JP4573985B2 - Smooth neck molding method and tool for thin-walled cans - Google Patents

Smooth neck molding method and tool for thin-walled cans Download PDF

Info

Publication number
JP4573985B2
JP4573985B2 JP2000315738A JP2000315738A JP4573985B2 JP 4573985 B2 JP4573985 B2 JP 4573985B2 JP 2000315738 A JP2000315738 A JP 2000315738A JP 2000315738 A JP2000315738 A JP 2000315738A JP 4573985 B2 JP4573985 B2 JP 4573985B2
Authority
JP
Japan
Prior art keywords
neck
diameter
convex arc
necking
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000315738A
Other languages
Japanese (ja)
Other versions
JP2002120031A (en
Inventor
秀記 宇都宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiwa Can Co Ltd
Original Assignee
Daiwa Can Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiwa Can Co Ltd filed Critical Daiwa Can Co Ltd
Priority to JP2000315738A priority Critical patent/JP4573985B2/en
Publication of JP2002120031A publication Critical patent/JP2002120031A/en
Application granted granted Critical
Publication of JP4573985B2 publication Critical patent/JP4573985B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は飲料用缶などの缶の開口端部分を小径に成形するための成形方法およびその方法を実行するために使用する成形工具に関し、特に、径が連続的に変化するなだらかに結ばれたネックイン部を多工程で成形する技術に関するものである。
【0002】
【従来の技術】
缶体の開口端部に形成されるネックイン部は、缶胴に対して小径であるために開口端部に取り付ける缶蓋を小径にすることができ、その結果、使用する蓋材料を節約する効果がある。そのため、最近では、より短いネック長さでネックイン部が形成できる肩部から首部へとなだらかに接続されているスムーズネックが増えている。スムーズネックの成形方法として、スピニング方式と多工程ダイ方式(例えば特開平6−254640号に記載の方式)が知られているが、多工程ダイ方式の方が缶体の内外面の塗膜に与える悪影響が小さいなど、缶の品質の点で有利である。
【0003】
一方、飲料用絞りしごき缶はビール・炭酸飲料など充填後の缶内が陽圧になるガス飲料用に開発された容器であり、この種の缶では、缶内部の圧力によって側壁の凹みが抑制されるので、側壁の薄肉化、すなわち容器の軽量化が可能であり、資源・エネルギーを節約できる容器として広く使用されている。また、茶類やスポーツドリンクなどのノンガス飲料にも液体窒素充填法の適用で使用可能である。
【0004】
現在市販されている絞りしごき缶の側壁厚は、スチール缶の場合、例えば厚肉部、すなわちネックイン予定部で0.140〜0.150mmであるが、近年、飲料缶においては、コストダウン並びに材料の節減が今まで以上に重要視されるようになり、一層の軽量化、すなわち素材と側壁の薄肉化が望まれている。しかし、ネックイン予定部を従来のものよりも薄肉化した場合は、従来のスムーズネック成形ではネックイン部にしわや陥没などの成形不良が発生しやすいという問題があった。
【0005】
すなわち図8(A)〜(C)に示すように、缶体1の開口端部をネッキングダイ2に挿入して小径に加工した場合、ネッキングダイ2に挿入された缶体1の首部の先端部分は、ネッキングダイ2の内面形状に沿って成形され、前のネッキング工程で成形された開口端部分を上記ネッキングダイ2に挿入しノックアウトポンチ15に付き当てたネッキング開始時点において、ネック部11の先端はある程度内側に湾曲して縮径される。そのときに生じる外周側に凸を成す部分、すなわち、倒れ込み部6(平均傾斜角度θB がネッキング角度θneckより小さい)ができる。
【0006】
図8(B)に示すように、ネッキングダイ2が缶体1の軸線方向に相対的に移動することによりネッキング成形が進行していくと、外周側に凸をなす倒れ込み部6が、前のネッキング工程で形成されているネッキング角度θneckの傾斜部5に近づいていく。
【0007】
図8(C)に示す最終工程において、平均傾斜角度θB がネッキング角度θneckより小さいために倒れ込み部6が生じ、その倒れ込み部6が缶内方に最終工程まで残ると、この倒れ込み部6の余肉によって円周方向に圧縮応力が生じてしまい、ネックイン部3にしわや陥没などの成形不良が発生しやすくなるという問題があった。
【0008】
本発明者は、このような成形不良を解消するためのネッキングダイの形状を、日本塑性加工学会誌「塑性と加工」第39巻第444号によって既に提案した。
ここでの提案の内容は、ネッキングダイの先端部分側の円筒部に続けて、ネッキング角度とほぼ同等の傾斜角の第1加工面を形成するとともに、その第1加工面に続けて、傾斜角が更に大きい第2加工面を設け、その円筒部と第1加工面、および第1加工面と第2加工面とのそれぞれのつなぎ部分をエッジが生じないように円弧面としたネッキングダイ形状である。
【0009】
【発明が解決しようとする課題】
前掲の特開平6−254640号公報に記載されたネッキングダイの形状は、ネッキングダイが最大に押し込まれる位置精度やネック部の高さ精度にばらつきがある場合であっても、胴部の座屈を防止することを目的として、ネッキングダイと缶体ネックイン成形部との間に空隙が生じる形状としたものである。しかしながら、この公報に記載された形状では、上述したいわゆる倒れ込み部に起因する成形不良を解消するように作用する部分が設けられていないので、ネックイン加工の最終段階で生じるしわや陥没などの成形欠陥を確実に解消することは困難である。
【0010】
また、本発明者が既に提案したネッキングダイ形状では、ネックイン予定部が従来の0.140〜0.150mmで開口部の1工程あたりの縮径量がΔD=0.9〜1.0mmのように小さい場合には、成形不良を抑制できるが、工程数を削減して設備コストを下げるために、1工程ごとの縮径量を増大させた場合やネックイン予定部を薄肉化した場合には、未だしわや陥没などの成形不良が生じることがあり、更に改善する余地があった。
【0011】
本発明は、上記の技術的課題に着目してなされたものであり、スムーズネッキング成形開始時に発生するネック部の倒れ込みに起因するしわや陥没等の成形不良を防止し、ネッキング速度が速くても胴部の座屈を生じにくくし、更に、ネックイン予定部を薄肉化し、かつ工程あたりの縮径量ΔDを1.20mmまで大きくしてもしわなどの成形不良を防止することのできるスムーズネック成形方法とその方法で使用する成形工具とを提供することを目的とするものである。
【0012】
【課題を解決するための手段およびその作用】
ネッキングダイを用いて、缶体の開口端部に径が順次加工工程でなだらかに変化するスムーズネックイン部を形成する行程は大きく3つに分類することができる。第1の行程は、缶体の開口端部がネッキングダイに接触してからノックアウトポンチに接触するまでのネック成形初期行程であり、第2の行程は第1の行程に引き続いてネックイン部を缶胴の軸線方向と平行な方向に延長させる行程、第3の行程は第2の行程に続いて成形中のネックイン部を前のネッキング工程までで成形されたネック傾斜部にスムーズにつなぎ合わせる行程であり、本発明者は薄肉缶のスムーズネック成形において、第1乃至第2の行程において何ら不具合が生じない場合においても第3の行程、すなわちつなぎ部成形においてしわや陥没が発生することがあることに着目し、その成形不良の抑制方法を鋭意研究した結果、本発明をなすに到ったのである。
【0013】
すなわち請求項1の発明は、有底円筒状の缶と第1ネッキングダイとの間に相対的な軸方向移動を生じさせて、前記有底円筒状の缶の開口端部分を縮径させてネックイン部を形成した後、そのネックイン部にその開口端側から第2回目以降のネッキングダイによって縮径加工を施すことにより、開口端側の首部から曲率部および傾斜部ならびに肩部をなだらかに連続させて成形する薄肉缶用スムーズネック成形方法において、前記第2回目以降のネッキングダイは、前記ネックイン部より小さい内径の円筒部と、その円筒部の軸線方向に続けて形成されかつ内径が次第に増大することにより前記缶の中心軸線側に凸となる第1凸円弧部からなる曲率部用加工面と、前記第1凸円弧部の最大外径部に続けて前記缶の中心軸線側に凸となる形状に形成されかつ前記第1凸円弧部の曲率半径より小さい曲率半径の第2凸円弧部を含むつなぎ部用加工面とを備え、前記首部の先端部を、前記第1凸円弧部に接触させた後にノックアウトポンチに接触させる第1行程と、前記第2回目以降のネッキングダイを前記缶の軸線方向に相対的に移動させて前記首部を縮径させる第2の行程と、前記缶における前記曲率部と前記傾斜部との接続点を前記つなぎ部用加工面に前記缶の軸線方向において対向させた状態で前記第2回目以降のネッキングダイを前記缶の軸線方向に相対的に更に移動させることにより、前工程で既に成形されている曲率部を前記傾斜部の前記開口端側への延長形状に成形する第3の行程とからなり、前記接続点に対向する前記つなぎ部用加工面上の点における接線の前記缶の中心軸線に対する角度を、前工程で既に成形されている前記傾斜部の前記缶の中心軸線に対する角度より大きくさせて前記第2回目以降のネッキングダイによる加工をおこなうことを特徴とする薄肉缶用スムーズネック成形方法である。
【0014】
したがって請求項1の発明によれば、第2回目以降のネッキング加工によってつなぎ成形を行う場合、第1ネッキングダイで成形されたネックイン部のうち、前記第1ネッキングダイの中心軸線を通る断面において、縮径首部近傍の缶内側に凸をなす曲率部を有する部分がネッキングダイの中心軸線とネックイン部の肩部と曲率部との間に位置する傾斜部が延長するように整形する工程で、第3の工程のつなぎ成形で首部の先端部が第1凸円弧部のネッキングダイに接触する点と首部の先端部が第1凸円弧部のネッキングダイに接触して縮径されるときにできる外側に凸状の湾曲した部分、即ち、倒れ込み部が第1凸円弧部に接触しながら移動するが、その第1凸円弧部に続けて形成されている第2凸円弧部の曲率半径が第1凸円弧部より小さくなっていて、缶の軸線方向に対する後退の度合いが第1凸円弧部より大きくなっているので、その倒れ込み部の傾斜角度(一般にはネッキングダイのダイ半角の1/2に相当する角度)が、既に成形されている傾斜部の角度まで速やかに近づけることが可能になり、つなぎ成形終了時点では倒れ込み部と傾斜部との接続部がスムーズに成形される。更に、前記ネックイン部の曲率部と傾斜部との接続点と対向する前記第2凸円弧部上に位置する点における接線角度は、前のネッキング工程で成形された前記傾斜部の缶中心軸線とのなす角度より大きいので、前記第3行程におけるつなぎ成形中に生じる倒れ込み部の傾斜角度が徐々に大きくなり、つなぎ成形の最終段階ではその傾斜角度が、既に成形されている傾斜部の缶中心軸線との成す角度、すなわち傾斜部の角度とほぼ同一となるので、該倒れ込み部が既に成形されている傾斜部により内側に押し込まれることがなくなるので、ネックイン部のしわや陥没などの成形不良が抑制もしくは防止される。
【0015】
また、請求項2の発明は、請求項1の発明における、前記接線と前記缶の中心軸線との成す角度が、前記傾斜部の前記缶の中心軸線に対する角度の1.5倍乃至2.7倍であることを特徴とする薄肉缶用スムーズネック成形方法である。
【0016】
請求項2の発明によれば、前記接線角度は、前記傾斜部の缶中心軸線との成す角度の1.5乃至2.7倍であるので、前記第3の行程におけるつなぎ成形中に生じる倒れ込み部の傾斜角度を、傾斜部の缶中心軸線との成す角度まで引き起こすことができるので、倒れ込み部を徐々に大きくさせることができ、倒れ込み部が既に成形されている傾斜部より内側に押し込まれることがなくなるので、ネックイン予定部の肉厚が薄い場合であってもスムーズなネックイン形状に成形できる。
【0017】
仮に、接線角度が1.5倍より小さいと、ネックイン開始部に生じる倒れ込み部の影響でつなぎ成形の終了時にしわなどが生じやすくなり好ましくない。一方、接線角度が2.7倍より大きいと、接線角度が実質的に90度を超えることになり好ましくない。
【0018】
請求項3の発明は、有底円筒状の缶と第1ネッキングダイとの間に相対的な軸方向移動を生じさせて、前記有底円筒状の缶の開口端部分を縮径させてネックイン部を形成した後、そのネックイン部にその開口端側から第2回目以降のネッキングダイによって縮径加工を施すことにより、開口端側の首部から曲率部および傾斜部ならびに肩部をなだらかに連続させて成形する薄肉缶用スムーズネック成形工具であって、前記首部から傾斜部に到るつなぎ部を縮径加工するつなぎ部加工面を有し、該つなぎ加工面が、前記首部を挿入させる円筒部と、その円筒部に軸線方向に続けて形成されかつ内径が次第に増大することにより前記缶の中心軸線側に凸となる第1凸円弧部と、前記第1凸円弧部の最大外径部に続けて前記缶の中心軸線側に凸となる形状に形成されかつ前記第1凸円弧部の曲率半径より小さい曲率半径の第2凸円弧部とを備えていることを特徴とする薄肉缶用スムーズネック成形工具である。
【0019】
請求項3の発明によれば、縮径首部近傍の缶内側に凸をなす曲率部がネックイン部の肩部と曲率部との間に位置する傾斜部が延長するように整形するつなぎ成形時に、首部の先端部が第1凸円弧部のネッキングダイに接触して縮径されるときにできる外側に凸状の湾曲した部分、即ち、倒れ込み部に伴うネックイン部のしわや陥没などの発生が抑制されることで、スムーズネック成形一工程あたりの縮径量を大きくすることができるので、工程数の削減が可能になる。
【0020】
【発明の実施の形態】
次に本発明を図に示す具体例に基づいて説明する。図1は、スムーズネック成形工具におけるネッキングダイの形状を示す部分断面図であり、図2は、スムーズネック成形工具を使用した場合のつなぎ成形の状況を概略的に示す部分断面図である。
【0021】
本発明の成形工具で成形する缶10は、例えば図3(A)に示す形状のDI缶であって、底の付いた円筒体である。図3(B)は、開口端部分を縮径しネック部11とネックイン部13とが形成された成形途中の缶を示し、図3(C)は、複数回のネッキング成形工程を経て成形されたネック部11Cとスムーズネック部13Cを有するスムーズネック成形缶を示す。そして、本発明は、そのネック部11Cと缶10のいわゆる本体側壁部分12とをつなぐネック部11Cから、連続的になだらかに変化し、しわや段のないスムーズなつなぎ部を有するスムーズネック部13Cを形成するための薄肉缶用スムーズネック成形方法とそれに用いる成形工具に関するものである。
【0022】
図3(C)に示すスムーズネック成形缶のスムーズネック成形は、図1に示されるネッキングダイ14およびノックアウトポンチ15を使用し、複数回に分けて缶10の開口端部分を次第に小径に変形されて行われる。本発明に係る成形工具は、第2回目以降のネッキング成形で使用されるものであって、ネッキングダイ14の加工面の形状に特徴がある。
【0023】
図1及び図4は、その薄肉缶用スムーズネック成形方法とそれに用いる成形工具の主要部分を模式的に示しており、缶10の開口端部が挿入されるネッキングダイ14の内周側に缶10の開口端部を当接させて、成形後の缶10をネッキングダイ14から押し出すノックアウトポンチ15が配置されている。このノックアウトポンチ15は、缶10の開口端部の内部に挿入されて缶10の開口端部の内径を規制するコア16に相当する部分を有している。
【0024】
前のネッキング工程で成形された缶10の開口端部側には、図3(B)及び図4に示すように成形途中のほぼ円筒状をなすネック部11が形成されており、それに続くネックイン部13は肩部21から縮径された首部22を有するネック部11へとなだらかに結ばれた傾斜状になっている。ネッキングダイ14は、そのネック部11を形成する円筒部17と、その円筒部17に続けて、母線に沿う断面すなわちネッキングダイ14の中心軸線を通る面での断面が中心線側に凸状に湾曲する第1凸円弧部18とそれに続く第2凸円弧部19とを後述するように備えている。この第2凸円弧部19は、母線に沿う断面すなわち前記中心軸線を通る面での断面が中心線側に凸となり、かつ第1凸円弧部18と内接し、次第に内径が大きくなる円弧面を形成する部分であり、その曲率半径R2 は第1凸円弧部18の曲率半径R1 より小さい半径である。
【0025】
その第1凸円弧部18の内径は、円筒部17側で最小となっており、その最小径側の端部で円筒部17に接続されている。また、第1凸円弧部18の内径は、母線に沿う断面が所定の曲率半径R1 を有する円弧状の加工面となっている。この第1凸円弧部18とそれに続く第2凸円弧部19とは、中心角θ1 が所定の角度(本例では30度)に設定されており、その中心角θ1 の位置で第1凸円弧部18と第2凸円弧部19とが内接し、2つの円弧状の加工面が、スムーズネック部加工面、つまり、つなぎ部加工面として形成されている。
