WO2024151153A1 - Method for producing lithium sulfide - Google Patents

Method for producing lithium sulfide Download PDF

Info

Publication number
WO2024151153A1
WO2024151153A1 PCT/KR2024/095022 KR2024095022W WO2024151153A1 WO 2024151153 A1 WO2024151153 A1 WO 2024151153A1 KR 2024095022 W KR2024095022 W KR 2024095022W WO 2024151153 A1 WO2024151153 A1 WO 2024151153A1
Authority
WO
WIPO (PCT)
Prior art keywords
solvent
lithium sulfide
sulfide
producing lithium
paragraph
Prior art date
Application number
PCT/KR2024/095022
Other languages
French (fr)
Korean (ko)
Inventor
김이호
노명훈
지원호
손석호
강슬기
김광언
김정민
김창국
김수현
김상윤
Original Assignee
주식회사 이수스페셜티케미컬
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 이수스페셜티케미컬 filed Critical 주식회사 이수스페셜티케미컬
Publication of WO2024151153A1 publication Critical patent/WO2024151153A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/22Alkali metal sulfides or polysulfides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for producing lithium sulfide. More specifically, it relates to a method for producing lithium sulfide with controlled particle size using a polar and non-polar mixed solvent system.
  • the method of producing lithium sulfide through the reaction of lithium hydroxide and hydrogen sulfide relates to a method of producing lithium sulfide by reacting lithium hydroxide with hydrogen sulfide and then thermally decomposing LiSH, which is an intermediate product.
  • the reaction of hydrogen persulfide generally proceeds in a single solvent, either a polar solvent or a non-polar solvent.
  • a single solvent such as a polar solvent or a non-polar solvent.
  • lithium sulfide Li 2 S
  • LiCl lithium chloride
  • P 2 S 5 phosphorus pentasulfide
  • the present invention relates to a method for producing lithium sulfide that can control the particle size of the produced lithium sulfide while increasing the reaction efficiency of each step in the method for producing lithium sulfide from lithium hydroxide.
  • the present invention includes the steps of preparing a mixture containing lithium hydroxide and a solvent (step 1); and reacting the mixture with hydrogen sulfide gas (step 2), wherein the solvent includes a polar solvent and a non-polar solvent.
  • the method for producing lithium sulfide according to the present invention has excellent reaction efficiency, enables efficient removal of the solvent used in the reaction, and can solve secondary problems such as environmental pollution through smooth removal of reaction water generated during the reaction. .
  • first and second are used to describe various components, and the terms are used only for the purpose of distinguishing one component from another component.
  • each layer or element when each layer or element is referred to as being formed “on” or “on” each layer or element, it means that each layer or element is formed directly on each layer or element, or other This means that layers or elements can be additionally formed between each layer, on the object, or on the substrate.
  • the present invention includes the steps of preparing a mixture containing lithium hydroxide and a solvent (step 1); and reacting the mixture with hydrogen sulfide gas (step 2), wherein the solvent includes a polar solvent and a non-polar solvent.
  • the process of producing lithium sulfide from lithium hydroxide may proceed in a two-step reaction as follows.
  • Step 1 is a step in which the reaction between lithium hydroxide and hydrogen sulfide gas is carried out, and can be carried out in the presence or absence of a solvent.
  • a process that does not use solvents has the advantage of requiring no solvent removal or recovery processes.
  • there are disadvantages in that removal of reaction water generated from the acid-base reaction is difficult and the reaction temperature is high, so using a solvent is advantageous in terms of process economics.
  • the thermal decomposition rate of LiSH, the reaction product of Step 1 is fast, and the thermal decomposition reaction proceeds at a relatively low temperature.
  • the reaction rate of Step 1 is relatively slow, so water produced by the acid and base neutralization reaction of lithium hydroxide, which is the starting material, and hydrogen sulfide, and lithium hydroxide and the final product, lithium sulfide, coexist, and sulfide produced by moisture The reverse reaction of lithium proceeds, causing problems with the final yield.
  • the inventors of the present invention when proceeding with the reaction of Step 1, mixed lithium hydroxide with a polar and non-polar mixed solvent and then reacted with hydrogen sulfide gas, the reaction efficiency of Step 1 and Step 2 without the use of a catalyst.
  • the present invention was completed by confirming that smooth removal of the solvent and reaction water used in the reaction was possible while increasing .
  • the particle size (D 50 ) of the produced lithium sulfide can be controlled to a certain level, and a separate device for additional particle size control of lithium sulfide can be used. It was confirmed that the process could be omitted.
  • Step 1 of the present invention is a step of preparing a mixture containing lithium hydroxide and a solvent.
  • the solvent includes a polar solvent and a non-polar solvent.
  • the polar solvent is, for example, N-methylpyrrolidone (NMP), methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, n-pentanol, diethyl ether, diisopropyl ether, t- Examples include butylmethyl ether, phenyl methyl ether, diethoxyethane, and tetrahydrofuran, and in the present invention, they can be used alone or in a mixture of two or more types.
  • NMP N-methylpyrrolidone
  • methanol ethanol
  • n-propanol isopropanol
  • n-butanol isobutanol
  • n-pentanol diethyl ether
  • diethyl ether diisopropyl ether
  • t- Examples include butylmethyl ether, phenyl methyl ether, diethoxyethane,
  • the polar solvent usable in the present invention is a solvent that has excellent solubility in the raw material LiOH, the intermediate product LiSH, and water, and the non-polar solvent has no reactivity with raw materials such as LiOH and H 2 S and is thermally stable.
  • the particle size of the produced lithium sulfide can be controlled by improving reactivity by controlling the solubility of raw materials and intermediate products according to the solvent ratio when mixing a polar solvent and a non-polar solvent having the above characteristics.
  • the polar solvent may be at least one selected from aprotic polar solvents, and the non-polar solvent may be at least one selected from aromatic solvents. More preferably, the polar solvent may be N-methylpyrrolidone, and the non-polar solvent may be xylene.
  • the solvent includes a non-polar solvent in an amount greater than that of the polar solvent.
  • the polar solvent may be included in an amount of 1 to 50 parts by weight based on a total of 100 parts by weight of the solvent. That is, it may contain 1 to 50 parts by weight of a polar solvent and 50 to 99 parts by weight of a nonpolar solvent.
  • the mixed solvent contains the polar solvent and the non-polar solvent within the above range, it is easy to remove water generated by the subsequent solvent removal process and neutralization reaction, and induces high dispersion of the reactive material, lithium hydroxide, in the solvent, thereby increasing the particle size. It is easy to control.
  • the polar solvent is used in an amount of 1.5 parts by weight or more, 2 parts by weight or more, 3 parts by weight or more, 4 parts by weight or more, or 5 parts by weight or more, and 50 parts by weight or less, 45 parts by weight or more. It may contain less than or equal to 40 parts by weight.
  • lithium hydroxide and solvent may be used in a ratio of 1:5 to 1:10 by mass.
  • lithium hydroxide and solvent When lithium hydroxide and solvent are used in the above range, it induces high dispersion of lithium hydroxide, which is advantageous for controlling the particle size of lithium sulfide to be produced.
  • lithium hydroxide and solvent may be used in an amount of 1:5.5 to 1:9.5, 1:6 to 1:9, or 1:7 to 1:8 by mass.
  • step 1 may be heated to 70 to 200° C. and then step 2 may be performed.
  • step 1 lithium hydroxide and the solvent can be mixed by stirring, and the temperature of the mixture can be raised to the above range while stirring and mixing.
  • step 2 hydrogen sulfide can be added in step 2 to proceed with the reaction.
  • the temperature is raised from 80 °C or higher, 90 °C or higher, 100 °C or higher, or 110 °C to 180 °C or lower, 160 °C or lower, 150 °C or lower, or 140 °C or lower, and then proceed to step 2. You can.
  • hydrogen sulfide gas may be introduced at a rate of 0.1 L/min to 5 L/min.
  • an appropriate reaction rate can be maintained, the amount of unreacted lithium hydroxide can be reduced, and the reverse reaction can be suppressed by appropriately controlling the amount of water produced by the produced lithium sulfide and neutralization reaction.
  • the hydrogen sulfide gas is 0.15 L/min or more, or 0.2 L/min or more, and 4 L/min or less, 3 L/min or less, 2 L/min or less, or 1 L/min or less. It can be put into .
  • the average particle size (D 50 ) of the manufactured lithium sulfide is 1% or more, 1.2% or more, or While it is 1.5% or more, it can be controlled to 20% or less, 15% or less, 12% or less, or 10% or less.
  • particle size control can be appropriately controlled by utilizing the dispersibility and solubility of lithium hydroxide, which is a reactant, and lithium sulfide, which is a product, in a mixed solvent atmosphere containing a polar solvent and a non-polar solvent of the present invention.
  • a solvent containing LiOH (30 g) as a raw material with an average particle diameter (D 50 ) of 650 um, a mixture of the non-polar solvent xylene, and the polar solvent N-methylpyrrolidone (NMP) was used.
  • LiOH (30 g) as a starting material was added, mixed with a mixed solvent (250 g, 2% by weight of N-methylpyrrolidone (NMP), 98% by weight of Xylene), and stirred at 200 to 400 rpm.
  • the synthesis temperature was carried out at 130°C, and when the temperature was raised to the corresponding temperature, hydrogen sulfide (H 2 S) was injected at a rate of 0.2 L/min to 1 L/min. Lithium sulfide was produced by terminating the reaction based on the point at which water generation due to the acid and base neutralization reaction ended.
  • the average particle size of the produced lithium sulfide was 11 um.
  • Lithium sulfide was prepared in the same manner as Example 1, except that a mixed solvent of 10% by weight of NMP and 90% by weight of Xylene was used.
  • Lithium sulfide was prepared in the same manner as Example 1, except that a mixed solvent of 30% NMP and 70% xylene was used.
  • Lithium sulfide was prepared in the same manner as Example 1, except that a mixed solvent of 50% by weight of NMP and 50% by weight of Xylene was used.
  • Raw materials LiOH (30 g) and Xylene (250 g) with an average particle diameter (D 50 ) of 650 um were mixed and stirred at 200 to 400 rpm.
  • the synthesis temperature was carried out at 130°C, and hydrogen sulfide (H 2 S) with a purity of 98% or more was injected at a rate of 0.2 L/min to 1 L/min at that temperature.
  • Lithium sulfide was produced by terminating the reaction based on the point at which water generation due to the acid and base neutralization reaction ended.
  • the average particle size of the produced lithium sulfide was confirmed to be around 650 um, similar to that of LiOH, the starting material.
  • Example 1 650 NMP 2%, Xylene 98% 11
  • Example 2 650 NMP 5%, Xylene 95% 14
  • Example 3 650 NMP 10%, Xylene 90% 22
  • Example 4 650 NMP 30%, Xylene 70% 31
  • Example 5 650 NMP 50%, Xylene 50% 52 Comparative example 650 Xylene 650
  • the average particle size of lithium hydroxide is the same at 650 um, but when the mixed solvent of Examples 1 to 5 is used, sulfide has an average particle size of about 100 um or less. While lithium was produced, when the single solvent of the comparative example was used, it was confirmed that the average particle size of lithium hydroxide was 650 um, and from this, the method for producing lithium sulfide of the present invention produced sulfide at a level smaller than the average particle size of lithium hydroxide. It was confirmed that lithium production was possible.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)

