WO2024154371A1 - Can lid shell and manufacturing method for same, and forming device - Google Patents

Can lid shell and manufacturing method for same, and forming device Download PDF

Info

Publication number
WO2024154371A1
WO2024154371A1 PCT/JP2023/026734 JP2023026734W WO2024154371A1 WO 2024154371 A1 WO2024154371 A1 WO 2024154371A1 JP 2023026734 W JP2023026734 W JP 2023026734W WO 2024154371 A1 WO2024154371 A1 WO 2024154371A1
Authority
WO
WIPO (PCT)
Prior art keywords
die
curved surface
connection point
lid shell
inner sleeve
Prior art date
Application number
PCT/JP2023/026734
Other languages
French (fr)
Japanese (ja)
Inventor
拓郎 新宮領
Original Assignee
拓郎 新宮領
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 拓郎 新宮領 filed Critical 拓郎 新宮領
Priority to JP2024506183A priority Critical patent/JP7526436B1/en
Publication of WO2024154371A1 publication Critical patent/WO2024154371A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D24/00Special deep-drawing arrangements in, or in connection with, presses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D51/00Making hollow objects
    • B21D51/16Making hollow objects characterised by the use of the objects
    • B21D51/38Making inlet or outlet arrangements of cans, tins, baths, bottles, or other vessels; Making can ends; Making closures
    • B21D51/44Making closures, e.g. caps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D7/00Containers having bodies formed by interconnecting or uniting two or more rigid, or substantially rigid, components made wholly or mainly of metal