【0026】
更に、図1に示すように、その第2凸円弧部19における前記円筒部17の内面から半径方向に所定の寸法r2 (これについては後述する)の点Kでの接線角度θ2 が、ネッキング角度θneck(前のネッキング工程で成形されたネックイン部13の傾斜角度)より大きい角度となるように、第2凸円弧部19の曲率半径R2 が定められている。
【0027】
前述したように、ネックイン成形部を軸線方向に延長させる過程で、ネックイン開始時点において、中心軸線に対する平均傾斜角度がネッキングダイ14の接線角度θ2の1/2になる倒れ込み部6が生じることは、既に本発明者が日本塑性加工学会誌「塑性と加工」第39巻第444号で発表したが、更に研究を重ねた結果、前段で成形された、即ち、前のネッキング工程で成形されたネックイン部13の径までネッキング加工の施された傾斜部20の中心軸線との成す角度θneckより接線角度が小さくなり始める点Q、言い換えれば、前記ネックイン部13において内側に凸をなす曲率部Pと傾斜部20との接続点に相当する点Qの前記円筒部17の内面からの半径方向距離をr2 とした場合、第2凸円弧部19の加工面において前記円筒部17の内面から半径方向距離r2 だけ隔たった点Kにおける接線角度θ2 をネッキング角度θneckより大きくすることがスムーズネック成形上重要であることがわかった。これらの角度比(θ2 /θneck)は、1.5乃至2.7の範囲に設定することが重要であり、好ましくは2.0乃至2.1とする。その角度比が1.5より小さい場合には、図8に示すようなネックイン開始部に生じるいわゆる倒れ込み部6の影響がネックイン成形の第3行程であるつなぎ成形の終了時まで残り易く、ネックイン予定部の板厚が例えば0.120mmのスチール製薄肉缶、0.130mmのアルミニウム製薄肉缶の場合には、スムーズネックイン部に陥没やしわなどの成形不良が発生しやすい。また、一方、缶のネッキング角度は28度乃至33度が成形性、耐座屈性の観点から好まれて採用されているため、スムーズネック成形のつなぎ成形終了時点におけるつなぎ部加工面の接線角度θ2 がネッキング角度θneckの2.7倍より大きい場合には、スムーズネック成形工具におけるつなぎ部加工面の接線角度θ2 が実質的に90度を超えることになり、実用的でないばかりか、つなぎ部成形の第3の行程において前のネッキング工程で成形された曲率部Pを傾斜部20が延長するように整形することが難しくなり、ネックイン部に成形の跡が目立つようになるため好ましくない。従って、つなぎ部成形をよりスムーズに行うには、ネッキングダイ14のつなぎ部成形が終了する時点における加工面の接線角度θ2 がネッキング角度θneckの1.5倍乃至2.7倍に設定する必要があり、ネックイン予定部の板厚が薄い場合には、2.0倍乃至2.1倍にすることが好ましい。
【0028】
ここで、上記の各寸法および角度の関係を示すと以下の通りである。先ず、第2凸円弧部19の円弧のうち前記中心軸線に最も近い部分と円筒部17の内面との半径方向での距離Aは、
A=R1 −R2 −(R1 −R2 )cosθ1
=r2 −R2 (1−cosθ2 )
であるから、第2凸円弧部19の曲率半径R2 は、
R2 ={r2 −R1 (1−cosθ1 )}/(cosθ1 −cosθ2 )
で表される。そして、r2 は、
r2 =ΔD/2+R1 (1−cosθneck)(ΔDは工程当たりの縮径量)
であるから、第1凸円弧部18の曲率半径R1 および各凸円弧部18,19の共通接線の中心軸線に対する角度、すなわち第1凸円弧部18の中心角度θ1 ならびにネッキング角度θneck、第2凸円弧部19における円筒部17の内面から半径方向にr2 の点での接線角度θ2と工程当たりの縮径量ΔDを与えることにより、第2凸円弧部19の曲率半径R2 が求められる。
【0029】
図5乃至図7に示すように、ネッキングダイ14が缶10の軸線方向に相対的に移動することにより、前のネッキング工程で成形されたネックイン部13の首部の先端部が、第1凸円弧部18に接触してからノックアウトポンチ15に接触し、そのときに生じる外周側に凸をなす倒れ込み部6を、図6に示すように、ネッキング成形が進行し、その倒れ込み部6を前のネッキング工程で既に成形されているネックイン部13の傾斜部20につなげる行程(図7)に到る。その場合、倒れ込み部6が前のネッキング工程で形成されているネッキング角度θneckの傾斜部20に近づいていき最終的には、そのネッキング角度θneckの傾斜部20になるように外周側に引き起こされ整形される。本発明に係る上記のネッキングダイ14では、点Qに対向する第2凸円弧部19上の点Kにおける接線角度θ2 がネッキング角度θneckの1.5倍乃至2.7倍になっているので、図6の成形途中に示すように、ネッキングダイ14の第1凸円弧部18の加工面で倒れ込み部6を成形していくと、倒れ込み部6が前のネッキング工程で成形されたネックイン部13の傾斜部20になるように徐々に引き起こされていく。その時に、接触点(首部の先端部が第1凸円弧部18のネッキングダイ14に接触する点)が第1凸円弧部18から第2凸円弧部19に移るために、その倒れ込み部6の平均傾斜角度θB を、既に成形されている傾斜部20の角度まで近づけることが可能になるので、倒れ込み部6の平均傾斜角度θB をネッキング角度θneckまで引き起こすことができる。即ち、平均傾斜角度θB の立ち上がりを大きくすることが可能になる。図7は、ネッキング角度θneckと倒れ込み部6の平均傾斜角度θB が同一になり倒れ込み部6が消滅した最終段階の図を示すもので、第3の行程のつなぎ部を成形する最終段階では、倒れ込み部6の平均傾斜角度θB を徐々にネッキング角度θneckまで引き起こすように、第2凸円弧部19の外面がネックイン部13の傾斜部20から後退することで、倒れ込み部6の立ち上がりを大きくすることができる。よって、つなぎ部を成形する最終段階では倒れ込み部6をネックイン部13から消滅することができるので、倒れ込み部6が既に成形されているネックイン部13の傾斜部20より缶内方に押し込まれることがなくなり、ネックイン部でしわや陥没などの成形不良が抑制もしくは防止される。
【0030】
本発明の実施形態では、第3の行程でのつなぎ部の成形を、第1凸円弧部18と第2凸円弧部19とで構成される加工面で行うようにして加工面を単純化しているが、これに限定されずに、第1凸円弧部18と第2凸円弧部19との間に一部直線部を含んだ加工面や、第2凸円弧部19を複数の曲率半径で構成された加工面にしても同様な目的を達成することができる。
【0031】
次に本発明の効果を確認するために行った実施例および比較例を示す。
【実施例1】
ネックイン予定部のスチール肉厚が0.130mmになるように絞り−しごき加工を行い、所定高さにトリムした公称211径(そのまま缶蓋を巻締めた場合の巻締部の外径が2+11/16インチ)の缶を本発明のスムーズネック成形工具を用いて、7工程で公称206径(缶蓋を巻締めた場合の巻締部の外径が2+6/16インチ)までダイスムーズネックイン加工を試みた。しわや陥没などの成形不良を生じることなく、成形可能であった。
【0032】
【実施例2】
ネックイン予定部のスチール肉厚が0.130mmになるように絞り−しごき加工を行い、所定高さにトリムした公称211径の缶胴を本発明のスムーズネック成形工具を用いて、9工程で公称204径までダイスムーズネックイン加工を試みた。しわや陥没などの成形不良を生じることなく、成形可能であった。
【0033】
【実施例3】
ネックイン予定部のスチール肉厚が0.130mmになるように絞り−しごき加工を行い、所定高さにトリムした公称211径の缶胴を本発明のスムーズネック成形工具を用いて、11工程で公称202径までダイスムーズネックイン加工を試みた。しわや陥没などの成形不良を生じることなく、成形可能であった。
【0034】
【実施例4】
ネックイン予定部のスチール肉厚が0.120mmになるように絞り−しごき加工を行い、所定高さにトリムした公称211径の缶胴を本発明のスムーズネック成形工具を用いて、7工程で公称206径までダイスムーズネックイン加工を試みた。しわや陥没などの成形不良を生じることなく、成形可能であった。
【0035】
【実施例5】
ネックイン予定部のスチール肉厚が0.120mmになるように絞り−しごき加工を行い、所定高さにトリムした公称211径の缶胴を本発明のスムーズネック成形工具を用いて、9工程で公称204径までダイスムーズネックイン加工を試みた。しわや陥没などの成形不良を生じることなく、成形可能であった。
【0036】
【実施例6】
ネックイン予定部のスチール肉厚が0.120mmになるように絞り−しごき加工を行い、所定高さにトリムした公称211径の缶胴を本発明のスムーズネック成形工具を用いて、11工程で公称202径までダイスムーズネックイン加工を試みた。しわや陥没などの成形不良を生じることなく、成形可能であった。
【0037】
【比較例1】
ネックイン予定部のスチール肉厚が0.120mmになるように絞り−しごき加工を行い、所定高さにトリムした公称211径の缶胴を、つなぎ成形が終了する点における接線角がネッキング角度θneckの1.35倍のスムーズネック成形工具を用いて、11工程で公称202径までダイスムーズネックイン加工を試みた。その結果、ネックイン部の陥没とネック部のしわが散発し、良好な成形性が得られなかった。
【0038】
【発明の効果】
以上説明したように、本発明の薄肉缶用スムーズネック成形方法とそれに用いる成形工具によれば、ネックイン予定部がかなり薄肉であっても、またネックイン加工の縮径量が大きい場合であっても、ネックイン部にしわや陥没などの欠陥を生じることなく良好にスムーズネック成形を行うことができる。そのため、本発明によれば、ネックイン予定部の薄肉化及びネックイン部の小径化によって材料資源を更に節減することができる。
【図面の簡単な説明】
【図1】本発明に係るスムーズネック成形工具におけるネッキングダイの形状を示す部分断面図である。
【図2】本発明に係るスムーズネック成形工具を使用した場合のつなぎ成形の状況を概略的に示す部分断面図である。
【図3】ネックイン加工前の缶体の形状およびスムーズネックイン加工を施した缶体の形状を示す図である。
【図4】スムーズネックイン加工の加工過程の一つを示す模式的な部分断面図である。
【図5】本発明のネッキングダイによる加工過程の初期状態を模式的に示す部分断面図である。
【図6】本発明のネッキングダイによる加工過程の中間状態を模式的に示す部分断面図である。
【図7】本発明のネッキングダイによる加工過程の終期状態を模式的に示す部分断面図である。
【図8】従来のネッキングダイにより生じる成形不良の状況を模式的に示す部分断面図である。
【符号の説明】
10…缶、 11…ネック部、 12…本体部分、 13…ネックイン部、 14…ネッキングダイ、 17…円筒部、 18…第1凸円弧部、 19…第2凸円弧部、 R1 …(第1凸円弧部の)曲率半径、 R2 …(第2凸円弧部の)曲率半径。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a molding method for molding an opening end portion of a can such as a beverage can into a small diameter and a molding tool used for executing the method, and in particular, the diameter is connected smoothly and continuously. The present invention relates to a technique for forming a neck-in portion in multiple steps.
[0002]
[Prior art]
Since the neck-in portion formed at the opening end of the can body is small in diameter relative to the can body, the can lid attached to the opening end can be reduced in diameter, thereby saving the lid material to be used. effective. For this reason, recently, the number of smooth necks that are gently connected from the shoulder to the neck where a neck-in portion can be formed with a shorter neck length has increased. As a method for forming a smooth neck, a spinning method and a multi-step die method (for example, a method described in JP-A-6-254640) are known, but the multi-step die method is more suitable for coating the inner and outer surfaces of the can body. This is advantageous in terms of the quality of the can, such as having a small adverse effect.
[0003]
On the other hand, squeezed and squeezed cans for beverages have been developed for gas beverages where the inside of cans after filling such as beer and carbonated beverages has a positive pressure, and in this type of cans, the depression inside the side walls is suppressed by the pressure inside the cans. Therefore, the side wall can be thinned, that is, the container can be reduced in weight, and is widely used as a container that can save resources and energy. It can also be used for non-gas beverages such as teas and sports drinks by applying the liquid nitrogen filling method.
[0004]
In the case of a steel can, the side wall thickness of a squeezed iron can that is currently on the market is, for example, 0.140 to 0.150 mm at a thick portion, that is, a neck-in planned portion. Material saving has become more important than ever, and further weight reduction, that is, thinner material and sidewalls, is desired. However, when the neck-in planned portion is made thinner than the conventional one, there is a problem that the conventional smooth neck molding tends to cause molding defects such as wrinkles and depressions in the neck-in portion.
[0005]
That is, as shown in FIGS. 8A to 8C, when the opening end of the can 1 is inserted into the necking die 2 and processed into a small diameter, the tip of the neck of the can 1 inserted into the necking die 2 The portion is formed along the inner surface shape of the necking die 2, and when the necking start point when the opening end portion formed in the previous necking step is inserted into the necking die 2 and applied to the knockout punch 15 is started. The tip is curved inward to some extent and is reduced in diameter. A convex portion on the outer peripheral side generated at that time, that is, a tilted portion 6 (average inclination angle θB is smaller than necking angle θneck) is formed.
