WO2024150854A1 - Hermetic compressor - Google Patents

Hermetic compressor Download PDF

Info

Publication number
WO2024150854A1
WO2024150854A1 PCT/KR2023/000580 KR2023000580W WO2024150854A1 WO 2024150854 A1 WO2024150854 A1 WO 2024150854A1 KR 2023000580 W KR2023000580 W KR 2023000580W WO 2024150854 A1 WO2024150854 A1 WO 2024150854A1
Authority
WO
WIPO (PCT)
Prior art keywords
casing
main frame
fixed scroll
damping member
vibration damping
Prior art date
Application number
PCT/KR2023/000580
Other languages
French (fr)
Korean (ko)
Inventor
정택수
이승목
김철환
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to PCT/KR2023/000580 priority Critical patent/WO2024150854A1/en
Publication of WO2024150854A1 publication Critical patent/WO2024150854A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/02Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00

Definitions

  • the present invention relates to compressors, and particularly to a sealed compressor equipped with a rotating motor.
  • Compressors can be divided into open compressors in which the driving part (or electric part) is provided outside the casing and only the compression part is provided inside the casing, and closed compressors in which the driving part (or electric part) and the compression part are provided together inside the casing. there is.
  • Compressors generate vibration in the driving part and the compression part, and a closed compressor in which the driving part and the compression part are provided together inside the casing may generate greater vibration than an open compressor.
  • vibration-proof rubber is provided on the base that supports the compressor on the compressor installation surface to suppress vibration generated inside the casing from being transmitted to the refrigeration cycle through the casing.
  • it does not effectively absorb vibrations generated inside the compressor, so there is a problem in that vibrations in the compressor and the refrigeration cycle to which the compressor is applied are not sufficiently attenuated.
  • a dynamic absorber (hereinafter used interchangeably with a vibration damping member) is known as a mechanism for damping the vibration of a vibrating body.
  • Conventional dynamic absorber-related technology mainly places the anti-phase mode frequency of the dynamic absorber in the same band as the mode required for reduction of the target vibrating body (mainly shaft or pipe). For this purpose, emphasis is placed on controlling the stiffness between the vibrating body and the mass part of the dynamic absorber through various methods.
  • the purpose of the present invention is to provide a sealed compressor that has a rotating motor inside the casing and a dynamic absorber to reduce vibration noise.
  • Another object of the present invention is to provide a closed compressor in which a dynamic absorber can be installed inside the casing without excessively increasing the size of the casing.
  • Another object of the present invention is to provide a sealed compressor that can install a dynamic absorber outside the casing while minimizing the number of parts.
  • a closed compressor including a casing, a drive motor, a compression unit, a rotating shaft, and a vibration damping member
  • the drive motor may be provided in the inner space of the casing to generate rotational force.
  • the compression unit is provided in the inner space of the casing and can compress the refrigerant while operating by rotational force generated by the drive motor.
  • the rotation shaft may connect the drive motor and the compression unit to transmit the rotational force of the drive motor to the compression unit.
  • the vibration damping member may be provided inside or outside the casing to dampen vibration.
  • the vibration damping member may include a plurality of rigid parts and a plurality of mass parts.
  • the plurality of rigid parts may be arranged at predetermined intervals along the circumferential direction around the vibrating body and coupled to the vibrating body.
  • the mass portion may be formed in an annular shape to connect the plurality of rigid portions to each other, or may be formed in an arc shape to independently connect each of the plurality of rigid portions.
  • the compression unit may include a main frame, a fixed scroll, and an orbiting scroll.
  • the mainframe may be fixed to the inside of the casing.
  • the fixed scroll may be coupled to the main frame on the opposite side of the drive motor.
  • the orbiting scroll may be provided between the main frame and the fixed scroll to form a compression chamber between the main frame and the fixed scroll.
  • the vibration damping member may be provided in the inner space of the casing. Through this, the torsional moment generated in the internal space of the casing is attenuated inside the casing, thereby preventing compressor vibration from being transmitted to the outside.
  • the compression unit may be provided below the drive motor.
  • the vibration damping member may be provided on a side opposite to the side facing the drive motor among both sides in the axial direction of the compression unit.
  • the compression unit may include a main frame, a fixed scroll, and an orbiting scroll.
  • the mainframe may be fixed to the inside of the casing.
  • the fixed scroll may be coupled to the main frame on the opposite side of the drive motor.
  • the orbiting scroll may be provided between the main frame and the fixed scroll to form a compression chamber between the main frame and the fixed scroll.
  • One end of the rigid portion of the vibration damping member may extend from the fixed scroll to the opposite side of the main frame.
  • a plurality of fixing grooves may be formed on the lower surface of the fixed scroll by being recessed in the axial direction at preset intervals along the circumferential direction.
  • the plurality of rigid parts may be coupled to each other by inserting one end of each into the plurality of fixing grooves.
  • the mass portion may be formed in an annular shape, and the plurality of rigid portions may extend as a single body from one side of the mass portion.
  • the mass portion may be formed in an annular shape, and a plurality of fastening holes may be formed in the mass portion at predetermined intervals along the circumferential direction.
  • the plurality of rigid parts may pass through each of the plurality of fastening holes and be fastened to the mass part.
  • the plurality of rigid parts may be formed of a material having different stiffness from that of the mass part. Through this, it is possible to appropriately and actively respond to torsional vibration of various frequencies depending on the capacity of the compressor.
  • a discharge cover that accommodates the refrigerant discharged from the compression chamber may be provided on one side of the fixed scroll forming the opposite side of the orbiting scroll.
  • the mass portion may be located farther from the fixed scroll in the axial direction than the discharge cover.
  • an oil pickup may be provided on one side of the fixed scroll forming the opposite side of the orbiting scroll to communicate with the oil supply passage of the rotating shaft.
  • the mass portion may be provided to surround the oil pickup.
  • the compression unit may include a main frame, a fixed scroll, and an orbiting scroll.
  • the mainframe may be fixed to the inside of the casing.
  • the fixed scroll may be coupled to the main frame on the opposite side of the drive motor.
  • the orbiting scroll may be provided between the main frame and the fixed scroll to form a compression chamber between the main frame and the fixed scroll.
  • the rotation shaft may pass through the main frame, the orbiting scroll, and the fixed scroll and be supported on the main frame and the fixed scroll.
  • the vibration damping member may be coupled to the rotation shaft below the fixed scroll. Through this, the vibration damping effect can be further increased as the vibration damping member is provided at the vibration source of torsional vibration.
  • the vibration damping member may further include a fixing part that is inserted and coupled to the outer peripheral surface of the rotating shaft.
  • the plurality of rigid parts may each extend in a radial direction from the outer peripheral surface of the fixing part.
  • the fixing part, the plurality of rigid parts, and the mass part may be formed as a single body. Through this, the manufacturing cost can be lowered by simplifying the assembly process of the vibration damping member.
  • the compression unit may include a main frame, a fixed scroll, and an orbiting scroll.
  • the mainframe may be fixed to the inside of the casing.
  • the fixed scroll may be coupled to the main frame on the opposite side of the drive motor.
  • the orbiting scroll may be provided between the main frame and the fixed scroll to form a compression chamber between the main frame and the fixed scroll.
  • the vibration damping member may be provided outside the casing. Through this, it is possible to easily install the vibration damping member and at the same time change the vibration damping member in various ways and appropriately.
  • a base may be provided on the lower surface of the casing to support the casing on the compressor installation surface.
  • the plurality of rigid parts may extend from the base in a direction opposite to the compressor installation surface.
  • the base includes: a first base portion in contact with the lower surface of the casing; And it may include a plurality of second base parts extending radially from the first base part and supported on the compressor installation surface.
  • the plurality of rigid parts may each extend along the axial direction from the plurality of second base parts.
  • fastening grooves or fastening holes may be formed in each of the plurality of second base portions.
  • One end of the plurality of rigid parts may be inserted into the fastening groove or the fastening hole to be fastened. Through this, the rigid part forming part of the vibration damping member can be easily and stably formed.
  • a refrigerant suction pipe communicating with the compression chamber may be passed through and coupled to the casing.
  • the mass portion may be located lower than the refrigerant suction pipe.
  • a vibration damping member is provided inside or outside the casing, and a plurality of rigid parts are arranged at predetermined intervals in the circumferential direction around the vibrating body and coupled to the vibrating body, and the mass
  • the portion may be formed in an annular shape to connect the plurality of rigid portions to each other, or may be formed in an arc shape to independently connect each of the plurality of rigid portions.
  • a vibration damping member may be provided in the inner space of the casing.
  • one end of the rigid portion of the vibration damping member may extend from the fixed scroll to the opposite side of the main frame.
  • the vibration damping member may be coupled to the rotating shaft below the fixed scroll. Through this, the vibration damping effect can be further increased as the vibration damping member is provided at the vibration source of torsional vibration.
  • a vibration damping member may be provided on the outside of the casing. Through this, it is possible to easily install the vibration damping member and at the same time change the vibration damping member in various ways and appropriately.
  • FIG. 1 is a perspective view showing the inside of a scroll compressor according to this embodiment.
  • Figure 2 is a longitudinal cross-sectional view of Figure 1.
  • Figure 3 is an exploded perspective view of the vibration damping member according to this embodiment.
  • Figure 4 is a front view showing the assembled vibration damping member according to this embodiment.
  • Figure 5 is a schematic diagram showing the effect of the vibration damping member according to this embodiment.
  • Figure 6 is an exploded perspective view of another embodiment of the vibration damping member in Figure 1.
  • Figure 7 is an assembled front view of Figure 6.
  • Figure 8 is an exploded perspective view of another embodiment of the vibration damping member in Figure 1.
  • Figure 9 is a schematic diagram showing the effect of the vibration damping member according to Figure 8.
  • Figure 10 is a perspective view showing another embodiment of the vibration damping member in Figure 1.
  • Figure 11 is a front view of Figure 10.
  • Figure 12 is an exploded perspective view of the vibration damping member according to Figure 10.
  • Figure 13 is a schematic diagram showing the effect of the vibration damping member according to Figure 10.
  • the "upper side” used in the following description refers to the direction away from the support surface supporting the scroll compressor according to the embodiment of the present invention, that is, when viewed centered on the drive unit (electric drive unit or drive motor) and the compression unit, the drive unit (electric drive unit or drive motor) is viewed from the center.
  • the (drive motor) side refers to the upper side.
  • “Lower side” refers to the direction approaching the support surface, that is, when looking at the driving part (electrical part or driving motor) and the compression part as the center, the compression part is the lower side.
  • axial direction refers to the longitudinal direction of the rotation axis. “Axis” can be understood as an upward and downward direction. “Radial” means the direction intersecting the axis of rotation.
  • the scroll compressor will be described by taking a closed scroll compressor in which a driving part (electrical drive part or driving motor) and a compression part are provided in a casing.
  • a driving part electric drive part or driving motor
  • a compression part are provided in a casing.
  • a rotary motor is applied as a driving part, such as a rotary compressor and a reciprocating compressor.
  • the following description will take as an example a vertical scroll compressor in which the transmission unit and the compression unit are arranged in the vertical axial direction, and a lower compression type scroll compressor in which the compression unit is located lower than the drive unit (electric unit or drive motor).
  • a horizontal scroll compressor in which the driving part (electrical part or drive motor) and the compression part are arranged left and right, as well as a top compression type scroll compressor in which the compression part is located above the driving part (electrical part or driving motor).
  • a high-pressure scroll compressor is taken as an example, which is a lower compression type, in which the refrigerant suction pipe forming the suction passage is directly connected to the compression unit, and the refrigerant discharge pipe communicates with the inner space of the casing, so that the inner space of the casing creates the discharge pressure. Listen and explain. However, the same can be applied to a low-pressure scroll compressor where the internal space of the casing creates suction pressure.
  • Figure 1 is a perspective view showing the inside of a scroll compressor according to this embodiment
  • Figure 2 is a longitudinal cross-sectional view of Figure 1.
  • the high-pressure, bottom-compression type scroll compressor (hereinafter abbreviated as scroll compressor) according to this embodiment includes a drive motor 120 forming a transmission portion in the upper half of the casing 110. is installed, and the main frame 130, fixed scroll 140, orbiting scroll 150, discharge cover 160, and vibration damping member 170 are sequentially installed on the lower side of the drive motor 120.
  • the drive motor 120 forms a transmission part as described above, and the main frame 130, fixed scroll 140, orbiting scroll 150, discharge cover 160, and vibration damping member 170 are the compression part (C). ) is achieved.
  • the drive motor 120 forming the transmission unit is coupled to the upper end of the rotation shaft 125, which will be described later, and the compression unit C is coupled to the lower end of the rotation shaft 125. Accordingly, the compressor 10 has the lower compression structure described above, and the compression unit C is connected to the drive motor 120 by the rotation shaft 125 and operates by the rotational force of the drive motor 120. Accordingly, the drive motor 120 can be understood as a driving unit that drives the compression unit (C), so hereinafter, the driving motor can be described interchangeably with the electric motor or driving unit.
  • the casing 110 may include a cylindrical shell 111, an upper shell 112, a lower shell 113, and a base 114.
