display device 100A mainly in that it does not have an EL layer 113 common to the sub-pixels of different colors, but has its own EL layer provided for each sub-pixel of each color.
表示装置100Bが有する発光素子130Rは、画素電極111、EL層113R、及び共通電極115をこの順で積層して有する。EL層113Rは、赤色の光を発する発光層を有する。発光素子130Rは、赤色の光を発する。同様に、緑色の光を呈する副画素には、緑色の光を発する発光素子(EL層113Gが緑色の光を発する発光層を有する)が設けられ、青色の光を呈する副画素には、青色の光を発する発光素子が設けられる。 The light-emitting element 130R of the display device 100B has a pixel electrode 111, an EL layer 113R, and a common electrode 115 stacked in this order. The EL layer 113R has a light-emitting layer that emits red light. The light-emitting element 130R emits red light. Similarly, a light-emitting element that emits green light (EL layer 113G has a light-emitting layer that emits green light) is provided in the sub-pixel that provides green light, and a light-emitting element that emits blue light is provided in the sub-pixel that provides blue light.
EL層113Rは島状に設けられる。図14では、隣り合うEL層113Rの端部とEL層113Gの端部とが重なっている。ファインメタルマスクを用いて島状のEL層を成膜する場合、図14に示すように、隣り合うEL層の端部同士が重なることがあるが、これに限られない。つまり、隣り合うEL層同士は重ならず、互いに離隔されていてもよい。また、表示装置において、隣り合うEL層同士が重なっている部分と、隣り合うEL層同士が重ならず離隔されている部分と、の双方が存在してもよい。 The EL layer 113R is provided in an island shape. In FIG. 14, the ends of adjacent EL layers 113R and EL layers 113G overlap. When forming an island-shaped EL layer using a fine metal mask, the ends of adjacent EL layers may overlap as shown in FIG. 14, but this is not limited to the above. In other words, adjacent EL layers may not overlap and may be separated from each other. Furthermore, in the display device, there may be both a portion where adjacent EL layers overlap and a portion where adjacent EL layers do not overlap and are separated from each other.
[表示装置100C]
次に、表示装置100Aと異なる構成例として、表示装置100Cについて説明する。表示装置100Cは、MML(メタルマスクレス)構造が適用された表示装置の一例である。つまり、表示装置100Cは、ファインメタルマスクを用いずに作製された発光素子を有する。図15には、表示装置100Cが有する構成例を示す。
[Display device 100C]
Next, a display device 100C will be described as an example of a display device having a different configuration from the display device 100A. The display device 100C is an example of a display device to which an MML (metal maskless) structure is applied. The display device 100C has a light-emitting element manufactured without using a metal mask.
MML構造が適用された表示装置が有する発光素子における島状の発光層は、発光層を一面に成膜した後、フォトリソグラフィ法を用いて加工することで形成される。したがって、これまで実現が困難であった高精細な表示装置または高開口率の表示装置を実現することができる。さらに、発光層を各色で作り分けることができるため、極めて鮮やかでコントラストが高く、表示品位の高い表示装置を実現できる。例えば、表示装置が、青色の光を発する発光素子、緑色の光を発する発光素子、及び赤色の光を発する発光素子の3種類で構成される場合、発光層の成膜、及び、フォトリソグラフィによる加工を3回繰り返すことで、3種類の島状の発光層を形成することができる。 The island-shaped light-emitting layer in the light-emitting element of a display device to which the MML structure is applied is formed by depositing a light-emitting layer on one surface and then processing it using a photolithography method. This makes it possible to realize a high-definition display device or a display device with a high aperture ratio, which has been difficult to achieve until now. Furthermore, since the light-emitting layer can be made separately for each color, a display device with extremely vivid images, high contrast, and high display quality can be realized. For example, if a display device is composed of three types of light-emitting elements, one that emits blue light, one that emits green light, and one that emits red light, the deposition of the light-emitting layer and processing by photolithography can be repeated three times to form three types of island-shaped light-emitting layers.
MML構造のデバイスは、メタルマスクを用いることなく製造することができるため、メタルマスクの合わせ精度に起因する精細度の上限を超えることができる。また、メタルマスクを用いずにデバイスを作製する場合、メタルマスクの製造に係る設備、及び、メタルマスクの洗浄工程を不要にすることができる。また、フォトリソグラフィによる加工には、トランジスタを作製する際に用いる装置と共通または同様の装置を用いることができるため、MML構造のデバイスを作製するために特別な装置を導入する必要はない。このように、MML構造は、製造コストを低く抑えることが可能となるため、デバイスの大量生産に適している。 Devices with an MML structure can be manufactured without using a metal mask, and therefore can exceed the upper limit of definition resulting from the alignment accuracy of the metal mask. Furthermore, when devices are manufactured without using a metal mask, the equipment required for manufacturing the metal mask and the process of cleaning the metal mask can be eliminated. Furthermore, since the same or similar equipment as that used to manufacture transistors can be used for photolithography processing, there is no need to introduce special equipment to manufacture devices with an MML structure. In this way, the MML structure makes it possible to keep manufacturing costs low, and is therefore suitable for mass production of devices.
MML構造が適用された表示装置では、例えば、ペンタイル配列などの特殊な画素配列を適用し疑似的に精細度を高める必要がないため、R、G、Bの副画素をそれぞれ一方向に配列させた、いわゆるストライプ配列で、かつ、高精細(例えば500ppi以上、1000ppi以上、2000ppi以上、3000ppi以上、または5000ppi以上)の表示装置を実現することができる。 In a display device to which the MML structure is applied, there is no need to artificially increase the resolution by applying a special pixel arrangement such as a Pentile arrangement, so it is possible to realize a display device with high resolution (for example, 500 ppi or more, 1000 ppi or more, 2000 ppi or more, 3000 ppi or more, or 5000 ppi or more) with a so-called stripe arrangement in which R, G, and B sub-pixels are each arranged in one direction.
また、発光層上に犠牲層を設けることで、表示装置の作製工程中に発光層が受けるダメージを低減し、発光素子の信頼性を高めることができる。 In addition, by providing a sacrificial layer on the light-emitting layer, damage to the light-emitting layer during the manufacturing process of the display device can be reduced, thereby improving the reliability of the light-emitting element.
また、エリアマスクを用いた成膜工程と、レジストマスクを用いた加工工程と、を採用することで、比較的簡単なプロセスにて発光素子を作製することができる。 In addition, by adopting a film formation process using an area mask and a processing process using a resist mask, light-emitting elements can be manufactured through a relatively simple process.
なお、基板151から絶縁層288までの積層構造、及び保護層131から基板152までの積層構造は、表示装置100Aと同様のため、説明を省略する。 Note that the layered structure from the substrate 151 to the insulating layer 288, and the layered structure from the protective layer 131 to the substrate 152 are similar to those of the display device 100A, and therefore will not be described.
図15において、絶縁層288上に、発光素子130Rが設けられている。 In FIG. 15, a light-emitting element 130R is provided on an insulating layer 288.
発光素子130Rは、絶縁層288上の画素電極111と、画素電極111上の層133Rと、層133R上の共通層114と、共通層114上の共通電極115と、を有する。図15に示す発光素子130Rは、赤色の光を発する。層133Rは、赤色の光を発する発光層を有する。発光素子130Rにおいて、層133R、及び、共通層114をまとめてEL層と呼ぶことができる。 Light-emitting element 130R has a pixel electrode 111 on insulating layer 288, a layer 133R on pixel electrode 111, a common layer 114 on layer 133R, and a common electrode 115 on common layer 114. Light-emitting element 130R shown in FIG. 15 emits red light. Layer 133R has a light-emitting layer that emits red light. In light-emitting element 130R, layer 133R and common layer 114 can be collectively referred to as an EL layer.
本明細書等では、発光素子が有するEL層のうち、発光素子ごとに島状に設けられた層を層133Rと示し、複数の発光素子が共有して有する層を共通層114と示す。なお、本明細書等において、共通層114を含めず、層133Rを指して、島状のEL層、島状に形成されたEL層などと呼ぶ場合もある。 In this specification, among the EL layers of the light-emitting element, a layer provided in an island shape for each light-emitting element is referred to as layer 133R, and a layer shared by a plurality of light-emitting elements is referred to as common layer 114. Note that in this specification, the layer 133R may be referred to as an island-shaped EL layer, an EL layer formed in an island shape, etc., without including the common layer 114.
各発光素子が有する島状のEL層は、互いに離隔されている。EL層を発光素子ごとに島状に設けることで、隣接する発光素子間のリーク電流を抑制することができる。これにより、クロストークに起因した意図しない発光を防ぐことができ、コントラストの極めて高い表示装置を実現できる。 The island-shaped EL layer of each light-emitting element is separated from each other. By providing an island-shaped EL layer for each light-emitting element, it is possible to suppress leakage current between adjacent light-emitting elements. This makes it possible to prevent unintended light emission caused by crosstalk, and to realize a display device with extremely high contrast.
画素電極111の上面及び側面は、層133Rによって覆われている。したがって、画素電極111が設けられている領域全体を、発光素子130Rの発光領域として用いることができるため、画素の開口率を高めることができる。 The upper and side surfaces of the pixel electrode 111 are covered with layer 133R. Therefore, the entire area in which the pixel electrode 111 is provided can be used as the light-emitting area of the light-emitting element 130R, thereby increasing the aperture ratio of the pixel.
層133Rの上面の一部及び側面は、絶縁層125、127によって覆われている。層133R、及び、絶縁層125、127上に、共通層114が設けられ、共通層114上に共通電極115が設けられている。共通層114及び共通電極115は、それぞれ、複数の発光素子に共通して設けられるひと続きの膜である。 A portion of the top surface and the side surfaces of layer 133R are covered with insulating layers 125 and 127. A common layer 114 is provided on layer 133R and insulating layers 125 and 127, and a common electrode 115 is provided on common layer 114. Common layer 114 and common electrode 115 are each continuous films provided in common to multiple light-emitting elements.
図15において、画素電極111と層133Rとの間には、図13等に示す絶縁層137が設けられていない。つまり、表示装置100Cには、画素電極に接し、かつ、画素電極の上面端部を覆う絶縁層(隔壁、バンク、スペーサなどともいう)が設けられていない。そのため、隣り合う発光素子の間隔を極めて狭くすることができる。したがって、高精細、または、高解像度の表示装置とすることができる。また、当該絶縁層を形成するためのマスクも不要となり、表示装置の製造コストを削減することができる。 In FIG. 15, the insulating layer 137 shown in FIG. 13 and the like is not provided between the pixel electrode 111 and the layer 133R. In other words, the display device 100C does not have an insulating layer (also called a partition, bank, spacer, etc.) that contacts the pixel electrode and covers the upper end of the pixel electrode. Therefore, the distance between adjacent light-emitting elements can be made extremely narrow. This makes it possible to provide a high-definition or high-resolution display device. In addition, a mask for forming the insulating layer is not required, which reduces the manufacturing cost of the display device.
前述の通り、層133Rは、発光層を有する。層133Rは、発光層と、発光層上のキャリア輸送層(電子輸送層または正孔輸送層)と、を有することが好ましい。または、層133Rは、発光層と、発光層上のキャリアブロック層(正孔ブロック層または電子ブロック層)と、を有することが好ましい。または、層133Rは、発光層と、発光層上のキャリアブロック層と、キャリアブロック層上のキャリア輸送層と、を有することが好ましい。層133Rの表面は、表示装置の作製工程中に露出するため、キャリア輸送層及びキャリアブロック層の一方または双方を発光層上に設けることで、発光層が最表面に露出することを抑制し、発光層が受けるダメージを低減することができる。これにより、発光素子の信頼性を高めることができる。 As described above, the layer 133R has a light-emitting layer. The layer 133R preferably has a light-emitting layer and a carrier transport layer (electron transport layer or hole transport layer) on the light-emitting layer. Alternatively, the layer 133R preferably has a light-emitting layer and a carrier block layer (hole block layer or electron block layer) on the light-emitting layer. Alternatively, the layer 133R preferably has a light-emitting layer, a carrier block layer on the light-emitting layer, and a carrier transport layer on the carrier block layer. Since the surface of the layer 133R is exposed during the manufacturing process of the display device, by providing one or both of the carrier transport layer and the carrier block layer on the light-emitting layer, it is possible to suppress exposure of the light-emitting layer to the outermost surface and reduce damage to the light-emitting layer. This can improve the reliability of the light-emitting element.
共通層114は、例えば電子注入層、または正孔注入層を有する。または、共通層114は、電子輸送層と電子注入層とを積層して有していてもよく、正孔輸送層と正孔注入層とを積層して有していてもよい。共通層114は、各色の光を呈する発光素子で共有されている。なお、発光素子が有するEL層が全て島状に設けられ、共通層114を有していなくてもよい。 The common layer 114 has, for example, an electron injection layer or a hole injection layer. Alternatively, the common layer 114 may have a stack of an electron transport layer and an electron injection layer, or a stack of a hole transport layer and a hole injection layer. The common layer 114 is shared by the light-emitting elements that emit light of each color. Note that all of the EL layers of the light-emitting elements may be provided in an island shape, and the common layer 114 may not be included.
層133Rの側面は、絶縁層125によって覆われている。絶縁層127は、絶縁層125を介して、層133Rの側面を覆っている。 The side of layer 133R is covered by insulating layer 125. Insulating layer 127 covers the side of layer 133R via insulating layer 125.
層133Rの側面(さらには、上面の一部)が、絶縁層125及び絶縁層127の少なくとも一方によって覆われていることで、共通層114(または共通電極115)が、画素電極111、及び、層133Rの側面と接することを抑制し、発光素子のショートを抑制することができる。これにより、発光素子の信頼性を高めることができる。 By covering the side surface (and even part of the top surface) of layer 133R with at least one of insulating layer 125 and insulating layer 127, it is possible to prevent the common layer 114 (or common electrode 115) from coming into contact with the pixel electrode 111 and the side surface of layer 133R, thereby preventing short circuits in the light-emitting element. This can improve the reliability of the light-emitting element.
絶縁層125は、層133Rの側面と接することが好ましい。絶縁層125が層133Rと接する構成とすることで、層133Rの膜剥がれを防止でき、発光素子の信頼性を高めることができる。 It is preferable that the insulating layer 125 contacts the side surface of the layer 133R. By configuring the insulating layer 125 to contact the layer 133R, peeling of the layer 133R can be prevented, and the reliability of the light-emitting element can be improved.
絶縁層127は、絶縁層125の凹部を充填するように、絶縁層125上に設けられる。絶縁層127は、絶縁層125の側面の少なくとも一部を覆うことが好ましい。 The insulating layer 127 is provided on the insulating layer 125 so as to fill the recesses in the insulating layer 125. It is preferable that the insulating layer 127 covers at least a portion of the side surface of the insulating layer 125.
絶縁層125及び絶縁層127を設けることで、隣り合う島状の層の間を埋めることができるため、島状の層上に設ける層(例えばキャリア注入層、及び共通電極など)の被形成面の高低差の大きな凹凸を低減し、より平坦にすることができる。したがって、キャリア注入層及び共通電極などの被覆性を高めることができる。 By providing insulating layer 125 and insulating layer 127, the gap between adjacent island-shaped layers can be filled, so that the large unevenness in height difference on the surface on which the layers (e.g., carrier injection layer, common electrode, etc.) are formed on the island-shaped layers can be reduced, making it flatter. Therefore, the coverage of the carrier injection layer, common electrode, etc. can be improved.
共通層114及び共通電極115は、層133R、絶縁層125、及び絶縁層127上に設けられる。絶縁層125及び絶縁層127を設ける前の段階では、画素電極及び島状のEL層が設けられる領域と、画素電極及び島状のEL層が設けられない領域(発光素子間の領域)と、に起因する段差が生じている。本発明の一態様の表示装置は、絶縁層125及び絶縁層127を有することで当該段差を平坦化させることができ、共通層114及び共通電極115の被覆性を向上させることができる。したがって、段切れによる接続不良を抑制することができる。また、段差によって共通電極115が局所的に薄膜化して電気抵抗が上昇することを抑制することができる。 The common layer 114 and the common electrode 115 are provided on the layer 133R, the insulating layer 125, and the insulating layer 127. Before the insulating layer 125 and the insulating layer 127 are provided, there is a step due to the region where the pixel electrode and the island-shaped EL layer are provided and the region where the pixel electrode and the island-shaped EL layer are not provided (the region between the light-emitting elements). In the display device of one embodiment of the present invention, the step can be flattened by having the insulating layer 125 and the insulating layer 127, and the coverage of the common layer 114 and the common electrode 115 can be improved. Therefore, poor connection due to step disconnection can be suppressed. In addition, it is possible to suppress an increase in electrical resistance due to local thinning of the common electrode 115 due to the step.
絶縁層127の上面はより平坦性の高い形状を有することが好ましい。絶縁層127の上面は、平面、凸曲面、及び、凹曲面のうち、少なくとも一つを有していてもよい。例えば、絶縁層127の上面は、曲率半径の大きい凸曲面形状を有することが好ましい。 The upper surface of the insulating layer 127 preferably has a shape with high flatness. The upper surface of the insulating layer 127 may have at least one of a flat surface, a convex curved surface, and a concave curved surface. For example, the upper surface of the insulating layer 127 preferably has a convex curved shape with a large radius of curvature.
絶縁層125は、無機材料を有する絶縁層とすることができる。絶縁層125には、例えば、酸化絶縁膜、窒化絶縁膜、酸化窒化絶縁膜、及び窒化酸化絶縁膜等の無機絶縁膜を用いることができる。これらの無機絶縁膜の具体例は、前述の通りである。絶縁層125は単層構造であってもよく積層構造であってもよい。特に、酸化アルミニウムは、エッチングにおいて、EL層との選択比が高く、後述する絶縁層127の形成において、EL層を保護する機能を有するため、好ましい。特にALD法により形成した酸化アルミニウム膜、酸化ハフニウム膜、または酸化シリコン膜等の無機絶縁膜を絶縁層125に適用することで、ピンホールが少なく、EL層を保護する機能に優れた絶縁層125を形成することができる。また、絶縁層125は、ALD法により形成した膜と、スパッタリング法により形成した膜と、の積層構造としてもよい。絶縁層125は、例えば、ALD法によって形成された酸化アルミニウム膜と、スパッタリング法によって形成された窒化シリコン膜と、の積層構造であってもよい。 The insulating layer 125 can be an insulating layer containing an inorganic material. For example, an inorganic insulating film such as an oxide insulating film, a nitride insulating film, an oxynitride insulating film, and a nitride oxide insulating film can be used for the insulating layer 125. Specific examples of these inorganic insulating films are as described above. The insulating layer 125 may have a single layer structure or a laminated structure. In particular, aluminum oxide is preferable because it has a high selectivity with respect to the EL layer in etching and has a function of protecting the EL layer in the formation of the insulating layer 127 described later. In particular, by applying an inorganic insulating film such as an aluminum oxide film, a hafnium oxide film, or a silicon oxide film formed by the ALD method to the insulating layer 125, it is possible to form an insulating layer 125 with few pinholes and excellent function of protecting the EL layer. In addition, the insulating layer 125 may have a laminated structure of a film formed by the ALD method and a film formed by the sputtering method. The insulating layer 125 may have a laminated structure of, for example, an aluminum oxide film formed by the ALD method and a silicon nitride film formed by the sputtering method.
絶縁層125は、水及び酸素の少なくとも一方に対するバリア絶縁層としての機能を有することが好ましい。絶縁層125は、水及び酸素の少なくとも一方の拡散を抑制する機能を有することが好ましい。また、絶縁層125は、水及び酸素の少なくとも一方を捕獲、または固着する(ゲッタリングともいう)機能を有することが好ましい。 The insulating layer 125 preferably has a function as a barrier insulating layer against at least one of water and oxygen. The insulating layer 125 preferably has a function of suppressing the diffusion of at least one of water and oxygen. In addition, the insulating layer 125 preferably has a function of capturing or fixing (also called gettering) at least one of water and oxygen.
絶縁層125が、バリア絶縁層としての機能を有することで、外部から各発光素子に拡散しうる不純物(代表的には、水及び酸素の少なくとも一方)の侵入を抑制することが可能な構成となる。当該構成とすることで、信頼性の高い発光素子、さらには、信頼性の高い表示装置を提供することができる。 The insulating layer 125 functions as a barrier insulating layer, making it possible to suppress the intrusion of impurities (typically at least one of water and oxygen) that may diffuse from the outside into each light-emitting element. This configuration makes it possible to provide a highly reliable light-emitting element and further a highly reliable display device.
また、絶縁層125は、不純物濃度が低いことが好ましい。これにより、絶縁層125からEL層に不純物が混入し、EL層が劣化することを抑制することができる。また、絶縁層125において、不純物濃度を低くすることで、水及び酸素の少なくとも一方に対するバリア性を高めることができる。例えば、絶縁層125は、水素濃度及び炭素濃度の一方、好ましくは双方が十分に低いことが望ましい。 In addition, the insulating layer 125 preferably has a low impurity concentration. This can prevent impurities from entering the EL layer from the insulating layer 125 and causing deterioration of the EL layer. In addition, by lowering the impurity concentration in the insulating layer 125, the barrier properties against at least one of water and oxygen can be improved. For example, it is desirable that the insulating layer 125 has a sufficiently low hydrogen concentration or a sufficiently low carbon concentration, preferably both.
絶縁層125上に設けられる絶縁層127は、隣接する発光素子間に形成された絶縁層125の高低差の大きな凹凸を平坦化する機能を有する。換言すると、絶縁層127を有することで共通電極115を形成する面の平坦性を向上させる効果を奏する。 The insulating layer 127 provided on the insulating layer 125 has the function of flattening the unevenness of the insulating layer 125 formed between adjacent light-emitting elements. In other words, the presence of the insulating layer 127 has the effect of improving the flatness of the surface on which the common electrode 115 is formed.
絶縁層127としては、有機材料を有する絶縁層を好適に用いることができる。有機材料としては、感光性の有機樹脂を用いることが好ましく、例えば、アクリル樹脂を含む感光性の樹脂組成物を用いることが好ましい。なお、本明細書などにおいて、アクリル樹脂とは、ポリメタクリル酸エステル、またはメタクリル樹脂だけを指すものではなく、広義のアクリル系ポリマー全体を指す場合がある。 As the insulating layer 127, an insulating layer containing an organic material can be suitably used. As the organic material, it is preferable to use a photosensitive organic resin, for example, a photosensitive resin composition containing an acrylic resin. Note that in this specification and the like, acrylic resin does not only refer to polymethacrylic acid ester or methacrylic resin, but may refer to acrylic polymers in a broad sense.