[0006]
As shown in FIG. 8B, when the necking die 2 moves relatively in the axial direction of the can body 1 and the necking molding proceeds, the collapsed portion 6 that protrudes toward the outer peripheral side is It approaches the inclined portion 5 of the necking angle θneck formed in the necking step.
[0007]
In the final process shown in FIG. 8 (C), the average tilt angle θB is smaller than the necking angle θneck, so that a collapsed portion 6 is formed. If the collapsed portion 6 remains inside the can until the final process, the remaining portion of the collapsed portion 6 is left. There is a problem that compressive stress is generated in the circumferential direction due to the meat, and molding defects such as wrinkles and depressions are likely to occur in the neck-in portion 3.
[0008]
The present inventor has already proposed the shape of a necking die for eliminating such a molding defect in the Journal of Plasticity Processing, Vol. 39, No. 444.
The content of the proposal here is to form a first machining surface having an inclination angle substantially the same as the necking angle following the cylindrical portion on the tip portion side of the necking die, and to provide an inclination angle following the first machining surface. Is a necking die shape in which a larger second machining surface is provided, and the connecting portion between the cylindrical portion and the first machining surface and between the first machining surface and the second machining surface is an arc surface so that no edge is generated. is there.
[0009]
[Problems to be solved by the invention]
The shape of the necking die described in the above-mentioned Japanese Patent Application Laid-Open No. 6-254640 is the case where the neck portion is buckled even when the position accuracy in which the necking die is pushed to the maximum and the height accuracy of the neck portion vary. In order to prevent this, a shape in which a gap is generated between the necking die and the can body neck-in molded part is formed. However, the shape described in this publication does not have a portion that acts to eliminate the molding defects caused by the so-called collapsed portion described above, so molding such as wrinkles and depressions that occur in the final stage of neck-in processing. It is difficult to reliably eliminate the defects.
[0010]
Further, in the necking die shape already proposed by the present inventor, the neck-in planned portion is 0.140 to 0.150 mm in the conventional case, and the diameter reduction amount per step of the opening is ΔD = 0.9 to 1.0 mm. If it is so small, molding defects can be suppressed, but in order to reduce the number of processes and reduce equipment costs, when the diameter reduction amount for each process is increased or when the neck-in scheduled part is thinned However, molding defects such as wrinkles and depressions still occurred, and there was room for further improvement.
[0011]
The present invention has been made paying attention to the technical problems described above, and prevents molding defects such as wrinkles and depressions caused by the collapse of the neck portion that occur at the start of smooth necking molding, even if the necking speed is high. Smooth neck that makes it difficult to buckle the body part, and that can reduce molding defects such as wrinkles even if the neck-in planned part is thinned and the diameter reduction per process ΔD is increased to 1.20 mm. An object of the present invention is to provide a forming method and a forming tool used in the forming method.
[0012]
[Means for Solving the Problem and Action]
Using a necking die, the process of forming a smooth neck-in portion in which the diameter gradually changes in a sequential processing step at the opening end portion of the can body can be roughly classified into three. The first stroke is a neck forming initial stroke from when the open end of the can body contacts the necking die until it contacts the knockout punch, and the second stroke is the neck-in portion following the first stroke. The process of extending in a direction parallel to the axial direction of the can body, the third process smoothly connects the neck-in part being formed to the neck inclined part formed up to the previous necking process following the second process. In the smooth neck molding of thin-walled cans, the present inventor may cause wrinkles and depressions in the third stroke, that is, the joint molding, even if no problems occur in the first and second strokes. As a result of diligent research on a method for suppressing molding defects, focusing on a certain point, the present invention has been achieved.
[0013]
That is, according to the first aspect of the present invention, a relative axial movement is generated between the bottomed cylindrical can and the first necking die, and the opening end portion of the bottomed cylindrical can is reduced in diameter. After the neck-in portion is formed, the neck-in portion is subjected to diameter reduction processing from the opening end side by the second and subsequent necking dies, so that the curvature portion, the inclined portion, and the shoulder portion are gently formed from the neck portion on the opening end side. In the smooth neck molding method for thin-walled cans that are continuously molded, the second and subsequent necking dies are formed continuously with the cylindrical portion having an inner diameter smaller than the neck-in portion, and the axial direction of the cylindrical portion. Is increased to the central axis side of the can, and the curved surface of the first convex arc portion is convex to the central axis side of the can, and the maximum outer diameter portion of the first convex arc portion is followed by the central axis side of the can. In a shape that becomes convex And a machining surface for a linking part including a second convex arc part having a radius of curvature smaller than the curvature radius of the first convex arc part, the tip part of the neck part being brought into contact with the first convex arc part A first stroke to be brought into contact with the knockout punch later, a second stroke in which the necking die after the second time is moved relatively in the axial direction of the can to reduce the diameter of the neck, and the curvature portion in the can And further moving the second and subsequent necking dies relatively in the axial direction of the can in a state where the connection point between the inclined portion and the inclined portion faces the work surface for the connecting portion in the axial direction of the can. A point on the work surface for the joint portion that is formed by a third step of forming the curved portion already formed in the previous step into an extended shape of the inclined portion toward the opening end side, Of the tangent of the can Smoothing for thin-walled cans, characterized in that the angle with respect to the center axis is made larger than the angle with respect to the central axis of the can of the inclined portion that has already been formed in the previous step, and the second and subsequent necking dies are used for processing. This is a neck forming method.
[0014]