Definitions

  • the present invention relates to a can lid shell for a beverage can, a manufacturing method thereof, and a molding apparatus.
  • the can lid shell 700 for a beverage can is manufactured by pressing a circular blank punched from an aluminum alloy plate, and as shown in FIG. 35, comprises a panel portion 710, a countersink portion 720 provided around the panel portion 710, and an attachment portion 730 that extends from the outer wall portion of the countersink portion 720, has a hook-shaped cross section, and tightens the flange of the can body.
  • a conversion press is used to provide tear lines for opening and tabs for opening the can shell 700, and the can lid is manufactured.
  • a can lid shell 800 shown in FIG. 36 is known that has a reduced thickness and weight (Patent Document 1).
  • the area where the flange of the can body is rolled up to form the chuck wall is linear in the conventional can lid shell 700, as surrounded by the dashed line in Figure 35, whereas in the can lid shell 800, it is made up of multiple curved surfaces connected together, as surrounded by the dashed line in Figure 36.
  • the can lid shell 800 After filling the bottomed cylindrical can body with the contents and gas ( CO2 or N2 ), the can lid shell 800 is seamed onto the flange portion of the can body 900 as shown by the solid line in Fig. 37 to complete a can product with the can lid shell 800 attached. However, in Fig. 37, tab rivets, tear lines, debossing, etc. that will be added to the panel portion 810 in the next conversion process are omitted.
  • the pitch diameter PD2 of the countersink is smaller than the pitch diameter PD1 of the countersink of the can lid shell 700 (PD2 ⁇ PD1), and the area of the panel portion 810 is designed to be smaller.
  • the panel portion 810 of the can lid shell 800 is small, so even if the internal pressure of the can is the same, a smaller internal pressure acts on the panel portion 810 than the internal pressure that acts on the panel portion 710 of the can lid shell 700.
  • the present invention aims to provide a can lid shell that prevents buckling, a manufacturing method for this can lid shell, and a molding device.
  • the can lid shell of the present invention comprises a panel portion having a circular periphery, a recessed countersink portion formed along the periphery of the panel portion, a chuck wall portion rising from the edge of the countersink portion, and a flange portion projecting from the upper end of the chuck wall portion.
  • the can lid shell has an internal space defined inside the panel portion, the countersink portion, and the chuck wall portion, the countersink portion including a first curved surface portion that is convex toward the internal space, and the chuck wall portion including a second curved surface portion that is connected to the first curved surface portion and is concave from the internal space. Furthermore, the thickness of the first curved surface portion and the second curved surface portion increases from the edge on the flange portion side toward the edge on the panel portion side.
  • the can lid shell of the present invention preferably has a plurality of thin-walled sections formed on the front or back surface of the can lid shell, recessed from the second curved surface portion to the third curved surface portion and spaced apart in the circumferential direction of the can lid shell, and thick-walled sections are formed between the thin-walled sections and are thicker than the thin-walled sections, and the dimension along the radius of the can lid shell of the plurality of thin-walled sections and the plurality of thick-walled sections is set to be longer than the dimension along the direction perpendicular to the direction of the radius when viewed from above or below the can lid shell.
  • the first curved surface portion which is convex toward the internal space, has a plurality of thin and thick portions extending from the second curved surface portion to the third curved surface portion in the circumferential direction.
  • the area extending from the second curved surface portion to the third curved surface portion constitutes an increased thickness portion, and by providing this increased thickness portion with a first curved surface portion consisting of a thin and thick portion, deformation such as bending toward the internal space is prevented. This further increases the mechanical strength of the increased thickness portion, including the inflection portion consisting of the first curved surface portion and the second curved surface portion, improving pressure resistance.
  • the present invention is a molding device that includes a lower die and an upper die, and that clamps a circular blank between the lower die and the upper die to form a can lid shell.
  • the lower die includes a die core ring and a panel punch arranged inside the die core ring
  • the upper die includes a cylindrical upper piston, a cylindrical inner sleeve arranged inside the upper piston, and a die center arranged inside the inner sleeve.
  • the outer portion of the tip of the die core ring and the tip of the upper piston are arranged opposite each other, the inner portion of the tip of the die core ring and the tip of the inner sleeve are arranged opposite each other, and the panel punch and the die center are arranged opposite each other.
  • the inner portion of the tip of the die core ring has a first lower curved surface portion that is concave toward the inner sleeve, and a second lower curved surface portion that is connected to the first lower curved surface portion and is further shifted toward the central axis and is convex toward the inner sleeve.
  • the tip of the inner sleeve is provided with a first upper mold curved surface portion that is convex toward the first lower mold curved surface portion, a second upper mold curved surface portion that is connected to the first upper mold curved surface portion and is positioned further toward the central axis, and is an arc whose radius of curvature differs from the radius of curvature of the first upper mold curved surface portion and is convex toward the first lower mold curved surface portion, and a third upper mold curved surface portion that is connected to the second upper mold curved surface portion and is positioned further toward the central axis, and is concave toward the second lower mold curved surface portion.
  • the die clearance formed between the first lower curved surface portion and the second lower curved surface portion of the die core ring and the second upper curved surface portion and the third upper curved surface portion of the inner sleeve is equal to or greater than the plate thickness of the circular blank, and widens as it approaches the central axis.
  • a die clearance is formed between the first lower curved surface portion and the second lower curved surface portion of the die core ring and the second upper curved surface portion and the third upper curved surface portion of the inner sleeve, and this die clearance widens as it approaches the central axis. Since this die clearance has a distance equal to or greater than the plate thickness of the circular blank to be machined, it is possible to increase the thickness of a portion of the circular blank by machining.
  • the present invention is a molding device that includes a lower die and an upper die, and that clamps a circular blank between the lower die and the upper die to form a can lid shell.
  • the lower die includes a die core ring and a panel punch arranged inside the die core ring
  • the upper die includes a cylindrical upper piston, a cylindrical inner sleeve arranged inside the upper piston, and a die center arranged inside the inner sleeve.
  • the die core ring comprises a cylindrical fixed portion fixed to the lower mold, a movable portion provided inside the fixed portion, and a biasing member configured to be freely expandable and contractible along a central axis, supporting the movable portion from below and biasing the movable portion; the tip of the fixed portion of the die core ring and the tip of the upper piston are arranged opposite each other, the tip of the movable portion of the die core ring and the tip of the inner sleeve are arranged opposite each other, and the panel punch and the die center are arranged opposite each other.
  • the tip of the movable part has a lower curved surface portion that is convex toward the inner sleeve, and the tip of the inner sleeve has an upper curved surface portion that is concave toward the lower curved surface portion, the die clearance formed between the lower curved surface portion of the movable part and the upper curved surface portion of the inner sleeve is a distance equal to or greater than the plate thickness of the circular blank and widens as it approaches the central axis, and further, the movable part is pushed by the intermediate forming body when the circular blank is deep drawn and retreats toward the biasing member.
  • the intermediate formed body refers to the shape in the process of deformation of the circular blank until it becomes the first formed body through the deep drawing process.
  • the molding device of the present invention preferably further comprises a cylindrical lower piston surrounding a portion of the outer peripheral surface of the die core ring
  • the fixed part comprises a through hole leading from the inside of the fixed part to the outside of the fixed part and a block arranged in the through hole
  • the block has an outer inclined surface that protrudes to the outside of the fixed part and an inner inclined surface that protrudes to the inside of the fixed part
  • the lower piston has an inner inclined surface that abuts on the outer inclined surface of the block
  • the movable part has an outer inclined surface that abuts on the inner inclined surface of the block, and when the lower piston is pressed down by the upper mold, the inner inclined surface of the lower piston abuts on the outer inclined surface of the block, and the outer inclined surface of the retracted movable part abuts on the inner inclined surface of the block, and the lower piston further descends in this state, whereby the movable part moves towards the inner sleeve.
  • the molding device of the present invention is provided with the biasing member that supports the movable part, and the movable part is moved back by the intermediate molded body, thereby making it possible to suppress a decrease in the plate thickness of the intermediate molded body due to friction with the movable part during deep drawing.
  • the biasing member can be, for example, a spring or a pneumatic piston.
  • the present invention is a manufacturing method for can lid shells in which a circular blank is sandwiched between a lower die and an upper die to form a can lid shell, and includes a deep drawing process in which the circular blank is shaped into a tray-shaped first formed body, and a reverse process in which the flat portion of the bottom of the first formed body sandwiched between a panel punch and a die center is moved in the opposite direction to form a countersink portion recessed around the flat portion.
  • a part of the circular blank is deformed by the tip of the die core ring and the tip of the inner sleeve, and a first inflection portion consisting of a concave surface and a convex surface is formed between the flat portion and the flange portion of the first formed body.
  • a part of the first molded body to be processed is deformed and pushed into the die clearance, and the first molded body and the adjacent area are compressed from the flat portion side toward the flange portion side, increasing the plate thickness.
  • the work hardening caused by compression and the increased plate thickness improve the pressure resistance of the can lid.
  • the die clearance can be configured during deep drawing, at the start of the reverse process, or during the reverse process.
  • the die core ring includes a movable part that constitutes the part of the tip of the die core ring that faces the tip of the inner sleeve, and a biasing member that holds the movable part in a position that constitutes the mold clearance, and in the deep drawing process, the intermediate molded body presses the movable part, causing the movable part to retreat toward the biasing member.
  • the movable part before the reverse process is performed, the movable part is retracted by the intermediate formed body, thereby making it possible to suppress the reduction in thickness of the circular blank caused by friction with the movable part during deep drawing. Furthermore, by forming the first formed body in such a state where the reduction in thickness is suppressed, and then forming the first curved surface portion and the second curved surface portion on this first formed body, it is possible to suppress deformation and distortion of the curved portion at the start of the reverse process.
  • the inflection section which has a concave curved surface and a convex curved surface, is configured to have high pressure resistance, making it possible to prevent buckling.
  • FIG. 1A is a plan view showing a can lid shell according to a first embodiment of the present invention
  • Fig. 1B is a cross-sectional view of the can lid shell taken along line S1-S1 in Fig. 1A
  • FIG. 2 is an enlarged view of a cut end surface of a portion surrounded by a dashed line circle in FIG. 1B
  • FIG. 3 is an enlarged cross-sectional view of an inflection portion of a can lid shell according to the first embodiment of the present invention.
  • FIG. 4 is a cross-sectional view of a molding device for molding a can lid shell according to the first embodiment of the present invention.
  • FIG. 5 is an enlarged cross-sectional view of a part of the lower mold and the upper mold of the molding apparatus of FIG.
  • FIG. 6 is an enlarged view of the area surrounded by the dashed-dotted circle in FIG.
  • FIG. 7 is a diagram showing a method for manufacturing a can lid shell according to the first embodiment of the present invention.
  • 8A and 8B are views for explaining a blanking step in the manufacturing method for a can lid shell according to the first embodiment of the present invention.
  • 9A and 9B are views for explaining a deep drawing step in the manufacturing method for a can lid shell according to the first embodiment of the present invention.
  • 10A and 10B are views for explaining a reversing step in the manufacturing method for a can lid shell according to the first embodiment of the present invention.
  • FIG. 11 is a view showing a cross section of the first molded body.
  • FIG. 12 is a diagram for explaining the manufacturing method of a can lid shell according to the first embodiment of the present invention.
  • FIG. 13 is a diagram for explaining the method for manufacturing a can lid shell according to the first embodiment of the present invention.
  • FIG. 14A is a plan view showing a can lid shell according to a second embodiment of the present invention, and
  • FIG. 14B is a view showing a cross section of the can lid shell taken along line S2-S2 in FIG. 14A.
  • FIG. 15 is an enlarged view of the area surrounded by the dashed-dotted circle in FIG. 14A.
  • FIG. 16 is a cross-sectional view of the shell taken along line S3-S3 in FIG. FIG.
  • FIG. 17 is an enlarged view of the area surrounded by the dashed line in FIG. 14B.
  • FIG. 18 is an enlarged view showing a modified example of the recessed portion and the protruding portion of the can lid shell according to the second embodiment of the present invention.
  • FIG. 19 is an enlarged view showing a modified example of the recessed portion and the protruding portion of the can lid shell according to the second embodiment of the present invention.
  • FIG. 20 is an enlarged view showing a modified example of the recessed portion and the protruding portion of the can lid shell according to the second embodiment of the present invention.
  • FIG. 21 is a diagram for explaining the reforming process of the second embodiment of the present invention.
  • FIG. 22 is an enlarged view of the area surrounded by the dashed line in FIG. FIG.
  • FIG. 23 is a cross-sectional view of a molding device according to a first modified example of the present invention.
  • FIG. 24 is a diagram showing a cross section of the die core ring.
  • FIG. 25 is an enlarged view of a part of a cross section of the movable portion and the opposing portion of the upper piston.
  • FIG. 26 is an enlarged view of a portion of a cross section of a molding device according to a first modified example of the present invention.
  • 27A to 27D are views for explaining a method for manufacturing a shell by a molding apparatus according to a first modified example of the present invention.
  • FIG. 28 is a diagram for explaining a method for manufacturing a shell by a molding apparatus according to a first modified example of the present invention.
  • FIG. 29 is a cross-sectional view of a molding device according to a second modified example of the present invention.
  • FIG. 30 is a diagram showing a cross section of the die core ring, lower piston, movable part, block and spring.
  • FIG. 31 is an enlarged cross-sectional view of the block.
  • FIG. 32 is an enlarged cross-sectional view of the extension portion of the lower piston.
  • FIG. 33 is an enlarged cross-sectional view of the movable portion.
  • FIG. 34 is a diagram for explaining a method for manufacturing a shell by a molding apparatus according to a second modified example of the present invention.
  • FIG. 35 is a cross-sectional view of a conventional can lid shell.
  • FIG. 36 is a cross-sectional view of a lightweight can lid.
  • FIG. 37 is a diagram showing a cross section of a can lid during buckling.
  • the can lid shell 10 according to the first embodiment of the present invention will be described with reference to the drawings.
  • the can lid shell 10 comprises a panel portion 11 having a circular outline in plan view, a recessed countersink portion 12 formed along the periphery of the panel portion 11, a chuck wall portion 13 rising from the edge of the countersink portion 12 and defining an internal space SP1 together with the panel portion 11 and the countersink portion 12, and a flange portion 14 extending from the upper end (the end portion on the radially outward direction Do side) of the chuck wall portion 13.
  • the internal space SP1 is the space inside the chuck wall portion 13 and above the panel portion 11, as shown in Figure 1B.
  • the direction from the central axis C toward the outside is referred to as the radially outward direction Do
  • the direction from the outside toward the central axis C is referred to as the radially inward direction Di.
  • the direction along the central axis C from the countersink portion 12 side toward the chuck wall portion 13 is referred to as the first direction D1
  • the direction opposite to the first direction D1 that is, from the chuck wall portion 13 toward the countersink portion 12 side along the central axis C is referred to as the second direction D2 (see Figure 2).
  • FIGS. 1B and 2 show the cross-sectional shape of the can lid shell 10 when cut along an imaginary plane that passes through the central axis C and extends in the radially outward direction Do.
  • the cross-sectional shape of the can lid shell 10 is described below.
  • the panel portion 11 is formed as a flat circular plate, and its thickness is set to be approximately uniform.
  • the countersink portion 12 comprises a groove bottom 121 which constitutes a deep portion, a first groove wall portion 122 which extends from the edge of the groove bottom 121 on the radially inward direction Di to the peripheral edge of the panel portion 11, and a second groove wall portion 123 which extends from the edge of the groove bottom 121 on the radially outward direction Do to the edge of the chuck wall portion 13 on the radially inward direction Di.
  • the groove bottom 121 has a cross section formed as an arc of radius r12 from a center C12 located in the internal space SP1, and presents a curved surface that is concave from the internal space SP1 side.
  • the groove bottom 121 has a deepest part, and the connection point (first connection point p1) where the groove bottom 121 and the first groove wall 122 are connected is shifted radially inward Di from the deepest part, and is also shifted in the first direction D1 from the deepest part.
  • connection point (second connection point p2) where the groove bottom 121 and the second groove wall 123 are connected is positioned offset in the radial outward direction Do from the deepest part, and is also positioned offset in the first direction D1 from the deepest part. Note that in FIG. 2, the position of each connection point is indicated by a circle.
  • the first groove wall portion 122 has one edge connected to the edge of the groove bottom portion 121 on the radially inward direction Di to form a first connection point p1, and further has a first inclined groove cross section formed with a constant inclination with respect to the central axis C. and a first convex groove cross-section portion 122B that is formed from the other edge of the first inclined groove cross-section portion 122A to the peripheral edge of the panel portion 11 and is a circular arc that is convex toward the internal space SP1.
  • connection point (third connection point p3) where the first inclined groove cross-sectional portion 122A and the first convex groove cross-sectional portion 122B are connected is shifted in the radial inward direction Di from the first connection point p1 and is also shifted in the first direction D1 from the first connection point p1.
  • connection point (fourth connection point p4) where the first convex groove cross-section portion 122B and the panel portion 11 are connected is positioned offset in the radial inward direction Di from the third connection point p3, and is also positioned offset in the first direction D1 from the third connection point p3.
  • the first convex groove cross-section portion 122B presents a curved surface whose radius from the central axis C gradually becomes smaller (reduced diameter) from the third connection point p3 to the fourth connection point p4.
  • the second groove wall portion 123 has one edge connected to the edge of the groove bottom portion 121 on the radially outward direction Do side to form a second connection point p2, and further has a second inclined groove cross section formed with a constant inclination with respect to the central axis C.
  • a second convex groove cross section 123B (a third curved surface of the present invention) having one edge connected to the other edge of the second inclined groove cross section 123A and having a circular arc shape that is convex toward the internal space SP1;
  • the second convex groove cross section 123B has one edge connected to the other edge of the second convex groove cross section 123B, and the second convex groove cross section 123B has a radius of curvature different from the radius of curvature of the second convex groove cross section 123B and is convex toward the internal space SP1.
  • a third convex groove cross-sectional portion 123C (corresponding to the first curved surface portion of the present invention) having a circular arc shape.
  • connection point (fifth connection point p5) where the second inclined groove cross-section portion 123A and the second convex groove cross-section portion 123B are connected is positioned offset in the radially outward direction Do from the second connection point p2 and is also positioned offset in the first direction D1 from the second connection point p2.
  • connection point (sixth connection point p6) where the second convex groove cross-section portion 123B and the third convex groove cross-section portion 123C are connected is positioned offset in the radially outward direction Do from the fifth connection point p5 and is also offset in the first direction D1 from the fifth connection point p5.
  • connection point (seventh connection point p7) where the third convex groove cross-sectional portion 123C and the chuck wall portion 13 are connected is positioned at a position shifted radially outwardly in the direction Do from the sixth connection point p6, and is also positioned at a position shifted in the first direction D1 from the sixth connection point p6.
  • the second convex groove cross-section 123B presents a curved surface whose radius from the central axis C gradually increases (widens) from the fifth connection point p5 to the sixth connection point p6.
  • the third convex groove cross-section 123C presents a curved surface whose radius from the central axis C gradually increases (widens) from the sixth connection point p6 to the seventh connection point p7.
  • the center C56 of the arc formed by the second convex groove cross-section portion 123B is located in the outer space SP2
  • the center C67 of the arc formed by the third convex groove cross-section portion 123C is located in the outer space SP2
  • the center C56 of the arc of the second convex groove cross-section portion 123B is slightly shifted toward the radially inward direction Di from the center C67 of the arc of the third convex groove cross-section portion 123C, and is also slightly shifted toward the first direction D1.
  • the radius r56 of the arc of the second convex groove cross-section portion 123B is set smaller than the radius r67 of the arc of the third convex groove cross-section portion 123C.
  • the back surface SF2 of the can lid shell 10 is formed as an arc of a constant radius r57 from the center C57, from the fifth connection point p5 through the sixth connection point p6 to the seventh connection point p7.
  • the center C67 of the arc on the front surface SF1 is shifted toward the radially inward direction Di from the center C57 of the arc on the back surface SF2, and is also shifted toward the first direction D1.
  • the radius r57 of the arc on the back surface SF2 is set to be smaller than the radius r56 of the arc on the second convex groove cross-sectional portion 123B and the radius r67 of the arc on the third convex groove cross-sectional portion 123C.
  • the chuck wall portion 13 has one edge (radially inward Di side) connected to the edge on the radially outward direction Do side of the second convex groove cross-sectional portion 123B of the countersink portion 12, forming a sixth connection point p6, and has a first concave surrounding cross-sectional portion 131 (corresponding to the second curved surface portion of the present invention) of a circular arc that is concave toward the internal space SP1 side, and one edge (radially inward Di side) connected to the other edge (radially outward direction Do side) of the first concave surrounding cross-sectional portion 131, and has a curvature radius different from that of the first concave surrounding cross-sectional portion 131.
  • the second concave surrounding cross-sectional portion 132 is an arc that is concave toward the internal space SP1 at a radius, an inclined surrounding cross-sectional portion 133 whose one edge (radially inward Di side) is connected to the other edge (radially outward Do side) of the second concave surrounding cross-sectional portion 132 and whose inclination with respect to the central axis C is constant, and a convex surrounding cross-sectional portion 134 whose one edge (radially inward Di side) is connected to the other edge (radially outward Do side) of the inclined surrounding cross-sectional portion 133 and whose convex shape is toward the internal space SP1.
  • the eighth connection point p8 where the first surrounding cross-section 131 and the second surrounding cross-section 132 are connected is disposed at a position shifted in the radial outward direction Do from the seventh connection point p7.
  • the seventh connection point p7 is disposed in the first direction D1 away from the eighth connection point p8.
  • the first concave surrounding cross-section portion 131 has a radius from the central axis C that gradually increases from the seventh connection point p7 to the eighth connection point p8. It presents a curved surface (expanded diameter).
  • first concave surrounding cross-section 131 of the chuck wall portion 13 and the third convex groove cross-section 123C of the countersink portion 12 have curved surfaces in opposite directions, so the seventh connection point p7 constitutes an inflection point.
  • connection point p9 where the second concave surrounding cross-section portion 132 and the inclined surrounding cross-section portion 133 are connected is disposed so as to be shifted in the radial outward direction Do from the eighth connection point p8.
  • the second concave surrounding cross-section portion 132 has a radius from the central axis C that gradually increases (expands) from the eighth connecting point p8 to the ninth connecting point p9. It has a curved surface with a diameter of 1 mm.
  • the center C89 of the arc formed by the surface SF1 in the second concave surrounding cross-sectional portion 132 is disposed within the internal space SP1
  • the center C78 of the arc formed by the surface SF1 in the first concave surrounding cross-sectional portion 131 is disposed within the internal space SP1.
  • the center C89 of the arc formed by the surface SF1 in the second concave surrounding cross-sectional portion 132 is shifted toward the radially inward direction Di from the center C78 of the arc of the first concave surrounding cross-sectional portion 131, and is also shifted toward the first direction D1.
  • the radius r89 of the arc formed by surface SF1 in second concave surrounding cross-section 132 is set to be larger than the radius r78 of the arc formed by surface SF1 in first concave surrounding cross-section 131.
  • the back surface SF2 of the can lid shell 10 is formed as an arc of a constant radius r79 from the center C89, from the seventh connection point p7 through the eighth connection point p8 to the ninth connection point p9.
  • connection point (tenth connection point p10) where the inclined surrounding cross-section portion 133 and the convex surrounding cross-section portion 134 are connected is disposed in the radially outward direction Do from the ninth connection point p9.
  • the inclined surrounding cross-section portion 133 is inclined such that the radius from the central axis C gradually increases (expands) from the ninth connection point p9 to the tenth connection point p10. presents a constant inclination surface.
  • connection point (eleventh connection point p11) where the convex surrounding cross section 134 and the flange portion 14 are connected is disposed at a position shifted in the radially outward direction Do from the tenth connection point p10 and at a position shifted in the first direction D1 from the tenth connection point p10.
  • the convex surrounding cross section 134 presents a curved surface whose radius from the central axis C gradually increases (expands) from the tenth connection point p10 to the eleventh connection point p11.
  • the eleventh connection point p11 is the point on the can lid shell 10 that is furthest away from the deepest part along the first direction D1, i.e., it constitutes the highest point (apex).
  • the tip of the flange portion 14 is curled in the next curling process, as shown in Figure 2.
  • the cross section formed by the chuck wall portion 13 and the flange portion 14 is hook-shaped, and further, the section from the convex surrounding cross section portion 134 of the chuck wall portion 13 to the tip of the flange portion 14 is flange-shaped.
  • the reinforcing structure of the can lid shell 10 is explained below.
  • the back surface SF2 from the fifth connection point p5 through the sixth connection point p6 to the seventh connection point p7 is formed as an arc of a constant radius r57 from the center C57.
  • the front surface SF1 from the fifth connection point p5 to the sixth connection point p6 is formed as an arc of a radius r56 longer than the radius r57 from the center C56 that is positioned offset from the center C57.
  • the second convex groove cross-sectional portion 123B is formed so that its thickness gradually increases from the fifth connection point p5 to the sixth connection point p6.
  • each connection point is represented by a ⁇ mark indicating a position on the front surface SF1, a ⁇ mark indicating a position on the back surface SF2, and a solid line connecting these.
  • the surface SF1 from the sixth connection point p6 to the seventh connection point p7 is formed by an arc of radius r67 longer than radius r57 from a center C67 that is positioned offset from the center C57 of the arc on the back surface SF2.
  • the third convex groove cross-sectional portion 123C is formed so that its thickness gradually decreases from the sixth connection point p6 to the seventh connection point p7.
  • the can lid shell 10 has a back surface SF2 extending from the seventh connection point p7 through the eighth connection point p8 to the ninth connection point p9, which is formed by an arc of a constant radius r79 from the center C89, and a front surface SF1 extending from the eighth connection point p8 to the ninth connection point p9, which is formed by an arc of a radius r89 that is concentric with the center C89 of the arc of the back surface SF2 and is shorter than the radius r79, and the second concave surrounding cross-sectional portion 132 is formed to have a constant thickness from the eighth connection point p8 to the ninth connection point p9.
  • the seventh connection point p7 is the inflection point between the third convex groove cross-sectional portion 123C and the first concave surrounding cross-sectional portion 131, and is located on the imaginary line LX1 (shown by a dashed line) connecting the centers C89 and C57 of the figure.
  • the surface SF1 of the can lid shell 10 from the seventh connection point p7 to the eighth connection point p8 is formed with a radius r78 that is shorter than the radius r89 from a center C78 that is offset from the center C89 of the arc on the back surface.
  • the first concave surrounding cross-sectional portion 131 is formed so that its thickness gradually decreases from the seventh connection point p7 to the eighth connection point p8.
  • the thickness of the inflection portion of the can lid shell 10 satisfies the relationship t8 ⁇ t7 ⁇ t6, where t6 is the thickness at the sixth connection point p6, t7 is the thickness at the seventh connection point p7, and t8 is the thickness at the eighth connection point p8.
  • Thickness t6 is the dimension along a virtual line (not shown) extending from center C57
  • thickness t7 is the dimension along a virtual line LX1 extending from center C57 and center C89
  • thickness t8 is the dimension along a virtual line (not shown) extending from center C89.
  • the can lid shell 10 has an inflection point (seventh connection point p7) located in the middle, forming an inflection section 17 consisting of the third convex groove cross-section 123C of the countersink section 12 and the first concave surrounding cross-section 131 of the chuck wall section 13, which is bent in the opposite direction.
  • the thickness of the inflection section 17 increases from the eighth connection point p8 to the sixth connection point p6, and is at its maximum near the sixth connection point p6.
  • the thickness of the inflection portion 17 is equal to or greater than the thickness of the base plate 400 (circular blank 410) used to form the can lid shell 10, and is, for example, 106% or more of the thickness of the base plate 400 (circular blank 410).
  • the thickness of the can lid shell 10 increases from the fifth connection point p5 to the sixth connection point p6. If the thickness at the fifth connection point p5 is t5 and the thickness at the sixth connection point p6 is t6, then the relationship t5 ⁇ t6 holds. Thicknesses t5 and t6 are dimensions along an imaginary line (not shown) extending from the center C57. The thickness from the fifth connection point p5 to the sixth connection point p6 is also greater than or equal to the thickness of the base plate 400 (circular blank 410) used to form the can lid shell 10.
  • the area from the fifth connection point p5 to the eighth connection point p8 is thicker than the adjacent second inclined groove cross-sectional portion 123A and second concave surrounding cross-sectional portion 132. It is also thicker than the base plate 400 (circular blank 410).
  • the area from the fifth connection point p5 to the eighth connection point p8, which is formed by increasing the thickness including the inflection point (seventh connection point p7), will be referred to as the thickened portion 18.
  • the can lid shell 10 has the above cross-sectional structure configured throughout around the central axis C, and the thickened bend portion 17 is arranged in a ring shape in a plan view.
  • the can lid shell 10 is formed by pressing a circular blank 410 made of an aluminum alloy (e.g., 5000 series).
  • the thickness of each part of the can lid shell 10 is, for example, 0.20 mm or more and 0.26 mm or less.
  • the can lid includes the above-mentioned can lid shell 10, a tear line for forming an opening formed on the can lid shell 10, and a tab for opening the can.
  • the can lid manufacturing method includes a can lid shell forming process in which the can lid shell 10 is formed, and a conversion molding process in which tear lines, tabs, etc. are provided on the can lid shell 10 using a conversion press.
  • the following describes the molding device 2 that performs the can lid shell molding process (the manufacturing method of the can lid shell 10) in the can lid manufacturing method.
  • the molding device 2 includes a lower die 200 and an upper die 300 in a press machine (not shown).
  • the central axes of the lower die 200 and the upper die 300 are set coaxially with the central axis C of the can lid shell 10 to be molded, and these axes are hereinafter collectively referred to as the central axis C.
  • the central axis C among the directions along the radius from the central axis C, the direction toward the outside from the central axis C is referred to as the radially outward direction Do, and the direction from the outside toward the central axis C is referred to as the radially inward direction Di.
  • the direction from the lower die 200 to the upper die 300 corresponds to the first direction D1 of the can lid shell 10 in the molding device 2, so the direction from the lower die 200 to the upper die 300 is also referred to as the first direction D1, and the direction from the upper die 300 to the lower die 200 is sometimes referred to as the second direction D2. Furthermore, in the molding device 2, the first direction D1 will be described as upward, and the second direction D2 as downward.
  • the lower mold 200 includes a lower retainer 210, a cut edge portion 220 held at the tip of the lower retainer 210 on the upper mold 300 side (first direction D1 side), a die core ring 230 held inside the lower retainer 210, a panel punch piston 240 provided inside the die core ring 230, a panel punch 250 fixed to the tip of the panel punch piston 240, and a lower piston 260 surrounding a portion of the die core ring 230.
  • the lower retainer 210 comprises a base portion 211 having a hole 211A penetrating the center, and a tube portion 212 fixed to the upper portion of the base portion 211 and having an inner peripheral surface with an inner diameter larger than that of the hole 211A.
  • the tube portion 212 has a step portion 212A on the inside of the tip end opposite the base end fixed to the base portion 211.
  • the cut edge portion 220 is formed in a ring shape and is disposed in the step portion 212A of the lower retainer 210, with the inner peripheral surface 221 protruding further toward the central axis C than the inner peripheral surface of the tubular portion 212 of the lower retainer 210.
  • the lower surface 222 of the cut edge portion 220 is fixed to the step portion 212A, and a corner portion 224 is formed by the top surface 223 opposite the lower surface 222 and the inner peripheral surface 221.
  • the die core ring 230 comprises a base 231 fixed to the upper surface of the base portion 211 of the lower retainer 210, and an extension portion 232 that has a thickness in the radial direction from the central axis C that is thinner than that of the base 231 and extends from the base portion 231 to the opposite side of the base portion 211, has a hole penetrating along the central axis C, and is disposed inside the tubular portion 212 of the lower retainer 210.
  • the panel punch piston 240 is integrally equipped with a piston body 241 that rubs against the inner circumferential surface of the die core ring 230 and an extension 242 that extends from the piston body 241, and can move along the central axis C.
  • the piston body 241, the die core ring 230, and the lower retainer 210 form a space SP21. Air is supplied to this space SP21 via a flow path not shown, to control the panel punch piston 240.
  • the panel punch 250 has a punch flat portion 251 that cooperates with the flat portion 341 of the die center 340 to clamp the circular blank, and a punch step portion 252 having a receiving surface 252A that is provided along the periphery of the punch flat portion 251 and is offset toward the panel punch piston 240 side from the punch flat portion 251.
  • the receiving surface 252A has a cross section formed into a circular arc that is concave toward the upper die 300.
  • the lower piston 260 is formed in a cylindrical shape as a whole, and includes a piston body portion 261 that rubs against the inner peripheral surface of the lower retainer 210 and the outer peripheral surface of the die core ring 230, and an extension portion 262 that extends from the piston body portion 261 and has a thinner thickness in the radial direction from the central axis C than the piston body portion 261.
  • the lower piston 260 can move along the central axis C.
  • the piston body 261 of the lower piston 260, the lower retainer 210, and the die core ring 230 form a space SP22. Air is supplied to this space SP22 via a flow path not shown, to control the lower piston 260.
  • the upper mold 300 includes an upper retainer 310, a blank draw die 320 held by the upper retainer 310, a die center piston 330 provided inside the upper retainer 310, a die center 340 fixed to the tip of the die center piston 330, an inner sleeve 350 surrounding the die center 340, and an upper piston 360 surrounding the inner sleeve 350.
  • the upper retainer 310 integrally comprises a first tubular portion 311, a second tubular portion 312 formed with an inner diameter smaller than that of the first tubular portion 311, and a third tubular portion 313 formed with an inner diameter larger than that of the second tubular portion 312.
  • the inside of the third tubular portion 313 is formed as a step portion 313A, which forms an open end.
  • the space between the inner circumferential surface of the first tubular portion 311 and the inner circumferential surface of the second tubular portion 312 forms a step portion 314.
  • the blank draw die 320 includes a base 321 formed in a ring shape, and a tubular portion 322 extending from the base 321 and having a thickness along the radius from the central axis C that is thinner than that of the base 321.
  • the base 321 is disposed in the step portion 313A of the upper retainer 310, and the inner peripheral surface side protrudes further toward the central axis C than the third tubular portion 313 of the upper retainer 310.
  • the die center piston 330 has a rod-shaped portion 331 and a flange-shaped protruding end portion 332 provided at the end of the rod-shaped portion 331, and the rod-shaped portion 331 is arranged to extend from the lower open end of the upper retainer 310 toward the lower die 200.
  • the die center piston 330 can move along the central axis C, and is configured so that the protruding end 332 abuts against the step portion 314 of the upper retainer 310.
  • the protruding end 332 and the inside of the first cylindrical portion 311 form a space SP31, and air is supplied through a flow path not shown to control the die center piston 330.
  • the inner sleeve 350 is integrally formed into a cylindrical shape as a whole, and includes a piston body portion 351 that rubs against the inner circumferential surface of the upper retainer 310 and the die center piston 330, and an extension portion 352 that extends from the piston body portion 351 and has a thinner thickness in the radial direction from the central axis C than the piston body portion 351.
  • the inner sleeve 350 can move along the central axis C.
  • the upper piston 360 is formed in a cylindrical shape as a whole, and includes a piston body 361 that rubs against the inner circumferential surface of the upper retainer 310 and the extension 352 of the inner sleeve 350, and an extension 362 that extends from the piston body 361 and has a thinner thickness in the radial direction from the central axis C than the piston body 361.
  • the upper piston 360 can move along the central axis C.
  • the piston body 351 of the inner sleeve 350, the die center piston 330, and the upper retainer 310 form a space SP32.
  • the piston body 351 of the inner sleeve 350, the upper retainer 310, and the piston body 361 of the upper piston 360 form a space SP33. Air is supplied to these spaces SP32 and SP33 via a flow path not shown in the figure, to control the inner sleeve 350 and the upper piston 360.
  • the lower piston 260 and the blank draw die 320 are configured to align the flat surface 262B of the tip 262A of the extension portion 262 with the flat surface 322B of the tip 322A of the tubular portion 322.
  • the tip 322A of the tubular portion 322 of the blank draw die 320 has a rounded portion 322D with a cross section formed in an arc between the flat surface 322B and the inner circumferential surface 322C.
  • the extension portion 232 of the die core ring 230 has a tip portion 232A that faces the tip portion 362A of the extension portion 362 of the upper piston 360 and the tip portion 352A of the extension portion 352 of the inner sleeve 350.
  • the tip 232A of the die core ring 230 is formed at the highest point, faces the tip 362A of the extension 362 of the upper piston 360, and has a cross section formed in an arc that is convex toward the tip 362A side.
  • a first inclined surface portion 232C is formed connected to the edge of the first convex surface portion 232B in the radial inward direction Di, is formed at a constant inclination with respect to the central axis C, and descends as it goes in the radial inward direction Di.
  • a first inclined surface portion 232C is formed connected to the lower end of the first inclined surface portion 232C, and is formed so that the cross section of the first inclined surface portion 232B is inclined toward the central axis C.
  • a concave surface portion 232D (corresponding to the first lower mold curved surface portion of the present invention) whose cross section is formed in an arc concave toward the C side
  • a second convex surface portion 232E (corresponding to the second lower mold curved surface portion of the present invention) which is connected to the edge of the concave surface portion 232D on the radially inward direction Di side and whose cross section is formed in an arc convex toward the central axis C side
  • a second inclined surface portion 232F which is connected to the edge of the second convex surface portion 232E on the radially inward direction Di side and is formed at a constant inclination with respect to the central axis C and descends as it goes in the radially inward direction Di.
  • connection point (second lower die connection point P22) where the concave surface portion 232D and the second convex surface portion 232E are connected is shifted in the radial inward direction Di and is also shifted in the second direction D2.
  • the concave surface portion 232D presents a curved surface whose radius from the central axis C gradually decreases (reduced diameter) from the first lower die connection point P21 to the second lower die connection point P22.
  • each connection point is highlighted with a ⁇ mark, but in reality it is a smooth surface.
  • connection point (third lower die connection point P23) where the second convex surface portion 232E and the second inclined surface portion 232F are connected is shifted in the radial inward direction Di with respect to the second lower die connection point P22, and is also shifted in the second direction D2.
  • the second convex surface portion 232E presents a curved surface whose radius from the central axis C gradually decreases (reduced diameter) from the second lower die connection point P22 to the third lower die connection point P23.
  • the second convex surface portion 232E and the adjacent concave surface portion 232D have inverted curved surfaces, differing in convex and concave directions, and therefore the second lower die connection point P22 constitutes an inflection point.
  • the tip 362A of the upper piston 360 has a concave surface 362B that faces the first convex surface 232B of the die core ring 230.
  • the concave surface 362B of the tip 362A of the upper piston 360 and the first convex surface 232B of the die core ring 230 sandwich a circular blank (described below) between them to form the flange portion 14.
  • the tip 352A of the inner sleeve 350 is formed with one edge connected to the lowest point (lowest point P30) and extending from the lowest point P30 in the radially outward direction Do, and has a cross section formed in an arc that is convex toward the tip 232A of the die core ring 230.
  • the sleeve concave portion 352C (corresponding to the third upper mold curved surface portion of the present invention) is formed by connecting to the edge of the sleeve concave portion 352C on the radially outward direction Do side and has a cross section formed in an arc that is concave toward the tip 232A of the die core ring 230.
  • the sleeve concave portion 352C is formed by connecting to the edge of the sleeve concave portion 352C on the radially outward direction Do side and has a cross section formed in an arc that is concave toward the tip 232A of the die core ring 230.
  • the second sleeve convex surface portion 352D (corresponding to the second upper mold curved surface portion of the present invention) has a cross section formed in an arc that is convex toward the 232A side, a third sleeve convex surface portion 352E (corresponding to the first upper mold curved surface portion of the present invention) that is connected to the edge of the second sleeve convex surface portion 352D on the radially outward direction Do side and has a cross section formed in an arc that is convex toward the tip portion 232A side of the die core ring 230 with a radius of curvature different from the radius of curvature of the arc of the second sleeve convex surface portion 352D, and a sleeve inclined surface portion 352F that is connected to the edge of the third convex surface portion 352E on the radially outward direction Do side and is formed at a constant inclination with respect to the central axis C, and expands in diameter as it
  • connection point (first upper die connection point P31) where the first sleeve convex surface portion 352B and the sleeve concave surface portion 352C are connected is positioned offset in the radially outward direction Do from the lowest point P30, and is also positioned offset in the first direction D1.
  • the first sleeve convex surface portion 352B presents a curved surface whose radius from the central axis C gradually increases (widens) from the lowest point P30 toward the first upper die connection point P31.
  • connection point (second upper die connection point P32) where the second sleeve convex surface portion 352D and the sleeve concave surface portion 352C are connected is positioned offset in the radially outward direction Do from the first upper die connection point P31, and is also positioned offset in the first direction D1.
  • the sleeve concave surface portion 352C presents a curved surface whose radius from the central axis C gradually increases (expands in diameter) from the first upper die connection point P31 to the second upper die connection point P32.
  • the first upper die connection point P31 constitutes an inflection point.
  • connection point (third upper die connection point P33) where the third sleeve convex surface portion 352E and the second sleeve convex surface portion 352D are connected is positioned offset in the radially outward direction Do from the second upper die connection point P32, and is also positioned offset in the first direction D1.
  • the second sleeve convex surface portion 352D presents a curved surface whose radius from the central axis C gradually increases (widens in diameter) from the second upper die connection point P32 to the third upper die connection point P33. Since the second sleeve convex surface portion 352D and the adjacent sleeve concave surface portion 352C have different curved directions, convex and concave, the second upper die connection point P32 constitutes an inflection point.
  • connection point (fourth upper die connection point P34) where the sleeve inclined surface portion 352F and the third sleeve convex surface portion 352E are connected is positioned offset in the radially outward direction Do from the third upper die connection point P33, and is also positioned offset in the first direction D1.
  • the third sleeve convex surface portion 352E presents a curved surface whose radius from the central axis C gradually increases (widens) from the third upper die connection point P33 to the fourth upper die connection point P34.
  • the circular blank 410 is pressed by being sandwiched between the tip 232A of the die core ring 230 and the tip 352A of the inner sleeve 350 at a predetermined pressure.
  • a spacer 370 of a predetermined thickness is attached to the flange portion underside 351A (on the second direction D2 side) of the piston body 351 of the inner sleeve 350.
  • the tip 352A of the inner sleeve 350 is closest to the tip 232A of the die core ring 230, and a mold clearance CL1 is set between the tip 232A of the die core ring 230 and the tip 352A of the inner sleeve 350.
  • the mold clearance CL1 is set to be larger than the thickness of the blank 400 from the third upper die connection point P33 to the first upper die connection point P31 of the inner sleeve 350.
  • the circular blank 410 is deep drawn while being sandwiched between the inner sleeve 350 and the die core ring 230 at a constant pressure, and the plate thickness of the inflection portion including the eighth connection point p8 to the sixth connection point p6 is reduced. In addition, the reduction in plate thickness reduces the die clearance at this inflection portion.
  • the mold clearance CL1 is explained below.
  • Figure 6 shows the surface of the tip 232A of the die core ring 230.
  • the concave surface 232D is formed from a circular arc of a constant radius r212 from the center C212.
  • the second convex surface 232E is formed from a circular arc of a constant radius r223 from the center C223.
  • the concave surface 232D of the tip 232A of the die core ring 230 faces the second sleeve convex surface 352D and the third sleeve convex surface 352E of the tip 352A of the inner sleeve 350.
  • the third sleeve convex portion 352E is an arc centered at the same point as the center C212 of the concave portion 232D of the die core ring 230, and the radius r334 of this arc is shorter than the radius r212 of the concave portion 232D of the die core ring 230.
  • the distance between the third sleeve convex portion 352E of the inner sleeve 350 and the concave portion 232D of the die core ring 230 when they are closest to each other is constant.
  • the center C323 of the arc of the second sleeve convex surface portion 352D is shifted radially outwardly Do from the center C212 of the arc of the concave surface portion 232D of the die core ring 230, and is also shifted in the second direction D2.
  • the radius r323 of the arc of the second sleeve convex surface portion 352D is set shorter than the radius r212 of the arc of the concave surface portion 232D of the die core ring 230 and the radius r334 of the arc of the third sleeve convex surface portion 352E.
  • the angle ⁇ 1 between the first tangent T1 and the horizontal line HL is set to be smaller than the angle ⁇ 2 between the second tangent T2 and the horizontal line HL ( ⁇ 1 ⁇ ⁇ 2) (excluding the tangent that touches the third upper die connection point P33).
  • the center C312 of the arc of the sleeve concave portion 352C is shifted in the radially inward direction Di from the center C223 of the arc of the second convex portion 232E of the die core ring 230, and is also shifted in the first direction D1.
  • the radius r312 of the arc of the sleeve concave portion 352C is set to be longer than the radius r223 of the arc of the second convex portion 232E of the die core ring 230.
  • the second lower die connection point P22 and the second upper die connection point P32 are located on the imaginary line LX2 connecting the centers C212 and C223 shown by the dashed dotted line in the figure.
  • the mold clearance CL1 is formed to become wider from the third upper mold connection point P33 to the first upper mold connection point P31 of the inner sleeve 350. If the clearance dimension at the third upper mold connection point P33 is CL33, the clearance dimension at the second upper mold connection point P32 is CL32, and the clearance dimension at the first upper mold connection point P31 is CL31, then the relationship CL33 ⁇ CL32 ⁇ CL31 holds.
  • CL33 is the dimension along an imaginary line extending from the center C212 through the third upper die connection point P33 into the die core ring 230.
  • CL32 is the dimension along an imaginary line extending from the center C212 or center 223 and passing through the second upper die connection point P32 and the second lower die connection point P22.
  • CL31 is the dimension along an imaginary line extending from the center 223 through the first upper die connection point P31 into the inner sleeve 350.
  • the die clearance CL1 from the third upper die connection point P33 to the first upper die connection point P31 of the inner sleeve 350 is set to be larger than the thickness of the blank 400.
  • the manufacturing method of the can lid shell 10 by the forming device 2 includes a blanking process ( FIG. 8 ) in which a circular blank is punched out from an aluminum alloy raw plate, a deep drawing process ( FIG. 9 ) in which the circular blank is deep drawn to form a shallow-bottomed first formed body, and a reverse process ( FIG. 10 ) in which the bottom side of the first formed body is moved in the opposite direction to form a countersink portion 12.
  • Figures 8 to 10 show the left side of the central axis C of the molding device 2 shown in Figure 4.
  • the upper die 300 descends and the blank draw die 320 presses a portion of the blank 400 toward the inside of the cut edge portion 220 to punch out the circular blank 410.
  • the punched circular blank 410 is held by having its peripheral edge sandwiched between the tip 262A of the lower piston 260 of the lower die 200 and the tip 322A of the blank draw die 320 of the upper die 300.
  • the upper die 300 is further lowered to place the tip 322A of the blank draw die 320 between the cut edge portion 220 and the die core ring 230, and the tip 352A of the inner sleeve 350 is brought closer to the tip 232A of the die core ring 230 until a die clearance CL1 is formed between them, and the flat portion 341 of the die center 340 is placed inside the die core ring 230.
  • FIG. 9B shows the first formed body 420 formed by the deep drawing process with the upper die 300 at the bottom dead center.
  • the first molded body 420 has a bottom portion (flat portion) 421 sandwiched between the panel punch 250 of the lower mold 200 and the die center 340 of the upper mold 300, a clamping portion (flange portion) 422 that is shifted from the bottom portion 421 in the first direction D1 and also shifted in the radially outward direction Do and is sandwiched between the die core ring 230 and the upper piston 360, and a first inflection portion 423 that is positioned in the mold clearance CL1 between the tip portion 352A of the inner sleeve 350 and the tip portion 232A of the die core ring 230.
  • the first bend portion 423 is configured by connecting a convex portion 423A, the cross section of which is formed into a curved surface whose direction of curvature is convex toward the internal space SP4 of the first molded body 420, and a concave portion 423B, which is positioned toward the clamping portion 422 from the convex portion 423A and has a cross section formed into a curved surface that is concave toward the internal space SP4.
  • the intermediate form in which the circular blank 410 is deformed to become the first molded body 420 is referred to as the intermediate molded body.
  • the portion of the first molded body 420 sandwiched between the panel punch 250 and the die center 340 that protrudes beyond the bottom portion 421 is folded back to form a curved portion 424 with a U-shaped cross section that is convex downward, as shown in FIG. 12.
  • the curved portion 424 is disposed in the mold clearance CL1 between the tip 352A of the inner sleeve 350 and the tip 232A of the die core ring 230, with the first bend portion 423 of the first molded body 420 sandwiched between them.
  • a minute gap (space) CL0 that is not filled by the first inflection portion 423 of the first molded body 420 remains, for example, between the first inflection portion 423 and the sleeve concave portion 352C or the second sleeve convex portion 352D of the inner sleeve 350.
  • the minute gap (space) CL0 is formed at the stage where the deep drawing process is completed.
  • the depth dimension h of the curved portion 424 gradually increases as the panel punch 250 rises, and when it reaches a predetermined depth, it comes into contact with the receiving surface 252A of the punch step portion 252 provided around the punch flat portion 251 of the panel punch 250, as shown in Figures 10B and 13. After coming into contact with the receiving surface 252A, the curved portion 424 is pushed by the receiving surface 252A and moves (rises) in the first direction D1.
  • the curved portion 424 is pushed up by the receiving surface 252A of the panel punch 250, and as shown in FIG. 13, a part of the first molded body 420 being processed is deformed to fill the minute gap (space) CL0. This causes the first inflection portion 423 to thicken and become the second inflection portion 425 (inflection portion 17).
  • the panel punch 250 is moved (raised) in the first direction D1 to a predetermined position (height) until a portion of the first molded body 420 fills the minute gap (space) CL0, and the reverse process ends.
  • the curved portion 424 at this end stage forms the countersink portion 12, and the formed second inflection portion 425 forms the inflection portion 17.
  • the upper die 300 rises and the flat portion 341 of the die center 340 moves away from the bottom portion 421 of the first molded body 420 in the first direction D1.
  • the upper die 300 is further moved to a position above the lower die 200, and the completed can lid shell 10 is removed.
  • next lining process rubber is applied to the back surface SF2 of the formed can lid shell 10 to maintain the coating seal. Then, in the next conversion process, tear lines for opening the can are formed and tabs for opening the can are attached, completing the can lid.
  • the flange portion of the can lid shell 10 of the can lid (the flange portion 14 and the convex surrounding cross-sectional portion 134 of the chuck wall portion 13) is wrapped around the flange portion of the can body to attach the can lid, completing the can product.
  • the can lid shell 10A of the second embodiment has a plurality of thin-walled portions (recesses) 15 formed along the radial direction, including the inflection points, on the surface SF1 of the can lid shell 10A.
  • the thin-walled portions 15 are configured as recessed portions as shown in Figures 15, 16, and 17.
  • the thin-walled portions 15 are arranged at equal angular intervals around the center of the panel portion 11.
  • each thin-walled portion 15 is formed in the same shape (rounded rectangle).
  • each thin-walled portion 15 is formed such that the dimension Da along the radially outward direction Do is longer than the width dimension Db perpendicular to this.
  • the line along the radially outward direction Do is represented by a two-dot chain line.
  • the areas between these thin-walled portions 15 constitute thick-walled portions (convex portions) 16 that are formed thicker than the thin-walled portions 15.
  • Each thick-walled portion 16 is also formed so that the dimension along the radially outward direction Do in plan view is longer than the width dimension perpendicular to this. In other words, the distance between each thin-walled portion 15 along the circumferential direction relative to the central axis C is smaller than the dimension Da.
  • dashed line B11 indicates the boundary line formed by the fifth connection point p5
  • dashed line B12 indicates the boundary line formed by the sixth connection point p6
  • dashed line B13 indicates the boundary line formed by the seventh connection point p7 (inflection point)
  • dashed line B14 indicates the boundary line formed by the eighth connection point p8.
  • one end 15A of each thin-walled portion 15 located toward the center is located closer to the fifth connection point p5 than the sixth connection point p6, and the other end 15B located toward the flange portion 14 is located closer to the eighth connection point p8 than the seventh connection point p7 (inflection point), for example, one end 15A is located between the fifth connection point p5 and the sixth connection point p6, and the other end 15B is located between the seventh connection point p7 and the eighth connection point p8.
  • the thin-walled portion 15 is formed in the thickened portion 18, and is configured to include at least the area from the seventh connection point p7, which is the inflection point, to the position that constitutes the maximum thickness (the sixth connection point p6).
  • the thick-walled portion 16 arranged between the thin-walled portions 15 also has one end 16A arranged toward the center, which is closer to the fifth connection point p5 than the sixth connection point p6, and the other end 16B arranged toward the flange portion 14, which is closer to the eighth connection point p8 than the seventh connection point p7 (inflection point).
  • one end 16A is arranged between the fifth connection point p5 and the sixth connection point p6, and the other end 16B is arranged between the seventh connection point p7 and the eighth connection point p8.
  • the thick-walled portion 16 is also formed in the thickened portion 18, and is configured to include at least the area from the seventh connection point p7, which is the inflection point, to the position that constitutes the maximum thickness (the sixth connection point p6).
  • the thickness of the thick portion 16 from the front surface SF1 to the back surface SF2 increases from the end portion 16B to the sixth connection point p6, and also increases from the end portion 16A to the sixth connection point p6.
  • the thickness of the thick portion 16 is the thickest at the sixth connection point p6.
  • the surface SF1 on which these thin-walled portions 15 and thick-walled portions 16 are alternately arranged in the circumferential direction of the can lid shell 10A, is formed in an uneven shape as shown in FIG. 16.
  • the shapes of the thin and thick portions 15 and 16 are not limited to the illustrated examples, and may be formed in an elliptical shape in plan view as shown in FIG. 18. As shown in FIG. 19, the extending direction of the thin and thick portions 15 and 16 in plan view may intersect with the radially outward direction Do at a predetermined angle ⁇ 15. Furthermore, as shown in FIG. 20, they may extend in an arc shape in plan view. An example of the extending direction of the thin and thick portions 15 and 16 and the radially outward direction Do is shown by a two-dot chain line in each figure.
  • the can lid shell 10A of the second embodiment can be manufactured by additionally performing a reforming process on the can lid shell 10 of the first embodiment.
  • the reforming device 40 for carrying out the reforming process includes a reforming die 41, a reforming punch 42, and a conveying section 43 that conveys the can lid shell 10 between the reforming die 41 and the reforming punch 42, as shown in FIG. 21.
  • the reforming die 41 and the reforming punch 42 are provided in a press machine (not shown).
  • the can lid shell 10 is transported to a position above the reforming die 41 with the flange portion (flange portion 14, etc.) hung over the edge of hole 43B of belt 43A of conveying section 43 and supported by belt 43A.
  • the reforming punch 42 is lowered and the thickened portion 18 of the can lid shell 10A is sandwiched between the reforming punch 42 and the reforming die 41 to process the thickened portion 18.
  • a plurality of protruding projections 42B are formed on the contact surface 42A of the reform punch 42 that contacts the thickened portion 18 of the can lid shell 10A.
  • the projections 42B are pressed into the thickened portion 18 from the surface SF1 to form the thin-walled portion 15.
  • the area between the thin-walled portions 15 is formed as the thick-walled portion 16.
  • each thick portion 16 is formed to extend from the fifth connection point p5 side to the eighth connection point p8 side, including at least the portion from the sixth connection point p6 to the seventh connection point p7, to prevent the thickened portion 18 from being deformed, such as being bent toward the internal space SP1. In this way, the mechanical strength of the thickened portion 18 (inflection portion 17) is further increased, and the pressure resistance of the can lid shell 10A is improved.
  • the protrusions for forming the thin-walled portion 15 and the thick-walled portion 16 into the thickened portion 18 are not limited to being provided on the reform punch 42.
  • a recess forming the thin-walled portion 15 may be formed on the back surface SF2 facing the external space SP2 using multiple protrusions provided on the contact surface of the reform die 41 that contacts the thickened portion 18 of the can lid shell 10A. In this case as well, a similar effect of improving mechanical strength can be obtained.
  • a molding apparatus 2A of a first modified example shown in Fig. 23 is different from the molding apparatus 2 of the first embodiment in that a lower die core ring 500 is different from the die core ring 230 of the first embodiment.
  • an inner part facing the tip of the inner sleeve 350 is configured to be movable relative to an outer part facing the upper piston 360.
  • the same components as those of the molding apparatus 2 of the first embodiment are denoted by the same reference numerals, and their description will be omitted.
  • the lower die core ring 500 includes a cylindrical first fixed portion (fixed portion) 510 and a second fixed portion (fixed portion) 520, a spring (biasing member) 530 held by the second fixed portion 520, and a cylindrical movable portion 540 provided inside the second fixed portion 520 and supported at its lower end by the spring 530 so as to be movable along the central axis C.
  • the first fixing part 510 comprises a base end 511 fixed to the lower retainer 210, and a spring support part 512 extending from the base end 511 and having a radial thickness thinner than the radial thickness of the base end 511.
  • the base end 511 of the first fixing part 510 protrudes in the radially outward direction Do beyond the outer circumferential surface of the spring support part 512, and has a mounting surface 511A along the radially outward direction Do.
  • the spring support part 512 has a recess 512A on the tip side that accommodates a part of the spring 530. This recess 512A opens in the opposite direction (first direction D1) from the base end side.
  • the second fixed part 520 includes a base end 521 that is placed on the support surface 511A of the base end 511 of the first fixed part 510 and fixed to the first fixed part 510, and an upper piston opposing part 522 that is formed so that its radial thickness is thinner than the radial thickness of the base end 521, extends from the base end 521, and has a tip end 522A that faces the upper piston 360.
  • the upper piston opposing portion 522 is formed in a cylindrical shape, with the movable portion 540 rubbing against its inner circumferential surface and the lower piston 260 rubbing against its outer circumferential surface.
  • the tip portion 522A of the upper piston opposing portion 522 has a portion having the same shape as the first convex surface portion 232B of the die core ring 230 in the molding device 2 of the first embodiment.
  • the spring 530 is provided coaxially with the first fixed portion 510, and expands and contracts along the axis (central axis C).
  • the movable part 540 When the movable part 540 is placed on the spring 530, the lower part fits into the recess 512A of the spring support part 512, and the remaining tip part is positioned outside the recess 512A.
  • the movable part 540 is formed in a ring shape and includes a base end 541 supported by the tip portion of the spring 530, and an inner sleeve facing part 542 that is thinner in the radial direction than the base end 541, extends in a cylindrical shape from the base end 541, and faces the inner sleeve 350.
  • the tip 542A of the inner sleeve facing portion 542 has a portion with the same shape as the second convex surface portion 232E (corresponding to the lower mold curved surface portion of the present invention) of the die core ring 230 in the molding device 2 of the first embodiment.
  • the movable part 540 moves along the central axis C with its outer circumferential surface abutting against the inner circumferential surface of the upper piston facing part 522 of the second fixed part 520, and further with the inner circumferential surface of the inner sleeve facing part 542 abutting against the outer circumferential surface of the panel punch 250.
  • the movable part 540 is pushed by the spring 530, and the movable side step 543 formed on the outside abuts against the fixed side step 523 formed on the inner circumferential surface of the upper piston opposing part 522 of the second fixed part 520, and is held in a position close to the tip 522A of the upper piston opposing part 522.
  • the outside of the movable part 540 has a first outer peripheral surface 540A located at a low position adjacent to the lower end, and a second outer peripheral surface 540B located at a higher position.
  • the radius of the first outer peripheral surface 540A is larger than that of the second outer peripheral surface 540B.
  • the first outer peripheral surface 540A and the second outer peripheral surface 542A are connected via the movable side step surface 540C to form the movable side step part 543.
  • the fixed side step portion 523 of the upper piston facing portion 522 of the second fixed portion 520 is configured by connecting a first inner peripheral surface 522B that abuts against a first outer peripheral surface 540A of the movable portion 540 and a second inner peripheral surface 522C that abuts against a second outer peripheral surface 540B of the movable portion 540 via a fixed side step surface 522D.
  • the movable part 540 When the movable part 540 is pushed by the spring 530, the movable side step 543 abuts against the fixed side step 523, and the movable part 540 is positioned at the highest position within its range of movement, as shown in FIG. 26, the second convex surface 232E of the tip 542A of the inner sleeve opposing part 542 is shifted in the radially inward direction Di from the first convex surface 232B of the tip 522A of the upper piston opposing part 522, and is also shifted in the second direction D2.
  • the tip 542A of the inner sleeve facing part 542 is positioned near the tip 352A of the inner sleeve 350, and the mold clearance CL2 is set to mold the inflection part 17.
  • the mold clearance CL2 of the molding device 2A of this first modified example is set to mold the third convex groove cross-sectional portion 123C of the inflection portion 17, and is configured in a small range from the first upper mold connection point p31 to the second upper mold connection point p32 of the inner sleeve 350. In this range, the distance along the imaginary straight line extending from the center C223 of the arc of the second convex surface portion 232E of the movable part 540 becomes wider from the second upper mold connection point p32 to the first upper mold connection point p31.
  • the arc formed by the second convex surface portion 232E of the tip portion 542A of the movable portion 540 has its upper end set at position P220 above the center C223 (on a vertical line), and is formed from the third lower die connection point P23 through the second lower die connection point P22 to the upper end position P220.
  • the tip 542A of the movable part 540 which extends from the position P220 of the upper end of the arc formed by the second convex surface part 232E in the radially outward direction Do, is arranged as a surface that does not contact the intermediate molded body.
  • the tip 522A of the upper piston opposing part 522 extends in the second direction D2 from the lower end P24 on the central axis C side of the first convex surface part 232B, and has a non-contact inner circumferential surface 522E that does not contact the intermediate molded body.
  • the manufacturing method for the can lid shell 10 includes a blanking process in which a circular blank 410 is punched out from an aluminum alloy base plate, a deep drawing process in which the circular blank 410 is deep drawn to form a shallow-bottomed first formed body 420, and a reverse process in which the bottom of the first formed body 420 is moved upward (in the first direction D1) to form a countersink portion.
  • (Deep drawing process) 27A in the deep drawing process, the tip 352A of the inner sleeve 350 is first lowered to a position close to the tip 542A of the movable part 540 of the die core ring 500, and a part of the circular blank 410 is pressed into the inside of the upper piston facing part 522 of the die core ring 500. Thereafter, the panel punch 250 and the die center 340 sandwich the circular blank 410 and move in the second direction D2, and deep drawing is performed.
  • the spacer 370 attached to the inner sleeve 350 comes into contact with the upper piston 360, preventing the inner sleeve 350 from descending independently of the upper piston 360.
  • the distance between the tip 542A of the movable part 540 and the tip 352A of the inner sleeve 350 gradually increases until the upper die 300 reaches the bottom dead center by the press machine.
  • Figure 27B shows the state after deep drawing is completed, the upper die 300 is at bottom dead center, and the first molded body 420 has been molded. At this time, the distance (see Figure 25) between the movable side step surface 540C of the movable part 540 and the fixed side step surface 522D of the second fixed part 520 is at its maximum, for example 0.25 mm.
  • the internal depth dimension h along the central axis C of the curved portion 424 gradually increases.
  • the load with which the first molded body 420 presses the movable portion 540 decreases, causing the movable portion 540 to move toward the tip 352A of the inner sleeve 350, gradually narrowing the distance between the tip 542A of the movable portion 540 and the tip 352A of the inner sleeve 350.
  • Figure 27C shows the state in the middle of the reverse process where the movable side step surface 540C abuts against the fixed side step surface 522D, bringing the tip 542A of the movable part 540 and the tip 352A of the inner sleeve 350 closest to each other.
  • a mold clearance CL2 for molding the inflection portion 17 is formed between the tip 542A of the movable part 540 and the tip 352A of the inner sleeve 350.
  • a minute gap CL0 is disposed between the sleeve concave portion 352C (corresponding to the upper die curved surface portion of the present invention) of the tip portion 352A of the inner sleeve 350 and the first inflection portion 423 of the first molded body 420.
  • the spacer 370 attached to the inner sleeve 350 is in contact with the upper piston 360 (see FIG. 23).
  • the curved portion 424 is pushed up by the receiving surface 252A of the panel punch 250, and a part of the first formed body 420 being processed is pushed into the die clearance CL2. A part of the first formed body 420 is deformed, and the minute gap (space) CL0 is filled. As a result, the first inflection portion 423 is thickened and formed into the second inflection portion 425, and the reverse process ends (Figure 27D).
  • the movable part 540 is pressed down by the intermediate formed body 410A, and the gap between the inner sleeve facing part 542 of the movable part 540 and the inner sleeve 350 increases, reducing deformation of the intermediate formed body 410A due to contact with the inner sleeve facing part 542 and suppressing the reduction in plate thickness during deep drawing.
  • the molding apparatus 2B of the second modification includes a die core ring 1500, a spring (biasing member) 1530, and a lower piston 1260 instead of the die core ring 500, the spring 530, and the lower piston 260, and is configured to push up the movable part 1540, which has been pushed by the intermediate formed body 410A and retreated toward the first fixed part 510 during the deep drawing process, toward the inner sleeve 350 against the pressure exerted by the intermediate formed body 410A.
  • the same components as those of the molding apparatuses 2 and 2A described above are designated by the same reference numerals, and their description will be omitted.
  • the die core ring 1500 includes the first fixed part 510, a block 550, a second fixed part 1520 that supports the block, a spring 1530 that has a smaller spring constant than the spring 530, and a movable part 1540.
  • the second fixed part 1520 has a base end 521 and an upper piston facing part 1522.
  • This upper piston facing part 1522 differs from the upper piston facing part 522 of the second fixed part 520 in that it has a through hole 525 through which the block 550 passes.
  • the through-hole 525 is formed through the upper piston facing portion 1522 so as to communicate from the inside to the outside at a position lower than the fixed side step surface 522D (see FIG. 25).
  • a plurality of through-holes 525 are formed around the central axis C of the second fixed portion 1520, for example at equal angular intervals.
  • Block 550 As shown in Figure 31, the block 550 is positioned in the through hole 525 of the upper piston opposing portion 1522 of the second fixed portion 1520, and has an outer end portion 551 protruding toward the lower piston 1260, and an inner end portion 552 protruding toward the movable portion 1540.
  • the outer end 551 has an outer vertical surface 551A and an outer inclined surface 551B extending from the upper edge of the outer vertical surface 551A.
  • the outer inclined surface 551B has a radius (distance) from the central axis C that decreases as it moves from the upper edge of the outer vertical surface 551A in the first direction D1, and the inclination ⁇ 51 with respect to the central axis C is set constant.
  • the inner end 552 has an inner vertical surface 552A and an inner inclined surface 552B extending from the upper edge of the inner vertical surface 552A.
  • the inner inclined surface 552B has a radius (distance) from the central axis C that increases as it moves from the upper edge of the inner vertical surface 552A in the first direction D1, and the inclination ⁇ 52 with respect to the central axis C is set constant. Comparing the angles ⁇ 51, ⁇ 52 of the outer end 551 and the inner end 552 with the horizontal plane, the angle ⁇ 51 that the outer end 551 makes with the horizontal plane is set larger than the angle ⁇ 52 that the inner end 552 makes with the horizontal plane.
  • the lower piston 1260 includes a piston body 261 and an extension 1262.
  • the extension 1262 is different from the extension 262 of the lower piston 260 described above in the shape of its inner circumferential surface.
  • the extension portion 1262 has a first inner circumferential surface 262C formed on the piston body 261 side, a second inner circumferential surface 262D provided on the tip portion 262A side and formed with a smaller diameter than the first inner circumferential surface 262C, and an inner inclined surface 262E disposed between the first inner circumferential surface 262C and the second inner circumferential surface 262D.
  • the radius (distance) of the inner inclined surface 262E from the central axis C decreases as one moves from the upper edge of the first inner circumferential surface 262C to the lower edge of the second inner circumferential surface 262D, and the inclination with respect to the central axis C is set to be constant.
  • the inclination angle ⁇ 62 of the inner inclined surface 262E with respect to the central axis C is set to be equal to the angle ⁇ 51 of the outer inclined surface 551B of the block 550. Furthermore, when the lower piston 1260 descends, the outer inclined surface 551B of the block 550 is positioned on the movement trajectory of the inner inclined surface 262E.
  • the lower piston 1260 configured in this manner descends a predetermined distance along the central axis C, causing the inner inclined surface 262E to come into contact with the outer inclined surface 551B of the block 550, and as it descends further, it pushes the outer inclined surface 551B of the block 550, moving the block 550 in the radial inward direction Di.
  • the outer peripheral surface of the movable part 1540 is formed by a first outer peripheral surface 1540A rising from the periphery of the lower surface, the second outer peripheral surface 540B formed at a position shifted in the first direction D1 from the first outer peripheral surface 1540A, a third outer peripheral surface 540D arranged between the first outer peripheral surface 1540A and the second outer peripheral surface 540B, a movable side step surface 540C arranged between the second outer peripheral surface 540B and the third outer peripheral surface 540D and together constituting the movable side step part 543, and an outer inclined surface 540E arranged between the first outer peripheral surface 1540A and the third outer peripheral surface 540D.
  • the radius of the first outer peripheral surface 1540A is set to be smaller than the radius of the second outer peripheral surface 540B, and the radius of the third outer peripheral surface 540D is set to be larger than the radius of the second outer peripheral surface 540B.
  • the outer inclined surface 540E has a radius (distance) from the central axis C that increases from the upper edge of the first outer peripheral surface 1540A to the lower edge of the third outer peripheral surface 540D, and is set at a constant inclination with respect to the central axis C.
  • the inclination angle ⁇ 540 of the third outer peripheral surface 540D with respect to the horizontal plane is set to be equal to the angle ⁇ 52 of the inner inclined surface 552B of the block 550.
  • the dimension h31 along the central axis C from the movable side step surface 540C of the movable part 1540 to the upper edge of the outer inclined surface 540E is set to be larger than the dimension h32 ( Figure 30) along the axis from the fixed side step surface 522D of the upper piston opposing part 1522 to the edge of the through hole 525.
  • the movable part 1540 is pushed by the intermediate molded body 410A and retreats towards the spring 1530, but the outer inclined surface 540E of the movable part 1540 comes into contact with the inner inclined surface 552B of the block 550, preventing the movable part 1540 from retreating. Furthermore, while the movable part 1540 is in contact with the block 550, the block 550 can push the outer inclined surface 540E of the movable part 1540 in the radially inward direction Di with the inner inclined surface 552B, thereby moving the movable part 1540 towards the inner sleeve 350.
  • the manufacturing method for the can lid shell 10 includes a blanking process for punching out a circular blank 410A from an aluminum alloy raw plate, a deep drawing process for deep drawing the circular blank 410 to form a shallow-bottomed, tray-shaped first formed body 420, and a reverse process for moving a flat portion at the bottom of the first formed body 420 toward the mouth side located above it to form a recessed countersink portion around the flat portion.
  • (Deep drawing process) 34A in the deep drawing process, first, the tip 352A of the inner sleeve 350 is lowered to a position close to the tip 542A of the movable part 1540, and a part of the circular blank 410 is pressed into the inside of the upper piston facing part 1522 of the die core ring 1500. Thereafter, the panel punch 250 and the die center 340 sandwich the circular blank 410 and move in the axial direction to perform deep drawing.
  • the distance between the tip 542A of the movable part 1540 and the tip 352A of the inner sleeve 350 gradually increases until the movable part 1540 hits the block 550.
  • the blank draw die 320 also enters the inside of the lower die 200, and the lower piston 1260 is also pushed down by the blank draw die 320.
  • the inner inclined surface 262E comes into contact with the outer inclined surface 551B of the block 550.
  • the timing at which the inner inclined surface 262E of the lower piston 1260 hits the outer inclined surface 551B of the block 550 and the timing at which the outer inclined surface 540E of the movable part 1540 hits the inner inclined surface 552B of the block 550 are designed to be simultaneous.
  • the distance along the central axis C between the movable side step surface 540C and the fixed side step surface 522D is, for example, 0.5 mm.
  • the movement of the movable part 1540 toward the inner sleeve 350 begins midway through the deep drawing, and the distance between the tip 542A of the movable part 1540 and the tip 352A of the inner sleeve 350 gradually narrows until the panel punch 250 and the die center 340 complete the deep drawing process.
  • the tip 542A of the movable part 1540 is positioned closest to the tip 352A of the inner sleeve 350. In this close position, a die clearance CL2 is formed for molding the deformation part 17.
  • the movable side step surface 540C of the movable part 1540 abuts on the fixed side step surface 522D of the upper piston opposing part 1522.
  • the spacer 370 comes into contact with the upper piston 360, and a die clearance CL2 is formed between the tip 542A of the inner sleeve opposing part 542 (between the inner sleeve 350 and the movable part 1540).
  • a minute gap CL0 is disposed between the sleeve concave portion 352C of the tip portion 352A of the inner sleeve 350 and the first inflection portion 423 of the first molded body 420.
  • the block 550 is released from the force from the lower piston 1260 that pushes it backward in the radially inward direction Di and returns to its original position.
  • the die core ring 1500 is provided with a block spring (not shown), and this block spring allows the block 550 to return from the retracted position to the extended position.
  • the curved portion 424 is pushed up by the receiving surface 252A of the panel punch 250, forcing a part of the first formed body 420 being processed into the die clearance CL2. Part of the first formed body 420 deforms and fills the tiny gap (space) CL0. This causes the first inflection portion 423 to thicken and become the second inflection portion, completing the reverse process ( Figure 34E).
  • the force of the spring 1530 that holds the movable part 1540 in the position where it is closest to the inner sleeve 350 and forms the mold clearance CL2 is weaker than the force of the spring 530 of the molding device 2A of the first modified example, so that during deep drawing, the intermediate molded body 410A easily retreats as it is pushed back by the deforming intermediate molded body 410A.
  • the block 550 is retracted and the movable part 1540 is moved toward the inner sleeve 350 as the lower piston 1260 descends, so that a portion of the intermediate molded body 410A, which has had its thickness reduced, is sandwiched between the movable part 1540 (the inner sleeve facing part 542) and the inner sleeve 350 to form the first inflection part 423.
  • the present invention can be practiced without being limited to the above explanation and illustrated examples.
  • the manufacturing method of the first embodiment has been explained based on a molding device ( Figure 4), but the gist of the present invention is that the mold clearance CL1 is formed between the upper and lower molds facing the first curved surface portion and the second curved surface portion.
  • this mold clearance can be formed, it is not limited to the molding device shown in Figure 4, and other molding devices may be used.
  • the ratio of the dimensions along the central axis C of the countersink portion, chuck wall portion, and flange portion, the ratio of the dimensions along the direction perpendicular to the central axis C of the panel portion, countersink portion, chuck wall portion, and flange portion, the angle of expansion around the center of each arc, etc. may also be changed.
  • the above explanation and drawings show cases in which the surfaces constituting the front surface SF1 and back surface SF2 of the third convex groove cross-sectional portion 123C (corresponding to the first curved surface portion of the present invention), the first concave surrounding cross-sectional portion 131 (corresponding to the second curved surface portion of the present invention), and the second convex groove cross-sectional portion 123B (corresponding to the third curved surface portion of the present invention) are each formed as an arc (a perfect circle arc).
  • the surfaces constituting the front surface SF1 and back surface SF2 may be formed as surfaces whose cross sections are not perfect circular arcs but are curved like a bow.
  • the inflection portion 17 and the thickened portion 18 can be formed by the third convex groove cross-section portion 123C (corresponding to the first curved surface portion of the present invention), the first concave surrounding cross-section portion 131 (corresponding to the second curved surface portion of the present invention) and the second convex groove cross-section portion 123B (corresponding to the third curved surface portion of the present invention).
  • the inflection portion 17 and the thickened portion 18 are formed by a curved surface consisting of an arc (a perfect circular arc) or a curved surface that is curved like an arch, thereby improving the pressure resistance of the can lid shell.
  • a can shell for a 200-diameter beverage can was manufactured from an aluminum plate (thickness 0.208 mm) made of aluminum alloy (5182) coated on both sides with modified epoxy paint (total thickness of both sides 0.012 mm), and pressure resistance was confirmed.
  • the can lid shell has a panel section, a countersink section, a chuck wall section, and a flange section, and the inflection point is located between the chuck wall section, which is a concave arc section facing the internal space, and the countersink section, which is a convex arc section facing the internal space, with the inflection point between them.
  • the example shows an inflection point that is thickened, while the comparative example shows one that is not thickened.
  • the can lid shell of the example was manufactured using the molding device of the first embodiment.
  • the mold clearance CL1 is set to 0.220 mm at the third upper mold connection point P33 of the tip portion 352A of the inner sleeve 350, 0.234 mm at the second upper mold connection point P32, and 0.250 mm at the first upper mold connection point P31, as shown in FIG. 6, and the distance between the inner sleeve 350 and the die core ring 230 increases from the third upper mold connection point P33 to the first upper mold connection point P31.
  • the panel punch 250 of the lower die 200 of the molding device has a stepped punch step 252 around the punch flat portion 251 with which the blank plate comes into contact, and during the reverse process to form the countersink portion, the receiving surface 252A of the punch step 252 pushes up the curved portion 424 formed during the reverse process, deforming a part of the first molded body being processed and pushing it into the die clearance CL1, thereby forming the thickened inflection portion 425.
  • the comparative example can lid shell was manufactured using a conventional molding device.
  • Table 1 shows the compressive strength, thickness, and thickness ratio.
  • the inflection part is formed to be about 9% thicker than the base plate, and the average pressure resistance is also high at 106.7 [psi].