  • the cylindrical shell 111 is formed in a cylindrical shape with openings at both upper and lower ends, the upper shell 112 is coupled to cover the open top of the cylindrical shell 111, and the lower shell 113 is a part of the cylindrical shell 111. It is combined to cover the opened bottom. Accordingly, the internal space 110a of the casing 110 is sealed, and the sealed internal space 110a of the casing 110 is divided into a lower space (S1) and an upper space (S2) based on the driving motor 120. do.
  • the lower space (S1) is a space formed on the lower side of the drive motor 120.
  • the lower space (S1) can be divided into a storage space (S11) and a discharge space (S12) based on the compression section (C). .
  • the oil storage space (S11) is a space formed on the lower side of the compression section (C), and forms a space where mixed oil (hereinafter referred to as oil), which is a mixture of oil or liquid refrigerant, is stored.
  • the discharge space (S12) is a space formed between the upper surface of the compression unit (C) and the lower surface of the drive motor 120, and forms a space where the refrigerant compressed in the compression unit (C) or a mixed refrigerant mixed with oil is discharged. .
  • the upper space (S2) is a space formed on the upper side of the drive motor 120, and forms an oil separation space where oil is separated from the refrigerant discharged from the compression unit (C).
  • a refrigerant discharge pipe communicates with the upper space (S2).
  • the above-described drive motor 120 and main frame 130 are inserted and fixed inside the cylindrical shell 111.
  • An oil return passage (unmarked) may be formed on the outer peripheral surface of the drive motor 120 and the outer peripheral surface of the main frame 130, spaced apart from the inner peripheral surface of the cylindrical shell 111 by a preset distance.
  • a refrigerant suction pipe 115 penetrates and is coupled to the side of the cylindrical shell 111. Accordingly, the refrigerant suction pipe 115 penetrates the cylindrical shell 111 forming the casing 110 in the radial direction and is coupled thereto.
  • the refrigerant suction pipe 115 is formed in an L shape, and one end penetrates the cylindrical shell 111 and directly communicates with the suction port 1421 of the fixed scroll 140, which will be described later, forming the compression portion C. Accordingly, the refrigerant may flow into the compression chamber (V) through the refrigerant suction pipe 115.
  • the upper shell 112 is penetrated so that the inner end of the refrigerant discharge pipe 116 communicates with the inner space 110a of the casing 110, specifically the upper space S2 formed on the upper side of the drive motor 120. are combined.
  • An oil separation device (unmarked) is installed in the refrigerant discharge pipe 116 to separate oil from the refrigerant discharged from the casing 110, or to block the refrigerant discharged from the casing 110 from flowing back into the casing 110.
  • a check valve (not marked) may be installed.
  • the lower shell 113 forms a storage space S11 together with the lower half of the cylindrical shell 111.
  • One end of an oil circulation pipe (not shown) may be coupled to the lower half of the lower shell 113 in the radial direction.
  • the base 114 may be formed in a ring shape and coupled to the lower surface of the lower shell 113, or may be formed in a plate shape and coupled to cover the open lower end of the cylindrical shell 111.
  • the description will focus on the example in which the base 114 of this embodiment is formed in a ring shape and is coupled to the lower surface of the lower shell 113.
  • the base 114 extends radially from the first base portion 1141 and the outer peripheral surface of the first base portion 1141, which are in contact with the lower surface of the lower shell 113, and is supported on the compressor installation surface 1. It may include two second base portions 1142.
  • the second base portion 1142 is provided with an anti-vibration rubber 1143 to attenuate compressor vibration and at the same time suppress the compressor vibration from being transmitted to the compressor installation surface 1.
  • the base 114 will be described again in another embodiment later.
  • the drive motor 120 includes a stator 121 and a rotor 122.
  • the stator 121 is inserted and fixed to the inner peripheral surface of the cylindrical shell 111, and the rotor 122 is rotatably provided inside the stator 121.
  • the stator core 1211 is formed in a cylindrical shape and is fixed to the inner peripheral surface of the cylindrical shell 111 by hot pressing.
  • the stator coil 1212 is wound around the stator core 1211 and is electrically connected to an external power source through a terminal (not shown) that is penetrated and coupled to the casing 110.
  • the rotor 122 includes a rotor core 1221 and a permanent magnet 1222.
  • the rotor core 1221 is formed in a cylindrical shape and is rotatably inserted into the stator core 1211 at intervals equal to a predetermined gap.
  • the permanent magnets 1222 are embedded inside the rotor core 1222 at preset intervals along the circumferential direction.
  • the rotating shaft 125 is press-fitted and coupled to the center of the rotor core 1221.
  • An orbiting scroll 150 which will be described later, is eccentrically coupled to the upper end of the rotation shaft 125. Accordingly, the rotational force of the drive motor 120 can be transmitted to the orbiting scroll 150 through the rotation shaft 125.
  • An oil supply passage 126 is formed in a hollow shape inside the rotating shaft 125, and an oil pickup 127 for pumping the oil filled in the oil reservoir space S11 may be coupled to the lower end of the rotating shaft 125. Accordingly, the oil filled in the oil storage space (S11) is sucked to the top of the rotating shaft 125 through the oil pickup 127 and the oil supply passage 126 when the rotating shaft 125 rotates and lubricates the sliding portion.
  • the compression unit (C) includes a main frame 130, a fixed scroll 140, an orbiting scroll 150, a discharge cover 160, and a vibration damping member 170.
  • the main frame 130 is installed below the drive motor 120, and is fixed to the inner wall of the cylindrical shell 111 by hot pressing or welding.
  • the main frame 130 includes a frame head plate portion 131, a frame side wall portion 132, and a main bearing portion 133.
  • the frame plate portion 131 is formed in an annular shape and is installed below the drive motor 120.
  • the frame side wall portion 132 extends in a cylindrical shape from the lower edge of the frame end plate portion 131, and the outer peripheral surface of the frame side wall portion 132 is fixed to the inner peripheral surface of the cylindrical shell 111 by hot pressing or welding. . Accordingly, the storage space (S11) and the discharge space (S12) forming the lower space (S1) of the casing (110) are separated by the frame head plate portion (131) and the frame side wall portion (132).
  • the main bearing portion 133 protrudes upward toward the drive motor 120 from the central upper surface of the frame plate portion 131.
  • the main bearing portion 133 is formed by penetrating a cylindrical main bearing hole 1331 in the axial direction, and a rotating shaft 125 is inserted into the main bearing hole 1331 and supported in the radial direction.
  • the fixed scroll 140 may include a fixed head plate portion 141, a fixed side wall portion 142, a sub-bearing portion 143, and a fixed wrap 144. there is.
  • the fixed head plate portion 141 is formed in a disk shape with a plurality of concave portions formed on the outer peripheral surface, and a sub-bearing hole 1431 forming a sub-bearing portion 143, which will be described later, may be formed through the center in the vertical direction. Discharge holes 1411 and 1412 may be formed around the sub-axle hole 1431, which communicate with the compression chamber V and discharge the compressed refrigerant into the muffler space 160a of the discharge cover 160, which will be described later.
  • first discharge port may communicate with the first compression chamber (V1)
  • second discharge port may communicate with the second compression chamber (V2). Accordingly, the refrigerant compressed in the first compression chamber (V1) and the second compression chamber (V2) can be independently discharged through different discharge ports.
  • a plurality of fixing grooves 141a are formed on the lower surface of the fixed head plate portion 141 at preset intervals along the circumferential direction, and these fixing grooves 141a include the rigid portion 171 of the vibration damping member 170, which will be described later. ) can be inserted and combined, respectively.
  • These fixing grooves 141a and the vibration damping member 170 will be described later.
  • the fixed side wall portion 142 may extend in the vertical direction from the upper surface edge of the fixed head plate portion 141 to form a ring shape.
  • the fixed side wall portion 142 may be coupled to the frame side wall portion 132 of the main frame 130 so as to face in the vertical direction.
  • a suction port 1421 is formed in the fixed side wall portion 142 and penetrates the fixed side wall portion 142 in the radial direction.
  • the end of the refrigerant suction pipe 115 penetrating the cylindrical shell 111 is inserted and coupled to the suction port 1421 as described above. Accordingly, the refrigerant can be sucked directly into the compression chamber (V) through the refrigerant suction pipe 115.
  • the sub-bearing portion 143 extends axially from the center of the fixed head plate portion 141 toward the discharge cover 160. At the center of the sub-bearing unit 143, a cylindrical sub-bearing hole 1431 is formed penetrating in the axial direction, and the lower end of the rotating shaft 125 is inserted into the sub-bearing hole 1431 to be supported in the radial direction. .
  • the fixing wrap 144 may be formed to extend axially from the upper surface of the fixing head plate portion 141 toward the orbiting scroll 150.
  • the fixed wrap 144 engages with the orbiting wrap 152, which will be described later, to form a compression chamber (V).
  • the fixed wrap 144 will be described later along with the swing wrap 152.
  • the orbiting scroll 150 includes a pivoting plate portion 151, a pivoting wrap 152, and a rotating shaft engaging portion 153.
  • the pivoting plate portion 151 is formed in a disk shape and is accommodated in the main frame 130.
  • the upper surface of the pivot plate portion 151 may be supported in the axial direction on the main frame 130 with a back pressure sealing member (not indicated) interposed therebetween.
  • the swing wrap 152 may be formed to extend from the lower surface of the pivot plate portion 151 toward the fixed scroll 140.
  • the orbiting wrap 152 engages with the fixed wrap 144 to form a compression chamber (V).
  • the orbiting wrap 152 may be formed in an involute shape together with the fixed wrap 144. However, the orbiting wrap 152 and the fixed wrap 144 may be formed in various shapes other than the involute.
  • the orbital wrap 152 has a shape in which a plurality of circular arcs with different diameters and origins are connected, and the outermost curve may be formed in an approximately elliptical shape with a long axis and a short axis.
  • the fixing wrap 144 may also be formed in the same way.
  • the inner end of the pivoting wrap 152 is formed in the central portion of the pivoting disk portion 151, and a rotating shaft engaging portion 153 may be formed through the central portion of the pivoting disk portion 151 in the axial direction.
  • the eccentric portion (not marked) of the rotation shaft 125 is rotatably inserted and coupled to the rotation shaft coupling portion 153. Accordingly, the outer peripheral portion of the rotating shaft coupling portion 153 is connected to the orbital wrap 152 and serves to form a compression chamber (V) together with the fixed wrap 144 during the compression process.
  • the rotation axis coupling portion 153 may be formed at a height that overlaps the orbital wrap 152 on the same plane. That is, the rotation shaft coupling portion 153 may be disposed at a height where the eccentric portion (not marked) of the rotation shaft 125 overlaps the pivot wrap 152 on the same plane. Accordingly, the repulsion force and the compression force of the refrigerant are applied to the same plane based on the orbital plate portion 151 and cancel each other out, and through this, the tilt of the orbiting scroll 150 due to the action of the compression force and the repulsion force can be suppressed.
  • the discharge cover 160 is coupled to the lower surface of the fixed scroll 140, and a muffler is installed inside the discharge cover 160 to accommodate the discharge port of the fixed scroll 140.
  • a space 160a is formed.
  • the muffler space is separated from the reservoir space (S11) of the casing and is a discharge space between the main frame 130 and the drive motor 120 through a discharge passage (unmarked) penetrating the fixed scroll 140 and the main frame 130. It connects to (S12).
  • the outer diameter of the discharge cover 160 may be formed to be smaller than or equal to the outer diameter of the fixed scroll 140.
  • the rigid portion 171 of the subsequent vibration damping member 170 moves from the outer peripheral surface of the discharge cover 160 to the fixed scroll. It can be coupled to (140).
  • the rigid portion receiving groove (171) of the vibration damping member 170 is accommodated on the outer peripheral surface of the discharge cover 160 ( (not marked) may be formed to be depressed.
  • the outer diameter of the discharge cover 160 is smaller than the outer diameter of the fixed scroll 140, for example, a virtual connection is made between the inside of the fixing groove 141a to which the rigid part 171 of the vibration damping member 170 is fastened.
  • An example formed smaller than the diameter of a circle is shown.
  • the vibration damping member 170 includes a plurality of stiffness portions 171 and mass portions 172.
  • the plurality of rigid parts 171 may be formed in a thin rod shape and spaced apart at predetermined intervals along the circumferential direction, and may be formed in an annular shape to connect the plurality of rigid parts 171 to each other. Accordingly, the rigid part 171 forming the upper end of the vibration damping member 170 is fixed to the fixed scroll 140, while the mass part 172 forming the lower end of the vibration damping member 170 is attached to the lower side of the discharge cover 160. It is provided to attenuate torsional vibration transmitted along the rotation axis 125.
  • the vibration damping member 170 according to this embodiment will be described later.
  • reference numeral 117 is a gas-liquid separation pipe
  • 1271 is an oil supply pipe
  • 1272 is an oil supply filter
  • 180 is an Oldham ring
  • 190 is a flow guide that separates the discharged refrigerant from the recovered oil.
  • the scroll compressor according to this embodiment as described above operates as follows.
  • the volume of the compression chamber (V) gradually decreases from the outside to the inside. Then, the refrigerant is sucked into the compression chamber (V) through the refrigerant suction pipe 115, compressed, and then discharged into the muffler space 160a of the discharge cover 160 through the discharge ports 1411 and 1412.
  • this refrigerant passes through the muffler space (160a) of the discharge cover (160) and through the discharge hole (unmarked) of the fixed scroll (140) into the discharge space (S12) between the main frame (130) and the drive motor (120). moves to . Then, this refrigerant passes through the drive motor 120 and moves to the upper space (S2) of the casing 110 formed on the upper side of the drive motor 120.