Therefore, according to the first aspect of the present invention, in the case where the joining is formed by the second or subsequent necking, in the section passing through the central axis of the first necking die among the neck-in portions formed by the first necking die. In the process of shaping the portion having a curvature portion that protrudes inside the can near the reduced diameter neck portion so that the inclined portion located between the central axis of the necking die and the shoulder portion and the curvature portion of the neck-in portion extends. When the tip of the neck comes into contact with the necking die of the first convex arc part and the tip of the neck comes into contact with the necking die of the first convex arc part in the joint forming of the third step, and the diameter is reduced. The outwardly convex curved portion, that is, the falling portion moves while contacting the first convex arc portion, but the curvature radius of the second convex arc portion formed subsequent to the first convex arc portion is Smaller than the first convex arc Since the degree of retraction with respect to the axial direction of the can is larger than that of the first convex arc portion, the inclination angle of the falling portion (generally an angle corresponding to half the die half angle of the necking die) is It becomes possible to quickly approach the angle of the already formed inclined portion, and the connecting portion between the falling portion and the inclined portion is smoothly formed at the end of the connecting forming. Further, the tangent angle at the point located on the second convex arc portion facing the connection point between the curvature portion and the inclined portion of the neck-in portion is the can center axis of the inclined portion formed in the previous necking step. Therefore, the inclination angle of the fold-down portion generated during the joint molding in the third stroke is gradually increased, and the inclination angle is the center of the can of the already-formed slope portion at the final stage of the joint molding. Since the angle formed with the axis, that is, the angle of the inclined portion is almost the same, the collapsed portion is not pushed inward by the already formed inclined portion, so molding defects such as wrinkles and depressions in the neck-in portion Is suppressed or prevented.
[0015]
According to a second aspect of the present invention, in the first aspect of the present invention, an angle formed by the tangent line and the central axis of the can is 1.5 times to 2.7 times an angle of the inclined portion with respect to the central axis of the can. It is a smooth neck molding method for thin-walled cans characterized by being doubled.
[0016]
According to the invention of claim 2, since the tangential angle is 1.5 to 2.7 times the angle formed by the can center axis of the inclined portion, the collapse occurs during the joint molding in the third stroke. The inclination angle of the part can be caused to the angle formed by the can center axis of the inclination part, so that the falling part can be gradually increased, and the falling part is pushed inward from the already formed inclined part. Therefore, even if the neck-in planned portion is thin, it can be formed into a smooth neck-in shape.
[0017]
If the tangential angle is smaller than 1.5 times, wrinkles are likely to occur at the end of joining molding due to the influence of the fall-down portion generated at the neck-in start portion, which is not preferable. On the other hand, when the tangent angle is larger than 2.7 times, the tangential angle substantially exceeds 90 degrees, which is not preferable.
[0018]
According to a third aspect of the present invention, a relative axial movement is generated between the bottomed cylindrical can and the first necking die, and the opening end portion of the bottomed cylindrical can is reduced in diameter. After forming the in part, by applying a diameter reduction process to the neck in part from the opening end side with the necking die for the second and subsequent times, the curvature part, the inclined part and the shoulder part from the opening end side gently It is a smooth neck forming tool for thin-walled cans that is formed continuously, and has a connecting portion processing surface for reducing the diameter of the connecting portion from the neck portion to the inclined portion, and the connecting processing surface inserts the neck portion. A cylindrical portion, a first convex arc portion formed on the cylindrical portion continuously in the axial direction and projecting toward the central axis side of the can as the inner diameter gradually increases, and a maximum outer diameter of the first convex arc portion Convex to the center axis side of the can It is smooth neck molding tool thin cans, characterized in that a second projected circular portions of small radius of curvature than the radius of curvature of the formed in a shape and the first projected circular portion.
[0019]
According to the invention of claim 3, at the time of joint molding in which the curved portion convex toward the inside of the can near the reduced diameter neck portion is shaped so that the inclined portion located between the shoulder portion and the curved portion of the neck-in portion extends. When the tip of the neck is brought into contact with the necking die of the first convex arc portion and the diameter thereof is reduced, an outwardly convex curved portion, that is, occurrence of wrinkles or depression of the neck-in portion accompanying the falling portion Since the amount of diameter reduction per one smooth neck forming step can be increased by suppressing the number of steps, the number of steps can be reduced.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Next, the present invention will be described based on specific examples shown in the drawings. FIG. 1 is a partial cross-sectional view showing the shape of a necking die in a smooth neck forming tool, and FIG. 2 is a partial cross-sectional view schematically showing a state of joint forming when a smooth neck forming tool is used.
[0021]
A can 10 formed with the forming tool of the present invention is a DI can having a shape shown in FIG. 3A, for example, and is a cylindrical body with a bottom. FIG. 3B shows a can in the middle of forming the neck portion 11 and the neck-in portion 13 by reducing the diameter of the opening end portion, and FIG. 3C shows the molding through a plurality of necking molding steps. A smooth neck molded can having a neck portion 11C and a smooth neck portion 13C. And this invention changes smoothly smoothly from the neck part 11C which connects the neck part 11C and what is called the main body side wall part 12 of the can 10, and the smooth neck part 13C which has a smooth joint part without a wrinkle and a step. The present invention relates to a method for forming a smooth neck for thin-walled cans and a forming tool used therefor.
[0022]
The smooth neck forming of the smooth neck forming can shown in FIG. 3 (C) uses the necking die 14 and the knockout punch 15 shown in FIG. 1, and the opening end portion of the can 10 is gradually deformed to a small diameter in a plurality of times. Done. The forming tool according to the present invention is used in the second and subsequent necking forming, and is characterized by the shape of the processed surface of the necking die 14.
[0023]
FIG. 1 and FIG. 4 schematically show the smooth neck forming method for thin-walled cans and the main part of the forming tool used therefor, and the can is formed on the inner peripheral side of the necking die 14 into which the opening end of the can 10 is inserted. A knockout punch 15 that pushes out the molded can 10 from the necking die 14 by bringing the opening end of 10 into contact is disposed. The knockout punch 15 has a portion corresponding to the core 16 that is inserted into the opening end of the can 10 and regulates the inner diameter of the opening end of the can 10.
[0024]