また、絶縁層127として、アクリル樹脂、ポリイミド樹脂、エポキシ樹脂、イミド樹脂、ポリアミド樹脂、ポリイミドアミド樹脂、シリコーン樹脂、シロキサン樹脂、ベンゾシクロブテン系樹脂、フェノール樹脂、及びこれら樹脂の前駆体等を用いてもよい。また、絶縁層127として、ポリビニルアルコール(PVA)、ポリビニルブチラール、ポリビニルピロリドン、ポリエチレングリコール、ポリグリセリン、プルラン、水溶性のセルロース、またはアルコール可溶性のポリアミド樹脂等の有機材料を用いてもよい。また、感光性の樹脂としてはフォトレジストを用いてもよい。感光性の有機樹脂として、ポジ型の材料及びネガ型の材料のどちらを用いてもよい。 The insulating layer 127 may be made of acrylic resin, polyimide resin, epoxy resin, imide resin, polyamide resin, polyimideamide resin, silicone resin, siloxane resin, benzocyclobutene resin, phenol resin, or precursors of these resins. The insulating layer 127 may be made of organic materials such as polyvinyl alcohol (PVA), polyvinyl butyral, polyvinylpyrrolidone, polyethylene glycol, polyglycerin, pullulan, water-soluble cellulose, or alcohol-soluble polyamide resin. The photosensitive resin may be a photoresist. The photosensitive organic resin may be either a positive-type material or a negative-type material.
絶縁層127には可視光を吸収する材料を用いてもよい。絶縁層127が発光素子からの発光を吸収することで、発光素子から絶縁層127を介して隣接する発光素子に光が漏れること(迷光)を抑制することができる。これにより、表示装置の表示品位を高めることができる。また、表示装置に偏光板を用いなくても、表示品位を高めることができるため、表示装置の軽量化及び薄型化を図ることができる。 The insulating layer 127 may be made of a material that absorbs visible light. By absorbing light emitted from the light-emitting element with the insulating layer 127, it is possible to suppress leakage of light from the light-emitting element to an adjacent light-emitting element through the insulating layer 127 (stray light). This can improve the display quality of the display device. In addition, since the display quality can be improved without using a polarizing plate in the display device, it is possible to reduce the weight and thickness of the display device.
可視光を吸収する材料としては、黒色などの顔料を含む材料、染料を含む材料、光吸収性を有する樹脂材料(例えばポリイミドなど)、及び、カラーフィルタに用いることのできる樹脂材料(カラーフィルタ材料)が挙げられる。特に、2色、または3色以上のカラーフィルタ材料を積層または混合した樹脂材料を用いると、可視光の遮蔽効果を高めることができるため好ましい。特に3色以上のカラーフィルタ材料を混合させることで、黒色または黒色近傍の樹脂層とすることが可能となる。 Materials that absorb visible light include materials containing pigments such as black, materials containing dyes, resin materials with light absorbing properties (such as polyimide), and resin materials that can be used in color filters (color filter materials). In particular, it is preferable to use a resin material in which two or more colors of color filter materials are laminated or mixed, as this can enhance the visible light blocking effect. In particular, by mixing three or more colors of color filter materials, it is possible to create a resin layer that is black or close to black.
[表示装置100D及び表示装置100E]
次に、表示装置100Aと異なる構成例として、表示装置100D及び表示装置100Eについて説明する。図16には、表示装置100Dが有する構成例を示す。また、図17には、表示装置100Eが有する構成例を示す。表示装置100Dは、表示装置100Aにおける基板151の代わりに、基板301から絶縁層317までの積層構造を有する。また、表示装置100Eは、表示装置100Cにおける基板151の代わりに、基板301から絶縁層317までの積層構造を有する。
[Display device 100D and display device 100E]
Next, display devices 100D and 100E will be described as examples of configurations different from the display device 100A. Fig. 16 shows an example of the configuration of the display device 100D. Fig. 17 shows an example of the configuration of the display device 100E. The display device 100D has a layered structure from a substrate 301 to an insulating layer 317, instead of the substrate 151 in the display device 100A. The display device 100E has a layered structure from a substrate 301 to an insulating layer 317, instead of the substrate 151 in the display device 100C.
トランジスタ300は、基板301にチャネル形成領域を有するトランジスタである。基板301としては、例えば単結晶シリコン基板などの半導体基板を用いることができる。トランジスタ300は、基板301の一部、導電層311、低抵抗領域312、絶縁層313、及び、絶縁層314を有する。導電層311は、ゲート電極として機能する。絶縁層313は、基板301と導電層311の間に位置し、ゲート絶縁層として機能する。低抵抗領域312は、基板301に不純物がドープされた領域であり、ソースまたはドレインの一方として機能する。絶縁層314は、導電層311の側面を覆って設けられる。 The transistor 300 has a channel formation region in the substrate 301. The substrate 301 can be a semiconductor substrate such as a single crystal silicon substrate. The transistor 300 has a part of the substrate 301, a conductive layer 311, a low resistance region 312, an insulating layer 313, and an insulating layer 314. The conductive layer 311 functions as a gate electrode. The insulating layer 313 is located between the substrate 301 and the conductive layer 311 and functions as a gate insulating layer. The low resistance region 312 is a region in which the substrate 301 is doped with impurities, and functions as one of a source and a drain. The insulating layer 314 is provided to cover the side surface of the conductive layer 311.
また、基板301に埋め込まれるように、隣接する2つのトランジスタ300の間に素子分離層315が設けられている。トランジスタ300のソースまたはドレインは、絶縁層316及び絶縁層317の開口に設けられた導電層によって、トランジスタ300の上方に設けられた導電層、配線、トランジスタ等の少なくとも一つと電気的に接続される。 In addition, an element isolation layer 315 is provided between two adjacent transistors 300 so as to be embedded in the substrate 301. The source or drain of the transistor 300 is electrically connected to at least one of a conductive layer, wiring, transistor, etc., provided above the transistor 300 by a conductive layer provided in an opening of the insulating layer 316 and the insulating layer 317.
トランジスタ100及びトランジスタ200は、画素回路を構成するトランジスタとして用いることができる。また、トランジスタ300は、画素回路を構成するトランジスタ、または当該画素回路を駆動するための駆動回路(ゲート線駆動回路、ソース線駆動回路)を構成するトランジスタとして用いることができる。また、トランジスタ300は、演算回路または記憶回路などの各種回路を構成するトランジスタとして用いることができる。 Transistor 100 and transistor 200 can be used as transistors that constitute a pixel circuit. Transistor 300 can be used as a transistor that constitutes a pixel circuit, or a transistor that constitutes a driver circuit (gate line driver circuit, source line driver circuit) for driving the pixel circuit. Transistor 300 can be used as a transistor that constitutes various circuits such as an arithmetic circuit or a memory circuit.
このような構成とすることで、発光素子の直下に画素回路だけでなく駆動回路等を形成することができるため、表示領域の周辺に駆動回路を設ける場合に比べて、表示装置を小型化することが可能となる。 By using this type of configuration, not only the pixel circuit but also the driving circuit etc. can be formed directly under the light-emitting element, making it possible to miniaturize the display device compared to when the driving circuit is provided around the periphery of the display area.
本実施の形態は、他の実施の形態と適宜組み合わせることができる。 This embodiment can be combined with other embodiments as appropriate.
(実施の形態3)
本実施の形態では、本発明の一態様の表示装置について図18及び図19を用いて説明する。
(Embodiment 3)
In this embodiment, a display device of one embodiment of the present invention will be described with reference to FIGS.
[画素のレイアウトの一例]
本発明の一態様の表示装置において、副画素の配列に特に限定はなく、様々な方法を適用することができる。副画素の配列としては、例えば、ストライプ配列、Sストライプ配列、マトリクス配列、デルタ配列、ベイヤー配列、ペンタイル配列などが挙げられる。
[Example of pixel layout]
In the display device of one embodiment of the present invention, the arrangement of the sub-pixels is not particularly limited, and various methods can be applied. Examples of the arrangement of the sub-pixels include a stripe arrangement, an S-stripe arrangement, a matrix arrangement, a delta arrangement, a Bayer arrangement, and a Pentile arrangement.
本実施の形態で図に示す副画素の上面形状は、発光領域(または受光領域)の上面形状に相当する。 The top surface shape of the subpixels shown in the figures in this embodiment corresponds to the top surface shape of the light-emitting region (or light-receiving region).
なお、副画素の上面形状としては、例えば、三角形、四角形(長方形、正方形を含む)、五角形などの多角形、これら多角形の角が丸い形状、楕円形、または円形などが挙げられる。 The top surface shape of a subpixel can be, for example, a triangle, a quadrangle (including a rectangle and a square), a polygon such as a pentagon, a polygon with rounded corners, an ellipse, or a circle.
また、副画素を構成する回路レイアウトは、図に示す副画素の範囲に限定されず、その外側に配置されていてもよい。 In addition, the circuit layout constituting the subpixel is not limited to the range of the subpixel shown in the figure, but may be arranged outside of it.
図18Aに示す画素110には、Sストライプ配列が適用されている。図18Aに示す画素110は、副画素110a、110b、110cの、3つの副画素から構成される。 The pixel 110 shown in FIG. 18A has an S-stripe arrangement. The pixel 110 shown in FIG. 18A is composed of three subpixels, 110a, 110b, and 110c.
図18Bに示す画素110は、角が丸い略三角形または略台形の上面形状を有する副画素110aと、角が丸い略三角形または略台形の上面形状を有する副画素110bと、角が丸い略四角形または略六角形の上面形状を有する副画素110cと、を有する。また、副画素110bは、副画素110aよりも発光面積が広い。このように、各副画素の形状及びサイズはそれぞれ独立に決定することができる。例えば、信頼性の高い発光素子を有する副画素ほど、サイズを小さくすることができる。 The pixel 110 shown in FIG. 18B has subpixel 110a having a substantially triangular or trapezoidal top surface shape with rounded corners, subpixel 110b having a substantially triangular or trapezoidal top surface shape with rounded corners, and subpixel 110c having a substantially rectangular or hexagonal top surface shape with rounded corners. Subpixel 110b has a larger light-emitting area than subpixel 110a. In this way, the shape and size of each subpixel can be determined independently. For example, the more reliable the light-emitting element a subpixel has, the smaller its size can be.
図18Cに示す画素124a、124bには、ペンタイル配列が適用されている。図18Cでは、副画素110a及び副画素110bを有する画素124aと、副画素110b及び副画素110cを有する画素124bと、が交互に配置されている例を示す。 The pixels 124a and 124b shown in FIG. 18C are arranged in a Pentile array. FIG. 18C shows an example in which pixel 124a having subpixels 110a and 110b and pixel 124b having subpixels 110b and 110c are arranged alternately.
図18D乃至図18Fに示す画素124a、124bは、デルタ配列が適用されている。画素124aは上の行(1行目)に、2つの副画素(副画素110a、110b)を有し、下の行(2行目)に、1つの副画素(副画素110c)を有する。画素124bは上の行(1行目)に、1つの副画素(副画素110c)を有し、下の行(2行目)に、2つの副画素(副画素110a、110b)を有する。 Pixels 124a and 124b shown in Figures 18D to 18F are arranged in a delta arrangement. Pixel 124a has two subpixels ( subpixels 110a and 110b) in the top row (first row) and one subpixel (subpixel 110c) in the bottom row (second row). Pixel 124b has one subpixel (subpixel 110c) in the top row (first row) and two subpixels ( subpixels 110a and 110b) in the bottom row (second row).
図18Dは、各副画素が、角が丸い略四角形の上面形状を有する例であり、図18Eは、各副画素が、円形の上面形状を有する例であり、図18Fは、各副画素が、角が丸い略六角形の上面形状を有する例である。 Figure 18D shows an example in which each subpixel has a generally rectangular top surface shape with rounded corners, Figure 18E shows an example in which each subpixel has a circular top surface shape, and Figure 18F shows an example in which each subpixel has a generally hexagonal top surface shape with rounded corners.
図18Fでは、各副画素が、最密に配列した六角形の領域の内側に配置されている。各副画素は、その1つの副画素に着目したとき、6つの副画素に囲まれるように、配置されている。また、同じ色の光を呈する副画素が隣り合わないように設けられている。例えば、副画素110aに着目したとき、これを囲むように3つの副画素110bと3つの副画素110cが、交互に配置されるように、それぞれの副画素が設けられている。 In FIG. 18F, each subpixel is arranged inside a close-packed hexagonal region. When focusing on one subpixel, each subpixel is arranged so that it is surrounded by six other subpixels. In addition, subpixels that emit light of the same color are arranged so that they are not adjacent to each other. For example, when focusing on subpixel 110a, three subpixels 110b and three subpixels 110c are arranged alternately to surround it.
図18Gは、各色の副画素がジグザグに配置されている例である。具体的には、平面視において、行方向に並ぶ2つの副画素(例えば、副画素110aと副画素110b、または、副画素110bと副画素110c)の上辺の位置がずれている。 Figure 18G shows an example in which subpixels of each color are arranged in a zigzag pattern. Specifically, in a plan view, the positions of the top sides of two subpixels arranged in the row direction (e.g., subpixels 110a and 110b, or subpixels 110b and 110c) are misaligned.
図18A乃至図18Gに示す各画素において、例えば、副画素110aを赤色の光を呈する副画素Rとし、副画素110bを緑色の光を呈する副画素Gとし、副画素110cを青色の光を呈する副画素Bとすることが好ましい。なお、副画素の構成はこれに限定されず、副画素が呈する色とその並び順は適宜決定することができる。例えば、副画素110bを赤色の光を呈する副画素Rとし、副画素110aを緑色の光を呈する副画素Gとしてもよい。 In each pixel shown in Figures 18A to 18G, it is preferable that, for example, subpixel 110a is subpixel R that emits red light, subpixel 110b is subpixel G that emits green light, and subpixel 110c is subpixel B that emits blue light. Note that the configuration of the subpixels is not limited to this, and the colors that the subpixels emit and their order of arrangement can be determined appropriately. For example, subpixel 110b may be subpixel R that emits red light, and subpixel 110a may be subpixel G that emits green light.
フォトリソグラフィ法では、加工するパターンが微細になるほど、光の回折の影響を無視できなくなるため、露光によりフォトマスクのパターンを転写する際に忠実性が損なわれ、レジストマスクを所望の形状に加工することが困難になる。そのため、フォトマスクのパターンが矩形であっても、角が丸まったパターンが形成されやすい。したがって、副画素の上面形状が、多角形の角が丸い形状、楕円形、または円形などになることがある。 In photolithography, the finer the pattern to be processed, the more the effects of light diffraction cannot be ignored, and this causes a loss of fidelity when the photomask pattern is transferred by exposure, making it difficult to process the resist mask into the desired shape. As a result, even if the photomask pattern is rectangular, a pattern with rounded corners is likely to be formed. As a result, the top surface shape of the subpixel may become a polygon with rounded corners, an ellipse, a circle, or the like.
さらに、本発明の一態様の表示装置の作製方法では、レジストマスクを用いてEL層を島状に加工する。EL層上に形成したレジスト膜は、EL層の耐熱温度よりも低い温度で硬化する必要がある。そのため、EL層の材料の耐熱温度及びレジスト材料の硬化温度によっては、レジスト膜の硬化が不十分になる場合がある。硬化が不十分なレジスト膜は、加工時に所望の形状から離れた形状をとることがある。その結果、EL層の上面形状が、多角形の角が丸い形状、楕円形、または円形などになることがある。例えば、上面形状が正方形のレジストマスクを形成しようとした場合に、円形の上面形状のレジストマスクが形成され、EL層の上面形状が円形になることがある。 Furthermore, in the manufacturing method of the display device according to one embodiment of the present invention, the EL layer is processed into an island shape using a resist mask. The resist film formed on the EL layer needs to be cured at a temperature lower than the heat resistance temperature of the EL layer. Therefore, depending on the heat resistance temperature of the material of the EL layer and the curing temperature of the resist material, the resist film may not be cured sufficiently. A resist film that is not cured sufficiently may have a shape that is different from the desired shape during processing. As a result, the top surface shape of the EL layer may be a polygon with rounded corners, an ellipse, a circle, or the like. For example, when attempting to form a resist mask with a square top surface shape, a resist mask with a circular top surface shape is formed, and the top surface shape of the EL layer may become circular.
なお、EL層の上面形状を所望の形状とするために、設計パターンと、転写パターンとが、一致するように、あらかじめマスクパターンを補正する技術(OPC(Optical Proximity Correction:光近接効果補正)技術)を用いてもよい。具体的には、OPC技術では、マスクパターン上の図形コーナー部などに補正用のパターンを追加する。 Note that in order to make the top surface of the EL layer have the desired shape, a technique for correcting the mask pattern in advance (OPC (Optical Proximity Correction) technique) may be used so that the design pattern and the transfer pattern match. Specifically, OPC technique adds a correction pattern to the corners of figures on the mask pattern.
図19A乃至図19Iに示すように、画素は副画素を4種類有する構成とすることができる。 As shown in Figures 19A to 19I, a pixel can be configured to have four types of subpixels.
図19A乃至図19Cに示す画素110は、ストライプ配列が適用されている。 The pixels 110 shown in Figures 19A to 19C are arranged in a stripe pattern.
図19Aは、各副画素が、長方形の上面形状を有する例であり、図19Bは、各副画素が、2つの半円と長方形をつなげた上面形状を有する例であり、図19Cは、各副画素が、楕円形の上面形状を有する例である。 Figure 19A shows an example where each subpixel has a rectangular top surface shape, Figure 19B shows an example where each subpixel has a top surface shape that combines two semicircles and a rectangle, and Figure 19C shows an example where each subpixel has an elliptical top surface shape.
図19D乃至図19Fに示す画素110は、マトリクス配列が適用されている。 The pixels 110 shown in Figures 19D to 19F are arranged in a matrix.
図19Dは、各副画素が、正方形の上面形状を有する例であり、図19Eは、各副画素が、角が丸い略正方形の上面形状を有する例であり、図19Fは、各副画素が、円形の上面形状を有する例である。 Figure 19D shows an example in which each subpixel has a square top surface shape, Figure 19E shows an example in which each subpixel has a roughly square top surface shape with rounded corners, and Figure 19F shows an example in which each subpixel has a circular top surface shape.
図19G及び図19Hでは、1つの画素110が、2行3列で構成されている例を示す。 Figures 19G and 19H show an example in which one pixel 110 is configured with two rows and three columns.
図19Gに示す画素110は、上の行(1行目)に、3つの副画素(副画素110a、110b、110c)を有し、下の行(2行目)に、1つの副画素(副画素110d)を有する。言い換えると、画素110は、左の列(1列目)に、副画素110aを有し、中央の列(2列目)に副画素110bを有し、右の列(3列目)に副画素110cを有し、さらに、この3列にわたって、副画素110dを有する。 The pixel 110 shown in FIG. 19G has three subpixels ( subpixels 110a, 110b, 110c) in the top row (first row) and one subpixel (subpixel 110d) in the bottom row (second row). In other words, the pixel 110 has subpixel 110a in the left column (first column), subpixel 110b in the center column (second column), subpixel 110c in the right column (third column), and subpixel 110d across these three columns.
図19Hに示す画素110は、上の行(1行目)に、3つの副画素(副画素110a、110b、110c)を有し、下の行(2行目)に、3つの副画素110dを有する。言い換えると、画素110は、左の列(1列目)に、副画素110a及び副画素110dを有し、中央の列(2列目)に副画素110b及び副画素110dを有し、右の列(3列目)に副画素110c及び副画素110dを有する。図19Hに示すように、上の行と下の行との副画素の配置を揃える構成とすることで、製造プロセスで生じうるゴミなどを効率よく除去することが可能となる。したがって、表示品位の高い表示装置を提供することができる。 The pixel 110 shown in FIG. 19H has three subpixels ( subpixels 110a, 110b, and 110c) in the top row (first row) and three subpixels 110d in the bottom row (second row). In other words, the pixel 110 has subpixels 110a and 110d in the left column (first column), subpixels 110b and 110d in the center column (second column), and subpixels 110c and 110d in the right column (third column). As shown in FIG. 19H, by aligning the arrangement of the subpixels in the top row and the bottom row, it is possible to efficiently remove dust and the like that may occur in the manufacturing process. Therefore, a display device with high display quality can be provided.
図19Iでは、1つの画素110が、3行2列で構成されている例を示す。 Figure 19I shows an example in which one pixel 110 is configured with three rows and two columns.
図19Iに示す画素110は、上の行(1行目)に、副画素110aを有し、中央の行(2行目)に、副画素110bを有し、1行目から2行目にわたって副画素110cを有し、下の行(3行目)に、1つの副画素(副画素110d)を有する。言い換えると、画素110は、左の列(1列目)に、副画素110a、110bを有し、右の列(2列目)に副画素110cを有し、さらに、この2列にわたって、副画素110dを有する。 The pixel 110 shown in FIG. 19I has subpixel 110a in the top row (first row), subpixel 110b in the center row (second row), subpixel 110c from the first to second rows, and one subpixel (subpixel 110d) in the bottom row (third row). In other words, the pixel 110 has subpixels 110a and 110b in the left column (first column), subpixel 110c in the right column (second column), and subpixel 110d across these two columns.
図19A乃至図19Iに示す画素110は、副画素110a、110b、110c、110dの、4つの副画素から構成される。 The pixel 110 shown in Figures 19A to 19I is composed of four subpixels: subpixels 110a, 110b, 110c, and 110d.
副画素110a、110b、110c、110dは、それぞれ異なる色の光を発する発光素子を有する構成とすることができる。副画素110a、110b、110c、110dとしては、R、G、B、白色(W)の4色の副画素、R、G、B、Yの4色の副画素、または、R、G、B、赤外光(IR)の副画素などが挙げられる。 The sub-pixels 110a, 110b, 110c, and 110d can each have a light-emitting element that emits light of a different color. Examples of the sub-pixels 110a, 110b, 110c, and 110d include sub-pixels of four colors: R, G, B, and white (W), sub-pixels of four colors: R, G, B, and Y, or sub-pixels of R, G, B, and infrared light (IR).
図19A乃至図19Iに示す各画素110において、例えば、副画素110aを赤色の光を呈する副画素Rとし、副画素110bを緑色の光を呈する副画素Gとし、副画素110cを青色の光を呈する副画素Bとし、副画素110dを白色の光を呈する副画素W、黄色の光を呈する副画素Y、または近赤外光を呈する副画素IRのいずれかとすることが好ましい。このような構成とする場合、図19G及び図19Hに示す画素110では、R、G、Bのレイアウトがストライプ配列となるため、表示品位を高めることができる。また、図19Iに示す画素110では、R、G、BのレイアウトがいわゆるSストライプ配列となるため、表示品位を高めることができる。 In each pixel 110 shown in Figures 19A to 19I, for example, it is preferable that the subpixel 110a is a subpixel R that emits red light, the subpixel 110b is a subpixel G that emits green light, the subpixel 110c is a subpixel B that emits blue light, and the subpixel 110d is any one of the subpixels W that emit white light, Y that emit yellow light, and IR that emits near-infrared light. In such a configuration, the pixel 110 shown in Figures 19G and 19H has a stripe layout of R, G, and B, which can improve the display quality. Also, in the pixel 110 shown in Figure 19I, the layout of R, G, and B is a so-called S-stripe layout, which can improve the display quality.