  • the refrigerant that has moved to the upper space (S2) is separated into refrigerant and oil in the upper space (S2), and the refrigerant separated in the upper space is discharged to the outside of the casing (110) through the refrigerant discharge pipe (116).
  • the oil separated from the refrigerant in space S2 is recovered into the storage space S11 of the casing 110.
  • This oil is supplied to each bearing surface (not marked) and the compression chamber (V) through the oil supply passage 126 of the rotating shaft 125.
  • the oil supplied to the bearing surface and the compression chamber (V) is discharged to the discharge cover 160 together with the refrigerant and a series of recovery processes are repeated.
  • torsional vibration is generated as the rotational shaft 125 transmits the rotational force of the drive motor 120, which is a rotary motor, to the compression section, and this torsional vibration is transmitted to the casing through the compression section C. It can be transmitted to (110) to excite the compressor vibration.
  • Figure 3 is a perspective view showing the vibration damping member according to the present embodiment disassembled
  • Figure 4 is a front view showing the vibration damping member according to the present embodiment assembled
  • Figure 5 is the operational effect of the vibration damping member according to the present embodiment. This is a schematic diagram showing.
  • the vibration damping member 170 includes a plurality of rigid parts 171 and a mass part 172 as described above, and the plurality of rigid parts 171 are fixed scroll They can be respectively inserted and coupled to the fixing grooves 141a provided on the lower surface of (140).
  • one end of the plurality of rigid parts 171 may be press-fitted into the fixing groove 141a of the fixed scroll 140 and coupled thereto.
  • the plurality of rigid parts 171 may each extend long in the axial direction from the lower surface of the fixed scroll 140 toward the lower surface of the lower shell 113.
  • the plurality of rigid parts 171 are formed in a thin rod shape, and may be formed in a circular cross-section shape. In this case, the plurality of rigid parts 171 may each have a length larger than their respective diameters. Accordingly, the plurality of rigid parts 171 have sufficient elasticity and can effectively attenuate torsional vibration.
  • each of the plurality of rigid parts 171 may be formed in a non-circular cross-sectional shape.
  • the plurality of rigid parts 171 may each be formed in an arc-shaped cross-section.
  • the plurality of rigid parts 171 may be formed so that each axial length is smaller than or equal to each circumferential diameter. Accordingly, the plurality of rigid parts 171 have sufficient rigidity, so that the number of rigid parts 171 can be reduced.
  • the lower end of the plurality of rigid parts 171 extends to the lower side of the discharge cover 160, and may extend to a position higher than the lower end of the oil pickup 127.
  • the plurality of rigid parts 171 are arranged to surround the oil supply filter 1272 forming the oil pickup 127, and the lower ends of each may extend only to a position where they overlap the oil pickup 127 in the radial direction. Accordingly, it is possible to prevent the volume of the compressor from increasing by suppressing the plurality of rigid parts 171 from being excessively long.
  • the plurality of rigid portions 171 may be formed to have the same stiffness.
  • the plurality of rigid parts 171 may be formed of the same material and the same standard. Accordingly, the torsional vibration is equally absorbed through the plurality of rigid parts 171, and the torsional vibration transmitted through the rotation shaft 125 can be stably attenuated.
  • the mass portion 172 is formed in an annular shape as described above, and the lower ends of the plurality of rigid portions 171 may be connected to the upper side facing the fixed scroll 140.
  • the mass portion 172 may be formed in an annular shape to surround the oil pickup 127 below the lower surface of the discharge cover 160.
  • the mass portion 172 is formed to be larger than the outer diameter of the discharge cover 160 and/or the outer diameter of the oil pickup 127 when projected in the axial direction, so that the mass portion 172 is formed to be larger than the outer diameter of the oil pickup 127 at the lower side of the discharge cover 160 in the radial direction with the oil pickup 127. It can be arranged to overlap. Accordingly, the vibration damping member 170 can be installed in the internal space 110a of the casing 110 while maintaining the axial length of the casing 110.
  • the mass portion 172 may be formed at a position that overlaps the discharge cover 160 in the radial direction.
  • the vibration damping member 170 may be placed higher than the oil level of the oil contained in the oil storage space. Accordingly, even if the vibration damping member 170 vibrates at the same frequency as the vibrating body, it does not affect the oil contained in the reservoir space, thereby suppressing the generation of bubbles due to the vibration of the vibration damping member 170.
  • the mass portion 172 may be formed to have the same cross-sectional area along the circumferential direction, or may be formed to have a plurality of cross-sectional areas along the circumferential direction. This embodiment shows an example in which the mass portion 172 is formed to have the same cross-sectional area along the circumferential direction.
  • the mass portion 172 may be formed in an annular shape in which the circumferential cross-sectional area is greater than or equal to the longitudinal cross-sectional area of each rigid portion 171. Accordingly, the vibration damping member 170 can absorb and attenuate torsional vibration transmitted along the rotation axis 125.
  • the mass portion 172 may be formed of the same material as the rigid portion 171, but in some cases, it may be formed of a different material from the rigid portion 171.
  • This embodiment shows an example in which the mass portion 172 is formed of the same material as the rigid portion 171. Accordingly, the mass portion 172 can be easily connected to the rigid portion 171.
  • the mass portion 172 and the rigid portion 171 may be formed of the same iron-based material, but may be extended as a single body.
  • a plurality of rigid parts 171 may each extend as a single body along the axial direction on one side (upper surface) of the mass part 172. In this case, there is no need to separately couple the mass portion 172 to the rigid portion 171, thereby improving the assembly efficiency between the rigid portion 171 and the mass portion 172.
  • the vibration damping member 170 forming a dynamic absorber is provided in the internal space 110a of the casing 110 as described above, the driving motor 120, which is a rotating motor, is installed in the internal space 110a of the casing 110. Even if it is provided, the vibration damping member 170 absorbs the resulting torsional vibration, thereby effectively reducing the vibration noise of the compressor. (see Figure 5)
  • the vibration damping member 170 which forms a dynamic absorber, is provided on the lower side of the discharge cover 160, which is the lower space, and is installed to surround the oil pickup 127 that communicates with the oil supply passage 126 of the rotating shaft 125. It can be. Accordingly, the vibration damping member 170 is installed in the internal space 110a of the casing 110 without excessively increasing the size of the casing 110, thereby increasing the volume of the compressor due to the installation of the vibration damping member 170. It can be suppressed from doing so.
  • the vibration damping member 170 forming the dynamic absorber is composed of a plurality of rod-shaped rigid parts 171 and an annular mass part 172, and the plurality of rigid parts 171 and the mass part 172 are formed as a single body. By forming, the assembly of the vibration damping member 170 can be simplified.
  • the mass portion 172 may be formed in a plurality of circular arc shapes.
  • the plurality of mass parts 172 may be formed in one-to-one matching with the plurality of rigid parts 171. In this case, it is possible to improve the assembling of the vibration damping member 170 and at the same time attenuate vibrations in various frequency bands.
  • vibration damping members are as follows.
  • a plurality of rigid parts and a mass part are formed as a single body, but in some cases, a plurality of rigid parts may be post-assembled into the mass part.
  • Figure 6 is an exploded perspective view of another embodiment of the vibration damping member in Figure 1
  • Figure 7 is an assembled front view of Figure 6.
  • the scroll compressor according to this embodiment includes a casing 110, a driving motor 120 that forms a rotating motor and a rotating motor, a fixed scroll 140, a turning scroll 150, a discharge cover 160, and a vibration damping member. It is provided with a compression unit (C) including (170), and the basic configuration and effect of the casing 110, the drive motor 120, and the compression unit (C) are the same as the above-described embodiment.
  • the rigid portion 171 and the mass portion 172 forming the vibration damping member 170 may be post-assembled differently from the embodiment of FIG. 3 described above.
  • the mass portion 172 is formed in an annular shape, and a plurality of fastening holes and/or fastening grooves (hereinafter, fastening holes will be described as an example) 172a) may be formed along the circumferential direction and spaced apart by a preset distance. there is.
  • a plurality of fastening holes 172a are formed in the mass portion 172, and these fastening holes 172a may be formed on the same axis as the fixing groove 141a of the fixed scroll 140.
  • the rigid portion 171 is formed in the shape of a thin circular rod as in the above-described embodiment of FIG. 3, but the outer diameter of the rigid portion 171 may be formed to be larger than the inner diameter of the fastening hole 172a.
  • a fastening protrusion 171a that is inserted into or penetrates the fastening hole 172a and fastened to the lower end of the rigid portion 171 fastened to the mass portion 172 may be formed to be stepped.
  • the length of the fastening protrusion 171a may be longer than the length of the fastening hole 172a and may be fastened with the fastening nut 175 on the other side (lower surface) of the mass portion 172.
  • the upper end of the rigid portion 171 may be press-fitted into or fastened to the fixing groove 141a of the fixed scroll 140 as in the above-described embodiment.
  • This embodiment shows an example in which screw threads are formed at the top of the rigid portion 171 and the fixing groove 141a of the fixed scroll 140 and are fastened to each other.
  • the rigid portion 171 and the mass portion 172 may be formed of the same material, but in some cases, the rigid portion 171 and the mass portion ( 172) can be formed from different materials.
  • the rigid portion 171 may be formed of a material with greater rigidity per unit area than the mass portion 172
  • the mass portion 172 may be formed of a material with a greater mass per unit area than the rigid portion 171. You can.
  • it can be formed in the opposite way. Through this, torsional vibration in various frequency bands can be effectively attenuated and can be appropriately changed and applied depending on the compressor capacity.
  • a plurality of rigid parts 171 forming part of the vibration damping member 170 extend as a single body from the fixed scroll 140, and a mass part 172 forming another part of the vibration damping member 170 may be fastened to the bottom of the plurality of rigid parts 171.
  • the structure in which the plurality of rigid parts 171 and the mass part 172 are fastened may be the same as the embodiment of FIG. 3 described above.
  • vibration damping member is as follows.
  • the vibration damping member is assembled to the fixed scroll, but in some cases, the vibration damping member may be coupled to the rotating shaft.
  • Figure 8 is an exploded perspective view of another embodiment of the vibration damping member in Figure 1
  • Figure 9 is a schematic diagram showing the effect of the vibration damping member according to Figure 8.
  • the scroll compressor according to this embodiment includes a casing 110, a driving motor 120 that forms a rotating motor and a rotating motor, a fixed scroll 140, a turning scroll 150, a discharge cover 160, and a vibration damping member. It is provided with a compression unit (C) including (170), and the basic configuration and effect of the casing 110, the drive motor 120, and the compression unit (C) are the same as the above-described embodiment.
  • the vibration damping member 170 may be directly coupled to the rotation shaft 125, differently from the above-described embodiments.
  • the lower end of the rotating shaft 125 may extend long enough to protrude from the lower end of the sub-bearing unit 143, and the vibration damping member 170 may be fastened to the lower end of the rotating shaft 125.
  • the vibration damping member 170 is located between the fixed scroll 140 and the oil pickup 127, for example, between the sub-bearing portion 143 and the oil supply pipe 1271 forming the oil pickup 127. 125).
  • the vibration damping member 170 may include a plurality of rigid parts 171, mass parts 172, and fixing parts 173.
  • the plurality of rigid parts 171 may extend in the radial direction and be formed as a single body on the inner peripheral surface of the mass portion 172 and the outer peripheral surface of the fixing portion 173.
  • the mass portion 172 is formed in an annular shape so that its inner circumferential surface is connected to the outer ends of the plurality of rigid portions 171, and the fixing portion 173 is formed in an annular shape so that its outer peripheral surface is connected to the inner ends of the plurality of rigid portions 171.
  • Each can be connected.
  • the fixing part 173 may be press-fitted to the outer peripheral surface of the rotating shaft 125 or may be post-assembled. This embodiment shows an example in which the fixing part 173 is press-fitted to the outer peripheral surface of the rotating shaft 125.
  • each rigid portion 171 may be smaller than or equal to the cross-sectional area of the mass portion 172. Accordingly, torsional vibration transmitted through the rotation shaft 125 can be effectively attenuated.
  • the cross-sectional area of the fixing part 173 may be smaller than or equal to the cross-sectional area of the mass part 172. Accordingly, the weight of the part of the vibration damping member 170 that is not involved in vibration damping is minimized and the weight of the vibration damping member 170, which forms part of the rotating body, is prevented from increasing excessively, thereby reducing the weight of the vibration damping member 170. Deterioration in compressor efficiency can be minimized.
  • the vibration damping member 170 When the vibration damping member 170 is coupled to the rotating shaft 125 as described above, the torsional vibration can be attenuated more effectively because the vibration damping member 170 is directly coupled to the rotating shaft 125, which is the source of the torsional vibration. This can further reduce compressor vibration. (see Figure 9)
  • vibration damping member is as follows.
  • the vibration damping member is provided inside the casing, but in some cases, the vibration damping member may be provided outside the casing.
  • Figure 10 is a perspective view showing another embodiment of the vibration damping member in Figure 1
  • Figure 11 is a front view of Figure 10
  • Figure 12 is an exploded perspective view of the vibration damping member according to Figure 10
  • Figure 13 is a perspective view of Figure 10. This is a schematic diagram showing the effect of the vibration damping member according to .