Abstract

The present invention relates to a method for producing lithium sulfide More specifically, the present invention relates to a method for producing lithium sulfate, of which the particle size is controlled using a polar and nonpolar solvent mixed system.

Description

황화 리튬의 제조 방법Method for producing lithium sulfide
관련 출원(들)과의 상호 인용Cross-Citation with Related Application(s)
본 출원은 2023년 1월 12일자 한국 특허 출원 제10-2023-0004791호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.This application claims the benefit of priority based on Korean Patent Application No. 10-2023-0004791, dated January 12, 2023, and all contents disclosed in the documents of the Korean Patent Applications are included as part of this specification.
본 발명은 황화 리튬의 제조 방법에 관한 것이다. 보다 구체적으로, 극성 및 비극성 혼합 용매 시스템을 이용하여, 입경을 제어한 황화 리튬의 제조 방법에 관한 것이다.The present invention relates to a method for producing lithium sulfide. More specifically, it relates to a method for producing lithium sulfide with controlled particle size using a polar and non-polar mixed solvent system.
최근 이차 전지 산업의 발달에 따라, 고체 전해질 물질의 사용 가능성이 높아지고 있다. 그 중, 황화물계 고체 전해질은 산화물계 고체 전해질과 비교하여 높은 이온 전도도를 가지고, 넓은 전압 범위에서 안정한 것으로 평가받고 있다. 황화물계 고체 전해질의 주 원료인 황화 리튬은 일반적으로 고체의 리튬 전구체와 기체의 황 전구체를 반응시켜 제조된다. With the recent development of the secondary battery industry, the possibility of using solid electrolyte materials is increasing. Among them, sulfide-based solid electrolytes have higher ionic conductivity compared to oxide-based solid electrolytes and are evaluated as being stable over a wide voltage range. Lithium sulfide, the main raw material for sulfide-based solid electrolytes, is generally manufactured by reacting a solid lithium precursor with a gaseous sulfur precursor.
이 중, 수산화 리튬과 황화 수소의 반응을 통해 황화 리튬을 제조하는 방법은, 수산화 리튬과 황화 수소를 반응시키고, 이후 중간 생성물인 LiSH를 열분해하여 황화 리튬을 제조하는 방법에 관한 것으로, 상기 수산화 리튬과 황화 수소의 반응은 주로 극성 용매 또는 비극성 용매의 단일 용매에서 진행하는 것이 일반적이다. 다만, 극성 용매 또는 비극성 용매의 단일 용매 하에서, 상기 반응을 진행할 경우, 반응 속도의 저하 및 용매 제거의 어려움 등의 문제가 있다. Among these, the method of producing lithium sulfide through the reaction of lithium hydroxide and hydrogen sulfide relates to a method of producing lithium sulfide by reacting lithium hydroxide with hydrogen sulfide and then thermally decomposing LiSH, which is an intermediate product. The reaction of hydrogen persulfide generally proceeds in a single solvent, either a polar solvent or a non-polar solvent. However, when the above reaction is carried out in a single solvent such as a polar solvent or a non-polar solvent, there are problems such as a decrease in the reaction rate and difficulty in removing the solvent.
한편, 황화 리튬(Li2S)과 염화 리튬(LiCl) 및 오황화인(P2S5)을 원료로 사용해 합성되는 고체전해질의 합성과 평가에 대한 연구가 활발히 진행됨에 따라, 원료인 황화 리튬의 입자크기가 작아질수록 이를 원료로 한 고체전해질의 합성에 용이하고 보다 높은 순도와 이온전도도를 갖는 고체전해질의 합성이 가능한 것으로 밝혀지고 있다. 그러나, 종래의 수산화 리튬(LiOH)과 황화 수소(H2S)를 원료로 사용하여 황화 리튬 합성하는 대부분의 기술들은 황화 리튬(Li2S)의 합성에만 국한된 기술들로서 합성된 황화리튬(Li2S)의 입자 크기 조절을 위해서는 별도의 추가적인 공정이 필요하다.Meanwhile, as research on the synthesis and evaluation of solid electrolytes synthesized using lithium sulfide (Li 2 S), lithium chloride (LiCl), and phosphorus pentasulfide (P 2 S 5 ) as raw materials is actively conducted, lithium sulfide as a raw material It has been found that the smaller the particle size, the easier it is to synthesize a solid electrolyte using it as a raw material, and it is possible to synthesize a solid electrolyte with higher purity and ionic conductivity. However, most of the conventional technologies for synthesizing lithium sulfide using lithium hydroxide (LiOH) and hydrogen sulfide (H 2 S) as raw materials are limited to the synthesis of lithium sulfide (Li 2 S) and synthesized lithium sulfide (Li 2 S) A separate additional process is required to control the particle size.
이에, 상기와 같은 반응 단계에서의 문제점을 해결하고, 제조된 황화 리튬의 입자 크기를 제어할 수 있는 황화 리튬 제조 방법에 대한 연구가 필요한 실정이다. Accordingly, there is a need for research on a method for producing lithium sulfide that can solve the problems in the reaction step as described above and control the particle size of the produced lithium sulfide.
본 발명은 수산화 리튬으로부터 황화 리튬의 제조 방법에서, 각 단계의 반응 효율을 상승시키면서, 제조된 황화 리튬의 입경을 제어할 수 있는 황화 리튬의 제조 방법에 관한 것이다. The present invention relates to a method for producing lithium sulfide that can control the particle size of the produced lithium sulfide while increasing the reaction efficiency of each step in the method for producing lithium sulfide from lithium hydroxide.
본 발명은, 수산화 리튬 및 용매를 포함하는 혼합물을 제조하는 단계(단계 1); 및 상기 혼합물을 황화 수소 가스와 반응시키는 단계(단계 2)를 포함하고, 상기 용매는 극성 용매 및 비극성 용매를 포함하는, 황화 리튬의 제조 방법을 제공한다.The present invention includes the steps of preparing a mixture containing lithium hydroxide and a solvent (step 1); and reacting the mixture with hydrogen sulfide gas (step 2), wherein the solvent includes a polar solvent and a non-polar solvent.
본 발명에 따른 황화 리튬 제조 방법은, 반응 효율이 우수하고, 반응에 사용된 용매의 효율적인 제거가 가능하며, 반응 중 생성되는 반응수의 원활한 제거를 통해 환경오염과 같은 부차적인 문제를 해결할 수 있다.The method for producing lithium sulfide according to the present invention has excellent reaction efficiency, enables efficient removal of the solvent used in the reaction, and can solve secondary problems such as environmental pollution through smooth removal of reaction water generated during the reaction. .
본 발명에서, 제1, 제2 등의 용어는 다양한 구성 요소들을 설명하는데 사용되며, 상기 용어들은 하나의 구성 요소를 다른 구성 요소와 구별하기 위한 목적으로만 사용된다. In the present invention, terms such as first and second are used to describe various components, and the terms are used only for the purpose of distinguishing one component from another component.