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rigid Containers With Two Or More Constituent Elements (AREA)

Abstract

A can lid shell 10 is provided with a panel section 11 having a circular rim, a countersink section 12 formed and indented along the rim of the panel section 11, a chuck wall section 13 rising from an edge of the countersink section 12, and a flange section 14 overhanging from an upper end of the chuck wall section 13. The countersink section 12 is provided with a first curved section 123C that is convex with respect to an internal space SP1. The chuck wall section 13 is provided with a second curved section 131 that is connected to the first curved section 123C and is concave with respect to the internal space SP1. Furthermore, the second curved section 131 and the first curved section 123C are formed progressively thicker as they extend from an edge p8 on the flange section 14 side to an edge p6 on the panel section 11 side.

Description

缶蓋シェルとその製造方法並びに成形装置Can lid shell, its manufacturing method and molding device
 本発明は、飲料用缶の缶蓋シェルと、その製造法と、成形装置に関する。本願は、2023年1月18日に出願された特許題2023-006121号に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to a can lid shell for a beverage can, a manufacturing method thereof, and a molding apparatus. This application claims priority to Patent Application No. 2023-006121, filed on January 18, 2023, the contents of which are incorporated herein by reference.
 飲料用缶の缶蓋シェル700は、アルミニウム合金板から打ち抜かれた円形ブランクをプレス加工して製造されていて、図35に示すように、パネル部710と、パネル部710のまわりに設けられたカウンターシンク部720と、カウンターシンク部720の外側の壁部分から延びて断面がフック状に形成されていて、缶本体のフランジを巻き締めする取付部730と、を備えている。この缶蓋シェル700に対して、開口用のティアラインや開口操作用のタブがコンバージョンプレスで設けられて、缶蓋が製造される。 The can lid shell 700 for a beverage can is manufactured by pressing a circular blank punched from an aluminum alloy plate, and as shown in FIG. 35, comprises a panel portion 710, a countersink portion 720 provided around the panel portion 710, and an attachment portion 730 that extends from the outer wall portion of the countersink portion 720, has a hook-shaped cross section, and tightens the flange of the can body. A conversion press is used to provide tear lines for opening and tabs for opening the can shell 700, and the can lid is manufactured.
 また、従来、図36に示す厚さを薄くして軽量化した缶蓋シェル800が知られている(特許文献1)。 Also, a can lid shell 800 shown in FIG. 36 is known that has a reduced thickness and weight (Patent Document 1).
 缶蓋シェル700と缶蓋シェル800とを比べると、缶本体のフランジを巻き締めしてチャックウォールを形成するための箇所が、従来の缶蓋シェル700では、図35に破線で囲うように直線状であったが、缶蓋シェル800では、図36に破線で囲うように、複数の曲面を連ねて構成されている。 Comparing the can lid shell 700 and the can lid shell 800, the area where the flange of the can body is rolled up to form the chuck wall is linear in the conventional can lid shell 700, as surrounded by the dashed line in Figure 35, whereas in the can lid shell 800, it is made up of multiple curved surfaces connected together, as surrounded by the dashed line in Figure 36.
 有底筒状の缶本体に内容物とガス(COまたはN)を充填した後に、図37に実線で示すように、缶蓋シェル800を缶本体900のフランジ部に巻締めして、缶蓋シェル800が取り付けられた缶製品が完成する。ただし図37において、次工程のコンバージョン工程でパネル部810に付加されるタブリベット、ティアライン、デボス加工などは図示省略している。 After filling the bottomed cylindrical can body with the contents and gas ( CO2 or N2 ), the can lid shell 800 is seamed onto the flange portion of the can body 900 as shown by the solid line in Fig. 37 to complete a can product with the can lid shell 800 attached. However, in Fig. 37, tab rivets, tear lines, debossing, etc. that will be added to the panel portion 810 in the next conversion process are omitted.
 また、缶蓋シェル800を取り付けた缶製品では、カウンターシンクのピッチ径PD2が缶蓋シェル700のカウンターシンクのピッチ径PD1よりも小さく(PD2<PD1)、さらにパネル部810の面積が小さくなるように設計されている。 Furthermore, in a can product to which the can lid shell 800 is attached, the pitch diameter PD2 of the countersink is smaller than the pitch diameter PD1 of the countersink of the can lid shell 700 (PD2 < PD1), and the area of the panel portion 810 is designed to be smaller.
 缶蓋シェル800ではパネル部810が小さく形成されているため、缶内圧が同じであっても缶蓋シェル700のパネル部710が受ける内圧力よりも、小さい内圧力がパネル部810に作用する。 The panel portion 810 of the can lid shell 800 is small, so even if the internal pressure of the can is the same, a smaller internal pressure acts on the panel portion 810 than the internal pressure that acts on the panel portion 710 of the can lid shell 700.
特開2022-119588号公報JP 2022-119588 A
 内容物やガスを缶本体に充填して缶蓋で閉じる充填プロセスや流通過程において、缶製品が過度の高温下に曝されて缶内圧が上昇し缶蓋の耐圧強度の限界を超えると、図37に破線で示すように、缶製品の缶蓋の一部が外方に突出する現象、いわゆるバックリングが発生する。このように缶蓋の一部が外方に突出してしまうと、突出した部分やティアラインに亀裂が生じて内容物やガスが漏洩し、または開缶不能などの不具合が生じる。 In the filling and distribution process, in which the contents and gas are filled into the can body and then closed with a lid, if the can product is exposed to excessively high temperatures, the internal pressure of the can rises and exceeds the limit of the pressure resistance strength of the can lid, causing a phenomenon known as buckling, in which part of the can product's lid protrudes outward, as shown by the dashed line in Figure 37. When part of the can lid protrudes outward in this way, cracks can form in the protruding part or in the tear line, causing leakage of the contents or gas, or making the can impossible to open.
 そこで、本発明は、バックリングを防止する缶蓋シェルと、この缶蓋シェルの製造方法と、成形装置と、を提供することを目的とする。 The present invention aims to provide a can lid shell that prevents buckling, a manufacturing method for this can lid shell, and a molding device.
 本発明の缶蓋シェルは、円形の周縁を有するパネル部と、前記パネル部の前記周縁に沿って形成されていて窪んだカウンターシンク部と、前記カウンターシンク部の縁から立ち上がるチャックウォール部と、前記チャックウォール部の上端から張り出したフランジ部と、を備えている。そして、前記パネル部と前記カウンターシンク部と前記チャックウォール部との内側に設定される内部空間を有し、前記カウンターシンク部は前記内部空間に向けて凸となる第一曲面部を含み、前記チャックウォール部は、前記第一曲面部につながっていて前記内部空間から凹となる第二曲面部を含む。さらに前記第一曲面部と前記第二曲面部との厚さは、前記フランジ部側の縁から前記パネル部側の縁へ向かい増大する。 The can lid shell of the present invention comprises a panel portion having a circular periphery, a recessed countersink portion formed along the periphery of the panel portion, a chuck wall portion rising from the edge of the countersink portion, and a flange portion projecting from the upper end of the chuck wall portion. The can lid shell has an internal space defined inside the panel portion, the countersink portion, and the chuck wall portion, the countersink portion including a first curved surface portion that is convex toward the internal space, and the chuck wall portion including a second curved surface portion that is connected to the first curved surface portion and is concave from the internal space. Furthermore, the thickness of the first curved surface portion and the second curved surface portion increases from the edge on the flange portion side toward the edge on the panel portion side.
 本発明の缶蓋シェルでは、曲面の向きが凹と凸とに異なる前記第一曲面部と前記第二曲面部とを厚肉化することで、前記第一曲面部と前記第二曲面部とでなる変曲部の機械的強度が増して耐圧強度を高めることができる。これにより、更なる缶蓋の薄肉軽量化が可能となる。 In the can lid shell of the present invention, the first curved surface portion and the second curved surface portion, which have different curved surface directions (convex and concave), are thickened, which increases the mechanical strength of the inflection portion formed by the first curved surface portion and the second curved surface portion, thereby increasing the pressure resistance. This makes it possible to further reduce the thickness and weight of the can lid.
 本発明の缶蓋シェルは、好ましくは、前記カウンターシンク部は、前記第二曲面部との間に前記第一曲面部を配置して前記第一曲面部とつながって前記内部空間に向けて凸となり更に厚さが前記パネル部側の縁から前記第一曲面部とつながる縁へいくにつれて増して成形されている第三曲面部を備えている。第三曲面部を厚肉化することで、機械的強度が増して耐圧強度を高めることができる。 The can lid shell of the present invention preferably includes a third curved surface portion in which the countersink portion is connected to the first curved surface portion by disposing the first curved surface portion between the countersink portion and the second curved surface portion, and which is formed so that its thickness increases from the edge on the panel portion side to the edge connected to the first curved surface portion. By thickening the third curved surface portion, the mechanical strength is increased, and the pressure resistance can be improved.
 本発明の缶蓋シェルは、好ましくは、前記第二曲面部から前記第三曲面部まで窪んで形成されていて缶蓋シェルの周方向に離れて複数設けられた薄肉部を前記缶蓋シェルの表面又は裏面に備え、前記薄肉部の間が前記薄肉部よりも厚い厚肉部を構成しており、複数の前記薄肉部と複数の前記厚肉部とは、前記缶蓋シェルの平面視又は底面視で前記缶蓋シェルの半径に沿った寸法が前記半径の方向とは直交する方向に沿った寸法よりも長く設定されている。 The can lid shell of the present invention preferably has a plurality of thin-walled sections formed on the front or back surface of the can lid shell, recessed from the second curved surface portion to the third curved surface portion and spaced apart in the circumferential direction of the can lid shell, and thick-walled sections are formed between the thin-walled sections and are thicker than the thin-walled sections, and the dimension along the radius of the can lid shell of the plurality of thin-walled sections and the plurality of thick-walled sections is set to be longer than the dimension along the direction perpendicular to the direction of the radius when viewed from above or below the can lid shell.
 本発明の缶蓋シェルでは、内部空間側へ向けて凸となる前記第一曲面部が、前記第二曲面部から前記第三曲面部まで延びた薄肉部と厚肉部を周方向に複数備えている。第二曲面部から第三曲面部にわたる箇所は増厚された増厚部を構成して、この増厚部に、薄肉部と厚肉部とからなる第一曲面部を備えることで、前記内部空間側へ折れ曲がる等の変形を防止する。これにより、前記第一曲面部と前記第二曲面部とでなる変曲部を含む増厚部の機械的強度が一層高められており、耐圧強度が向上する。 In the can lid shell of the present invention, the first curved surface portion, which is convex toward the internal space, has a plurality of thin and thick portions extending from the second curved surface portion to the third curved surface portion in the circumferential direction. The area extending from the second curved surface portion to the third curved surface portion constitutes an increased thickness portion, and by providing this increased thickness portion with a first curved surface portion consisting of a thin and thick portion, deformation such as bending toward the internal space is prevented. This further increases the mechanical strength of the increased thickness portion, including the inflection portion consisting of the first curved surface portion and the second curved surface portion, improving pressure resistance.
 本発明は、下型と上型とを備えていて、円形ブランクを前記下型と前記上型とで挟んで缶蓋シェルを成形する成形装置であって、前記下型が、ダイコアリングと、このダイコアリングの内部に配置されたパネルパンチと、を備え、前記上型が、筒状のアッパピストンと、このアッパピストンの内部に配置された筒状のインナスリーブと、このインナスリーブの内部に配置されたダイセンターと、を備えている。 The present invention is a molding device that includes a lower die and an upper die, and that clamps a circular blank between the lower die and the upper die to form a can lid shell. The lower die includes a die core ring and a panel punch arranged inside the die core ring, and the upper die includes a cylindrical upper piston, a cylindrical inner sleeve arranged inside the upper piston, and a die center arranged inside the inner sleeve.
 この成形装置において、前記ダイコアリングの先端部の外側部分と前記アッパピストンの先端部とが対向して配置され、前記ダイコアリングの先端部の内側部分と前記インナスリーブの先端部とが対向して配置され、前記パネルパンチと前記ダイセンターとが対向して配置されている。前記ダイコアリングの先端部の内側部分は、前記インナスリーブへ向けて凹となる第一下型曲面部と、この第一下型曲面部につながり更に中心軸側に位置をずらして配置され前記インナスリーブへ向けて凸となる第二下型曲面部と、を備えている。 In this molding device, the outer portion of the tip of the die core ring and the tip of the upper piston are arranged opposite each other, the inner portion of the tip of the die core ring and the tip of the inner sleeve are arranged opposite each other, and the panel punch and the die center are arranged opposite each other. The inner portion of the tip of the die core ring has a first lower curved surface portion that is concave toward the inner sleeve, and a second lower curved surface portion that is connected to the first lower curved surface portion and is further shifted toward the central axis and is convex toward the inner sleeve.
 前記インナスリーブの先端部は、前記第一下型曲面部へ向けて凸となる第一上型曲面部と、この第一上型曲面部につながり更に中心軸側に位置をずらして配置され、且つ曲率半径が前記第一上型曲面部の曲率半径と相違する円弧で前記第一下型曲面部へ向けて凸となる第二上型曲面部と、この第二上型曲面部につながり更に中心軸側に位置をずらして配置され前記第二下型曲面部へ向けて凹となる第三上型曲面部と、を備えている。 The tip of the inner sleeve is provided with a first upper mold curved surface portion that is convex toward the first lower mold curved surface portion, a second upper mold curved surface portion that is connected to the first upper mold curved surface portion and is positioned further toward the central axis, and is an arc whose radius of curvature differs from the radius of curvature of the first upper mold curved surface portion and is convex toward the first lower mold curved surface portion, and a third upper mold curved surface portion that is connected to the second upper mold curved surface portion and is positioned further toward the central axis, and is concave toward the second lower mold curved surface portion.
 前記ダイコアリングの前記第一下型曲面部及び前記第二下型曲面部と前記インナスリーブの第二上型曲面部及び前記第三上型曲面部との間に構成される金型クリアランスは、前記円形ブランクの板厚以上の間隔であり、さらに中心軸に近づくにつれて広がっている。 The die clearance formed between the first lower curved surface portion and the second lower curved surface portion of the die core ring and the second upper curved surface portion and the third upper curved surface portion of the inner sleeve is equal to or greater than the plate thickness of the circular blank, and widens as it approaches the central axis.
 本発明の成形装置では、金型クリアランスが前記ダイコアリングの前記第一下型曲面部及び前記第二下型曲面部と前記インナスリーブの第二上型曲面部及び前記第三上型曲面部との間に構成され、さらにこの金型クリアランスは中心軸に近づくにつれて広がっている。この金型クリアランスが加工対象の円形ブランクの板厚以上の間隔を有することで、加工により円形ブランクの一部を増厚させることができる。 In the molding device of the present invention, a die clearance is formed between the first lower curved surface portion and the second lower curved surface portion of the die core ring and the second upper curved surface portion and the third upper curved surface portion of the inner sleeve, and this die clearance widens as it approaches the central axis. Since this die clearance has a distance equal to or greater than the plate thickness of the circular blank to be machined, it is possible to increase the thickness of a portion of the circular blank by machining.
 本発明は、下型と上型とを備えていて、円形ブランクを前記下型と前記上型とで挟んで缶蓋シェルを成形する成形装置であって、前記下型が、ダイコアリングと、このダイコアリングの内部に配置されたパネルパンチと、を備え、前記上型が、筒状のアッパピストンと、このアッパピストンの内部に配置された筒状のインナスリーブと、このインナスリーブの内部に配置されたダイセンターと、を備えている。 The present invention is a molding device that includes a lower die and an upper die, and that clamps a circular blank between the lower die and the upper die to form a can lid shell. The lower die includes a die core ring and a panel punch arranged inside the die core ring, and the upper die includes a cylindrical upper piston, a cylindrical inner sleeve arranged inside the upper piston, and a die center arranged inside the inner sleeve.
 この成形装置において、前記ダイコアリングが、前記下型に固定して設けられる筒状の固定部と、この固定部の内部に設けられた可動部と、中心軸に沿って伸縮自在に構成されており前記可動部を下から支持すると共に前記可動部を付勢する付勢部材と、を備え、前記ダイコアリングの前記固定部の先端部と前記アッパピストンの先端部とが対向して配置され、前記ダイコアリングの前記可動部の先端部と前記インナスリーブの先端部とが対向して配置され、前記パネルパンチと前記ダイセンターとが対向して配置されている。 In this molding device, the die core ring comprises a cylindrical fixed portion fixed to the lower mold, a movable portion provided inside the fixed portion, and a biasing member configured to be freely expandable and contractible along a central axis, supporting the movable portion from below and biasing the movable portion; the tip of the fixed portion of the die core ring and the tip of the upper piston are arranged opposite each other, the tip of the movable portion of the die core ring and the tip of the inner sleeve are arranged opposite each other, and the panel punch and the die center are arranged opposite each other.
 前記可動部の先端部は前記インナスリーブへ向けて凸となる下型曲面部を備え、前記インナスリーブの先端部は、前記下型曲面部へ向けて凹となる上型曲面部を備え、前記可動部の前記下型曲面部と前記インナスリーブの前記上型曲面部との間に構成される金型クリアランスは、前記円形ブランクの板厚以上の間隔であり、さらに中心軸に近づくにつれて広がっており、さらに前記可動部は前記円形ブランクを深絞りする際に中間成形体に押されて前記付勢部材へ向けて後退する。 The tip of the movable part has a lower curved surface portion that is convex toward the inner sleeve, and the tip of the inner sleeve has an upper curved surface portion that is concave toward the lower curved surface portion, the die clearance formed between the lower curved surface portion of the movable part and the upper curved surface portion of the inner sleeve is a distance equal to or greater than the plate thickness of the circular blank and widens as it approaches the central axis, and further, the movable part is pushed by the intermediate forming body when the circular blank is deep drawn and retreats toward the biasing member.
 ここで、中間成形体とは、円形ブランクが深絞り工程によって第一成形体に至るまで、変形途中の形態を意味する。 Here, the intermediate formed body refers to the shape in the process of deformation of the circular blank until it becomes the first formed body through the deep drawing process.
 本発明の成形装置は、好ましくは、前記ダイコアリングの外周面の一部を囲う筒状のロアピストンをさらに備え、前記固定部は、該固定部の前記内部から前記固定部の外部に通じる貫通穴と、この貫通穴に配置されたブロックと、を備え、前記ブロックは、前記固定部の前記外部に張り出す外側傾斜面と、前記固定部の前記内部に張り出す内側傾斜面と、を有し、前記ロアピストンは前記ブロックの外側傾斜面に当る内側傾斜面を有し、前記可動部は前記ブロックの内側傾斜面に当る外側傾斜面を有し、前記ロアピストンが前記上型に押されて下降すると前記ロアピストンの前記内側傾斜面が前記ブロックの外側傾斜面に当たり、且つ後退した前記可動部の前記外側傾斜面が前記ブロックの前記内側傾斜面に当った状態で、前記ロアピストンがさらに下降することで、前記可動部が前記インナスリーブへ向けて移動する。 The molding device of the present invention preferably further comprises a cylindrical lower piston surrounding a portion of the outer peripheral surface of the die core ring, the fixed part comprises a through hole leading from the inside of the fixed part to the outside of the fixed part and a block arranged in the through hole, the block has an outer inclined surface that protrudes to the outside of the fixed part and an inner inclined surface that protrudes to the inside of the fixed part, the lower piston has an inner inclined surface that abuts on the outer inclined surface of the block, the movable part has an outer inclined surface that abuts on the inner inclined surface of the block, and when the lower piston is pressed down by the upper mold, the inner inclined surface of the lower piston abuts on the outer inclined surface of the block, and the outer inclined surface of the retracted movable part abuts on the inner inclined surface of the block, and the lower piston further descends in this state, whereby the movable part moves towards the inner sleeve.
 本発明の成形装置では、可動部を支持する前記付勢部材を備えて、可動部が中間成形体によって後退することで、深絞りの際に可動部との摩擦による中間成形体の板厚の減少を抑えることができる。付勢部材は、例えばスプリング、空圧式のピストンなどを用いることができる。 The molding device of the present invention is provided with the biasing member that supports the movable part, and the movable part is moved back by the intermediate molded body, thereby making it possible to suppress a decrease in the plate thickness of the intermediate molded body due to friction with the movable part during deep drawing. The biasing member can be, for example, a spring or a pneumatic piston.
 本発明は、下型と上型とで円形ブランクを挟んで缶蓋シェルを成形する缶蓋シェルの製造方法であって、前記円形ブランクをトレー状の第一成形体に成形する深絞り工程と、パネルパンチとダイセンターとに挟まれた前記第一成形体の底の平坦部を反対方向に移動させて前記平坦部のまわりに窪んだカウンターシンク部を形成するリバース工程と、を備えている。前記深絞り工程では、ダイコアリングの先端部とインナスリーブの先端部とで前記円形ブランクの一部を変形させて、前記第一成形体の前記平坦部とフランジ部との間に凹面と凸面とで成る第一変曲部が成形される。 The present invention is a manufacturing method for can lid shells in which a circular blank is sandwiched between a lower die and an upper die to form a can lid shell, and includes a deep drawing process in which the circular blank is shaped into a tray-shaped first formed body, and a reverse process in which the flat portion of the bottom of the first formed body sandwiched between a panel punch and a die center is moved in the opposite direction to form a countersink portion recessed around the flat portion. In the deep drawing process, a part of the circular blank is deformed by the tip of the die core ring and the tip of the inner sleeve, and a first inflection portion consisting of a concave surface and a convex surface is formed between the flat portion and the flange portion of the first formed body.
 前記リバース工程では、前記ダイコアリングの先端部と前記インナスリーブの先端部との間が中心軸に近づくにつれて広がっている金型クリアランスとして構成されている状態で、前記金型クリアランスのうち、前記第一変曲部で埋められていない隙間に、前記パネルパンチと前記ダイセンターとの間からはみ出ている前記第一成形体の一部を押し込み、前記第一変曲部を増厚した第二変曲部に成形する。 In the reversing process, with the space between the tip of the die core ring and the tip of the inner sleeve configured as a die clearance that widens as it approaches the central axis, a portion of the first molded body that protrudes from between the panel punch and the die center is pushed into the gap in the die clearance that is not filled by the first inflection portion, and the first inflection portion is molded into a thicker second inflection portion.
 本発明の缶蓋シェルの製造方法では、加工対象の第一成形体の一部を変形させて金型クリアランスに押し込み、前記第一成形体とこれに隣接する箇所が、平坦部側からフランジ部側へ向けて圧縮されて板厚が増加する。圧縮の加工硬化と板厚増加によって缶蓋の耐圧強度が向上する。 In the manufacturing method of the can lid shell of the present invention, a part of the first molded body to be processed is deformed and pushed into the die clearance, and the first molded body and the adjacent area are compressed from the flat portion side toward the flange portion side, increasing the plate thickness. The work hardening caused by compression and the increased plate thickness improve the pressure resistance of the can lid.
 なお、前記金型クリアランスは、深絞りの途中、或いはリバース工程を開始する時点、又はリバース工程の途中で構成することができる。 The die clearance can be configured during deep drawing, at the start of the reverse process, or during the reverse process.
 本発明の缶蓋シェルの製造方法は、好ましくは、前記ダイコアリングは、前記ダイコアリングの先端部のうち、前記インナスリーブの先端部と対向する部分を構成する可動部と、前記金型クリアランスを構成する位置に前記可動部を保持する付勢部材を備えていて、前記深絞り工程では、中間成形体が前記可動部を押して、前記可動部が前記付勢部材へ向けて後退する。 In the can lid shell manufacturing method of the present invention, preferably, the die core ring includes a movable part that constitutes the part of the tip of the die core ring that faces the tip of the inner sleeve, and a biasing member that holds the movable part in a position that constitutes the mold clearance, and in the deep drawing process, the intermediate molded body presses the movable part, causing the movable part to retreat toward the biasing member.
 本発明では、リバース工程を行う前に、可動部が中間成形体によって後退することで、深絞りの際に可動部との摩擦による円形ブランクの板厚が減少することを抑えることができる。また、このように板厚の減少を抑えた状態で第一成形体を成形し、この第一成形体に対して第一曲面部及び第二曲面部の成形を行うことで、リバース工程の開始の段階で湾曲部の変形や歪を抑えることができる。 In the present invention, before the reverse process is performed, the movable part is retracted by the intermediate formed body, thereby making it possible to suppress the reduction in thickness of the circular blank caused by friction with the movable part during deep drawing. Furthermore, by forming the first formed body in such a state where the reduction in thickness is suppressed, and then forming the first curved surface portion and the second curved surface portion on this first formed body, it is possible to suppress deformation and distortion of the curved portion at the start of the reverse process.
 本発明によれば、凹の曲面と凸の曲面とを有する変曲部が耐圧強度を高く構成されているため、バックリングを防止することができる。 According to the present invention, the inflection section, which has a concave curved surface and a convex curved surface, is configured to have high pressure resistance, making it possible to prevent buckling.
図1Aは本発明の第一実施形態に係る缶蓋シェルを示す平面図である。図1Bは図1AのS1-S1線に沿った缶蓋シェルの断面を示す図である。Fig. 1A is a plan view showing a can lid shell according to a first embodiment of the present invention, and Fig. 1B is a cross-sectional view of the can lid shell taken along line S1-S1 in Fig. 1A. 図2は図1Bの一点鎖線の円で囲った箇所の切断端面を拡大した図である。FIG. 2 is an enlarged view of a cut end surface of a portion surrounded by a dashed line circle in FIG. 1B. 図3は本発明の第一実施形態に係る缶蓋シェルの変曲部の断面を拡大した図である。FIG. 3 is an enlarged cross-sectional view of an inflection portion of a can lid shell according to the first embodiment of the present invention. 図4は本発明の第一実施形態に係る缶蓋シェルを成形する成形装置の断面を示す図である。FIG. 4 is a cross-sectional view of a molding device for molding a can lid shell according to the first embodiment of the present invention. 図5は図4の成形装置の下型と上型の一部を拡大した断面図である。FIG. 5 is an enlarged cross-sectional view of a part of the lower mold and the upper mold of the molding apparatus of FIG. 図6は図5の一点鎖線の円で囲った箇所を拡大した図である。FIG. 6 is an enlarged view of the area surrounded by the dashed-dotted circle in FIG. 図7は本発明の第一実施形態に係る缶蓋シェルの製造方法を示す図である。FIG. 7 is a diagram showing a method for manufacturing a can lid shell according to the first embodiment of the present invention. 図8A~図8Bは本発明の第一実施形態に係る缶蓋シェルの製造方法におけるブランキング工程を説明するための図である。8A and 8B are views for explaining a blanking step in the manufacturing method for a can lid shell according to the first embodiment of the present invention. 図9A~図9Bは本発明の第一実施形態に係る缶蓋シェルの製造方法における深絞り工程を説明するための図である。9A and 9B are views for explaining a deep drawing step in the manufacturing method for a can lid shell according to the first embodiment of the present invention. 図10A~図10Bは本発明の第一実施形態に係る缶蓋シェルの製造方法におけるリバース工程を説明するための図である。10A and 10B are views for explaining a reversing step in the manufacturing method for a can lid shell according to the first embodiment of the present invention. 図11は第一成形体の断面を示す図である。FIG. 11 is a view showing a cross section of the first molded body. 図12は本発明の第一実施形態に係る缶蓋シェルの製造方法を説明するための図である。FIG. 12 is a diagram for explaining the manufacturing method of a can lid shell according to the first embodiment of the present invention. 図13は本発明の第一実施形態に係る缶蓋シェルの製造方法を説明するための図である。FIG. 13 is a diagram for explaining the method for manufacturing a can lid shell according to the first embodiment of the present invention. 図14Aは本発明の第二実施形態に係る缶蓋シェルを示す平面図であり、図14Bは図14AのS2-S2線に沿った缶蓋シェルの断面を示す図である。FIG. 14A is a plan view showing a can lid shell according to a second embodiment of the present invention, and FIG. 14B is a view showing a cross section of the can lid shell taken along line S2-S2 in FIG. 14A. 図15は図14Aの一点鎖線の円で囲った箇所を拡大した図である。FIG. 15 is an enlarged view of the area surrounded by the dashed-dotted circle in FIG. 14A. 図16は図15のS3-S3線に沿ったシェルの断面を示す図である。FIG. 16 is a cross-sectional view of the shell taken along line S3-S3 in FIG. 図17は図14Bの一点鎖線で囲った箇所を拡大した図である。FIG. 17 is an enlarged view of the area surrounded by the dashed line in FIG. 14B. 図18は本発明の第二実施形態に係る缶蓋シェルの凹部と凸部の変形例を示す拡大図である。FIG. 18 is an enlarged view showing a modified example of the recessed portion and the protruding portion of the can lid shell according to the second embodiment of the present invention. 図19は本発明の第二実施形態に係る缶蓋シェルの凹部と凸部の変形例を示す拡大図である。FIG. 19 is an enlarged view showing a modified example of the recessed portion and the protruding portion of the can lid shell according to the second embodiment of the present invention. 図20は本発明の第二実施形態に係る缶蓋シェルの凹部と凸部の変形例を示す拡大図である。FIG. 20 is an enlarged view showing a modified example of the recessed portion and the protruding portion of the can lid shell according to the second embodiment of the present invention. 図21は本発明の第二実施形態のリフォーム工程を説明するための図である。FIG. 21 is a diagram for explaining the reforming process of the second embodiment of the present invention. 図22は図21の一点鎖線で囲った箇所を拡大した図である。FIG. 22 is an enlarged view of the area surrounded by the dashed line in FIG. 図23は本発明の第一変形例に係る成形装置の断面を示す図である。FIG. 23 is a cross-sectional view of a molding device according to a first modified example of the present invention. 図24はダイコアリングの断面を示す図である。FIG. 24 is a diagram showing a cross section of the die core ring. 図25は可動部とアッパピストン対向部の断面の一部を拡大した図である。FIG. 25 is an enlarged view of a part of a cross section of the movable portion and the opposing portion of the upper piston. 図26は本発明の第一変形例に係る成形装置の断面の一部を拡大した図である。FIG. 26 is an enlarged view of a portion of a cross section of a molding device according to a first modified example of the present invention. 図27A~図27Dは本発明の第一変形例に係る成形装置によるシェルの製造方法を説明するための図である。27A to 27D are views for explaining a method for manufacturing a shell by a molding apparatus according to a first modified example of the present invention. 図28は本発明の第一変形例に係る成形装置によるシェルの製造方法を説明するための図である。FIG. 28 is a diagram for explaining a method for manufacturing a shell by a molding apparatus according to a first modified example of the present invention. 図29は本発明の第二変形例に係る成形装置の断面を示す図である。FIG. 29 is a cross-sectional view of a molding device according to a second modified example of the present invention. 図30はダイコアリングとロアピストンと可動部とブロックとスプリングの断面を示す図である。FIG. 30 is a diagram showing a cross section of the die core ring, lower piston, movable part, block and spring. 図31はブロックの断面を拡大した図である。FIG. 31 is an enlarged cross-sectional view of the block. 図32はロアピストンの延出部の断面を拡大した図である。FIG. 32 is an enlarged cross-sectional view of the extension portion of the lower piston. 図33は可動部の断面を拡大した図である。FIG. 33 is an enlarged cross-sectional view of the movable portion. 図34は本発明の第二変形例に係る成形装置によるシェルの製造方法を説明するための図である。FIG. 34 is a diagram for explaining a method for manufacturing a shell by a molding apparatus according to a second modified example of the present invention. 図35は従来の缶蓋シェルの断面を示す図である。FIG. 35 is a cross-sectional view of a conventional can lid shell. 図36は軽量化した缶蓋の断面を示す図である。FIG. 36 is a cross-sectional view of a lightweight can lid. 図37はバックリングするときの缶蓋の断面を示す図である。FIG. 37 is a diagram showing a cross section of a can lid during buckling.
 図面を参照しながら本発明の第一実施形態に係る缶蓋シェル10を説明する。 The can lid shell 10 according to the first embodiment of the present invention will be described with reference to the drawings.
 缶蓋シェル10は、図1A及び図1Bに示すように、平面視での輪郭が円形に形成されたパネル部11と、パネル部11の周縁に沿って形成されていて窪んだカウンターシンク部12と、カウンターシンク部12の縁から立ち上がっていてパネル部11及びカウンターシンク部12と共に内部空間SP1を画するチャックウォール部13と、チャックウォール部13の上端(半径外方向Do側の端部)から張り出したフランジ部14と、を備えている。内部空間SP1とは、図1Bに示すように、チャックウォール部13の内側であってパネル部11上の空間である。 As shown in Figures 1A and 1B, the can lid shell 10 comprises a panel portion 11 having a circular outline in plan view, a recessed countersink portion 12 formed along the periphery of the panel portion 11, a chuck wall portion 13 rising from the edge of the countersink portion 12 and defining an internal space SP1 together with the panel portion 11 and the countersink portion 12, and a flange portion 14 extending from the upper end (the end portion on the radially outward direction Do side) of the chuck wall portion 13. The internal space SP1 is the space inside the chuck wall portion 13 and above the panel portion 11, as shown in Figure 1B.
 以下の説明では、パネル部11の中心をとおってパネル部11と直交する中心軸Cから半径に沿った方向のうち、中心軸Cから外に向かう方向を半径外方向Doと称し、外から中心軸Cに向かう方向を半径内方向Diと称す。また、中心軸Cに沿ってカウンターシンク部12側からチャックウォール部13へ向かう方向を第一方向D1と称し、この第一方向D1とは逆に中心軸Cに沿ってチャックウォール部13からカウンターシンク部12側へ向かう方向を第二方向D2と称す(図2参照)。 In the following explanation, among the directions along the radius from the central axis C that passes through the center of the panel portion 11 and is perpendicular to the panel portion 11, the direction from the central axis C toward the outside is referred to as the radially outward direction Do, and the direction from the outside toward the central axis C is referred to as the radially inward direction Di. In addition, the direction along the central axis C from the countersink portion 12 side toward the chuck wall portion 13 is referred to as the first direction D1, and the direction opposite to the first direction D1, that is, from the chuck wall portion 13 toward the countersink portion 12 side along the central axis C is referred to as the second direction D2 (see Figure 2).
 缶蓋シェル10の表裏の面として、内部空間SP1を画する箇所やこれに隣接したフランジ部14の一方の面を含めて缶蓋シェル10の表面SF1とし、この表面SF1とは反対側にある面を裏面SF2とする。 The front and back surfaces of the can lid shell 10, including the area defining the internal space SP1 and one surface of the flange portion 14 adjacent thereto, are referred to as the surface SF1 of the can lid shell 10, and the surface opposite to this surface SF1 is referred to as the back surface SF2.
 図1B及び図2は、中心軸Cを通り半径外方向Doに広がる仮想面に沿って切断した際の、缶蓋シェル10の断面形状を表している。以下、缶蓋シェル10の断面の形状について説明する。 1B and 2 show the cross-sectional shape of the can lid shell 10 when cut along an imaginary plane that passes through the central axis C and extends in the radially outward direction Do. The cross-sectional shape of the can lid shell 10 is described below.
(パネル部11)
 パネル部11は、平たい円板として形成されており、その厚さは略均一に設定されている。
(Panel section 11)
The panel portion 11 is formed as a flat circular plate, and its thickness is set to be approximately uniform.
(カウンターシンク部12)
 カウンターシンク部12は、深い箇所を構成する溝底部121と、溝底部121の半径内方向Di側の縁からパネル部11の周縁まで延びた第一溝壁部122と、溝底部121の半径外方向Do側の縁からチャックウォール部13の半径内方向Di側の縁まで延びた第二溝壁部123と、を備えている。
(Countersink portion 12)
The countersink portion 12 comprises a groove bottom 121 which constitutes a deep portion, a first groove wall portion 122 which extends from the edge of the groove bottom 121 on the radially inward direction Di to the peripheral edge of the panel portion 11, and a second groove wall portion 123 which extends from the edge of the groove bottom 121 on the radially outward direction Do to the edge of the chuck wall portion 13 on the radially inward direction Di.
 溝底部121は、内部空間SP1に配置された中心C12から半径r12の円弧として断面が形成されており、内部空間SP1側から凹となる曲面を呈する。溝底部121には、最深部が配置されており、溝底部121と第一溝壁部122とがつながる接続箇所(第一接続点p1)は、最深部よりも半径内方向Di側にずれて配置されていると共に、最深部よりも第一方向D1へずれて配置されている。 The groove bottom 121 has a cross section formed as an arc of radius r12 from a center C12 located in the internal space SP1, and presents a curved surface that is concave from the internal space SP1 side. The groove bottom 121 has a deepest part, and the connection point (first connection point p1) where the groove bottom 121 and the first groove wall 122 are connected is shifted radially inward Di from the deepest part, and is also shifted in the first direction D1 from the deepest part.
 さらに、溝底部121と第二溝壁部123とがつながる接続箇所(第二接続点p2)は、最深部よりも半径外方向Do側にずれて配置されていると共に、最深部よりも第一方向D1へずれて配置されている。なお、図2では、各接続点の位置を〇印で表している。 Furthermore, the connection point (second connection point p2) where the groove bottom 121 and the second groove wall 123 are connected is positioned offset in the radial outward direction Do from the deepest part, and is also positioned offset in the first direction D1 from the deepest part. Note that in FIG. 2, the position of each connection point is indicated by a circle.
(第一溝壁部122)
 第一溝壁部122は、溝底部121の半径内方向Di側の縁に一方の縁がつながり第一接続点p1を構成し更に中心軸Cに対する傾きが一定に形成された第一傾斜溝断面部122Aと、この第一傾斜溝断面部122Aの他方の縁からパネル部11の周縁まで形成されており内部空間SP1側へ凸となる円弧の第一凸型溝断面部122Bと、を備えている。
(First groove wall portion 122)
The first groove wall portion 122 has one edge connected to the edge of the groove bottom portion 121 on the radially inward direction Di to form a first connection point p1, and further has a first inclined groove cross section formed with a constant inclination with respect to the central axis C. and a first convex groove cross-section portion 122B that is formed from the other edge of the first inclined groove cross-section portion 122A to the peripheral edge of the panel portion 11 and is a circular arc that is convex toward the internal space SP1. There are.
 第一傾斜溝断面部122Aと第一凸型溝断面部122Bとがつながる接続箇所(第三接続点p3)は、第一接続点p1よりも半径内方向Diにずれて配置されていると共に第一接続点p1よりも第一方向D1にずれて配置されている。 The connection point (third connection point p3) where the first inclined groove cross-sectional portion 122A and the first convex groove cross-sectional portion 122B are connected is shifted in the radial inward direction Di from the first connection point p1 and is also shifted in the first direction D1 from the first connection point p1.
 第一凸型溝断面部122Bとパネル部11とがつながる接続箇所(第四接続点p4)は、第三接続点p3よりも半径内方向Di側にずれて配置されていると共に、第三接続点p3よりも第一方向D1へずれて配置されている。第一凸型溝断面部122Bは、第三接続点p3から第四接続点p4へ向けて漸次中心軸Cからの半径が小さく(縮径)なる曲面を呈する。 The connection point (fourth connection point p4) where the first convex groove cross-section portion 122B and the panel portion 11 are connected is positioned offset in the radial inward direction Di from the third connection point p3, and is also positioned offset in the first direction D1 from the third connection point p3. The first convex groove cross-section portion 122B presents a curved surface whose radius from the central axis C gradually becomes smaller (reduced diameter) from the third connection point p3 to the fourth connection point p4.
(第二溝壁部123)
 第二溝壁部123は、溝底部121の半径外方向Do側の縁に一方の縁がつながり第二接続点p2を構成し更に中心軸Cに対する傾きが一定に形成された第二傾斜溝断面部123Aと、この第二傾斜溝断面部123Aの他方の縁に一方の縁を接続されており内部空間SP1側へ凸となる円弧の第二凸型溝断面部123B(本発明の第三曲面部に相当)と、この第二凸型溝断面部123Bの他方の縁に一方の縁を接続されており第二凸型溝断面部123Bの曲率半径と異なる曲率半径で内部空間SP1側へ凸となる円弧の第三凸型溝断面部123C(本発明の第一曲面部に相当)と、を備えている。
(Second groove wall part 123)
The second groove wall portion 123 has one edge connected to the edge of the groove bottom portion 121 on the radially outward direction Do side to form a second connection point p2, and further has a second inclined groove cross section formed with a constant inclination with respect to the central axis C. a second convex groove cross section 123B (a third curved surface of the present invention) having one edge connected to the other edge of the second inclined groove cross section 123A and having a circular arc shape that is convex toward the internal space SP1; The second convex groove cross section 123B has one edge connected to the other edge of the second convex groove cross section 123B, and the second convex groove cross section 123B has a radius of curvature different from the radius of curvature of the second convex groove cross section 123B and is convex toward the internal space SP1. and a third convex groove cross-sectional portion 123C (corresponding to the first curved surface portion of the present invention) having a circular arc shape.
 第二傾斜溝断面部123Aと第二凸型溝断面部123Bとがつながる接続箇所(第五接続点p5)は、第二接続点p2よりも半径外方向Doにずれて配置されていると共に第二接続点p2よりも第一方向D1にずれて配置されている。第二凸型溝断面部123Bと第三凸型溝断面部123Cとがつながる接続箇所(第六接続点p6)は、第五接続点p5よりも半径外方向Do側にずれて配置されていると共に、第五接続点p5よりも第一方向D1へずれて配置されている。 The connection point (fifth connection point p5) where the second inclined groove cross-section portion 123A and the second convex groove cross-section portion 123B are connected is positioned offset in the radially outward direction Do from the second connection point p2 and is also positioned offset in the first direction D1 from the second connection point p2. The connection point (sixth connection point p6) where the second convex groove cross-section portion 123B and the third convex groove cross-section portion 123C are connected is positioned offset in the radially outward direction Do from the fifth connection point p5 and is also offset in the first direction D1 from the fifth connection point p5.
 第三凸型溝断面部123Cとチャックウォール部13とがつながる接続箇所(第七接続点p7)は、第六接続点p6よりも半径外方向Doにずれて配置されていると共に、第六接続点p6よりも第一方向D1へずれて配置されている。 The connection point (seventh connection point p7) where the third convex groove cross-sectional portion 123C and the chuck wall portion 13 are connected is positioned at a position shifted radially outwardly in the direction Do from the sixth connection point p6, and is also positioned at a position shifted in the first direction D1 from the sixth connection point p6.
 第二凸型溝断面部123Bは、第五接続点p5から第六接続点p6へ向けて漸次中心軸Cからの半径が大きく(拡径)なる曲面を呈する。 The second convex groove cross-section 123B presents a curved surface whose radius from the central axis C gradually increases (widens) from the fifth connection point p5 to the sixth connection point p6.
 第三凸型溝断面部123Cは、第六接続点p6から第七接続点p7へ向けて漸次中心軸Cからの半径が大きく(拡径)なる曲面を呈する。 The third convex groove cross-section 123C presents a curved surface whose radius from the central axis C gradually increases (widens) from the sixth connection point p6 to the seventh connection point p7.
 図3に示すように、缶蓋シェル10の表面SF1のうち、第二凸型溝断面部123Bが成す円弧の中心C56が外空間SP2に配置され、第三凸型溝断面部123Cが成す円弧の中心C67が外空間SP2に配置されており、第二凸型溝断面部123Bの円弧の中心C56は第三凸型溝断面部123Cの円弧の中心C67よりも、半径内方向Di側に若干ずれて配置されていると共に、第一方向D1へも若干ずれて配置されている。また、第二凸型溝断面部123Bの円弧の半径r56は、第三凸型溝断面部123Cの円弧の半径r67よりも小さく設定されている。 As shown in FIG. 3, on the surface SF1 of the can lid shell 10, the center C56 of the arc formed by the second convex groove cross-section portion 123B is located in the outer space SP2, and the center C67 of the arc formed by the third convex groove cross-section portion 123C is located in the outer space SP2, and the center C56 of the arc of the second convex groove cross-section portion 123B is slightly shifted toward the radially inward direction Di from the center C67 of the arc of the third convex groove cross-section portion 123C, and is also slightly shifted toward the first direction D1. In addition, the radius r56 of the arc of the second convex groove cross-section portion 123B is set smaller than the radius r67 of the arc of the third convex groove cross-section portion 123C.
 また、缶蓋シェル10の裏面SF2のうち、第五接続点p5から第六接続点p6を経て第七接続点p7までは、中心C57から一定の半径r57の円弧として形成されている。 Furthermore, the back surface SF2 of the can lid shell 10 is formed as an arc of a constant radius r57 from the center C57, from the fifth connection point p5 through the sixth connection point p6 to the seventh connection point p7.
 第三凸型溝断面部123Cにおいて、表面SF1の円弧の中心C67は、裏面SF2の円弧の中心C57よりも、半径内方向Di側にずれて配置されていると共に、第一方向D1へもずれて配置されている。また、裏面SF2の円弧の半径r57は、第二凸型溝断面部123Bの円弧の半径r56や第三凸型溝断面部123Cの円弧の半径r67よりも小さく設定されている。 In the third convex groove cross-sectional portion 123C, the center C67 of the arc on the front surface SF1 is shifted toward the radially inward direction Di from the center C57 of the arc on the back surface SF2, and is also shifted toward the first direction D1. In addition, the radius r57 of the arc on the back surface SF2 is set to be smaller than the radius r56 of the arc on the second convex groove cross-sectional portion 123B and the radius r67 of the arc on the third convex groove cross-sectional portion 123C.