  • the scroll compressor according to this embodiment includes a casing 110, a driving motor 120 that forms a rotating motor and is a rotating motor, a fixed scroll 140, a turning scroll 150, and a discharge cover 160. It is provided with a unit (C), and the basic configuration and effect of the casing (110), the drive motor (120), and the compression unit (C) are the same as the above-described embodiment.
  • the vibration damping member 170 may be installed outside the casing 110, unlike the above-described embodiments.
  • the vibration damping member 170 may be installed on the base 114 that forms part of the casing 110.
  • the vibration damping member 170 includes a plurality of rigid parts 171 and a mass part 172, and the plurality of rigid parts 171 are each of the second base parts 1142 that form part of the base 114. It may extend upward along the axial direction. Accordingly, the mass portion 172 may be formed in an annular shape and arranged to surround the outer peripheral surface of the cylindrical shell 111 forming part of the casing 110 at a predetermined distance.
  • the refrigerant suction pipe 115 is connected to one side of the cylindrical shell 111, and the mass portion 172 is formed in an annular shape to surround the cylindrical shell 111, but may be placed lower than the refrigerant suction pipe 115. .
  • the outer peripheral surface of the mass portion 172 may be formed to be located within the range of the refrigerant suction pipe 115. Accordingly, the outer diameter of the vibration damping member 170 may be formed to be excessively large, thereby preventing an increase in the volume of the compressor including the vibration damping member 170.
  • the plurality of rigid portions 171 and mass portions 172 may be formed as a single body as in the above-described embodiment of FIG. 3 or may be post-assembled as in the embodiment of FIG. 6 .
  • This embodiment shows an example in which a plurality of rigid parts 171 and mass parts 172 are post-assembled.
  • the plurality of rigid parts 171 may be press-fitted into the second base part 1142, or may be fastened to each other using fastening nuts 175.
  • This embodiment shows an example in which each rigid part 171 is fastened to the second base part 1142 using a fastening nut 175.
  • a fastening protrusion 171a similar to the embodiment of FIG. 6 is formed at the bottom of each rigid part 171 to be stepped, and is inserted into the fastening hole 1142a provided in the second base portion 1142. 2 It can be fastened to the bottom of the base portion 1142 with a fastening nut 175.
  • the plurality of rigid portions 171 and mass portions 172 may be formed of the same material or may be formed of different materials.
  • the rigid portion 171 may be formed of a material with greater or lesser rigidity than the mass portion 172
  • the mass portion 172 may be formed of a material heavier or lighter than the rigid portion 171.
  • the vibration damping member 170 When the vibration damping member 170 is installed outside the casing 110 as described above, the vibration damping member 170 absorbs and attenuates torsional vibration transmitted to the casing 110. (see Figure 13)
  • the vibration damping member 170 is installed outside the casing 110
  • the specifications and/or shapes of the vibration damping member 170 can be applied in various ways.
  • the vibration damping member 170 is installed on the base 114, separate parts for fixing the vibration damping member 170 can be excluded, thereby minimizing the number of parts and forming the vibration damping member 170 ) can be installed on the outside of the casing 110.
  • the vibration damping member 170 may be installed on the outer peripheral surface of the casing 110, for example, the outer peripheral surface of the cylindrical shell 111 and/or upper shell 112 and/or lower shell 113.
  • a plurality of rigid parts 171 may be directly connected to the outer peripheral surface of the casing 110 and extend in the radial direction, and as in the embodiment of FIG. 8, a separate fixing part 173 is coupled to the casing 110. In this state, a plurality of rigid parts 171 on the outer peripheral surface of the fixing part 173 may extend in the radial direction.
  • a scroll compressor has been described as an example, but the same can be applied to a compressor having a transmission unit made of a rotary motor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressor (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

A hermetic compressor is disclosed. The hermetic compressor has a vibration-damping member provided inside or outside a casing, has a plurality of rigid parts arranged around a vibrating body by preset intervals in the circumferential direction and coupled to the vibrating body, and has a mass part that can be formed to be annular to connect the plurality of rigid parts to each other or formed as a circular arc to be independently connected to each of the plurality of rigid parts. Therefore, even if a driving motor, that is provided as a rotating motor, is provided, the vibration-damping member absorbs torsional vibration caused thereby such that the vibration noise of the compressor can be effectively lowered.

Description

밀폐형 압축기Hermetic compressor
본 발명은 압축기에 관한 것으로, 특히 회전모터가 구비된 밀폐형 압축기에 관한 것이다.The present invention relates to compressors, and particularly to a sealed compressor equipped with a rotating motor.
압축기는 구동부(또는 전동부)는 케이싱의 외부에 구비되고 압축부만 케이싱의 내부에 구비되는 개방형 압축기와, 구동부(또는 전동부)와 압축부가 케이싱의 내부에 함께 구비되는 밀폐형 압축기로 구분될 수 있다.Compressors can be divided into open compressors in which the driving part (or electric part) is provided outside the casing and only the compression part is provided inside the casing, and closed compressors in which the driving part (or electric part) and the compression part are provided together inside the casing. there is.
압축기는 구동부와 압축부에서 진동이 발생되는데, 구동부와 압축부가 케이싱의 내부에 함께 구비되는 밀폐형 압축기는 개방형 압축기에 비해 더 큰 진동이 발생될 수 있다.Compressors generate vibration in the driving part and the compression part, and a closed compressor in which the driving part and the compression part are provided together inside the casing may generate greater vibration than an open compressor.
이에 종래에는 압축기를 압축기설치면에 지지하는 베이스에 방진고무를 구비하여 케이싱의 내부에서 발생된 진동이 케이싱을 통해 냉동사이클로 전달되는 것을 억제하고 있다. 하지만 이는 압축기의 내부에서 발생된 진동을 효과적으로 흡수하지 못하여 압축기 및 그 압축기를 적용한 냉동사이클에서의 진동이 충분하게 감쇠되지 못하는 문제가 있었다.Accordingly, conventionally, vibration-proof rubber is provided on the base that supports the compressor on the compressor installation surface to suppress vibration generated inside the casing from being transmitted to the refrigeration cycle through the casing. However, it does not effectively absorb vibrations generated inside the compressor, so there is a problem in that vibrations in the compressor and the refrigeration cycle to which the compressor is applied are not sufficiently attenuated.
통상, 진동체의 진동을 감쇠하는 기구로는 동흡진기(이하 진동감쇠부재와 혼용한다)가 알려져 있다. 종래의 동흡진기 관련 기술은 주로 대상 진동체(주로 축 또는 배관)의 저감에 필요한 모드와 동일 대역에 동흡진기의 역위상 모드 주파수를 위치시키고 있다. 이를 위해 진동체와 동흡진기의 질량부 사이의 강성을 다양한 방식을 통하여 조절하는데 중점을 두고 있다. Typically, a dynamic absorber (hereinafter used interchangeably with a vibration damping member) is known as a mechanism for damping the vibration of a vibrating body. Conventional dynamic absorber-related technology mainly places the anti-phase mode frequency of the dynamic absorber in the same band as the mode required for reduction of the target vibrating body (mainly shaft or pipe). For this purpose, emphasis is placed on controlling the stiffness between the vibrating body and the mass part of the dynamic absorber through various methods.
하지만, 회전모터가 구비되는 밀폐형 압축기에서는 케이싱의 내부에 동흡진기를 설치하기가 구조적으로 어려울 뿐만 아니라, 케이싱의 내부에 동흡진기가 설치될 경우에는 압축기의 부피가 증가하게 되는 문제가 있었다. However, in a closed compressor equipped with a rotary motor, it is not only structurally difficult to install a dynamic absorber inside the casing, but also there is a problem in that the volume of the compressor increases when the dynamic absorber is installed inside the casing.
또한, 동흡진기가 케이싱의 외부에 설치되는 경우에 별도의 부품이 추가되어야 하므로 그만큼 조립공수가 증가하여 제조비용이 상승하게 될 수 있다.In addition, when the dynamic absorber is installed outside the casing, separate parts must be added, which increases the number of assembly steps and may increase manufacturing costs.
본 발명의 목적은, 케이싱의 내부에 회전모터가 구비되면서도 진동소음을 낮출 수 있도록 동흡진기가 구비되는 밀폐형 압축기를 제공하려는데 있다.The purpose of the present invention is to provide a sealed compressor that has a rotating motor inside the casing and a dynamic absorber to reduce vibration noise.
본 발명의 다른 목적은, 케이싱의 크기가 과도하게 증가하지 않으면서도 동흡진기를 케이싱의 내부에 설치할 수 있는 밀폐형 압축기를 제공하려는데 있다.Another object of the present invention is to provide a closed compressor in which a dynamic absorber can be installed inside the casing without excessively increasing the size of the casing.
본 발명의 또 다른 목적은, 부품수를 최소화하면서도 동흡진기를 케이싱의 외부에 설치할 수 있는 밀폐형 압축기를 제공하려는데 있다. Another object of the present invention is to provide a sealed compressor that can install a dynamic absorber outside the casing while minimizing the number of parts.
본 발명의 목적을 달성하기 위하여, 케이싱, 구동모터, 압축부, 회전축 및 진동감쇠부재를 포함하는 밀폐형 압축기가 개시될 수 있다. 상기 구동모터는 상기 케이싱의 내부공간에 구비되어 회전력을 발생할 수 있다. 상기 압축부는 상기 케이싱의 내부공간에 구비되어 상기 구동모터에서 발생되는 회전력에 의해 작동하면서 냉매를 압축할 수 있다. 상기 회전축은 상기 구동모터와 상기 압축부 사이를 연결하여 상기 구동모터의 회전력을 상기 압축부에 전달할 수 있다. 상기 진동감쇠부재는 상기 케이싱의 내부 또는 상기 케이싱의 외부에 구비되어 진동을 감쇠(damping)할 수 있다. 상기 진동감쇠부재는, 복수 개의 강성부 및 질량부를 포함할 수 있다. 상기 복수 개의 강성부는 진동체를 중심으로 원주방향을 따라 기설정된 간격을 두고 배치되어 상기 진동체에 결합될 수 있다. 상기 질량부는 상기 복수 개의 강성부를 서로 연결하도록 환형으로 형성되거나 또는 상기 복수 개의 강성부마다 독립적으로 연결되도록 원호형으로 형성될 수 있다. 이를 통해, 회전모터로 된 구동모터가 구비되더라도 그로 인한 비틀림진동을 진동감쇠부재가 흡수하여 압축기의 진동소음을 효과적으로 낮출 수 있다.In order to achieve the purpose of the present invention, a closed compressor including a casing, a drive motor, a compression unit, a rotating shaft, and a vibration damping member may be disclosed. The drive motor may be provided in the inner space of the casing to generate rotational force. The compression unit is provided in the inner space of the casing and can compress the refrigerant while operating by rotational force generated by the drive motor. The rotation shaft may connect the drive motor and the compression unit to transmit the rotational force of the drive motor to the compression unit. The vibration damping member may be provided inside or outside the casing to dampen vibration. The vibration damping member may include a plurality of rigid parts and a plurality of mass parts. The plurality of rigid parts may be arranged at predetermined intervals along the circumferential direction around the vibrating body and coupled to the vibrating body. The mass portion may be formed in an annular shape to connect the plurality of rigid portions to each other, or may be formed in an arc shape to independently connect each of the plurality of rigid portions. Through this, even if the driving motor is a rotating motor, the vibration damping member absorbs the resulting torsional vibration, thereby effectively lowering the vibration noise of the compressor.
일례로, 상기 압축부는, 메인프레임, 고정스크롤 및 선회스크롤을 포함할 수 있다. 상기 메인프레임은 상기 케이싱의 내부에 고정될 수 있다. 상기 고정스크롤은 상기 구동모터의 반대쪽에서 상기 메인프레임에 결합될 수 있다. 상기 선회스크롤은 상기 메인프레임과 상기 고정스크롤 사이에 구비되어 상기 고정스크롤과의 사이에 압축실을 형성할 수 있다. 상기 진동감쇠부재는, 상기 케이싱의 내부공간에 구비될 수 있다. 이를 통해, 케이싱의 내부공간에서 발생되는 비틀림모멘트를 그 케이싱의 내부에서 감쇠하여 압축기 진동이 외부로 전달되는 것을 미연에 방지할 수 있다.For example, the compression unit may include a main frame, a fixed scroll, and an orbiting scroll. The mainframe may be fixed to the inside of the casing. The fixed scroll may be coupled to the main frame on the opposite side of the drive motor. The orbiting scroll may be provided between the main frame and the fixed scroll to form a compression chamber between the main frame and the fixed scroll. The vibration damping member may be provided in the inner space of the casing. Through this, the torsional moment generated in the internal space of the casing is attenuated inside the casing, thereby preventing compressor vibration from being transmitted to the outside.
예를 들어, 상기 압축부는 상기 구동모터의 하측에 구비될 수 있다. 상기 진동감쇠부재는, 상기 압축부의 축방향 양쪽 측면 중에서 상기 구동모터를 마주보는 쪽 측면의 반대쪽 측면에 구비될 수 있다. 이를 통해, 케이싱의 내부공간을 효과적으로 활용하여 케이싱의 내부공간에 진동감쇠부재를 설치하면서도 케이싱의 부피가 증가하는 것을 억제할 수 있다.For example, the compression unit may be provided below the drive motor. The vibration damping member may be provided on a side opposite to the side facing the drive motor among both sides in the axial direction of the compression unit. Through this, it is possible to effectively utilize the internal space of the casing and suppress the increase in the volume of the casing while installing a vibration damping member in the internal space of the casing.