또한, 본 명세서에서 사용되는 용어는 단지 예시적인 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도는 아니다. Additionally, the terminology used herein is only used to describe exemplary embodiments and is not intended to limit the invention.
단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. Singular expressions include plural expressions unless the context clearly dictates otherwise.
본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 구성 요소 또는 이들을 조합을 설명하기 위한 것이며, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성 요소, 이들의 조합 또는 부가 가능성을 배제하는 것은 아니다. In this specification, terms such as “comprise,” “comprise,” or “have” are used to describe implemented features, numbers, steps, components, or combinations thereof, and include one or more other features, numbers, or steps. , does not exclude the possibility of components, combinations or additions thereof.
또한 본 명세서에 있어서, 각 층 또는 요소가 각 층들 또는 요소들의 "상에" 또는 "위에” 형성되는 것으로 언급되는 경우에는 각 층 또는 요소가 직접 각 층들 또는 요소들의 위에 형성되는 것을 의미하거나, 다른 층 또는 요소가 각 층 사이, 대상체, 기재 상에 추가적으로 형성될 수 있음을 의미한다. Additionally, in this specification, when each layer or element is referred to as being formed “on” or “on” each layer or element, it means that each layer or element is formed directly on each layer or element, or other This means that layers or elements can be additionally formed between each layer, on the object, or on the substrate.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 예시하고 하기에서 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태로 한정하는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.Since the present invention can be subject to various changes and can take various forms, specific embodiments will be illustrated and described in detail below. However, this does not limit the present invention to the specific disclosed form, and should be understood to include all changes, equivalents, and substitutes included in the spirit and technical scope of the present invention.
본 발명은, 수산화 리튬 및 용매를 포함하는 혼합물을 제조하는 단계(단계 1); 및 상기 혼합물을 황화 수소 가스와 반응시키는 단계(단계 2)를 포함하고, 상기 용매는 극성 용매 및 비극성 용매를 포함하는, 황화 리튬 제조 방법을 제공한다.The present invention includes the steps of preparing a mixture containing lithium hydroxide and a solvent (step 1); and reacting the mixture with hydrogen sulfide gas (step 2), wherein the solvent includes a polar solvent and a non-polar solvent.
수산화 리튬으로부터 황화 리튬을 제조하는 과정은 일례로 다음과 같이 2단계 반응으로 진행될 수 있다.For example, the process of producing lithium sulfide from lithium hydroxide may proceed in a two-step reaction as follows.
Figure PCTKR2024095022-appb-img-000001
Figure PCTKR2024095022-appb-img-000001
Step 1은 수산화 리튬과 황화 수소 가스의 반응을 진행하는 단계로, 용매 존재 또는 부존재 하에 진행될 수 있다. 용매를 사용하지 않는 공정은 용매 제거 단계나 회수 공정이 불필요한 이점이 있다. 그러나, 산-염기 반응으로 발생하는 반응 수 제거가 까다롭고, 반응 온도가 높다는 단점이 있어, 용매를 사용하는 것이 공정 경제성 측면에서 유리한 측면이 있다. 한편, 용매를 사용하는 경우에는 일반적으로 단일 용매를 사용하여 황화 리튬을 제조하는 것이 일반적이었다. Step 1 is a step in which the reaction between lithium hydroxide and hydrogen sulfide gas is carried out, and can be carried out in the presence or absence of a solvent. A process that does not use solvents has the advantage of requiring no solvent removal or recovery processes. However, there are disadvantages in that removal of reaction water generated from the acid-base reaction is difficult and the reaction temperature is high, so using a solvent is advantageous in terms of process economics. Meanwhile, when using a solvent, it was generally common to produce lithium sulfide using a single solvent.
상기 단일 용매로는 비극성 용매, 또는 극성 용매가 사용되었는데, 그 중, 극성 용매로는 고비점을 갖는 극성 용매가 주로 사용되었다. 고비점 극성 용매를 사용하는 경우, 상기 Step 1의 반응 속도가 빠른 반면, 반응 생성물인 LiSH의 열분해 속도가 느리고, 높은 열분해 온도가 필요하며, 반응 중 반응물의 점도가 크게 증가하여, 반응 시 교반이 어려운 문제가 있다. 특히, LiSH의 열분해 온도 및 열분해 시간이 충분하지 않을 경우, 잔존하는 LiSH는 황화 리튬의 순도를 저하시키고, 극성 용매의 고비점 특성 및 물과 상용성이 우수함에 따라 제거에 많은 에너지가 필요하다. Non-polar solvents or polar solvents were used as the single solvent, and among these, polar solvents with a high boiling point were mainly used. When using a high boiling point polar solvent, the reaction rate of Step 1 is fast, but the thermal decomposition rate of LiSH, the reaction product, is slow, a high thermal decomposition temperature is required, and the viscosity of the reactant increases significantly during the reaction, requiring stirring during the reaction. There is a difficult problem. In particular, when the thermal decomposition temperature and thermal decomposition time of LiSH are not sufficient, the remaining LiSH reduces the purity of lithium sulfide, and a lot of energy is required for removal due to the high boiling point characteristics of the polar solvent and excellent compatibility with water.
한편, 비극성 용매인 방향족, 또는 지방족 용매를 사용할 경우, 상기 Step 1의 반응 생성물인 LiSH의 열분해 속도가 빠르고, 상대적으로 낮은 온도에서 열분해 반응이 진행되는 특성이 있다. 그러나, 상대적으로 Step 1의 반응속도가 느려 출발 물질인 수산화 리튬과 황화 수소의 산, 염기 중화 반응에 의해 생성되는 물과 수산화 리튬 및 최종 생성물인 황화 리튬이 공존하게 되고, 수분에 의해 제조된 황화 리튬의 역반응이 진행되어, 최종 수율에 문제를 야기한다.On the other hand, when using a non-polar aromatic or aliphatic solvent, the thermal decomposition rate of LiSH, the reaction product of Step 1, is fast, and the thermal decomposition reaction proceeds at a relatively low temperature. However, the reaction rate of Step 1 is relatively slow, so water produced by the acid and base neutralization reaction of lithium hydroxide, which is the starting material, and hydrogen sulfide, and lithium hydroxide and the final product, lithium sulfide, coexist, and sulfide produced by moisture The reverse reaction of lithium proceeds, causing problems with the final yield.