(チャックウォール部13)
 チャックウォール部13は、カウンターシンク部12の第二凸型溝断面部123Bの半径外方向Do側の縁に一方(半径内方Di側)の縁がつながり第六接続点p6を構成し内部空間SP1側へ凹となる円弧の第一凹型囲繞断面部131(本発明の第二曲面部に相当)と、第一凹型囲繞断面部131の他方(半径外方向Do側)の縁に一方(半径内方Di側)の縁がつながり第一凹型囲繞断面部131の曲率半径と異なる曲率半径で内部空間SP1側へ凹となる円弧の第二凹型囲繞断面部132と、第二凹型囲繞断面部132の他方(半径外方向Do側)の縁に一方(半径内方Di側)の縁がつながり更に中心軸Cに対する傾きが一定に形成された傾斜囲繞断面部133と、傾斜囲繞断面部133の他方(半径外方向Do側)の縁に一方(半径内方Di側)の縁がつながり内部空間SP1側へ凸となる円弧の凸型囲繞断面部134と、を備えている。
(Chuck wall portion 13)
The chuck wall portion 13 has one edge (radially inward Di side) connected to the edge on the radially outward direction Do side of the second convex groove cross-sectional portion 123B of the countersink portion 12, forming a sixth connection point p6, and has a first concave surrounding cross-sectional portion 131 (corresponding to the second curved surface portion of the present invention) of a circular arc that is concave toward the internal space SP1 side, and one edge (radially inward Di side) connected to the other edge (radially outward direction Do side) of the first concave surrounding cross-sectional portion 131, and has a curvature radius different from that of the first concave surrounding cross-sectional portion 131. The second concave surrounding cross-sectional portion 132 is an arc that is concave toward the internal space SP1 at a radius, an inclined surrounding cross-sectional portion 133 whose one edge (radially inward Di side) is connected to the other edge (radially outward Do side) of the second concave surrounding cross-sectional portion 132 and whose inclination with respect to the central axis C is constant, and a convex surrounding cross-sectional portion 134 whose one edge (radially inward Di side) is connected to the other edge (radially outward Do side) of the inclined surrounding cross-sectional portion 133 and whose convex shape is toward the internal space SP1.
(第一凹型囲繞断面部131)
 第一凹型囲繞断面部131と第二凹型囲繞断面部132とがつながる接続箇所(第八接続点p8)は、第七接続点p7よりも半径外方向Doにずれて配置されていると共に、第七接続点p7よりも第一方向D1へずれて配置されている。第一凹型囲繞断面部131は、第七接続点p7から第八接続点p8へ向けて漸次中心軸Cからの半径が大きく(拡径)なる曲面を呈する。
(First concave surrounding cross section 131)
The eighth connection point p8 where the first surrounding cross-section 131 and the second surrounding cross-section 132 are connected is disposed at a position shifted in the radial outward direction Do from the seventh connection point p7. The seventh connection point p7 is disposed in the first direction D1 away from the eighth connection point p8. The first concave surrounding cross-section portion 131 has a radius from the central axis C that gradually increases from the seventh connection point p7 to the eighth connection point p8. It presents a curved surface (expanded diameter).
 なお、チャックウォール部13の第一凹型囲繞断面部131と、カウンターシンク部12の第三凸型溝断面部123Cとは、曲面の曲がりの向きが反対であることから、第七接続点p7は変曲点を構成する。 Note that the first concave surrounding cross-section 131 of the chuck wall portion 13 and the third convex groove cross-section 123C of the countersink portion 12 have curved surfaces in opposite directions, so the seventh connection point p7 constitutes an inflection point.
(第二凹型囲繞断面部132)
 第二凹型囲繞断面部132と傾斜囲繞断面部133とがつながる接続箇所(第九接続点p9)は、第八接続点p8よりも半径外方向Doにずれて配置されていると共に、第八接続点p8よりも第一方向D1へずれて配置されている。第二凹型囲繞断面部132は、第八接続点p8から第九接続点p9へ向けて漸次中心軸Cからの半径が大きく(拡径)なる曲面を呈する。
(Second concave surrounding cross section 132)
A connection point (ninth connection point p9) where the second concave surrounding cross-section portion 132 and the inclined surrounding cross-section portion 133 are connected is disposed so as to be shifted in the radial outward direction Do from the eighth connection point p8. The second concave surrounding cross-section portion 132 has a radius from the central axis C that gradually increases (expands) from the eighth connecting point p8 to the ninth connecting point p9. It has a curved surface with a diameter of 1 mm.
 図3に示すように、第二凹型囲繞断面部132において表面SF1が成す円弧の中心C89が内部空間SP1内に配置され、第一凹型囲繞断面部131において表面SF1が成す円弧の中心C78が内部空間SP1内に配置されている。第二凹型囲繞断面部132において表面SF1がなす円弧の中心C89は、第一凹型囲繞断面部131の円弧の中心C78よりも、半径内方向Di側にずれて配置されていると共に、第一方向D1へもずれて配置されている。 As shown in FIG. 3, the center C89 of the arc formed by the surface SF1 in the second concave surrounding cross-sectional portion 132 is disposed within the internal space SP1, and the center C78 of the arc formed by the surface SF1 in the first concave surrounding cross-sectional portion 131 is disposed within the internal space SP1. The center C89 of the arc formed by the surface SF1 in the second concave surrounding cross-sectional portion 132 is shifted toward the radially inward direction Di from the center C78 of the arc of the first concave surrounding cross-sectional portion 131, and is also shifted toward the first direction D1.
 また、第二凹型囲繞断面部132において表面SF1がなす円弧の半径r89は、第一凹型囲繞断面部131において表面SF1がなす円弧の半径r78よりも大きく設定されている。 In addition, the radius r89 of the arc formed by surface SF1 in second concave surrounding cross-section 132 is set to be larger than the radius r78 of the arc formed by surface SF1 in first concave surrounding cross-section 131.
 缶蓋シェル10の裏面SF2のうち、第七接続点p7から第八接続点p8を経て第九接続点p9までは、中心C89から一定の半径r79の円弧として形成されている。 The back surface SF2 of the can lid shell 10 is formed as an arc of a constant radius r79 from the center C89, from the seventh connection point p7 through the eighth connection point p8 to the ninth connection point p9.
(傾斜囲繞断面部133)
 傾斜囲繞断面部133と凸型囲繞断面部134とがつながる接続箇所(第十接続点p10)は、第九接続点p9よりも半径外方向Doにずれて配置されていると共に第九接続点p9よりも第一方向D1にずれて配置されている。傾斜囲繞断面部133は、第九接続点p9から第十接続点p10へ向けて漸次中心軸Cからの半径が大きく(拡径)なり傾きが一定の傾斜面を呈する。
(Slanted surrounding cross section 133)
The connection point (tenth connection point p10) where the inclined surrounding cross-section portion 133 and the convex surrounding cross-section portion 134 are connected is disposed in the radially outward direction Do from the ninth connection point p9. The inclined surrounding cross-section portion 133 is inclined such that the radius from the central axis C gradually increases (expands) from the ninth connection point p9 to the tenth connection point p10. presents a constant inclination surface.
(凸型囲繞断面部134)
 凸型囲繞断面部134とフランジ部14とがつながる接続箇所(第十一接続点p11)は、第十接続点p10よりも半径外方向Doにずれて配置されていると共に第十接続点p10よりも第一方向D1にずれて配置されている。凸型囲繞断面部134は、第十接続点p10から第十一接続点p11へ向けて漸次中心軸Cからの半径が大きく(拡径)なる曲面を呈する。第十一接続点p11は、缶蓋シェル10において最深部から第一方向D1に沿った距離が最も離れた箇所であり、すなわち最も高い箇所(頂点)を構成する。
(Convex surrounding cross section 134)
The connection point (eleventh connection point p11) where the convex surrounding cross section 134 and the flange portion 14 are connected is disposed at a position shifted in the radially outward direction Do from the tenth connection point p10 and at a position shifted in the first direction D1 from the tenth connection point p10. The convex surrounding cross section 134 presents a curved surface whose radius from the central axis C gradually increases (expands) from the tenth connection point p10 to the eleventh connection point p11. The eleventh connection point p11 is the point on the can lid shell 10 that is furthest away from the deepest part along the first direction D1, i.e., it constitutes the highest point (apex).
(フランジ部14)
 フランジ部14は、凸型囲繞断面部134の他方(半径外方向Do側)の縁に一方(半径内方向Di側)の縁がつながって第十一接続点p11(頂点)を構成し、半径外方向Doへ張り出している。フランジ部14の先端は、第十一接続点p11よりも半径外方向Doにずれて配置されていると共に第十一接続点p11より第二方向D2に位置をずらして配置されている。
(Flange portion 14)
The flange portion 14 has one edge (radially inward Di side) connected to the other edge (radially outward Do side) of the convex surrounding cross section portion 134 to form an eleventh connection point p11 (vertex), and protrudes in the radially outward direction Do. The tip of the flange portion 14 is shifted in the radially outward direction Do from the eleventh connection point p11 and is shifted in the second direction D2 from the eleventh connection point p11.
 フランジ部14の先端側は図2に示すように、次工程のカーリング工程でカール状に形成される。 The tip of the flange portion 14 is curled in the next curling process, as shown in Figure 2.
 このように構成された缶蓋シェル10では、チャックウォール部13とフランジ部14とが成す断面がフック状を呈し、さらにチャックウォール部13の凸型囲繞断面部134からフランジ部14の先端までが、フランジ状の形態を呈す。 In the can lid shell 10 configured in this manner, the cross section formed by the chuck wall portion 13 and the flange portion 14 is hook-shaped, and further, the section from the convex surrounding cross section portion 134 of the chuck wall portion 13 to the tip of the flange portion 14 is flange-shaped.
 以下、缶蓋シェル10の補強構造について説明する。 The reinforcing structure of the can lid shell 10 is explained below.
 図3に示すように、缶蓋シェル10において、第五接続点p5から第六接続点p6を経て第七接続点p7(変曲点)までの裏面SF2は、中心C57から一定の半径r57の円弧で形成されている。缶蓋シェル10において、第五接続点p5から第六接続点p6までの表面SF1は、中心C57からずれて配置された中心C56から半径r57よりも長い半径r56の円弧で形成されている。第二凸型溝断面部123Bは第五接続点p5から第六接続点p6へ向けて厚さが漸次厚くなるように形成されている。 As shown in FIG. 3, in the can lid shell 10, the back surface SF2 from the fifth connection point p5 through the sixth connection point p6 to the seventh connection point p7 (inflection point) is formed as an arc of a constant radius r57 from the center C57. In the can lid shell 10, the front surface SF1 from the fifth connection point p5 to the sixth connection point p6 is formed as an arc of a radius r56 longer than the radius r57 from the center C56 that is positioned offset from the center C57. The second convex groove cross-sectional portion 123B is formed so that its thickness gradually increases from the fifth connection point p5 to the sixth connection point p6.
 図3の断面図では、表面SF1上の位置を表す●印と、裏面SF2上の位置を表す●印と、これらを結ぶ実線とで各接続点を表している。 In the cross-sectional view of Figure 3, each connection point is represented by a ● mark indicating a position on the front surface SF1, a ● mark indicating a position on the back surface SF2, and a solid line connecting these.
 また、缶蓋シェル10において、第六接続点p6から第七接続点p7までの表面SF1は、その裏面SF2の円弧の中心C57からずれて配置された中心C67から半径r57よりも長い半径r67の円弧で形成されている。第三凸型溝断面部123Cは、第六接続点p6から第七接続点p7へ向けて漸次厚さが薄くなるように形成されている。 In addition, in the can lid shell 10, the surface SF1 from the sixth connection point p6 to the seventh connection point p7 is formed by an arc of radius r67 longer than radius r57 from a center C67 that is positioned offset from the center C57 of the arc on the back surface SF2. The third convex groove cross-sectional portion 123C is formed so that its thickness gradually decreases from the sixth connection point p6 to the seventh connection point p7.
 缶蓋シェル10は、第七接続点p7から第八接続点p8を経て第九接続点p9までの裏面SF2は、中心C89から一定の半径r79の円弧で形成され、第八接続点p8から第九接続点p9までの表面SF1はその裏面SF2の円弧の中心C89と同心で半径r79よりも短い半径r89の円弧で形成されており、第二凹型囲繞断面部132は第八接続点p8から第九接続点p9へ向けて厚さが一定に形成されている。 The can lid shell 10 has a back surface SF2 extending from the seventh connection point p7 through the eighth connection point p8 to the ninth connection point p9, which is formed by an arc of a constant radius r79 from the center C89, and a front surface SF1 extending from the eighth connection point p8 to the ninth connection point p9, which is formed by an arc of a radius r89 that is concentric with the center C89 of the arc of the back surface SF2 and is shorter than the radius r79, and the second concave surrounding cross-sectional portion 132 is formed to have a constant thickness from the eighth connection point p8 to the ninth connection point p9.
 第七接続点p7は、第三凸型溝断面部123Cと第一凹型囲繞断面部131との変曲点であり、図中心C89と中心C57とを結ぶ仮想線LX1(一点鎖線で図示されている)上に配置されている。 The seventh connection point p7 is the inflection point between the third convex groove cross-sectional portion 123C and the first concave surrounding cross-sectional portion 131, and is located on the imaginary line LX1 (shown by a dashed line) connecting the centers C89 and C57 of the figure.
 缶蓋シェル10は、第七接続点p7から第八接続点p8までの表面SF1は、その裏面の円弧の中心C89からずれて配置された中心C78から半径r89よりも短い半径r78で形成されている。第一凹型囲繞断面部131は、第七接続点p7から第八接続点p8へ向けて漸次厚さが薄くなるように形成されている。 The surface SF1 of the can lid shell 10 from the seventh connection point p7 to the eighth connection point p8 is formed with a radius r78 that is shorter than the radius r89 from a center C78 that is offset from the center C89 of the arc on the back surface. The first concave surrounding cross-sectional portion 131 is formed so that its thickness gradually decreases from the seventh connection point p7 to the eighth connection point p8.
 具体的には、缶蓋シェル10の変曲部の厚さは、第六接続点p6の厚さをt6とし、第七接続点p7の厚さをt7とし、第八接続点p8の厚さをt8とすると、t8<t7<t6の関係が成立する。厚さt6は中心C57から延びる仮想線(図示略)に沿った寸法であり、厚さt7は中心C57及び中心C89から延びる仮想線LX1に沿った寸法であり、厚さt8は中心C89から延びる仮想線(図示略)に沿った寸法である。 Specifically, the thickness of the inflection portion of the can lid shell 10 satisfies the relationship t8<t7<t6, where t6 is the thickness at the sixth connection point p6, t7 is the thickness at the seventh connection point p7, and t8 is the thickness at the eighth connection point p8. Thickness t6 is the dimension along a virtual line (not shown) extending from center C57, thickness t7 is the dimension along a virtual line LX1 extending from center C57 and center C89, and thickness t8 is the dimension along a virtual line (not shown) extending from center C89.
 このように、缶蓋シェル10では変曲点(第七接続点p7)を中間に配置して、カウンターシンク部12の第三凸型溝断面部123Cと、これとは曲がりの向きが反対方向に形成されたチャックウォール部13の第一凹型囲繞断面部131とでなる変曲部17を構成している。変曲部17の厚さは、第八接続点p8から第六接続点p6に行くにつれて増していて、第六接続点p6の近傍で厚さが最大に設定されている。 In this way, the can lid shell 10 has an inflection point (seventh connection point p7) located in the middle, forming an inflection section 17 consisting of the third convex groove cross-section 123C of the countersink section 12 and the first concave surrounding cross-section 131 of the chuck wall section 13, which is bent in the opposite direction. The thickness of the inflection section 17 increases from the eighth connection point p8 to the sixth connection point p6, and is at its maximum near the sixth connection point p6.
 変曲部17の厚さは、缶蓋シェル10を成形するための素板400(円形ブランク410)の厚み以上であり、例えば素板400(円形ブランク410)に対して106%以上の板厚である。 The thickness of the inflection portion 17 is equal to or greater than the thickness of the base plate 400 (circular blank 410) used to form the can lid shell 10, and is, for example, 106% or more of the thickness of the base plate 400 (circular blank 410).
 さらに、缶蓋シェル10の厚さは、第五接続点p5から第六接続点p6に行くにつれて増している。第五接続点p5の厚さをt5とし、第六接続点p6の厚さをt6とすると、t5<t6の関係が成立する。厚さt5と厚さt6とは中心C57から延びる仮想線(図示略)に沿った寸法である。この第五接続点p5から第六接続点p6までの厚さも、缶蓋シェル10を成形するための素板400(円形ブランク410)の厚み以上である。 Furthermore, the thickness of the can lid shell 10 increases from the fifth connection point p5 to the sixth connection point p6. If the thickness at the fifth connection point p5 is t5 and the thickness at the sixth connection point p6 is t6, then the relationship t5<t6 holds. Thicknesses t5 and t6 are dimensions along an imaginary line (not shown) extending from the center C57. The thickness from the fifth connection point p5 to the sixth connection point p6 is also greater than or equal to the thickness of the base plate 400 (circular blank 410) used to form the can lid shell 10.
 このように、第五接続点p5から第八接続点p8までの箇所は、これに隣接する第二傾斜溝断面部123Aや第二凹型囲繞断面部132と比べて厚さが大きい。また、素板400(円形ブランク410)よりも厚さが増している。以下、変曲点(第七接続点p7)を含めて厚さが増して形成された、第五接続点p5から第八接続点p8までの箇所を増厚部18と称す。 In this way, the area from the fifth connection point p5 to the eighth connection point p8 is thicker than the adjacent second inclined groove cross-sectional portion 123A and second concave surrounding cross-sectional portion 132. It is also thicker than the base plate 400 (circular blank 410). Hereinafter, the area from the fifth connection point p5 to the eighth connection point p8, which is formed by increasing the thickness including the inflection point (seventh connection point p7), will be referred to as the thickened portion 18.
 缶蓋シェル10では以上の断面構造が中心軸Cのまわりで全体にわたって構成されており、増厚された変曲部17が平面視で環状に配置されている。 The can lid shell 10 has the above cross-sectional structure configured throughout around the central axis C, and the thickened bend portion 17 is arranged in a ring shape in a plan view.
 缶蓋シェル10は、アルミニウム合金(例えば5000系)からなる円形ブランク410をプレス加工して形成されている。缶蓋シェル10の各部の厚さは、例えば0.20mm以上0.26mm以下である。 The can lid shell 10 is formed by pressing a circular blank 410 made of an aluminum alloy (e.g., 5000 series). The thickness of each part of the can lid shell 10 is, for example, 0.20 mm or more and 0.26 mm or less.
 缶蓋は、上記の缶蓋シェル10と、缶蓋シェル10に形成された開口形成用のティアラインと、開口操作用のタブと、を備えている。 The can lid includes the above-mentioned can lid shell 10, a tear line for forming an opening formed on the can lid shell 10, and a tab for opening the can.
 缶蓋の製造方法は、缶蓋シェル10を成形する缶蓋シェル成形工程と、コンバージョンプレスによって缶蓋シェル10にティアラインやタブなどを設けるコンバージョン成形工程と、を備えている。 The can lid manufacturing method includes a can lid shell forming process in which the can lid shell 10 is formed, and a conversion molding process in which tear lines, tabs, etc. are provided on the can lid shell 10 using a conversion press.
 以下、缶蓋の製造方法のうち、缶蓋シェル成形工程(缶蓋シェル10の製造方法)を行う成形装置2を説明する。 The following describes the molding device 2 that performs the can lid shell molding process (the manufacturing method of the can lid shell 10) in the can lid manufacturing method.
(成形装置2)
 図4に示すように、成形装置2は、下型200と上型300とを図示省略のプレス機に備えている。
(Molding device 2)
As shown in FIG. 4, the molding device 2 includes a lower die 200 and an upper die 300 in a press machine (not shown).
 下型200および上型300の中心軸は、成形される缶蓋シェル10の中心軸Cと同軸に設定されており、これらの軸を以下、総称して中心軸Cと称す。また、以下の説明でも、中心軸Cから半径に沿った方向のうち、中心軸Cから外に向かう方向を半径外方向Doと称し、外から中心軸Cに向かう方向を半径内方向Diと称す。 The central axes of the lower die 200 and the upper die 300 are set coaxially with the central axis C of the can lid shell 10 to be molded, and these axes are hereinafter collectively referred to as the central axis C. In addition, in the following explanation, among the directions along the radius from the central axis C, the direction toward the outside from the central axis C is referred to as the radially outward direction Do, and the direction from the outside toward the central axis C is referred to as the radially inward direction Di.
 さらに中心軸Cに沿った方向のうち、下型200から上型300へ向かう方向が成形装置2内の缶蓋シェル10の第一方向D1に相当することから下型200から上型300へ向かう方向も第一方向D1と称し、上型300から下型200へ向かう方向を第二方向D2と称する場合がある。また、成形装置2において、第一方向D1を上方、第2方向D2を下方として説明する。 Furthermore, among the directions along the central axis C, the direction from the lower die 200 to the upper die 300 corresponds to the first direction D1 of the can lid shell 10 in the molding device 2, so the direction from the lower die 200 to the upper die 300 is also referred to as the first direction D1, and the direction from the upper die 300 to the lower die 200 is sometimes referred to as the second direction D2. Furthermore, in the molding device 2, the first direction D1 will be described as upward, and the second direction D2 as downward.
(下型200)
 下型200は、ロアリテーナ210と、ロアリテーナ210の上型300側(第一方向D1側)の先端部に保持されたカットエッジ部220と、ロアリテーナ210の内側に保持されたダイコアリング230と、このダイコアリング230の内側に設けられたパネルパンチピストン240と、このパネルパンチピストン240の先端部に固定されたパネルパンチ250と、ダイコアリング230の一部を囲うロアピストン260と、を備えている。
(Lower mold 200)
The lower mold 200 includes a lower retainer 210, a cut edge portion 220 held at the tip of the lower retainer 210 on the upper mold 300 side (first direction D1 side), a die core ring 230 held inside the lower retainer 210, a panel punch piston 240 provided inside the die core ring 230, a panel punch 250 fixed to the tip of the panel punch piston 240, and a lower piston 260 surrounding a portion of the die core ring 230.
 ロアリテーナ210は、中央に貫通した穴部211Aを有するベース部211と、ベース部211の上部に固定され、穴部211Aよりも内径が大きい内周面を有する筒部212と、を備えている。筒部212は、ベース部211に固定される基端とは反対にある先端部の内側に段差部212Aを備えている。 The lower retainer 210 comprises a base portion 211 having a hole 211A penetrating the center, and a tube portion 212 fixed to the upper portion of the base portion 211 and having an inner peripheral surface with an inner diameter larger than that of the hole 211A. The tube portion 212 has a step portion 212A on the inside of the tip end opposite the base end fixed to the base portion 211.
 カットエッジ部220は、リング状に形成されていて、ロアリテーナ210の段差部212Aに配置されており、内周面221側がロアリテーナ210の筒部212の内周面よりも中心軸Cへむけて張り出している。カットエッジ部220の下面222は段差部212Aに固定され、下面222とは反対にある天面223と内周面221とで角部224が構成されている。 The cut edge portion 220 is formed in a ring shape and is disposed in the step portion 212A of the lower retainer 210, with the inner peripheral surface 221 protruding further toward the central axis C than the inner peripheral surface of the tubular portion 212 of the lower retainer 210. The lower surface 222 of the cut edge portion 220 is fixed to the step portion 212A, and a corner portion 224 is formed by the top surface 223 opposite the lower surface 222 and the inner peripheral surface 221.
 ダイコアリング230は、ロアリテーナ210のベース部211の上面に固定される基部231と、中心軸Cから半径方向に沿った厚さが基部231よりも薄く、基部231からベース部211とは反対側に延びた延出部232と、を備え、中心軸Cに沿って貫通した穴を有しており、ロアリテーナ210の筒部212の内部に配置されている。 The die core ring 230 comprises a base 231 fixed to the upper surface of the base portion 211 of the lower retainer 210, and an extension portion 232 that has a thickness in the radial direction from the central axis C that is thinner than that of the base 231 and extends from the base portion 231 to the opposite side of the base portion 211, has a hole penetrating along the central axis C, and is disposed inside the tubular portion 212 of the lower retainer 210.
 パネルパンチピストン240は、ダイコアリング230の内周面に対して擦動するピストン本体部241と、ピストン本体部241から延びた延出部242とを一体に備えていて、中心軸Cに沿って移動することができる。ピストン本体部241とダイコアリング230とロアリテーナ210とで空間SP21が構成されている。この空間SP21に図示省略する流路を経てエアが供給されて、パネルパンチピストン240が制御される。 The panel punch piston 240 is integrally equipped with a piston body 241 that rubs against the inner circumferential surface of the die core ring 230 and an extension 242 that extends from the piston body 241, and can move along the central axis C. The piston body 241, the die core ring 230, and the lower retainer 210 form a space SP21. Air is supplied to this space SP21 via a flow path not shown, to control the panel punch piston 240.
 パネルパンチ250は、図5に示すように、ダイセンター340の平坦部341と協働して円形ブランクを挟むパンチ平坦部251と、パンチ平坦部251の周縁に沿って設けられていてパンチ平坦部251よりもパネルパンチピストン240側にずれて形成された受面252Aを有するパンチ段差部252と、を備えている。受面252Aは、上型300へ向けて凹となる円弧に断面が形成されている。 As shown in FIG. 5, the panel punch 250 has a punch flat portion 251 that cooperates with the flat portion 341 of the die center 340 to clamp the circular blank, and a punch step portion 252 having a receiving surface 252A that is provided along the periphery of the punch flat portion 251 and is offset toward the panel punch piston 240 side from the punch flat portion 251. The receiving surface 252A has a cross section formed into a circular arc that is concave toward the upper die 300.
 ロアピストン260は、ロアリテーナ210の内周面とダイコアリング230の外周面とに対して擦動するピストン本体部261と、中心軸Cから半径方向に沿った厚さがピストン本体部261よりも薄く、ピストン本体部261から延びた延出部262とを備えて、全体で筒状に形成されている。またロアピストン260は中心軸Cに沿って移動することができる。 The lower piston 260 is formed in a cylindrical shape as a whole, and includes a piston body portion 261 that rubs against the inner peripheral surface of the lower retainer 210 and the outer peripheral surface of the die core ring 230, and an extension portion 262 that extends from the piston body portion 261 and has a thinner thickness in the radial direction from the central axis C than the piston body portion 261. The lower piston 260 can move along the central axis C.
 ロアピストン260のピストン本体部261とロアリテーナ210とダイコアリング230とで空間SP22が構成されている。この空間SP22に図示省略する流路を経てエアが供給されて、ロアピストン260が制御される。 The piston body 261 of the lower piston 260, the lower retainer 210, and the die core ring 230 form a space SP22. Air is supplied to this space SP22 via a flow path not shown, to control the lower piston 260.
(上型300)
 上型300は、アッパーリテーナ310と、アッパーリテーナ310に保持されたブランクドローダイ320と、アッパーリテーナ310の内側に設けられたダイセンターピストン330と、ダイセンターピストン330の先端部に固定されたダイセンター340と、ダイセンター340を囲うインナスリーブ350と、インナスリーブ350を囲うアッパピストン360と、を備えている。
(Upper mold 300)
The upper mold 300 includes an upper retainer 310, a blank draw die 320 held by the upper retainer 310, a die center piston 330 provided inside the upper retainer 310, a die center 340 fixed to the tip of the die center piston 330, an inner sleeve 350 surrounding the die center 340, and an upper piston 360 surrounding the inner sleeve 350.
 アッパーリテーナ310は、第一筒部311と、第一筒部311よりも内径が小さく形成された第二筒部312と、第二筒部312よりも内径が大きく形成された第三筒部313と、を一体に備えている。第三筒部313の内側が段差部313Aとして形成されていて、開口端を構成している。第一筒部311の内周面と第二筒部312の内周面との間が段差部314を構成している。 The upper retainer 310 integrally comprises a first tubular portion 311, a second tubular portion 312 formed with an inner diameter smaller than that of the first tubular portion 311, and a third tubular portion 313 formed with an inner diameter larger than that of the second tubular portion 312. The inside of the third tubular portion 313 is formed as a step portion 313A, which forms an open end. The space between the inner circumferential surface of the first tubular portion 311 and the inner circumferential surface of the second tubular portion 312 forms a step portion 314.
 ブランクドローダイ320は、リング状に形成された基部321と、中心軸Cから半径に沿った厚さが基部321よりも薄く基部321から延びた筒部322と、を備えている。基部321は、アッパーリテーナ310の段差部313Aに配置されており、内周面側がアッパーリテーナ310の第三筒部313よりも中心軸Cへ向けて張り出している。 The blank draw die 320 includes a base 321 formed in a ring shape, and a tubular portion 322 extending from the base 321 and having a thickness along the radius from the central axis C that is thinner than that of the base 321. The base 321 is disposed in the step portion 313A of the upper retainer 310, and the inner peripheral surface side protrudes further toward the central axis C than the third tubular portion 313 of the upper retainer 310.
 ダイセンターピストン330は、棒状に形成された棒状部331と、棒状部331の端に設けられてフランジ状に張り出した突出端部332と、を備えており、棒状部331をアッパーリテーナ310の下の開口端から下型200側へ向けて延出させて配置されている。 The die center piston 330 has a rod-shaped portion 331 and a flange-shaped protruding end portion 332 provided at the end of the rod-shaped portion 331, and the rod-shaped portion 331 is arranged to extend from the lower open end of the upper retainer 310 toward the lower die 200.
 ダイセンターピストン330は、中心軸Cに沿って移動することができ、突出端部332をアッパーリテーナ310の段差部314に当るように構成されている。突出端部332と第一筒部311の内側が、空間SP31を構成し、図示省略の流路を経てエアが供給されて、ダイセンターピストン330が制御される。 The die center piston 330 can move along the central axis C, and is configured so that the protruding end 332 abuts against the step portion 314 of the upper retainer 310. The protruding end 332 and the inside of the first cylindrical portion 311 form a space SP31, and air is supplied through a flow path not shown to control the die center piston 330.
 インナスリーブ350は、アッパーリテーナ310の内周面とダイセンターピストン330とに対して擦動するピストン本体部351と、中心軸Cから半径方向に沿った厚さがピストン本体部351よりも薄く、ピストン本体部351から延びた延出部352とを一体に備え、全体で筒状に形成されている。インナスリーブ350は中心軸Cに沿って移動することができる。 The inner sleeve 350 is integrally formed into a cylindrical shape as a whole, and includes a piston body portion 351 that rubs against the inner circumferential surface of the upper retainer 310 and the die center piston 330, and an extension portion 352 that extends from the piston body portion 351 and has a thinner thickness in the radial direction from the central axis C than the piston body portion 351. The inner sleeve 350 can move along the central axis C.
 アッパピストン360は、アッパーリテーナ310の内周面とインナスリーブ350の延出部352とに対して擦動するピストン本体部361と、中心軸Cから半径方向に沿った厚さがピストン本体部361よりも薄く、ピストン本体部361から延びた延出部362とを備え、全体で筒状に形成されている。アッパピストン360は中心軸Cに沿って移動することができる。 The upper piston 360 is formed in a cylindrical shape as a whole, and includes a piston body 361 that rubs against the inner circumferential surface of the upper retainer 310 and the extension 352 of the inner sleeve 350, and an extension 362 that extends from the piston body 361 and has a thinner thickness in the radial direction from the central axis C than the piston body 361. The upper piston 360 can move along the central axis C.
 インナスリーブ350のピストン本体部351とダイセンターピストン330とアッパーリテーナ310とで空間SP32が構成される。インナスリーブ350のピストン本体部351とアッパーリテーナ310とアッパピストン360のピストン本体部361とで空間SP33が構成される。これらの空間SP32,SP33に図示省略する流路を経てエアが供給されて、インナスリーブ350やアッパピストン360が制御される。 The piston body 351 of the inner sleeve 350, the die center piston 330, and the upper retainer 310 form a space SP32. The piston body 351 of the inner sleeve 350, the upper retainer 310, and the piston body 361 of the upper piston 360 form a space SP33. Air is supplied to these spaces SP32 and SP33 via a flow path not shown in the figure, to control the inner sleeve 350 and the upper piston 360.
 成形装置2では、図5に示すように、ロアピストン260とブランクドローダイ320とが、延出部262の先端部262Aの平坦面262Bと筒部322の先端部322Aの平坦面322Bとを合わせるように構成されている。ブランクドローダイ320の筒部322の先端部322Aは、平坦面322Bと内周面322Cとの間が円弧に断面が形成された丸み部322Dを有する。 As shown in FIG. 5, in the molding device 2, the lower piston 260 and the blank draw die 320 are configured to align the flat surface 262B of the tip 262A of the extension portion 262 with the flat surface 322B of the tip 322A of the tubular portion 322. The tip 322A of the tubular portion 322 of the blank draw die 320 has a rounded portion 322D with a cross section formed in an arc between the flat surface 322B and the inner circumferential surface 322C.
 図5及び図6に示すように、ダイコアリング230の延出部232は、アッパピストン360の延出部362の先端部362Aとインナスリーブ350の延出部352の先端部352Aとに対向する先端部232Aを有する。 As shown in Figures 5 and 6, the extension portion 232 of the die core ring 230 has a tip portion 232A that faces the tip portion 362A of the extension portion 362 of the upper piston 360 and the tip portion 352A of the extension portion 352 of the inner sleeve 350.
 ダイコアリング230の先端部232Aは、最も高い箇所に形成されていてアッパピストン360の延出部362の先端部362Aと対向し先端部362A側へ凸となる円弧に断面が形成された第一凸面部232Bと、この第一凸面部232Bの半径内方向Di側の縁に接続して形成されていて中心軸Cに対して一定の傾きに形成されて半径内方向Diに行くにつれて下る第一傾斜面部232Cと、第一傾斜面部232Cの下端に接続して形成されていて中心軸C側へ凹となる円弧に断面が形成された凹面部232D(本発明の第一下型曲面部に相当)と、凹面部232Dの半径内方向Di側の縁に接続して形成されていて中心軸C側へ凸となる円弧に断面が形成された第二凸面部232Eと(本発明の第二下型曲面部に相当)、この第二凸面部232Eの半径内方向Di側の縁に接続して形成されていて中心軸Cに対して一定の傾きに形成されて半径内方向Diに行くにつれて下る第二傾斜面部232Fと、を備えている。 The tip 232A of the die core ring 230 is formed at the highest point, faces the tip 362A of the extension 362 of the upper piston 360, and has a cross section formed in an arc that is convex toward the tip 362A side. A first inclined surface portion 232C is formed connected to the edge of the first convex surface portion 232B in the radial inward direction Di, is formed at a constant inclination with respect to the central axis C, and descends as it goes in the radial inward direction Di. A first inclined surface portion 232C is formed connected to the lower end of the first inclined surface portion 232C, and is formed so that the cross section of the first inclined surface portion 232B is inclined toward the central axis C. It is provided with a concave surface portion 232D (corresponding to the first lower mold curved surface portion of the present invention) whose cross section is formed in an arc concave toward the C side, a second convex surface portion 232E (corresponding to the second lower mold curved surface portion of the present invention) which is connected to the edge of the concave surface portion 232D on the radially inward direction Di side and whose cross section is formed in an arc convex toward the central axis C side, and a second inclined surface portion 232F which is connected to the edge of the second convex surface portion 232E on the radially inward direction Di side and is formed at a constant inclination with respect to the central axis C and descends as it goes in the radially inward direction Di.
 第一傾斜面部232Cと凹面部232Dとがつながる接続箇所(第一下型接続点P21)に対して、凹面部232Dと第二凸面部232Eとがつながる接続箇所(第二下型接続点P22)は、半径内方向Diにずれて配置されていると共に、第二方向D2にずれて配置されている。凹面部232Dは、第一下型接続点P21から第二下型接続点P22へ向けて漸次中心軸Cからの半径が小さく(縮径)する曲面を呈する。図6の断面図では、各接続点を●印で強調して表しているが、実際には滑らかな面である。 Compared to the connection point (first lower die connection point P21) where the first inclined surface portion 232C and the concave surface portion 232D are connected, the connection point (second lower die connection point P22) where the concave surface portion 232D and the second convex surface portion 232E are connected is shifted in the radial inward direction Di and is also shifted in the second direction D2. The concave surface portion 232D presents a curved surface whose radius from the central axis C gradually decreases (reduced diameter) from the first lower die connection point P21 to the second lower die connection point P22. In the cross-sectional view of Figure 6, each connection point is highlighted with a ● mark, but in reality it is a smooth surface.
 第二凸面部232Eと第二傾斜面部232Fとがつながる接続箇所(第三下型接続点P23)は、第二下型接続点P22に対して、半径内方向Diにずれて配置されていると共に、第二方向D2にずれて配置されている。第二凸面部232Eは、第二下型接続点P22から第三下型接続点P23へ向けて漸次中心軸Cからの半径が小さく(縮径)する曲面を呈する。第二凸面部232Eとこれに隣接する凹面部232Dとは曲面の向きが反転して凸と凹とで異なるため、第二下型接続点P22は変曲点を構成する。 The connection point (third lower die connection point P23) where the second convex surface portion 232E and the second inclined surface portion 232F are connected is shifted in the radial inward direction Di with respect to the second lower die connection point P22, and is also shifted in the second direction D2. The second convex surface portion 232E presents a curved surface whose radius from the central axis C gradually decreases (reduced diameter) from the second lower die connection point P22 to the third lower die connection point P23. The second convex surface portion 232E and the adjacent concave surface portion 232D have inverted curved surfaces, differing in convex and concave directions, and therefore the second lower die connection point P22 constitutes an inflection point.
 アッパピストン360の先端部362Aは、図5に示すように、ダイコアリング230の第一凸面部232Bと対向する凹面部362Bを有する。アッパピストン360の先端部362Aの凹面部362Bと、ダイコアリング230の第一凸面部232Bとで後述の円形ブランクを挟んで、フランジ部14を形成する。 As shown in FIG. 5, the tip 362A of the upper piston 360 has a concave surface 362B that faces the first convex surface 232B of the die core ring 230. The concave surface 362B of the tip 362A of the upper piston 360 and the first convex surface 232B of the die core ring 230 sandwich a circular blank (described below) between them to form the flange portion 14.
 インナスリーブ350の先端部352Aは、図6に示すように、最も低い箇所(最下点P30)に一方の縁を接続して最下点P30から半径外方向Doに延びておりダイコアリング230の先端部232A側へ凸となる円弧に断面が形成された第一スリーブ凸面部352Bと、この第一スリーブ凸面部352Bの半径外方向Do側の縁に接続して形成されていてダイコアリング230の先端部232A側へ凹となる円弧に断面が形成されたスリーブ凹面部352C(本発明の第三上型曲面部に相当)と、このスリーブ凹面部352Cの半径外方向Do側の縁に接続して形成されていてダイコアリング230の先端部232A側へ凸となる円弧に断面が形成された第二スリーブ凸面部352D(本発明の第二上型曲面部に相当)と、この第二スリーブ凸面部352Dの半径外方向Do側の縁に接続して形成されていて第二スリーブ凸面部352Dの円弧の曲率半径と異なる曲率半径でダイコアリング230の先端部232A側へ凸となる円弧に断面が形成された第三スリーブ凸面部352E(本発明の第一上型曲面部に相当)と、この第三凸面部352Eの半径外方向Do側の縁に接続して形成されていて中心軸Cに対して一定の傾きに形成されて半径外方向Doに行くにつれて拡径するスリーブ傾斜面部352Fと、を備えている。 As shown in FIG. 6, the tip 352A of the inner sleeve 350 is formed with one edge connected to the lowest point (lowest point P30) and extending from the lowest point P30 in the radially outward direction Do, and has a cross section formed in an arc that is convex toward the tip 232A of the die core ring 230. The sleeve concave portion 352C (corresponding to the third upper mold curved surface portion of the present invention) is formed by connecting to the edge of the sleeve concave portion 352C on the radially outward direction Do side and has a cross section formed in an arc that is concave toward the tip 232A of the die core ring 230. The sleeve concave portion 352C is formed by connecting to the edge of the sleeve concave portion 352C on the radially outward direction Do side and has a cross section formed in an arc that is concave toward the tip 232A of the die core ring 230. The second sleeve convex surface portion 352D (corresponding to the second upper mold curved surface portion of the present invention) has a cross section formed in an arc that is convex toward the 232A side, a third sleeve convex surface portion 352E (corresponding to the first upper mold curved surface portion of the present invention) that is connected to the edge of the second sleeve convex surface portion 352D on the radially outward direction Do side and has a cross section formed in an arc that is convex toward the tip portion 232A side of the die core ring 230 with a radius of curvature different from the radius of curvature of the arc of the second sleeve convex surface portion 352D, and a sleeve inclined surface portion 352F that is connected to the edge of the third convex surface portion 352E on the radially outward direction Do side and is formed at a constant inclination with respect to the central axis C, and expands in diameter as it moves in the radially outward direction Do.
 第一スリーブ凸面部352Bとスリーブ凹面部352Cとがつながる接続箇所(第一上型接続点P31)は最下点P30よりも半径外方向Doにずれて配置されていると共に、第一方向D1にずれて配置されている。第一スリーブ凸面部352Bは、最下点P30から第一上型接続点P31へ向けて漸次中心軸Cからの半径が大きく(拡径)する曲面を呈する。 The connection point (first upper die connection point P31) where the first sleeve convex surface portion 352B and the sleeve concave surface portion 352C are connected is positioned offset in the radially outward direction Do from the lowest point P30, and is also positioned offset in the first direction D1. The first sleeve convex surface portion 352B presents a curved surface whose radius from the central axis C gradually increases (widens) from the lowest point P30 toward the first upper die connection point P31.
 第二スリーブ凸面部352Dとスリーブ凹面部352Cとがつながる接続箇所(第二上型接続点P32)は第一上型接続点P31よりも半径外方向Doにずれて配置されていると共に、第一方向D1にずれて配置されている。スリーブ凹面部352Cは、第一上型接続点P31から第二上型接続点P32へ向けて漸次中心軸Cからの半径が大きく(拡径)する曲面を呈する。スリーブ凹面部352Cとこれに隣接する第一スリーブ凸面部352Bとは曲面の向きが凹と凸とで異なるため、第一上型接続点P31は変曲点を構成する。 The connection point (second upper die connection point P32) where the second sleeve convex surface portion 352D and the sleeve concave surface portion 352C are connected is positioned offset in the radially outward direction Do from the first upper die connection point P31, and is also positioned offset in the first direction D1. The sleeve concave surface portion 352C presents a curved surface whose radius from the central axis C gradually increases (expands in diameter) from the first upper die connection point P31 to the second upper die connection point P32. Since the orientation of the curved surface of the sleeve concave surface portion 352C and the adjacent first sleeve convex surface portion 352B differs between concave and convex, the first upper die connection point P31 constitutes an inflection point.
 第三スリーブ凸面部352Eと第二スリーブ凸面部352Dとがつながる接続箇所(第三上型接続点P33)は第二上型接続点P32よりも半径外方向Doにずれて配置されていると共に、第一方向D1にずれて配置されている。第二スリーブ凸面部352Dは、第二上型接続点P32から第三上型接続点P33へ向けて漸次中心軸Cからの半径が大きくなる(拡径する)曲面を呈する。第二スリーブ凸面部352Dとこれに隣接するスリーブ凹面部352Cとは曲面の向きが凸と凹とで異なるため、第二上型接続点P32は変曲点を構成する。 The connection point (third upper die connection point P33) where the third sleeve convex surface portion 352E and the second sleeve convex surface portion 352D are connected is positioned offset in the radially outward direction Do from the second upper die connection point P32, and is also positioned offset in the first direction D1. The second sleeve convex surface portion 352D presents a curved surface whose radius from the central axis C gradually increases (widens in diameter) from the second upper die connection point P32 to the third upper die connection point P33. Since the second sleeve convex surface portion 352D and the adjacent sleeve concave surface portion 352C have different curved directions, convex and concave, the second upper die connection point P32 constitutes an inflection point.
 スリーブ傾斜面部352Fと第三スリーブ凸面部352Eとがつながる接続箇所(第四上型接続点P34)は第三上型接続点P33よりも半径外方向Doにずれて配置されていると共に、第一方向D1にずれて配置されている。第三スリーブ凸面部352Eは、第三上型接続点P33から第四上型接続点P34へ向けて漸次中心軸Cからの半径が大きくなる(拡径する)曲面を呈する。 The connection point (fourth upper die connection point P34) where the sleeve inclined surface portion 352F and the third sleeve convex surface portion 352E are connected is positioned offset in the radially outward direction Do from the third upper die connection point P33, and is also positioned offset in the first direction D1. The third sleeve convex surface portion 352E presents a curved surface whose radius from the central axis C gradually increases (widens) from the third upper die connection point P33 to the fourth upper die connection point P34.
 成形装置2では、ダイコアリング230の先端部232Aとインナスリーブ350の先端部352Aとで円形ブランク410を所定の圧力で挟んでプレス加工する。インナスリーブ350のピストン本体部351のフランジ部下面351A(第二方向D2側)には所定厚のスペーサ370が取り付けられている。 In the molding device 2, the circular blank 410 is pressed by being sandwiched between the tip 232A of the die core ring 230 and the tip 352A of the inner sleeve 350 at a predetermined pressure. A spacer 370 of a predetermined thickness is attached to the flange portion underside 351A (on the second direction D2 side) of the piston body 351 of the inner sleeve 350.