다른 예로, 상기 압축부는, 메인프레임, 고정스크롤 및 선회스크롤을 포함할 수 있다. 상기 메인프레임은 상기 케이싱의 내부에 고정될 수 있다. 상기 고정스크롤은 상기 구동모터의 반대쪽에서 상기 메인프레임에 결합될 수 있다. 상기 선회스크롤은 상기 메인프레임과 상기 고정스크롤 사이에 구비되어 상기 고정스크롤과의 사이에 압축실을 형성할 수 있다. 상기 진동감쇠부재는, 상기 강성부의 일단이 상기 고정스크롤에서 상기 메인프레임의 반대쪽으로 연장될 수 있다. 이를 통해, 강성부의 길이를 가능한 한 길게 형성하여 강성부의 신뢰성을 높이면서도 다양한 주파수의 비틀림진동을 감쇠시킬 수 있다.As another example, the compression unit may include a main frame, a fixed scroll, and an orbiting scroll. The mainframe may be fixed to the inside of the casing. The fixed scroll may be coupled to the main frame on the opposite side of the drive motor. The orbiting scroll may be provided between the main frame and the fixed scroll to form a compression chamber between the main frame and the fixed scroll. One end of the rigid portion of the vibration damping member may extend from the fixed scroll to the opposite side of the main frame. Through this, the length of the rigid part can be made as long as possible, thereby increasing the reliability of the rigid part and attenuating torsional vibrations of various frequencies.
예를 들어, 상기 고정스크롤의 하면에는 복수 개의 고정홈이 원주방향을 따라 기설정된 간격을 두고 축방향으로 함몰되어 형성될 수 있다. 상기 복수 개의 강성부는, 각각의 일단이 상기 복수 개의 고정홈에 각각 삽입되어 결합될 수 있다. 이를 통해, 강성부의 일단을 진동체에 안정적으로 고정하여 진동감쇠부재의 신뢰성을 높일 수 있다.For example, a plurality of fixing grooves may be formed on the lower surface of the fixed scroll by being recessed in the axial direction at preset intervals along the circumferential direction. The plurality of rigid parts may be coupled to each other by inserting one end of each into the plurality of fixing grooves. Through this, the reliability of the vibration damping member can be increased by stably fixing one end of the rigid portion to the vibrating body.
구체적으로, 상기 질량부는 환형으로 형성되고, 상기 복수 개의 강성부는, 상기 질량부의 일측면에서 단일체로 연장될 수 있다. 이를 통해, 강성부와 질량부에 대한 조립공수를 줄여 진동감쇠부재의 조립성을 높일 수 있다.Specifically, the mass portion may be formed in an annular shape, and the plurality of rigid portions may extend as a single body from one side of the mass portion. Through this, the assembly efficiency of the vibration damping member can be improved by reducing the assembly man-hours for the rigid part and the mass part.
구체적으로, 상기 질량부는 환형으로 형성되고, 상기 질량부에는 복수 개의 체결구멍이 원주방향을 따라 기설정된 간격을 두고 형성될 수 있다. 상기 복수 개의 강성부는, 상기 복수 개의 체결구멍을 각각 관통하여 상기 질량부에 체결될 수 있다. 이를 통해, 강성부 및/또는 질량부의 형상을 적정하게 형성하면서도 이들 강성부와 질량부의 조립성을 높일 수 있다.Specifically, the mass portion may be formed in an annular shape, and a plurality of fastening holes may be formed in the mass portion at predetermined intervals along the circumferential direction. The plurality of rigid parts may pass through each of the plurality of fastening holes and be fastened to the mass part. Through this, it is possible to appropriately form the shape of the rigid portion and/or the mass portion while increasing the assembly of the rigid portion and the mass portion.
더 구체적으로, 상기 복수 개의 강성부는 상기 질량부와 서로 다른 강성(stiffness)을 가지는 소재로 형성될 수 있다. 이를 통해, 압축기의 용량에 따른 다양한 주파수의 비틀림진동에 대해 적절하면서도 능동적으로 대응할 수 있다.More specifically, the plurality of rigid parts may be formed of a material having different stiffness from that of the mass part. Through this, it is possible to appropriately and actively respond to torsional vibration of various frequencies depending on the capacity of the compressor.
또한, 상기 선회스크롤의 반대쪽 측면을 이루는 상기 고정스크롤의 일측에는 상기 압축실에서 토출되는 냉매를 수용하는 토출커버가 구비될 수 있다. 상기 질량부는, 상기 고정스크롤로부터 상기 토출커버보다 축방향으로 멀게 위치할 수 있다. 이를 통해, 토출커버의 머플러공간을 넓게 확보하면서도 강성부의 길이를 길게 확보하는 동시에 질량부의 형상을 다양하게 형성할 수 있다. Additionally, a discharge cover that accommodates the refrigerant discharged from the compression chamber may be provided on one side of the fixed scroll forming the opposite side of the orbiting scroll. The mass portion may be located farther from the fixed scroll in the axial direction than the discharge cover. Through this, it is possible to secure a wide muffler space in the discharge cover, secure a long length of the rigid part, and at the same time form various shapes of the mass part.
예를 들어, 상기 선회스크롤의 반대쪽 측면을 이루는 상기 고정스크롤의 일측에는 상기 회전축의 급유통로와 연통되도록 오일픽업이 구비될 수 있다. 상기 질량부는, 상기 오일픽업을 감싸도록 구비될 수 있다. 이를 통해, 케이싱의 내부공간에 진동감쇠부재를 설치하면서도 그 진동감쇠부재로 인한 케이싱의 부피가 증가하는 것을 억제할 수 있다.For example, an oil pickup may be provided on one side of the fixed scroll forming the opposite side of the orbiting scroll to communicate with the oil supply passage of the rotating shaft. The mass portion may be provided to surround the oil pickup. Through this, it is possible to suppress an increase in the volume of the casing due to the vibration damping member while installing the vibration damping member in the internal space of the casing.
또 다른 예로, 상기 압축부는, 메인프레임, 고정스크롤 및 선회스크롤을 포함할 수 있다. 상기 메인프레임은 상기 케이싱의 내부에 고정될 수 있다. 상기 고정스크롤은 상기 구동모터의 반대쪽에서 상기 메인프레임에 결합될 수 있다. 상기 선회스크롤은 상기 메인프레임과 상기 고정스크롤 사이에 구비되어 상기 고정스크롤과의 사이에 압축실을 형성할 수 있다. 상기 회전축은 상기 메인프레임, 상기 선회스크롤 및 상기 고정스크롤을 관통하여 상기 메인프레임과 상기 고정스크롤에 지지될 수 있다. 상기 진동감쇠부재는, 상기 고정스크롤보다 하측에서 상기 회전축에 결합될 수 있다. 이를 통해, 진동감쇠부재가 비틀림진동의 진동원에 구비됨에 따라 진동감쇠효과를 더욱 높일 수 있다.As another example, the compression unit may include a main frame, a fixed scroll, and an orbiting scroll. The mainframe may be fixed to the inside of the casing. The fixed scroll may be coupled to the main frame on the opposite side of the drive motor. The orbiting scroll may be provided between the main frame and the fixed scroll to form a compression chamber between the main frame and the fixed scroll. The rotation shaft may pass through the main frame, the orbiting scroll, and the fixed scroll and be supported on the main frame and the fixed scroll. The vibration damping member may be coupled to the rotation shaft below the fixed scroll. Through this, the vibration damping effect can be further increased as the vibration damping member is provided at the vibration source of torsional vibration.
예를 들어, 상기 진동감쇠부재는 상기 회전축의 외주면에 삽입되어 결합되는 고정부가 더 구비될 수 있다. 상기 복수 개의 강성부는, 상기 고정부의 외주면에서 각각 반경방향으로 연장될 수 있다. 이를 통해, 진동감쇠부재를 회전축에 결합하면서도 케이싱의 길이가 증가하는 것을 최소화할 수 있다.For example, the vibration damping member may further include a fixing part that is inserted and coupled to the outer peripheral surface of the rotating shaft. The plurality of rigid parts may each extend in a radial direction from the outer peripheral surface of the fixing part. Through this, it is possible to minimize the increase in the length of the casing while coupling the vibration damping member to the rotating shaft.
구체적으로, 상기 고정부와 상기 복수 개의 강성부, 그리고 상기 질량부는 단일체로 형성될 수 있다. 이를 통해, 진동감쇠부재의 조립공수를 간소화하여 제조비용을 낮출 수 있다.Specifically, the fixing part, the plurality of rigid parts, and the mass part may be formed as a single body. Through this, the manufacturing cost can be lowered by simplifying the assembly process of the vibration damping member.
또 다른 예로, 상기 압축부는, 메인프레임, 고정스크롤 및 선회스크롤을 포함할 수 있다. 상기 메인프레임은 상기 케이싱의 내부에 고정될 수 있다. 상기 고정스크롤은 상기 구동모터의 반대쪽에서 상기 메인프레임에 결합될 수 있다. 상기 선회스크롤은 상기 메인프레임과 상기 고정스크롤 사이에 구비되어 상기 고정스크롤과의 사이에 압축실을 형성할 수 있다. 상기 진동감쇠부재는, 상기 케이싱의 외부에 구비될 수 있다. 이를 통해, 진동감쇠부재를 용이하게 설치하는 동시에 진동감쇠부재를 다양하면서도 적절하게 변경할 수 있다.As another example, the compression unit may include a main frame, a fixed scroll, and an orbiting scroll. The mainframe may be fixed to the inside of the casing. The fixed scroll may be coupled to the main frame on the opposite side of the drive motor. The orbiting scroll may be provided between the main frame and the fixed scroll to form a compression chamber between the main frame and the fixed scroll. The vibration damping member may be provided outside the casing. Through this, it is possible to easily install the vibration damping member and at the same time change the vibration damping member in various ways and appropriately.
예를 들어, 상기 케이싱의 하면에는 상기 케이싱을 압축기설치면에 지지하는 베이스가 구비될 수 있다. 상기 복수 개의 강성부는, 상기 베이스에서 상기 압축기설치면의 반대방향으로 연장될 수 있다. 이를 통해, 진동감쇠부재를 고정하기 위한 별도의 부재를 구비하지 않고서도 진동감쇠부재를 간소하면서도 안정적으로 설치할 수 있다. For example, a base may be provided on the lower surface of the casing to support the casing on the compressor installation surface. The plurality of rigid parts may extend from the base in a direction opposite to the compressor installation surface. Through this, the vibration damping member can be installed simply and stably without providing a separate member for fixing the vibration damping member.
구체적으로, 상기 베이스는, 상기 케이싱의 하면에 접하는 제1베이스부; 및 상기 제1베이스부에서 반경방향으로 연장되어 상기 압축기설치면에 지지되는 복수 개의 제2베이스부를 포함할 수 있다. 상기 복수 개의 강성부는, 상기 복수 개의 제2베이스부에서 축방향을 따라 각각 연장될 수 있다. 이를 통해, 진동감쇠부재의 일부를 이루는 질량부가 케이싱의 외주면으로부터 이격되어 그 케이싱을 감싸도록 설치될 수 있다.Specifically, the base includes: a first base portion in contact with the lower surface of the casing; And it may include a plurality of second base parts extending radially from the first base part and supported on the compressor installation surface. The plurality of rigid parts may each extend along the axial direction from the plurality of second base parts. Through this, the mass portion forming part of the vibration damping member can be installed to surround the casing while being spaced apart from the outer peripheral surface of the casing.
더 구체적으로, 상기 복수 개의 제2베이스부에는 체결홈 또는 체결구멍이 각각 형성될 수 있다. 상기 복수 개의 강성부는, 일단이 상기 체결홈 또는 상기 체결구멍에 삽입되어 체결될 수 있다. 이를 통해, 진동감쇠부재의 일부를 이루는 강성부를 용이하면서도 안정적으로 형성할 수 있다.More specifically, fastening grooves or fastening holes may be formed in each of the plurality of second base portions. One end of the plurality of rigid parts may be inserted into the fastening groove or the fastening hole to be fastened. Through this, the rigid part forming part of the vibration damping member can be easily and stably formed.
또한, 상기 케이싱에는 상기 압축실에 연통되는 냉매흡입관이 관통되어 결합될 수 있다. 상기 질량부는, 상기 냉매흡입관보다 하측에 위치할 수 있다. 이를 통해, 진동감쇠부재가 케이싱의 외부에 설치되면서도 그 진동감쇠부재가 압축기의 일부를 이루는 냉매흡입관의 범위 내에 위치하도록 형성되어 냉매흡입관을 포함한 압축기의 부피가 증가하는 것을 억제할 수 있다.Additionally, a refrigerant suction pipe communicating with the compression chamber may be passed through and coupled to the casing. The mass portion may be located lower than the refrigerant suction pipe. Through this, although the vibration damping member is installed outside the casing, the vibration damping member is formed to be located within the range of the refrigerant suction pipe that forms part of the compressor, thereby suppressing an increase in the volume of the compressor including the refrigerant suction pipe.