On the opening end side of the can 10 formed in the previous necking process, as shown in FIGS. 3B and 4, a substantially cylindrical neck portion 11 is formed in the middle of forming, and the neck following the neck portion 11 is formed. The in part 13 has an inclined shape that is gently connected from the shoulder part 21 to the neck part 11 having the neck part 22 having a reduced diameter. The necking die 14 has a cylindrical portion 17 that forms the neck portion 11, and a cross section along the generatrix line, that is, a cross-section in a plane that passes through the central axis of the necking die 14, is convex toward the center line side. A curved first convex arc portion 18 and a subsequent second convex arc portion 19 are provided as will be described later. The second convex arc portion 19 has an arc surface in which a cross section along the generatrix, that is, a plane passing through the central axis is convex toward the center line side, is inscribed with the first convex arc portion 18 and gradually increases in inner diameter. This is a portion to be formed, and its radius of curvature R2 is smaller than the radius of curvature R1 of the first convex arc portion 18.
[0025]
The inner diameter of the first convex arc portion 18 is minimum on the cylindrical portion 17 side, and is connected to the cylindrical portion 17 at the end portion on the minimum diameter side. Further, the inner diameter of the first convex arc portion 18 is an arc-shaped processed surface having a predetermined radius of curvature R1 in the cross section along the generatrix. The first convex arc 18 and the subsequent second convex arc 19 have a central angle θ1 set to a predetermined angle (30 degrees in this example), and the first convex arc at the position of the central angle θ1. The portion 18 and the second convex arc portion 19 are inscribed, and two arc-shaped machining surfaces are formed as a smooth neck portion machining surface, that is, a connecting portion machining surface.
[0026]
Further, as shown in FIG. 1, the tangent angle θ2 at a point K of a predetermined dimension r2 (which will be described later) in the radial direction from the inner surface of the cylindrical portion 17 in the second convex arc portion 19 is the necking angle. The radius of curvature R2 of the second convex arc portion 19 is determined so as to be larger than θneck (inclination angle of the neck-in portion 13 formed in the previous necking step).
[0027]
As described above, in the process of extending the neck-in molded portion in the axial direction, a collapsed portion 6 is generated in which the average inclination angle with respect to the central axis is ½ of the tangential angle θ2 of the necking die 14 at the time of neck-in start. Has already been published in the Journal of the Japan Society for Technology of Plasticity, “Plastics and Processing” Vol. 39, No. 444. As a result of further research, it was molded in the previous stage, that is, molded in the previous necking process. The point Q at which the tangent angle starts to become smaller than the angle θneck formed with the central axis of the inclined portion 20 that has been necked to the diameter of the neck-in portion 13, in other words, the curvature that protrudes inward at the neck-in portion 13. When the radial direction distance from the inner surface of the cylindrical portion 17 of the point Q corresponding to the connection point between the portion P and the inclined portion 20 is r2, the cylindrical portion on the machining surface of the second convex arc portion 19 It has been found that it is important for smooth neck formation to make the tangent angle θ2 at the point K separated from the inner surface of FIG. 17 by the radial distance r2 larger than the necking angle θneck. It is important to set these angle ratios (θ2 / θneck) in the range of 1.5 to 2.7, and preferably 2.0 to 2.1. If the angle ratio is smaller than 1.5, the influence of the so-called collapsed portion 6 that occurs at the neck-in start portion as shown in FIG. 8 is likely to remain until the end of the joining process, which is the third step of neck-in molding, In the case of a steel thin can having a thickness of, for example, 0.120 mm and a thin aluminum can having a thickness of 0.130 mm, molding defects such as depressions and wrinkles are likely to occur in the smooth neck-in portion. On the other hand, since the necking angle of the can is preferably 28 to 33 degrees from the viewpoint of formability and buckling resistance, the tangent angle of the processed surface of the joint at the end of the joint formation of smooth neck molding If θ2 is larger than 2.7 times the necking angle θneck, the tangent angle θ2 of the joint surface of the smooth neck forming tool will substantially exceed 90 degrees, which is not practical and is not practical. In the third stroke, it is difficult to shape the curvature portion P formed in the previous necking process so that the inclined portion 20 extends, and the trace of molding becomes conspicuous in the neck-in portion, which is not preferable. Therefore, in order to perform the joining portion forming more smoothly, it is necessary to set the tangent angle θ2 of the processed surface at the time when the joining portion forming of the necking die 14 is finished to 1.5 times to 2.7 times the necking angle θneck. In addition, when the plate thickness of the neck-in scheduled portion is thin, it is preferable to make it 2.0 times to 2.1 times.
[0028]
Here, it is as follows when the relationship of said each dimension and angle is shown. First, the distance A in the radial direction between the portion closest to the central axis in the arc of the second convex arc portion 19 and the inner surface of the cylindrical portion 17 is:
A = R1-R2- (R1-R2) cos [theta] 1
= R2-R2 (1-cosθ2)
Therefore, the radius of curvature R2 of the second convex arc portion 19 is
R2 = {r2-R1 (1-cos [theta] 1)} / (cos [theta] 1-cos [theta] 2)
It is represented by And r2 is
r2 = .DELTA.D / 2 + R1 (1-cos .theta.neck) (.DELTA.D is the amount of diameter reduction per process)
Therefore, the radius of curvature R1 of the first convex arc portion 18 and the angle with respect to the central axis of the common tangent of each of the convex arc portions 18 and 19, that is, the central angle θ1 of the first convex arc portion 18 and the necking angle θneck, the second convexity The radius of curvature R2 of the second convex arcuate part 19 is obtained by giving the tangential angle .theta.2 at the point r2 in the radial direction from the inner surface of the cylindrical part 17 in the arcuate part 19 and the diameter reduction amount .DELTA.D per process.
[0029]
As shown in FIGS. 5 to 7, the necking die 14 moves relatively in the axial direction of the can 10, so that the tip of the neck portion of the neck-in portion 13 formed in the previous necking step becomes the first convex portion. As shown in FIG. 6, when the arcuate portion 6 comes into contact with the knockout punch 15 and contacts the knockout punch 15, the collapsed portion 6 that protrudes toward the outer peripheral side proceeds as shown in FIG. 6. The process (FIG. 7) which connects with the inclination part 20 of the neck-in part 13 already shape | molded by the necking process is reached. In that case, the falling portion 6 approaches the inclined portion 20 of the necking angle θneck formed in the previous necking step, and finally is shaped to be formed on the outer peripheral side so as to become the inclined portion 20 of the necking angle θneck. Is done. In the necking die 14 according to the present invention, since the tangent angle θ2 at the point K on the second convex arc portion 19 facing the point Q is 1.5 to 2.7 times the necking angle θneck, As shown in the middle of the molding in FIG. 6, when the falling portion 6 is formed on the processed surface of the first convex arc portion 18 of the necking die 14, the