また、画素110は、受光素子を有する副画素を有していてもよい。 The pixel 110 may also have a sub-pixel having a light receiving element.
図19A乃至図19Iに示す各画素110において、副画素110a乃至副画素110dのいずれか一つを、受光素子を有する副画素としてもよい。 In each pixel 110 shown in Figures 19A to 19I, any one of the subpixels 110a to 110d may be a subpixel having a light receiving element.
図19A乃至図19Iに示す各画素110において、例えば、副画素110aを赤色の光を呈する副画素Rとし、副画素110bを緑色の光を呈する副画素Gとし、副画素110cを青色の光を呈する副画素Bとし、副画素110dを、受光素子を有する副画素Sとすることが好ましい。このような構成とする場合、図19G及び図19Hに示す画素110では、R、G、Bのレイアウトがストライプ配列となるため、表示品位を高めることができる。また、図19Iに示す画素110では、R、G、BのレイアウトがいわゆるSストライプ配列となるため、表示品位を高めることができる。 In each pixel 110 shown in Figures 19A to 19I, it is preferable that, for example, subpixel 110a is a subpixel R that emits red light, subpixel 110b is a subpixel G that emits green light, subpixel 110c is a subpixel B that emits blue light, and subpixel 110d is a subpixel S that has a light receiving element. In such a configuration, the pixel 110 shown in Figures 19G and 19H has a layout of R, G, and B in a stripe arrangement, which can improve the display quality. Also, in the pixel 110 shown in Figure 19I, the layout of R, G, and B is a so-called S-stripe arrangement, which can improve the display quality.
受光素子を有する副画素Sが検出する光の波長は特に限定されない。副画素Sは、可視光及び赤外光の一方または双方を検出する構成とすることができる。 The wavelength of light detected by the subpixel S having a light receiving element is not particularly limited. The subpixel S can be configured to detect either or both of visible light and infrared light.
図19J及び図19Kに示すように、画素は副画素を5種類有する構成とすることができる。 As shown in Figures 19J and 19K, a pixel can be configured to have five types of subpixels.
図19Jでは、1つの画素110が、2行3列で構成されている例を示す。 Figure 19J shows an example in which one pixel 110 is configured with two rows and three columns.
図19Jに示す画素110は、上の行(1行目)に、3つの副画素(副画素110a、110b、110c)を有し、下の行(2行目)に、2つの副画素(副画素110d、110e)を有する。言い換えると、画素110は、左の列(1列目)に、副画素110a、110dを有し、中央の列(2列目)に副画素110bを有し、右の列(3列目)に副画素110cを有し、さらに、2列目から3列目にわたって、副画素110eを有する。 The pixel 110 shown in FIG. 19J has three subpixels ( subpixels 110a, 110b, and 110c) in the top row (first row) and two subpixels ( subpixels 110d and 110e) in the bottom row (second row). In other words, the pixel 110 has subpixels 110a and 110d in the left column (first column), subpixel 110b in the center column (second column), subpixel 110c in the right column (third column), and subpixel 110e from the second column to the third column.
図19Kでは、1つの画素110が、3行2列で構成されている例を示す。 Figure 19K shows an example in which one pixel 110 is configured with three rows and two columns.
図19Kに示す画素110は、上の行(1行目)に、副画素110aを有し、中央の行(2行目)に、副画素110bを有し、1行目から2行目にわたって副画素110cを有し、下の行(3行目)に、2つの副画素(副画素110d、110e)を有する。言い換えると、画素110は、左の列(1列目)に、副画素110a、110b、110dを有し、右の列(2列目)に副画素110c、110eを有する。 The pixel 110 shown in FIG. 19K has subpixel 110a in the top row (first row), subpixel 110b in the center row (second row), subpixel 110c from the first row to the second row, and two subpixels ( subpixels 110d and 110e) in the bottom row (third row). In other words, the pixel 110 has subpixels 110a, 110b, and 110d in the left column (first column), and subpixels 110c and 110e in the right column (second column).
図19J及び図19Kに示す各画素110において、例えば、副画素110aを赤色の光を呈する副画素Rとし、副画素110bを緑色の光を呈する副画素Gとし、副画素110cを青色の光を呈する副画素Bとすることが好ましい。このような構成とする場合、図19Jに示す画素110では、R、G、Bのレイアウトがストライプ配列となるため、表示品位を高めることができる。また、図19Kに示す画素110では、R、G、BのレイアウトがいわゆるSストライプ配列となるため、表示品位を高めることができる。 In each pixel 110 shown in Figures 19J and 19K, for example, it is preferable that subpixel 110a is a subpixel R that emits red light, subpixel 110b is a subpixel G that emits green light, and subpixel 110c is a subpixel B that emits blue light. In such a configuration, the pixel 110 shown in Figure 19J has a layout of R, G, and B in a stripe arrangement, which can improve display quality. Also, the pixel 110 shown in Figure 19K has a layout of R, G, and B in a so-called S-stripe arrangement, which can improve display quality.
また、図19J及び図19Kに示す各画素110において、例えば、副画素110dと副画素110eのうち、少なくとも一方に、受光素子を有する副画素Sを適用することが好ましい。副画素110dと副画素110eの両方に受光素子を用いる場合、受光素子の構成が互いに異なっていてもよい。例えば、互いに検出する光の波長域が少なくとも一部が異なっていてもよい。具体的には、副画素110dと副画素110eのうち、一方は主に可視光を検出する受光素子を有し、他方は主に赤外光を検出する受光素子を有していてもよい。 Furthermore, in each pixel 110 shown in FIG. 19J and FIG. 19K, for example, it is preferable to apply a subpixel S having a light receiving element to at least one of subpixels 110d and 110e. When a light receiving element is used for both subpixels 110d and 110e, the configurations of the light receiving elements may be different from each other. For example, the wavelength ranges of light detected may be at least partially different from each other. Specifically, one of subpixels 110d and 110e may have a light receiving element that mainly detects visible light, and the other may have a light receiving element that mainly detects infrared light.
また、図19J及び図19Kに示す各画素110において、例えば、副画素110dと副画素110eのうち、一方に、受光素子を有する副画素Sを適用し、他方に、光源として用いることが可能な発光素子を有する副画素を適用することが好ましい。例えば、副画素110dと副画素110eのうち、一方は赤外光を呈する副画素IRとし、他方は赤外光を検出する受光素子を有する副画素Sとすることが好ましい。 Furthermore, in each pixel 110 shown in Figures 19J and 19K, for example, it is preferable to use a subpixel S having a light receiving element as one of subpixels 110d and 110e, and a subpixel having a light emitting element that can be used as a light source as the other. For example, it is preferable to use a subpixel IR that emits infrared light as one of subpixels 110d and 110e, and a subpixel S having a light receiving element that detects infrared light as the other.
副画素R、G、B、IR、Sを有する画素では、副画素R、G、Bを用いて画像を表示しながら、副画素IRを光源として用いて、副画素Sにて副画素IRが発する赤外光の反射光を検出することができる。 In a pixel having sub-pixels R, G, B, IR, and S, an image can be displayed using the sub-pixels R, G, and B, while the sub-pixel IR can be used as a light source to detect the reflected infrared light emitted by the sub-pixel IR at the sub-pixel S.
以上のように、本発明の一態様の表示装置は、発光素子を有する副画素からなる構成の画素について、様々なレイアウトを適用することができる。また、本発明の一態様の表示装置は、画素に発光素子と受光素子との双方を有する構成を適用することができる。この場合においても、様々なレイアウトを適用することができる。 As described above, the display device of one embodiment of the present invention can apply various layouts to pixels configured with subpixels having light-emitting elements. Furthermore, the display device of one embodiment of the present invention can apply a configuration in which the pixel has both a light-emitting element and a light-receiving element. Even in this case, various layouts can be applied.
本実施の形態は、他の実施の形態と適宜組み合わせることができる。 This embodiment can be combined with other embodiments as appropriate.
(実施の形態4)
本実施の形態では、本発明の一態様の表示装置に用いることができる発光デバイスについて説明する。
(Embodiment 4)
In this embodiment, a light-emitting device that can be used for a display device of one embodiment of the present invention will be described.
図20Aに示すように、発光デバイスは、一対の電極(下部電極761及び上部電極762)の間に、EL層763を有する。EL層763は、層780、発光層771、及び、層790などの複数の層で構成することができる。 As shown in FIG. 20A, the light-emitting device has an EL layer 763 between a pair of electrodes (a lower electrode 761 and an upper electrode 762). The EL layer 763 can be composed of multiple layers, such as a layer 780, a light-emitting layer 771, and a layer 790.
発光層771は、少なくとも発光物質(発光材料ともいう)を有する。 The light-emitting layer 771 contains at least a light-emitting substance (also called a light-emitting material).
下部電極761が陽極であり、上部電極762が陰極である場合、層780は、正孔注入性の高い物質を含む層(正孔注入層)、正孔輸送性の高い物質を含む層(正孔輸送層)、及び、電子ブロック性の高い物質を含む層(電子ブロック層)のうち一つまたは複数を有する。また、層790は、電子注入性の高い物質を含む層(電子注入層)、電子輸送性の高い物質を含む層(電子輸送層)、及び、正孔ブロック性の高い物質を含む層(正孔ブロック層)のうち一つまたは複数を有する。下部電極761が陰極であり、上部電極762が陽極である場合、層780と層790は互いに上記と逆の構成になる。 When the lower electrode 761 is an anode and the upper electrode 762 is a cathode, the layer 780 has one or more of a layer containing a substance with high hole injection properties (hole injection layer), a layer containing a substance with high hole transport properties (hole transport layer), and a layer containing a substance with high electron blocking properties (electron block layer). The layer 790 has one or more of a layer containing a substance with high electron injection properties (electron injection layer), a layer containing a substance with high electron transport properties (electron transport layer), and a layer containing a substance with high hole blocking properties (hole block layer). When the lower electrode 761 is a cathode and the upper electrode 762 is an anode, the layers 780 and 790 have the opposite configurations to those described above.
一対の電極間に設けられた層780、発光層771、及び層790を有する構成は単一の発光ユニットとして機能することができ、本明細書では図20Aの構成をシングル構造と呼ぶ。 A structure having layer 780, light-emitting layer 771, and layer 790 provided between a pair of electrodes can function as a single light-emitting unit, and in this specification, the structure in FIG. 20A is referred to as a single structure.
また、図20Bは、図20Aに示す発光デバイスが有するEL層763の変形例である。具体的には、図20Bに示す発光デバイスは、下部電極761上の層781と、層781上の層782と、層782上の発光層771と、発光層771上の層791と、層791上の層792と、層792上の上部電極762と、を有する。 Furthermore, Fig. 20B shows a modified example of the EL layer 763 of the light-emitting device shown in Fig. 20A. Specifically, the light-emitting device shown in Fig. 20B has a layer 781 on the lower electrode 761, a layer 782 on the layer 781, a light-emitting layer 771 on the layer 782, a layer 791 on the light-emitting layer 771, a layer 792 on the layer 791, and an upper electrode 762 on the layer 792.
下部電極761が陽極であり、上部電極762が陰極である場合、例えば、層781を正孔注入層、層782を正孔輸送層、層791を電子輸送層、層792を電子注入層とすることができる。また、下部電極761が陰極であり、上部電極762が陽極である場合、層781を電子注入層、層782を電子輸送層、層791を正孔輸送層、層792を正孔注入層とすることができる。このような層構造とすることで、発光層771に効率よくキャリアを注入し、発光層771内におけるキャリアの再結合の効率を高めることができる。 When the lower electrode 761 is an anode and the upper electrode 762 is a cathode, for example, the layer 781 can be a hole injection layer, the layer 782 can be a hole transport layer, the layer 791 can be an electron transport layer, and the layer 792 can be an electron injection layer. When the lower electrode 761 is a cathode and the upper electrode 762 is an anode, the layer 781 can be an electron injection layer, the layer 782 can be an electron transport layer, the layer 791 can be a hole transport layer, and the layer 792 can be a hole injection layer. By using such a layer structure, carriers can be efficiently injected into the light-emitting layer 771, and the efficiency of carrier recombination in the light-emitting layer 771 can be increased.
なお、図20C及び図20Dに示すように、層780と層790との間に複数の発光層(発光層771、772、773)が設けられる構成もシングル構造のバリエーションである。なお、図20C及び図20Dでは、発光層を3層有する例を示すが、シングル構造の発光デバイスにおける発光層は、2層であってもよく、4層以上であってもよい。また、シングル構造の発光デバイスは、2つの発光層の間に、バッファ層を有していてもよい。バッファ層は、例えば、正孔輸送層または電子輸送層に用いることができる材料を用いて形成することができる。 As shown in Figures 20C and 20D, a variation of the single structure is a configuration in which multiple light-emitting layers (light-emitting layers 771, 772, 773) are provided between layer 780 and layer 790. Although Figures 20C and 20D show an example having three light-emitting layers, the light-emitting layer in a single-structure light-emitting device may have two layers, or four or more layers. A single-structure light-emitting device may also have a buffer layer between the two light-emitting layers. The buffer layer may be formed, for example, using a material that can be used for a hole transport layer or an electron transport layer.
また、図20E及び図20Fに示すように、複数の発光ユニット(発光ユニット763a及び発光ユニット763b)が電荷発生層785(中間層ともいう)を介して直列に接続された構成を本明細書ではタンデム構造と呼ぶ。なお、タンデム構造をスタック構造と呼んでもよい。タンデム構造とすることで、高輝度発光が可能な発光デバイスとすることができる。また、タンデム構造は、シングル構造と比べて、同じ輝度を得るために必要な電流を低減できるため、信頼性を高めることができる。 As shown in Figures 20E and 20F, a configuration in which multiple light-emitting units (light-emitting unit 763a and light-emitting unit 763b) are connected in series via a charge generation layer 785 (also referred to as an intermediate layer) is referred to as a tandem structure in this specification. Note that the tandem structure may also be referred to as a stack structure. By using a tandem structure, a light-emitting device capable of emitting high-luminance light can be obtained. Furthermore, compared to a single structure, the tandem structure can reduce the current required to obtain the same luminance, thereby improving reliability.
なお、図20D及び図20Fは、表示装置が、発光デバイスと重なる層764を有する例である。図20Dは、層764が、図20Cに示す発光デバイスと重なる例であり、図20Fは、層764が、図20Eに示す発光デバイスと重なる例である。図20D及び図20Fでは、上部電極762側に光を取り出すため、上部電極762には、可視光を透過する導電膜を用いる。 20D and 20F are examples of a display device having a layer 764 that overlaps with the light-emitting device. FIG. 20D is an example in which the layer 764 overlaps with the light-emitting device shown in FIG. 20C, and FIG. 20F is an example in which the layer 764 overlaps with the light-emitting device shown in FIG. 20E. In FIGS. 20D and 20F, a conductive film that transmits visible light is used for the upper electrode 762 in order to extract light to the upper electrode 762 side.
層764としては、色変換層及びカラーフィルタ(着色層)の一方または双方を用いることができる。 Layer 764 can be a color conversion layer or a color filter (coloring layer), or both.
図20C及び図20Dにおいて、発光層771、発光層772、及び発光層773に、同じ色の光を発する発光物質、さらには、同じ発光物質を用いてもよい。例えば、発光層771、発光層772、及び発光層773に、青色の光を発する発光物質を用いてもよい。青色の光を呈する副画素においては、発光デバイスが発する青色の光を取り出すことができる。また、赤色の光を呈する副画素及び緑色の光を呈する副画素においては、図20Dに示す層764として、色変換層を設けることで、発光デバイスが発する青色の光をより長波長の光に変換し、赤色または緑色の光を取り出すことができる。また、層764としては、色変換層と着色層との双方を用いることが好ましい。発光デバイスが発する光の一部は、色変換層で変換されずにそのまま透過してしまうことがある。色変換層を透過した光を、着色層を介して取り出すことで、所望の色の光以外を着色層で吸収し、副画素が呈する光の色純度を高めることができる。 20C and 20D, the light-emitting layers 771, 772, and 773 may be made of light-emitting materials that emit the same color of light, or may even be made of the same light-emitting material. For example, the light-emitting layers 771, 772, and 773 may be made of light-emitting materials that emit blue light. In the subpixel that emits blue light, the blue light emitted by the light-emitting device can be extracted. In the subpixel that emits red light and the subpixel that emits green light, a color conversion layer is provided as the layer 764 shown in FIG. 20D, so that the blue light emitted by the light-emitting device can be converted into light with a longer wavelength, and red or green light can be extracted. In addition, it is preferable to use both a color conversion layer and a colored layer as the layer 764. A part of the light emitted by the light-emitting device may be transmitted as it is without being converted by the color conversion layer. By extracting the light that has transmitted through the color conversion layer through the colored layer, the colored layer can absorb light other than the desired color, and the color purity of the light emitted by the subpixel can be increased.
また、図20C及び図20Dにおいて、発光層771、発光層772、及び発光層773に、それぞれ異なる色の光を発する発光物質を用いてもよい。発光層771、発光層772、及び発光層773がそれぞれ発する光が補色の関係である場合、白色発光が得られる。例えば、シングル構造の発光デバイスは、青色の光を発する発光物質を有する発光層、及び、青色の光よりも長波長の可視光を発する発光物質を有する発光層を有することが好ましい。 20C and 20D, light-emitting layers 771, 772, and 773 may each use a light-emitting material that emits light of a different color. When the lights emitted by light-emitting layers 771, 772, and 773 are complementary in color, white light is obtained. For example, a single-structure light-emitting device preferably has a light-emitting layer having a light-emitting material that emits blue light, and a light-emitting layer having a light-emitting material that emits visible light with a longer wavelength than blue light.
図20Dに示す層764として、カラーフィルタを設けることが好ましい。白色光がカラーフィルタを透過することで、所望の色の光を得ることができる。 It is preferable to provide a color filter as layer 764 shown in FIG. 20D. By transmitting white light through the color filter, light of the desired color can be obtained.
例えば、シングル構造の発光デバイスが3層の発光層を有する場合、赤色(R)の光を発する発光物質を有する発光層、緑色(G)の光を発する発光物質を有する発光層、及び、青色(B)の光を発する発光物質を有する発光層を有することが好ましい。発光層の積層順としては、例えば、陽極側から、R、G、B、または、陽極側からR、B、Gとすることができる。このとき、RとGまたはBとの間にバッファ層が設けられていてもよい。 For example, when a single-structure light-emitting device has three light-emitting layers, it is preferable that the light-emitting layer has a light-emitting material that emits red (R) light, a light-emitting layer has a light-emitting material that emits green (G) light, and a light-emitting layer has a light-emitting material that emits blue (B) light. The stacking order of the light-emitting layers can be, for example, R, G, B from the anode side, or R, B, G from the anode side. In this case, a buffer layer may be provided between R and G or B.
また、例えば、シングル構造の発光デバイスが2層の発光層を有する場合、青色(B)の光を発する発光物質を有する発光層、及び、黄色(Y)の光を発する発光物質を有する発光層を有する構成が好ましい。当該構成をBYシングル構造と呼称する場合がある。 For example, when a light-emitting device with a single structure has two light-emitting layers, a configuration having a light-emitting layer containing a light-emitting material that emits blue (B) light and a light-emitting layer containing a light-emitting material that emits yellow (Y) light is preferable. This configuration is sometimes called a BY single structure.
白色の光を発する発光デバイスは、2種類以上の発光物質を含むことが好ましい。2つの発光層を用いて白色発光を得る場合、2つの発光層の発光色が補色の関係となるような発光物質を選択すればよい。例えば、第1の発光層の発光色と第2の発光層の発光色を補色の関係になるようにすることで、発光デバイス全体として白色発光する発光デバイスを得ることができる。また、3つ以上の発光層を用いて白色発光を得る場合、3つ以上の発光層の発光色が合わさることで、発光デバイス全体として白色発光する構成とすればよい。 A light-emitting device that emits white light preferably contains two or more types of light-emitting materials. When two light-emitting layers are used to obtain white light emission, light-emitting materials can be selected such that the emission colors of the two light-emitting layers are complementary to each other. For example, by making the emission color of the first light-emitting layer and the emission color of the second light-emitting layer complementary to each other, a light-emitting device that emits white light as a whole can be obtained. When three or more light-emitting layers are used to obtain white light emission, the emission colors of the three or more light-emitting layers can be combined to produce a configuration in which the light-emitting device as a whole emits white light.
なお、図20C、図20Dにおいても、図20Bに示すように、層780と、層790とを、それぞれ独立に、2層以上の層からなる積層構造としてもよい。 In addition, in Figures 20C and 20D, layers 780 and 790 may each be independently formed into a laminate structure consisting of two or more layers, as shown in Figure 20B.
また、図20E及び図20Fにおいて、発光層771と、発光層772とに、同じ色の光を発する発光物質、さらには、同じ発光物質を用いてもよい。例えば、各色の光を呈する副画素が有する発光デバイスにおいて、発光層771と、発光層772に、それぞれ青色の光を発する発光物質を用いてもよい。青色の光を呈する副画素においては、発光デバイスが発する青色の光を取り出すことができる。また、赤色の光を呈する副画素及び緑色の光を呈する副画素においては、図20Fに示す層764として色変換層を設けることで、発光デバイスが発する青色の光をより長波長の光に変換し、赤色または緑色の光を取り出すことができる。また、層764としては、色変換層と着色層との双方を用いることが好ましい。 20E and 20F, the light-emitting layers 771 and 772 may be made of light-emitting materials that emit the same color of light, or even the same light-emitting material. For example, in a light-emitting device having a subpixel that emits light of each color, the light-emitting layers 771 and 772 may be made of light-emitting materials that emit blue light. In a subpixel that emits blue light, the blue light emitted by the light-emitting device can be extracted. In a subpixel that emits red light and a subpixel that emits green light, a color conversion layer is provided as the layer 764 shown in FIG. 20F, so that the blue light emitted by the light-emitting device can be converted into light with a longer wavelength, and red or green light can be extracted. In addition, it is preferable to use both a color conversion layer and a colored layer as the layer 764.
また、図20E及び図20Fにおいて、発光層771と、発光層772とに、それぞれ異なる色の光を発する発光物質を用いてもよい。発光層771が発する光と、発光層772が発する光が補色の関係である場合、白色発光が得られる。図20Fに示す層764として、カラーフィルタを設けることが好ましい。白色光がカラーフィルタを透過することで、所望の色の光を得ることができる。 20E and 20F, light-emitting layers 771 and 772 may each be made of a light-emitting material that emits light of a different color. When the light emitted by light-emitting layer 771 and the light emitted by light-emitting layer 772 are complementary colors, white light is obtained. It is preferable to provide a color filter as layer 764 shown in FIG. 20F. When white light passes through the color filter, light of the desired color can be obtained.