 深絞り工程の途中でインナスリーブ350がダイコアリング230へ向けて(第二方向D2に)下降したとき、スペーサ370がアッパピストンに接触することによって、ダイコアリング230の先端部232Aに対するインナスリーブ350の先端部352Aの位置が保持され、変曲部17を成形するための金型クリアランスCL1を、ダイコアリング230の先端部232Aとインナスリーブ350と間に構成することができる。 When the inner sleeve 350 descends (in the second direction D2) towards the die core ring 230 during the deep drawing process, the spacer 370 comes into contact with the upper piston, thereby maintaining the position of the tip 352A of the inner sleeve 350 relative to the tip 232A of the die core ring 230, and a mold clearance CL1 for forming the inflection portion 17 can be formed between the tip 232A of the die core ring 230 and the inner sleeve 350.
 図5、図6,図12及び図13に示すように、成形装置2では、インナスリーブ350の先端部352Aがダイコアリング230の先端部232Aに最も近づいて、ダイコアリング230の先端部232Aとインナスリーブ350の先端部352Aとの間に金型クリアランスCL1が設定される。金型クリアランスCL1は、インナスリーブ350の第三上型接続点P33から第一上型接続点P31までにおいて、素板400の厚さよりも大きく設定されている。 As shown in Figures 5, 6, 12 and 13, in the molding device 2, the tip 352A of the inner sleeve 350 is closest to the tip 232A of the die core ring 230, and a mold clearance CL1 is set between the tip 232A of the die core ring 230 and the tip 352A of the inner sleeve 350. The mold clearance CL1 is set to be larger than the thickness of the blank 400 from the third upper die connection point P33 to the first upper die connection point P31 of the inner sleeve 350.
 スペーサ370が無い場合、円形ブランク410はインナスリーブ350とダイコアリング230とによって一定の圧力で挟み込まれた状態で深絞りされるため、第八接続点p8から第六接続点p6を含む変曲部の板厚は減少する。また、板厚の減少によってこの変曲部における金型クリアランスは小さくなる。 If the spacer 370 is not present, the circular blank 410 is deep drawn while being sandwiched between the inner sleeve 350 and the die core ring 230 at a constant pressure, and the plate thickness of the inflection portion including the eighth connection point p8 to the sixth connection point p6 is reduced. In addition, the reduction in plate thickness reduces the die clearance at this inflection portion.
 以下、金型クリアランスCL1について説明する。 The mold clearance CL1 is explained below.
 図6にダイコアリング230の先端部232Aの表面を示す。凹面部232Dは、中心C212から一定の半径r212の円弧で形成されている。第二凸面部232Eは、中心C223から一定の半径r223の円弧で形成されている。 Figure 6 shows the surface of the tip 232A of the die core ring 230. The concave surface 232D is formed from a circular arc of a constant radius r212 from the center C212. The second convex surface 232E is formed from a circular arc of a constant radius r223 from the center C223.
 インナスリーブ350がダイコアリング230に最も近づいた状態では、ダイコアリング230の先端部232Aの凹面部232Dと、インナスリーブ350の先端部352A第二スリーブ凸面部352Dと第三スリーブ凸面部352Eとが対向する。 When the inner sleeve 350 is closest to the die core ring 230, the concave surface 232D of the tip 232A of the die core ring 230 faces the second sleeve convex surface 352D and the third sleeve convex surface 352E of the tip 352A of the inner sleeve 350.
 ここで、第三スリーブ凸面部352Eは、ダイコアリング230の凹面部232Dの中心C212と同一点を中心とする円弧であり、この円弧の半径r334はダイコアリング230の凹面部232Dの半径r212よりも短い。これにより、相互に最も近づいた状態のインナスリーブ350の第三スリーブ凸面部352Eとダイコアリング230の凹面部232Dとの間隔は一定となる。 Here, the third sleeve convex portion 352E is an arc centered at the same point as the center C212 of the concave portion 232D of the die core ring 230, and the radius r334 of this arc is shorter than the radius r212 of the concave portion 232D of the die core ring 230. As a result, the distance between the third sleeve convex portion 352E of the inner sleeve 350 and the concave portion 232D of the die core ring 230 when they are closest to each other is constant.
 第二スリーブ凸面部352Dの円弧の中心C323は、ダイコアリング230の凹面部232Dの円弧の中心C212よりも半径外方向Doにずれて配置されていると共に、第二方向D2にもずれて配置されている。また、第二スリーブ凸面部352Dの円弧の半径r323は、ダイコアリング230の凹面部232Dの円弧の半径r212や第三スリーブ凸面部352Eの円弧の半径r334よりも短く設定されている。 The center C323 of the arc of the second sleeve convex surface portion 352D is shifted radially outwardly Do from the center C212 of the arc of the concave surface portion 232D of the die core ring 230, and is also shifted in the second direction D2. In addition, the radius r323 of the arc of the second sleeve convex surface portion 352D is set shorter than the radius r212 of the arc of the concave surface portion 232D of the die core ring 230 and the radius r334 of the arc of the third sleeve convex surface portion 352E.
 断面において、第二スリーブ凸面部352Dの第二上型接続点P32と第三上型接続点P33との間に配置される各点において接する第一接線T1を想定し、第三スリーブ凸面部352Dの第三上型接続点P33と第四上型接続点P34との間に配置される各点において接する第二接線T2を想定すると、第一接線T1と水平線HLとが成す角度θ1は、第二接線T2と水平線HLとが成す角度θ2よりも小さく(θ1<θ2)設定されている(第三上型接続点P33に接する接線を除く)。 Assuming a first tangent T1 that touches each point located between the second upper die connection point P32 and the third upper die connection point P33 of the second sleeve convex surface portion 352D in the cross section, and a second tangent T2 that touches each point located between the third upper die connection point P33 and the fourth upper die connection point P34 of the third sleeve convex surface portion 352D, the angle θ1 between the first tangent T1 and the horizontal line HL is set to be smaller than the angle θ2 between the second tangent T2 and the horizontal line HL (θ1 < θ2) (excluding the tangent that touches the third upper die connection point P33).
 これにより、インナスリーブ350の第二スリーブ凸面部352Dとダイコアリング230の凹面部232Dとの間隔を、中心C212から延びた仮想線に沿った寸法で捉えると、インナスリーブ350の第三上型接続点P33から第二上型接続点P32へ行くにつれて広くなるように形成されている。 As a result, when the distance between the second sleeve convex portion 352D of the inner sleeve 350 and the concave portion 232D of the die core ring 230 is measured along an imaginary line extending from the center C212, it is formed so that it becomes wider from the third upper die connection point P33 of the inner sleeve 350 to the second upper die connection point P32.
 スリーブ凹面部352Cの円弧の中心C312は、ダイコアリング230の第二凸面部232Eの円弧の中心C223よりも半径内方向Diにずれて配置されていると共に、第一方向D1にもずれて配置されている。また、スリーブ凹面部352Cの円弧の半径r312は、ダイコアリング230の第二凸面部232Eの円弧の半径r223よりも長く設定されている。 The center C312 of the arc of the sleeve concave portion 352C is shifted in the radially inward direction Di from the center C223 of the arc of the second convex portion 232E of the die core ring 230, and is also shifted in the first direction D1. In addition, the radius r312 of the arc of the sleeve concave portion 352C is set to be longer than the radius r223 of the arc of the second convex portion 232E of the die core ring 230.
 ここで、いずれも変曲点としての、第2下型接続点P22と第二上型接続点P32とは、図に一点鎖線で示す中心C212と中心C223とを結ぶ仮想線LX2上に配置されている。 Here, the second lower die connection point P22 and the second upper die connection point P32, both of which are inflection points, are located on the imaginary line LX2 connecting the centers C212 and C223 shown by the dashed dotted line in the figure.
 スリーブ凹面部352Cとダイコアリング230の第二凸面部232Eとの間隔を、中心C223から延びた仮想線に沿った寸法で捉えると、インナスリーブ350の第二上型接続点P32から第一上型接続点P31へ行くにつれて広くなるように形成されている。 When the distance between the sleeve concave portion 352C and the second convex portion 232E of the die core ring 230 is measured along an imaginary line extending from the center C223, it is formed so that it becomes wider from the second upper die connection point P32 of the inner sleeve 350 to the first upper die connection point P31.
 このように金型クリアランスCL1は、インナスリーブ350の第三上型接続点P33から第一上型接続点P31へ行くにつれて広く形成されている。第三上型接続点P33におけるクリアランスの寸法をCL33とし、第二上型接続点P32におけるクリアランスの寸法をCL32とし、第一上型接続点P31におけるクリアランスの寸法をCL31とすると、CL33<CL32<CL31の関係が成立する。 In this way, the mold clearance CL1 is formed to become wider from the third upper mold connection point P33 to the first upper mold connection point P31 of the inner sleeve 350. If the clearance dimension at the third upper mold connection point P33 is CL33, the clearance dimension at the second upper mold connection point P32 is CL32, and the clearance dimension at the first upper mold connection point P31 is CL31, then the relationship CL33 < CL32 < CL31 holds.
 CL33は中心C212から第三上型接続点P33を通ってダイコアリング230内まで延びる仮想線に沿った寸法である。CL32は中心C212或いは中心223から延びていて第二上型接続点P32及び第二下型接続点P22を通る仮想線に沿った寸法である。CL31は中心223から第一上型接続点P31を通ってインナスリーブ350内まで延びる仮想線に沿った寸法である。 CL33 is the dimension along an imaginary line extending from the center C212 through the third upper die connection point P33 into the die core ring 230. CL32 is the dimension along an imaginary line extending from the center C212 or center 223 and passing through the second upper die connection point P32 and the second lower die connection point P22. CL31 is the dimension along an imaginary line extending from the center 223 through the first upper die connection point P31 into the inner sleeve 350.
 なお、インナスリーブ350の第三上型接続点P33から第一上型接続点P31までにおける金型クリアランスCL1は、素板400の厚さよりも大きく設定されている。 The die clearance CL1 from the third upper die connection point P33 to the first upper die connection point P31 of the inner sleeve 350 is set to be larger than the thickness of the blank 400.
(缶蓋シェル10の製造方法)
 図7に示すように、成形装置2による缶蓋シェル10の製造方法は、アルミニウム合金製の素板から円形ブランクを打ち抜くブランキング工程(図8)と、円形ブランクを深絞りして浅底の第一成形体に成形する深絞り工程(図9)と、第一成形体の底側を反対方向に移動させてカウンターシンク部12を形成するリバース工程(図10)と、を備えている。
(Method of manufacturing the can lid shell 10)
As shown in FIG. 7 , the manufacturing method of the can lid shell 10 by the forming device 2 includes a blanking process ( FIG. 8 ) in which a circular blank is punched out from an aluminum alloy raw plate, a deep drawing process ( FIG. 9 ) in which the circular blank is deep drawn to form a shallow-bottomed first formed body, and a reverse process ( FIG. 10 ) in which the bottom side of the first formed body is moved in the opposite direction to form a countersink portion 12.
 図8~10(図8A,8B,図9A,9Bおよび図10A,10B)を用いて各工程を説明する。なお、図8~10では、図4に示す成形装置2の中心軸Cより左側の部分を表している。 The steps will be explained using Figures 8 to 10 (Figures 8A, 8B, 9A, 9B, and 10A, 10B). Note that Figures 8 to 10 show the left side of the central axis C of the molding device 2 shown in Figure 4.
(ブランキング工程)
 先ず、図8Aに示すように上型300が下型200の上方に配置された状態で、下型200の上に素板400を載せる。下型200では、カットエッジ部220とロアピストン260の先端部262Aとが高さを揃えて配置されていて、これらの上端部で素板400を支える。
(Blanking process)
First, as shown in Fig. 8A, with the upper die 300 disposed above the lower die 200, the blank 400 is placed on the lower die 200. In the lower die 200, the cut edge portion 220 and the tip portion 262A of the lower piston 260 are disposed at the same height, and the blank 400 is supported by their upper ends.
 そして、図8Bに示すように、上型300が下降して、ブランクドローダイ320で素板400の一部がカットエッジ部220の内側へ押されて、円形ブランク410の打ち抜きが行われる。打ち抜かれた円形ブランク410は、下型200のロアピストン260の先端部262Aと上型300のブランクドローダイ320の先端部322Aとに周縁部を挟まれて、保持されている。 Then, as shown in FIG. 8B, the upper die 300 descends and the blank draw die 320 presses a portion of the blank 400 toward the inside of the cut edge portion 220 to punch out the circular blank 410. The punched circular blank 410 is held by having its peripheral edge sandwiched between the tip 262A of the lower piston 260 of the lower die 200 and the tip 322A of the blank draw die 320 of the upper die 300.
(深絞り工程)
 深絞り工程では、先ず図9Aに示すように上型300が下降して、ダイコアリング230の先端部232Aとアッパピストン360の先端部362Aとで円形ブランク410を挟む。
(Deep drawing process)
In the deep drawing process, first, as shown in FIG. 9A, the upper die 300 descends and the circular blank 410 is sandwiched between the tip 232A of the die core ring 230 and the tip 362A of the upper piston 360.
 次に、図9Bに示すように上型300をさらに下降させて、ブランクドローダイ320の先端部322Aをカットエッジ部220とダイコアリング230との間に入れ、インナスリーブ350の先端部352Aをダイコアリング230の先端部232Aとの間に金型クリアランスCL1が構成されるまで近づかせ、ダイセンター340の平坦部341をダイコアリング230の内部に入れる。 Next, as shown in FIG. 9B, the upper die 300 is further lowered to place the tip 322A of the blank draw die 320 between the cut edge portion 220 and the die core ring 230, and the tip 352A of the inner sleeve 350 is brought closer to the tip 232A of the die core ring 230 until a die clearance CL1 is formed between them, and the flat portion 341 of the die center 340 is placed inside the die core ring 230.
 すなわち、ダイセンター340の平坦部341とパネルパンチ250のパンチ平坦部251とで円形ブランクの中央部分を挟んで第二方向に移動することで、深絞りが行われる。図9Bは、上型300が下死点にある状態であり、深絞り工程によって成形した第一成形体420を示している。 In other words, deep drawing is performed by sandwiching the central portion of the circular blank between the flat portion 341 of the die center 340 and the punch flat portion 251 of the panel punch 250 and moving them in the second direction. Figure 9B shows the first formed body 420 formed by the deep drawing process with the upper die 300 at the bottom dead center.
 第一成形体420は、図11に示すように、下型200のパネルパンチ250と上型300のダイセンター340とに挟まれた底部分(平坦部)421と、この底部分421よりも第一方向D1にずれて配置されていると共に半径外方向Doへも位置をずらして配置されておりダイコアリング230とアッパピストン360とに挟まれている挟持部(フランジ部)422と、インナスリーブ350の先端部352Aとダイコアリング230の先端部232Aとの金型クリアランスCL1に配置された第一変曲部423と、を備えている。 As shown in FIG. 11, the first molded body 420 has a bottom portion (flat portion) 421 sandwiched between the panel punch 250 of the lower mold 200 and the die center 340 of the upper mold 300, a clamping portion (flange portion) 422 that is shifted from the bottom portion 421 in the first direction D1 and also shifted in the radially outward direction Do and is sandwiched between the die core ring 230 and the upper piston 360, and a first inflection portion 423 that is positioned in the mold clearance CL1 between the tip portion 352A of the inner sleeve 350 and the tip portion 232A of the die core ring 230.
 第一変曲部423は、曲面の向きが第一成形体420の内部空間SP4へ向けて凸となる曲面に断面が形成された凸面部423Aと、この凸面部423Aより挟持部422側へ位置をずらして設けられていて内部空間SP4へ向けて凹となる曲面に断面が形成された凹面部423Bと、がつながって構成されている。以下の説明では、円形ブランク410が変形して第一成形体420に至るまでの中間の形態を中間成形体と称す。 The first bend portion 423 is configured by connecting a convex portion 423A, the cross section of which is formed into a curved surface whose direction of curvature is convex toward the internal space SP4 of the first molded body 420, and a concave portion 423B, which is positioned toward the clamping portion 422 from the convex portion 423A and has a cross section formed into a curved surface that is concave toward the internal space SP4. In the following explanation, the intermediate form in which the circular blank 410 is deformed to become the first molded body 420 is referred to as the intermediate molded body.
(リバース工程)
 図10Aに示すように、下型200のパネルパンチ250と上型300とを上昇させる。下型200のパネルパンチ250と上型300が上昇する過程では、インナスリーブ350の先端部352Aとダイコアリング230の先端部232Aとの間の金型クリアランスCL1が保持される。
(Reverse process)
10A, the panel punch 250 of the lower die 200 and the upper die 300 are raised. During the process in which the panel punch 250 of the lower die 200 and the upper die 300 are raised, the die clearance CL1 between the tip portion 352A of the inner sleeve 350 and the tip portion 232A of the die core ring 230 is maintained.
 下型200のパネルパンチ250と上型300の上昇に伴って、図12に示すように、パネルパンチ250とダイセンター340とに挟まれた第一成形体420の底部分421よりも外にはみ出ている部分が折り返して下方に凸となる断面U字型の湾曲部424が形成される。 As the panel punch 250 of the lower die 200 and the upper die 300 rise, the portion of the first molded body 420 sandwiched between the panel punch 250 and the die center 340 that protrudes beyond the bottom portion 421 is folded back to form a curved portion 424 with a U-shaped cross section that is convex downward, as shown in FIG. 12.
 湾曲部424は、図12に示すように、インナスリーブ350の先端部352Aとダイコアリング230の先端部232Aとの間の金型クリアランスCL1には、これらによって第一成形体420の第一変曲部423が挟まれて配置されている。 As shown in FIG. 12, the curved portion 424 is disposed in the mold clearance CL1 between the tip 352A of the inner sleeve 350 and the tip 232A of the die core ring 230, with the first bend portion 423 of the first molded body 420 sandwiched between them.
 この金型クリアランスCL1では、第一成形体420の第一変曲部423で埋められていない微小の隙間(空間)CL0が、例えば第一変曲部423とインナスリーブ350のスリーブ凹面部352Cや第二スリーブ凸面部352Dとの間に、残っている。深絞り工程を終了した段階で、微小の隙間(空間)CL0が構成される。 In this die clearance CL1, a minute gap (space) CL0 that is not filled by the first inflection portion 423 of the first molded body 420 remains, for example, between the first inflection portion 423 and the sleeve concave portion 352C or the second sleeve convex portion 352D of the inner sleeve 350. The minute gap (space) CL0 is formed at the stage where the deep drawing process is completed.
 湾曲部424は、パネルパンチ250の上昇に従って深さ寸法hが漸次大きくなり、所定の深さになると、図10Bおよび図13に示すように、パネルパンチ250のパンチ平坦部251のまわりに設けられたパンチ段差部252の受面252Aに当たる。受面252Aに当たった後、湾曲部424は受面252Aに押されて第一方向D1へ移動(上昇)する。 The depth dimension h of the curved portion 424 gradually increases as the panel punch 250 rises, and when it reaches a predetermined depth, it comes into contact with the receiving surface 252A of the punch step portion 252 provided around the punch flat portion 251 of the panel punch 250, as shown in Figures 10B and 13. After coming into contact with the receiving surface 252A, the curved portion 424 is pushed by the receiving surface 252A and moves (rises) in the first direction D1.
 リバース工程では、湾曲部424をパネルパンチ250の受面252Aで押し上げて、図13に示すように、加工を施している第一成形体420の一部を変形させて微小の隙間(空間)CL0を埋める。これにより第一変曲部423が増厚されて第二変曲部425(変曲部17)に形成される。 In the reverse process, the curved portion 424 is pushed up by the receiving surface 252A of the panel punch 250, and as shown in FIG. 13, a part of the first molded body 420 being processed is deformed to fill the minute gap (space) CL0. This causes the first inflection portion 423 to thicken and become the second inflection portion 425 (inflection portion 17).
 このように、第一成形体420の一部で微小の隙間(空間)CL0を埋めるまで、パネルパンチ250を所定の位置(高さ)まで第一方向D1に移動(上昇)させると、リバース工程が終了する。この終了段階の湾曲部424がカウンターシンク部12を構成し、成形された第二変曲部425が変曲部17を構成する。 In this way, the panel punch 250 is moved (raised) in the first direction D1 to a predetermined position (height) until a portion of the first molded body 420 fills the minute gap (space) CL0, and the reverse process ends. The curved portion 424 at this end stage forms the countersink portion 12, and the formed second inflection portion 425 forms the inflection portion 17.
 リバース工程が終了した後、上型300が上昇するとともにダイセンター340の平坦部341は、第一成形体420の底部分421から離れて第一方向D1に移動する。 After the reverse process is completed, the upper die 300 rises and the flat portion 341 of the die center 340 moves away from the bottom portion 421 of the first molded body 420 in the first direction D1.
 続いて、上型300を下型200の上方の位置にさらに移動させて、完成した缶蓋シェル10を取り出す。 Then, the upper die 300 is further moved to a position above the lower die 200, and the completed can lid shell 10 is removed.
 成形された缶蓋シェル10に対して、次工程のライニング工程において、塗布密封性を保つためのラバーが缶蓋シェル10の裏面SF2に塗布される。そして開口用のティアラインの形成や開口操作用のタブの取付などが次工程のコンバージョン工程で行われ、缶蓋が完成する。 In the next lining process, rubber is applied to the back surface SF2 of the formed can lid shell 10 to maintain the coating seal. Then, in the next conversion process, tear lines for opening the can are formed and tabs for opening the can are attached, completing the can lid.
 さらに、有底筒状の缶本体に内容物とガス(COまたはN)を充填した後に、缶蓋の缶蓋シェル10のフランジ部分(フランジ部14とチャックウォール部13の凸型囲繞断面部134)を缶本体のフランジ部に巻締めして缶蓋が取り付けられ、缶製品が完成する。 Furthermore, after filling the bottomed cylindrical can body with the contents and gas ( CO2 or N2 ), the flange portion of the can lid shell 10 of the can lid (the flange portion 14 and the convex surrounding cross-sectional portion 134 of the chuck wall portion 13) is wrapped around the flange portion of the can body to attach the can lid, completing the can product.
 本実施形態の缶蓋シェル10を備えた缶蓋を用いた缶製品では、缶製品の内圧が上昇して、缶蓋のカウンターシンク部12の一部を缶外に膨らませる内圧力が作用したとしても、カウンターシンク部12の周りにある変曲部17が補強して形成されており、カウンターシンク部12の変形を抑えることができる。 In a can product using a can lid equipped with the can lid shell 10 of this embodiment, even if the internal pressure of the can product rises and causes internal pressure to expand part of the countersink portion 12 of the can lid outside the can, the inflection portion 17 around the countersink portion 12 is reinforced and deformation of the countersink portion 12 can be suppressed.
 例えば、図1Bに示す第二溝壁部123の裏面の凹状に開いている角度θ23を変化させる内圧力が作用しても、チャックウォール部13の第一凹型囲繞断面部131からカウンターシンク部12の第三凸型溝断面部123C、第二凸型溝断面部123Bへ向けて漸次厚さが増加して形成されているため、変形を抑えることができる。これによりバックリングを防止することができる。 For example, even if an internal pressure is applied that changes the angle θ23 of the concave opening on the back surface of the second groove wall portion 123 shown in FIG. 1B, deformation can be suppressed because the thickness gradually increases from the first concave surrounding cross-sectional portion 131 of the chuck wall portion 13 to the third convex groove cross-sectional portion 123C and the second convex groove cross-sectional portion 123B of the countersink portion 12. This makes it possible to prevent buckling.
(第二実施形態)
 図14A及び図14Bに示すように、第二実施形態に係る缶蓋シェル10Aは、第一実施形態に係る缶蓋シェル10と比べると、缶蓋シェル10Aの表面SF1に、変曲点の箇所を含めて半径方向に沿って形成された薄肉部(凹部)15を複数備えている。
Second Embodiment
As shown in Figures 14A and 14B, compared to the can lid shell 10 of the first embodiment, the can lid shell 10A of the second embodiment has a plurality of thin-walled portions (recesses) 15 formed along the radial direction, including the inflection points, on the surface SF1 of the can lid shell 10A.
 薄肉部15は、図15,図16及び図17に示すように、窪んだ箇所として構成されている。缶蓋シェル10Aの平面視で、各薄肉部15はパネル部11の中心まわりに等角度の間隔で複数配置されている。さらに各薄肉部15は同じ形状(角丸長方形)に形成されている。また各薄肉部15は平面視で半径外方向Doに沿った寸法Daがこれと直交する幅寸法Dbと比べて長く形成されている。図15では半径外方向Doに沿った線を二点鎖線で表している。 The thin-walled portions 15 are configured as recessed portions as shown in Figures 15, 16, and 17. In a plan view of the can lid shell 10A, the thin-walled portions 15 are arranged at equal angular intervals around the center of the panel portion 11. Furthermore, each thin-walled portion 15 is formed in the same shape (rounded rectangle). In a plan view, each thin-walled portion 15 is formed such that the dimension Da along the radially outward direction Do is longer than the width dimension Db perpendicular to this. In Figure 15, the line along the radially outward direction Do is represented by a two-dot chain line.
 これらの薄肉部15の間にある箇所が、それぞれ薄肉部15よりも厚く形成された厚肉部(凸部)16を構成している。各厚肉部16も平面視で半径外方向Doに沿った寸法がこれと直交する幅寸法よりも長く形成されている。換言すると、中心軸Cに対する周方向に沿う各薄肉部15どうしの間隔は、寸法Daよりも小さい。 The areas between these thin-walled portions 15 constitute thick-walled portions (convex portions) 16 that are formed thicker than the thin-walled portions 15. Each thick-walled portion 16 is also formed so that the dimension along the radially outward direction Do in plan view is longer than the width dimension perpendicular to this. In other words, the distance between each thin-walled portion 15 along the circumferential direction relative to the central axis C is smaller than the dimension Da.
 図15の一点鎖線B11は第五接続点p5で構成される境界線を示し、一点鎖線B12は第六接続点p6で構成される境界線を示し、一点鎖線B13は第七接続点p7(変曲点)で構成される境界線を示し、一点鎖線B14は第八接続点p8で構成される境界線を示している。 In Figure 15, dashed line B11 indicates the boundary line formed by the fifth connection point p5, dashed line B12 indicates the boundary line formed by the sixth connection point p6, dashed line B13 indicates the boundary line formed by the seventh connection point p7 (inflection point), and dashed line B14 indicates the boundary line formed by the eighth connection point p8.
 図15及び図17に示すように、各薄肉部15は、中心側に配置される一方の端部15Aが第六接続点p6よりも第五接続点p5側に配置され、フランジ部14側に配置される他方の端部15Bが第七接続点p7(変曲点)よりも第八接続点p8に配置され、例えば一方の端部15Aが第五接続点p5と第六接続点p6との間に配置され、他方の端部15Bが第七接続点p7と第八接続点p8との間に配置される。 As shown in Figures 15 and 17, one end 15A of each thin-walled portion 15 located toward the center is located closer to the fifth connection point p5 than the sixth connection point p6, and the other end 15B located toward the flange portion 14 is located closer to the eighth connection point p8 than the seventh connection point p7 (inflection point), for example, one end 15A is located between the fifth connection point p5 and the sixth connection point p6, and the other end 15B is located between the seventh connection point p7 and the eighth connection point p8.
 このように、薄肉部15は、増厚部18に形成されており、特に変曲点を成す第七接続点p7から最大厚を構成する位置(第六接続点p6)までの箇所を少なくとも含めて、構成される。 In this way, the thin-walled portion 15 is formed in the thickened portion 18, and is configured to include at least the area from the seventh connection point p7, which is the inflection point, to the position that constitutes the maximum thickness (the sixth connection point p6).
 薄肉部15の間に配置される厚肉部16も、中心側に配置される一方の端部16Aが第六接続点p6よりも第五接続点p5側に配置され、フランジ部14側に配置される他方の端部16Bが第七接続点p7(変曲点)よりも第八接続点p8に配置される。例えば一方の端部16Aが第五接続点p5と第六接続点p6との間に配置され、他方の端部16Bが第七接続点p7と第八接続点p8との間に配置される。つまり、厚肉部16も増厚部18に形成されており、特に変曲点を成す第七接続点p7から最大厚を構成する位置(第六接続点p6)までの箇所を少なくとも含めて、構成される。 The thick-walled portion 16 arranged between the thin-walled portions 15 also has one end 16A arranged toward the center, which is closer to the fifth connection point p5 than the sixth connection point p6, and the other end 16B arranged toward the flange portion 14, which is closer to the eighth connection point p8 than the seventh connection point p7 (inflection point). For example, one end 16A is arranged between the fifth connection point p5 and the sixth connection point p6, and the other end 16B is arranged between the seventh connection point p7 and the eighth connection point p8. In other words, the thick-walled portion 16 is also formed in the thickened portion 18, and is configured to include at least the area from the seventh connection point p7, which is the inflection point, to the position that constitutes the maximum thickness (the sixth connection point p6).
 これにより、厚肉部16では、表面SF1から裏面SF2までの厚さが、端部16Bから第六接続点p6へ行くにつれて増しており、さらに端部16Aから第六接続点p6へ行くにつれても増している。つまり、厚肉部16の厚さは第6接続点p6において最も厚くなっている。 As a result, the thickness of the thick portion 16 from the front surface SF1 to the back surface SF2 increases from the end portion 16B to the sixth connection point p6, and also increases from the end portion 16A to the sixth connection point p6. In other words, the thickness of the thick portion 16 is the thickest at the sixth connection point p6.
 これら薄肉部15と厚肉部16とが缶蓋シェル10Aの周方向に交互に配置された表面SF1は、図16に示すように、凹凸状に形成されている。 The surface SF1, on which these thin-walled portions 15 and thick-walled portions 16 are alternately arranged in the circumferential direction of the can lid shell 10A, is formed in an uneven shape as shown in FIG. 16.
 薄肉部15や厚肉部16の形状は図示例に限らず、図18に示すように平面視で楕円状に形成されてもよい。また図19に示すように、平面視で薄肉部15および厚肉部16の延びる方向は、半径外方向Doに対して所定の角度θ15で交差してもよい。さらに図20に示すように平面視で弧状に延びてもよい。なお、薄肉部15や厚肉部16が延びる方向および半径外方向Doの一例を各図において二点鎖線で表している。 The shapes of the thin and thick portions 15 and 16 are not limited to the illustrated examples, and may be formed in an elliptical shape in plan view as shown in FIG. 18. As shown in FIG. 19, the extending direction of the thin and thick portions 15 and 16 in plan view may intersect with the radially outward direction Do at a predetermined angle θ15. Furthermore, as shown in FIG. 20, they may extend in an arc shape in plan view. An example of the extending direction of the thin and thick portions 15 and 16 and the radially outward direction Do is shown by a two-dot chain line in each figure.
(リフォーム工程)
 第二実施形態の缶蓋シェル10Aは、第一実施形態の缶蓋シェル10に対してリフォーム工程を追加して行うことで製造できる。
(Remodeling process)
The can lid shell 10A of the second embodiment can be manufactured by additionally performing a reforming process on the can lid shell 10 of the first embodiment.
 リフォーム工程を行うためのリフォーム装置40は、図21に示すようにリフォームダイ41と、リフォームパンチ42と、リフォームダイ41とリフォームパンチ42との間に缶蓋シェル10を搬送する搬送部43と、を備えている。リフォームダイ41とリフォームパンチ42とは図示省略のプレス機に備えられている。 The reforming device 40 for carrying out the reforming process includes a reforming die 41, a reforming punch 42, and a conveying section 43 that conveys the can lid shell 10 between the reforming die 41 and the reforming punch 42, as shown in FIG. 21. The reforming die 41 and the reforming punch 42 are provided in a press machine (not shown).
 リフォーム工程では、図21の左半分に示すように、缶蓋シェル10はフランジ部分(フランジ部14等)を搬送部43のベルト43Aの穴43Bの縁に掛けてベルト43Aで支持された状態で、リフォームダイ41の上方の位置に搬送される。缶蓋シェル10が搬送された後に、図21の右半分に示すように、リフォームパンチ42を下降させて、リフォームパンチ42とリフォームダイ41とで缶蓋シェル10Aの増厚部18を挟み込んで、増厚部18を加工する。 In the reforming process, as shown in the left half of Figure 21, the can lid shell 10 is transported to a position above the reforming die 41 with the flange portion (flange portion 14, etc.) hung over the edge of hole 43B of belt 43A of conveying section 43 and supported by belt 43A. After the can lid shell 10 has been transported, as shown in the right half of Figure 21, the reforming punch 42 is lowered and the thickened portion 18 of the can lid shell 10A is sandwiched between the reforming punch 42 and the reforming die 41 to process the thickened portion 18.
 図22に示すように、リフォームパンチ42の缶蓋シェル10Aの増厚部18に当る当接面42Aには、突出した複数の突起部42Bが形成されている。突起部42Bが表面SF1から増厚部18に押し込まれて、薄肉部15が成形される。また、薄肉部15の間に配置されている箇所が厚肉部16として成形される。 As shown in FIG. 22, a plurality of protruding projections 42B are formed on the contact surface 42A of the reform punch 42 that contacts the thickened portion 18 of the can lid shell 10A. The projections 42B are pressed into the thickened portion 18 from the surface SF1 to form the thin-walled portion 15. The area between the thin-walled portions 15 is formed as the thick-walled portion 16.
 リフォームパンチ42の複数の突起部42Bを第三凸型溝断面部123C(増厚部18)に押し込む際に、増厚部18の裏面がリフォームダイ41で支えられ、このリフォームダイ41を下から支えるスプリング44がリフォームパンチ42からの荷重の一部を吸収する。 When the multiple protrusions 42B of the reform punch 42 are pressed into the third convex groove cross-sectional portion 123C (thickened portion 18), the back surface of the thickened portion 18 is supported by the reform die 41, and the spring 44 supporting the reform die 41 from below absorbs part of the load from the reform punch 42.
(作用)
 増厚部18では、各厚肉部16が少なくとも第六接続点p6から第七接続点p7の部分を含めて、第五接続点p5側から第八接続点p8側へ向けて延びて形成されており、増厚部18が内部空間SP1側へ折れ曲がる等の変形を防止する。このように、増厚部18(変曲部17)の機械的強度が一層高められており、缶蓋シェル10Aの耐圧強度が向上する。
(Action)
In the thickened portion 18, each thick portion 16 is formed to extend from the fifth connection point p5 side to the eighth connection point p8 side, including at least the portion from the sixth connection point p6 to the seventh connection point p7, to prevent the thickened portion 18 from being deformed, such as being bent toward the internal space SP1. In this way, the mechanical strength of the thickened portion 18 (inflection portion 17) is further increased, and the pressure resistance of the can lid shell 10A is improved.
 なお、薄肉部15や厚肉部16を増厚部18に形成するための突起部についてはリフォームパンチ42に設ける場合に限らない。リフォームダイ41の缶蓋シェル10Aの増厚部18に当る当接面に設けた複数の突起部を用いて、外空間SP2を臨む裏面SF2に薄肉部15を成す窪みを形成してもよい。この場合も、同様の機械的強度向上の効果が得られる。 Note that the protrusions for forming the thin-walled portion 15 and the thick-walled portion 16 into the thickened portion 18 are not limited to being provided on the reform punch 42. A recess forming the thin-walled portion 15 may be formed on the back surface SF2 facing the external space SP2 using multiple protrusions provided on the contact surface of the reform die 41 that contacts the thickened portion 18 of the can lid shell 10A. In this case as well, a similar effect of improving mechanical strength can be obtained.
(第一変形例の成形装置2A)
 図23に示す第一変形例の成形装置2Aは、第一実施形態の成形装置2と比べると、下型のダイコアリング500が第一実施形態のダイコアリング230と相違している。第一変形例のダイコアリング500の先端部では、インナスリーブ350の先端部と対向する内側部分が、アッパピストン360と対向する外側部分に対して可動に構成されている。第一実施形態の成形装置2と同じ構成には同じ符号を付して、それらの説明は省略する。
(First modified molding device 2A)
A molding apparatus 2A of a first modified example shown in Fig. 23 is different from the molding apparatus 2 of the first embodiment in that a lower die core ring 500 is different from the die core ring 230 of the first embodiment. At the tip of the die core ring 500 of the first modified example, an inner part facing the tip of the inner sleeve 350 is configured to be movable relative to an outer part facing the upper piston 360. The same components as those of the molding apparatus 2 of the first embodiment are denoted by the same reference numerals, and their description will be omitted.
 図24に示すように、下型のダイコアリング500は、筒状の第一固定部(固定部)510及び第二固定部(固定部)520と、第二固定部520に保持されたスプリング(付勢部材)530と、第二固定部520の内側に設けられ更にスプリング530に下端を支えられて中心軸Cに沿って移動自在に設けられた筒状の可動部540と、を備えている。 As shown in FIG. 24, the lower die core ring 500 includes a cylindrical first fixed portion (fixed portion) 510 and a second fixed portion (fixed portion) 520, a spring (biasing member) 530 held by the second fixed portion 520, and a cylindrical movable portion 540 provided inside the second fixed portion 520 and supported at its lower end by the spring 530 so as to be movable along the central axis C.
 第一固定部510は、ロアリテーナ210に固定される基端部511と、半径方向に沿った厚みが基端部511の半径方向に沿った厚みよりも薄く形成されていて基端部511から延びたスプリング支持部512と、を備えている。第一固定部510の基端部511は、スプリング支持部512の外周面よりも半径外方向Doに突き出ていて、半径外方向Doに沿った載置面511Aを有する。スプリング支持部512は、スプリング530の一部を収容する凹部512Aを先端側に有する。この凹部512Aは基端側とは反対方向(第一方向D1)に口を開いている。 The first fixing part 510 comprises a base end 511 fixed to the lower retainer 210, and a spring support part 512 extending from the base end 511 and having a radial thickness thinner than the radial thickness of the base end 511. The base end 511 of the first fixing part 510 protrudes in the radially outward direction Do beyond the outer circumferential surface of the spring support part 512, and has a mounting surface 511A along the radially outward direction Do. The spring support part 512 has a recess 512A on the tip side that accommodates a part of the spring 530. This recess 512A opens in the opposite direction (first direction D1) from the base end side.
 第二固定部520は、図24および図25に示すように、第一固定部510の基端部511の載置面511Aに載せられて第一固定部510に固定された基端部521と、半径方向に沿った厚さが基端部521の半径方向に沿った厚みよりも薄く形成されていて基端部521から延びていてアッパピストン360と対向する先端部522Aを有するアッパピストン対向部522と、を備えている。 As shown in Figures 24 and 25, the second fixed part 520 includes a base end 521 that is placed on the support surface 511A of the base end 511 of the first fixed part 510 and fixed to the first fixed part 510, and an upper piston opposing part 522 that is formed so that its radial thickness is thinner than the radial thickness of the base end 521, extends from the base end 521, and has a tip end 522A that faces the upper piston 360.
 アッパピストン対向部522は、筒状に形成されていて、内周面を可動部540が擦動し、外周面をロアピストン260が擦動する。アッパピストン対向部522の先端部522Aは、第一実施形態の成形装置2におけるダイコアリング230の第一凸面部232Bと同じ形状部分を有する。 The upper piston opposing portion 522 is formed in a cylindrical shape, with the movable portion 540 rubbing against its inner circumferential surface and the lower piston 260 rubbing against its outer circumferential surface. The tip portion 522A of the upper piston opposing portion 522 has a portion having the same shape as the first convex surface portion 232B of the die core ring 230 in the molding device 2 of the first embodiment.
(スプリング530)
 スプリング530は、第一固定部510と同軸に設けられていて、軸心(中心軸C)に沿って伸縮する。
(Spring 530)
The spring 530 is provided coaxially with the first fixed portion 510, and expands and contracts along the axis (central axis C).
 スプリング530は、可動部540を載せた状態で、下部がスプリング支持部512の凹部512Aに収まり、残りの先端部分が凹部512Aの外に配置される。 When the movable part 540 is placed on the spring 530, the lower part fits into the recess 512A of the spring support part 512, and the remaining tip part is positioned outside the recess 512A.
(可動部540)
 可動部540は、リング状に形成されている。可動部540は、スプリング530の先端部分に支えられる基端部541と、基端部541よりも半径方向に沿った厚みが薄く基端部541から筒状に延びてインナスリーブ350と対向するインナスリーブ対向部542と、を備えている。
(Movable part 540)
The movable part 540 is formed in a ring shape and includes a base end 541 supported by the tip portion of the spring 530, and an inner sleeve facing part 542 that is thinner in the radial direction than the base end 541, extends in a cylindrical shape from the base end 541, and faces the inner sleeve 350.
 インナスリーブ対向部542の先端部542Aは、第一実施形態の成形装置2におけるダイコアリング230の第二凸面部232E(本発明の下型曲面部に相当)と同じ形状部分を備えている。 The tip 542A of the inner sleeve facing portion 542 has a portion with the same shape as the second convex surface portion 232E (corresponding to the lower mold curved surface portion of the present invention) of the die core ring 230 in the molding device 2 of the first embodiment.
 可動部540は、その外周面を第二固定部520のアッパピストン対向部522の内周面に当てて、さらにインナスリーブ対向部542の内周面をパネルパンチ250の外周面に当てて、中心軸Cに沿って移動する。 The movable part 540 moves along the central axis C with its outer circumferential surface abutting against the inner circumferential surface of the upper piston facing part 522 of the second fixed part 520, and further with the inner circumferential surface of the inner sleeve facing part 542 abutting against the outer circumferential surface of the panel punch 250.
 図25に示すように、可動部540は、スプリング530で押されて、外側に形成された可動側段差部543を第二固定部520のアッパピストン対向部522の内周面に形成された固定側段差部523に当てて、アッパピストン対向部522の先端部522Aに近接した位置に保持される。 As shown in FIG. 25, the movable part 540 is pushed by the spring 530, and the movable side step 543 formed on the outside abuts against the fixed side step 523 formed on the inner circumferential surface of the upper piston opposing part 522 of the second fixed part 520, and is held in a position close to the tip 522A of the upper piston opposing part 522.
 可動部540の外側は、下端に隣接して低い位置に配置される第一外周面540Aと、これよりも高い位置に配置される第二外周面540Bとを有する。第一外周面540Aの半径は第二外周面540Bよりも半径が大きい。これら第一外周面540Aおよび第二外周面542Aが可動側段差面540Cを介してつながって可動側段差部543を構成している。 The outside of the movable part 540 has a first outer peripheral surface 540A located at a low position adjacent to the lower end, and a second outer peripheral surface 540B located at a higher position. The radius of the first outer peripheral surface 540A is larger than that of the second outer peripheral surface 540B. The first outer peripheral surface 540A and the second outer peripheral surface 542A are connected via the movable side step surface 540C to form the movable side step part 543.
 第二固定部520のアッパピストン対向部522の固定側段差部523は、可動部540の第一外周面540Aに当る第一内周面522Bと、可動部540の第二外周面540Bに当る第二内周面522Cとが、固定側段差面522Dを介してつながって構成されている。 The fixed side step portion 523 of the upper piston facing portion 522 of the second fixed portion 520 is configured by connecting a first inner peripheral surface 522B that abuts against a first outer peripheral surface 540A of the movable portion 540 and a second inner peripheral surface 522C that abuts against a second outer peripheral surface 540B of the movable portion 540 via a fixed side step surface 522D.
 可動部540がスプリング530で押されて可動側段差部543が固定側段差部523に当って、可動部540がその移動範囲の中で最も高い位置に配置されている状態では、図26に示すように、インナスリーブ対向部542の先端部542Aの第二凸面部232Eがアッパピストン対向部522の先端部522Aの第一凸面部232Bよりも、半径内方向Diにずれて配置されていると共に第二方向D2にもずれて配置されている。 When the movable part 540 is pushed by the spring 530, the movable side step 543 abuts against the fixed side step 523, and the movable part 540 is positioned at the highest position within its range of movement, as shown in FIG. 26, the second convex surface 232E of the tip 542A of the inner sleeve opposing part 542 is shifted in the radially inward direction Di from the first convex surface 232B of the tip 522A of the upper piston opposing part 522, and is also shifted in the second direction D2.
 また、可動部540が最も高い位置に配置されている状態で、インナスリーブ対向部542の先端部542Aがインナスリーブ350の先端部352Aの近くに配置されており、変曲部17を成形するための金型クリアランスCL2が設定される。 In addition, when the movable part 540 is positioned at the highest position, the tip 542A of the inner sleeve facing part 542 is positioned near the tip 352A of the inner sleeve 350, and the mold clearance CL2 is set to mold the inflection part 17.
 この第一変形例の成形装置2Aの金型クリアランスCL2は、第一実施形態の成形装置2の金型クリアランスCL1と比べると、変曲部17の第三凸型溝断面部123Cを成形するように設定されていて、インナスリーブ350の第一上型接続点p31から第二上型接続点p32までの小さい範囲に構成される。この範囲では、可動部540の第二凸面部232Eの円弧の中心C223から延びる仮想の直線に沿った間隔が、第二上型接続点p32から第一上型接続点p31へ行くにつれて広くなる。 Compared to the mold clearance CL1 of the molding device 2 of the first embodiment, the mold clearance CL2 of the molding device 2A of this first modified example is set to mold the third convex groove cross-sectional portion 123C of the inflection portion 17, and is configured in a small range from the first upper mold connection point p31 to the second upper mold connection point p32 of the inner sleeve 350. In this range, the distance along the imaginary straight line extending from the center C223 of the arc of the second convex surface portion 232E of the movable part 540 becomes wider from the second upper mold connection point p32 to the first upper mold connection point p31.
 可動部540の先端部542Aの第二凸面部232Eが成す円弧は、上端が中心C223の上方(鉛直線上)の位置P220に設定されており、第三下型接続点P23から第二下型接続点P22を経て上端の位置P220まで形成されている。 The arc formed by the second convex surface portion 232E of the tip portion 542A of the movable portion 540 has its upper end set at position P220 above the center C223 (on a vertical line), and is formed from the third lower die connection point P23 through the second lower die connection point P22 to the upper end position P220.
 また、可動部540の先端部542Aにおいて、第二凸面部232Eがなす円弧の上端の位置P220から半径外方向Doに延びた箇所は、中間成形体に非接触な面として配置されている。アッパピストン対向部522の先端部522Aは、第一凸面部232Bの中心軸C側の下端P24から第二方向D2に延びており中間成形体に非接触の非接触内周面522Eを備えている。 In addition, the tip 542A of the movable part 540, which extends from the position P220 of the upper end of the arc formed by the second convex surface part 232E in the radially outward direction Do, is arranged as a surface that does not contact the intermediate molded body. The tip 522A of the upper piston opposing part 522 extends in the second direction D2 from the lower end P24 on the central axis C side of the first convex surface part 232B, and has a non-contact inner circumferential surface 522E that does not contact the intermediate molded body.
(缶蓋シェル10の製造方法)
 缶蓋シェル10の製造方法は、前記の実施形態と同様に、アルミニウム合金製の素板から円形ブランク410を打ち抜くブランキング工程と、円形ブランク410を深絞りして浅底の第一成形体420に成形する深絞り工程と、第一成形体420の底を上方(第一方向D1)に移動させてカウンターシンク部を形成するリバース工程と、を備えている。
(Method of manufacturing the can lid shell 10)
As in the above embodiment, the manufacturing method for the can lid shell 10 includes a blanking process in which a circular blank 410 is punched out from an aluminum alloy base plate, a deep drawing process in which the circular blank 410 is deep drawn to form a shallow-bottomed first formed body 420, and a reverse process in which the bottom of the first formed body 420 is moved upward (in the first direction D1) to form a countersink portion.
 以下、深絞り工程と、リバース工程とについて説明する。 The deep drawing process and reverse process are explained below.
(深絞り工程)
 深絞り工程では、先ず、図27Aに示すように、インナスリーブ350の先端部352Aをダイコアリング500の可動部540の先端部542Aに近接する位置まで下降させて、円形ブランク410の一部をダイコアリング500のアッパピストン対向部522の内側に押し込む。その後、パネルパンチ250とダイセンター340とで円形ブランク410を挟んで第二方向D2に移動して、深絞りが行われる。
(Deep drawing process)
27A , in the deep drawing process, the tip 352A of the inner sleeve 350 is first lowered to a position close to the tip 542A of the movable part 540 of the die core ring 500, and a part of the circular blank 410 is pressed into the inside of the upper piston facing part 522 of the die core ring 500. Thereafter, the panel punch 250 and the die center 340 sandwich the circular blank 410 and move in the second direction D2, and deep drawing is performed.
 深絞りが進行する過程で、インナスリーブ350に取り付けたスペーサ370がアッパピストン360に接触することによって、インナスリーブ350がアッパピストン360に対して独立して下降することが抑えられる。 As the deep drawing process progresses, the spacer 370 attached to the inner sleeve 350 comes into contact with the upper piston 360, preventing the inner sleeve 350 from descending independently of the upper piston 360.
 パネルパンチ250とダイセンター340とで挟む円形ブランク410の中央部分がアッパピストン360の下端より低くなると、パネルパンチ250とダイセンター340との間からはみ出した中間成形体410Aの一部が可動部540を押して、可動部540がスプリング530側へ後退(下降)する。 When the central portion of the circular blank 410 sandwiched between the panel punch 250 and the die center 340 becomes lower than the lower end of the upper piston 360, a part of the intermediate formed body 410A that protrudes from between the panel punch 250 and the die center 340 pushes the movable part 540, causing the movable part 540 to retreat (descend) toward the spring 530.
 中間成形体410Aが可動部540に当った後、可動部540の先端部542Aとインナスリーブ350の先端部352Aとの間隔は、プレス機によって上型300が下死点に至るまで漸次広くなる。 After the intermediate molded body 410A hits the movable part 540, the distance between the tip 542A of the movable part 540 and the tip 352A of the inner sleeve 350 gradually increases until the upper die 300 reaches the bottom dead center by the press machine.
 図27Bは深絞りが終了し、上型300が下死点にあり、第一成形体420を成形した状態を示している。このとき、可動部540の可動側段差面540Cの第二固定部520の固定側段差面522Dからの間隔(図25参照)が最大となり、例えば0.25mmである。 Figure 27B shows the state after deep drawing is completed, the upper die 300 is at bottom dead center, and the first molded body 420 has been molded. At this time, the distance (see Figure 25) between the movable side step surface 540C of the movable part 540 and the fixed side step surface 522D of the second fixed part 520 is at its maximum, for example 0.25 mm.
(リバース工程)
 リバース工程では、パネルパンチ250とダイセンター340とに挟まれている第一成形体420の底部分421を下型200のパネルパンチ250及びパネルパンチピストン240で、深絞り方向(第二方向D2)とは逆の方向(第一方向D1)に移動させる。この底部分421の移動に伴って、パネルパンチ250とダイセンター340との間からはみ出ている第一成形体420の一部が折り返されて下方に凸となる断面U字型の湾曲部424が形成される(図12および図13参照)。
(Reverse process)
In the reverse process, the bottom portion 421 of the first compact 420 sandwiched between the panel punch 250 and the die center 340 is moved in the direction (first direction D1) opposite to the deep drawing direction (second direction D2) by the panel punch 250 and the panel punch piston 240 of the lower die 200. As the bottom portion 421 moves, a part of the first compact 420 protruding from between the panel punch 250 and the die center 340 is folded back to form a curved portion 424 having a U-shaped cross section that is convex downward (see FIGS. 12 and 13).
 パネルパンチ250の上昇に従って、この湾曲部424の中心軸Cに沿った内部の深さ寸法hが漸次大きくなる。また、第一成形体420が可動部540を押さえる荷重が低減して可動部540がインナスリーブ350の先端部352Aへ向けて移動することで、可動部540の先端部542Aとインナスリーブ350の先端部352Aとの間隔が漸次狭くなる。 As the panel punch 250 rises, the internal depth dimension h along the central axis C of the curved portion 424 gradually increases. In addition, the load with which the first molded body 420 presses the movable portion 540 decreases, causing the movable portion 540 to move toward the tip 352A of the inner sleeve 350, gradually narrowing the distance between the tip 542A of the movable portion 540 and the tip 352A of the inner sleeve 350.
 図27Cは、リバース工程の途中で、可動側段差面540Cが固定側段差面522Dに当って、可動部540の先端部542Aとインナスリーブ350の先端部352Aとが最も近づいた状態を示している。この状態では、図28の拡大図に示すように、可動部540の先端部542Aとインナスリーブ350の先端部352Aとの間には、変曲部17を成形するための金型クリアランスCL2が構成されている。 Figure 27C shows the state in the middle of the reverse process where the movable side step surface 540C abuts against the fixed side step surface 522D, bringing the tip 542A of the movable part 540 and the tip 352A of the inner sleeve 350 closest to each other. In this state, as shown in the enlarged view of Figure 28, a mold clearance CL2 for molding the inflection portion 17 is formed between the tip 542A of the movable part 540 and the tip 352A of the inner sleeve 350.
 金型クリアランスCL2が構成された時点では、インナスリーブ350の先端部352Aのスリーブ凹面部352C(本発明の上型曲面部に相当)と第一成形体420の第一変曲部423との間には微小の隙間CL0が配置されている。またインナスリーブ350に取り付けたスペーサ370はアッパピストン360に接触した状態にある(図23参照)。 When the die clearance CL2 is formed, a minute gap CL0 is disposed between the sleeve concave portion 352C (corresponding to the upper die curved surface portion of the present invention) of the tip portion 352A of the inner sleeve 350 and the first inflection portion 423 of the first molded body 420. In addition, the spacer 370 attached to the inner sleeve 350 is in contact with the upper piston 360 (see FIG. 23).
 金型クリアランスCL2が構成された状態で、さらにリバース工程が進行すると、湾曲部424をパネルパンチ250の受面252Aで押し上げて、加工を施している第一成形体420の一部を金型クリアランスCL2に押し込む。第一成形体420の一部が変形して微小の隙間(空間)CL0が埋められる。これにより第一変曲部423が増厚されて第二変曲部425に形成されて、リバース工程が終了する(図27D)。 When the reverse process continues with the die clearance CL2 formed, the curved portion 424 is pushed up by the receiving surface 252A of the panel punch 250, and a part of the first formed body 420 being processed is pushed into the die clearance CL2. A part of the first formed body 420 is deformed, and the minute gap (space) CL0 is filled. As a result, the first inflection portion 423 is thickened and formed into the second inflection portion 425, and the reverse process ends (Figure 27D).
 第一変形例の製造方法の深絞り工程では、可動部540が中間成形体410Aによって押し下げられて、可動部540のインナスリーブ対向部542とインナスリーブ350との間隔が広がることで、インナスリーブ対向部542との接触による中間成形体410Aの変形が減少し、深絞り時の板厚減少を抑制することができる。 In the deep drawing process of the manufacturing method of the first variation, the movable part 540 is pressed down by the intermediate formed body 410A, and the gap between the inner sleeve facing part 542 of the movable part 540 and the inner sleeve 350 increases, reducing deformation of the intermediate formed body 410A due to contact with the inner sleeve facing part 542 and suppressing the reduction in plate thickness during deep drawing.
 このように成形された缶蓋シェル10を備えた缶蓋を用いた缶製品では、缶製品の内圧が上昇して、缶蓋のカウンターシンク部12の一部を缶外に膨らませる内圧力が作用したとしても、カウンターシンク部12の周りにある変曲部17が増厚して形成されており、一部のカウンターシンク部12が外へ向けて膨らみ状に変形するバックリングを抑えることができる。 In a can product using a can lid equipped with a can lid shell 10 molded in this manner, even if the internal pressure of the can product rises and causes internal pressure to bulge part of the countersink part 12 of the can lid outward, the inflection part 17 around the countersink part 12 is formed with an increased thickness, so buckling, in which part of the countersink part 12 deforms in an outward bulging shape, can be suppressed.
(第二変形例の成形装置2B)
 図29に示す第二変形例の成形装置2Bは、第一変形例の成形装置2Aと比べると、ダイコアリング500、スプリング530、ロアピストン260に代えて、ダイコアリング1500、スプリング(付勢部材)1530、ロアピストン1260を備えて、深絞り工程を行う中で中間成形体410Aに押されて第一固定部510側に後退した可動部1540を中間成形体410Aによる押さえに抗してインナスリーブ350側へ押し上げるように構成されている。前記の成形装置2,2Aと同じ構成には同じ符号を付して、それらの説明は省略する。
(Second modified molding device 2B)
29, in comparison with the molding apparatus 2A of the first modification, the molding apparatus 2B of the second modification includes a die core ring 1500, a spring (biasing member) 1530, and a lower piston 1260 instead of the die core ring 500, the spring 530, and the lower piston 260, and is configured to push up the movable part 1540, which has been pushed by the intermediate formed body 410A and retreated toward the first fixed part 510 during the deep drawing process, toward the inner sleeve 350 against the pressure exerted by the intermediate formed body 410A. The same components as those of the molding apparatuses 2 and 2A described above are designated by the same reference numerals, and their description will be omitted.
 図30に示すようにダイコアリング1500は、前記の第一固定部510と、ブロック550と、このブロックを支持する第二固定部1520と、スプリング530よりもばね定数が小さく設定されたスプリング1530と、可動部1540と、を備えている。 As shown in FIG. 30, the die core ring 1500 includes the first fixed part 510, a block 550, a second fixed part 1520 that supports the block, a spring 1530 that has a smaller spring constant than the spring 530, and a movable part 1540.
 第二固定部1520は基端部521とアッパピストン対向部1522とを備えている。このアッパピストン対向部1522は、前記の第二固定部520のアッパピストン対向部522と比べると、ブロック550を通す貫通穴525を有する点が異なる。 The second fixed part 1520 has a base end 521 and an upper piston facing part 1522. This upper piston facing part 1522 differs from the upper piston facing part 522 of the second fixed part 520 in that it has a through hole 525 through which the block 550 passes.
 貫通穴525は、固定側段差面522D(図25参照)よりも低い位置で内部から外部に通じるようにアッパピストン対向部1522を貫通して形成されている。貫通穴525は、第二固定部1520の中心軸Cまわりに、例えば等角度の間隔で複数形成されている。 The through-hole 525 is formed through the upper piston facing portion 1522 so as to communicate from the inside to the outside at a position lower than the fixed side step surface 522D (see FIG. 25). A plurality of through-holes 525 are formed around the central axis C of the second fixed portion 1520, for example at equal angular intervals.
(ブロック550)
 図31に示すようにブロック550は、第二固定部1520のアッパピストン対向部1522の貫通穴525に配置された状態で、ロアピストン1260側に突出する外側端部551と、可動部1540側へ突出する内側端部552と、を備えている。
(Block 550)
As shown in Figure 31, the block 550 is positioned in the through hole 525 of the upper piston opposing portion 1522 of the second fixed portion 1520, and has an outer end portion 551 protruding toward the lower piston 1260, and an inner end portion 552 protruding toward the movable portion 1540.
 外側端部551は、外側垂直面551Aと、この外側垂直面551Aの上縁から延びた外側傾斜面551Bと、を備えている。外側傾斜面551Bは、外側垂直面551Aの上縁から第一方向D1に行くにつれて中心軸Cからの半径(距離)が小さくなり、中心軸Cに対する傾きθ51が一定に設定されている。 The outer end 551 has an outer vertical surface 551A and an outer inclined surface 551B extending from the upper edge of the outer vertical surface 551A. The outer inclined surface 551B has a radius (distance) from the central axis C that decreases as it moves from the upper edge of the outer vertical surface 551A in the first direction D1, and the inclination θ51 with respect to the central axis C is set constant.
 内側端部552は、内側垂直面552Aと、この内側垂直面552Aの上縁から延びた内側傾斜面552Bと、を備えている。内側傾斜面552Bは、内側垂直面552Aの上縁から第一方向D1に行くにつれて中心軸Cからの半径(距離)が大きくなり、中心軸Cに対する傾きθ52が一定に設定されている。外側端部551と内側端部552それぞれの水平面に対する角度θ51,θ52を比べると、外側端部551が水平面となす角度θ51が、内側端部552が水平面となす角度θ52よりも大きく設定されている。 The inner end 552 has an inner vertical surface 552A and an inner inclined surface 552B extending from the upper edge of the inner vertical surface 552A. The inner inclined surface 552B has a radius (distance) from the central axis C that increases as it moves from the upper edge of the inner vertical surface 552A in the first direction D1, and the inclination θ52 with respect to the central axis C is set constant. Comparing the angles θ51, θ52 of the outer end 551 and the inner end 552 with the horizontal plane, the angle θ51 that the outer end 551 makes with the horizontal plane is set larger than the angle θ52 that the inner end 552 makes with the horizontal plane.
(ロアピストン1260)
 ロアピストン1260はピストン本体部261と延出部1262とを備えている。延出部1262は前記のロアピストン260の延出部262と比べると、内周面の形状が相違する。
(Lower piston 1260)
The lower piston 1260 includes a piston body 261 and an extension 1262. The extension 1262 is different from the extension 262 of the lower piston 260 described above in the shape of its inner circumferential surface.
 図32に示すように延出部1262は、ピストン本体261側に形成される第一内周面262Cと、先端部262A側に設けられていて第一内周面262Cよりも径が小さく形成された第二内周面262Dと、第一内周面262Cと第二内周面262Dとの間に配置された内側傾斜面262Eと、を備えている。 As shown in FIG. 32, the extension portion 1262 has a first inner circumferential surface 262C formed on the piston body 261 side, a second inner circumferential surface 262D provided on the tip portion 262A side and formed with a smaller diameter than the first inner circumferential surface 262C, and an inner inclined surface 262E disposed between the first inner circumferential surface 262C and the second inner circumferential surface 262D.
 内側傾斜面262Eは、第一内周面262Cの上縁から第二内周面262Dの下縁に行くにつれて中心軸Cからの半径(距離)が小さくなり、中心軸Cに対する傾きが一定に設定されている。中心軸Cに対する内側傾斜面262Eの傾きの角度θ62は、ブロック550の外側傾斜面551Bの角度θ51と同等に設定されている。また、ロアピストン1260の下降において、ブロック550の外側傾斜面551Bは内側傾斜面262Eの移動軌跡上に配置されている。 The radius (distance) of the inner inclined surface 262E from the central axis C decreases as one moves from the upper edge of the first inner circumferential surface 262C to the lower edge of the second inner circumferential surface 262D, and the inclination with respect to the central axis C is set to be constant. The inclination angle θ62 of the inner inclined surface 262E with respect to the central axis C is set to be equal to the angle θ51 of the outer inclined surface 551B of the block 550. Furthermore, when the lower piston 1260 descends, the outer inclined surface 551B of the block 550 is positioned on the movement trajectory of the inner inclined surface 262E.
 このように構成されたロアピストン1260は、中心軸Cに沿って所定距離下降することで、内側傾斜面262Eがブロック550の外側傾斜面551Bに当たり、さらに下降することでブロック550の外側傾斜面551Bを押して、ブロック550を半径内方向Diに移動させることができる。 The lower piston 1260 configured in this manner descends a predetermined distance along the central axis C, causing the inner inclined surface 262E to come into contact with the outer inclined surface 551B of the block 550, and as it descends further, it pushes the outer inclined surface 551B of the block 550, moving the block 550 in the radial inward direction Di.
(可動部1540)
 図33に示すように可動部1540の外周面は、下面の周縁から立ち上がる第一外周面1540Aと、この第一外周面1540Aよりも第一方向D1に位置をずらして形成されている前記の第二外周面540Bと、第一外周面1540Aと第二外周面540Bとの間に配置される第三外周面540Dと、第二外周面540Bと第三外周面540Dとの間に配置されてこれら共に可動側段差部543を構成する可動側段差面540Cと、第一外周面1540Aと第三外周面540Dとの間に配置された外側傾斜面540Eと、で形成されている。
(Movable part 1540)
As shown in Figure 33, the outer peripheral surface of the movable part 1540 is formed by a first outer peripheral surface 1540A rising from the periphery of the lower surface, the second outer peripheral surface 540B formed at a position shifted in the first direction D1 from the first outer peripheral surface 1540A, a third outer peripheral surface 540D arranged between the first outer peripheral surface 1540A and the second outer peripheral surface 540B, a movable side step surface 540C arranged between the second outer peripheral surface 540B and the third outer peripheral surface 540D and together constituting the movable side step part 543, and an outer inclined surface 540E arranged between the first outer peripheral surface 1540A and the third outer peripheral surface 540D.
 第一外周面1540Aの半径は第二外周面540Bの半径よりも小さく設定され、第三外周面540Dの半径は第二外周面540Bの半径よりも大きく設定されている。 The radius of the first outer peripheral surface 1540A is set to be smaller than the radius of the second outer peripheral surface 540B, and the radius of the third outer peripheral surface 540D is set to be larger than the radius of the second outer peripheral surface 540B.
 外側傾斜面540Eは、第一外周面1540Aの上縁から第三外周面540Dの下縁に行くにつれて中心軸Cからの半径(距離)が大きくなり、中心軸Cに対する傾きが一定に設定されている。水平面に対する第三外周面540Dの傾きの角度θ540は、ブロック550の内側傾斜面552Bの角度θ52と同等に設定されている。 The outer inclined surface 540E has a radius (distance) from the central axis C that increases from the upper edge of the first outer peripheral surface 1540A to the lower edge of the third outer peripheral surface 540D, and is set at a constant inclination with respect to the central axis C. The inclination angle θ540 of the third outer peripheral surface 540D with respect to the horizontal plane is set to be equal to the angle θ52 of the inner inclined surface 552B of the block 550.
 可動部1540の可動側段差面540Cから外側傾斜面540Eの上縁までの中心軸Cに沿った寸法h31は、アッパピストン対向部1522の固定側段差面522Dから貫通穴525の縁までの軸に沿った寸法h32(図30)よりも大きく設定されている。 The dimension h31 along the central axis C from the movable side step surface 540C of the movable part 1540 to the upper edge of the outer inclined surface 540E is set to be larger than the dimension h32 (Figure 30) along the axis from the fixed side step surface 522D of the upper piston opposing part 1522 to the edge of the through hole 525.
 なお、図30に示すように、可動部1540がスプリング1530側に後退しておらず、且つブロック550が貫通穴525に後退していない状態(可動側段差面540Cを固定側段差面522Dに当てていると共に、ロアピストン1260の内側傾斜面262Eと非接触に外側傾斜面551Bをロアピストン1260へ向けて突き出している状態)では、可動部1540の外側傾斜面540Eとブロック550の内側傾斜面552Bとは離れており、ブロック550の内側傾斜面552Bは、その面のうち低い箇所を貫通穴525からアッパピストン対向部1522の内部に突出させて外側傾斜面540Eの下方に配置されている。 As shown in FIG. 30, when the movable part 1540 is not retracted toward the spring 1530 and the block 550 is not retracted into the through hole 525 (the movable side step surface 540C is in contact with the fixed side step surface 522D and the outer inclined surface 551B protrudes toward the lower piston 1260 without contacting the inner inclined surface 262E of the lower piston 1260), the outer inclined surface 540E of the movable part 1540 and the inner inclined surface 552B of the block 550 are separated, and the inner inclined surface 552B of the block 550 is positioned below the outer inclined surface 540E with the lower part of the surface protruding from the through hole 525 into the interior of the upper piston opposing part 1522.
 なお、ブロック550の内側傾斜面552Bの低い箇所(内周側)の上方には、可動部1540の外側傾斜面540Eのうち、高い箇所(外周側)が配置されている。 Note that above the lower portion (inner circumference side) of the inner inclined surface 552B of the block 550, the higher portion (outer circumference side) of the outer inclined surface 540E of the movable part 1540 is located.
 深絞り工程では、可動部1540が中間成形体410Aに押されてスプリング1530側へ後退するが、可動部1540の外側傾斜面540Eがブロック550の内側傾斜面552Bに当たることで可動部1540の後退は抑えられる。さらに可動部1540がブロック550に当っている状態で、ブロック550が内側傾斜面552Bで可動部1540の外側傾斜面540Eを半径内方向Diに押すことで、可動部1540をインナスリーブ350側へ移動させることができる。 In the deep drawing process, the movable part 1540 is pushed by the intermediate molded body 410A and retreats towards the spring 1530, but the outer inclined surface 540E of the movable part 1540 comes into contact with the inner inclined surface 552B of the block 550, preventing the movable part 1540 from retreating. Furthermore, while the movable part 1540 is in contact with the block 550, the block 550 can push the outer inclined surface 540E of the movable part 1540 in the radially inward direction Di with the inner inclined surface 552B, thereby moving the movable part 1540 towards the inner sleeve 350.
(缶蓋シェル10の製造方法)
 缶蓋シェル10の製造方法は、前記の実施形態と同様に、アルミニウム合金製の素板から円形ブランク410Aを打ち抜くブランキング工程と、円形ブランク410を深絞りして浅底のトレー状の第一成形体420に成形する深絞り工程と、第一成形体420の底の平坦部をその上方に配置された口側に移動させて平坦部のまわりに窪んだカウンターシンク部を形成するリバース工程と、を備えている。
(Method of manufacturing the can lid shell 10)
As in the above embodiment, the manufacturing method for the can lid shell 10 includes a blanking process for punching out a circular blank 410A from an aluminum alloy raw plate, a deep drawing process for deep drawing the circular blank 410 to form a shallow-bottomed, tray-shaped first formed body 420, and a reverse process for moving a flat portion at the bottom of the first formed body 420 toward the mouth side located above it to form a recessed countersink portion around the flat portion.
 以下、深絞り工程と、リバース工程とについて説明する。 The deep drawing process and reverse process are explained below.
(深絞り工程)
 深絞り工程では、先ず、図34Aに示すように、インナスリーブ350の先端部352Aを可動部1540の先端部542Aに近接する位置まで下降させて、円形ブランク410の一部をダイコアリング1500のアッパピストン対向部1522の内側に押し込む。その後、パネルパンチ250とダイセンター340とで円形ブランク410を挟んで軸心方向に移動して、深絞りが行われる。
(Deep drawing process)
34A, in the deep drawing process, first, the tip 352A of the inner sleeve 350 is lowered to a position close to the tip 542A of the movable part 1540, and a part of the circular blank 410 is pressed into the inside of the upper piston facing part 1522 of the die core ring 1500. Thereafter, the panel punch 250 and the die center 340 sandwich the circular blank 410 and move in the axial direction to perform deep drawing.
 パネルパンチ250とダイセンター340とで挟む円形ブランク410の中央部分がアッパピストン360の下端より低くなると、パネルパンチ250とダイセンター340との間からはみ出した中間成形体410Aの一部が可動部1540を押して、可動部1540がスプリング1530側へ後退(下降)する。 When the center portion of the circular blank 410 sandwiched between the panel punch 250 and the die center 340 becomes lower than the lower end of the upper piston 360, a part of the intermediate formed body 410A that protrudes from between the panel punch 250 and the die center 340 pushes against the movable part 1540, causing the movable part 1540 to retreat (descend) toward the spring 1530.
 中間成形体410Aが可動部1540に当った後、可動部1540の先端部542Aとインナスリーブ350の先端部352Aとの間隔は、可動部1540がブロック550に当るまで漸次広くなる。 After the intermediate molded body 410A hits the movable part 1540, the distance between the tip 542A of the movable part 1540 and the tip 352A of the inner sleeve 350 gradually increases until the movable part 1540 hits the block 550.
 また、パネルパンチ250とダイセンター340などの移動と共に、ブランクドローダイ320も下型200の内部に入り込み、ロアピストン1260もブランクドローダイ320に押されて下降する。ロアピストン1260が所定の距離下降すると、内側傾斜面262Eがブロック550の外側傾斜面551Bに当る。 Furthermore, as the panel punch 250 and the die center 340 move, the blank draw die 320 also enters the inside of the lower die 200, and the lower piston 1260 is also pushed down by the blank draw die 320. When the lower piston 1260 moves down a predetermined distance, the inner inclined surface 262E comes into contact with the outer inclined surface 551B of the block 550.
 図34Bに示すように、ロアピストン1260の内側傾斜面262Eがブロック550の外側傾斜面551Bに当るタイミングと、可動部1540の外側傾斜面540Eがブロック550の内側傾斜面552Bに当るタイミングとが、同時となるように設計されている。このように可動部1540がブロック550に当たった状態で、可動側段差面540Cと固定側段差面522Dの中心軸Cに沿った間隔は、例えば0.5mmである。 As shown in FIG. 34B, the timing at which the inner inclined surface 262E of the lower piston 1260 hits the outer inclined surface 551B of the block 550 and the timing at which the outer inclined surface 540E of the movable part 1540 hits the inner inclined surface 552B of the block 550 are designed to be simultaneous. With the movable part 1540 hitting the block 550 in this manner, the distance along the central axis C between the movable side step surface 540C and the fixed side step surface 522D is, for example, 0.5 mm.
 成形装置2Bでは、ロアピストン1260と可動部1540とがブロック550に当った後に、さらにロアピストン1260が下降することでブロック550を貫通穴525に後退させて、内側端部552をアッパピストン対向部1522の内部へより一層突出させる。これにより、ブロック550が可動部1540を押して、可動部1540がインナスリーブ350に近づく方向に移動する。 In molding device 2B, after the lower piston 1260 and the movable part 1540 hit the block 550, the lower piston 1260 further descends, causing the block 550 to retreat into the through hole 525 and causing the inner end 552 to protrude further into the interior of the upper piston opposing part 1522. As a result, the block 550 pushes the movable part 1540, causing the movable part 1540 to move in a direction approaching the inner sleeve 350.
 このように、可動部1540のインナスリーブ350へ向かう移動が深絞りの途中から開始し、可動部1540の先端部542Aとインナスリーブ350の先端部352Aとの間隔が、パネルパンチ250とダイセンター340が深絞り工程が終了するまで、漸次狭くなる。 In this way, the movement of the movable part 1540 toward the inner sleeve 350 begins midway through the deep drawing, and the distance between the tip 542A of the movable part 1540 and the tip 352A of the inner sleeve 350 gradually narrows until the panel punch 250 and the die center 340 complete the deep drawing process.
 図34Cに示すように、上型300が下死点に至った状態では、可動部1540の先端部542Aはインナスリーブ350の先端部352Aと最も近接した位置に配置される。またこのように近接した状態では、変形部17を成形するための金型クリアランスCL2が構成されている。また、可動部1540の可動側段差面540Cがアッパピストン対向部1522の固定側段差面522Dに当っている。スペーサ370がアッパピストン360に接触して、インナスリーブ対向部542の先端部542Aとの間(インナスリーブ350と可動部1540との間)に、金型クリアランスCL2が構成されている。 As shown in FIG. 34C, when the upper die 300 reaches the bottom dead center, the tip 542A of the movable part 1540 is positioned closest to the tip 352A of the inner sleeve 350. In this close position, a die clearance CL2 is formed for molding the deformation part 17. The movable side step surface 540C of the movable part 1540 abuts on the fixed side step surface 522D of the upper piston opposing part 1522. The spacer 370 comes into contact with the upper piston 360, and a die clearance CL2 is formed between the tip 542A of the inner sleeve opposing part 542 (between the inner sleeve 350 and the movable part 1540).
(リバース工程)
 リバース工程では、パネルパンチ250とダイセンター340とに挟まれている第一成形体420の底部分421を下型200のパネルパンチ250及びパネルパンチピストン240で、深絞り方向とは逆の方向に移動させる。第一成形体420の底部分421の移動に伴って、図34Dに示すように、パネルパンチ250とダイセンター340との間からはみ出ている第一成形体420の一部が折り返されて下方に凸となる断面U字型の湾曲部424が形成される。
(Reverse process)
In the reverse process, the bottom portion 421 of the first compact 420 sandwiched between the panel punch 250 and the die center 340 is moved in the direction opposite to the deep drawing direction by the panel punch 250 and the panel punch piston 240 of the lower die 200. As the bottom portion 421 of the first compact 420 moves, a part of the first compact 420 protruding from between the panel punch 250 and the die center 340 is folded back to form a curved portion 424 having a U-shaped cross section that is convex downward, as shown in Fig. 34D.
 なお、湾曲部424がパンチ段差部252の受面252Aの上方に配置されている状態では、図28に示すように、インナスリーブ350の先端部352Aのスリーブ凹面部352Cと第一成形体420の第一変曲部423との間には微小の隙間CL0が配置されている。 When the curved portion 424 is positioned above the receiving surface 252A of the punch step portion 252, as shown in FIG. 28, a minute gap CL0 is disposed between the sleeve concave portion 352C of the tip portion 352A of the inner sleeve 350 and the first inflection portion 423 of the first molded body 420.
 パネルパンチ250と共にロアピストン1260が上昇して、その内側傾斜面262Eがブロック550の外側傾斜面551Bから離れると、図34Dに示すように、ブロック550は、ロアピストン1260からの半径内方向Diへ後退させる力から解放されて、元の位置に戻る。なお、ダイコアリング1500には図示省略するブロック用スプリングが設けられており、このブロック用スプリングによってブロック550は後退位置から突出位置に戻ることができる。 When the lower piston 1260 rises together with the panel punch 250 and its inner inclined surface 262E separates from the outer inclined surface 551B of the block 550, as shown in FIG. 34D, the block 550 is released from the force from the lower piston 1260 that pushes it backward in the radially inward direction Di and returns to its original position. Note that the die core ring 1500 is provided with a block spring (not shown), and this block spring allows the block 550 to return from the retracted position to the extended position.
 さらにリバース工程が進行すると、湾曲部424をパネルパンチ250の受面252Aで押し上げて、加工を施している第一成形体420の一部を金型クリアランスCL2に押し込む。第一成形体420の一部が変形して微小の隙間(空間)CL0が埋められる。これにより第一変曲部423が増厚されて第二変曲部に形成されて、リバース工程が終了する(図34E)。 As the reverse process progresses further, the curved portion 424 is pushed up by the receiving surface 252A of the panel punch 250, forcing a part of the first formed body 420 being processed into the die clearance CL2. Part of the first formed body 420 deforms and fills the tiny gap (space) CL0. This causes the first inflection portion 423 to thicken and become the second inflection portion, completing the reverse process (Figure 34E).
 第二変形例の製造方法の深絞り工程では、可動部1540がインナスリーブ350に最も近づいて金型クリアランスCL2を構成する位置に可動部1540を保持するスプリング1530の力が、第一変形例の成形装置2Aのスプリング530の力よりも弱いため、深絞りの際に、変形する中間成形体410Aに押されて容易に後退する。これにより、深絞りの過程で中間成形体410Aが可動部1540(インナスリーブ対向部542)との接触による板圧の減少を一層抑えることができる。 In the deep drawing process of the manufacturing method of the second modified example, the force of the spring 1530 that holds the movable part 1540 in the position where it is closest to the inner sleeve 350 and forms the mold clearance CL2 is weaker than the force of the spring 530 of the molding device 2A of the first modified example, so that during deep drawing, the intermediate molded body 410A easily retreats as it is pushed back by the deforming intermediate molded body 410A. This makes it possible to further suppress the reduction in plate pressure caused by contact of the intermediate molded body 410A with the movable part 1540 (the inner sleeve facing part 542) during the deep drawing process.
 さらに、深絞り工程が進行している中で、ロアピストン1260の下降と共に、ブロック550を後退させ、且つ可動部1540をインナスリーブ350へ向けて移動させることで、厚みの減少を抑えた中間成形体410Aの一部を可動部1540(インナスリーブ対向部542)とインナスリーブ350とで挟んで第一変曲部423を成形する。 Furthermore, as the deep drawing process progresses, the block 550 is retracted and the movable part 1540 is moved toward the inner sleeve 350 as the lower piston 1260 descends, so that a portion of the intermediate molded body 410A, which has had its thickness reduced, is sandwiched between the movable part 1540 (the inner sleeve facing part 542) and the inner sleeve 350 to form the first inflection part 423.
 このようにリバース工程の前に、深絞りに伴う板圧減少が抑制されることで、リバース工程の開始の段階に折り返されて形成される湾曲部424の変形や歪の発生を防止することができる。 In this way, by suppressing the reduction in sheet pressure that accompanies deep drawing before the reverse process, it is possible to prevent deformation or distortion of the curved portion 424 that is formed by folding back at the start of the reverse process.
 本発明は前記の説明や図示例に限らず、実施をすることができる。第一実施形態の製造方法について、成形装置(図4)を基に説明したが、本発明の要点は前記第一曲面部、前記第二曲面部に相対する上下金型間に前記金型クリアランスCL1を構成することにある。この金型クリアランスを構成できれば、図4に示す成形装置に限らず、他の成形装置を用いてもよい。カウンターシンク部、チャックウォール部、フランジ部の中心軸Cに沿った寸法の比率、パネル部、カウンターシンク部、チャックウォール部、フランジ部の中心軸Cに直交する方向に沿った寸法の比率、各円弧の中心まわりで拡開する角度など、変更してもよい。 The present invention can be practiced without being limited to the above explanation and illustrated examples. The manufacturing method of the first embodiment has been explained based on a molding device (Figure 4), but the gist of the present invention is that the mold clearance CL1 is formed between the upper and lower molds facing the first curved surface portion and the second curved surface portion. As long as this mold clearance can be formed, it is not limited to the molding device shown in Figure 4, and other molding devices may be used. The ratio of the dimensions along the central axis C of the countersink portion, chuck wall portion, and flange portion, the ratio of the dimensions along the direction perpendicular to the central axis C of the panel portion, countersink portion, chuck wall portion, and flange portion, the angle of expansion around the center of each arc, etc. may also be changed.
 また缶蓋シェルの断面構造に関して、前記の説明や図面では、第三凸型溝断面部123C(本発明の第一曲面部に相当)、第一凹型囲繞断面部131(本発明の第二曲面部に相当)や第二凸型溝断面部123B(本発明の第三曲面部に相当)などが、表面SF1や裏面SF2を構成する面がそれぞれ円弧(真円の円弧)として形成される場合を示したが、第三凸型溝断面部123C(本発明の第一曲面部に相当)、第一凹型囲繞断面部131(本発明の第二曲面部に相当)や第二凸型溝断面部123B(本発明の第三曲面部に相当)などにおいて、表面SF1や裏面SF2を構成する面は、断面が真円の円弧ではないが弓なりに曲がった面としても形成されてもよい。 In addition, with regard to the cross-sectional structure of the can lid shell, the above explanation and drawings show cases in which the surfaces constituting the front surface SF1 and back surface SF2 of the third convex groove cross-sectional portion 123C (corresponding to the first curved surface portion of the present invention), the first concave surrounding cross-sectional portion 131 (corresponding to the second curved surface portion of the present invention), and the second convex groove cross-sectional portion 123B (corresponding to the third curved surface portion of the present invention) are each formed as an arc (a perfect circle arc). However, in the third convex groove cross-sectional portion 123C (corresponding to the first curved surface portion of the present invention), the first concave surrounding cross-sectional portion 131 (corresponding to the second curved surface portion of the present invention), and the second convex groove cross-sectional portion 123B (corresponding to the third curved surface portion of the present invention), the surfaces constituting the front surface SF1 and back surface SF2 may be formed as surfaces whose cross sections are not perfect circular arcs but are curved like a bow.
 このように断面が弓なりに曲がった曲面を備えた第三凸型溝断面部123C(本発明の第一曲面部に相当)、第一凹型囲繞断面部131(本発明の第二曲面部に相当)や第二凸型溝断面部123B(本発明の第三曲面部に相当)で、変曲部17や増厚部18を構成することもできる。このように円弧(真円の円弧)や弓なりに曲がった面からなる曲面で、変曲部17や増厚部18が構成されて、缶蓋シェルの耐圧強度を向上させることができる。 In this way, the inflection portion 17 and the thickened portion 18 can be formed by the third convex groove cross-section portion 123C (corresponding to the first curved surface portion of the present invention), the first concave surrounding cross-section portion 131 (corresponding to the second curved surface portion of the present invention) and the second convex groove cross-section portion 123B (corresponding to the third curved surface portion of the present invention). In this way, the inflection portion 17 and the thickened portion 18 are formed by a curved surface consisting of an arc (a perfect circular arc) or a curved surface that is curved like an arch, thereby improving the pressure resistance of the can lid shell.
 アルミニウム合金(5182)からなるアルミニウム板(厚さ0.208mm)の両面を変性エポキシ系塗料(両面の合計厚み0.012mm)で被覆した素板から口径が200径の飲料用缶の缶蓋シェルを製造して、耐圧強度を確認した。 A can shell for a 200-diameter beverage can was manufactured from an aluminum plate (thickness 0.208 mm) made of aluminum alloy (5182) coated on both sides with modified epoxy paint (total thickness of both sides 0.012 mm), and pressure resistance was confirmed.
 缶蓋シェルは、パネル部とカウンターシンク部とチャックウォール部とフランジ部とを備え、変曲点を間に配置してチャックウォール部で内部空間側に凹となる円弧の箇所とカウンターシンク部で内部空間側に凸となる円弧の箇所とで構成される変曲部を増厚したものを実施例、増厚していないものを比較例とした。  The can lid shell has a panel section, a countersink section, a chuck wall section, and a flange section, and the inflection point is located between the chuck wall section, which is a concave arc section facing the internal space, and the countersink section, which is a convex arc section facing the internal space, with the inflection point between them. The example shows an inflection point that is thickened, while the comparative example shows one that is not thickened.
 実施例の缶蓋シェルは、第一実施形態の成形装置を用いて製造した。この成形装置では、金型クリアランスCL1が、図6に示す、インナスリーブ350の先端部352Aの第三上型接続点P33で0.220mm、第二上型接続点P32で0.234mm、第一上型接続点P31で0.250mmに設定されて、インナスリーブ350とダイコアリング230との間隔が第三上型接続点P33から第一上型接続点P31へ行くにつれて広がっている。 The can lid shell of the example was manufactured using the molding device of the first embodiment. In this molding device, the mold clearance CL1 is set to 0.220 mm at the third upper mold connection point P33 of the tip portion 352A of the inner sleeve 350, 0.234 mm at the second upper mold connection point P32, and 0.250 mm at the first upper mold connection point P31, as shown in FIG. 6, and the distance between the inner sleeve 350 and the die core ring 230 increases from the third upper mold connection point P33 to the first upper mold connection point P31.
 また、成形装置の下型200のパネルパンチ250は素板が当たるパンチ平坦部251のまわりに段差状のパンチ段差部252を備え、カウンターシンク部を成形するリバース工程の際に、リバース工程の中で形成された湾曲部424をパンチ段差部252の受面252Aで押し上げて、加工を施している第一成形体の一部を変形させて金型クリアランスCL1に押し込み、これにより増厚した変曲部425を成形した。 The panel punch 250 of the lower die 200 of the molding device has a stepped punch step 252 around the punch flat portion 251 with which the blank plate comes into contact, and during the reverse process to form the countersink portion, the receiving surface 252A of the punch step 252 pushes up the curved portion 424 formed during the reverse process, deforming a part of the first molded body being processed and pushing it into the die clearance CL1, thereby forming the thickened inflection portion 425.
 比較例の缶蓋シェルは、従来の成形装置を用いて製造した。 The comparative example can lid shell was manufactured using a conventional molding device.
 発明実施例、比較例それぞれの50個の試料を製造し、それぞれの耐圧強度[psi]を測定し、それらを平均した値(平均耐圧強度)を算出した。また、試料の変曲部のうち、チャックウォール部で内部空間側に凹となる円弧の箇所とカウンターシンク部で内部空間側と凸となる円弧の箇所との変曲点における厚さを測定し、これを加工前の円形ブランクの厚さと比べて増加する割合(加工後の板厚/加工前の円形ブランクの板厚×100)[%]を算出した。なお、1[psi]=6894.76[Pa]である。 Fifty samples of each of the inventive examples and comparative examples were manufactured, their respective compressive strengths [psi] were measured, and the average value (average compressive strength) was calculated. In addition, the thicknesses of the inflection points of the samples, between the arc at the chuck wall that is concave toward the internal space and the arc at the countersink that is convex toward the internal space, were measured, and the percentage increase in thickness compared to the thickness of the circular blank before processing (sheet thickness after processing / sheet thickness of circular blank before processing x 100) [%] was calculated. Note that 1 [psi] = 6894.76 [Pa].
 表1に耐圧強度、厚さ、厚さの割合を示す。 Table 1 shows the compressive strength, thickness, and thickness ratio.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 発明実施例の缶蓋シェルでは、変曲部が素板よりも厚みを約9%が増して成形され、平均耐圧強度も106.7[psi]と高く構成されている。 In the can lid shell of the invention example, the inflection part is formed to be about 9% thicker than the base plate, and the average pressure resistance is also high at 106.7 [psi].
 比較例では、変曲部の厚さは素板の厚みに対する増分は確認できなかった。平均耐圧強度98.2[psi]は従来の缶蓋の強度に相当するものであった。 In the comparative example, no increase in thickness at the bent portion was observed compared to the thickness of the base plate. The average pressure strength of 98.2 [psi] was equivalent to the strength of a conventional can lid.
 バックリングを防止する缶蓋シェルと、この缶蓋シェルの製造方法と、成形装置と、を提供できる。 We can provide a can lid shell that prevents buckling, a manufacturing method for this can lid shell, and a molding device.
2,2A 成形装置
10,10A 缶蓋シェル
11 パネル部
12 カウンターシンク部
123B 第二凸型溝断面部(第三曲面部)
123C 第三凸型溝断面部(第一曲面部)
13 チャックウォール部
131 第一凹型囲繞断面部(第二曲面部)
132 第二凹型囲繞断面部
133 傾斜囲繞断面部
134 凸型囲繞断面部
14 フランジ部
15 薄肉部(凹部)
16 厚肉部(凸部) 17 変曲部
18 増厚部
40 リフォーム装置
200 下型
210 ロアリテーナ
220 カットエッジ部
230 ダイコアリング
232A 先端部
232D 凹面部(第一下型曲面部)
232E 第二凸面部(第二下型曲面部)(下型曲面部)
240 パネルパンチピストン
250 パネルパンチ
260 ロアピストン
300 上型
310 アッパーリテーナ
320 ブランクドローダイ
330 ダイセンターピストン
340 ダイセンター
350 インナスリーブ
351 ピストン本体部
352A 先端部
352B 第一スリーブ凸面部
352C スリーブ凹面部(第三上型曲面部)(上型曲面部)
352D 第二スリーブ凸面部(第二上型曲面部)
352E 第三スリーブ凸面部(第一上型曲面部)
352F スリーブ傾斜面部
360 アッパピストン
362A 先端部
370 スペーサ
400 素板
410 円形ブランク
410A 中間成形体
420 第一成形体
421 底部分(平坦部)
422 挟持部(フランジ部)
423 第一変曲部
425 第二変曲部
500 ダイコアリング
510 第一固定部(固定部)
520 第二固定部(固定部)
522,1522 アッパピストン対向部
522A 先端部
523 固定側段差部
530 スプリング(付勢部材)
540 可動部
542 インナスリーブ対向部
542A 先端部
550 ブロック
551B 外側傾斜面
552B 内側傾斜面
2B 成形装置
1260 ロアピストン
262E 内側傾斜面
1500 ダイコアリング
1520 第二固定部(固定部)
525 貫通穴
1530 スプリング(付勢部材)
1540 可動部
540E 外側傾斜面
C 中心軸
CL1,CL2 金型クリアランス
SF1 表面
SF2 裏面
SP1 内部空間
2, 2A Molding device 10, 10A Can lid shell 11 Panel portion 12 Countersink portion 123B Second convex groove cross-sectional portion (third curved surface portion)
123C Third convex groove cross section (first curved surface part)
13 Chuck wall portion 131 First concave surrounding cross section portion (second curved surface portion)
132 Second concave surrounding cross section 133 Sloped surrounding cross section 134 Convex surrounding cross section 14 Flange portion 15 Thin portion (concave portion)
16: thick portion (convex portion) 17: inflection portion 18: thickened portion 40: reforming device 200: lower mold 210: lower retainer 220: cut edge portion 230: die core ring 232A: tip portion 232D: concave portion (first lower mold curved surface portion)
232E Second convex surface part (second lower mold curved surface part) (lower mold curved surface part)
240 Panel punch piston 250 Panel punch 260 Lower piston 300 Upper die 310 Upper retainer 320 Blank draw die 330 Die center piston 340 Die center 350 Inner sleeve 351 Piston body portion 352A Tip portion 352B First sleeve convex portion 352C Sleeve concave portion (third upper die curved portion) (upper die curved portion)
352D Second sleeve convex surface portion (second upper mold curved surface portion)
352E Third sleeve convex surface portion (first upper mold curved surface portion)
352F Sleeve inclined surface portion 360 Upper piston 362A Tip portion 370 Spacer 400 Raw plate 410 Circular blank 410A Intermediate formed body 420 First formed body 421 Bottom portion (flat portion)
422 Clamping part (flange part)
423 First inflection portion 425 Second inflection portion 500 Die core ring 510 First fixing portion (fixing portion)
520 Second fixed part (fixed part)
522, 1522 Upper piston opposing portion 522A Tip portion 523 Fixed side step portion 530 Spring (biasing member)
540 Movable portion 542 Inner sleeve opposing portion 542A Tip portion 550 Block 551B Outer inclined surface 552B Inner inclined surface 2B Molding device 1260 Lower piston 262E Inner inclined surface 1500 Die core ring 1520 Second fixed portion (fixed portion)
525 through hole 1530 spring (biasing member)
1540 Movable part 540E Outer inclined surface C Central axis CL1, CL2 Mold clearance SF1 Surface SF2 Back surface SP1 Internal space

Claims (8)

  1.  缶蓋シェルであって、
     円形の周縁を有するパネル部と、
     前記パネル部の前記周縁に沿って形成されていて窪んだカウンターシンク部と、
     前記カウンターシンク部の縁から立ち上がるチャックウォール部と、 前記チャックウォール部の上端から張り出したフランジ部と、を備え、
     前記パネル部と、前記カウンターシンク部と、前記チャックウォール部との内側に設定される内部空間を有し、
     前記カウンターシンク部は、前記内部空間に向けて凸となる第一曲面部を含み、
     前記チャックウォール部は、前記第一曲面部につながっていて前記内部空間から凹となる第二曲面部を含み、
     前記第二曲面部及び前記第一曲面部の厚さは、前記フランジ部側の縁から前記パネル部側の縁へ向かい増大することを特徴とする、缶蓋シェル。
    A can lid shell,
    A panel portion having a circular periphery;
    a recessed countersink portion formed along the periphery of the panel portion;
    a chuck wall portion rising from an edge of the countersink portion; and a flange portion extending from an upper end of the chuck wall portion,
    an internal space defined inside the panel portion, the countersink portion, and the chuck wall portion;
    The countersink portion includes a first curved surface portion that is convex toward the internal space,
    The chuck wall portion includes a second curved surface portion that is connected to the first curved surface portion and is concave from the internal space,
    A can lid shell, wherein a thickness of the second curved surface portion and a thickness of the first curved surface portion increase from an edge on the flange portion side to an edge on the panel portion side.
  2.  前記カウンターシンク部は、前記第二曲面部との間に前記第一曲面部を配置して前記第一曲面部とつながって前記内部空間に向けて凸となり更に厚さが前記パネル部側の縁から前記第一曲面部とつながる縁へいくにつれて増して成形されている第三曲面部を備えていることを特徴とする、請求項1に記載の缶蓋シェル。 The can lid shell according to claim 1, characterized in that the countersink portion includes a third curved portion that is connected to the first curved portion by disposing the first curved portion between the second curved portion and the third curved portion, and that is formed so that its thickness increases from the edge on the panel portion side to the edge connected to the first curved portion.
  3.  前記第二曲面部から前記第三曲面部まで前記缶蓋シェルの表面又は裏面から窪んで形成されていて前記缶蓋シェルの周方向に離れて複数設けられた薄肉部と前記缶蓋シェル、前記薄肉部の間に設けられた前記薄肉部よりも厚い厚肉部とを備え、
     複数の前記薄肉部と複数の前記厚肉部とは、前記缶蓋シェルの平面視又は底面視で前記缶蓋シェルの半径に沿った寸法が前記半径の方向とは直交する方向に沿った寸法よりも長いことを特徴とする、請求項2に記載の缶蓋シェル。
    a can lid shell having a plurality of thin-walled portions formed by recessing from the front or back surface of the can lid shell to the second curved surface portion to the third curved surface portion, the thin-walled portions being spaced apart in a circumferential direction of the can lid shell; and a thick-walled portion that is thicker than the thin-walled portions and is provided between the thin-walled portions of the can lid shell,
    The can lid shell according to claim 2, characterized in that the multiple thin-walled portions and the multiple thick-walled portions have a dimension along a radius of the can lid shell that is longer than a dimension along a direction perpendicular to the radial direction when viewed in a plan view or a bottom view of the can lid shell.
  4.  下型と上型とを備えていて、円形ブランクを前記下型と前記上型とで挟んで缶蓋シェルを成形する成形装置であって、
     前記下型が、ダイコアリングと、このダイコアリングの内部に配置されたパネルパンチと、を備え、
     前記上型が、筒状のアッパピストンと、このアッパピストンの内部に配置された筒状のインナスリーブと、このインナスリーブの内部に配置されたダイセンターと、を備え、
     前記ダイコアリングの先端部の外側部分と、前記アッパピストンの先端部とが対向して配置され、
     前記ダイコアリングの前記先端部の内側部分と、前記インナスリーブの先端部とが対向して配置され、
     前記ダイパンチと、前記ダイセンターとが対向して配置されており、
     前記ダイコアリングの前記先端部の内側部分は、前記インナスリーブへ向けて凹となる第一下型曲面部と、この第一下型曲面部につながり更に中心軸側に位置をずらして配置され前記インナスリーブへ向けて凸となる第二下型曲面部と、を備え、
     前記インナスリーブの前記先端部は、前記第一下型曲面部へ向けて凸となる第一上型曲面部と、この第一上型曲面部につながり更に前記中心軸側に位置をずらして配置され、且つ曲率半径が前記第一上型曲面部の曲率半径と相違する円弧で前記第一下型曲面部へ向けて凸となる第二上型曲面部と、この第二上型曲面部につながり更に前記中心軸側に位置をずらして配置され前記第二下型曲面部へ向けて凹となる第三上型曲面部と、を備え、
     前記ダイコアリングの前記第一下型曲面部及び前記第二下型曲面部と前記インナスリーブの前記第二上型曲面部及び前記第三上型曲面部との間に構成される金型クリアランスは、前記円形ブランクの板厚以上の間隔であり、さらに前記中心軸へいくにつれて広がっていることを特徴とする、成形装置。
    A forming apparatus including a lower die and an upper die, the apparatus sandwiching a circular blank between the lower die and the upper die to form a can lid shell,
    The lower mold includes a die core ring and a panel punch disposed inside the die core ring,
    the upper die includes a cylindrical upper piston, a cylindrical inner sleeve disposed inside the upper piston, and a die center disposed inside the inner sleeve;
    An outer portion of the tip of the die core ring and a tip of the upper piston are disposed opposite to each other,
    An inner portion of the tip end of the die core ring and a tip end of the inner sleeve are disposed opposite to each other,
    The die punch and the die center are disposed opposite to each other,
    an inner portion of the tip of the die core ring includes a first lower curved surface portion that is concave toward the inner sleeve, and a second lower curved surface portion that is connected to the first lower curved surface portion and is further shifted toward the central axis and is convex toward the inner sleeve,
    the tip portion of the inner sleeve comprises: a first upper mold curved surface portion that is convex toward the first lower mold curved surface portion; a second upper mold curved surface portion that is connected to the first upper mold curved surface portion and is disposed further shifted toward the central axis and is a circular arc having a radius of curvature different from that of the first upper mold curved surface portion that is convex toward the first lower mold curved surface portion; and a third upper mold curved surface portion that is connected to the second upper mold curved surface portion and is disposed further shifted toward the central axis and is concave toward the second lower mold curved surface portion,
    A molding apparatus characterized in that a mold clearance formed between the first lower mold curved portion and the second lower mold curved portion of the die core ring and the second upper mold curved portion and the third upper mold curved portion of the inner sleeve is a distance greater than or equal to the plate thickness of the circular blank, and further widens toward the central axis.
  5.  下型と上型とを備えていて、円形ブランクを前記下型と前記上型とで挟んで缶蓋シェルを成形する成形装置であって、
     前記下型が、ダイコアリングと、このダイコアリングの内部に配置されたパネルパンチと、を備え、
     前記上型が、筒状のアッパピストンと、このアッパピストンの内部に配置された筒状のインナスリーブと、このインナスリーブの内部に配置されたダイセンターと、を備え、
     前記ダイコアリングが、前記下型に固定して設けられる筒状の固定部と、この固定部の内部に設けられた可動部と、中心軸に沿って伸縮自在に構成されており前記可動部を下から支持すると共に前記可動部を付勢する付勢部材と、を備え、
     前記ダイコアリングの前記固定部の先端部と前記アッパピストンの先端部とが対向して配置され、
     前記ダイコアリングの前記可動部の前記先端部と前記インナスリーブの先端部とが対向して配置され、
     前記パネルパンチと前記ダイセンターとが対向して配置されており、
     前記可動部の先端部は前記インナスリーブへ向けて凸となる下型曲面部を備え、
     前記インナスリーブの前記先端部は、前記下型曲面部へ向けて凹となる上型曲面部を備え、
     前記可動部の前記下型曲面部と前記インナスリーブの前記上型曲面部との間に構成される金型クリアランスは、前記円形ブランクの板厚以上の間隔であり、さらに前記中心軸に近づくにつれて広がっており、
     前記可動部は前記円形ブランクを深絞りする際に中間成形体に押されて前記付勢部材へ向けて後退することを特徴とする、成形装置。
    A forming apparatus including a lower die and an upper die, the apparatus sandwiching a circular blank between the lower die and the upper die to form a can lid shell,
    The lower mold includes a die core ring and a panel punch disposed inside the die core ring,
    the upper die includes a cylindrical upper piston, a cylindrical inner sleeve disposed inside the upper piston, and a die center disposed inside the inner sleeve;
    the die core ring comprises a cylindrical fixed portion fixed to the lower die, a movable portion provided inside the fixed portion, and a biasing member configured to be extendable and contractible along a central axis, supporting the movable portion from below and biasing the movable portion;
    a tip end portion of the fixed portion of the die core ring and a tip end portion of the upper piston are disposed opposite to each other,
    the tip end of the movable portion of the die core ring and the tip end of the inner sleeve are disposed opposite to each other,
    The panel punch and the die center are disposed opposite to each other,
    a tip end of the movable portion includes a lower curved surface portion that is convex toward the inner sleeve,
    The tip portion of the inner sleeve includes an upper curved surface portion that is concave toward the lower curved surface portion,
    a die clearance formed between the lower die curved surface portion of the movable part and the upper die curved surface portion of the inner sleeve is equal to or greater than a plate thickness of the circular blank and is wider as it approaches the central axis,
    A forming apparatus, characterized in that the movable part is pushed by an intermediate forming body and retreats toward the urging member when the circular blank is deep drawn.
  6.  前記下型は、前記ダイコアリングの外周面の一部を囲う筒状のロアピストンをさらに備え、
     前記固定部は、該固定部の前記内部から前記固定部の外部に通じる貫通穴と、この貫通穴に配置されたブロックと、を備え、
     前記ブロックは、前記固定部の前記外部に張り出す外側傾斜面と、前記固定部の前記内部に張り出す内側傾斜面と、を有し、
     前記ロアピストンは前記ブロックの前記外側傾斜面に当る内側傾斜面を有し、
     前記可動部は前記ブロックの前記内側傾斜面に当る外側傾斜面を有し、
     前記ロアピストンが前記上型に押されて下降すると前記ロアピストンの前記内側傾斜面が前記ブロックの前記外側傾斜面に当たり、且つ後退した前記可動部の前記外側傾斜面が前記ブロックの前記内側傾斜面に当った状態で、前記ロアピストンがさらに下降することで、前記可動部が前記インナスリーブへ向けて移動することを特徴とする、請求項5に記載の成形装置。
    The lower die further includes a cylindrical lower piston that surrounds a portion of an outer circumferential surface of the die core ring,
    the fixing portion includes a through hole communicating from the inside of the fixing portion to the outside of the fixing portion, and a block disposed in the through hole;
    the block has an outer inclined surface that protrudes to the outside of the fixing portion and an inner inclined surface that protrudes to the inside of the fixing portion,
    the lower piston has an inner inclined surface that abuts against the outer inclined surface of the block,
    the movable portion has an outer inclined surface that abuts against the inner inclined surface of the block,
    6. The molding apparatus according to claim 5, wherein when the lower piston is pushed downward by the upper mold, the inner inclined surface of the lower piston abuts on the outer inclined surface of the block, and the outer inclined surface of the retracted movable part abuts on the inner inclined surface of the block, and the lower piston further descends in this state, causing the movable part to move toward the inner sleeve.
  7.  下型と上型とで円形ブランクを挟んで缶蓋シェルを成形する缶蓋シェルの製造方法であって、
     前記円形ブランクをトレー状の第一成形体に成形する深絞り工程と、
     パネルパンチとダイセンターとに挟まれた前記第一成形体の底の平坦部を上方に移動させて前記平坦部のまわりに窪んだカウンターシンク部を形成するリバース工程と、を備え、
     前記深絞り工程では、ダイコアリングの先端部とインナスリーブの先端部とで前記円形ブランクの一部を変形させて、前記第一成形体の前記平坦部とフランジ部との間に凹面と凸面とで成る第一変曲部を成形し、
     前記リバース工程では、前記ダイコアリングの前記先端部と前記インナスリーブの前記先端部との間が中心軸に近づくにつれて広がっている金型クリアランスとして構成されている状態で、前記金型クリアランスのうち、前記第一変曲部で埋められていない隙間に、前記パネルパンチと前記ダイセンターとの間からはみ出ている前記第一成形体の一部を押し込み、前記第一変曲部を増厚した第二変曲部に成形することを特徴とする、缶蓋シェルの製造方法。
    A method for manufacturing a can lid shell, comprising the steps of: sandwiching a circular blank between a lower die and an upper die to form a can lid shell,
    a deep drawing step of forming the circular blank into a tray-shaped first formed body;
    a reverse process of moving upward a flat portion at the bottom of the first molded body sandwiched between a panel punch and a die center to form a countersink portion recessed around the flat portion,
    In the deep drawing step, a part of the circular blank is deformed by a tip end of a die core ring and a tip end of an inner sleeve to form a first inflection portion having a concave surface and a convex surface between the flat portion and a flange portion of the first formed body,
    a die center that is formed by pressing a portion of the first molded body protruding from between the panel punch and the die center into a gap in the die clearance that is not filled by the first inflection portion, the gap being configured as a die clearance that widens as the gap approaches a central axis, and the first inflection portion is molded into a second inflection portion having an increased thickness.
  8.  前記ダイコアリングは、前記ダイコアリングの前記先端部のうち、前記インナスリーブの前記先端部と対向する部分を構成する可動部と、前記中心軸に沿って伸縮自在に構成されており前記可動部を下から支持して前記金型クリアランスを構成する位置に前記可動部を保持する付勢部材を備えていて、
     前記深絞り工程では、中間成形体が前記可動部を押して、前記可動部が前記付勢部材へ向けて後退することを特徴とする、請求項7に記載の缶蓋シェルの製造方法。
    the die core ring includes a movable part that constitutes a portion of the tip of the die core ring that faces the tip of the inner sleeve, and a biasing member that is configured to be freely stretched and contracted along the central axis and supports the movable part from below to hold the movable part at a position that constitutes the die clearance,
    The method for manufacturing a can lid shell according to claim 7, wherein in the deep drawing step, an intermediate forming body presses the movable part, so that the movable part retreats toward the biasing member.
PCT/JP2023/026734 2023-01-18 2023-07-21 Can lid shell and manufacturing method for same, and forming device WO2024154371A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024506183A JP7526436B1 (en) 2023-01-18 2023-07-21 Can lid shell, its manufacturing method and molding device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023006121 2023-01-18
JP2023-006121 2023-01-18

Publications (1)

Publication Number Publication Date
WO2024154371A1 true WO2024154371A1 (en) 2024-07-25

Family

ID=91955750

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/026734 WO2024154371A1 (en) 2023-01-18 2023-07-21 Can lid shell and manufacturing method for same, and forming device

Country Status (2)

Country Link
JP (1) JP7526436B1 (en)
WO (1) WO2024154371A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006122990A (en) * 2004-10-29 2006-05-18 Mitsubishi Materials Corp Can-top
JP2016084144A (en) * 2014-10-24 2016-05-19 株式会社神戸製鋼所 Can end and can using the same
JP2022016093A (en) * 2020-07-10 2022-01-21 東洋製罐グループホールディングス株式会社 Can lid and manufacturing method thereof
JP2022119588A (en) * 2021-02-04 2022-08-17 ケイジェイ トーゴー プライベート リミテッド Can lid, and can lid shell manufacturing method and manufacturing device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006122990A (en) * 2004-10-29 2006-05-18 Mitsubishi Materials Corp Can-top
JP2016084144A (en) * 2014-10-24 2016-05-19 株式会社神戸製鋼所 Can end and can using the same
JP2022016093A (en) * 2020-07-10 2022-01-21 東洋製罐グループホールディングス株式会社 Can lid and manufacturing method thereof
JP2022119588A (en) * 2021-02-04 2022-08-17 ケイジェイ トーゴー プライベート リミテッド Can lid, and can lid shell manufacturing method and manufacturing device

Also Published As

Publication number Publication date
JP7526436B1 (en) 2024-08-01

Similar Documents

Publication Publication Date Title
US8573023B2 (en) Press-molded product and method of manufacturing same
AU2016203647B2 (en) Method for expanding the diameter of a metal container
AU676074B2 (en) Method and apparatus for performing multiple necking operations on a container body
WO2012049907A1 (en) Battery case lid and manufacturing method for battery case lid
US20060010957A1 (en) Method and apparatus for making a can lid shell
JP2006506286A (en) Can end, tool for manufacturing the can end, and seaming chuck for mounting the processed can end to the can body
CN107530754B (en) Press working device and press working method
KR20190108656A (en) Shaped metal container and method for making same
CN107249773B (en) Press-processing method and press forming die
CN101084150A (en) Method of manufacturing bottle can
EP0800874B1 (en) Bulge forming method and apparatus
WO2024154371A1 (en) Can lid shell and manufacturing method for same, and forming device
US6881494B2 (en) Method for shaping an initial profile or a similar workpiece using an internal high pressure and profile therefor
CN105848801B (en) Press molding method and method for manufacturing press molded member
CN113874134A (en) Method for manufacturing stamped member and die for shape correction
CN113766980B (en) Press forming method
JP3642244B2 (en) Polygonal cross-section member hydraulic forming method, hydraulic forming mold and automobile polygon cross-section member
JP2003071527A (en) Aluminum extrusion material for hydraulic bulge forming and hydraulic bulge forming method by which extrusion material works as stock material
JP2023009470A (en) Manufacturing method of can
JP7544109B2 (en) Seamless can body and method for manufacturing seamless can body
JP7402835B2 (en) Seamless can body and method for manufacturing seamless can body
JP4573985B2 (en) Smooth neck molding method and tool for thin-walled cans
JP2017217700A (en) Can manufacturing method
JPH04123825A (en) Manufacture of di can body of high pressure withstanding strength and can body
CA2548271A1 (en) Method for producing a hollow profile

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23917584

Country of ref document: EP

Kind code of ref document: A1