neck-in portion 13 formed by the previous necking process is formed. It is gradually caused to become the inclined part 20. At that time, the contact point (the point at which the tip of the neck comes into contact with the necking die 14 of the first convex arc portion 18) moves from the first convex arc portion 18 to the second convex arc portion 19; Since the average inclination angle θB can be brought close to the angle of the already formed inclined portion 20, the average inclination angle θB of the falling portion 6 can be caused to the necking angle θneck. That is, it is possible to increase the rise of the average inclination angle θB. FIG. 7 shows the final stage in which the necking angle θneck is equal to the average inclination angle θB of the falling part 6 and the falling part 6 disappears. In the final stage of forming the connecting part of the third stroke, the falling part is shown. The rise of the fall-down portion 6 is increased by retreating the outer surface of the second convex arc portion 19 from the inclined portion 20 of the neck-in portion 13 so as to cause the average inclination angle θB of the portion 6 gradually to the necking angle θneck. Can do. Therefore, since the fall-down portion 6 can disappear from the neck-in portion 13 at the final stage of forming the joint portion, the fall-down portion 6 is pushed into the can from the inclined portion 20 of the neck-in portion 13 that has already been formed. In other words, molding defects such as wrinkles and depressions are suppressed or prevented at the neck-in portion.
[0030]
In the embodiment of the present invention, the processing surface is simplified by forming the connecting portion in the third step on the processing surface constituted by the first convex arc portion 18 and the second convex arc portion 19. However, the present invention is not limited to this, and a processing surface including a part of a straight line between the first convex arc portion 18 and the second convex arc portion 19 or the second convex arc portion 19 with a plurality of radii of curvature. The same purpose can be achieved even with the structured working surface.
[0031]
Next, Examples and Comparative Examples conducted for confirming the effects of the present invention will be shown.
[Example 1]
Nominal 211 diameter (drawn and ironed so that the steel wall thickness of the planned neck-in part is 0.130 mm and trimmed to a predetermined height (the outer diameter of the tightened part when the can lid is wrapped as it is is 2 + 11) / 16 inch) can be smoothly necked in by using the smooth neck forming tool of the present invention to a nominal 206 diameter in 7 steps (the outer diameter of the tightened portion when the can lid is tightened is 2 + 6/16 inch). I tried processing. Molding was possible without causing molding defects such as wrinkles and depressions.
[0032]
[Example 2]
Drawing and ironing so that the steel wall thickness of the planned neck-in portion is 0.130 mm, and then trimming the can body with a nominal diameter of 211 diameters to a predetermined height using the smooth neck forming tool of the present invention in 9 steps. Die smooth neck-in processing was attempted up to a nominal diameter of 204. Molding was possible without causing molding defects such as wrinkles and depressions.
[0033]
[Example 3]
Using a smooth neck forming tool of the present invention, the can body having a nominal diameter of 211 is drawn and ironed so that the steel wall thickness of the planned neck-in portion is 0.130 mm and trimmed to a predetermined height in 11 steps. Die smooth neck-in processing was attempted to a nominal diameter of 202. Molding was possible without causing molding defects such as wrinkles and depressions.
[0034]
[Example 4]
Drawing and ironing is performed so that the steel wall thickness of the planned neck-in portion is 0.120 mm, and a can body having a nominal diameter of 211 diameter trimmed to a predetermined height is formed in 7 steps using the smooth neck forming tool of the present invention. Die smooth neck-in processing was attempted to a nominal 206 diameter. Molding was possible without causing molding defects such as wrinkles and depressions.
[0035]
[Example 5]
Drawing and ironing is performed so that the steel wall thickness of the planned neck-in portion is 0.120 mm, and the can body having a nominal diameter of 211 diameter trimmed to a predetermined height is formed in 9 steps using the smooth neck forming tool of the present invention. Die smooth neck-in processing was attempted up to a nominal diameter of 204. Molding was possible without causing molding defects such as wrinkles and depressions.
[0036]
[Example 6]
Using a smooth neck forming tool according to the present invention, the can body having a nominal diameter of 211 is drawn and ironed so that the steel wall thickness of the planned neck-in portion is 0.120 mm and trimmed to a predetermined height in 11 steps. Die smooth neck-in processing was attempted to a nominal diameter of 202. Molding was possible without causing molding defects such as wrinkles and depressions.
[0037]
[Comparative Example 1]
Necking angle θneck is the tangential angle at the point where splicing is completed on a can body with a nominal diameter of 211 diameter that has been drawn and ironed so that the steel wall thickness of the planned neck-in portion will be 0.120 mm. Using a smooth neck forming tool of 1.35 times, a die smooth neck-in process was attempted to a nominal diameter of 202 in 11 steps. As a result, the depression of the neck-in portion and the wrinkles of the neck portion were scattered, and good moldability was not obtained.
[0038]
【The invention's effect】
As described above, according to the smooth neck molding method for thin cans and the molding tool used therefor according to the present invention, even if the neck-in planned portion is considerably thin, the diameter reduction amount of neck-in processing is large. However, smooth neck molding can be performed satisfactorily without causing defects such as wrinkles and depressions in the neck-in portion. Therefore, according to the present invention, material resources can be further saved by reducing the thickness of the neck-in planned portion and reducing the diameter of the neck-in portion.
[Brief description of the drawings]
FIG. 1 is a partial cross-sectional view showing the shape of a necking die in a smooth neck forming tool according to the present invention.
FIG. 2 is a partial cross-sectional view schematically showing a state of joining forming when the smooth neck forming tool according to the present invention is used.
FIG. 3 is a diagram showing a shape of a can body before neck-in processing and a shape of a can body subjected to smooth neck-in processing.
FIG. 4 is a schematic partial cross-sectional view showing one of the processing steps of smooth neck-in processing.
FIG. 5 is a partial cross-sectional view schematically showing an initial state of a processing process by the necking die of the present invention.
FIG. 6 is a partial cross-sectional view schematically showing an intermediate state of the processing process by the necking die of the present invention.
FIG. 7 is a partial cross-sectional view schematically showing a final state of a machining process by the necking die of the present invention.
FIG. 8 is a partial sectional view schematically showing a state of molding failure caused by a conventional necking die.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Can, 11 ... Neck part, 12 ... Main part, 13 ... Neck-in part, 14 ... Necking die, 17 ... Cylindrical part, 18 ... First convex arc part, 19 ... Second convex arc part, R1 ... (first Radius of curvature of one convex arc, R2 ... radius of curvature of the second convex arc.