이에, 본 발명의 발명자들은, 상기 Step 1의 반응 진행 시, 수산화 리튬을 극성 및 비극성 혼합 용매와 혼합한 후, 황화 수소 가스와 반응시키는 경우, 촉매의 사용 없이 상기 Step 1 및 Step 2의 반응 효율을 증가시키면서도, 반응에 사용된 용매 및 반응수의 원활한 제거가 가능한 것을 확인함으로써, 본 발명을 완성하였다. 나아가, 본 발명에 따라 극성 및 비극성 혼합 용매를 사용하여 황화 리튬을 제조할 경우, 제조된 황화 리튬의 입경(D50)을 일정 수준으로 제어가 가능하여, 추가적인 황화 리튬의 입자 크기 조절을 위한 별도 공정을 생략할 수 있다는 것을 확인하였다. Accordingly, the inventors of the present invention, when proceeding with the reaction of Step 1, mixed lithium hydroxide with a polar and non-polar mixed solvent and then reacted with hydrogen sulfide gas, the reaction efficiency of Step 1 and Step 2 without the use of a catalyst. The present invention was completed by confirming that smooth removal of the solvent and reaction water used in the reaction was possible while increasing . Furthermore, when producing lithium sulfide using a polar and non-polar mixed solvent according to the present invention, the particle size (D 50 ) of the produced lithium sulfide can be controlled to a certain level, and a separate device for additional particle size control of lithium sulfide can be used. It was confirmed that the process could be omitted.
본 발명의 단계 1은, 수산화 리튬 및 용매를 포함하는 혼합물을 제조하는 단계로, 본 발명에서 상기 용매는 극성 용매 및 비극성 용매를 포함한다.Step 1 of the present invention is a step of preparing a mixture containing lithium hydroxide and a solvent. In the present invention, the solvent includes a polar solvent and a non-polar solvent.
상기 극성 용매는 일례로, N-메틸피롤리돈(NMP), 메탄올, 에탄올, n-프로판올, 이소프로판올, n-부탄올, 이소부탄올, n-펜탄올, 디에틸 에테르, 디이소프로필 에테르, t-부틸메틸 에테르, 페닐 메틸에테르, 디에톡시에탄, 테트라하이드로퓨란 등을 들 수 있으며, 본 발명에서는 이를 단독 혹은 2종 이상 혼합하여 사용할 수 있다.The polar solvent is, for example, N-methylpyrrolidone (NMP), methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, n-pentanol, diethyl ether, diisopropyl ether, t- Examples include butylmethyl ether, phenyl methyl ether, diethoxyethane, and tetrahydrofuran, and in the present invention, they can be used alone or in a mixture of two or more types.
또한, 상기 비극성 용매는 일례로, 톨루엔, 자일렌, 에틸벤젠, 데카린, 1,2,3,4-테트라하이드로나프탈렌 등의 방향족 탄화수소계 용매; 헥산, 펜탄,2-에틸 헥산, 헵탄, 옥탄, 데칸, 사이클로헥산, 메틸 사이클로헥산, 헥센, 헵텐, 사이클로헥센 등의 지방족 탄화수소계 용매 등을 들 수 있으며, 본 발명에서는 이를 단독 혹은 2종 이상 혼합하여 사용할 수 있다.In addition, the non-polar solvent includes, for example, aromatic hydrocarbon-based solvents such as toluene, xylene, ethylbenzene, decalin, and 1,2,3,4-tetrahydronaphthalene; Examples include aliphatic hydrocarbon solvents such as hexane, pentane, 2-ethyl hexane, heptane, octane, decane, cyclohexane, methyl cyclohexane, hexene, heptene, and cyclohexene, and in the present invention, these can be used alone or in a mixture of two or more. You can use it.
바람직하게는, 본 발명에서 사용 가능한 극성 용매는 원료 LiOH, 중간 생성물 LiSH 및 물에 대한 용해도가 우수한 특성이 있는 용매이고, 비극성 용매는 LiOH와 H2S 등 원료와의 반응성이 없으며 열적으로 안정한 특성이 있는 용매로, 상기 특성을 갖는 극성 용매 및 비극성 용매를 혼합 시 용매 비율에 따른 원료 및 중간 생성물의 용해도를 조절하는 특성에 의해 반응성을 향상시켜 제조된 황화 리튬의 입경을 제어할 수 있다. 바람직하게는, 상기 극성 용매는 비양자성 극성 용매 중 선택되는 어느 하나 이상일 수 있고, 상기 비극성 용매는 방향족 용매 중 선택되는 어느 하나 이상일 수 있다. 보다 바람직하게는, 상기 극성 용매는 N-메틸피롤리돈이고, 상기 비극성 용매는 자일렌(xylene)일 수 있다.Preferably, the polar solvent usable in the present invention is a solvent that has excellent solubility in the raw material LiOH, the intermediate product LiSH, and water, and the non-polar solvent has no reactivity with raw materials such as LiOH and H 2 S and is thermally stable. With this solvent, the particle size of the produced lithium sulfide can be controlled by improving reactivity by controlling the solubility of raw materials and intermediate products according to the solvent ratio when mixing a polar solvent and a non-polar solvent having the above characteristics. Preferably, the polar solvent may be at least one selected from aprotic polar solvents, and the non-polar solvent may be at least one selected from aromatic solvents. More preferably, the polar solvent may be N-methylpyrrolidone, and the non-polar solvent may be xylene.
또한, 본 발명에서 상기 용매는 비극성 용매를 극성 용매 이상의 양으로 포함한다. 일례로, 상기 용매 총 100 중량부에 대하여, 극성 용매를 1 내지 50 중량부로 포함할 수 있다. 즉, 극성 용매를 1 내지 50 중량부로, 비극성 용매를 50 내지 99 중량부로 포함할 수 있다. 혼합 용매에서 극성 용매 및 비극성 용매를 상기 범위로 포함할 경우, 후속되는 용매 제거 공정 및 중화 반응에 의해 생성되는 물을 제거하는데 용이하고, 반응 물질인 수산화 리튬의 용매 중 고분산을 유도하여, 입경의 제어에 용이하다. 보다 바람직하게는, 상기 용매 총 100 중량부에 대하여, 극성 용매를 1.5 중량부 이상, 2 중량부 이상, 3 중량부 이상, 4 중량부 이상, 또는 5 중량부 이상이면서, 50 중량부 이하, 45 중량부 이하, 또는 40 중량부 이하로 포함할 수 있다.Additionally, in the present invention, the solvent includes a non-polar solvent in an amount greater than that of the polar solvent. For example, the polar solvent may be included in an amount of 1 to 50 parts by weight based on a total of 100 parts by weight of the solvent. That is, it may contain 1 to 50 parts by weight of a polar solvent and 50 to 99 parts by weight of a nonpolar solvent. When the mixed solvent contains the polar solvent and the non-polar solvent within the above range, it is easy to remove water generated by the subsequent solvent removal process and neutralization reaction, and induces high dispersion of the reactive material, lithium hydroxide, in the solvent, thereby increasing the particle size. It is easy to control. More preferably, based on a total of 100 parts by weight of the solvent, the polar solvent is used in an amount of 1.5 parts by weight or more, 2 parts by weight or more, 3 parts by weight or more, 4 parts by weight or more, or 5 parts by weight or more, and 50 parts by weight or less, 45 parts by weight or more. It may contain less than or equal to 40 parts by weight.