본 발명에 따른 밀폐형 압축기는, 진동감쇠부재가 케이싱의 내부 또는 케이싱의 외부에 구비되되, 복수 개의 강성부는 진동체를 중심으로 원주방향을 따라 기설정된 간격을 두고 배치되어 진동체에 결합되고, 질량부는 복수 개의 강성부를 서로 연결하도록 환형으로 형성되거나 또는 복수 개의 강성부마다 독립적으로 연결되도록 원호형으로 형성될 수 있다. 이를 통해, 회전모터로 된 구동모터가 구비되더라도 그로 인한 비틀림진동을 진동감쇠부재가 흡수하여 압축기의 진동소음을 효과적으로 낮출 수 있다.In the sealed compressor according to the present invention, a vibration damping member is provided inside or outside the casing, and a plurality of rigid parts are arranged at predetermined intervals in the circumferential direction around the vibrating body and coupled to the vibrating body, and the mass The portion may be formed in an annular shape to connect the plurality of rigid portions to each other, or may be formed in an arc shape to independently connect each of the plurality of rigid portions. Through this, even if the driving motor is a rotating motor, the vibration damping member absorbs the resulting torsional vibration, thereby effectively lowering the vibration noise of the compressor.
본 발명에 따른 밀폐형 압축기는, 진동감쇠부재가 케이싱의 내부공간에 구비될 수 있다. 이를 통해, 케이싱의 내부공간에서 발생되는 비틀림모멘트를 그 케이싱의 내부에서 감쇠하여 압축기 진동이 외부로 전달되는 것을 미연에 방지할 수 있다.In the sealed compressor according to the present invention, a vibration damping member may be provided in the inner space of the casing. Through this, the torsional moment generated in the internal space of the casing is attenuated inside the casing, thereby preventing compressor vibration from being transmitted to the outside.
본 발명에 따른 밀폐형 압축기는, 진동감쇠부재가 강성부의 일단이 고정스크롤에서 메인프레임의 반대쪽으로 연장될 수 있다. 이를 통해, 강성부의 길이를 가능한 한 길게 형성하여 강성부의 신뢰성을 높이면서도 다양한 주파수의 비틀림진동을 감쇠시킬 수 있다.In the sealed compressor according to the present invention, one end of the rigid portion of the vibration damping member may extend from the fixed scroll to the opposite side of the main frame. Through this, the length of the rigid part can be made as long as possible, thereby increasing the reliability of the rigid part and attenuating torsional vibrations of various frequencies.
본 발명에 따른 밀폐형 압축기는, 진동감쇠부재가 고정스크롤보다 하측에서 회전축에 결합될 수 있다. 이를 통해, 진동감쇠부재가 비틀림진동의 진동원에 구비됨에 따라 진동감쇠효과를 더욱 높일 수 있다.In the sealed compressor according to the present invention, the vibration damping member may be coupled to the rotating shaft below the fixed scroll. Through this, the vibration damping effect can be further increased as the vibration damping member is provided at the vibration source of torsional vibration.
본 발명에 따른 밀폐형 압축기는, 진동감쇠부재가 케이싱의 외부에 구비될 수 있다. 이를 통해, 진동감쇠부재를 용이하게 설치하는 동시에 진동감쇠부재를 다양하면서도 적절하게 변경할 수 있다.In the sealed compressor according to the present invention, a vibration damping member may be provided on the outside of the casing. Through this, it is possible to easily install the vibration damping member and at the same time change the vibration damping member in various ways and appropriately.
도 1은 본 실시예에 따른 스크롤 압축기의 내부를 투시하여 보인 사시도.1 is a perspective view showing the inside of a scroll compressor according to this embodiment.
도 2는 도 1의 종단면도.Figure 2 is a longitudinal cross-sectional view of Figure 1.
도 3은 본 실시예에 따른 진동감쇠부재를 분해하여 보인 사시도.Figure 3 is an exploded perspective view of the vibration damping member according to this embodiment.
도 4는 본 실시예에 따른 진동감쇠부재를 조립하여 보인 정면도.Figure 4 is a front view showing the assembled vibration damping member according to this embodiment.
도 5는 본 실시예에 따른 진동감쇠부재의 작용효과를 보인 개략도.Figure 5 is a schematic diagram showing the effect of the vibration damping member according to this embodiment.
도 6은 도 1에서 진동감쇠부재의 다른 실시예를 분해하여 보인 사시도.Figure 6 is an exploded perspective view of another embodiment of the vibration damping member in Figure 1.
도 7은 도 6의 조립 정면도.Figure 7 is an assembled front view of Figure 6.
도 8은 도 1에서 진동감쇠부재의 또 다른 실시예를 분해하여 보인 사시도.Figure 8 is an exploded perspective view of another embodiment of the vibration damping member in Figure 1.
도 9는 8에 따른 진동감쇠부재의 작용효과를 보인 개략도.Figure 9 is a schematic diagram showing the effect of the vibration damping member according to Figure 8.
도 10은 도 1에서 진동감쇠부재의 또 다른 실시예를 보인 사시도.Figure 10 is a perspective view showing another embodiment of the vibration damping member in Figure 1.
도 11은 도 10의 정면도.Figure 11 is a front view of Figure 10.
도 12는 도 10에 따른 진동감쇠부재를 분해하여 보인 사시도.Figure 12 is an exploded perspective view of the vibration damping member according to Figure 10.
도 13은 도 10에 따른 진동감쇠부재의 작용효과를 보인 개략도.Figure 13 is a schematic diagram showing the effect of the vibration damping member according to Figure 10.
이하, 본 발명에 의한 밀폐형 압축기를 첨부도면에 의거하여 상세하게 설명한다. 이하의 설명에서는 본 발명의 특징을 명확하게 하기 위해 일부 구성 요소들에 대한 설명이 생략될 수 있다.Hereinafter, the sealed compressor according to the present invention will be described in detail based on the accompanying drawings. In the following description, descriptions of some components may be omitted to clarify the characteristics of the present invention.
또한, 이하의 설명에서 사용되는 "상측"은 본 발명의 실시예에 따른 스크롤 압축기를 지지하는 지지면에서 멀어지는 방향, 즉 구동부(전동부 또는 구동모터)와 압축부를 중심으로 보면 구동부(전동부 또는 구동모터)쪽이 상측을 의미한다. "하측"은 지지면에 가까워지는 방향, 즉 구동부(전동부 또는 구동모터)와 압축부를 중심으로 보면 압축부쪽이 하측을 의미한다.In addition, the "upper side" used in the following description refers to the direction away from the support surface supporting the scroll compressor according to the embodiment of the present invention, that is, when viewed centered on the drive unit (electric drive unit or drive motor) and the compression unit, the drive unit (electric drive unit or drive motor) is viewed from the center. The (drive motor) side refers to the upper side. “Lower side” refers to the direction approaching the support surface, that is, when looking at the driving part (electrical part or driving motor) and the compression part as the center, the compression part is the lower side.
또한, 이하의 설명에서 사용되는 "축방향"이라는 용어는 회전축의 길이방향을 의미한다. "축방향"은 상하측 방향으로 이해될 수 있다. "반경방향"은 회전축과 교차하는 방향을 의미한다.Additionally, the term “axial direction” used in the following description refers to the longitudinal direction of the rotation axis. “Axis” can be understood as an upward and downward direction. “Radial” means the direction intersecting the axis of rotation.
또한, 이하의 설명에서는 스크롤 압축기를 예로 들어 설명하되, 스크롤 압축기는 구동부(전동부 또는 구동모터)와 압축부가 케이싱에 구비되는 밀폐형 스크롤 압축기를 예로 들어 설명한다. 하지만 로터리 압축기 및 왕복동식 압축기와 같이 회전모터가 구동부로 적용되는 압축기에는 동일하거나 유사하게 적용될 수 있다.In addition, the following description will take a scroll compressor as an example, and the scroll compressor will be described by taking a closed scroll compressor in which a driving part (electrical drive part or driving motor) and a compression part are provided in a casing. However, it can be applied in the same or similar manner to compressors in which a rotary motor is applied as a driving part, such as a rotary compressor and a reciprocating compressor.
또한, 이하의 설명에서는 전동부와 압축부가 상하 축방향으로 배열되는 종형 스크롤 압축기이면서 압축부가 구동부(전동부 또는 구동모터)보다 하측에 위치하는 하부 압축식 스크롤 압축기를 예로 들어 설명한다. 하지만 구동부(전동부 또는 구동모터)와 압축부가 좌우로 배열되는 횡형 스크롤 압축기는 물론 압축부가 구동부(전동부 또는 구동모터)보다 상측에 위치하는 상부 압축식 스크롤 압축기에도 동일하게 적용될 수 있다.In addition, the following description will take as an example a vertical scroll compressor in which the transmission unit and the compression unit are arranged in the vertical axial direction, and a lower compression type scroll compressor in which the compression unit is located lower than the drive unit (electric unit or drive motor). However, the same can be applied to a horizontal scroll compressor in which the driving part (electrical part or drive motor) and the compression part are arranged left and right, as well as a top compression type scroll compressor in which the compression part is located above the driving part (electrical part or driving motor).
또한, 이하의 설명에서는 하부 압축식이면서 흡입통로를 이루는 냉매흡입관이 압축부에 직접 연결되고, 냉매토출관이 케이싱의 내부공간에 연통되어 케이싱의 내부공간이 토출압을 이루는 고압식 스크롤 압축기를 예로 들어 설명한다. 하지만 케이싱의 내부공간이 흡입압을 이루는 저압식 스크롤 압축기에도 동일하게 적용될 수 있다.In addition, in the following description, a high-pressure scroll compressor is taken as an example, which is a lower compression type, in which the refrigerant suction pipe forming the suction passage is directly connected to the compression unit, and the refrigerant discharge pipe communicates with the inner space of the casing, so that the inner space of the casing creates the discharge pressure. Listen and explain. However, the same can be applied to a low-pressure scroll compressor where the internal space of the casing creates suction pressure.
도 1은 본 실시예에 따른 스크롤 압축기의 내부를 투시하여 보인 사시도이고, 도 2는 도 1의 종단면도이다.Figure 1 is a perspective view showing the inside of a scroll compressor according to this embodiment, and Figure 2 is a longitudinal cross-sectional view of Figure 1.
도 1 및 도 2를 참조하면, 본 실시예에 따른 고압식이고 하부 압축식인 스크롤 압축기(이하, 스크롤 압축기로 약칭하여 설명한다)는, 케이싱(110)의 상반부에 전동부를 이루는 구동모터(120)가 설치되고, 구동모터(120)의 하측에는 메인프레임(130), 고정스크롤(140), 선회스크롤(150), 토출커버(160) 및 진동감쇠부재(170)가 차례대로 설치된다. 통상 구동모터(120)는 앞서 설명한 바와 같이 전동부를 이루며, 메인프레임(130), 고정스크롤(140), 선회스크롤(150), 토출커버(160) 및 진동감쇠부재(170)는 압축부(C)를 이룬다. Referring to FIGS. 1 and 2, the high-pressure, bottom-compression type scroll compressor (hereinafter abbreviated as scroll compressor) according to this embodiment includes a drive motor 120 forming a transmission portion in the upper half of the casing 110. is installed, and the main frame 130, fixed scroll 140, orbiting scroll 150, discharge cover 160, and vibration damping member 170 are sequentially installed on the lower side of the drive motor 120. Typically, the drive motor 120 forms a transmission part as described above, and the main frame 130, fixed scroll 140, orbiting scroll 150, discharge cover 160, and vibration damping member 170 are the compression part (C). ) is achieved.
전동부를 이루는 구동모터(120)는 후술할 회전축(125)의 상단에 결합되고, 압축부(C)는 회전축(125)의 하단에 결합된다. 이에 따라 압축기(10)는 앞서 설명한 하부 압축식 구조를 이루며, 압축부(C)는 회전축(125)에 의해 구동모터(120)에 연결되어 그 구동모터(120)의 회전력에 의해 작동하게 된다. 따라서 구동모터(120)는 압축부(C)를 구동시키는 구동부로 이해될 수 있으므로 이하에서는 구동모터를 전동부 또는 구동부로 혼용하여 설명할 수 있다.The drive motor 120 forming the transmission unit is coupled to the upper end of the rotation shaft 125, which will be described later, and the compression unit C is coupled to the lower end of the rotation shaft 125. Accordingly, the compressor 10 has the lower compression structure described above, and the compression unit C is connected to the drive motor 120 by the rotation shaft 125 and operates by the rotational force of the drive motor 120. Accordingly, the drive motor 120 can be understood as a driving unit that drives the compression unit (C), so hereinafter, the driving motor can be described interchangeably with the electric motor or driving unit.
도 1 및 도 2를 참조하면, 본 실시예에 따른 케이싱(110)은 원통쉘(111), 상부쉘(112), 하부쉘(113) 및 베이스(114)를 포함할 수 있다. Referring to Figures 1 and 2, the casing 110 according to this embodiment may include a cylindrical shell 111, an upper shell 112, a lower shell 113, and a base 114.