Claims (3)

有底円筒状の缶と第1ネッキングダイとの間に相対的な軸方向移動を生じさせて、前記有底円筒状の缶の開口端部分を縮径させてネックイン部を形成した後、そのネックイン部にその開口端側から第2回目以降のネッキングダイによって縮径加工を施すことにより、開口端側の首部から曲率部および傾斜部ならびに肩部をなだらかに連続させて成形する薄肉缶用スムーズネック成形方法において、
前記第2回目以降のネッキングダイは、前記ネックイン部より小さい内径の円筒部と、その円筒部の軸線方向に続けて形成されかつ内径が次第に増大することにより前記缶の中心軸線側に凸となる第1凸円弧部からなる曲率部用加工面と、前記第1凸円弧部の最大外径部に続けて前記缶の中心軸線側に凸となる形状に形成されかつ前記第1凸円弧部の曲率半径より小さい曲率半径の第2凸円弧部を含むつなぎ部用加工面とを備え、
前記首部の先端部を、前記第1凸円弧部に接触させた後にノックアウトポンチに接触させる第1行程と、
前記第2回目以降のネッキングダイを前記缶の軸線方向に相対的に移動させて前記首部を縮径させる第2の行程と、
前記缶における前記曲率部と前記傾斜部との接続点を前記つなぎ部用加工面に前記缶の軸線方向において対向させた状態で前記第2回目以降のネッキングダイを前記缶の軸線方向に相対的に更に移動させることにより、前工程で既に成形されている曲率部を前記傾斜部の前記開口端側への延長形状に成形する第3の行程とからなり、
前記接続点に対向する前記つなぎ部用加工面上の点における接線の前記缶の中心軸線に対する角度を、前工程で既に成形されている前記傾斜部の前記缶の中心軸線に対する角度より大きくさせて前記第2回目以降のネッキングダイによる加工をおこなうことを特徴とする薄肉缶用スムーズネック成形方法。
After causing a relative axial movement between the bottomed cylindrical can and the first necking die, and reducing the diameter of the open end portion of the bottomed cylindrical can to form a neck-in portion, A thin-walled can that is formed by continuously reducing the diameter, curvature, and shoulder from the neck on the opening end side by reducing the diameter of the neck-in portion from the opening end side with the second and subsequent necking dies. In the smooth neck molding method for
The second and subsequent necking dies are formed in a cylindrical portion having an inner diameter smaller than the neck-in portion, and are formed continuously in the axial direction of the cylindrical portion, and are projected toward the central axis side of the can as the inner diameter gradually increases. The first convex arc portion is formed into a shape that is convex toward the central axis side of the can following the processing surface for the curvature portion composed of the first convex arc portion and the maximum outer diameter portion of the first convex arc portion. A connecting portion processing surface including a second convex arc portion having a curvature radius smaller than the curvature radius of
A first stroke in which the tip of the neck is brought into contact with the knockout punch after being brought into contact with the first convex arc portion;
A second stroke in which the necking die after the second time is relatively moved in the axial direction of the can to reduce the diameter of the neck;
The second and subsequent necking dies are relative to the axial direction of the can in a state in which the connection point between the curvature portion and the inclined portion of the can is opposed to the processing surface for the connecting portion in the axial direction of the can. And the third step of forming the curved portion already formed in the previous step into an extended shape toward the opening end of the inclined portion,
The angle of the tangent line at the point on the processing surface for the connecting portion facing the connection point with respect to the central axis of the can is made larger than the angle of the inclined portion already formed in the previous step with respect to the central axis of the can. A smooth neck molding method for thin-walled cans, wherein the second and subsequent necking dies are used.
前記接線と前記缶の中心軸線との成す角度は、前記傾斜部の前記缶の中心軸線に対する角度の1.5倍乃至2.7倍であることを特徴とする請求項1に記載の薄肉缶用スムーズネック成形方法。2. The thin can according to claim 1, wherein an angle formed between the tangent and the central axis of the can is 1.5 to 2.7 times an angle of the inclined portion with respect to the central axis of the can. Smooth neck forming method. 有底円筒状の缶と第1ネッキングダイとの間に相対的な軸方向移動を生じさせて、前記有底円筒状の缶の開口端部分を縮径させてネックイン部を形成した後、そのネックイン部にその開口端側から第2回目以降のネッキングダイによって縮径加工を施すことにより、開口端側の首部から曲率部および傾斜部ならびに肩部をなだらかに連続させて成形する薄肉缶用スムーズネック成形工具において、
前記首部から傾斜部に到るつなぎ部を縮径加工するつなぎ部加工面を有し、
該つなぎ加工面が、前記首部を挿入させる円筒部と、その円筒部に軸線方向に続けて形成されかつ内径が次第に増大することにより前記缶の中心軸線側に凸となる第1凸円弧部と、前記第1凸円弧部の最大外径部に続けて前記缶の中心軸線側に凸となる形状に形成されかつ前記第1凸円弧部の曲率半径より小さい曲率半径の第2凸円弧部とを備えている
ことを特徴とする薄肉缶用スムーズネック成形工具。
After causing a relative axial movement between the bottomed cylindrical can and the first necking die, and reducing the diameter of the open end portion of the bottomed cylindrical can to form a neck-in portion, A thin-walled can that is formed by continuously reducing the diameter, curvature, and shoulder from the neck on the opening end side by reducing the diameter of the neck-in portion from the opening end side with the second and subsequent necking dies. For smooth neck forming tools,
A connecting portion processing surface for reducing the diameter of the connecting portion from the neck portion to the inclined portion;
The connecting surface is a cylindrical portion into which the neck portion is inserted, and a first convex arc portion that is formed in the cylindrical portion continuously in the axial direction and is convex toward the central axis side of the can as the inner diameter gradually increases. A second convex arc portion formed in a shape convex toward the central axis side of the can following the maximum outer diameter portion of the first convex arc portion and having a radius of curvature smaller than the curvature radius of the first convex arc portion; A smooth neck forming tool for thin-walled cans.
JP2000315738A 2000-10-16 2000-10-16 Smooth neck molding method and tool for thin-walled cans Expired - Fee Related JP4573985B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000315738A JP4573985B2 (en) 2000-10-16 2000-10-16 Smooth neck molding method and tool for thin-walled cans