なお、図20E及び図20Fにおいて、発光ユニット763aが1層の発光層771を有し、発光ユニット763bが1層の発光層772を有する例を示すが、これに限られない。発光ユニット763a及び発光ユニット763bは、それぞれ、2層以上の発光層を有していてもよい。 20E and 20F show an example in which the light-emitting unit 763a has one light-emitting layer 771 and the light-emitting unit 763b has one light-emitting layer 772, but this is not limiting. Each of the light-emitting unit 763a and the light-emitting unit 763b may have two or more light-emitting layers.
また、図20E及び図20Fでは、発光ユニットを2つ有する発光デバイスを例示したが、これに限られない。発光デバイスは、発光ユニットを3つ以上有していてもよい。なお、発光ユニットを2つ有する構成を2段タンデム構造と、発光ユニットを3つ有する構成を3段タンデム構造と、それぞれ呼称してもよい。 In addition, although a light-emitting device having two light-emitting units is illustrated in Figures 20E and 20F, this is not limiting. The light-emitting device may have three or more light-emitting units. Note that a configuration having two light-emitting units may be referred to as a two-stage tandem structure, and a configuration having three light-emitting units may be referred to as a three-stage tandem structure.
また、図20E及び図20Fにおいて、発光ユニット763aは、層780a、発光層771、及び、層790aを有し、発光ユニット763bは、層780b、発光層772、及び、層790bを有する。 In addition, in Figures 20E and 20F, light-emitting unit 763a has layer 780a, light-emitting layer 771, and layer 790a, and light-emitting unit 763b has layer 780b, light-emitting layer 772, and layer 790b.
下部電極761が陽極であり、上部電極762が陰極である場合、層780a及び層780bは、それぞれ、正孔注入層、正孔輸送層、及び、電子ブロック層のうち一つまたは複数を有する。また、層790a及び層790bは、それぞれ、電子注入層、電子輸送層、及び、正孔ブロック層のうち一つまたは複数を有する。下部電極761が陰極であり、上部電極762が陽極である場合、層780aと層790aは互いに上記と逆の構成になり、層780bと層790bも互いに上記と逆の構成になる。 When the lower electrode 761 is an anode and the upper electrode 762 is a cathode, the layers 780a and 780b each have one or more of a hole injection layer, a hole transport layer, and an electron blocking layer. Also, the layers 790a and 790b each have one or more of an electron injection layer, an electron transport layer, and a hole blocking layer. When the lower electrode 761 is a cathode and the upper electrode 762 is an anode, the layers 780a and 790a have the opposite configurations to those described above, and the layers 780b and 790b also have the opposite configurations to those described above.
下部電極761が陽極であり、上部電極762が陰極である場合、例えば、層780aは、正孔注入層と、正孔注入層上の正孔輸送層と、を有し、さらに、正孔輸送層上の電子ブロック層を有していてもよい。また、層790aは、電子輸送層を有し、さらに、発光層771と電子輸送層との間の正孔ブロック層を有していてもよい。また、層780bは、正孔輸送層を有し、さらに、正孔輸送層上の電子ブロック層を有していてもよい。また、層790bは、電子輸送層と、電子輸送層上の電子注入層と、を有し、さらに、発光層772と電子輸送層との間の正孔ブロック層を有していてもよい。下部電極761が陰極であり、上部電極762が陽極である場合、例えば、層780aは、電子注入層と、電子注入層上の電子輸送層と、を有し、さらに、電子輸送層上の正孔ブロック層を有していてもよい。また、層790aは、正孔輸送層を有し、さらに、発光層771と正孔輸送層との間の電子ブロック層を有していてもよい。また、層780bは、電子輸送層を有し、さらに、電子輸送層上の正孔ブロック層を有していてもよい。また、層790bは、正孔輸送層と、正孔輸送層上の正孔注入層と、を有し、さらに、発光層772と正孔輸送層との間の電子ブロック層を有していてもよい。 When the lower electrode 761 is an anode and the upper electrode 762 is a cathode, for example, the layer 780a may have a hole injection layer, a hole transport layer on the hole injection layer, and an electron block layer on the hole transport layer. The layer 790a may have an electron transport layer and a hole block layer between the light-emitting layer 771 and the electron transport layer. The layer 780b may have a hole transport layer and an electron block layer on the hole transport layer. The layer 790b may have an electron transport layer, an electron injection layer on the electron transport layer, and a hole block layer between the light-emitting layer 772 and the electron transport layer. When the lower electrode 761 is a cathode and the upper electrode 762 is an anode, for example, the layer 780a may have an electron injection layer, an electron transport layer on the electron injection layer, and a hole block layer on the electron transport layer. Layer 790a may have a hole transport layer and may further have an electron blocking layer between light emitting layer 771 and the hole transport layer. Layer 780b may have an electron transport layer and may further have a hole blocking layer on the electron transport layer. Layer 790b may have a hole transport layer and a hole injection layer on the hole transport layer and may further have an electron blocking layer between light emitting layer 772 and the hole transport layer.
また、タンデム構造の発光デバイスを作製する場合、2つの発光ユニットは、電荷発生層785を介して積層される。電荷発生層785は、少なくとも電荷発生領域を有する。電荷発生層785は、一対の電極間に電圧を印加したときに、2つの発光ユニットの一方に電子を注入し、他方に正孔を注入する機能を有する。 When a light-emitting device with a tandem structure is fabricated, the two light-emitting units are stacked via a charge generation layer 785. The charge generation layer 785 has at least a charge generation region. The charge generation layer 785 has the function of injecting electrons into one of the two light-emitting units and injecting holes into the other when a voltage is applied between a pair of electrodes.
また、タンデム構造の発光デバイスの一例として、図21A乃至図21Cに示す構成が挙げられる。 An example of a light-emitting device with a tandem structure is shown in Figures 21A to 21C.
図21Aは、発光ユニットを3つ有する構成である。図21Aでは、複数の発光ユニット(発光ユニット763a、発光ユニット763b、及び発光ユニット763c)がそれぞれ電荷発生層785を介して直列に接続されている。また、発光ユニット763aは、層780aと、発光層771と、層790aと、を有し、発光ユニット763bは、層780bと、発光層772と、層790bと、を有し、発光ユニット763cは、層780cと、発光層773と、層790cと、を有する。なお、層780cは、層780a及び層780bに適用可能な構成を用いることができ、層790cは、層790a及び層790bに適用可能な構成を用いることができる。 Figure 21A shows a configuration having three light-emitting units. In Figure 21A, a plurality of light-emitting units (light-emitting unit 763a, light-emitting unit 763b, and light-emitting unit 763c) are connected in series via charge generation layer 785. Light-emitting unit 763a has layer 780a, light-emitting layer 771, and layer 790a, light-emitting unit 763b has layer 780b, light-emitting layer 772, and layer 790b, and light-emitting unit 763c has layer 780c, light-emitting layer 773, and layer 790c. Note that layer 780c can use a configuration applicable to layers 780a and 780b, and layer 790c can use a configuration applicable to layers 790a and 790b.
図21Aにおいて、発光層771、発光層772、及び発光層773は、同じ色の光を発する発光物質を有することができる。具体的には、発光層771、発光層772、及び発光層773が、いずれも青色(B)の発光物質を有する構成(いわゆるB\B\Bの3段タンデム構造)とすることができる。なお、「a\b」は、aの光を発する発光物質を有する発光ユニット上に、電荷発生層を介して、bの光を発する発光物質を有する発光ユニットが設けられていることを意味し、a、bは、色を意味する。 In FIG. 21A, light-emitting layer 771, light-emitting layer 772, and light-emitting layer 773 can have light-emitting materials that emit the same color light. Specifically, light-emitting layer 771, light-emitting layer 772, and light-emitting layer 773 can all have a blue (B) light-emitting material (a so-called B\B\B three-stage tandem structure). Note that "a\b" means that a light-emitting unit having a light-emitting material that emits light of b is provided on a light-emitting unit having a light-emitting material that emits light of a, via a charge generation layer, and a and b mean colors.
図21Aにおいて、発光層771、発光層772、及び発光層773のうち、一部または全てに異なる色の光を発する発光物質を用いることができる。発光層771、発光層772、及び発光層773の発光色の組み合わせは、例えば、いずれか2つが青色(B)、残りの一つが黄色(Y)の構成、並びに、いずれか一つが赤色(R)、他の一つが緑色(G)、残りの一つが青色(B)の構成が挙げられる。 In FIG. 21A, light-emitting materials that emit different colors of light can be used for some or all of the light-emitting layers 771, 772, and 773. Examples of combinations of the light-emitting colors of the light-emitting layers 771, 772, and 773 include a configuration in which two of them are blue (B) and the remaining one is yellow (Y), and a configuration in which one of them is red (R), the other is green (G), and the remaining one is blue (B).
図21Bは、複数の発光層を有する発光ユニットを積層したタンデム型の発光デバイスである。図21Bは、2つの発光ユニット(発光ユニット763a及び発光ユニット763b)が電荷発生層785を介して直列に接続された構成である。また、発光ユニット763aは、層780aと、発光層771a、発光層771b、及び発光層771cと、層790aと、を有し、発光ユニット763bは、層780bと、発光層772a、発光層772b、及び発光層772cと、層790bと、を有する。 Figure 21B shows a tandem-type light-emitting device in which light-emitting units having multiple light-emitting layers are stacked. In Figure 21B, two light-emitting units (light-emitting unit 763a and light-emitting unit 763b) are connected in series via a charge generation layer 785. Light-emitting unit 763a has layer 780a, light-emitting layer 771a, light-emitting layer 771b, light-emitting layer 771c, and layer 790a, and light-emitting unit 763b has layer 780b, light-emitting layer 772a, light-emitting layer 772b, light-emitting layer 772c, and layer 790b.
図21Bにおいては、発光層771a、発光層771b、及び発光層771cについて、補色の関係となる発光物質を選択し、発光ユニット763aを白色発光(W)が可能な構成とする。また、発光層772a、発光層772b、及び発光層772cについても、補色の関係となる発光物質を選択し、発光ユニット763bを白色発光(W)が可能な構成とする。すなわち、図21Bに示す構成は、W\Wの2段タンデム構造であるといえる。なお、補色の関係となる発光物質の積層順については、特に限定はない。実施者が適宜最適な積層順を選択することができる。また、図示しないが、W\W\Wの3段タンデム構造、または4段以上のタンデム構造としてもよい。 In FIG. 21B, light-emitting materials that are complementary to each other are selected for the light-emitting layers 771a, 771b, and 771c, and the light-emitting unit 763a is configured to emit white light (W). Light-emitting materials that are complementary to each other are selected for the light-emitting layers 772a, 772b, and 772c, and the light-emitting unit 763b is configured to emit white light (W). In other words, the structure shown in FIG. 21B can be said to be a two-stage tandem structure of W\W. There is no particular limitation on the stacking order of the light-emitting materials that are complementary to each other. The implementer can select the optimal stacking order as appropriate. Although not shown, a three-stage tandem structure of W\W\W or a four-stage or more tandem structure may also be used.
また、タンデム構造の発光デバイスとしては、例えば、黄色(Y)の光を発する発光ユニットと、青色(B)の光を発する発光ユニットとを有するB\YまたはY\Bの2段タンデム構造、赤色(R)と緑色(G)の光を発する発光ユニットと、青色(B)の光を発する発光ユニットとを有するR・G\BまたはB\R・Gの2段タンデム構造、青色(B)の光を発する発光ユニットと、黄色(Y)の光を発する発光ユニットと、青色(B)の光を発する発光ユニットとをこの順で有するB\Y\Bの3段タンデム構造、青色(B)の光を発する発光ユニットと、黄緑色(YG)の光を発する発光ユニットと、青色(B)の光を発する発光ユニットとをこの順で有するB\YG\Bの3段タンデム構造、及び、青色(B)の光を発する発光ユニットと、緑色(G)の光を発する発光ユニットと、青色(B)の光を発する発光ユニットとをこの順で有するB\G\Bの3段タンデム構造が挙げられる。なお、「a・b」は、1つの発光ユニットにaの光を発する発光物質とbの光を発する発光物質とを有することを意味する。 Also, examples of light-emitting devices with a tandem structure include a two-stage tandem structure of B\Y or Y\B having a light-emitting unit that emits yellow (Y) light and a light-emitting unit that emits blue (B) light, a two-stage tandem structure of R.G\B or B\R.G having a light-emitting unit that emits red (R) and green (G) light and a light-emitting unit that emits blue (B) light, and a light-emitting unit that emits yellow (Y) light and a light-emitting unit that emits blue (B) light. Examples of such structures include a three-stage tandem structure of B\Y\B having a light-emitting unit that emits blue (B) light, a light-emitting unit that emits yellow-green (YG) light, and a light-emitting unit that emits blue (B) light, in that order; a three-stage tandem structure of B\YG\B having a light-emitting unit that emits blue (B) light, a light-emitting unit that emits green (G) light, and a light-emitting unit that emits blue (B) light, in that order; and a three-stage tandem structure of B\G\B having a light-emitting unit that emits blue (B) light, a light-emitting unit that emits green (G) light, and a light-emitting unit that emits blue (B) light, in that order. Note that "a·b" means that one light-emitting unit has a light-emitting material that emits light of a and a light-emitting material that emits light of b.
また、図21Cに示すように、1つの発光層を有する発光ユニットと、複数の発光層を有する発光ユニットと、を組み合わせてもよい。 Also, as shown in FIG. 21C, a light-emitting unit having one light-emitting layer may be combined with a light-emitting unit having multiple light-emitting layers.
具体的には、図21Cに示す構成においては、複数の発光ユニット(発光ユニット763a、発光ユニット763b、及び発光ユニット763c)がそれぞれ電荷発生層785を介して直列に接続された構成である。また、発光ユニット763aは、層780aと、発光層771と、層790aと、を有し、発光ユニット763bは、層780bと、発光層772a、発光層772b、及び発光層772cと、層790bと、を有し、発光ユニット763cは、層780cと、発光層773と、層790cと、を有する。 Specifically, in the configuration shown in FIG. 21C, a plurality of light-emitting units (light-emitting unit 763a, light-emitting unit 763b, and light-emitting unit 763c) are connected in series via charge generation layer 785. Light-emitting unit 763a has layer 780a, light-emitting layer 771, and layer 790a, light-emitting unit 763b has layer 780b, light-emitting layer 772a, light-emitting layer 772b, light-emitting layer 772c, and layer 790b, and light-emitting unit 763c has layer 780c, light-emitting layer 773, and layer 790c.
図21Cに示す構成において、例えば、発光ユニット763aが青色(B)の光を発する発光ユニットであり、発光ユニット763bが赤色(R)、緑色(G)、及び黄緑色(YG)の光を発する発光ユニットであり、発光ユニット763cが青色(B)の光を発する発光ユニットである、B\R・G・YG\Bの3段タンデム構造を適用することができる。 In the configuration shown in FIG. 21C, for example, a three-stage tandem structure of B\R·G·YG\B can be applied, in which light-emitting unit 763a is a light-emitting unit that emits blue (B) light, light-emitting unit 763b is a light-emitting unit that emits red (R), green (G), and yellow-green (YG) light, and light-emitting unit 763c is a light-emitting unit that emits blue (B) light.
発光ユニットの積層数と色の順番としては、例えば、陽極側から、B、Yの2段構造、Bと発光ユニットXとの2段構造、B、Y、Bの3段構造、及び、B、X、Bの3段構造が挙げられ、発光ユニットXにおける発光層の積層数と色の順番としては、例えば、陽極側から、R、Yの2層構造、R、Gの2層構造、G、Rの2層構造、G、R、Gの3層構造、または、R、G、Rの3層構造とすることができる。また、2つの発光層の間に他の層が設けられていてもよい。 The number of layers of the light-emitting units and the order of the colors can be, for example, from the anode side, a two-layer structure of B and light-emitting unit X, a two-layer structure of B, Y, B, and a three-layer structure of B, X, B. The number of layers of the light-emitting layers in light-emitting unit X and the order of the colors can be, for example, from the anode side, a two-layer structure of R, Y, a two-layer structure of R, G, a two-layer structure of G, R, a three-layer structure of G, R, G, or a three-layer structure of R, G, R. In addition, another layer may be provided between the two light-emitting layers.
次に、発光デバイスに用いることができる材料について説明する。 Next, we will explain materials that can be used in light-emitting devices.
下部電極761と上部電極762のうち、光を取り出す側の電極には、可視光を透過する導電膜を用いる。また、光を取り出さない側の電極には、可視光を反射する導電膜を用いることが好ましい。また、表示装置が赤外光を発する発光デバイスを有する場合には、光を取り出す側の電極には、可視光及び赤外光を透過する導電膜を用い、光を取り出さない側の電極には、可視光及び赤外光を反射する導電膜を用いることが好ましい。 Of the lower electrode 761 and the upper electrode 762, a conductive film that transmits visible light is used for the electrode from which light is extracted. It is preferable to use a conductive film that reflects visible light for the electrode from which light is not extracted. If the display device has a light-emitting device that emits infrared light, it is preferable to use a conductive film that transmits visible light and infrared light for the electrode from which light is extracted, and a conductive film that reflects visible light and infrared light for the electrode from which light is not extracted.
また、光を取り出さない側の電極にも可視光を透過する導電膜を用いてもよい。この場合、反射層と、EL層763との間に当該電極を配置することが好ましい。つまり、EL層763の発光は、当該反射層によって反射されて、表示装置から取り出されてもよい。 In addition, a conductive film that transmits visible light may also be used for the electrode on the side from which light is not extracted. In this case, it is preferable to place the electrode between the reflective layer and the EL layer 763. In other words, the light emitted from the EL layer 763 may be reflected by the reflective layer and extracted from the display device.
発光デバイスの一対の電極を形成する材料としては、金属、合金、電気伝導性化合物、及びこれらの混合物などを適宜用いることができる。当該材料としては、具体的には、アルミニウム、マグネシウム、チタン、クロム、マンガン、鉄、コバルト、ニッケル、銅、ガリウム、亜鉛、インジウム、スズ、モリブデン、タンタル、タングステン、パラジウム、金、白金、銀、イットリウム、ネオジムなどの金属、及びこれらを適宜組み合わせて含む合金が挙げられる。また、当該材料としては、インジウムスズ酸化物(In−Sn酸化物、ITOともいう)、In−Si−Sn酸化物(ITSOともいう)、インジウム亜鉛酸化物(In−Zn酸化物)、及びIn−W−Zn酸化物などを挙げることができる。また、当該材料としては、アルミニウム、ニッケル、及びランタンの合金(Al−Ni−La)等のアルミニウムを含む合金(アルミニウム合金)、並びに、銀とマグネシウムの合金、及び、銀とパラジウムと銅の合金(Ag−Pd−Cu、APCとも記す)等の銀を含む合金が挙げられる。その他、当該材料としては、上記例示のない元素周期表の第1族または第2族に属する元素(例えば、リチウム、セシウム、カルシウム、ストロンチウム)、ユウロピウム、イッテルビウムなどの希土類金属及びこれらを適宜組み合わせて含む合金、グラフェン等が挙げられる。 As a material for forming a pair of electrodes of a light-emitting device, metals, alloys, electrically conductive compounds, and mixtures thereof can be appropriately used. Specific examples of the material include metals such as aluminum, magnesium, titanium, chromium, manganese, iron, cobalt, nickel, copper, gallium, zinc, indium, tin, molybdenum, tantalum, tungsten, palladium, gold, platinum, silver, yttrium, and neodymium, and alloys containing these in appropriate combinations. In addition, examples of the material include indium tin oxide (In-Sn oxide, also referred to as ITO), In-Si-Sn oxide (also referred to as ITSO), indium zinc oxide (In-Zn oxide), and In-W-Zn oxide. In addition, examples of the material include alloys containing aluminum (aluminum alloys), such as an alloy of aluminum, nickel, and lanthanum (Al-Ni-La), and alloys containing silver, such as an alloy of silver and magnesium, and an alloy of silver, palladium, and copper (Ag-Pd-Cu, also referred to as APC). Other examples of such materials include elements belonging to Group 1 or 2 of the periodic table (e.g., lithium, cesium, calcium, and strontium) that are not listed above, rare earth metals such as europium and ytterbium, and alloys containing appropriate combinations of these, graphene, etc.
発光デバイスには、微小光共振器(マイクロキャビティ)構造が適用されていることが好ましい。したがって、発光デバイスが有する一対の電極の一方は、可視光に対する透過性及び反射性を有する電極(半透過・半反射電極)を有することが好ましく、他方は、可視光に対する反射性を有する電極(反射電極)を有することが好ましい。発光デバイスがマイクロキャビティ構造を有することで、発光層から得られる発光を両電極間で共振させ、発光デバイスから射出される光を強めることができる。 It is preferable that a micro-optical resonator (microcavity) structure is applied to the light-emitting device. Therefore, it is preferable that one of the pair of electrodes of the light-emitting device has an electrode that is transparent and reflective to visible light (semi-transmissive/semi-reflective electrode), and the other has an electrode that is reflective to visible light (reflective electrode). When the light-emitting device has a microcavity structure, the light emitted from the light-emitting layer can be resonated between the two electrodes, thereby intensifying the light emitted from the light-emitting device.
なお、半透過・半反射電極は、反射電極として用いることができる導電層と、可視光に対する透過性を有する電極(透明電極ともいう)として用いることができる導電層と、の積層構造とすることができる。 The semi-transmissive/semi-reflective electrode can have a laminated structure of a conductive layer that can be used as a reflective electrode and a conductive layer that can be used as an electrode that is transparent to visible light (also called a transparent electrode).
透明電極の光の透過率は、40%以上とする。例えば、発光デバイスの透明電極には、可視光(波長400nm以上750nm未満の光)の透過率が40%以上である電極を用いることが好ましい。半透過・半反射電極の可視光の反射率は、10%以上95%以下、好ましくは30%以上80%以下とする。反射電極の可視光の反射率は、40%以上100%以下、好ましくは70%以上100%以下とする。また、これらの電極の抵抗率は、1×10−2Ωcm以下が好ましい。 The light transmittance of the transparent electrode is 40% or more. For example, it is preferable to use an electrode having a visible light (light having a wavelength of 400 nm or more and less than 750 nm) transmittance of 40% or more for the transparent electrode of the light emitting device. The visible light reflectance of the semi-transmissive/semi-reflective electrode is 10% or more and 95% or less, preferably 30% or more and 80% or less. The visible light reflectance of the reflective electrode is 40% or more and 100% or less, preferably 70% or more and 100% or less. In addition, the resistivity of these electrodes is preferably 1×10 −2 Ω cm or less.