또한, 본 발명에서, 수산화 리튬 및 용매는 질량 기준 1:5 내지 1:10으로 사용될 수 있다. 수산화 리튬 및 용매를 상기 범위로 사용할 경우, 수산화 리튬의 고분산을 유도하여, 제조되는 황화 리튬의 입경 제어에 유리하다. 바람직하게는, 수산화 리튬 및 용매는 질량 기준 1:5.5 내지 1:9.5, 1:6 내지 1:9, 또는 1:7 내지 1:8로 사용될 수 있다. Additionally, in the present invention, lithium hydroxide and solvent may be used in a ratio of 1:5 to 1:10 by mass. When lithium hydroxide and solvent are used in the above range, it induces high dispersion of lithium hydroxide, which is advantageous for controlling the particle size of lithium sulfide to be produced. Preferably, lithium hydroxide and solvent may be used in an amount of 1:5.5 to 1:9.5, 1:6 to 1:9, or 1:7 to 1:8 by mass.
본 발명의 일 구현예에 따르면, 상기 단계 1을 70 내지 200 ℃까지 승온시킨 후, 단계 2를 진행할 수 있다. 상기 단계 1은 수산화 리튬과 용매를 교반하여 혼합할 수 있으며, 교반 혼합하면서 혼합물의 온도를 상기 범위로 승온시킬 수 있다. 상기 범위 온도로 승온 시킨 후, 단계 2에서 황화 수소를 투입하여 반응을 진행시킬 수 있다. 바람직하게는, 상기 단계 1은 80 ℃ 이상, 90 ℃ 이상, 100 ℃ 이상, 또는 110 ℃ 이상이면서 180 ℃ 이하, 160 ℃ 이하, 150 ℃ 이하, 또는 140 ℃ 이하로 승온시킨 후, 단계 2를 진행할 수 있다.According to one embodiment of the present invention, step 1 may be heated to 70 to 200° C. and then step 2 may be performed. In step 1, lithium hydroxide and the solvent can be mixed by stirring, and the temperature of the mixture can be raised to the above range while stirring and mixing. After raising the temperature to the above range, hydrogen sulfide can be added in step 2 to proceed with the reaction. Preferably, in step 1, the temperature is raised from 80 ℃ or higher, 90 ℃ or higher, 100 ℃ or higher, or 110 ℃ to 180 ℃ or lower, 160 ℃ or lower, 150 ℃ or lower, or 140 ℃ or lower, and then proceed to step 2. You can.
본 발명의 일 구현예에 따르면, 상기 단계 2에서 황화 수소 가스는 0.1 L/min 내지 5 L/min으로 투입될 수 있다. 황화 수소 가스를 상기 범위로 사용할 경우, 적절한 반응 속도를 유지할 수 있으며, 미반응 수산화 리튬의 양을 줄이면서, 제조된 황화 리튬과 중화 반응으로 생성된 물의 양을 적절히 제어하여 역반응을 억제할 수 있다. 바람직하게는, 상기 단계 2에서 황화 수소 가스는 0.15 L/min 이상, 또는 0.2 L/min 이상이면서, 4 L/min 이하, 3 L/min 이하, 2 L/min 이하, 또는 1 L/min 이하로 투입될 수 있다. According to one embodiment of the present invention, in step 2, hydrogen sulfide gas may be introduced at a rate of 0.1 L/min to 5 L/min. When hydrogen sulfide gas is used in the above range, an appropriate reaction rate can be maintained, the amount of unreacted lithium hydroxide can be reduced, and the reverse reaction can be suppressed by appropriately controlling the amount of water produced by the produced lithium sulfide and neutralization reaction. . Preferably, in step 2, the hydrogen sulfide gas is 0.15 L/min or more, or 0.2 L/min or more, and 4 L/min or less, 3 L/min or less, 2 L/min or less, or 1 L/min or less. It can be put into .
본 발명의 일 구현예에 따르면, 수산화 리튬의 평균 입경(D50)은 600 um 내지 700 um이다. 본 명세서에서, 평균 입경(D50)은 입자 크기(입경)에 따른 입자 개수 누적 분포의 50% 지점에서의 입경을 의미한다. 상기 평균 입경(D50)은 레이저 회절 산란식 입도 분포 측정 장치를 이용하여 측정할 수 있으며, 입경에 따른 입자 개수 누적 분포의 50%가 되는 지점에서의 입자 크기를 산출하고, 이를 평균 입경(D50)으로 정의한다. 바람직하게는, 상기 수산화 리튬의 평균 입경(D50)은 600 um 이상 또는 650 um 이상이면서, 700 um 이하일 수 있다. According to one embodiment of the present invention, the average particle diameter (D 50 ) of lithium hydroxide is 600 um to 700 um. In this specification, the average particle diameter (D 50 ) refers to the particle size at 50% of the cumulative distribution of particle numbers according to particle size (particle diameter). The average particle diameter (D 50 ) can be measured using a laser diffraction scattering particle size distribution measuring device, and the particle size at a point that is 50% of the cumulative distribution of the number of particles according to the particle diameter is calculated, and this is calculated as the average particle diameter (D 50 ). Preferably, the average particle diameter (D 50 ) of the lithium hydroxide may be 600 um or more or 650 um or more and 700 um or less.
한편, 상술한 본 발명의 황화 리튬의 제조 방법에 따르면, 사용되는 원료인 수산화 리튬의 평균 입경(D50) 기준 제조된 황화 리튬의 평균 입경(D50)을 1% 이상, 1.2% 이상, 또는 1.5% 이상이면서, 20% 이하, 15% 이하, 12% 이하, 또는 10% 이하로 제어할 수 있다. 이는, 본 발명의 극성 용매 및 비극성 용매를 포함하는 혼합 용매 분위기 하에서 반응물인 수산화 리튬과 생성물인 황화 리튬의 분산성과 용해성을 활용하여 입경 제어를 적절히 제어할 수 있기 때문이다.Meanwhile, according to the method for producing lithium sulfide of the present invention described above, based on the average particle size (D 50 ) of lithium hydroxide, which is the raw material used, the average particle size (D 50 ) of the manufactured lithium sulfide is 1% or more, 1.2% or more, or While it is 1.5% or more, it can be controlled to 20% or less, 15% or less, 12% or less, or 10% or less. This is because particle size control can be appropriately controlled by utilizing the dispersibility and solubility of lithium hydroxide, which is a reactant, and lithium sulfide, which is a product, in a mixed solvent atmosphere containing a polar solvent and a non-polar solvent of the present invention.
본 발명의 일 구현예에 따르면, 제조된 황화 리튬의 평균 입경(D50)은 10um 내지 650um이다. 평균 입경(D50)의 정의는 상술한 바와 같다. 황화 리튬의 평균 입경을 상기 범위로 제어할 경우, 황화 리튬을 원료로 제조되는 고체 전해질의 합성에 용이하면서, 순도 및 이온 전도도를 상승시킬 수 있다. 바람직하게는, 상기 황화 리튬의 평균 입경(D50)은 10um 이상이면서, 650 um 이하, 500 um 이하, 200 um 이하, 또는 100 um 이하일 수 있다. According to one embodiment of the present invention, the average particle diameter (D 50 ) of the produced lithium sulfide is 10 μm to 650 μm. The definition of average particle diameter (D 50 ) is as described above. When the average particle size of lithium sulfide is controlled within the above range, it is easy to synthesize a solid electrolyte made from lithium sulfide as a raw material, and purity and ionic conductivity can be increased. Preferably, the average particle diameter (D 50 ) of the lithium sulfide may be 10 um or more, but may be 650 um or less, 500 um or less, 200 um or less, or 100 um or less.