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000315738A JP4573985B2 (en) 2000-10-16 2000-10-16 Smooth neck molding method and tool for thin-walled cans

Publications (2)

Publication Number Publication Date
JP2002120031A JP2002120031A (en) 2002-04-23
JP4573985B2 true JP4573985B2 (en) 2010-11-04

Family

ID=18794791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000315738A Expired - Fee Related JP4573985B2 (en) 2000-10-16 2000-10-16 Smooth neck molding method and tool for thin-walled cans

Country Status (1)

Country Link
JP (1) JP4573985B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018520008A (en) * 2015-07-06 2018-07-26 ノベリス・インコーポレイテッドNovelis Inc. Process for producing large aluminum bottles and aluminum bottles produced thereby

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007319906A (en) * 2006-06-02 2007-12-13 Hikari Kogyo Kk Neck-in welded can for aerosol container

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09300033A (en) * 1996-01-25 1997-11-25 Reynolds Metals Co Forming method of multi stage die for executing necking forming of open end part of main body of can
JP2000503260A (en) * 1996-11-05 2000-03-21 アメリカン ナショナル カン カンパニー Staggered die method and apparatus for forming a neck in a container

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09300033A (en) * 1996-01-25 1997-11-25 Reynolds Metals Co Forming method of multi stage die for executing necking forming of open end part of main body of can
JP2000503260A (en) * 1996-11-05 2000-03-21 アメリカン ナショナル カン カンパニー Staggered die method and apparatus for forming a neck in a container

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018520008A (en) * 2015-07-06 2018-07-26 ノベリス・インコーポレイテッドNovelis Inc. Process for producing large aluminum bottles and aluminum bottles produced thereby

Also Published As

Publication number Publication date
JP2002120031A (en) 2002-04-23

Similar Documents

Publication Publication Date Title
US4578007A (en) Reforming necked-in portions of can bodies
KR102101137B1 (en) Shaped metal container and method for making same
US5557963A (en) Method and apparatus for necking a metal container and resultant container
US5209099A (en) Draw-process methods, systems and tooling for fabricating one-piece can bodies
AU2007265132B2 (en) Method of manufacturing containers
JP4203016B2 (en) Can end, tool for manufacturing the can end, and seaming chuck for mounting the processed can end to the can body
WO2000010751A1 (en) Method and apparatus for forming a can end having an anti-peaking bead
US20100107718A1 (en) Necking die with redraw surface and method of die necking
JP7259892B2 (en) Can body manufacturing method
WO2020158355A1 (en) Seamless can body and method for producing seamless can body
JP2008132522A (en) Metallic can body and its manufacturing method
JP4573985B2 (en) Smooth neck molding method and tool for thin-walled cans
JP4270921B2 (en) Bottomed tube and method for forming the same
JP2650598B2 (en) Method for forming neck-in part of can body
JP4229650B2 (en) Bottle-shaped cans
JP7402835B2 (en) Seamless can body and method for manufacturing seamless can body
JP7424448B2 (en) Seamless can body and method for manufacturing seamless can body
JP6835109B2 (en) Manufacturing method of seamless can body and seamless can body
JPH0919732A (en) Metal can necking-in tool
SU1729661A1 (en) Method of making hollow axisymmetric articles
JPH07185707A (en) Method for forming can and die therefor
US20230302517A1 (en) Tapered cup and method of forming the same
JPH0371938A (en) Manufacture of seamless can
JPH0780022B2 (en) Multi-stage neck-in can manufacturing method and tool
JPH0316207B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100817

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100818

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees