WO2024158277A1 - Thermophotovoltaic solar panel with thermal battery, and applications thereof - Google Patents

Thermophotovoltaic solar panel with thermal battery, and applications thereof Download PDF

Info

Publication number
WO2024158277A1
WO2024158277A1 PCT/MX2024/050005 MX2024050005W WO2024158277A1 WO 2024158277 A1 WO2024158277 A1 WO 2024158277A1 MX 2024050005 W MX2024050005 W MX 2024050005W WO 2024158277 A1 WO2024158277 A1 WO 2024158277A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar
thermal battery
thermal
radiation
energy
Prior art date
Application number
PCT/MX2024/050005
Other languages
Spanish (es)
French (fr)
Inventor
Edgar Nahum Rodriguez Gonzalez
Original Assignee
Edgar Nahum Rodriguez Gonzalez
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Edgar Nahum Rodriguez Gonzalez filed Critical Edgar Nahum Rodriguez Gonzalez
Publication of WO2024158277A1 publication Critical patent/WO2024158277A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/052Cooling means directly associated or integrated with the PV cell, e.g. integrated Peltier elements for active cooling or heat sinks directly associated with the PV cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S10/00PV power plants; Combinations of PV energy systems with other systems for the generation of electric power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • thermal energy storage systems that allow storing solar energy or other sources of heat energy. These storage systems, unlike lithium, lead or chemical batteries, are capable of lasting much longer. In the need to look for alternatives to the generation of electrical energy from sustainable sources, humanity is in need of looking for alternatives to energy storage. Now different technologies have been developed for the accumulation of renewable energy and among them is storing it in the form of heat either in sand, steel blocks, as hot air, among others.
  • the invention presented here is in the field of the invention of thermal storage of solar energy or other energy sources.
  • the system can also be used as an emitter to be used in a second stage by various systems.
  • This type of system can be used both for the production of electrical energy, as well as for water purification and the removal of CO2 from the environment.
  • the fields of this invention are in water purification, in the field of energy storage, it is also found in the production of electrical energy, the manufacture of hydrogen and in the creation of solar fuels.
  • Patents such as CN109847660 use evaporation as a water purification method.
  • this type of system does not use the electronic cloud of graphene for purification, that is, it depends on heating the water to more than 100°C to carry out the disinfection process.
  • heat systems that perform a water disinfection function.
  • solar systems that increase the temperature, but they do not use nanoparticles to take advantage of disinfection by photocatalysis or by graphene oxide or functionalized graphene.
  • patent MX/u/2020/000126 uses steel or ceramic sheets for storage, however, this plate is not used as an emitter or as a work surface, in addition to that more than 80% of the energy is wasted. As in other thermal storage projects, electromagnetic emission is not used to increase the area and take advantage of the energy that is normally wasted in thermal energy systems.
  • the invention consists of a receiver for heat energy, whether solar energy, electromagnetic energy such as microwave waves, atomic energy, electrical systems, industrial processes with thermal energy, or any other form of heat generation.
  • the receiver has a photovoltaic or other technology solar cell and can also have a coating of graphene oxide nanoparticles, graphene functionalized with atoms of copper, silver, chlorine, platinum, gold.
  • other nanoparticles can be placed such as titanium dioxide, zinc oxide, copper, silver that interact with specific wavelengths of the solar spectrum.
  • On the back of the receiver there is another receiver that will take advantage of the heat that is normally wasted in the rest of the systems. With this you can have different applications such as water purification, air purification, transformation of CO2 into CO monoxide for generation of solar fuels and generation of electrical energy.
  • Figure 1 is the side view of all the surfaces used in the solar thermal panel. It is an exploded and separated view of each of the components, with multiple stages of energy generation or water purification. It is a bifacial system that allows the absorption of solar radiation from both the top and bottom.
  • Figure 2 is the side view with a single power generation stage with a bifacial system. It is also an exploded view of each of the surfaces.
  • Figure 3 is the side view of each of the surfaces for a monofacial system. It is the exploded view of all surfaces.
  • Figure 4 is the side view of all surfaces for a monofacial system with a pipe for the system cooling system. It is an exploded diagram of the solar thermal panel.
  • Figure 5 is the side view of a hybrid system where there is electricity generation and water purification or the transformation of CO2 to carbon monoxide, all simultaneously.
  • Figure 6 is the side view of the detail to place a photovoltaic cell and a water or air pipe for water or air purification, simultaneously. Detailed description of the invention
  • Solar radiation will heat the surface (2) to a temperature of between 30 degrees Celsius and more than 800 degrees Celsius, emitting mainly only in the infrared range. Once this surface is hot when it is in contact with the thermal battery (5), it will heat up to the same temperature.
  • the thermal battery (5) will become an emitter of infrared radiation mainly and a radiation receiver (4) will function as an infrared solar cell that will transform electromagnetic radiation into electricity. Since the heat cannot escape thanks to the selective paints on the surface (2), it will continue to generate electricity during the day and night until all the energy stored in thermal form is transformed into electricity by the radiation receiver (4).
  • the solar panel will be able to produce electrical energy also at night, thanks to its thermal battery.
  • the total efficiency of the system should be between 70% to 90% considering losses due to radiation, convection and optical losses from the surfaces.
  • the thermal battery (5) will be heated by solar radiation, by linear or parabolic concentrated solar radiation, by electrical energy, by nuclear energy, by fire or any other type of heat energy.
  • the solar thermal panel works as follows: a transparent element (1) which is glass, tempered glass, acrylic, polycarbonate, translucent plastic or some other type of transparent material allows solar radiation to pass through the upper part.
  • the radiation will heat a solar receiver (2) which is made of aluminum, copper, ceramic materials, composite materials or any heat-conducting material and will be coated with a selective solar paint to increase the surface temperature as much as possible.
  • This sheet (2) will be coupled with a second intermediate sheet (3) that can avoid a galvanic cell between the sheet (2) and the thermal battery (5).
  • the sheet (3) is made of stainless steel, a ceramic material or any other material that allows heat transfer, but prevents galvanic pairing between the materials.
  • the thermal battery (5) is a plate of iron, carbon steel, stainless steel, aluminum, a metal alloy, a ceramic material, a compound, a gas, or a liquid that stores the sun's energy.
  • the thermal battery (5) has three main functions; It is a receiver of solar radiation, it is also energy storage and finally it emits energy.
  • the thermal battery (5) is a metal plate or a rectangular structure that is hollow and in the center will have a radiation receiver (4) that transforms the radiation from the thermal battery (5) into electricity.
  • the radiation receiver (4) is a solar cell that transforms the radiation from the thermal battery (5) into electricity.
  • the radiation receiver (4) in one of its modalities is a thin film solar cell with graphene oxide, carbon nanotubes, semiconductor materials, functionalized nanomaterials, nanodots and other 2D or 3D nanostructures that allow the transformation of radiation into electricity. It is a semi-transparent cell so it will partially allow radiation to pass through.
  • the radiation receiver (4) is a sheet or a plurality of sheets. As there are several cells (4) it will allow the radiation to be transformed more quickly.
  • the radiation receiver (4) is a cell that has an active surface on the upper part or, in another of its embodiments, has an active surface on both sides, thus being a bifacial cell.
  • the thermal battery (5) being a rectangular structure, emits radiation on all its surfaces, allowing heat to be transformed more quickly into electricity.
  • the structure of the thermal battery (5) with the radiation receiver (4) in one of its modalities is repeated a plurality of times having several thermal batteries (5a) and several radiation receivers (4a) to thus increase the emission area and the volume of the thermal battery, increasing both the generation of electrical energy and the storage capacity.
  • a separator plate (7) is again repeated that prevents the galvanic cell between the thermal battery (5a) and the sheet with the solar coating (8).
  • the separator plate (7) has the same physical characteristics as the sheet (3) and the sheet (8) likewise has the same characteristics as the sheet (2).
  • the transparent surface (9) allows light to pass through and has the same physical characteristics as the sheet (1).
  • the surfaces of the thermal batteries (5) and (5a) are designed to protect the solar receivers (4) and (4a). By designing how much energy they emit, the solar receivers (4) and (4a) will not overheat, thus increasing their lifespan.
  • the emissivity coefficient, as well as the absorption and reflection coefficients of the surfaces of the batteries (5) and (5a) are adjusted to emit less radiation than the radiation receivers (4) and (4a) will be able to withstand. Unlike traditional solar panels that are exposed to the sun, this innovation will extend the service of the solar cells used by receiving less energy that damages the surface.
  • FIG 2 shows one of the system modalities with a single thermal battery (5) and a single receiving cell (4).
  • This solar panel is also a bifacial panel, since it allows the reception of diffuse or indirect solar energy through the bottom part of the panel. The diffuse energy and also the indirect radiation will pass through the surface (9) as in the case of the solar panel modality of Figure (1).
  • FIG 3 shows the modality for a solar panel that only allows direct sunlight from the top. In this mode, the option of receiving diffuse or indirect energy from the bottom is eliminated and solar radiation will enter from the top through the transparent surface (1).
  • the solar panel is within a structure not shown that contains all surfaces of the panel. To avoid heat loss, all surfaces are thermally insulated with a thermal insulator or will be in a vacuum to avoid heat transfer to the outside. At night there is the possibility of placing a thermal insulator on the transparent surface (1) and on the transparent surface (9) to prevent heat leakage by convection towards the environment and thus increase the efficiency of the system.
  • FIG 4 shows a modality for the panel cooling system.
  • the thermal battery (5) can heat up to more than 800 degrees, which is why it is important to have cooling systems in the system.
  • a circular or rectangular cooling tube (10) will be in contact with the thermal battery (5) and a coolant is passed through the tube (10), which is water, air or some other fluid or salt. that I cooled the thermal battery (5).
  • the heat absorbed by the refrigerant is used for other services such as heating, power generation, hot water services for showers or as an external thermal battery as well.
  • the thermal solar panel shown here with this tube is connected to another external thermal storage, so it will be possible to have an external thermal battery not shown.
  • the cooling pipe is also coupled to the bifacial systems in Figure 1 of Figure 2.
  • Another alternative to the cooling system is to cover the solar panels with surfaces that prevent them from continuing to heat up, either without contact with the solar thermal panel if the panel is already at a very high temperature or with contact if it is at a low temperature.
  • the use of electrochromic surfaces on the transparent surface (1) is another alternative. When the battery (5) is very hot, the electrochromic surface will become opaque to avoid further heating. Using valves to allow air to enter the panel's containing structure will allow cooling of the entire system as well.
  • This alternative has the risk of rust or moisture accumulation inside the panel, which could be harmful in the long term, unless materials that do not corrode are used. In this case, using materials that are not affected by humidity, such as stainless steel and aluminum, are important in manufacturing.
  • the solar receivers (4) and (4a) must not be in contact with the thermal batteries (5) and (5a). The purpose of having a different structure allows the temperature of the radiation receivers (4) and (4a) to be kept as low as possible for as long as possible.
  • the radiation receptors (4) and (4a) are a surface with nanoparticles that purify the water. Contaminated water is passed through the structure of the thermal batteries (5) and (5a) and when in contact with the radiation receptors (4) and (4a) the purification process will occur.
  • the radiation receptors (4) and (4a) are coated with nanoparticles of colloidal silver, colloidal copper, zinc oxide, graphene oxide, carbon nanotubes, graphene and others. functionalized nanoparticles that allow the purification process. radiation receptors
  • the thermal batteries (5) and (5a) are made of a single piece or of separate elements. As they are independent pieces, they are made of different materials and different thicknesses. This allows you to change the physical properties of each of the sections.
  • the thermal batteries (5) and (5a) also have in one of their configurations that they are only the horizontal plates without the vertical plates. The heat in this case will be transmitted by electromagnetic waves, so all the plates will also heat up.
  • the thermal solar panel in one of its modalities removes the plates (2) and (3) and the selective paint is placed directly on the thermal batteries (5) and (5a). In the same way, plates (7) and (8) are eliminated. This allows weight to be reduced and eliminates manufacturing steps.
  • the sheets (2) and (3) must be in contact with the thermal battery (5) and in the same way the sheets (7) and (8) must be in contact with the thermal battery (5a). Glues that withstand high temperatures, fastening elements such as screws, or presses that press the sheets are used to guarantee good thermal contact.
  • the transparent surfaces (1) and (9) must never be in contact with the rest of the system to avoid overheating, they will only be supported by an external structure not shown.
  • FIG. 5 shows the modality where inside the battery (5) there is a solar cell (4) and inside the battery (5a) there is a transparent pipe (1 1) through which water or air flows.
  • the solar panel will be able to generate electrical energy and at the same time it will be able to purify water.
  • Solar panels (4) and at the same time transparent circular or rectangular pipes (1 1) will be placed inside the thermal batteries (5) and (5a) that allow the passage of radiation from the thermal batteries (5).
  • These transparent pipes (1 1) are coated with graphene oxide, copper oxide nanoparticles, colloidal silver, zinc oxide and other functionalized materials that allow water purification by photocatalysis when activated by radiation from the thermal battery (5 ) and also (5a).
  • a radiation receiver (4) with the aforementioned nanomaterials.
  • Figure 6 shows the mode where inside the battery

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

The energy storage and emission system has a receiver that is heated with solar energy or another heat or electromagnetic source. The receiver will heat up as it absorbs energy and in turn will emit energy from the back to a second receiver, thus having two functions, both storage and radiation emitter. The receiver has a photovoltaic solar panel or a surface with nanoparticles of graphene oxide, titanium dioxide, zinc oxide, graphene functionalized with copper, silver, chlorine atoms or any other type of nanoparticles that allow photocatalysis and the elimination of pollutants through the electrical charge of the nanomaterials. The system will make it possible to purify water, remove CO2 from the environment, generate electricity and store energy at the same time.

Description

Panel solar termofotovoltaico con batería térmica y sus aplicaciones. Thermophotovoltaic solar panel with thermal battery and its applications.
Campo de la invención field of invention
Existen en la actualidad sistemas de almacenamiento de energía térmico que permiten guardar energía solar u otras fuentes de energía calorífica. Estos sistemas de almacenamiento, a diferencia de las baterías de litio, plomo o químicas, son capaces de durar mucho más tiempo. En la necesidad de buscar alternativas a la generación de energía eléctrica de fuentes sustentadles, la humanidad está en la necesidad de buscar alternativas al almacenamiento de energía. Ahora se han desarrollado diferentes tecnologías para la acumulación de energías renovables y entre ellas está el guardarla en forma de calor ya sea en arena, bloques de acero, como aire caliente, entre otras. There are currently thermal energy storage systems that allow storing solar energy or other sources of heat energy. These storage systems, unlike lithium, lead or chemical batteries, are capable of lasting much longer. In the need to look for alternatives to the generation of electrical energy from sustainable sources, humanity is in need of looking for alternatives to energy storage. Now different technologies have been developed for the accumulation of renewable energy and among them is storing it in the form of heat either in sand, steel blocks, as hot air, among others.
La invención aquí presentada se encuentra en el campo de la invención del almacenaje térmico de energía solar o de otras fuentes de energía. Además de la acumulación de energía, el sistema permite también ser utilizado como emisor para ser aprovechado en una segunda etapa por diversos sistemas. The invention presented here is in the field of the invention of thermal storage of solar energy or other energy sources. In addition to energy accumulation, the system can also be used as an emitter to be used in a second stage by various systems.
Este tipo de sistemas se puede utilizar tanto para la producción de energía eléctrica, así como la purificación de agua y la eliminación de CO2 del ambiente. Utilizando nanopartículas de óxido de grafeno y otras nanopartículas que permiten la fotocatálisis, hacen posible ofrecer aplicaciones diversas en diferentes campos tecnológicos. This type of system can be used both for the production of electrical energy, as well as for water purification and the removal of CO2 from the environment. Using graphene oxide nanoparticles and other nanoparticles that allow photocatalysis, make it possible to offer diverse applications in different technological fields.
Los campos de esta invención están en la purificación de agua, en el campo del almacenamiento de energía, también se encuentra en la producción de energía eléctrica, la fabricación de hidrógeno y en la creación de combustibles solares. The fields of this invention are in water purification, in the field of energy storage, it is also found in the production of electrical energy, the manufacture of hydrogen and in the creation of solar fuels.
Antecedentes de la invención Background of the invention
Patentes como CN109847660 utilizan la evaporación como método de purificación de agua. Sin embargo, este tipo de sistema no utiliza la nube electrónica del grafeno para la purificación, es decir, depende del calentamiento del agua a más de 100°C para poder realizar el proceso de desinfección. Existen además otros sistemas por calor que cumplen una función de desinfección del agua. Por ejemplo, hay sistemas solares que aumentan la temperatura, pero no utilizan nanopartículas para aprovechar la desinfección por fotocatálisis o tampoco por el óxido de grafeno o el grafeno funcionalizado. Patents such as CN109847660 use evaporation as a water purification method. However, this type of system does not use the electronic cloud of graphene for purification, that is, it depends on heating the water to more than 100°C to carry out the disinfection process. There are also other heat systems that perform a water disinfection function. For example, there are solar systems that increase the temperature, but they do not use nanoparticles to take advantage of disinfection by photocatalysis or by graphene oxide or functionalized graphene.
En el caso del almacenamiento de energía térmica, por ejemplo, la patente MX/u/2020/000126 utiliza láminas de acero o cerámicas para el almacenamiento, sin embargo, esta placa no es utilizada como emisor o como superficie de trabajo, además que de que se desperdicia más del 80% de la energía. Al igual que en otros proyectos de almacenamiento térmico, no se usa la emisión electromagnética para aumentar el área y aprovechar la energía que normalmente se desperdicia en sistemas de energía térmica. In the case of thermal energy storage, for example, patent MX/u/2020/000126 uses steel or ceramic sheets for storage, however, this plate is not used as an emitter or as a work surface, in addition to that more than 80% of the energy is wasted. As in other thermal storage projects, electromagnetic emission is not used to increase the area and take advantage of the energy that is normally wasted in thermal energy systems.
Breve descripción de la invención Brief description of the invention
La invención consiste en un receptor de energía calorífica ya sea energía solar, electromagnética como ondas microondas, energía atómica, sistemas eléctricos, procesos industriales con energía térmica, o cualquier otra forma de generación de calor. El receptor tiene una celda solar fotovoltaica o de otra tecnología y también puede tener un recubrimiento de nanopartículas de óxido de grafeno, grafeno funcionalizado con átomos de cobre, plata, cloro, platino, oro. Además, se pueden colocar otras nanopartículas como bióxido de titano, óxido de zinc, cobre, plata que interaction con longitudes de onda específicas del espectro solar. En la parte posterior del receptor se encuentra otro receptor que aprovechará el calor que normalmente se desecha en el resto de los sistemas. Con esto se puede tener diferentes aplicaciones como purificación de agua, purificación de aire, transformación del CO2 en monóxido de CO para generación de combustibles solares y generación de energía eléctrica. The invention consists of a receiver for heat energy, whether solar energy, electromagnetic energy such as microwave waves, atomic energy, electrical systems, industrial processes with thermal energy, or any other form of heat generation. The receiver has a photovoltaic or other technology solar cell and can also have a coating of graphene oxide nanoparticles, graphene functionalized with atoms of copper, silver, chlorine, platinum, gold. In addition, other nanoparticles can be placed such as titanium dioxide, zinc oxide, copper, silver that interact with specific wavelengths of the solar spectrum. On the back of the receiver there is another receiver that will take advantage of the heat that is normally wasted in the rest of the systems. With this you can have different applications such as water purification, air purification, transformation of CO2 into CO monoxide for generation of solar fuels and generation of electrical energy.
Breve descripción de las figuras Brief description of the figures
La Figura 1 es la vista lateral de todas las superficies utilizadas en el panel termosolar. Es una vista explosionada y separada de cada uno de los componentes, con múltiples etapas de generación de energía o purificación de agua. Es un sistema bifacial que permite la absorción de radiación solar tanto por la parte de arriba como la parte de abajo. Figure 1 is the side view of all the surfaces used in the solar thermal panel. It is an exploded and separated view of each of the components, with multiple stages of energy generation or water purification. It is a bifacial system that allows the absorption of solar radiation from both the top and bottom.
La Figura 2 es la vista lateral con una sola etapa de generación de energía con un sistema bifacial. Es de igual manera una vista explosionada de cada una de las superficies. Figure 2 is the side view with a single power generation stage with a bifacial system. It is also an exploded view of each of the surfaces.