이하, 발명의 구체적인 실시예를 통해, 발명의 작용 및 효과를 보다 상술하기로 한다. 다만, 이러한 실시예는 발명의 예시로 제시된 것에 불과하며, 이에 의해 발명의 권리범위가 정해지는 것은 아니다.Hereinafter, the operation and effects of the invention will be described in more detail through specific examples of the invention. However, these examples are merely presented as examples of the invention, and the scope of the invention is not determined by them.
[실시예][Example]
실시예 1Example 1
평균 입경 (D50)이 650 um 수준의 원료 LiOH(30 g)와 비극성 용매 Xylene과 극성 용매 N-메틸피롤리돈(NMP)를 혼합한 용매를 사용하였다. 출발 물질인 LiOH(30 g)을 넣고, 혼합 용매(250 g, N-메틸피롤리돈(NMP) 2 중량%, Xylene 98 중량%)를 혼합한 후, 200 내지 400 rpm으로 교반하였다. 합성 온도는 130 ℃에서 진행하였으며, 해당 온도까지 승온이 되면 황화 수소(H2S)를 0.2 L/min 내지 1 L/min의 속도로 주입하였다. 산, 염기 중화반응으로 인한 물 발생이 끝나는 시점을 기준으로 반응을 종결시켜 황화 리튬을 제조하였다. A solvent containing LiOH (30 g) as a raw material with an average particle diameter (D 50 ) of 650 um, a mixture of the non-polar solvent xylene, and the polar solvent N-methylpyrrolidone (NMP) was used. LiOH (30 g) as a starting material was added, mixed with a mixed solvent (250 g, 2% by weight of N-methylpyrrolidone (NMP), 98% by weight of Xylene), and stirred at 200 to 400 rpm. The synthesis temperature was carried out at 130°C, and when the temperature was raised to the corresponding temperature, hydrogen sulfide (H 2 S) was injected at a rate of 0.2 L/min to 1 L/min. Lithium sulfide was produced by terminating the reaction based on the point at which water generation due to the acid and base neutralization reaction ended.
제조된 황화 리튬의 평균 입경은 11 um로 합성되는 것을 확인하였다.It was confirmed that the average particle size of the produced lithium sulfide was 11 um.
실시예 2Example 2
NMP 5 중량% 및 Xylene 95 중량%의 혼합 용매를 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 황화 리튬을 제조하였다. Lithium sulfide was prepared in the same manner as Example 1, except that a mixed solvent of 5% by weight of NMP and 95% by weight of Xylene was used.
실시예 3Example 3
NMP 10 중량% 및 Xylene 90 중량%의 혼합 용매를 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 황화 리튬을 제조하였다. Lithium sulfide was prepared in the same manner as Example 1, except that a mixed solvent of 10% by weight of NMP and 90% by weight of Xylene was used.
실시예 4Example 4
NMP 30% 및 Xylene 70%의 혼합 용매를 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 황화 리튬을 제조하였다. Lithium sulfide was prepared in the same manner as Example 1, except that a mixed solvent of 30% NMP and 70% xylene was used.
실시예 5Example 5
NMP 50 중량% 및 Xylene 50 중량%의 혼합 용매를 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 황화 리튬을 제조하였다. Lithium sulfide was prepared in the same manner as Example 1, except that a mixed solvent of 50% by weight of NMP and 50% by weight of Xylene was used.
비교예Comparative example
평균 입경 (D50)이 650 um 수준의 원료 LiOH(30 g)과 Xylene(250 g)을 혼합한 후 200 내지 400 rpm으로 교반하였다. 합성 온도는 130 ℃에서 진행하였으며, 해당 온도에서 순도 98%이상의 황화수소(H2S)를 0.2 L/min 내지 1 L/min의 속도로 주입하였다. 산, 염기 중화반응으로 인한 물 발생이 끝나는 시점을 기준으로 반응을 종결시켜 황화 리튬을 제조하였다.Raw materials LiOH (30 g) and Xylene (250 g) with an average particle diameter (D 50 ) of 650 um were mixed and stirred at 200 to 400 rpm. The synthesis temperature was carried out at 130°C, and hydrogen sulfide (H 2 S) with a purity of 98% or more was injected at a rate of 0.2 L/min to 1 L/min at that temperature. Lithium sulfide was produced by terminating the reaction based on the point at which water generation due to the acid and base neutralization reaction ended.
제조된 황화 리튬의 평균 입경은 출발 물질인 LiOH와 유사한 650 um 수준인 것으로 확인되었다. The average particle size of the produced lithium sulfide was confirmed to be around 650 um, similar to that of LiOH, the starting material.
[실험예][Experimental example]
(1) 황화 리튬 입경 크기 측정(1) Measurement of lithium sulfide particle size
실시예 및 비교예에서 사용된 LiOH 및 제조된 황화 리튬의 D50은 레이저 회절 입도 측정 장치를 이용하여 측정하였고, 그 결과를 하기 표 1에 기재하였다.D 50 of LiOH used in Examples and Comparative Examples and the produced lithium sulfide were measured using a laser diffraction particle size measuring device, and the results are listed in Table 1 below.
수산화 리튬 평균 입경(um)Lithium hydroxide average particle size (um) 사용 용매solvent used Li2S 평균 입경(D50, um)Li 2 S average particle size (D 50 , um)
실시예 1Example 1 650650 NMP 2%, Xylene 98%NMP 2%, Xylene 98% 1111
실시예 2Example 2 650650 NMP 5%, Xylene 95%NMP 5%, Xylene 95% 1414
실시예 3Example 3 650650 NMP 10%, Xylene 90%NMP 10%, Xylene 90% 2222
실시예 4Example 4 650650 NMP 30%, Xylene 70%NMP 30%, Xylene 70% 3131
실시예 5Example 5 650650 NMP 50%, Xylene 50%NMP 50%, Xylene 50% 5252
비교예Comparative example 650650 XyleneXylene 650650
표 1을 참조하면, 실시예 1 내지 5 및 비교예에서, 수산화 리튬의 평균 입경은 650 um 수준으로 동일하나, 실시예 1 내지 5의 혼합 용매를 사용한 경우 약 100 um 이하의 평균 입경을 가지는 황화 리튬이 제조되는 반면, 비교예의 단일 용매를 사용한 경우는 650 um의 수산화 리튬 평균 입경과 동일한 수준인 것을 확인할 수 있었고, 이로부터 본 발명의 황화 리튬 제조 방법은 수산화 리튬의 평균 입경 보다 작은 수준으로 황화 리튬의 제조가 가능한 것을 확인할 수 있었다.Referring to Table 1, in Examples 1 to 5 and Comparative Examples, the average particle size of lithium hydroxide is the same at 650 um, but when the mixed solvent of Examples 1 to 5 is used, sulfide has an average particle size of about 100 um or less. While lithium was produced, when the single solvent of the comparative example was used, it was confirmed that the average particle size of lithium hydroxide was 650 um, and from this, the method for producing lithium sulfide of the present invention produced sulfide at a level smaller than the average particle size of lithium hydroxide. It was confirmed that lithium production was possible.