発光デバイスは少なくとも発光層を有する。また、発光デバイスは、発光層以外の層として、正孔注入性の高い物質、正孔輸送性の高い物質、正孔ブロック材料、電子輸送性の高い物質、電子ブロック材料、電子注入性の高い物質、またはバイポーラ性の物質(電子輸送性及び正孔輸送性が高い物質、バイポーラ性材料とも記す)等を含む層をさらに有していてもよい。例えば、発光デバイスは、発光層の他に、正孔注入層、正孔輸送層、正孔ブロック層、電荷発生層、電子ブロック層、電子輸送層、及び電子注入層のうち1層以上を有する構成とすることができる。 The light-emitting device has at least a light-emitting layer. The light-emitting device may further have a layer other than the light-emitting layer, the layer including a substance with high hole injection properties, a substance with high hole transport properties, a hole blocking material, a substance with high electron transport properties, an electron blocking material, a substance with high electron injection properties, or a bipolar substance (a substance with high electron transport properties and hole transport properties, also referred to as a bipolar material). For example, the light-emitting device may have a configuration including one or more layers selected from a hole injection layer, a hole transport layer, a hole blocking layer, a charge generation layer, an electron blocking layer, an electron transport layer, and an electron injection layer, in addition to the light-emitting layer.
発光デバイスには低分子化合物及び高分子化合物のいずれを用いることもでき、無機化合物を含んでいてもよい。発光デバイスを構成する層は、それぞれ、蒸着法(真空蒸着法を含む)、転写法、印刷法、インクジェット法、塗布法等の方法で形成することができる。 Emitting devices can use either low molecular weight compounds or high molecular weight compounds, and may contain inorganic compounds. The layers constituting the light emitting device can be formed by a deposition method (including vacuum deposition), a transfer method, a printing method, an inkjet method, a coating method, etc.
発光層は、1種または複数種の発光物質を有する。発光物質としては、青色、紫色、青紫色、緑色、黄緑色、黄色、橙色、または赤色などの発光色を呈する物質を適宜用いる。また、発光物質として、近赤外光を発する物質を用いることもできる。 The light-emitting layer has one or more types of light-emitting material. As the light-emitting material, a material that emits light of a color such as blue, purple, blue-purple, green, yellow-green, yellow, orange, or red is appropriately used. In addition, a material that emits near-infrared light can also be used as the light-emitting material.
発光物質としては、蛍光材料、燐光材料、TADF材料、及び量子ドット材料などが挙げられる。 Light-emitting materials include fluorescent materials, phosphorescent materials, TADF materials, and quantum dot materials.
蛍光材料としては、例えば、ピレン誘導体、アントラセン誘導体、トリフェニレン誘導体、フルオレン誘導体、カルバゾール誘導体、ジベンゾチオフェン誘導体、ジベンゾフラン誘導体、ジベンゾキノキサリン誘導体、キノキサリン誘導体、ピリジン誘導体、ピリミジン誘導体、フェナントレン誘導体、及びナフタレン誘導体が挙げられる。 Examples of fluorescent materials include pyrene derivatives, anthracene derivatives, triphenylene derivatives, fluorene derivatives, carbazole derivatives, dibenzothiophene derivatives, dibenzofuran derivatives, dibenzoquinoxaline derivatives, quinoxaline derivatives, pyridine derivatives, pyrimidine derivatives, phenanthrene derivatives, and naphthalene derivatives.
燐光材料としては、例えば、4H−トリアゾール骨格、1H−トリアゾール骨格、イミダゾール骨格、ピリミジン骨格、ピラジン骨格、またはピリジン骨格を有する有機金属錯体(特にイリジウム錯体)、電子吸引基を有するフェニルピリジン誘導体を配位子とする有機金属錯体(特にイリジウム錯体)、白金錯体、及び希土類金属錯体が挙げられる。 Examples of phosphorescent materials include organometallic complexes (particularly iridium complexes) having a 4H-triazole skeleton, a 1H-triazole skeleton, an imidazole skeleton, a pyrimidine skeleton, a pyrazine skeleton, or a pyridine skeleton, organometallic complexes (particularly iridium complexes) having a phenylpyridine derivative having an electron-withdrawing group as a ligand, a platinum complex, and a rare earth metal complex.
発光層は、発光物質(ゲスト材料)に加えて、1種または複数種の有機化合物(ホスト材料、アシスト材料等)を有していてもよい。1種または複数種の有機化合物としては、正孔輸送性の高い物質(正孔輸送性材料)及び電子輸送性の高い物質(電子輸送性材料)の一方または双方を用いることができる。正孔輸送性材料としては、後述の、正孔輸送層に用いることができる正孔輸送性の高い物質を用いることができる。電子輸送性材料としては、後述の、電子輸送層に用いることができる電子輸送性の高い物質を用いることができる。また、1種または複数種の有機化合物として、バイポーラ性材料、またはTADF材料を用いてもよい。 The light-emitting layer may have one or more organic compounds (host material, assist material, etc.) in addition to the light-emitting substance (guest material). As the one or more organic compounds, one or both of a substance with high hole transport properties (hole transport material) and a substance with high electron transport properties (electron transport material) can be used. As the hole transport material, a substance with high hole transport properties that can be used in the hole transport layer described later can be used. As the electron transport material, a substance with high electron transport properties that can be used in the electron transport layer described later can be used. In addition, a bipolar material or a TADF material may be used as the one or more organic compounds.
発光層は、例えば、燐光材料と、励起錯体を形成しやすい組み合わせである正孔輸送性材料及び電子輸送性材料と、を有することが好ましい。このような構成とすることにより、励起錯体から発光物質(燐光材料)へのエネルギー移動であるExTET(Exciplex−Triplet Energy Transfer)を用いた発光を効率よく得ることができる。発光物質の最も低エネルギー側の吸収帯の波長と重なるような発光を呈する励起錯体を形成するような組み合わせを選択することで、エネルギー移動がスムーズとなり、効率よく発光を得ることができる。この構成により、発光デバイスの高効率、低電圧駆動、長寿命を同時に実現できる。 The light-emitting layer preferably has, for example, a phosphorescent material and a hole-transporting material and an electron-transporting material, which are a combination that easily forms an exciplex. With this configuration, it is possible to efficiently obtain light emission using ExTET (Exciplex-Triple Energy Transfer), which is an energy transfer from an exciplex to a light-emitting substance (phosphorescent material). By selecting a combination that forms an exciplex that emits light that overlaps with the wavelength of the lowest energy absorption band of the light-emitting substance, the energy transfer becomes smooth and light emission can be obtained efficiently. With this configuration, it is possible to simultaneously achieve high efficiency, low voltage operation, and long life for a light-emitting device.
正孔注入層は、陽極から正孔輸送層に正孔を注入する層であり、正孔注入性の高い物質を含む層である。正孔注入性の高い物質としては、芳香族アミン化合物、及び、正孔輸送性材料とアクセプター性材料(電子受容性材料)とを含む複合材料などが挙げられる。 The hole injection layer is a layer that injects holes from the anode to the hole transport layer, and contains a substance with high hole injection properties. Examples of substances with high hole injection properties include aromatic amine compounds and composite materials that contain a hole transport material and an acceptor material (electron accepting material).
正孔輸送性材料としては、後述の、正孔輸送層に用いることができる正孔輸送性の高い物質を用いることができる。 As the hole transport material, a substance with high hole transport properties that can be used in the hole transport layer, which will be described later, can be used.
アクセプター性材料としては、例えば、元素周期表における第4族乃至第8族に属する金属の酸化物を用いることができる。具体的には、酸化モリブデン、酸化バナジウム、酸化ニオブ、酸化タンタル、酸化クロム、酸化タングステン、酸化マンガン、及び、酸化レニウムが挙げられる。中でも特に、酸化モリブデンは大気中でも安定であり、吸湿性が低く、扱いやすいため好ましい。また、フッ素を含む有機アクセプター性材料を用いることもできる。また、キノジメタン誘導体、クロラニル誘導体、及び、ヘキサアザトリフェニレン誘導体などの有機アクセプター性材料を用いることもできる。 As the acceptor material, for example, an oxide of a metal belonging to Groups 4 to 8 in the periodic table can be used. Specific examples include molybdenum oxide, vanadium oxide, niobium oxide, tantalum oxide, chromium oxide, tungsten oxide, manganese oxide, and rhenium oxide. Among them, molybdenum oxide is particularly preferable because it is stable in the air, has low hygroscopicity, and is easy to handle. In addition, an organic acceptor material containing fluorine can also be used. In addition, organic acceptor materials such as quinodimethane derivatives, chloranil derivatives, and hexaazatriphenylene derivatives can also be used.
例えば、正孔注入性の高い物質として、正孔輸送性材料と、上述の元素周期表における第4族乃至第8族に属する金属の酸化物(代表的には酸化モリブデン)とを含む材料を用いてもよい。 For example, a material containing a hole transporting material and an oxide of a metal belonging to Groups 4 to 8 of the periodic table (typically, molybdenum oxide) may be used as a substance with high hole injection properties.
正孔輸送層は、正孔注入層によって陽極から注入された正孔を、発光層に輸送する層である。正孔輸送層は、正孔輸送性材料を含む層である。正孔輸送性材料としては、1×10−6cm/Vs以上の正孔移動度を有する物質が好ましい。なお、電子よりも正孔の輸送性の高い物質であれば、これら以外のものも用いることができる。正孔輸送性材料としては、π電子過剰型複素芳香族化合物(例えばカルバゾール誘導体、チオフェン誘導体、フラン誘導体など)、芳香族アミン(芳香族アミン骨格を有する化合物)等の正孔輸送性の高い物質が好ましい。 The hole transport layer is a layer that transports holes injected from the anode by the hole injection layer to the light emitting layer. The hole transport layer is a layer that contains a hole transport material. As the hole transport material, a substance having a hole mobility of 1×10 −6 cm 2 /Vs or more is preferable. Note that other substances can also be used as long as they have a higher hole transporting property than electrons. As the hole transport material, a substance having a high hole transporting property such as a π-electron-rich heteroaromatic compound (e.g., a carbazole derivative, a thiophene derivative, a furan derivative, etc.) or an aromatic amine (a compound having an aromatic amine skeleton) is preferable.
電子ブロック層は、発光層に接して設けられる。電子ブロック層は、正孔輸送性を有し、かつ、電子をブロックすることが可能な材料を含む層である。電子ブロック層には、上記正孔輸送性材料のうち、電子ブロック性を有する材料を用いることができる。 The electron blocking layer is provided in contact with the light emitting layer. The electron blocking layer is a layer containing a material that has hole transport properties and can block electrons. The electron blocking layer can be made of a material that has electron blocking properties among the hole transport materials described above.
電子ブロック層は、正孔輸送性を有するため、正孔輸送層と呼ぶこともできる。また、正孔輸送層のうち、電子ブロック性を有する層を、電子ブロック層と呼ぶこともできる。 The electron blocking layer has hole transport properties, and therefore can also be called a hole transport layer. In addition, a layer of the hole transport layer that has electron blocking properties can also be called an electron blocking layer.
電子輸送層は、電子注入層によって陰極から注入された電子を、発光層に輸送する層である。電子輸送層は、電子輸送性材料を含む層である。電子輸送性材料としては、1×10−6cm/Vs以上の電子移動度を有する物質が好ましい。なお、正孔よりも電子の輸送性の高い物質であれば、これら以外のものも用いることができる。電子輸送性材料としては、キノリン骨格を有する金属錯体、ベンゾキノリン骨格を有する金属錯体、オキサゾール骨格を有する金属錯体、チアゾール骨格を有する金属錯体等の他、オキサジアゾール誘導体、トリアゾール誘導体、イミダゾール誘導体、オキサゾール誘導体、チアゾール誘導体、フェナントロリン誘導体、キノリン配位子を有するキノリン誘導体、ベンゾキノリン誘導体、キノキサリン誘導体、ジベンゾキノキサリン誘導体、ピリジン誘導体、ビピリジン誘導体、ピリミジン誘導体、その他、含窒素複素芳香族化合物を含むπ電子不足型複素芳香族化合物等の電子輸送性の高い物質を用いることができる。 The electron transport layer is a layer that transports electrons injected from the cathode by the electron injection layer to the light-emitting layer. The electron transport layer is a layer that includes an electron transporting material. As the electron transporting material, a substance having an electron mobility of 1×10 −6 cm 2 /Vs or more is preferable. Note that, other substances having a higher electron transporting property than holes can also be used. As the electron transporting material, in addition to metal complexes having a quinoline skeleton, metal complexes having a benzoquinoline skeleton, metal complexes having an oxazole skeleton, and metal complexes having a thiazole skeleton, oxadiazole derivatives, triazole derivatives, imidazole derivatives, oxazole derivatives, thiazole derivatives, phenanthroline derivatives, quinoline derivatives having a quinoline ligand, benzoquinoline derivatives, quinoxaline derivatives, dibenzoquinoxaline derivatives, pyridine derivatives, bipyridine derivatives, pyrimidine derivatives, and other substances having a high electron transporting property such as π-electron deficient heteroaromatic compounds including nitrogen-containing heteroaromatic compounds can be used.
正孔ブロック層は、発光層に接して設けられる。正孔ブロック層は、電子輸送性を有し、かつ、正孔をブロックすることが可能な材料を含む層である。正孔ブロック層には、上記電子輸送性材料のうち、正孔ブロック性を有する材料を用いることができる。 The hole blocking layer is provided in contact with the light emitting layer. The hole blocking layer is a layer containing a material that has electron transport properties and can block holes. The hole blocking layer can be made of a material that has hole blocking properties among the above electron transport materials.
正孔ブロック層は、電子輸送性を有するため、電子輸送層と呼ぶこともできる。また、電子輸送層のうち、正孔ブロック性を有する層を、正孔ブロック層と呼ぶこともできる。 The hole blocking layer has electron transport properties and can therefore also be called an electron transport layer. In addition, the layer of the electron transport layer that has hole blocking properties can also be called a hole blocking layer.
電子注入層は、陰極から電子輸送層に電子を注入する層であり、電子注入性の高い物質を含む層である。電子注入性の高い物質としては、アルカリ金属、アルカリ土類金属、またはそれらの化合物を用いることができる。電子注入性の高い物質としては、電子輸送性材料とドナー性材料(電子供与性材料)とを含む複合材料を用いることもできる。 The electron injection layer is a layer that injects electrons from the cathode to the electron transport layer, and is a layer that contains a substance with high electron injection properties. As the substance with high electron injection properties, an alkali metal, an alkaline earth metal, or a compound thereof can be used. As the substance with high electron injection properties, a composite material containing an electron transport material and a donor material (electron donor material) can also be used.
また、電子注入性の高い物質のLUMO準位は、陰極に用いる材料の仕事関数の値との差が小さい(具体的には0.5eV以下である)ことが好ましい。 In addition, it is preferable that the LUMO level of the material with high electron injection properties has a small difference from the work function value of the material used for the cathode (specifically, 0.5 eV or less).
電子注入層には、例えば、リチウム、セシウム、イッテルビウム、フッ化リチウム(LiF)、フッ化セシウム(CsF)、フッ化カルシウム(CaF、xは任意数)、8−(キノリノラト)リチウム(略称:Liq)、2−(2−ピリジル)フェノラトリチウム(略称:LiPP)、2−(2−ピリジル)−3−ピリジノラトリチウム(略称:LiPPy)、4−フェニル−2−(2−ピリジル)フェノラトリチウム(略称:LiPPP)、リチウム酸化物(LiO)、炭酸セシウム等のようなアルカリ金属、アルカリ土類金属、またはこれらの化合物を用いることができる。また、電子注入層は、2以上の積層構造としてもよい。当該積層構造としては、例えば、1層目にフッ化リチウムを用い、2層目にイッテルビウムを設ける構成が挙げられる。 The electron injection layer may be made of, for example, lithium, cesium, ytterbium, lithium fluoride (LiF), cesium fluoride (CsF), calcium fluoride (CaF x , x is an arbitrary number), 8-(quinolinolato)lithium (abbreviation: Liq), 2-(2-pyridyl)phenolatolithium (abbreviation: LiPP), 2-(2-pyridyl)-3-pyridinolatolithium (abbreviation: LiPPy), 4-phenyl-2-(2-pyridyl)phenolatolithium (abbreviation: LiPPP), lithium oxide (LiO x ), alkali metals such as cesium carbonate, alkaline earth metals, or compounds thereof. The electron injection layer may also be made of a laminated structure of two or more layers. As the laminated structure, for example, a structure in which lithium fluoride is used in the first layer and ytterbium is provided in the second layer can be mentioned.
電子注入層は、電子輸送性材料を有していてもよい。例えば、非共有電子対を備え、電子不足型複素芳香環を有する化合物を、電子輸送性材料に用いることができる。具体的には、ピリジン環、ジアジン環(ピリミジン環、ピラジン環、ピリダジン環)、トリアジン環の少なくとも1つを有する化合物を用いることができる。 The electron injection layer may contain an electron transporting material. For example, a compound having an unshared electron pair and an electron-deficient heteroaromatic ring can be used as the electron transporting material. Specifically, a compound having at least one of a pyridine ring, a diazine ring (pyrimidine ring, pyrazine ring, pyridazine ring), and a triazine ring can be used.
なお、非共有電子対を備える有機化合物の最低空軌道(LUMO:Lowest Unoccupied Molecular Orbital)準位は、−3.6eV以上−2.3eV以下であると好ましい。また、一般にCV(サイクリックボルタンメトリ)、光電子分光法、光吸収分光法、逆光電子分光法等により、有機化合物の最高被占有軌道(HOMO:Highest Occupied Molecular Orbital)準位及びLUMO準位を見積もることができる。 The lowest unoccupied molecular orbital (LUMO) level of an organic compound having an unshared electron pair is preferably -3.6 eV or more and -2.3 eV or less. In general, the highest occupied molecular orbital (HOMO) level and the LUMO level of an organic compound can be estimated by CV (cyclic voltammetry), photoelectron spectroscopy, optical absorption spectroscopy, inverse photoelectron spectroscopy, etc.
例えば、4,7−ジフェニル−1,10−フェナントロリン(略称:BPhen)、2,9−ジ(ナフタレン−2−イル)−4,7−ジフェニル−1,10−フェナントロリン(略称:NBPhen)、2,2’−(1,3−フェニレン)ビス(9−フェニル−1,10−フェナントロリン)(略称:mPPhen2P)、ジキノキサリノ[2,3−a:2’,3’−c]フェナジン(略称:HATNA)、2,4,6−トリス[3’−(ピリジン−3−イル)ビフェニル−3−イル]−1,3,5−トリアジン(略称:TmPPPyTz)等を、非共有電子対を備える有機化合物に用いることができる。なお、NBPhenはBPhenと比較して、高いガラス転移点(Tg)を備え、耐熱性に優れる。 For example, 4,7-diphenyl-1,10-phenanthroline (abbreviation: BPhen), 2,9-di(naphthalene-2-yl)-4,7-diphenyl-1,10-phenanthroline (abbreviation: NBPhen), 2,2'-(1,3-phenylene)bis(9-phenyl-1,10-phenanthroline) (abbreviation: mPPhen2P), diquinoxalino[2,3-a:2',3'-c]phenazine (abbreviation: HATNA), 2,4,6-tris[3'-(pyridin-3-yl)biphenyl-3-yl]-1,3,5-triazine (abbreviation: TmPPPyTz), etc. can be used as an organic compound having an unshared electron pair. Note that NBPhen has a higher glass transition point (Tg) and is more heat resistant than BPhen.
電荷発生層は、上述の通り、少なくとも電荷発生領域を有する。電荷発生領域は、アクセプター性材料を含むことが好ましく、例えば、上述の正孔注入層に適用可能な、正孔輸送性材料とアクセプター性材料とを含むことが好ましい。 As described above, the charge generation layer has at least a charge generation region. The charge generation region preferably contains an acceptor material, for example, a hole transport material and an acceptor material that are applicable to the hole injection layer described above.
また、電荷発生層は、電子注入性の高い物質を含む層を有することが好ましい。当該層は、電子注入バッファ層と呼ぶこともできる。電子注入バッファ層は、電荷発生領域と電子輸送層との間に設けられることが好ましい。電子注入バッファ層を設けることで、電荷発生領域と電子輸送層との間の注入障壁を緩和することができるため、電荷発生領域で生じた電子を電子輸送層に容易に注入することができる。 The charge generation layer preferably has a layer containing a substance with high electron injection properties. This layer can also be called an electron injection buffer layer. The electron injection buffer layer is preferably provided between the charge generation region and the electron transport layer. By providing the electron injection buffer layer, the injection barrier between the charge generation region and the electron transport layer can be alleviated, so that electrons generated in the charge generation region can be easily injected into the electron transport layer.
電子注入バッファ層は、アルカリ金属またはアルカリ土類金属を含むことが好ましく、例えば、アルカリ金属の化合物またはアルカリ土類金属の化合物を含む構成とすることができる。具体的には、電子注入バッファ層は、アルカリ金属と酸素とを含む無機化合物、または、アルカリ土類金属と酸素とを含む無機化合物を有することが好ましく、リチウムと酸素とを含む無機化合物(酸化リチウム(LiO)など)を有することがより好ましい。その他、電子注入バッファ層には、上述の電子注入層に適用可能な材料を好適に用いることができる。 The electron injection buffer layer preferably contains an alkali metal or an alkaline earth metal, and may be configured to contain, for example, an alkali metal compound or an alkaline earth metal compound. Specifically, the electron injection buffer layer preferably contains an inorganic compound containing an alkali metal and oxygen, or an inorganic compound containing an alkaline earth metal and oxygen, and more preferably contains an inorganic compound containing lithium and oxygen (lithium oxide (Li 2 O) or the like). In addition, the electron injection buffer layer may suitably use the above-mentioned materials applicable to the electron injection layer.
電荷発生層は、電子輸送性の高い物質を含む層を有することが好ましい。当該層は、電子リレー層と呼ぶこともできる。電子リレー層は、電荷発生領域と電子注入バッファ層との間に設けられることが好ましい。電荷発生層が電子注入バッファ層を有さない場合、電子リレー層は、電荷発生領域と電子輸送層との間に設けられることが好ましい。電子リレー層は、電荷発生領域と電子注入バッファ層(または電子輸送層)との相互作用を防いで、電子をスムーズに受け渡す機能を有する。 The charge generation layer preferably has a layer containing a substance with high electron transport properties. This layer can also be called an electron relay layer. The electron relay layer is preferably provided between the charge generation region and the electron injection buffer layer. When the charge generation layer does not have an electron injection buffer layer, the electron relay layer is preferably provided between the charge generation region and the electron transport layer. The electron relay layer has the function of preventing interaction between the charge generation region and the electron injection buffer layer (or the electron transport layer) and smoothly transferring electrons.
電子リレー層としては、銅(II)フタロシアニン(略称:CuPc)などのフタロシアニン系の材料、または、金属−酸素結合と芳香族配位子を有する金属錯体を用いることが好ましい。 As the electron relay layer, it is preferable to use a phthalocyanine-based material such as copper (II) phthalocyanine (abbreviation: CuPc), or a metal complex having a metal-oxygen bond and an aromatic ligand.
なお、上述の電荷発生領域、電子注入バッファ層、及び電子リレー層は、断面形状、または特性などによって明確に区別できない場合がある。 Note that the charge generation region, electron injection buffer layer, and electron relay layer described above may not be clearly distinguishable from each other due to their cross-sectional shapes or characteristics.
なお、電荷発生層は、アクセプター性材料の代わりに、ドナー性材料を有していてもよい。例えば、電荷発生層としては、上述の電子注入層に適用可能な、電子輸送性材料とドナー性材料とを含む層を有していてもよい。 The charge generation layer may have a donor material instead of an acceptor material. For example, the charge generation layer may have a layer containing an electron transport material and a donor material that can be used in the electron injection layer described above.
発光ユニットを積層する際、2つの発光ユニットの間に電荷発生層を設けることで、駆動電圧の上昇を抑制することができる。 When stacking light-emitting units, an increase in driving voltage can be suppressed by providing a charge generating layer between the two light-emitting units.
本実施の形態は、他の実施の形態と適宜組み合わせることができる。 This embodiment can be combined with other embodiments as appropriate.
(実施の形態5)
本実施の形態では、本発明の一態様の電子機器について、図22乃至図24を用いて説明する。
(Embodiment 5)
In this embodiment, electronic devices of one embodiment of the present invention will be described with reference to FIGS.
本実施の形態の電子機器は、表示部に本発明の一態様の表示装置を有する。本発明の一態様の表示装置は、高精細化及び高解像度化が容易である。したがって、様々な電子機器の表示部に用いることができる。 The electronic device of this embodiment has a display device of one embodiment of the present invention in a display portion. The display device of one embodiment of the present invention can easily achieve high definition and high resolution. Therefore, the display device can be used in the display portion of various electronic devices.
電子機器としては、例えば、テレビジョン装置、デスクトップ型もしくはノート型のパーソナルコンピュータ、コンピュータ用などのモニタ、デジタルサイネージ、パチンコ機などの大型ゲーム機などの比較的大きな画面を備える電子機器の他、デジタルカメラ、デジタルビデオカメラ、デジタルフォトフレーム、携帯電話機、携帯型ゲーム機、携帯情報端末、音響再生装置、などが挙げられる。 Examples of electronic devices include television sets, desktop or notebook personal computers, computer monitors, digital signage, large game machines such as pachinko machines, and other electronic devices with relatively large screens, as well as digital cameras, digital video cameras, digital photo frames, mobile phones, portable game machines, personal digital assistants, and audio playback devices.
特に、本発明の一態様の表示装置は、精細度を高めることが可能なため、比較的小さな表示部を有する電子機器に好適に用いることができる。このような電子機器としては、例えば、腕時計型及びブレスレット型の情報端末機(ウェアラブル機器)、並びに、ヘッドマウントディスプレイなどのVR向け機器、メガネ型のAR向け機器、及び、MR向け機器など、頭部に装着可能なウェアラブル機器等が挙げられる。 In particular, the display device of one embodiment of the present invention can be used favorably in electronic devices having a relatively small display unit, since it is possible to increase the resolution. Examples of such electronic devices include wristwatch-type and bracelet-type information terminals (wearable devices), as well as wearable devices that can be worn on the head, such as VR devices such as head-mounted displays, glasses-type AR devices, and MR devices.
本発明の一態様の表示装置は、HD(画素数1280×720)、FHD(画素数1920×1080)、WQHD(画素数2560×1440)、WQXGA(画素数2560×1600)、4K(画素数3840×2160)、8K(画素数7680×4320)といった極めて高い解像度を有していることが好ましい。特に4K、8K、またはそれ以上の解像度とすることが好ましい。また、本発明の一態様の表示装置における画素密度(精細度)は、100ppi以上が好ましく、300ppi以上が好ましく、500ppi以上がより好ましく、1000ppi以上がより好ましく、2000ppi以上がより好ましく、3000ppi以上がより好ましく、5000ppi以上がより好ましく、7000ppi以上がさらに好ましい。このように高い解像度及び高い精細度の一方または双方を有する表示装置を用いることで、臨場感及び奥行き感などをより高めることが可能となる。また、本発明の一態様の表示装置の画面比率(アスペクト比)については、特に限定はない。例えば、表示装置は、1:1(正方形)、4:3、16:9、16:10など様々な画面比率に対応することができる。 The display device of one embodiment of the present invention preferably has an extremely high resolution such as HD (1280 x 720 pixels), FHD (1920 x 1080 pixels), WQHD (2560 x 1440 pixels), WQXGA (2560 x 1600 pixels), 4K (3840 x 2160 pixels), or 8K (7680 x 4320 pixels). In particular, a resolution of 4K, 8K, or more is preferable. In addition, the pixel density (resolution) of the display device of one embodiment of the present invention is preferably 100 ppi or more, preferably 300 ppi or more, more preferably 500 ppi or more, more preferably 1000 ppi or more, more preferably 2000 ppi or more, more preferably 3000 ppi or more, more preferably 5000 ppi or more, and even more preferably 7000 ppi or more. By using a display device having either or both of high resolution and high definition, it is possible to further enhance the sense of realism and depth. In addition, there is no particular limitation on the screen ratio (aspect ratio) of the display device of one embodiment of the present invention. For example, the display device can support various screen ratios such as 1:1 (square), 4:3, 16:9, and 16:10.
本実施の形態の電子機器は、センサ(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、においまたは赤外線を検知、検出、または測定する機能を含むもの)を有していてもよい。 The electronic device of this embodiment may have a sensor (including the function of sensing, detecting, or measuring force, displacement, position, velocity, acceleration, angular velocity, rotation speed, distance, light, liquid, magnetism, temperature, chemicals, sound, time, hardness, electric field, current, voltage, power, radiation, flow rate, humidity, gradient, vibration, odor, or infrared light).
本実施の形態の電子機器は、様々な機能を有することができる。例えば、様々な情報(静止画、動画、テキスト画像など)を表示部に表示する機能、タッチパネル機能、カレンダー、日付または時刻などを表示する機能、様々なソフトウェア(プログラム)を実行する機能、無線通信機能、記録媒体に記録されているプログラムまたはデータを読み出す機能等を有することができる。 The electronic device of this embodiment can have various functions. For example, it can have a function to display various information (still images, videos, text images, etc.) on the display unit, a touch panel function, a function to display a calendar, date or time, etc., a function to execute various software (programs), a wireless communication function, a function to read out programs or data recorded on a recording medium, etc.
図22A乃至図22Dを用いて、頭部に装着可能なウェアラブル機器の一例を説明する。これらウェアラブル機器は、ARのコンテンツを表示する機能、VRのコンテンツを表示する機能、SRのコンテンツを表示する機能、MRのコンテンツを表示する機能のうち少なくとも一つを有する。電子機器が、AR、VR、SR、及びMRなどの少なくとも一つのコンテンツを表示する機能を有することで、使用者の没入感を高めることが可能となる。 An example of a wearable device that can be worn on the head will be described using Figures 22A to 22D. These wearable devices have at least one of the following functions: a function to display AR content, a function to display VR content, a function to display SR content, and a function to display MR content. By having an electronic device have the function to display at least one of AR, VR, SR, and MR content, it is possible to enhance the user's sense of immersion.
図22Aに示す電子機器700A、及び、図22Bに示す電子機器700Bは、それぞれ、一対の表示パネル751と、一対の筐体721と、通信部(図示しない)と、一対の装着部723と、制御部(図示しない)と、撮像部(図示しない)と、一対の光学部材753と、フレーム757と、一対の鼻パッド758と、を有する。 Electronic device 700A shown in FIG. 22A and electronic device 700B shown in FIG. 22B each have a pair of display panels 751, a pair of housings 721, a communication unit (not shown), a pair of mounting units 723, a control unit (not shown), an imaging unit (not shown), a pair of optical members 753, a frame 757, and a pair of nose pads 758.
表示パネル751には、本発明の一態様の表示装置を適用することができる。したがって極めて精細度の高い表示が可能な電子機器とすることができる。 A display device according to one embodiment of the present invention can be applied to the display panel 751. Therefore, the electronic device can display images with extremely high resolution.
電子機器700A、及び、電子機器700Bは、それぞれ、光学部材753の表示領域756に、表示パネル751で表示した画像を投影することができる。光学部材753は透光性を有するため、使用者は光学部材753を通して視認される透過像に重ねて、表示領域に表示された画像を見ることができる。したがって、電子機器700A、及び、電子機器700Bは、それぞれ、AR表示が可能な電子機器である。 Each of the electronic devices 700A and 700B can project an image displayed on the display panel 751 onto the display area 756 of the optical member 753. Because the optical member 753 is translucent, the user can see the image displayed in the display area superimposed on the transmitted image visually recognized through the optical member 753. Therefore, each of the electronic devices 700A and 700B is an electronic device capable of AR display.
電子機器700A、及び、電子機器700Bには、撮像部として、前方を撮像することのできるカメラが設けられていてもよい。また、電子機器700A、及び、電子機器700Bは、それぞれ、ジャイロセンサなどの加速度センサを備えることで、使用者の頭部の向きを検知して、その向きに応じた画像を表示領域756に表示することもできる。 Electronic device 700A and electronic device 700B may be provided with a camera capable of capturing an image of the front as an imaging unit. Furthermore, electronic device 700A and electronic device 700B may each be provided with an acceleration sensor such as a gyro sensor, thereby detecting the orientation of the user's head and displaying an image corresponding to that orientation in display area 756.
通信部は無線通信機を有し、当該無線通信機により映像信号等を供給することができる。なお、無線通信機に代えて、または無線通信機に加えて、映像信号及び電源電位が供給されるケーブルを接続可能なコネクタを備えていてもよい。 The communication unit has a wireless communication device, and can supply video signals and the like via the wireless communication device. Note that instead of or in addition to the wireless communication device, a connector can be provided to which a cable through which a video signal and a power supply potential can be connected.
また、電子機器700A、及び、電子機器700Bには、バッテリが設けられており、無線及び有線の一方または双方によって充電することができる。 In addition, electronic device 700A and electronic device 700B are provided with batteries, which can be charged wirelessly and/or wired.
筐体721には、タッチセンサモジュールが設けられていてもよい。タッチセンサモジュールは、筐体721の外側の面がタッチされることを検出する機能を有する。タッチセンサモジュールにより、使用者のタップ操作またはスライド操作などを検出し、様々な処理を実行することができる。例えば、タップ操作によって動画の一時停止または再開などの処理を実行することが可能となり、スライド操作により、早送りまたは早戻しの処理を実行することなどが可能となる。また、2つの筐体721のそれぞれにタッチセンサモジュールを設けることで、操作の幅を広げることができる。 The housing 721 may be provided with a touch sensor module. The touch sensor module has a function of detecting that the outer surface of the housing 721 is touched. The touch sensor module can detect a tap operation or a slide operation by the user and execute various processes. For example, a tap operation can execute processes such as pausing or resuming a video, and a slide operation can execute processes such as fast-forwarding or rewinding. Furthermore, by providing a touch sensor module on each of the two housings 721, the range of operations can be expanded.
タッチセンサモジュールとしては、様々なタッチセンサを適用することができる。例えば、静電容量方式、抵抗膜方式、赤外線方式、電磁誘導方式、表面弾性波方式、光学方式等、種々の方式を採用することができる。特に、静電容量方式または光学方式のセンサを、タッチセンサモジュールに適用することが好ましい。 Various types of touch sensors can be used as the touch sensor module. For example, various types can be adopted, such as a capacitance type, a resistive film type, an infrared type, an electromagnetic induction type, a surface acoustic wave type, and an optical type. In particular, it is preferable to apply a capacitance type or an optical type sensor to the touch sensor module.
光学方式のタッチセンサを用いる場合には、受光素子として、光電変換素子(光電変換素子ともいう)を用いることができる。光電変換素子の活性層には、無機半導体及び有機半導体の一方または双方を用いることができる。 When an optical touch sensor is used, a photoelectric conversion element (also called a photoelectric conversion element) can be used as the light receiving element. The active layer of the photoelectric conversion element can be made of either or both of an inorganic semiconductor and an organic semiconductor.
図22Cに示す電子機器800A、及び、図22Dに示す電子機器800Bは、それぞれ、一対の表示部820と、筐体821と、通信部822と、一対の装着部823と、制御部824と、一対の撮像部825と、一対のレンズ832と、を有する。 Electronic device 800A shown in FIG. 22C and electronic device 800B shown in FIG. 22D each have a pair of display units 820, a housing 821, a communication unit 822, a pair of mounting units 823, a control unit 824, a pair of imaging units 825, and a pair of lenses 832.
表示部820には、本発明の一態様の表示装置を適用することができる。したがって極めて精細度の高い表示が可能な電子機器とすることができる。これにより、使用者に高い没入感を感じさせることができる。 A display device according to one embodiment of the present invention can be applied to the display portion 820. Therefore, an electronic device capable of displaying images with extremely high resolution can be provided. This allows the user to feel a high sense of immersion.
表示部820は、筐体821の内部の、レンズ832を通して視認できる位置に設けられる。また、一対の表示部820に異なる画像を表示させることで、視差を用いた3次元表示を行うこともできる。 The display unit 820 is provided inside the housing 821 at a position that can be seen through the lens 832. In addition, by displaying different images on the pair of display units 820, it is also possible to perform three-dimensional display using parallax.
電子機器800A、及び、電子機器800Bは、それぞれ、VR向けの電子機器ということができる。電子機器800Aまたは電子機器800Bを装着した使用者は、レンズ832を通して、表示部820に表示される画像を視認することができる。 Each of the electronic devices 800A and 800B can be considered electronic devices for VR. A user wearing the electronic device 800A or the electronic device 800B can view the image displayed on the display unit 820 through the lens 832.
電子機器800A、及び、電子機器800Bは、それぞれ、レンズ832及び表示部820が、使用者の目の位置に応じて最適な位置となるように、これらの左右の位置を調整可能な機構を有していることが好ましい。また、レンズ832と表示部820との距離を変えることで、ピントを調整する機構を有していることが好ましい。 Electric device 800A and electronic device 800B each preferably have a mechanism that can adjust the left-right positions of lens 832 and display unit 820 so that they are optimally positioned according to the position of the user's eyes. Also, it is preferable that they have a mechanism that adjusts the focus by changing the distance between lens 832 and display unit 820.
装着部823により、使用者は電子機器800Aまたは電子機器800Bを頭部に装着することができる。なお、図22Cなどにおいては、メガネのつる(テンプルなどともいう)のような形状として例示しているがこれに限定されない。装着部823は、使用者が装着できればよく、例えば、ヘルメット型またはバンド型の形状としてもよい。 The mounting unit 823 allows the user to mount the electronic device 800A or electronic device 800B on the head. Note that in FIG. 22C and other figures, the mounting unit 823 is shaped like the temples of glasses, but is not limited to this. The mounting unit 823 only needs to be wearable by the user, and may be shaped like a helmet or band, for example.
撮像部825は、外部の情報を取得する機能を有する。撮像部825が取得したデータは、表示部820に出力することができる。撮像部825には、イメージセンサを用いることができる。また、望遠、広角などの複数の画角に対応可能なように複数のカメラを設けてもよい。 The imaging unit 825 has a function of acquiring external information. The data acquired by the imaging unit 825 can be output to the display unit 820. An image sensor can be used for the imaging unit 825. In addition, multiple cameras may be provided to support multiple angles of view, such as telephoto and wide angle.
なお、ここでは撮像部825を有する例を示したが、対象物の距離を測定することのできる測距センサ(以下、検知部ともよぶ)を設ければよい。すなわち、撮像部825は、検知部の一態様である。検知部としては、例えばイメージセンサ、または、ライダー(LIDAR:Light Detection and Ranging)などの距離画像センサを用いることができる。カメラによって得られた画像と、距離画像センサによって得られた画像とを用いることにより、より多くの情報を取得し、より高精度なジェスチャー操作を可能とすることができる。 Note that, although an example having an imaging unit 825 is shown here, a distance measuring sensor (hereinafter also referred to as a detection unit) capable of measuring the distance to an object may be provided. In other words, the imaging unit 825 is one aspect of the detection unit. As the detection unit, for example, an image sensor or a distance image sensor such as a LIDAR (Light Detection and Ranging) can be used. By using an image obtained by the camera and an image obtained by the distance image sensor, more information can be obtained, enabling more precise gesture operation.
電子機器800Aは、骨伝導イヤフォンとして機能する振動機構を有していてもよい。例えば、表示部820、筐体821、及び装着部823のいずれか一または複数に、当該振動機構を有する構成を適用することができる。これにより、別途、ヘッドフォン、イヤフォン、またはスピーカなどの音響機器を必要とせず、電子機器800Aを装着しただけで映像と音声を楽しむことができる。 The electronic device 800A may have a vibration mechanism that functions as a bone conduction earphone. For example, a configuration having such a vibration mechanism can be applied to one or more of the display unit 820, the housing 821, and the wearing unit 823. This makes it possible to enjoy video and audio by simply wearing the electronic device 800A without the need for separate audio equipment such as headphones, earphones, or speakers.
電子機器800A、及び、電子機器800Bは、それぞれ、入力端子を有していてもよい。入力端子には映像出力機器等からの映像信号、及び、電子機器内に設けられるバッテリを充電するための電力等を供給するケーブルを接続することができる。 Each of the electronic devices 800A and 800B may have an input terminal. The input terminal can be connected to a cable that supplies a video signal from a video output device or the like, and power for charging a battery provided within the electronic device.
本発明の一態様の電子機器は、イヤフォン750と無線通信を行う機能を有していてもよい。イヤフォン750は、通信部(図示しない)を有し、無線通信機能を有する。イヤフォン750は、無線通信機能により、電子機器から情報(例えば音声データ)を受信することができる。例えば、図22Aに示す電子機器700Aは、無線通信機能によって、イヤフォン750に情報を送信する機能を有する。また、例えば、図22Cに示す電子機器800Aは、無線通信機能によって、イヤフォン750に情報を送信する機能を有する。 The electronic device of one embodiment of the present invention may have a function of wireless communication with the earphone 750. The earphone 750 has a communication unit (not shown) and has a wireless communication function. The earphone 750 can receive information (e.g., audio data) from the electronic device through the wireless communication function. For example, the electronic device 700A shown in FIG. 22A has a function of transmitting information to the earphone 750 through the wireless communication function. Also, for example, the electronic device 800A shown in FIG. 22C has a function of transmitting information to the earphone 750 through the wireless communication function.
また、電子機器がイヤフォン部を有していてもよい。図22Bに示す電子機器700Bは、イヤフォン部727を有する。例えば、イヤフォン部727と制御部とは、互いに有線接続されている構成とすることができる。イヤフォン部727と制御部とをつなぐ配線の一部は、筐体721または装着部723の内部に配置されていてもよい。 The electronic device may also have an earphone unit. The electronic device 700B shown in FIG. 22B has an earphone unit 727. For example, the earphone unit 727 and the control unit may be configured to be connected to each other by wire. A portion of the wiring connecting the earphone unit 727 and the control unit may be disposed inside the housing 721 or the attachment unit 723.
同様に、図22Dに示す電子機器800Bは、イヤフォン部827を有する。例えば、イヤフォン部827と制御部824とは、互いに有線接続されている構成とすることができる。イヤフォン部827と制御部824とをつなぐ配線の一部は、筐体821または装着部823の内部に配置されていてもよい。また、イヤフォン部827と装着部823とがマグネットを有していてもよい。これにより、イヤフォン部827を装着部823に磁力によって固定することができ、収納が容易となり好ましい。 Similarly, electronic device 800B shown in FIG. 22D has earphone unit 827. For example, earphone unit 827 and control unit 824 can be configured to be connected to each other by wire. Part of the wiring connecting earphone unit 827 and control unit 824 may be disposed inside housing 821 or mounting unit 823. In addition, earphone unit 827 and mounting unit 823 may have magnets. This allows earphone unit 827 to be fixed to mounting unit 823 by magnetic force, which is preferable as it makes storage easier.
なお、電子機器は、イヤフォンまたはヘッドフォンなどを接続することができる音声出力端子を有していてもよい。また、電子機器は、音声入力端子及び音声入力機構の一方または双方を有していてもよい。音声入力機構としては、例えば、マイクなどの集音装置を用いることができる。電子機器が音声入力機構を有することで、電子機器に、いわゆるヘッドセットとしての機能を付与してもよい。 The electronic device may have an audio output terminal to which earphones or headphones can be connected. The electronic device may also have one or both of an audio input terminal and an audio input mechanism. For example, a sound collection device such as a microphone can be used as the audio input mechanism. By having the audio input mechanism, the electronic device may be endowed with the functionality of a so-called headset.
このように、本発明の一態様の電子機器としては、メガネ型(電子機器700A、及び、電子機器700Bなど)と、ゴーグル型(電子機器800A、及び、電子機器800Bなど)と、のどちらも好適である。 As such, as an embodiment of the present invention, both glasses-type devices (such as electronic device 700A and electronic device 700B) and goggle-type devices (such as electronic device 800A and electronic device 800B) are suitable.
また、本発明の一態様の電子機器は、有線または無線によって、イヤフォンに情報を送信することができる。 Furthermore, the electronic device of one embodiment of the present invention can transmit information to the earphones via wire or wirelessly.
図23Aに示す電子機器6500は、スマートフォンとして用いることのできる携帯情報端末機である。 The electronic device 6500 shown in FIG. 23A is a portable information terminal that can be used as a smartphone.
電子機器6500は、筐体6501、表示部6502、電源ボタン6503、ボタン6504、スピーカ6505、マイク6506、カメラ6507、及び光源6508等を有する。表示部6502はタッチパネル機能を備える。 The electronic device 6500 includes a housing 6501, a display portion 6502, a power button 6503, a button 6504, a speaker 6505, a microphone 6506, a camera 6507, a light source 6508, and the like. The display portion 6502 has a touch panel function.
表示部6502に、本発明の一態様の表示装置を適用することができる。 A display device of one embodiment of the present invention can be applied to the display portion 6502.
図23Bは、筐体6501のマイク6506側の端部を含む断面概略図である。 Figure 23B is a schematic cross-sectional view including the end of the housing 6501 on the microphone 6506 side.
筐体6501の表示面側には透光性を有する保護部材6510が設けられ、筐体6501と保護部材6510に囲まれた空間内に、表示パネル6511、光学部材6512、タッチセンサパネル6513、プリント基板6517、バッテリ6518等が配置されている。 A transparent protective member 6510 is provided on the display surface side of the housing 6501, and a display panel 6511, optical members 6512, a touch sensor panel 6513, a printed circuit board 6517, a battery 6518, etc. are arranged in the space surrounded by the housing 6501 and the protective member 6510.
保護部材6510には、表示パネル6511、光学部材6512、及びタッチセンサパネル6513が接着層(図示しない)により固定されている。 The display panel 6511, the optical member 6512, and the touch sensor panel 6513 are fixed to the protective member 6510 by an adhesive layer (not shown).
表示部6502よりも外側の領域において、表示パネル6511の一部が折り返されており、当該折り返された部分にFPC6515が接続されている。FPC6515には、IC6516が実装されている。FPC6515は、プリント基板6517に設けられた端子に接続されている。 In an area outside the display portion 6502, a part of the display panel 6511 is folded back, and the FPC 6515 is connected to the folded back part. An IC 6516 is mounted on the FPC 6515. The FPC 6515 is connected to a terminal provided on a printed circuit board 6517.
表示パネル6511には本発明の一態様のフレキシブルディスプレイを適用することができる。そのため、極めて軽量な電子機器を実現できる。また、表示パネル6511が極めて薄いため、電子機器の厚さを抑えつつ、大容量のバッテリ6518を搭載することもできる。また、表示パネル6511の一部を折り返して、画素部の裏側にFPC6515との接続部を配置することにより、狭額縁の電子機器を実現できる。 The flexible display of one embodiment of the present invention can be applied to the display panel 6511. Therefore, an extremely lightweight electronic device can be realized. In addition, since the display panel 6511 is extremely thin, a large-capacity battery 6518 can be mounted while keeping the thickness of the electronic device small. In addition, by folding back a part of the display panel 6511 and arranging a connection portion with the FPC 6515 on the back side of the pixel portion, an electronic device with a narrow frame can be realized.
図23Cにテレビジョン装置の一例を示す。テレビジョン装置7100は、筐体7101に表示部7000が組み込まれている。ここでは、スタンド7103により筐体7101を支持した構成を示している。 Figure 23C shows an example of a television device. In the television device 7100, a display unit 7000 is built into a housing 7101. In this example, the housing 7101 is supported by a stand 7103.
表示部7000に、本発明の一態様の表示装置を適用することができる。 A display device according to one embodiment of the present invention can be applied to the display portion 7000.
図23Cに示すテレビジョン装置7100の操作は、筐体7101が備える操作スイッチ、及び、別体のリモコン操作機7111により行うことができる。または、表示部7000にタッチセンサを備えていてもよく、指等で表示部7000に触れることでテレビジョン装置7100を操作してもよい。リモコン操作機7111は、当該リモコン操作機7111から出力する情報を表示する表示部を有していてもよい。リモコン操作機7111が備える操作キーまたはタッチパネルにより、チャンネル及び音量の操作を行うことができ、表示部7000に表示される映像を操作することができる。 The television device 7100 shown in FIG. 23C can be operated using an operation switch provided on the housing 7101 and a separate remote control 7111. Alternatively, the display unit 7000 may be provided with a touch sensor, and the television device 7100 may be operated by touching the display unit 7000 with a finger or the like. The remote control 7111 may have a display unit that displays information output from the remote control 7111. The channel and volume can be operated using the operation keys or touch panel provided on the remote control 7111, and the image displayed on the display unit 7000 can be operated.
なお、テレビジョン装置7100は、受信機及びモデムなどを備えた構成とする。受信機により一般のテレビ放送の受信を行うことができる。また、モデムを介して有線または無線による通信ネットワークに接続することにより、一方向(送信者から受信者)または双方向(送信者と受信者間、あるいは受信者同士など)の情報通信を行うことも可能である。 The television device 7100 is configured to include a receiver and a modem. The receiver can receive general television broadcasts. In addition, by connecting to a wired or wireless communication network via the modem, it is also possible to perform one-way (from sender to receiver) or two-way (between sender and receiver, or between receivers, etc.) information communication.
図23Dに、ノート型パーソナルコンピュータの一例を示す。ノート型パーソナルコンピュータ7200は、筐体7211、キーボード7212、ポインティングデバイス7213、外部接続ポート7214等を有する。筐体7211に、表示部7000が組み込まれている。 Figure 23D shows an example of a notebook personal computer. The notebook personal computer 7200 has a housing 7211, a keyboard 7212, a pointing device 7213, an external connection port 7214, and the like. A display unit 7000 is built into the housing 7211.
表示部7000に、本発明の一態様の表示装置を適用することができる。 A display device according to one embodiment of the present invention can be applied to the display portion 7000.
図23E及び図23Fに、デジタルサイネージの一例を示す。 Figures 23E and 23F show an example of digital signage.
図23Eに示すデジタルサイネージ7300は、筐体7301、表示部7000、及びスピーカ7303等を有する。さらに、LEDランプ、操作キー(電源スイッチ、または操作スイッチを含む)、接続端子、各種センサ、マイクロフォン等を有することができる。 The digital signage 7300 shown in FIG. 23E has a housing 7301, a display unit 7000, a speaker 7303, and the like. It can also have LED lamps, operation keys (including a power switch or an operation switch), connection terminals, various sensors, a microphone, and the like.
図23Fは円柱状の柱7401に取り付けられたデジタルサイネージ7400である。デジタルサイネージ7400は、柱7401の曲面に沿って設けられた表示部7000を有する。 Figure 23F shows a digital signage 7400 attached to a cylindrical pole 7401. The digital signage 7400 has a display unit 7000 that is provided along the curved surface of the pole 7401.
図23E及び図23Fにおいて、表示部7000に、本発明の一態様の表示装置を適用することができる。 In Figures 23E and 23F, a display device of one embodiment of the present invention can be applied to the display portion 7000.
表示部7000が広いほど、一度に提供できる情報量を増やすことができる。また、表示部7000が広いほど、人の目につきやすく、例えば、広告の宣伝効果を高めることができる。 The larger the display unit 7000, the more information can be provided at one time. Also, the larger the display unit 7000, the more easily it catches people's attention, which can increase the advertising effectiveness of, for example, advertisements.
表示部7000にタッチパネルを適用することで、表示部7000に画像または動画を表示するだけでなく、使用者が直感的に操作することができ、好ましい。また、路線情報もしくは交通情報などの情報を提供するための用途に用いる場合には、直感的な操作によりユーザビリティを高めることができる。 By applying a touch panel to the display unit 7000, not only can images or videos be displayed on the display unit 7000, but the user can also intuitively operate it, which is preferable. Furthermore, when used to provide information such as route information or traffic information, the intuitive operation can improve usability.
また、図23E及び図23Fに示すように、デジタルサイネージ7300またはデジタルサイネージ7400は、使用者が所持するスマートフォン等の情報端末機7311または情報端末機7411と無線通信により連携可能であることが好ましい。例えば、表示部7000に表示される広告の情報を、情報端末機7311または情報端末機7411の画面に表示させることができる。また、情報端末機7311または情報端末機7411を操作することで、表示部7000の表示を切り替えることができる。 Furthermore, as shown in FIG. 23E and FIG. 23F, it is preferable that the digital signage 7300 or the digital signage 7400 can be linked via wireless communication with an information terminal 7311 or an information terminal 7411 such as a smartphone carried by a user. For example, advertising information displayed on the display unit 7000 can be displayed on the screen of the information terminal 7311 or the information terminal 7411. Furthermore, the display on the display unit 7000 can be switched by operating the information terminal 7311 or the information terminal 7411.
また、デジタルサイネージ7300またはデジタルサイネージ7400に、情報端末機7311または情報端末機7411の画面を操作手段(コントローラ)としたゲームを実行させることもできる。これにより、不特定多数の使用者が同時にゲームに参加し、楽しむことができる。 In addition, the digital signage 7300 or the digital signage 7400 can be made to execute a game using the screen of the information terminal 7311 or the information terminal 7411 as an operating means (controller). This allows an unspecified number of users to participate in and enjoy the game at the same time.
図24A乃至図24Gに示す電子機器は、筐体9000、表示部9001、スピーカ9003、操作キー9005(電源スイッチ、または操作スイッチを含む)、接続端子9006、センサ9007(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、においまたは赤外線を検知、検出、または測定する機能を含むもの)、マイクロフォン9008、等を有する。 The electronic device shown in Figures 24A to 24G has a housing 9000, a display unit 9001, a speaker 9003, operation keys 9005 (including a power switch or an operation switch), a connection terminal 9006, a sensor 9007 (including a function to sense, detect, or measure force, displacement, position, speed, acceleration, angular velocity, rotation speed, distance, light, liquid, magnetism, temperature, chemical substance, sound, time, hardness, electric field, current, voltage, power, radiation, flow rate, humidity, gradient, vibration, odor, or infrared light), a microphone 9008, etc.
図24A乃至図24Gにおいて、表示部9001に、本発明の一態様の表示装置を適用することができる。 In Figures 24A to 24G, a display device of one embodiment of the present invention can be applied to the display portion 9001.
図24A乃至図24Gに示す電子機器は、様々な機能を有する。例えば、様々な情報(静止画、動画、テキスト画像など)を表示部に表示する機能、タッチパネル機能、カレンダー、日付または時刻などを表示する機能、様々なソフトウェア(プログラム)によって処理を制御する機能、無線通信機能、記録媒体に記録されているプログラムまたはデータを読み出して処理する機能、等を有することができる。なお、電子機器の機能はこれらに限られず、様々な機能を有することができる。電子機器は、複数の表示部を有していてもよい。また、電子機器にカメラ等を設け、静止画または動画を撮影し、記録媒体(外部またはカメラに内蔵)に保存する機能、撮影した画像を表示部に表示する機能、等を有していてもよい。 The electronic devices shown in Figures 24A to 24G have various functions. For example, they can have a function of displaying various information (still images, videos, text images, etc.) on the display unit, a touch panel function, a function of displaying a calendar, date or time, a function of controlling processing by various software (programs), a wireless communication function, a function of reading and processing programs or data recorded on a recording medium, etc. Note that the functions of the electronic device are not limited to these, and the electronic device can have various functions. The electronic device may have multiple display units. In addition, the electronic device may have a camera or the like to capture still images or videos and store them on a recording medium (external or built into the camera), a function of displaying the captured images on the display unit, etc.
図24A乃至図24Gに示す電子機器の詳細について、以下説明を行う。 The details of the electronic devices shown in Figures 24A to 24G are described below.
図24Aは、携帯情報端末9101を示す斜視図である。携帯情報端末9101は、例えばスマートフォンとして用いることができる。なお、携帯情報端末9101は、スピーカ9003、接続端子9006、センサ9007等を設けてもよい。また、携帯情報端末9101は、文字及び画像情報をその複数の面に表示することができる。図24Aでは3つのアイコン9050を表示した例を示している。また、破線の矩形で示す情報9051を表示部9001の他の面に表示することもできる。情報9051の一例としては、電子メール、SNS、電話などの着信の通知、電子メールまたはSNSなどの題名、送信者名、日時、時刻、バッテリの残量、電波強度などがある。または、情報9051が表示されている位置にはアイコン9050などを表示してもよい。 FIG. 24A is a perspective view showing a mobile information terminal 9101. The mobile information terminal 9101 can be used as, for example, a smartphone. The mobile information terminal 9101 may be provided with a speaker 9003, a connection terminal 9006, a sensor 9007, and the like. The mobile information terminal 9101 can display text and image information on multiple surfaces. FIG. 24A shows an example in which three icons 9050 are displayed. Information 9051 shown in a dashed rectangle can also be displayed on another surface of the display unit 9001. Examples of the information 9051 include notifications of incoming e-mail, SNS, and telephone calls, titles of e-mail or SNS, sender names, date and time, time, remaining battery power, and radio wave strength. Alternatively, icons 9050 and the like may be displayed at the position where the information 9051 is displayed.
図24Bは、携帯情報端末9102を示す斜視図である。携帯情報端末9102は、表示部9001の3面以上に情報を表示する機能を有する。ここでは、情報9052、情報9053、情報9054がそれぞれ異なる面に表示されている例を示す。例えば使用者は、洋服の胸ポケットに携帯情報端末9102を収納した状態で、携帯情報端末9102の上方から観察できる位置に表示された情報9053を確認することもできる。使用者は、携帯情報端末9102をポケットから取り出すことなく表示を確認し、例えば電話を受けるか否かを判断できる。 Figure 24B is a perspective view showing a mobile information terminal 9102. The mobile information terminal 9102 has a function of displaying information on three or more sides of the display unit 9001. Here, an example is shown in which information 9052, information 9053, and information 9054 are displayed on different sides. For example, a user can check information 9053 displayed in a position that can be observed from above the mobile information terminal 9102 while the mobile information terminal 9102 is stored in a breast pocket of clothes. The user can check the display without taking the mobile information terminal 9102 out of the pocket and decide, for example, whether to answer a call.
図24Cは、タブレット端末9103を示す斜視図である。タブレット端末9103は、一例として、移動電話、電子メール、文章閲覧及び作成、音楽再生、インターネット通信、コンピュータゲーム等の種々のアプリケーションの実行が可能である。タブレット端末9103は、筐体9000の正面に表示部9001、カメラ9002、マイクロフォン9008、スピーカ9003を有し、筐体9000の左側面には操作用のボタンとしての操作キー9005、底面には接続端子9006を有する。 Figure 24C is a perspective view showing a tablet terminal 9103. The tablet terminal 9103 is capable of executing various applications such as mobile phone, e-mail, text browsing and creation, music playback, Internet communication, and computer games, for example. The tablet terminal 9103 has a display unit 9001, a camera 9002, a microphone 9008, and a speaker 9003 on the front side of the housing 9000, operation keys 9005 as operation buttons on the left side of the housing 9000, and a connection terminal 9006 on the bottom.
図24Dは、腕時計型の携帯情報端末9200を示す斜視図である。携帯情報端末9200は、例えばスマートウォッチ(登録商標)として用いることができる。また、表示部9001はその表示面が湾曲して設けられ、湾曲した表示面に沿って表示を行うことができる。また、携帯情報端末9200は、例えば無線通信可能なヘッドセットと相互通信することによって、ハンズフリーで通話することもできる。また、携帯情報端末9200は、接続端子9006により、他の情報端末と相互にデータ伝送を行うこと、及び、充電を行うこともできる。なお、充電動作は無線給電により行ってもよい。 Figure 24D is a perspective view showing a wristwatch-type mobile information terminal 9200. The mobile information terminal 9200 can be used as, for example, a smart watch (registered trademark). The display surface of the display unit 9001 is curved, and display can be performed along the curved display surface. The mobile information terminal 9200 can also perform hands-free conversation by communicating with, for example, a headset capable of wireless communication. The mobile information terminal 9200 can also perform data transmission with other information terminals and charge itself through the connection terminal 9006. Note that charging may be performed by wireless power supply.
図24E乃至図24Gは、折り畳み可能な携帯情報端末9201を示す斜視図である。また、図24Eは携帯情報端末9201を展開した状態、図24Gは折り畳んだ状態、図24Fは図24Eと図24Gの一方から他方に変化する途中の状態の斜視図である。携帯情報端末9201は、折り畳んだ状態では可搬性に優れ、展開した状態では継ぎ目のない広い表示領域により表示の一覧性に優れる。携帯情報端末9201が有する表示部9001は、ヒンジ9055によって連結された3つの筐体9000に支持されている。例えば、表示部9001は、曲率半径0.1mm以上150mm以下で曲げることができる。 24E to 24G are perspective views showing a foldable mobile information terminal 9201. FIG. 24E is a perspective view of the mobile information terminal 9201 in an unfolded state, FIG. 24G is a perspective view of the mobile information terminal 9201 in a folded state, and FIG. 24F is a perspective view of the mobile information terminal 9201 in a state in the middle of changing from one of FIG. 24E and FIG. 24G to the other. The mobile information terminal 9201 has excellent portability in a folded state, and has excellent display visibility due to a seamless wide display area in an unfolded state. The display unit 9001 of the mobile information terminal 9201 is supported by three housings 9000 connected by hinges 9055. For example, the display unit 9001 can be bent with a radius of curvature of 0.1 mm or more and 150 mm or less.
本実施の形態は、他の実施の形態と適宜組み合わせることができる。 This embodiment can be combined with other embodiments as appropriate.
100:トランジスタ、100A:表示装置、100B:表示装置、100C:表示装置、100D:表示装置、100E:表示装置、110:画素、110a:副画素、110b:副画素、110c:副画素、110d:副画素、110e:副画素、111:画素電極、113:EL層、113G:EL層、113R:EL層、114:共通層、115:共通電極、124a:画素、124b:画素、125:絶縁層、127:絶縁層、130:発光素子、130B:発光素子、130G:発光素子、130R:発光素子、131:保護層、132G:着色層、132R:着色層、133R:層、137:絶縁層、142:接着層、150:表示モジュール、151:基板、152:基板、200:トランジスタ、205A:導電層、205B:導電層、215:絶縁層、216:絶縁層、220:絶縁層、221:絶縁層、222:絶縁層、223:絶縁層、224:絶縁層、224A:絶縁層、224B:絶縁層、230:酸化物層、230A:酸化物層、230B:酸化物層、240A:導電層、240B:導電層、240C:導電層、240D:導電層、240E:導電層、240F:導電層、240G:導電層、241:絶縁層、242:導電層、242A:導電層、242B:導電層、242C:導電層、242D:導電層、245:導電層、246:導電層、250:絶縁層、250f:絶縁層、255:絶縁層、260:導電層、260a:導電層、260b:導電層、260f:導電層、265:導電層、271:絶縁層、271A:絶縁層、271B:絶縁層、271C:絶縁層、271D:絶縁層、275:絶縁層、280:絶縁層、282:絶縁層、283:絶縁層、284:絶縁層、285:絶縁層、286:絶縁層、287:絶縁層、288:絶縁層、290:FPC、291:基板、292:回路部、293:画素回路部、293a:画素回路、294:画素部、294a:画素、295:端子部、296:配線部、297:表示部、299:基板、300:トランジスタ、301:基板、311:導電層、312:低抵抗領域、313:絶縁層、314:絶縁層、315:素子分離層、316:絶縁層、317:絶縁層、341:開口、343:開口、345:開口、346:開口、411:ゲート線駆動回路、413:ソース線駆動回路、415:電源回路、430:副画素回路、430B:副画素回路、430G:副画素回路、430R:副画素回路、441:配線、443:配線、445:配線、447:配線、451:トランジスタ、452:トランジスタ、457:容量、457b:容量、700A:電子機器、700B:電子機器、721:筐体、723:装着部、727:イヤフォン部、750:イヤフォン、751:表示パネル、753:光学部材、756:表示領域、757:フレーム、758:鼻パッド、761:下部電極、762:上部電極、763:EL層、763a:発光ユニット、763b:発光ユニット、763c:発光ユニット、764:層、771:発光層、771a:発光層、771b:発光層、771c:発光層、772:発光層、772a:発光層、772b:発光層、772c:発光層、773:発光層、780:層、780a:層、780b:層、780c:層、781:層、782:層、785:電荷発生層、790:層、790a:層、790b:層、790c:層、791:層、792:層、800A:電子機器、800B:電子機器、820:表示部、821:筐体、822:通信部、823:装着部、824:制御部、825:撮像部、827:イヤフォン部、832:レンズ、6500:電子機器、6501:筐体、6502:表示部、6503:電源ボタン、6504:ボタン、6505:スピーカ、6506:マイク、6507:カメラ、6508:光源、6510:保護部材、6511:表示パネル、6512:光学部材、6513:タッチセンサパネル、6515:FPC、6516:IC、6517:プリント基板、6518:バッテリ、7000:表示部、7100:テレビジョン装置、7101:筐体、7103:スタンド、7111:リモコン操作機、7200:ノート型パーソナルコンピュータ、7211:筐体、7212:キーボード、7213:ポインティングデバイス、7214:外部接続ポート、7300:デジタルサイネージ、7301:筐体、7303:スピーカ、7311:情報端末機、7400:デジタルサイネージ、7401:柱、7411:情報端末機、9000:筐体、9001:表示部、9002:カメラ、9003:スピーカ、9005:操作キー、9006:接続端子、9007:センサ、9008:マイクロフォン、9050:アイコン、9051:情報、9052:情報、9053:情報、9054:情報、9055:ヒンジ、9101:携帯情報端末、9102:携帯情報端末、9103:タブレット端末、9200:携帯情報端末、9201:携帯情報端末 100: transistor, 100A: display device, 100B: display device, 100C: display device, 100D: display device, 100E: display device, 110: pixel, 110a: sub-pixel, 110b: sub-pixel, 110c: sub-pixel, 110d: sub-pixel, 110e: sub-pixel, 111: pixel electrode, 113: EL layer, 113G: EL layer, 113R: EL layer, 114: common layer, 115: common electrode, 124a: pixel, 124b: pixel, 125: insulating layer, 127: insulating layer, 130: light-emitting element, 130B: light-emitting element, 130G: light-emitting element, 130R: light-emitting element, 131: protective layer, 132G: colored layer, 132R: Colored layer, 133R: layer, 137: insulating layer, 142: adhesive layer, 150: display module, 151: substrate, 152: substrate, 200: transistor, 205A: conductive layer, 205B: conductive layer, 215: insulating layer, 216: insulating layer, 220: insulating layer, 221: insulating layer, 222: insulating layer, 223: insulating layer, 224: insulating layer, 224A: insulating layer, 224B: insulating layer, 230: oxide layer, 230A: oxide layer, 230B: oxide layer, 240A: conductive layer, 240B: conductive layer, 240C: conductive layer, 240D: conductive layer, 240E: conductive layer, 240F: conductive layer, 240G: conductive layer, 241: insulating layer, 242: Conductive layer, 242A: conductive layer, 242B: conductive layer, 242C: conductive layer, 242D: conductive layer, 245: conductive layer, 246: conductive layer, 250: insulating layer, 250f: insulating layer, 255: insulating layer, 260: conductive layer, 260a: conductive layer, 260b: conductive layer, 260f: conductive layer, 265: conductive layer, 271: insulating layer, 271A: insulating layer, 271B: insulating layer, 271C: insulating layer, 271D: insulating layer, 275: insulating layer, 280: insulating layer, 282: insulating layer, 283: insulating layer, 284: insulating layer, 285: insulating layer, 286: insulating layer, 287: insulating layer, 288: insulating layer, 290: FPC, 291: substrate, 292: circuit Path portion, 293: pixel circuit portion, 293a: pixel circuit, 294: pixel portion, 294a: pixel, 295: terminal portion, 296: wiring portion, 297: display portion, 299: substrate, 300: transistor, 301: substrate, 311: conductive layer, 312: low resistance region, 313: insulating layer, 314: insulating layer, 315: element isolation layer, 316: insulating layer, 317: insulating layer, 341: opening, 343: opening, 345: opening, 346: opening, 411: gate line driving circuit, 413: source line driving circuit, 415: power supply circuit, 430: sub-pixel circuit, 430B: sub-pixel circuit, 430G: sub-pixel circuit, 430R: sub-pixel circuit, 441: wiring , 443: wiring, 445: wiring, 447: wiring, 451: transistor, 452: transistor, 457: capacitance, 457b: capacitance, 700A: electronic device, 700B: electronic device, 721: housing, 723: mounting part, 727: earphone part, 750: earphone, 751: display panel, 753: optical member, 756: display area, 757: frame, 758: nose pad, 761: lower electrode, 762: upper electrode, 763: EL layer, 763a: light emitting unit, 763b: light emitting unit, 763c: light emitting unit, 764: layer, 771: light emitting layer, 771a: light emitting layer, 771b: light emitting layer, 771c: Light-emitting layer, 772: light-emitting layer, 772a: light-emitting layer, 772b: light-emitting layer, 772c: light-emitting layer, 773: light-emitting layer, 780: layer, 780a: layer, 780b: layer, 780c: layer, 781: layer, 782: layer, 785: charge generating layer, 790: layer, 790a: layer, 790b: layer, 790c: layer, 791: layer, 792: layer, 800A: electronic device, 800B: electronic device, 820: display unit, 821: housing, 822: communication unit, 823: mounting unit, 824: control unit, 825: imaging unit, 827: earphone unit, 832: lens, 6500: electronic device, 6501: housing, 6502: display unit, 6503: power button, 6 504: button, 6505: speaker, 6506: microphone, 6507: camera, 6508: light source, 6510: protective member, 6511: display panel, 6512: optical member, 6513: touch sensor panel, 6515: FPC, 6516: IC, 6517: printed circuit board, 6518: battery, 7000: display unit, 7100: television device, 7101: housing, 7103: stand, 7111: remote control device, 7200: notebook personal computer, 7211: housing, 7212: keyboard, 7213: pointing device, 7214: external connection port, 7300: digital digital signage, 7301: housing, 7303: speaker, 7311: information terminal, 7400: digital signage, 7401: pillar, 7411: information terminal, 9000: housing, 9001: display, 9002: camera, 9003: speaker, 9005: operation keys, 9006: connection terminal, 9007: sensor, 9008: microphone, 9050: icon, 9051: information, 9052: information, 9053: information, 9054: information, 9055: hinge, 9101: mobile information terminal, 9102: mobile information terminal, 9103: tablet terminal, 9200: mobile information terminal, 9201: mobile information terminal

Claims (20)

  1.  第1のトランジスタと、第2のトランジスタと、第1の絶縁層と、を有し、
     前記第1のトランジスタは、第1の導電層と、前記第1の導電層上の第2の絶縁層と、前記第1の導電層上及び前記第2の絶縁層上の第1の酸化物層と、前記第1の酸化物層上の第2の導電層と、前記第1の酸化物層上の第3の絶縁層と、前記第3の絶縁層上の第3の導電層と、を有し、
     前記第2の絶縁層は、前記第1の導電層と重なる第1の開口を有し、
     前記第1の酸化物層は、前記第1の導電層上において前記第1の導電層と重畳する第1の領域と、前記第2の絶縁層の前記第1の開口の側面を覆う第2の領域と、前記第2の絶縁層上に位置し、前記第2の導電層に上面を覆われる第3の領域と、を有し、
     前記第3の絶縁層、及び前記第3の導電層はそれぞれ、前記第2の絶縁層の前記第1の開口の内側に位置する領域を有し、
     前記第2のトランジスタは、前記第2の絶縁層上の第2の酸化物層と、前記第2の酸化物層上の第4の導電層及び第5の導電層と、前記第2の酸化物層上の第4の絶縁層と、前記第4の絶縁層上の第6の導電層と、を有し、
     前記第2の酸化物層は、前記第4の導電層と重なる第4の領域と、前記第5の導電層と重なる第5の領域と、前記第3の領域と前記第4の領域の間に位置する第6の領域と、を有し、
     前記第1の絶縁層は、前記第2の導電層上、前記第4の導電層上、及び前記第5の導電層上に位置し、
     前記第1の絶縁層は、前記第1の導電層と重なる第2の開口と、前記第6の領域と重なる第3の開口と、を有し、
     前記第3の絶縁層及び前記第3の導電層はそれぞれ、前記第2の開口の内側に位置する領域を有し、
     前記第4の絶縁層及び前記第6の導電層はそれぞれ、前記第1の絶縁層の前記第3の開口の内側に位置する領域を有する半導体装置。
    a first transistor, a second transistor, and a first insulating layer;
    the first transistor has a first conductive layer, a second insulating layer on the first conductive layer, a first oxide layer on the first conductive layer and on the second insulating layer, a second conductive layer on the first oxide layer, a third insulating layer on the first oxide layer, and a third conductive layer on the third insulating layer;
    the second insulating layer has a first opening overlapping the first conductive layer;
    the first oxide layer has a first region on the first conductive layer and overlapping with the first conductive layer, a second region covering a side surface of the first opening in the second insulating layer, and a third region located on the second insulating layer and having an upper surface covered by the second conductive layer;
    the third insulating layer and the third conductive layer each have a region located inside the first opening of the second insulating layer;
    the second transistor has a second oxide layer on the second insulating layer, a fourth conductive layer and a fifth conductive layer on the second oxide layer, a fourth insulating layer on the second oxide layer, and a sixth conductive layer on the fourth insulating layer;
    the second oxide layer has a fourth region overlapping the fourth conductive layer, a fifth region overlapping the fifth conductive layer, and a sixth region located between the third region and the fourth region;
    the first insulating layer is located on the second conductive layer, on the fourth conductive layer, and on the fifth conductive layer;
    the first insulating layer has a second opening overlapping the first conductive layer and a third opening overlapping the sixth region;
    the third insulating layer and the third conductive layer each have a region located inside the second opening,
    The fourth insulating layer and the sixth conductive layer each have a region located inside the third opening of the first insulating layer.