원통쉘(111)은 상하 양단이 개구된 원통 형상으로 형성되고, 상부쉘(112)은 원통쉘(111)의 개구된 상단을 복개하도록 결합되며, 하부쉘(113)은 원통쉘(111)의 개구된 하단을 복개하도록 결합된다. 이에 따라 케이싱(110)의 내부공간(110a)은 밀폐되고, 밀폐된 케이싱(110)의 내부공간(110a)은 구동모터(120)를 기준으로 하부공간(S1)과 상부공간(S2)으로 분리된다. The cylindrical shell 111 is formed in a cylindrical shape with openings at both upper and lower ends, the upper shell 112 is coupled to cover the open top of the cylindrical shell 111, and the lower shell 113 is a part of the cylindrical shell 111. It is combined to cover the opened bottom. Accordingly, the internal space 110a of the casing 110 is sealed, and the sealed internal space 110a of the casing 110 is divided into a lower space (S1) and an upper space (S2) based on the driving motor 120. do.
하부공간(S1)은 구동모터(120)의 하측에 형성되는 공간으로, 하부공간(S1)은 다시 압축부(C)를 기준으로 저유공간(S11)과 배출공간(S12)으로 구분될 수 있다. The lower space (S1) is a space formed on the lower side of the drive motor 120. The lower space (S1) can be divided into a storage space (S11) and a discharge space (S12) based on the compression section (C). .
저유공간(S11)은 압축부(C)의 하측에 형성되는 공간으로, 오일 또는 액냉매가 혼합된 혼합오일(이하에서는 오일과 혼용한다)이 저장되는 공간을 이룬다. 배출공간(S12)은 압축부(C)의 상면과 구동모터(120)의 하면 사이에 형성되는 공간으로, 압축부(C)에서 압축된 냉매 또는 오일이 혼합된 혼합냉매가 토출되는 공간을 이룬다. The oil storage space (S11) is a space formed on the lower side of the compression section (C), and forms a space where mixed oil (hereinafter referred to as oil), which is a mixture of oil or liquid refrigerant, is stored. The discharge space (S12) is a space formed between the upper surface of the compression unit (C) and the lower surface of the drive motor 120, and forms a space where the refrigerant compressed in the compression unit (C) or a mixed refrigerant mixed with oil is discharged. .
상부공간(S2)은 구동모터(120)의 상측에 형성되는 공간으로, 압축부(C)에서 토출되는 냉매로부터 오일이 분리하는 유분리공간을 이룬다. 상부공간(S2)에 냉매토출관이 연통된다.The upper space (S2) is a space formed on the upper side of the drive motor 120, and forms an oil separation space where oil is separated from the refrigerant discharged from the compression unit (C). A refrigerant discharge pipe communicates with the upper space (S2).
원통쉘(111)의 내부에는 전술한 구동모터(120)와 메인프레임(130)이 삽입되어 고정된다. 구동모터(120)의 외주면과 메인프레임(130)의 외주면에는 원통쉘(111)의 내주면과 기설정된 간격만큼 이격되는 오일회수통로(미부호)가 형성될 수 있다.The above-described drive motor 120 and main frame 130 are inserted and fixed inside the cylindrical shell 111. An oil return passage (unmarked) may be formed on the outer peripheral surface of the drive motor 120 and the outer peripheral surface of the main frame 130, spaced apart from the inner peripheral surface of the cylindrical shell 111 by a preset distance.
원통쉘(111)의 측면으로 냉매흡입관(115)이 관통하여 결합된다. 이에 따라 냉매흡입관(115)은 케이싱(110)을 이루는 원통쉘(111)을 반경방향으로 관통하여 결합된다. 냉매흡입관(115)은 엘(L)자 형상으로 형성되어, 일단은 원통쉘(111)을 관통하여 압축부(C)를 이루는 후술할 고정스크롤(140)의 흡입구(1421)에 직접 연통된다. 이에 따라 냉매가 냉매흡입관(115)을 통해 압축실(V)에 유입될 수 있다. A refrigerant suction pipe 115 penetrates and is coupled to the side of the cylindrical shell 111. Accordingly, the refrigerant suction pipe 115 penetrates the cylindrical shell 111 forming the casing 110 in the radial direction and is coupled thereto. The refrigerant suction pipe 115 is formed in an L shape, and one end penetrates the cylindrical shell 111 and directly communicates with the suction port 1421 of the fixed scroll 140, which will be described later, forming the compression portion C. Accordingly, the refrigerant may flow into the compression chamber (V) through the refrigerant suction pipe 115.
상부쉘(112)에는 케이싱(110)의 내부공간(110a), 구체적으로는 구동모터(120)의 상측에 형성되는 상부공간(S2)에 냉매토출관(116)의 내측단이 연통되도록 관통하여 결합된다. 냉매토출관(116)에는 케이싱(110)에서 토출되는 냉매로부터 오일을 분리하는 유분리장치(미부호)가 설치되거나 또는 케이싱(110)에서 토출된 냉매가 다시 케이싱(110)으로 역류하는 것을 차단하는 체크밸브(미부호)가 설치될 수 있다.The upper shell 112 is penetrated so that the inner end of the refrigerant discharge pipe 116 communicates with the inner space 110a of the casing 110, specifically the upper space S2 formed on the upper side of the drive motor 120. are combined. An oil separation device (unmarked) is installed in the refrigerant discharge pipe 116 to separate oil from the refrigerant discharged from the casing 110, or to block the refrigerant discharged from the casing 110 from flowing back into the casing 110. A check valve (not marked) may be installed.
하부쉘(113)은 원통쉘(111)의 하반부와 함께 저유공간(S11)을 형성하게 된다. 하부쉘(113)의 하반부에는 오일순환관(미도시)의 일측 단부가 반경방향으로 관통 결합될 수 있다.The lower shell 113 forms a storage space S11 together with the lower half of the cylindrical shell 111. One end of an oil circulation pipe (not shown) may be coupled to the lower half of the lower shell 113 in the radial direction.
베이스(114)는 환형으로 형성되어 하부쉘(113)의 하면에 결합되거나 또는 판형으로 형성되어 원통쉘(111)의 개구된 하단을 복개하도록 결합될 수도 있다. 본 실시예의 베이스(114)는 환형으로 형성되어 하부쉘(113)의 하면에 결합된 예를 중심으로 설명한다.The base 114 may be formed in a ring shape and coupled to the lower surface of the lower shell 113, or may be formed in a plate shape and coupled to cover the open lower end of the cylindrical shell 111. The description will focus on the example in which the base 114 of this embodiment is formed in a ring shape and is coupled to the lower surface of the lower shell 113.
또한, 베이스(114)는 하부쉘(113)의 하면에 접하는 제1베이스부(1141) 및 제1베이스부(1141)의 외주면에서 각각 반경방향으로 연장되어 압축기설치면(1)에 지지되는 복수 개의 제2베이스부(1142)를 포함할 수 있다. 제2베이스부(1142)에는 방진고무(1143)가 구비되어 압축기 진동을 감쇠하는 동시에 압축기 진동이 압축기설치면(1)으로 전달되는 것을 억제할 수 있다. 베이스(114)에 대해서는 나중에 다른 실시예에서 다시 설명한다.In addition, the base 114 extends radially from the first base portion 1141 and the outer peripheral surface of the first base portion 1141, which are in contact with the lower surface of the lower shell 113, and is supported on the compressor installation surface 1. It may include two second base portions 1142. The second base portion 1142 is provided with an anti-vibration rubber 1143 to attenuate compressor vibration and at the same time suppress the compressor vibration from being transmitted to the compressor installation surface 1. The base 114 will be described again in another embodiment later.
도 1 및 도 2를 참조하면, 본 실시예에 따른 구동모터(120)는 고정자(121) 및 회전자(122)를 포함한다. 고정자(121)는 원통쉘(111)의 내주면에 삽입되어 고정되고, 회전자(122)는 고정자(121)의 내부에 회전 가능하게 구비된다. Referring to Figures 1 and 2, the drive motor 120 according to this embodiment includes a stator 121 and a rotor 122. The stator 121 is inserted and fixed to the inner peripheral surface of the cylindrical shell 111, and the rotor 122 is rotatably provided inside the stator 121.
고정자코어(1211)는 원통형상으로 형성되고, 원통쉘(111)의 내주면에 열간압입으로 고정된다. 고정자코일(1212)은 고정자코어(1211)에 권선되고, 케이싱(110)에 관통 결합되는 터미널(미도시)을 통해 외부전원과 전기적으로 연결된다. The stator core 1211 is formed in a cylindrical shape and is fixed to the inner peripheral surface of the cylindrical shell 111 by hot pressing. The stator coil 1212 is wound around the stator core 1211 and is electrically connected to an external power source through a terminal (not shown) that is penetrated and coupled to the casing 110.
회전자(122)는 회전자코어(1221) 및 영구자석(1222)을 포함한다.The rotor 122 includes a rotor core 1221 and a permanent magnet 1222.
회전자코어(1221)는 원통형상으로 형성되고, 고정자코어(1211)의 내부에 기설정된 공극만큼 간격을 두고 회전 가능하게 삽입된다. 영구자석(1222)은 회전자코어(1222)의 내부에 원주방향을 따라 기설정된 간격을 두고 매립된다. The rotor core 1221 is formed in a cylindrical shape and is rotatably inserted into the stator core 1211 at intervals equal to a predetermined gap. The permanent magnets 1222 are embedded inside the rotor core 1222 at preset intervals along the circumferential direction.
또한, 회전자코어(1221)의 중심에는 회전축(125)이 압입되어 결합된다. 회전축(125)의 상단에는 후술할 선회스크롤(150)이 편심지게 결합된다. 이에 따라 구동모터(120)의 회전력이 회전축(125)을 통해 선회스크롤(150)에 전달될 수 있다.Additionally, the rotating shaft 125 is press-fitted and coupled to the center of the rotor core 1221. An orbiting scroll 150, which will be described later, is eccentrically coupled to the upper end of the rotation shaft 125. Accordingly, the rotational force of the drive motor 120 can be transmitted to the orbiting scroll 150 through the rotation shaft 125.
회전축(125)의 내부에는 급유통로(126)가 중공형상으로 형성되고, 회전축(125)의 하단에는 저유공간(S11)에 채워진 오일을 펌핑하기 위한 오일픽업(127)이 결합될 수 있다. 이에 따라 저유공간(S11)에 채워진 오일은 회전축(125)의 회전시 오일픽업(127)과 급유통로(126)를 통해 회전축(125)의 상단으로 흡상되면서 습동부를 윤활하게 된다.An oil supply passage 126 is formed in a hollow shape inside the rotating shaft 125, and an oil pickup 127 for pumping the oil filled in the oil reservoir space S11 may be coupled to the lower end of the rotating shaft 125. Accordingly, the oil filled in the oil storage space (S11) is sucked to the top of the rotating shaft 125 through the oil pickup 127 and the oil supply passage 126 when the rotating shaft 125 rotates and lubricates the sliding portion.
본 실시예에 따른 압축부(C)는 앞서 설명한 바와 같이, 메인프레임(130), 고정스크롤(140), 선회스크롤(150), 토출커버(160) 및 진동감쇠부재(170)를 포함한다.As described above, the compression unit (C) according to this embodiment includes a main frame 130, a fixed scroll 140, an orbiting scroll 150, a discharge cover 160, and a vibration damping member 170.
도 1 및 도 2를 참조하면, 본 실시예에 따른 메인프레임(130)은 구동모터(120)의 하측에 설치되고, 원통쉘(111)의 내벽면에 열간압입으로 고정되거나 용접되어 고정된다. 메인프레임(130)은 프레임경판부(131), 프레임측벽부(132), 메인베어링부(133)를 포함한다.Referring to Figures 1 and 2, the main frame 130 according to this embodiment is installed below the drive motor 120, and is fixed to the inner wall of the cylindrical shell 111 by hot pressing or welding. The main frame 130 includes a frame head plate portion 131, a frame side wall portion 132, and a main bearing portion 133.
프레임경판부(131)는 환형으로 형성되어 구동모터(120)의 하측에 설치된다. 프레임측벽부(132)는 프레임경판부(131)의 하측면 가장자리에서 원통 형상으로 연장되고, 프레임측벽부(132)의 외주면은 원통쉘(111)의 내주면에 열간압입으로 고정되거나 용접되어 고정된다. 이에 따라 케이싱(110)의 하부공간(S1)을 이루는 저유공간(S11)과 배출공간(S12)은 프레임경판부(131)와 프레임측벽부(132)에 의해 분리된다. The frame plate portion 131 is formed in an annular shape and is installed below the drive motor 120. The frame side wall portion 132 extends in a cylindrical shape from the lower edge of the frame end plate portion 131, and the outer peripheral surface of the frame side wall portion 132 is fixed to the inner peripheral surface of the cylindrical shell 111 by hot pressing or welding. . Accordingly, the storage space (S11) and the discharge space (S12) forming the lower space (S1) of the casing (110) are separated by the frame head plate portion (131) and the frame side wall portion (132).
메인베어링부(133)는 프레임경판부(131)의 중심부 상면에서 구동모터(120)를 향해 상향으로 돌출된다. 메인베어링부(133)는 원통 형상으로 된 메인축수구멍(1331)이 축방향으로 관통되어 형성되고, 메인축수구멍(1331)에는 회전축(125)이 삽입되어 반경방향으로 지지된다. The main bearing portion 133 protrudes upward toward the drive motor 120 from the central upper surface of the frame plate portion 131. The main bearing portion 133 is formed by penetrating a cylindrical main bearing hole 1331 in the axial direction, and a rotating shaft 125 is inserted into the main bearing hole 1331 and supported in the radial direction.