Claims (10)

  1. 수산화 리튬 및 용매를 포함하는 혼합물을 제조하는 단계(단계 1); 및Preparing a mixture comprising lithium hydroxide and a solvent (step 1); and
    상기 혼합물을 황화 수소 가스와 반응시키는 단계(단계 2)를 포함하고,Reacting the mixture with hydrogen sulfide gas (step 2),
    상기 용매는 극성 용매 및 비극성 용매를 포함하는, The solvent includes polar solvents and non-polar solvents,
    황화 리튬의 제조 방법.Method for producing lithium sulfide.
  2. 제1항에 있어서,According to paragraph 1,
    극성 용매는 N-메틸피롤리돈(NMP), 메탄올, 에탄올, n-프로판올, 이소프로판올, n-부탄올, 이소부탄올, n-펜탄올, 디에틸 에테르, 디이소프로필 에테르, t-부틸메틸 에테르, 페닐 메틸에테르, 디에톡시에탄 및 테트라하이드로퓨란으로 구성되는 군으로부터 선택되는 1종 이상을 포함하는,Polar solvents include N-methylpyrrolidone (NMP), methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, n-pentanol, diethyl ether, diisopropyl ether, t-butylmethyl ether, Containing at least one member selected from the group consisting of phenyl methyl ether, diethoxyethane, and tetrahydrofuran,
    황화 리튬의 제조 방법.Method for producing lithium sulfide.
  3. 제1항에 있어서,According to paragraph 1,
    비극성 용매는 톨루엔, 자일렌, 에틸벤젠, 데카린, 1,2,3,4-테트라하이드로나프탈렌, 헥산, 펜탄,2-에틸 헥산, 헵탄, 옥탄, 데칸, 사이클로헥산, 메틸 사이클로헥산, 헥센, 헵텐 및 사이클로헥센으로 구성되는 군으로부터 선택되는 1종 이상을 포함하는,Non-polar solvents include toluene, xylene, ethylbenzene, decalin, 1,2,3,4-tetrahydronaphthalene, hexane, pentane, 2-ethyl hexane, heptane, octane, decane, cyclohexane, methyl cyclohexane, hexene, Containing at least one member selected from the group consisting of heptene and cyclohexene,
    황화 리튬의 제조 방법.Method for producing lithium sulfide.
  4. 제1항에 있어서,According to paragraph 1,
    상기 용매는 N-메틸피롤리돈 및 자일렌의 혼합물인,The solvent is a mixture of N-methylpyrrolidone and xylene,
    황화 리튬의 제조 방법.Method for producing lithium sulfide.
  5. 제1항에 있어서,According to paragraph 1,
    상기 용매 총 100 중량부에 대하여, 극성 용매를 1 내지 50 중량부로 포함하는,Containing 1 to 50 parts by weight of a polar solvent based on a total of 100 parts by weight of the solvent,
    황화 리튬의 제조 방법.Method for producing lithium sulfide.
  6. 제1항에 있어서,According to paragraph 1,
    수산화 리튬 및 용매는 질량 기준 1:5 내지 1:10으로 사용되는,Lithium hydroxide and solvent are used in a ratio of 1:5 to 1:10 by mass,
    황화 리튬의 제조 방법.Method for producing lithium sulfide.
  7. 제1항에 있어서,According to paragraph 1,
    상기 단계 1을 70 내지 200 ℃까지 승온시킨 후, 단계 2를 진행하는,After raising the temperature in step 1 to 70 to 200 ° C, proceed to step 2,
    황화 리튬의 제조 방법.Method for producing lithium sulfide.
  8. 제1항에 있어서,According to paragraph 1,
    단계 2에서 황화 수소 가스는 0.1 L/min 내지 5 L/min으로 투입되는,In step 2, hydrogen sulfide gas is introduced at 0.1 L/min to 5 L/min,
    황화 리튬의 제조 방법.Method for producing lithium sulfide.
  9. 제1항에 있어서,According to paragraph 1,
    수산화 리튬의 평균 입경(D50)은 600 um 내지 700 um인, The average particle diameter (D 50 ) of lithium hydroxide is 600 um to 700 um,
    황화 리튬의 제조 방법.Method for producing lithium sulfide.
  10. 제1항에 있어서,According to paragraph 1,
    황화 리튬의 평균 입경(D50)은 10 um 내지 650 um인, The average particle diameter (D 50 ) of lithium sulfide is 10 um to 650 um,
    황화 리튬의 제조 방법.Method for producing lithium sulfide.
PCT/KR2024/095022 2023-01-12 2024-01-10 Method for producing lithium sulfide WO2024151153A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2023-0004791 2023-01-12
KR1020230004791A KR20240112592A (en) 2023-01-12 2023-01-12 Method for producing lithium sulfide

Publications (1)

Publication Number Publication Date
WO2024151153A1 true WO2024151153A1 (en) 2024-07-18

Family

ID=91897244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2024/095022 WO2024151153A1 (en) 2023-01-12 2024-01-10 Method for producing lithium sulfide

Country Status (2)

Country Link
KR (1) KR20240112592A (en)
WO (1) WO2024151153A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110074754A (en) * 2008-10-23 2011-07-01 니폰 가가쿠 고교 가부시키가이샤 Process for producing lithium iron sulfide, and process for producing lithium transition metal sulfide
JP4896520B2 (en) * 2003-10-23 2012-03-14 出光興産株式会社 Method for purifying lithium sulfide
JP5460283B2 (en) * 2008-12-15 2014-04-02 出光興産株式会社 Method for producing lithium sulfide
KR20140053034A (en) * 2011-05-27 2014-05-07 록우드 리튬 게엠베하 Process for preparing lithium sulfide
KR101899196B1 (en) * 2012-11-15 2018-09-14 아르끄마 프랑스 Method for preparing alkali metal sulphide

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4896520B2 (en) * 2003-10-23 2012-03-14 出光興産株式会社 Method for purifying lithium sulfide
KR20110074754A (en) * 2008-10-23 2011-07-01 니폰 가가쿠 고교 가부시키가이샤 Process for producing lithium iron sulfide, and process for producing lithium transition metal sulfide
JP5460283B2 (en) * 2008-12-15 2014-04-02 出光興産株式会社 Method for producing lithium sulfide
KR20140053034A (en) * 2011-05-27 2014-05-07 록우드 리튬 게엠베하 Process for preparing lithium sulfide
KR101899196B1 (en) * 2012-11-15 2018-09-14 아르끄마 프랑스 Method for preparing alkali metal sulphide

Also Published As

Publication number Publication date
KR20240112592A (en) 2024-07-19

Similar Documents

Publication Publication Date Title
WO2016108376A1 (en) Positive active material and method for producing same
WO2013147537A1 (en) Method for preparing cathode active material precursor for lithium secondary battery, cathode active material precursor for lithium secondary battery prepared thereby, and cathode active material for lithium secondary battery containing same
WO2017119681A1 (en) Method for preparing cobalt-coated precursor, cobalt-coated precursor prepared thereby, and cathode active material prepared using same
WO2023229121A1 (en) Method for producing high-purity lithium sulfide through wet and dry processes
WO2012093797A2 (en) Anode active material with whole particle concentration gradient for lithium secondary battery, method for preparing same, and lithium secondary battery having same
WO2021256888A1 (en) Method for preparing highly pure lithium bisoxalatoborate, and secondary battery non-aqueous electrolyte using same
WO2016129733A1 (en) Method for preparing high-density nickel-cobalt-manganese composite precursor
WO2019004714A1 (en) Sulfide-based solid electrolyte material, preparation method therefor, method for preparing solid electrolyte layer and electrode composite layer which comprise sulfide-based solid electrolyte material, and all-solid-state battery comprising same
WO2013109105A1 (en) Silicon carbide powder and method for manufacturing the same
WO2020055030A1 (en) Method for producing bis(fluorosulfonyl)imide lithium salt (lifsi) with reduced fluorine anion content (1)
WO2012099331A2 (en) Solid polymer electrolyte, method for manufacturing same, and lithium polymer secondary battery manufactured using same
WO2013085306A1 (en) Method for manufacturing cathode active material for lithium secondary battery
WO2016080683A1 (en) Method for preparing tris(trialkylsilyl)phosphine
WO2014129749A1 (en) Si/c composite, method for manufacturing same, and cathode active material including same for lithium secondary battery
WO2022108118A1 (en) Method for producing sulfide-based solid electrolyte using ester-based organic solvent, and sulfide-based solid electrolyte and all-solid-state battery manufactured by said manufacturing method
WO2024151153A1 (en) Method for producing lithium sulfide
WO2021125655A2 (en) Method for controlling particle sizes of lithium peroxide and method for preparing particle size-controlled lithium oxide
WO2017164444A1 (en) Method for manufacturing molybdenum-based nanoparticles using sol-gel process and molybdenum-based nanoparticles manufactured thereby
WO2024154886A1 (en) Method for preparing high-purity lithium sulfide using mixed organic solvent
WO2019093660A2 (en) Method for manufacture of maghemite
WO2013055016A1 (en) Production method for silicon carbide powder and silicon carbide powder produced thereby
WO2019004755A1 (en) Method for preparing nickel oxide nanoparticle and nickel oxide nanoparticle prepared using same
WO2013157775A1 (en) Method for producing colloidal cerium oxide
WO2016171466A1 (en) Graphene oxide and method for manufacturing same
WO2013094934A1 (en) Method of fabricating silicon carbide powder

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24741774

Country of ref document: EP

Kind code of ref document: A1