  2.  請求項1において、
     前記第1の酸化物層の前記第1の領域における膜厚は、前記第1の酸化物層の前記第3の領域における膜厚の0.7倍以上1.3倍以下である半導体装置。
    In claim 1,
    A semiconductor device, wherein the thickness of the first oxide layer in the first region is 0.7 to 1.3 times the thickness of the first oxide layer in the third region.
  3.  請求項1において、
     前記第2の絶縁層上に、第5の絶縁層と、第6の絶縁層と、を有し、
     前記第5の絶縁層は、前記第1の開口と上面形状が一致、または概略一致する第4の開口を有し、
     前記第1の酸化物層は、前記第5の絶縁層上に位置する領域と、前記第5の絶縁層の前記第4の開口の側面を覆う領域と、を有し、
     前記第5の絶縁層の側端部は、前記第1の酸化物層の側端部と一致または概略一致する領域を有し、
     前記第3の絶縁層及び前記第3の導電層はそれぞれ、前記第5の絶縁層の前記第4の開口の内側に位置する領域を有し、
     前記第2の酸化物層は、前記第6の絶縁層上に位置し、
     前記第6の絶縁層の側端部は、前記第2の酸化物層の側端部と一致または概略一致する領域を有する半導体装置。
    In claim 1,
    a fifth insulating layer and a sixth insulating layer on the second insulating layer;
    the fifth insulating layer has a fourth opening whose top surface shape coincides or substantially coincides with that of the first opening;
    the first oxide layer has a region located on the fifth insulating layer and a region covering a side surface of the fourth opening of the fifth insulating layer;
    a side edge of the fifth insulating layer has an area that coincides or approximately coincides with a side edge of the first oxide layer;
    the third insulating layer and the third conductive layer each have a region located inside the fourth opening of the fifth insulating layer;
    the second oxide layer overlies the sixth insulating layer;
    A semiconductor device, wherein a side edge of the sixth insulating layer has a region that coincides or approximately coincides with a side edge of the second oxide layer.
  4.  請求項3において、
     前記第2の絶縁層は、窒化シリコン膜、窒化酸化シリコン膜、及び酸化ハフニウム膜の一以上を有し、
     前記第5の絶縁層及び前記第6の絶縁層はともに、酸化シリコン膜及び酸化窒化シリコン膜から選ばれる一である半導体装置。
    In claim 3,
    the second insulating layer includes at least one of a silicon nitride film, a silicon oxynitride film, and a hafnium oxide film;
    The fifth insulating layer and the sixth insulating layer are both selected from a silicon oxide film and a silicon oxynitride film.
  5.  請求項3において、
     前記第2の絶縁層は、窒化シリコン膜及び窒化酸化シリコン膜のいずれか一と、
     前記窒化シリコン膜及び前記窒化酸化シリコン膜のいずれか一の上層の酸化ハフニウム膜と、を有し、
     前記第5の絶縁層及び前記第6の絶縁層はともに、酸化シリコン膜及び酸化窒化シリコン膜から選ばれる一である半導体装置。
    In claim 3,
    The second insulating layer is any one of a silicon nitride film and a silicon oxynitride film,
    a hafnium oxide film over one of the silicon nitride film and the silicon nitride oxide film;
    The fifth insulating layer and the sixth insulating layer are both selected from a silicon oxide film and a silicon oxynitride film.
  6.  請求項1において、
     前記第1の絶縁層が有する前記第2の開口の側壁は、前記第2の絶縁層が有する前記第1の開口の側壁よりも外側に位置する領域を有する半導体装置。
    In claim 1,
    A semiconductor device, wherein a sidewall of the second opening in the first insulating layer has a region located outside a sidewall of the first opening in the second insulating layer.
  7.  請求項1において、
     前記第2の導電層は、前記第1の導電層と重なる領域に第4の開口を有し、
     前記第3の絶縁層及び前記第3の導電層はそれぞれ、前記第4の開口の内側に設けられる領域を有する半導体装置。
    In claim 1,
    the second conductive layer has a fourth opening in a region overlapping with the first conductive layer;
    The third insulating layer and the third conductive layer each have a region provided inside the fourth opening.
  8.  請求項7において、
     前記第2の導電層が有する前記第4の開口の側壁は、前記第2の絶縁層が有する前記第1の開口の側壁よりも外側に位置する領域を有する半導体装置。
    In claim 7,
    The semiconductor device, wherein a sidewall of the fourth opening of the second conductive layer has a region located outside a sidewall of the first opening of the second insulating layer.
  9.  請求項1において、
     前記第1の導電層は、凹部を有し、
     前記第1の酸化物層の少なくとも一部は、前記凹部内に設けられる半導体装置。
    In claim 1,
    the first conductive layer has a recess;
    At least a portion of the first oxide layer is provided within the recess.
  10.  請求項1において、
     前記第1の酸化物層の前記第1の領域は、前記第1の導電層の上面と接する半導体装置。
    In claim 1,
    The first region of the first oxide layer is in contact with an upper surface of the first conductive layer.
  11.  請求項1において、
     前記第2の導電層は、前記第1の酸化物層の前記第3の領域の上面と接する半導体装置。
    In claim 1,
    The second conductive layer is in contact with an upper surface of the third region of the first oxide layer.
  12.  請求項1において、
     前記第2のトランジスタは、第7の導電層を有し、
     前記第2の酸化物層は、前記第2の絶縁層を間に挟んで、前記第7の導電層と少なくとも一部が重なるように配置される半導体装置。
    In claim 1,
    the second transistor has a seventh conductive layer;
    The second oxide layer is disposed so as to at least partially overlap the seventh conductive layer with the second insulating layer sandwiched therebetween.
  13.  請求項1乃至請求項12のいずれか一に記載の半導体装置と、発光素子と、を有し、
     前記発光素子の発光輝度は、前記第1のトランジスタ及び前記第2のトランジスタの少なくとも一により、制御される表示装置。
    A semiconductor device according to any one of claims 1 to 12, and a light emitting element,
    A display device in which the light emission luminance of the light emitting element is controlled by at least one of the first transistor and the second transistor.
  14.  請求項1乃至請求項12のいずれか一に記載の半導体装置と、発光素子と、を有し、
     前記半導体装置は、チャネル形成領域にシリコンを有する第3のトランジスタを有し、
     前記発光素子の発光輝度は、前記第1のトランジスタ及び前記第2のトランジスタの少なくとも一により、制御され、
     前記第3のトランジスタを含む第1の層と、前記第1の層上に位置し、前記第1のトランジスタ及び前記第2のトランジスタを含む第2の層と、前記第2の層上に位置し、前記発光素子を含む第3の層と、を有する表示装置。
    A semiconductor device according to any one of claims 1 to 12, and a light emitting element,
    the semiconductor device includes a third transistor having silicon in a channel formation region;
    the light emission luminance of the light emitting element is controlled by at least one of the first transistor and the second transistor;
    A display device comprising: a first layer including the third transistor; a second layer located on the first layer and including the first transistor and the second transistor; and a third layer located on the second layer and including the light-emitting element.
  15.  請求項1乃至請求項12のいずれか一に記載の半導体装置と、発光素子と、コネクタ及び集積回路のうち少なくとも一方と、を有し、
     前記発光素子の発光輝度は、前記第1のトランジスタ及び前記第2のトランジスタの少なくとも一により、制御される表示モジュール。
    A semiconductor device comprising: a semiconductor device according to any one of claims 1 to 12; a light-emitting element; and at least one of a connector and an integrated circuit;
    A display module, wherein the light emission luminance of the light emitting element is controlled by at least one of the first transistor and the second transistor.
  16.  請求項1乃至請求項12のいずれか一に記載の半導体装置と、発光素子と、コネクタ及び集積回路のうち少なくとも一方と、筐体、バッテリ、カメラ、スピーカ、及びマイクのうち少なくとも一つと、を有し、
     前記発光素子の発光輝度は、前記第1のトランジスタ及び前記第2のトランジスタの少なくとも一により、制御される電子機器。
    A semiconductor device comprising: the semiconductor device according to claim 1; a light-emitting element; at least one of a connector and an integrated circuit; and at least one of a housing, a battery, a camera, a speaker, and a microphone;
    The electronic device wherein the light emission luminance of the light emitting element is controlled by at least one of the first transistor and the second transistor.
  17.  第1の導電層及び第2の導電層を形成し、
     前記第1の導電層上、及び前記第2の導電層上に第1の絶縁層を形成し、
     前記第1の絶縁層の一部を除去することにより、前記第1の絶縁層において前記第1の導電層と重なる領域に第1の開口を形成し、
     前記第1の導電層において、前記第1の絶縁層に覆われない領域のハーフエッチングを行い、
     前記第1の導電層上、前記第2の導電層上、及び前記第1の絶縁層上に第1の酸化物層を形成し、
     前記第1の酸化物層は、前記第1の絶縁層の前記第1の開口の側面を覆う領域を有し、
     前記第1の酸化物層上に、第3の導電層を形成し、
     前記第3の導電層の一部を除去することにより、第4の導電層、及び第5の導電層を形成し、
     前記第4の導電層をマスクとして前記第1の酸化物層の一部を除去して第2の酸化物層を形成し、
     前記第5の導電層をマスクとして前記第1の酸化物層の一部を除去して第3の酸化物層を形成し、
     前記第2の酸化物層上、及び前記第3の酸化物層上に第2の絶縁層を形成し、
     前記第2の絶縁層の一部を除去することにより、前記第2の絶縁層に第2の開口、及び第3の開口を形成し、
     前記第4の導電層において、前記第2の絶縁層の前記第2の開口と重なる領域を除去し、
     前記第5の導電層において、前記第2の絶縁層の前記第3の開口と重なる領域を除去することにより、第6の導電層、及び第7の導電層を形成し、
     前記第2の酸化物層上、前記第3の酸化物層上、及び前記第2の絶縁層上に、第3の絶縁層を形成し、
     前記第3の絶縁層は、前記第2の絶縁層の前記第2の開口の側面を覆う領域と、前記第2の絶縁層の前記第3の開口の側面を覆う領域と、を有し、
     前記第3の絶縁層上に第8の導電層を形成し、
     化学的機械研磨を用いて前記第8の導電層の一部を除去することにより、前記第2の酸化物層上の第9の導電層と、前記第3の酸化物層上の第10の導電層と、を形成する半導体装置の作製方法。
    forming a first conductive layer and a second conductive layer;
    forming a first insulating layer on the first conductive layer and on the second conductive layer;
    removing a portion of the first insulating layer to form a first opening in a region of the first insulating layer overlapping with the first conductive layer;
    performing half-etching of a region of the first conductive layer that is not covered by the first insulating layer;
    forming a first oxide layer on the first conductive layer, on the second conductive layer, and on the first insulating layer;
    the first oxide layer has a region covering a side surface of the first opening of the first insulating layer;
    forming a third conductive layer on the first oxide layer;
    forming a fourth conductive layer and a fifth conductive layer by removing a portion of the third conductive layer;
    removing a portion of the first oxide layer using the fourth conductive layer as a mask to form a second oxide layer;
    removing a portion of the first oxide layer using the fifth conductive layer as a mask to form a third oxide layer;
    forming a second insulating layer on the second oxide layer and on the third oxide layer;
    forming a second opening and a third opening in the second insulating layer by removing a portion of the second insulating layer;
    removing a region of the fourth conductive layer that overlaps with the second opening of the second insulating layer;
    removing a region of the fifth conductive layer that overlaps with the third opening of the second insulating layer to form a sixth conductive layer and a seventh conductive layer;
    forming a third insulating layer on the second oxide layer, on the third oxide layer, and on the second insulating layer;
    the third insulating layer has a region covering a side surface of the second opening of the second insulating layer and a region covering a side surface of the third opening of the second insulating layer,
    forming an eighth conductive layer on the third insulating layer;
    A method for manufacturing a semiconductor device, comprising the steps of: removing a portion of the eighth conductive layer by chemical mechanical polishing to form a ninth conductive layer on the second oxide layer and a tenth conductive layer on the third oxide layer.
  18.  請求項17において、
     前記第1の導電層の、前記第1の絶縁層に覆われない領域において行われる前記ハーフエッチングにより、前記第1の導電層に凹部が形成され、
     前記第1の酸化物層は、前記凹部内に形成される領域を有する、半導体装置の作製方法。
    In claim 17,
    a recess is formed in the first conductive layer by the half etching performed in a region of the first conductive layer that is not covered with the first insulating layer;
    The first oxide layer has a region formed within the recess.
  19.  請求項17において、
     前記第4の導電層において、前記第2の絶縁層の前記第2の開口と重なる領域を除去することにより、前記第4の導電層に第4の開口が設けられ、
     前記第3の絶縁層は、前記第4の導電層の前記第4の開口の側面を覆う領域を有する半導体装置の作製方法。
    In claim 17,
    a fourth opening is provided in the fourth conductive layer by removing a region of the fourth conductive layer that overlaps with the second opening of the second insulating layer;
    A method for manufacturing a semiconductor device, wherein the third insulating layer has a region covering a side surface of the fourth opening of the fourth conductive layer.
  20.  請求項17において、
     前記第3の導電層は、原子層堆積法を用いて形成される半導体装置の作製方法。
    In claim 17,
    The method for manufacturing a semiconductor device, wherein the third conductive layer is formed by using an atomic layer deposition method.
PCT/IB2024/050781 2023-02-03 2024-01-29 Semiconductor device, display device, display module, electronic apparatus, and method for manufacturing semiconductor device WO2024161267A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023015403 2023-02-03
JP2023-015403 2023-02-03

Publications (1)

Publication Number Publication Date
WO2024161267A1 true WO2024161267A1 (en) 2024-08-08

Family

ID=92145887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2024/050781 WO2024161267A1 (en) 2023-02-03 2024-01-29 Semiconductor device, display device, display module, electronic apparatus, and method for manufacturing semiconductor device

Country Status (1)

Country Link
WO (1) WO2024161267A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016149552A (en) * 2015-02-11 2016-08-18 株式会社半導体エネルギー研究所 Semiconductor device, and manufacturing method for the same
JP2017139276A (en) * 2016-02-02 2017-08-10 株式会社ジャパンディスプレイ Semiconductor device
US20200091263A1 (en) * 2018-09-17 2020-03-19 Boe Technology Group Co., Ltd. Array substrate and manufacturing method thereof, and dislay device
EP3806151A1 (en) * 2019-10-08 2021-04-14 Imec VZW Thin-film transistor architecture for high resolution displays

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016149552A (en) * 2015-02-11 2016-08-18 株式会社半導体エネルギー研究所 Semiconductor device, and manufacturing method for the same
JP2017139276A (en) * 2016-02-02 2017-08-10 株式会社ジャパンディスプレイ Semiconductor device
US20200091263A1 (en) * 2018-09-17 2020-03-19 Boe Technology Group Co., Ltd. Array substrate and manufacturing method thereof, and dislay device
EP3806151A1 (en) * 2019-10-08 2021-04-14 Imec VZW Thin-film transistor architecture for high resolution displays

Similar Documents

Publication Publication Date Title
JP2024019141A (en) Semiconductor device and manufacturing method for semiconductor device
WO2024161267A1 (en) Semiconductor device, display device, display module, electronic apparatus, and method for manufacturing semiconductor device
WO2024121699A1 (en) Semiconductor device, display device, display module, and electronic equipment
WO2024154035A1 (en) Semiconductor device, display device, display module, and electronic equipment
WO2024042408A1 (en) Semiconductor device
US20240054955A1 (en) Display device
WO2024057168A1 (en) Semiconductor device
US20230120875A1 (en) Display Device, Display Module, Electronic Device, And Method For Manufacturing Display Device
WO2023187543A1 (en) Display device
US20240268180A1 (en) Display apparatus, display module, electronic device, and fabrication method of display apparatus
WO2023073481A1 (en) Display device and method for producing display device
WO2023057851A1 (en) Display device and method for producing display device
WO2023203429A1 (en) Semiconductor device and display device
WO2024134444A1 (en) Semiconductor device and method for manufacturing semiconductor device
WO2024157122A1 (en) Semiconductor device
WO2024201263A1 (en) Semiconductor device and method for manufacturing semiconductor device
WO2022248962A1 (en) Display device, display module, and electronic apparatus
WO2024134442A1 (en) Semiconductor device
WO2023218280A1 (en) Semiconductor device and method for producing semiconductor device
US20240365602A1 (en) Display Apparatus, Display Module, Electronic Device, And Method For Manufacturing Display Apparatus
US20240074240A1 (en) Method for manufacturing display device, display device, display module, and electronic device
WO2023089443A1 (en) Display device and method for producing display device
WO2023228004A1 (en) Semiconductor device
WO2024116030A1 (en) Semiconductor device and method for manufacturing semiconductor device
US20240224616A1 (en) Display Apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24749799

Country of ref document: EP

Kind code of ref document: A1