La Figura 3 es la vista lateral de cada una de las superficies para un sistema monofacial. Es la vista explosionada de todas las superficies. Figure 3 is the side view of each of the surfaces for a monofacial system. It is the exploded view of all surfaces.
La Figura 4 es la vista lateral de todas las superficies para un sistema monofacial con una tubería para el sistema de enfriamiento del sistema. Es un diagrama explosionado del panel termosolar. Figure 4 is the side view of all surfaces for a monofacial system with a pipe for the system cooling system. It is an exploded diagram of the solar thermal panel.
La Figura 5 es la vista lateral de un sistema híbrido donde existe la generación de electricidad y la purificación de agua o la transformación de CO2 a monóxido de carbono, todo de manera simultánea. Figure 5 is the side view of a hybrid system where there is electricity generation and water purification or the transformation of CO2 to carbon monoxide, all simultaneously.
La Figura 6 es la vista lateral del detalle para colocar una celda fotovoltaica y una tubería de agua o aire para la purificación de agua o aire, de manera simultánea. Descripción detallada de la invención Figure 6 is the side view of the detail to place a photovoltaic cell and a water or air pipe for water or air purification, simultaneously. Detailed description of the invention
La radiación solar calentará la superficie (2) a una temperatura de entre 30 grados centígrados hasta más de 800 grados centígrados, emitiendo únicamente en el rango infrarrojo principalmente. Una vez caliente esta superficie al estar en contacto con la batería térmica (5) se calentará a la misma temperatura. La batería térmica (5) se volverá un emisor de radiación infrarroja principalmente y un receptor de radiación (4) funcionará como una celda solar infrarroja que transformará la radiación electromagnética en electricidad. El calor al no poder escapar gracias a las pinturas selectivas sobre la superficie (2), continuará durante el día y la noche generando electricidad hasta que toda la energía almacenada en forma térmica se transforme en electricidad por el receptor de radiación (4). El panel solar podrá producir energía eléctrica también en la noche, gracias a su batería térmica. La eficiencia total del sistema deberá estar entre un 70% a un 90% considerando pérdidas por radiación, convección y las pérdidas ópticas las superficies. La batería térmica (5) estará calentada por la radiación solar, por radiación solar concentrada lineal o parabólica, por energía eléctrica, por energía nuclear, por fuego o cualquier otro tipo de energía calorífica. Solar radiation will heat the surface (2) to a temperature of between 30 degrees Celsius and more than 800 degrees Celsius, emitting mainly only in the infrared range. Once this surface is hot when it is in contact with the thermal battery (5), it will heat up to the same temperature. The thermal battery (5) will become an emitter of infrared radiation mainly and a radiation receiver (4) will function as an infrared solar cell that will transform electromagnetic radiation into electricity. Since the heat cannot escape thanks to the selective paints on the surface (2), it will continue to generate electricity during the day and night until all the energy stored in thermal form is transformed into electricity by the radiation receiver (4). The solar panel will be able to produce electrical energy also at night, thanks to its thermal battery. The total efficiency of the system should be between 70% to 90% considering losses due to radiation, convection and optical losses from the surfaces. The thermal battery (5) will be heated by solar radiation, by linear or parabolic concentrated solar radiation, by electrical energy, by nuclear energy, by fire or any other type of heat energy.
El panel solar bifacial de la Figura (1 ) se describe a continuación. El panel termosolar funciona de la siguiente manera, un elemento transparente (1 ) que es un vidrio, vidrio templado, acrílico, policarbonato, un plástico traslúcido o algún otro tipo de material transparente permite el paso de la radiación solar por la parte superior. La radiación calentará un receptor solar (2) que es de aluminio, cobre, materiales cerámicos, materiales compuestos o cualquier material conductor de calor y estará recubierto de una pintura solar selectiva para aumentar la temperatura de la superficie lo más posible. Esta lámina (2) estará acoplada con una segunda lámina (3) intermedia que pueda evitar una celda galvánica entre la lámina (2) y la batería térmica (5). La lámina (3) es de acero inoxidable, un material cerámico o bien cualquier otro material que permita la transferencia de calor, pero que evite el par galvánico entre los materiales. Al utilizar acero inoxidable tanto en el receptor solar (2) ya no será necesario utilizar un separador (3) para evitar una celda galvánica. Esto mismo pasa para la parte posterior del panel, utilizando acero inoxidable para la lámina (8) ya no será necesario tampoco el separador (7). The bifacial solar panel in Figure (1) is described below. The solar thermal panel works as follows: a transparent element (1) which is glass, tempered glass, acrylic, polycarbonate, translucent plastic or some other type of transparent material allows solar radiation to pass through the upper part. The radiation will heat a solar receiver (2) which is made of aluminum, copper, ceramic materials, composite materials or any heat-conducting material and will be coated with a selective solar paint to increase the surface temperature as much as possible. This sheet (2) will be coupled with a second intermediate sheet (3) that can avoid a galvanic cell between the sheet (2) and the thermal battery (5). The sheet (3) is made of stainless steel, a ceramic material or any other material that allows heat transfer, but prevents galvanic pairing between the materials. By using stainless steel in both the solar receiver (2) it will no longer be necessary to use a separator (3) to avoid a galvanic cell. The same thing happens for the back of the panel, using stainless steel for the sheet (8) the separator (7) will no longer be necessary either.
La batería térmica (5) es una placa de hierro, acero al carbón, acero inoxidable, aluminio, una aleación metálica, un material cerámico, un compuesto, un gas, o un líquido que almacena la energía del sol. La batería térmica (5) tiene tres funciones principales; es un receptor de la radiación solar, también es almacenaje de energía y finalmente realiza la emisión de energía. La batería térmica (5) es una placa metálica o bien una estructura rectangular que está hueca y por la parte del centro tendrá un receptor de radiación (4) que transforma la radiación de batería térmica (5) en electricidad. El receptor de radiación (4) es una celda solar que transforma la radiación de la batería térmica (5) en electricidad. El receptor de radiación (4) en una de sus modalidades es una celda solar de película delgada con óxido de grafeno, nanotubos de carbono, materiales semiconductores, nanomateriales funcionalizados, nanopuntos y otras nanoestructuras en 2D o 3D que permitan la transformación de la radiación en electricidad. Es una celda semitransparente por lo que permitirá el paso de la radiación parcialmente. El receptor de radiación (4) es una lámina o una pluralidad de láminas. Al haber varias celdas (4) permitirá transformar la radiación más rápidamente. El receptor de radiación (4) es una celda que tiene una superficie activa por la parte superior o bien en otra de sus modalidades tiene una superficie activa por ambos lados, siendo así una celda bifacial. La batería térmica (5) al ser una estructura rectangular, emite radiación por todas sus superficies, permitiendo que se logre transformar más rápidamente el calor en electricidad. The thermal battery (5) is a plate of iron, carbon steel, stainless steel, aluminum, a metal alloy, a ceramic material, a compound, a gas, or a liquid that stores the sun's energy. The thermal battery (5) has three main functions; It is a receiver of solar radiation, it is also energy storage and finally it emits energy. The thermal battery (5) is a metal plate or a rectangular structure that is hollow and in the center will have a radiation receiver (4) that transforms the radiation from the thermal battery (5) into electricity. The radiation receiver (4) is a solar cell that transforms the radiation from the thermal battery (5) into electricity. The radiation receiver (4) in one of its modalities is a thin film solar cell with graphene oxide, carbon nanotubes, semiconductor materials, functionalized nanomaterials, nanodots and other 2D or 3D nanostructures that allow the transformation of radiation into electricity. It is a semi-transparent cell so it will partially allow radiation to pass through. The radiation receiver (4) is a sheet or a plurality of sheets. As there are several cells (4) it will allow the radiation to be transformed more quickly. The radiation receiver (4) is a cell that has an active surface on the upper part or, in another of its embodiments, has an active surface on both sides, thus being a bifacial cell. The thermal battery (5), being a rectangular structure, emits radiation on all its surfaces, allowing heat to be transformed more quickly into electricity.
La estructura de la batería térmica (5) con el receptor de radiación (4) en una de sus modalidades se repiten una pluralidad de veces teniendo varias baterías térmicas (5a) y varios receptores de radiación (4a) para aumentar así el área de emisión y el volumen también de la batería térmica, aumentando tanto la generación de energía eléctrica como la capacidad de almacenamiento. The structure of the thermal battery (5) with the radiation receiver (4) in one of its modalities is repeated a plurality of times having several thermal batteries (5a) and several radiation receivers (4a) to thus increase the emission area and the volume of the thermal battery, increasing both the generation of electrical energy and the storage capacity.
Finalmente, en la parte de hasta el fondo de las capas se repiten nuevamente una placa separadora (7) que evita la celda galvánica entre la batería térmica (5a) y la lámina con el recubrimiento solar (8). La placa separadora (7) tiene las mismas características físicas que la lámina (3) y la lámina (8) de igual forma tiene las mismas características que la lámina (2). Para permitir la luz por la parte de debajo de todo el panel solar, la superficie transparente (9), permite el paso de la luz y tiene las mismas características físicas que la lámina (1 ). Finally, at the bottom of the layers, a separator plate (7) is again repeated that prevents the galvanic cell between the thermal battery (5a) and the sheet with the solar coating (8). The separator plate (7) has the same physical characteristics as the sheet (3) and the sheet (8) likewise has the same characteristics as the sheet (2). To allow light through the underside of the entire solar panel, the transparent surface (9) allows light to pass through and has the same physical characteristics as the sheet (1).
Las superficies de las baterías térmicas (5) y (5a) son diseñadas para proteger los receptores solares (4) y (4a). Al diseñar cuánta energía emiten, no se calentarán de más los receptores solares (4) y (4a), aumentando así su tiempo de vida. El coeficiente de emisividad, así como los coeficientes de absorción y reflexión de las superficies de las baterías (5) y (5a) se ajusta para emitir menos radiación de lo que los receptores de radiación (4) y (4a) podrán soportar. A diferencia de los paneles solares tradicionales que están expuestos al sol, esta innovación alargará el servicio de las celdas solares utilizadas al recibir menos energía que daña la superficie. The surfaces of the thermal batteries (5) and (5a) are designed to protect the solar receivers (4) and (4a). By designing how much energy they emit, the solar receivers (4) and (4a) will not overheat, thus increasing their lifespan. The emissivity coefficient, as well as the absorption and reflection coefficients of the surfaces of the batteries (5) and (5a) are adjusted to emit less radiation than the radiation receivers (4) and (4a) will be able to withstand. Unlike traditional solar panels that are exposed to the sun, this innovation will extend the service of the solar cells used by receiving less energy that damages the surface.
En la Figura 2 se muestra una de las modalidades del sistema con una sola batería térmica (5) y una sola celda receptora (4). Este panel solar también es un panel bifacial, ya que permite la recepción de la energía solar difusa o indirecta por la parte de abajo del panel. La energía difusa y también la radiación indirecta pasará por la superficie (9) al igual que en el caso de la modalidad del panel solar de la Figura (1 ). Figure 2 shows one of the system modalities with a single thermal battery (5) and a single receiving cell (4). This solar panel is also a bifacial panel, since it allows the reception of diffuse or indirect solar energy through the bottom part of the panel. The diffuse energy and also the indirect radiation will pass through the surface (9) as in the case of the solar panel modality of Figure (1).
En la Figura 3 se muestra la modalidad para un panel solar que sólo permite la luz directa del sol por la parte superior. En esta modalidad se elimina la opción de recibir energía difusa o indirecta por la parte de abajo y la radiación solar entrará por la parte de arriba a través de la superficie transparente (1 ). En todas las modalidades el panel solar está dentro de una estructura no mostrada que contiene todas las superficies del panel. Para evitar pérdidas de calor todas las superficies están aisladas térmicamente con un aislante térmico o bien se encontrarán al vacío para evitar transferencia térmica hacia el exterior. En la noche existe la posibilidad de colocar un aislante térmico sobre la superficie transparente (1 ) y sobre la superficie transparente (9) para evitar la fuga de calor por convección hacia el medio ambiente y así aumentar la eficiencia del sistema. Figure 3 shows the modality for a solar panel that only allows direct sunlight from the top. In this mode, the option of receiving diffuse or indirect energy from the bottom is eliminated and solar radiation will enter from the top through the transparent surface (1). In all embodiments the solar panel is within a structure not shown that contains all surfaces of the panel. To avoid heat loss, all surfaces are thermally insulated with a thermal insulator or will be in a vacuum to avoid heat transfer to the outside. At night there is the possibility of placing a thermal insulator on the transparent surface (1) and on the transparent surface (9) to prevent heat leakage by convection towards the environment and thus increase the efficiency of the system.
En la Figura 4 se muestra una modalidad para el sistema de enfriamiento de los paneles. Al estar recibiendo la radiación solar, la batería térmica (5) podrá calentarse a más de 800 grados, es por ello que es importante tener sistemas de enfriamiento en el sistema. En una de sus modalidades un tubo de enfriamiento (10) circular o rectangular estará en contacto con la batería térmica (5) y se hace pasar un refrigerante a través del tubo (10), que es agua, aire o algún otro fluido o sal que enfrié la batería térmica (5). El calor absorbido por el refrigerante se aprovecha para otros servicios como calefacción, generación de energía, servicios de agua caliente para regaderas o como una batería térmica exterior también. El panel solar térmico aquí mostrado con este tubo está conectado con otro almacenamiento térmico externo, por lo que será posible tener una batería térmica externa no mostrada. Esto permite que el fluido de enfriamiento también pueda ser utilizado para calentar todo el panel solar nuevamente para producir electricidad si así se desea. El flujo que se hizo pasar por la tubería (10) estará caliente, pero recirculará para calentar la batería (5) nuevamente, si esta se enfría. La tubería de enfriamiento se acopla también a los sistemas bifaciales de la Figura 1 de la Figura 2. Figure 4 shows a modality for the panel cooling system. When receiving solar radiation, the thermal battery (5) can heat up to more than 800 degrees, which is why it is important to have cooling systems in the system. In one of its embodiments, a circular or rectangular cooling tube (10) will be in contact with the thermal battery (5) and a coolant is passed through the tube (10), which is water, air or some other fluid or salt. that I cooled the thermal battery (5). The heat absorbed by the refrigerant is used for other services such as heating, power generation, hot water services for showers or as an external thermal battery as well. The thermal solar panel shown here with this tube is connected to another external thermal storage, so it will be possible to have an external thermal battery not shown. This allows the cooling fluid to also be used to heat the entire solar panel again to produce electricity if desired. The flow that was passed through the pipe (10) will be hot, but it will recirculate to heat the battery (5) again, if it cools down. The cooling pipe is also coupled to the bifacial systems in Figure 1 of Figure 2.
Otra alternativa al sistema de enfriamiento es cubrir los paneles solares con superficies que eviten que se sigan calentando ya sea sin contacto con el panel termosolar si el panel está ya a muy alta temperatura o bien con contacto si está a baja temperatura. La utilización de superficies electrocrómicas sobre la superficie transparente (1 ) es otra alternativa. Cuando esté muy caliente ya la batería (5), se pondrá opaca la superficie electrocrómica para evitar más calentamiento. El utilizar válvulas para permitir la entrada de aire a la estructura contenedora del panel permitirá el enfriamiento de todo el sistema también. Esta alternativa cuenta con el riesgo de oxidación o acumulación de humedad dentro del panel, por lo que podría ser perjudicial a largo plazo, a menos que se utilicen materiales que no se corroan. En este caso, usar materiales que no sean afectados por la humedad como el acero inoxidable y el aluminio, son importantes en la fabricación. Los receptores solares (4) y (4a) no deberán estar en contacto con las baterías térmicas (5) y (5a). La finalidad de tener una estructura diferente permite que la temperatura de los receptores de radiación (4) y (4a) se mantenga lo más baja posible durante el mayor tiempo. Another alternative to the cooling system is to cover the solar panels with surfaces that prevent them from continuing to heat up, either without contact with the solar thermal panel if the panel is already at a very high temperature or with contact if it is at a low temperature. The use of electrochromic surfaces on the transparent surface (1) is another alternative. When the battery (5) is very hot, the electrochromic surface will become opaque to avoid further heating. Using valves to allow air to enter the panel's containing structure will allow cooling of the entire system as well. This alternative has the risk of rust or moisture accumulation inside the panel, which could be harmful in the long term, unless materials that do not corrode are used. In this case, using materials that are not affected by humidity, such as stainless steel and aluminum, are important in manufacturing. The solar receivers (4) and (4a) must not be in contact with the thermal batteries (5) and (5a). The purpose of having a different structure allows the temperature of the radiation receivers (4) and (4a) to be kept as low as possible for as long as possible.
En otra de las modalidades los receptores de radiación (4) y (4a) es una superficie con nanopartículas que purifica el agua. Agua contaminada se hace pasar a través de la estructura de las baterías térmicas (5) y (5a) y al estar en contacto con los receptores de radiación (4) y (4a) se dará el proceso de purificación. Los receptores de radiación (4) y (4a) están recubiertos con nanopartículas de plata coloidal, cobre coloidal, óxido de zinc, óxido de grafeno, nanotubos de carbón, grafeno y otras nanopartículas funcionalizadas que permiten el proceso de purificación. Los receptores de radiaciónIn another embodiment, the radiation receptors (4) and (4a) are a surface with nanoparticles that purify the water. Contaminated water is passed through the structure of the thermal batteries (5) and (5a) and when in contact with the radiation receptors (4) and (4a) the purification process will occur. The radiation receptors (4) and (4a) are coated with nanoparticles of colloidal silver, colloidal copper, zinc oxide, graphene oxide, carbon nanotubes, graphene and others. functionalized nanoparticles that allow the purification process. radiation receptors
(4) y (4a) están sin contacto con las baterías térmicas (5) y (5a) en una de sus modalidades y en otra configuración sí están en contacto. En la configuración con contacto, el agua se purifica tanto por calor como por el contacto con los receptores de radiación (4) y (4a). De igual forma en estas modalidades es posible hacer pasar aire a través de las baterías térmicas (5) y (5a) para la purificación del aire. (4) and (4a) are without contact with the thermal batteries (5) and (5a) in one of their modalities and in another configuration they are in contact. In the contact configuration, the water is purified both by heat and by contact with the radiation receptors (4) and (4a). Likewise, in these modalities it is possible to pass air through the thermal batteries (5) and (5a) for air purification.
Las baterías térmicas (5) y (5a) están fabricadas de una sola pieza o bien de elementos separados. Al ser piezas independientes son de materiales diferentes y de espesores diferentes. Esto permite cambiar las propiedades físicas de cada una de las secciones. Las baterías térmicas (5) y (5a) tienen también en una de sus configuraciones que únicamente sean las placas horizontales sin las placas verticales. El calor en este caso será transmitido por ondas electromagnéticas, por lo que también se calentarán todas las placas. The thermal batteries (5) and (5a) are made of a single piece or of separate elements. As they are independent pieces, they are made of different materials and different thicknesses. This allows you to change the physical properties of each of the sections. The thermal batteries (5) and (5a) also have in one of their configurations that they are only the horizontal plates without the vertical plates. The heat in this case will be transmitted by electromagnetic waves, so all the plates will also heat up.
El panel solar térmico en una de sus modalidades se eliminan las placas (2) y (3) y la pintura selectiva se coloca directamente sobre las baterías térmicas (5) y (5a). De igual forma se eliminan las placas (7) y (8). Esto permite reducir peso y elimina pasos en su fabricación. The thermal solar panel in one of its modalities removes the plates (2) and (3) and the selective paint is placed directly on the thermal batteries (5) and (5a). In the same way, plates (7) and (8) are eliminated. This allows weight to be reduced and eliminates manufacturing steps.
Las láminas (2) y (3) tienen que estar en contacto con la batería térmica (5) y de la misma manera las láminas (7) y (8) tienen que estar en contacto con la batería térmica (5a). Se utilizan pegamentos que soporten alta temperatura, elementos de fijación como tornillería, o prensas que presionen las láminas para garantizar un buen contacto térmico. Las superficies transparentes (1 ) y (9) nunca deberán estar en contacto con el resto del sistema para evitar su sobrecalentamiento, únicamente estarán soportadas por una estructura exterior no mostrada. The sheets (2) and (3) must be in contact with the thermal battery (5) and in the same way the sheets (7) and (8) must be in contact with the thermal battery (5a). Glues that withstand high temperatures, fastening elements such as screws, or presses that press the sheets are used to guarantee good thermal contact. The transparent surfaces (1) and (9) must never be in contact with the rest of the system to avoid overheating, they will only be supported by an external structure not shown.
En la Figura 5 se muestra la modalidad en dónde dentro de la batería (5) está una celda solar (4) y dentro de la batería (5a) está una tubería transparente (1 1 ) por donde fluye el agua o el aire. En una de sus modalidades el panel solar podrá generar energía eléctrica y al mismo tiempo podrá purificar agua. Dentro de las baterías térmicas (5) y (5a) se colocarán paneles solares (4) y a la vez tuberías circulares o rectangulares transparentes (1 1 ) que permitan el paso de la radiación desde las baterías térmicas (5). Estas tuberías transparentes (1 1 ) están recubiertas con óxido de grafeno, nanopartículas de óxido de cobre, plata coloidal, óxido de zinc y otros materiales funcionalizados que permitan la purificación de agua por fotocatálisis al ser activados por la radiación de la batería térmica (5) y también (5a). Dentro de estas tuberías en otra de sus modalidades tendrá un receptor de radiación (4) con los nanomateriales antes mencionados. En la Figura 6 se muestra la modalidad donde dentro de la bateríaFigure 5 shows the modality where inside the battery (5) there is a solar cell (4) and inside the battery (5a) there is a transparent pipe (1 1) through which water or air flows. In one of its modalities, the solar panel will be able to generate electrical energy and at the same time it will be able to purify water. Solar panels (4) and at the same time transparent circular or rectangular pipes (1 1) will be placed inside the thermal batteries (5) and (5a) that allow the passage of radiation from the thermal batteries (5). These transparent pipes (1 1) are coated with graphene oxide, copper oxide nanoparticles, colloidal silver, zinc oxide and other functionalized materials that allow water purification by photocatalysis when activated by radiation from the thermal battery (5 ) and also (5a). Within these pipes, in another of its modalities, it will have a radiation receiver (4) with the aforementioned nanomaterials. Figure 6 shows the mode where inside the battery
(5) está la celda solar o receptor de radiación (4) y el tubo transparente (1 1 ). En esta modalidad es posible purificar aire o agua y producir energía al mismo tiempo. (5) is the solar cell or radiation receiver (4) and the transparent tube (1 1). In this mode it is possible to purify air or water and produce energy at the same time.

Claims

Reivindicaciones Claims
1 . El panel solar termofotovoltaico con batería térmica y sus aplicaciones comprende de una superficie transparente (1 ), una lámina con un recubrimiento solar (2), una lámina separadora (3), una batería térmica (5) un receptor de radiación (4), una segunda batería térmica (5a), un segundo receptor de radiación solar (4a), una lámina separadora (7), otra lámina con recubrimiento solar (8) y una superficie transparente (9), un tubo de enfriamiento (10) y una estructura exterior no mostrada que se caracteriza por utilizar la batería térmica (5), en receptor de la radiación solar, en almacenador de energía y en emisor de radiación; tiene también la característica de transformar el espectro solar que llega a la tierra en energía electromagnética en diferentes frecuencias, y se convierte en una emisión de menor variedad de diferentes frecuencias por lo que el receptor solar (4) se fabrica para aprovechar menor cantidad de frecuencias; al utilizar pinturas selectivas solares sobre la placa (2) y (7) que cuentan con un coeficiente de emisividad lo más cercano a cero, no permiten que la energía almacenada se emita nuevamente en forma de radiación electromagnética, por lo que es posible aprovechar toda la energía almacenada en la batería térmica (5) y (5a) y transformarla en electricidad hasta que se agote totalmente; ajustando el coeficiente de emisividad de la batería térmica (5) y (5a) se protege el receptor de radiación (4) y (4a) para que no reciban grandes cantidades de energía y así se pueda prolongar su tiempo de vida; el panel solar termofotovoltaico con batería térmica evita que se desperdicie la energía térmica por transferencia de calor a los alrededores siempre con el objetivo de enviarla a los receptores de radiación (4) y (4a) hasta que sean aprovechados y transformados en energía eléctrica; el proceso de fabricación permite colocar la pintura selectiva sobre unas láminas (2) y (7) de manera independiente, haciendo la fabricación más sencilla; también se caracteriza por la utilización al menos de dos superficies emisoras de las baterías térmicas (5) y (5a) por lo que la transformación de energía será mucho más rápida; se aprovecha un panel solar de bajo costo (4) y (4a) que su fabricación no requiere altas energías térmicas para producirlo; todo el arreglo aumenta la eficiencia de la producción de energía hasta en un 70% llegando a un máximo del 90%. 1 . The thermophotovoltaic solar panel with thermal battery and its applications comprises a transparent surface (1), a sheet with a solar coating (2), a separator sheet (3), a thermal battery (5), a radiation receiver (4), a second thermal battery (5a), a second solar radiation receiver (4a), a separator sheet (7), another sheet with solar coating (8) and a transparent surface (9), a cooling tube (10) and a exterior structure not shown that is characterized by using the thermal battery (5), as a receiver of solar radiation, as an energy storer and as a radiation emitter; It also has the characteristic of transforming the solar spectrum that reaches the Earth into electromagnetic energy at different frequencies, and it becomes an emission of a smaller variety of different frequencies, so the solar receiver (4) is manufactured to take advantage of a smaller number of frequencies. ; By using selective solar paints on the plate (2) and (7) that have an emissivity coefficient as close to zero, they do not allow the stored energy to be emitted again in the form of electromagnetic radiation, so it is possible to take advantage of all the energy stored in the thermal battery (5) and (5a) and transform it into electricity until it is completely exhausted; By adjusting the emissivity coefficient of the thermal battery (5) and (5a), the radiation receiver (4) and (4a) is protected so that they do not receive large amounts of energy and thus their life time can be prolonged; The thermophotovoltaic solar panel with thermal battery prevents thermal energy from being wasted by heat transfer to the surroundings, always with the aim of sending it to the radiation receivers (4) and (4a) until they are used and transformed into electrical energy; The manufacturing process allows the selective paint to be placed on sheets (2) and (7) independently, making manufacturing easier; It is also characterized by the use of at least two emitting surfaces of the thermal batteries (5) and (5a) so the energy transformation will be much faster; A low-cost solar panel is used (4) and (4a) whose manufacturing does not require high thermal energy to produce it; The entire arrangement increases the efficiency of energy production by up to 70%, reaching a maximum of 90%.
2. El panel solar termofotovoltaico con batería térmica y sus aplicaciones, en concordancia con la reivindicación 1 , la superficie transparente (1 ) está hecha de vidrio templado, plásticos transparentes como acrílicos o policarbonatos, o de otro material transparente que permita el paso de la radiación solar; la lámina con recubrimiento solar (2) es de aluminio, cobre, acero inoxidable, cerámico o cualquier otro material compuesto y tiene en su superficie una pintura selectiva como TÍNOX, Solkote, pintura negra, grafeno, nanotubos de carbono, materiales 2D, nanopartículas de alta absorción o cualquier otro tipo de recubrimiento que absorbe la mayor cantidad de energía solar pero a su vez no la vuelve a emitir, el coeficiente de emisión está lo más cercano a 0 y el coeficiente de absorción lo más cercano a 1 ; la lámina separadora (3) está hecha de acero inoxidable, cerámico, aleaciones metálicas o cualquier otro material compuesto que evita el par galvánico entre la superficie (2) y la batería térmica (5) y a su vez transfiere el calor entre la lámina (2) y la batería térmica (5) de manera eficiente; la batería térmica (5) está hecha de hierro, acero, acero inoxidable, metales, materiales cerámicos, materiales compuestos, líquidos contenidos en recipientes que almacenen energía térmica como agua, sales, gases o cualquier otro material que permita almacenar el calor recibido por la lámina (2); el receptor solar (4) es una superficie que transforma la radiación electromagnética emitida por la batería (5) en electricidad, el receptor solar (4) es una celda infrarroja compuesta por óxido de grafeno, nanotubos de carbono, grafeno, materiales plásticos, silicatos, cerámicos, conductores eléctricos, nanopartículas funcionalizadas y materiales 2D que transforman la radiación electromagnética en electricidad; la batería térmica (5a) tiene las mismas propiedades que la batería térmica (5); el receptor de radiación (4a) tiene las mismas propiedades que el receptor (4); la superficie (7) tiene las mismas propiedades que la superficie (3); la superficie (8) tiene las mismas propiedades que la superficie (2); la superficie transparente (9) tiene las mismas propiedades que la superficie (1 ) ; el coeficiente de emisión de absorción de la batería térmica (5) y (5a) se diseñará de acuerdo a la capacidad de transformación a electricidad de los paneles receptores (4) y (4a) de tal manera que se protejan al no emitir una radiación mayor a la que pueden aprovechar, protegiendo el tiempo de vida de los paneles; todo el panel termofotovoltaico estará rodeado en su periferia y por la parte inferior para la modalidad monofacial por un aislante térmico; en otra de sus modalidades hay un vacío dentro del sistema para evitar una transferencia de calor al exterior; la temperatura de la batería térmica estará entre los 30 grados centígrados hasta los 800 grados centígrados, esto permite al panel solar producir energía en la noche y durante el día también ; las placas solares (2) y (8) estarán unidas con pegamentos térmicos, con tornil lería o prensas a las placas (3) y (7) así como a las baterías térmicas (5) y (5a). 2. The thermophotovoltaic solar panel with thermal battery and its applications, in accordance with claim 1, the transparent surface (1) is made of tempered glass, transparent plastics such as acrylics or polycarbonates, or other transparent material that allows the passage of light. solar radiation; The sheet with solar coating (2) is made of aluminum, copper, stainless steel, ceramic or any other composite material and has a selective paint on its surface such as TINOX, Solkote, black paint, graphene, carbon nanotubes, 2D materials, carbon nanoparticles. high absorption or any other type of coating that absorbs the greatest amount of solar energy but at the same time does not emit it again, the emission coefficient is closest to 0 and the absorption coefficient is closest to 1; The separator sheet (3) is made of stainless steel, ceramic, metal alloys or any other composite material that prevents the galvanic couple between the surface (2) and the thermal battery (5) and in turn transfers heat between the sheet (2). ) and the thermal battery (5) efficiently; The thermal battery (5) is made of iron, steel, stainless steel, metals, ceramic materials, composite materials, liquids contained in containers that store thermal energy such as water, salts, gases or any other material that allows the heat received by the sheet (2) to be stored; The solar receiver (4) is a surface that transforms the electromagnetic radiation emitted by the battery (5) into electricity, the solar receiver (4) is an infrared cell composed of graphene oxide, carbon nanotubes, graphene, plastic materials, silicates , ceramics, electrical conductors, functionalized nanoparticles and 2D materials that transform electromagnetic radiation into electricity; the thermal battery (5a) has the same properties as the thermal battery (5); the radiation receiver (4a) has the same properties as the receiver (4); surface (7) has the same properties as surface (3); surface (8) has the same properties as surface (2); The transparent surface (9) has the same properties as the surface (1); The absorption emission coefficient of the thermal battery (5) and (5a) will be designed according to the electricity transformation capacity of the receiving panels (4) and (4a) in such a way that they are protected by not emitting radiation. greater than what they can take advantage of, protecting the lifespan of the panels; The entire thermophotovoltaic panel will be surrounded on its periphery and at the bottom for the monofacial modality by a thermal insulator; In another of its modalities there is a vacuum inside the system to avoid heat transfer to the outside; The temperature of the thermal battery will be between 30 degrees Celsius and 800 degrees Celsius, this allows the solar panel to produce energy at night and during the day as well; The solar panels (2) and (8) will be joined with thermal glues, with screws or presses to the plates (3) and (7) as well as to the thermal batteries (5) and (5a).
3. El panel solar termofotovoltaico con batería térmica y sus aplicaciones, en concordancia con la reivindicación 1 , en una de sus modalidades la batería térmica (5) y el receptor solar (4) se repiten varias veces para producir mayor cantidad de electricidad; en otra de sus modalidades el receptor solar (4) es bifacial o monofacial y se colocará dentro de la batería (5) ; en otra de sus modalidades se colocaran una pluralidad de receptores de radiación (4) dentro de la batería térmica (5) para producir mayor cantidad de electricidad, de igual forma se colocarán dentro de la batería térmica (5a) una pluralidad de receptores de radiación (4a), así como también dentro de la pluralidad de baterías térmicas que se decidan colocar ; en otra de sus modalidades no utiliza la batería térmica (5a) ni el receptor de radiación (4a), únicamente es una etapa con una sola batería térmica (5) y un solo receptor (4) o una pluralidad de receptores de radiación (4); en una de sus modalidades se eliminarán la superficie transparente (9), la lámina (8) y la lámina separadora (7); en otra de sus modalidades se eliminará la superficie (2) y la superficie (3) y se depositará el recubrimiento o la pintura solar directamente sobre la batería térmica (5). 3. The thermophotovoltaic solar panel with thermal battery and its applications, in accordance with claim 1, in one of its embodiments the thermal battery (5) and the solar receiver (4) are repeated several times to produce a greater amount of electricity; In another of its modalities, the solar receiver (4) is bifacial or monofacial and will be placed inside the battery (5); In another of its modalities, a plurality of radiation receivers (4) will be placed inside the thermal battery (5) to produce a greater amount of electricity, in the same way a plurality of radiation receivers will be placed inside the thermal battery (5a). (4a), as well as within the plurality of thermal batteries that are decided to be placed; In another of its modalities it does not use the thermal battery (5a) or the radiation receiver (4a), it is only a stage with a single thermal battery (5) and a single receiver (4) or a plurality of radiation receivers (4 ); In one of its embodiments, the transparent surface (9), the sheet (8) and the separator sheet (7) will be eliminated; In another of its modalities, the surface (2) and the surface (3) will be eliminated and the coating or solar paint will be deposited directly on the thermal battery (5).
4. El panel solar termofotovoltaico con batería térmica y sus aplicaciones, en concordancia con la reivindicación 1 , en una de sus modalidades un tubo de enfriamiento (10) estará en contacto con la batería (5) o bien (5a) y se hará pasar un fluido de refrigeración a través del tubo (10) que es agua, aire, sales, o cualquier material o fluido que disminuya la temperatura de la batería térmica (5) y (5a) ; el líquido caliente podrá recircular dentro del tubo para volver a calentar las baterías térmicas (5) y (5a) para continuar produciendo electricidad; en otra de las modalidades se colocaran válvulas de entrada de aire no mostradas para permitir que el aire frío del exterior entre y enfríe el sistema; en otra sus modalidades se colocará una película electrocrómica sobre las superficies transparentes (1 ) y (9) que permitan el paso de la luz cuando las baterías térmicas (5) y (5a) estén frías pero que bloqueen el paso de la luz cuando lleguen a una temperatura muy alta; en otra de sus modalidades se colocaran superficies opacas no mostradas que no estén en contacto con las superficies del panel solar para evitar que se siga calentado. 4. The thermophotovoltaic solar panel with thermal battery and its applications, in accordance with claim 1, in one of its embodiments a cooling tube (10) will be in contact with the battery (5) or (5a) and will be passed through a cooling fluid through the tube (10) which is water, air, salts, or any material or fluid that reduces the temperature of the thermal battery (5) and (5a); The hot liquid can be recirculated inside the tube to reheat the thermal batteries (5) and (5a) to continue producing electricity; In another embodiment, air inlet valves not shown will be placed to allow cold air from outside to enter and cool the system; in another his modalities, an electrochromic film will be placed on the transparent surfaces (1) and (9) that allow the passage of light when the thermal batteries (5) and (5a) are cold but block the passage of light when they reach a temperature very high; In another of its modalities, opaque surfaces not shown that are not in contact with the surfaces of the solar panel will be placed to prevent further heating.
5. El panel solar termofotovoltaico con batería térmica y sus aplicaciones, en concordancia con la reivindicación 1 , en una de sus modalidades el receptor de radiación (4) es una superficie por donde se hará circular agua contaminada, el agua contaminada se purificará al realizarse una fotocatálisis con los materiales que se encuentren depositados en ella; el receptor de radiación (4) en esta modalidad está fabricado con cerámicos o plásticos y recubierto con nanopartículas de cobre, plata, óxido de grafeno, grafeno, óxido de zinc, materiales 2D funcionalizados y otros materiales que permitan el proceso de purificación de agua; en otra de sus modalidades se hará pasar aire sobre de la superficie receptora de radiación (4) que permita la transformación del bióxido de carbono CO2 en monóxido de carbono CO para su posterior aprovechamiento; esta superficie está dentro de una tubería transparente (1 1 ) que permite el paso de la radiación de la batería térmica (5). 5. The thermophotovoltaic solar panel with thermal battery and its applications, in accordance with claim 1, in one of its modalities the radiation receiver (4) is a surface through which contaminated water will be circulated, the contaminated water will be purified when carried out. a photocatalysis with the materials that are deposited in it; the radiation receiver (4) in this modality is made of ceramics or plastics and coated with nanoparticles of copper, silver, graphene oxide, graphene, zinc oxide, functionalized 2D materials and other materials that allow the water purification process; In another of its modalities, air will be passed over the radiation receiving surface (4) that allows the transformation of carbon dioxide CO2 into carbon monoxide CO for its subsequent use; This surface is inside a transparent pipe (1 1) that allows the radiation from the thermal battery (5) to pass through.
6. El panel solar termofotovoltaico con batería térmica y sus aplicaciones, en concordancia con la reivindicación 1 , en una de sus modalidades tendrá dentro de las baterías térmicas (5) y (5a) una tubería transparente (1 1 ) y un receptor de radiación (4) al mismo tiempo, por lo que el panel solar tendrá la capacidad de producir energía eléctrica y purificar agua o aire al mismo tiempo; la tubería transparente (1 1 ) está recubierta con nanopartículas de óxido de grafeno, grafeno, óxido de zinc, óxido de cobre, plata coloidal o cualquier otro tipo de materiales, nanomateriales funcionalizados que permitan la purificación del agua por fotocatálisis o la transformación de bióxido de carbono en monóxido de carbono; en otra de sus modalidades dentro de la tubería (1 1 ) estará un receptor de radiación (4) que esté recubierto con las mismas nanopartículas antes mencionadas y que lleven a cabo la misma función. 6. The thermophotovoltaic solar panel with thermal battery and its applications, in accordance with claim 1, in one of its modalities will have within the thermal batteries (5) and (5a) a transparent pipe (1 1) and a radiation receiver (4) at the same time, so the solar panel will have the ability to produce electrical energy and purify water or air at the same time; The transparent pipe (1 1) is coated with nanoparticles of graphene oxide, graphene, zinc oxide, copper oxide, colloidal silver or any other type of materials, functionalized nanomaterials that allow water purification by photocatalysis or the transformation of dioxide of carbon into carbon monoxide; In another of its modalities, inside the pipe (1 1) there will be a radiation receiver (4) that is coated with the same nanoparticles mentioned above and that perform the same function.
7. El panel solar termofotovoltaico con batería térmica y sus aplicaciones, en concordancia con la reivindicación 1 , la superficie (2) podrá recibir la radiación solar concentrada de un espejo lineal parabólico o una superficie tridimensional parabólica; la batería térmica (5) se calentará también en una de sus modalidades por energía nuclear, energía eléctrica, una fuente de calor por llama, o cualquier otro tipo de fuente de calor; la batería térmica (5) y (5a) estarán fabricadas en una sola pieza en una modalidad o de varias piezas en otra de sus modalidades permitiendo aumentar o disminuir el grosor de las placas, permitiendo diferentes procesos de fabricación. 7. The thermophotovoltaic solar panel with thermal battery and its applications, in accordance with claim 1, the surface (2) may receive concentrated solar radiation from a parabolic linear mirror or a parabolic three-dimensional surface; the thermal battery (5) will also be heated in one of its modalities by nuclear energy, electrical energy, a flame heat source, or any other type of heat source; The thermal battery (5) and (5a) will be manufactured in a single piece in one embodiment or in several pieces in another embodiment, allowing the thickness of the plates to be increased or decreased, allowing for different manufacturing processes.
PCT/MX2024/050005 2023-01-27 2024-01-26 Thermophotovoltaic solar panel with thermal battery, and applications thereof WO2024158277A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
MX2023001294A MX2023001294A (en) 2023-01-27 2023-01-27 Thermophotovoltaic solar panel with thermal battery and its applications.
MXMX/A/2023/001294 2023-01-27

Publications (1)

Publication Number Publication Date
WO2024158277A1 true WO2024158277A1 (en) 2024-08-02

Family

ID=91970895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX2024/050005 WO2024158277A1 (en) 2023-01-27 2024-01-26 Thermophotovoltaic solar panel with thermal battery, and applications thereof

Country Status (2)

Country Link
MX (1) MX2023001294A (en)
WO (1) WO2024158277A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050269254A1 (en) * 2004-05-24 2005-12-08 Roitman Lipa L [Air and Water Purifying System And Filter Media]
WO2015026932A1 (en) * 2013-08-22 2015-02-26 Massachusetts Institute Of Technology Internally-heated thermal and externally-cool photovoltaic cascade solar energy system for full solar spectrum utilization
US20150288318A1 (en) * 2013-09-11 2015-10-08 Prf Refractory plasmonic metamaterial absorber and emitter for energy harvesting
US20170070181A1 (en) * 2013-09-06 2017-03-09 Massachusetts Institute Of Technology Metallic dielectric photonic crystals and methods of fabrication
US20190067504A1 (en) * 2017-08-25 2019-02-28 California Institute Of Technology Luminescent Solar Concentrators and Related Methods of Manufacturing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050269254A1 (en) * 2004-05-24 2005-12-08 Roitman Lipa L [Air and Water Purifying System And Filter Media]
WO2015026932A1 (en) * 2013-08-22 2015-02-26 Massachusetts Institute Of Technology Internally-heated thermal and externally-cool photovoltaic cascade solar energy system for full solar spectrum utilization
US20170070181A1 (en) * 2013-09-06 2017-03-09 Massachusetts Institute Of Technology Metallic dielectric photonic crystals and methods of fabrication
US20150288318A1 (en) * 2013-09-11 2015-10-08 Prf Refractory plasmonic metamaterial absorber and emitter for energy harvesting
US20190067504A1 (en) * 2017-08-25 2019-02-28 California Institute Of Technology Luminescent Solar Concentrators and Related Methods of Manufacturing

Also Published As

Publication number Publication date
MX2023001294A (en) 2024-07-29

Similar Documents

Publication Publication Date Title
ES2904589T3 (en) Integrated solar energy utilization system and apparatus
US9029684B2 (en) Hybrid solar receiver and concentrating solar system comprising the same
Zhang et al. Solar selective absorber for emerging sustainable applications
ES2323613B2 (en) SOLAR ENERGY ELECTRIC POWER SYSTEM.
Ayachi et al. Solar thermoelectricity for power generation
ES2702348T3 (en) Hybrid solar device for electricity production with an increase in the useful life
US9127859B2 (en) Multi-point cooling system for a solar concentrator
ES2932843A1 (en) Method for producing hydrogen by dissociation of water by thermochemical reactions and device for carrying it out (Machine-translation by Google Translate, not legally binding)
WO2015101692A1 (en) Hybrid system comprising a thermosolar parametric cylinder and a photovoltaic receiver
WO2024158277A1 (en) Thermophotovoltaic solar panel with thermal battery, and applications thereof
US8378208B1 (en) AMTEC power system with thermal block
ES2772308B2 (en) HYBRID SOLAR PANEL FOR THE PRODUCTION OF ELECTRIC AND THERMAL ENERGY
US8344237B1 (en) AMTEC power system
US20170338766A1 (en) Hybrid flow solar thermal collector
JP2016067106A (en) Concentrating solar power generation system
CN206388731U (en) Water-cooled thermo-electric generation module
ES2302656A1 (en) High-gain photovoltaic concentrator with a reflective stage inserted into a liquid optical dielectric
ES2690162B2 (en) THERMOPOTOVOLTAIC CONVERTER
WO2023073418A1 (en) Hybrid solar panel with a transparent liquid thermal collector, the method of manufacturing of the hybrid solar panel
ES2273534B1 (en) TRANSPARENT INSULATING COVER FOR THERMAL SOLAR APPLICATIONS.
WO2008051068A1 (en) Novel geometry for a tubeless solar collector for water
US8648245B1 (en) AMTEC power system with thermal block
ES2641905B1 (en) METHOD FOR THE PROCESSING OF HIGH TEMPERATURE MATERIALS AND REACTOR OF ELECTRICAL INDUCTION AND SOLAR CONCENTRATION FOR THE PROCESSING METHOD
US8629345B1 (en) Solar AMTEC power system
KR101445688B1 (en) Heat treatment apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24747504

Country of ref document: EP

Kind code of ref document: A1