도 1 및 도 2를 참조하면, 본 실시예에 따른 고정스크롤(140)은 고정경판부(141), 고정측벽부(142), 서브베어링부(143) 및 고정랩(144)을 포함할 수 있다.Referring to FIGS. 1 and 2, the fixed scroll 140 according to this embodiment may include a fixed head plate portion 141, a fixed side wall portion 142, a sub-bearing portion 143, and a fixed wrap 144. there is.
고정경판부(141)는 외주면에 복수 개의 오목한 부분이 형성된 원판모양으로 형성되고, 중앙에는 후술할 서브베어링부(143)를 이루는 서브축수구멍(1431)이 상하 방향으로 관통 형성될 수 있다. 서브축수구멍(1431)의 주변에는 압축실(V)과 연통되어 압축된 냉매가 후술할 토출커버(160)의 머플러공간(160a)으로 토출되는 토출구(1411,1412)가 형성될 수 있다. The fixed head plate portion 141 is formed in a disk shape with a plurality of concave portions formed on the outer peripheral surface, and a sub-bearing hole 1431 forming a sub-bearing portion 143, which will be described later, may be formed through the center in the vertical direction. Discharge holes 1411 and 1412 may be formed around the sub-axle hole 1431, which communicate with the compression chamber V and discharge the compressed refrigerant into the muffler space 160a of the discharge cover 160, which will be described later.
도면으로 도시하지는 않았으나, 토출구는 후술할 제1압축실(V1)과 제2압축실(V2)에 모두 연통될 수 있도록 한 개만 형성될 수도 있다. 하지만, 본 실시예와 같이 제1압축실(V1)에는 제1 토출구(미부호)가 연통되고, 제2압축실(V2)에는 제2 토출구(미부호)가 연통될 수 있다. 이에 따라 제1압축실(V1)과 제2압축실(V2)에서 압축된 냉매는 서로 다른 토출구에 의해 각각 독립적으로 토출될 수 있다.Although not shown in the drawing, only one discharge port may be formed so as to communicate with both the first compression chamber (V1) and the second compression chamber (V2), which will be described later. However, as in the present embodiment, the first discharge port (not coded) may communicate with the first compression chamber (V1), and the second discharge port (not coded) may communicate with the second compression chamber (V2). Accordingly, the refrigerant compressed in the first compression chamber (V1) and the second compression chamber (V2) can be independently discharged through different discharge ports.
또한, 고정경판부(141)의 하면에는 복수 개의 고정홈(141a)이 원주방향을 따라 기설정된 간격을 두고 형성되고, 이들 고정홈(141a)에는 후술할 진동감쇠부재(170)의 강성부(171)가 각각 삽입되어 결합될 수 있다. 이들 고정홈(141a)은 진동감쇠부재(170)와 함께 나중에 다시 설명한다.In addition, a plurality of fixing grooves 141a are formed on the lower surface of the fixed head plate portion 141 at preset intervals along the circumferential direction, and these fixing grooves 141a include the rigid portion 171 of the vibration damping member 170, which will be described later. ) can be inserted and combined, respectively. These fixing grooves 141a and the vibration damping member 170 will be described later.
고정측벽부(142)는 고정경판부(141)의 상면 가장자리에서 상하 방향으로 연장되어 환형으로 형성될 수 있다. 고정측벽부(142)는 메인프레임(130)의 프레임측벽부(132)에 상하 방향으로 마주보도록 결합될 수 있다. The fixed side wall portion 142 may extend in the vertical direction from the upper surface edge of the fixed head plate portion 141 to form a ring shape. The fixed side wall portion 142 may be coupled to the frame side wall portion 132 of the main frame 130 so as to face in the vertical direction.
고정측벽부(142)에는 고정측벽부(142)를 반경방향으로 관통하는 흡입구(1421)가 형성된다. 흡입구(1421)에는 앞서 설명한 같이 원통쉘(111)을 관통한 냉매흡입관(115)의 단부가 삽입되어 결합된다. 이에 따라 냉매가 냉매흡입관(115)을 통해 압축실(V)로 직접 흡입될 수 있다. A suction port 1421 is formed in the fixed side wall portion 142 and penetrates the fixed side wall portion 142 in the radial direction. The end of the refrigerant suction pipe 115 penetrating the cylindrical shell 111 is inserted and coupled to the suction port 1421 as described above. Accordingly, the refrigerant can be sucked directly into the compression chamber (V) through the refrigerant suction pipe 115.
서브베어링부(143)는 고정경판부(141)의 중심부에서 토출커버(160)를 향해 축방향으로 연장 형성된다. 서브베어링부(143)의 중심에는 원통 형상의 서브축수구멍(1431)이 축방향으로 관통되어 형성되고, 서브축수구멍(1431)에 회전축(125)의 하단부가 삽입되어 반경방향으로 지지될 수 있다. The sub-bearing portion 143 extends axially from the center of the fixed head plate portion 141 toward the discharge cover 160. At the center of the sub-bearing unit 143, a cylindrical sub-bearing hole 1431 is formed penetrating in the axial direction, and the lower end of the rotating shaft 125 is inserted into the sub-bearing hole 1431 to be supported in the radial direction. .
고정랩(144)은 고정경판부(141)의 상면에서 선회스크롤(150)을 향해 축방향으로 연장 형성될 수 있다. 고정랩(144)은 후술할 선회랩(152)과 맞물려 압축실(V)을 형성한다. 고정랩(144)에 대해서는 나중에 선회랩(152)과 함께 설명한다.The fixing wrap 144 may be formed to extend axially from the upper surface of the fixing head plate portion 141 toward the orbiting scroll 150. The fixed wrap 144 engages with the orbiting wrap 152, which will be described later, to form a compression chamber (V). The fixed wrap 144 will be described later along with the swing wrap 152.
도 1 및 도 2를 참조하면, 본 실시예에 따른 선회스크롤(150)은 선회경판부(151), 선회랩(152) 및 회전축결합부(153)를 포함한다.Referring to FIGS. 1 and 2 , the orbiting scroll 150 according to this embodiment includes a pivoting plate portion 151, a pivoting wrap 152, and a rotating shaft engaging portion 153.
선회경판부(151)는 원판 형상으로 형성되어 메인프레임(130)에 수용된다. 선회경판부(151)의 상면은 메인프레임(130)에 배압실링부재(미부호)를 사이에 두고 축방향으로 지지될 수 있다.The pivoting plate portion 151 is formed in a disk shape and is accommodated in the main frame 130. The upper surface of the pivot plate portion 151 may be supported in the axial direction on the main frame 130 with a back pressure sealing member (not indicated) interposed therebetween.
선회랩(152)은 선회경판부(151)의 하면에서 고정스크롤(140)을 향해 연장 형성될 수 있다. 선회랩(152)은 고정랩(144)과 맞물려 압축실(V)을 형성한다.The swing wrap 152 may be formed to extend from the lower surface of the pivot plate portion 151 toward the fixed scroll 140. The orbiting wrap 152 engages with the fixed wrap 144 to form a compression chamber (V).
선회랩(152)은 고정랩(144)과 함께 인볼류트 형상으로 형성될 수 있다. 하지만 선회랩(152)과 고정랩(144)은 인볼류트 외에 다양한 형상으로 형성될 수 있다. The orbiting wrap 152 may be formed in an involute shape together with the fixed wrap 144. However, the orbiting wrap 152 and the fixed wrap 144 may be formed in various shapes other than the involute.
예를 들어, 선회랩(152)은 직경과 원점이 서로 다른 다수 개의 원호를 연결한 형태를 가지며, 최외곽의 곡선은 장축과 단축을 갖는 대략 타원형 형태로 형성될 수 있다. 이는 고정랩(144)도 마찬가지로 형성될 수 있다.For example, the orbital wrap 152 has a shape in which a plurality of circular arcs with different diameters and origins are connected, and the outermost curve may be formed in an approximately elliptical shape with a long axis and a short axis. The fixing wrap 144 may also be formed in the same way.
선회랩(152)의 내측 단부는 선회경판부(151)의 중앙부위에 형성되며, 선회경판부(151)의 중앙부위에는 회전축결합부(153)가 축방향으로 관통 형성될 수 있다. The inner end of the pivoting wrap 152 is formed in the central portion of the pivoting disk portion 151, and a rotating shaft engaging portion 153 may be formed through the central portion of the pivoting disk portion 151 in the axial direction.
회전축결합부(153)에는 회전축(125)의 편심부(미부호)가 회전가능하게 삽입되어 결합된다. 이에 따라 회전축결합부(153)의 외주부는 선회랩(152)과 연결되어 압축과정에서 고정랩(144)과 함께 압축실(V)을 형성하는 역할을 하게 된다. The eccentric portion (not marked) of the rotation shaft 125 is rotatably inserted and coupled to the rotation shaft coupling portion 153. Accordingly, the outer peripheral portion of the rotating shaft coupling portion 153 is connected to the orbital wrap 152 and serves to form a compression chamber (V) together with the fixed wrap 144 during the compression process.
회전축결합부(153)는 선회랩(152)과 동일 평면상에서 중첩되는 높이로 형성될 수 있다. 즉, 회전축결합부(153)는 회전축(125)의 편심부(미부호)가 선회랩(152)과 동일 평면상에서 중첩되는 높이에 배치될 수 있다. 이에 따라 냉매의 반발력과 압축력이 선회경판부(151)를 기초로 하여 동일 평면에 가해지면서 서로 상쇄되고, 이를 통해 압축력과 반발력의 작용에 의한 선회스크롤(150)의 기울어짐이 억제될 수 있다. The rotation axis coupling portion 153 may be formed at a height that overlaps the orbital wrap 152 on the same plane. That is, the rotation shaft coupling portion 153 may be disposed at a height where the eccentric portion (not marked) of the rotation shaft 125 overlaps the pivot wrap 152 on the same plane. Accordingly, the repulsion force and the compression force of the refrigerant are applied to the same plane based on the orbital plate portion 151 and cancel each other out, and through this, the tilt of the orbiting scroll 150 due to the action of the compression force and the repulsion force can be suppressed.
도 1 및 도 2를 참조하면, 본 실시예에 따른 토출커버(160)는 고정스크롤(140)의 하면에 결합되며, 토출커버(160)의 내부에는 고정스크롤(140)의 토출구를 수용하도록 머플러공간(160a)이 형성된다. 머플러공간은 케이싱의 저유공간(S11)과 분리되어 고정스크롤(140)과 메인프레임(130)을 관통하는 토출통로(미부호)를 통해 메인프레임(130)과 구동모터(120) 사이의 배출공간(S12)으로 연통된다.Referring to Figures 1 and 2, the discharge cover 160 according to this embodiment is coupled to the lower surface of the fixed scroll 140, and a muffler is installed inside the discharge cover 160 to accommodate the discharge port of the fixed scroll 140. A space 160a is formed. The muffler space is separated from the reservoir space (S11) of the casing and is a discharge space between the main frame 130 and the drive motor 120 through a discharge passage (unmarked) penetrating the fixed scroll 140 and the main frame 130. It connects to (S12).
토출커버(160)의 외경, 구체적으로는 머플러공간을 이루는 부분의 외경은 고정스크롤(140)의 외경보다 작거나 같게 형성될 수 있다. 예를 들어 토출커버(160)의 외경이 고정스크롤(140)의 외경보다 작게 형성되는 경우에는 후수할 진동감쇠부재(170)의 강성부(171)가 토출커버(160)의 외주면보다 외곽에서 고정스크롤(140)에 결합될 수 있다. 반면 토출커버(160)의 외경이 고정스크롤(140)의 외경과 동일하게 형성되는 경우에는 그 토출커버(160)의 외주면에 진동감쇠부재(170)의 강성부(171)가 수용되는 강성부수용홈(미부호)이 함몰지게 형성될 수 있다. 본 실시예는 토출커버(160)의 외경이 고정스크롤(140)의 외경보다 작게, 예를 들어 진동감쇠부재(170)의 강성부(171)가 체결되는 고정홈(141a)의 내측을 연결한 가상원의 직경보다 작게 형성된 예를 도시하고 있다.The outer diameter of the discharge cover 160, specifically the outer diameter of the portion forming the muffler space, may be formed to be smaller than or equal to the outer diameter of the fixed scroll 140. For example, when the outer diameter of the discharge cover 160 is smaller than the outer diameter of the fixed scroll 140, the rigid portion 171 of the subsequent vibration damping member 170 moves from the outer peripheral surface of the discharge cover 160 to the fixed scroll. It can be coupled to (140). On the other hand, when the outer diameter of the discharge cover 160 is formed to be the same as the outer diameter of the fixed scroll 140, the rigid portion receiving groove (171) of the vibration damping member 170 is accommodated on the outer peripheral surface of the discharge cover 160 ( (not marked) may be formed to be depressed. In this embodiment, the outer diameter of the discharge cover 160 is smaller than the outer diameter of the fixed scroll 140, for example, a virtual connection is made between the inside of the fixing groove 141a to which the rigid part 171 of the vibration damping member 170 is fastened. An example formed smaller than the diameter of a circle is shown.
한편, 도 1 및 도 2를 참조하면, 본 실시예에 따른 진동감쇠부재(170)는 복수 개의 강성부(stiffness portion)(171) 및 질량부(mass portion)(172)를 포함한다. Meanwhile, referring to FIGS. 1 and 2, the vibration damping member 170 according to this embodiment includes a plurality of stiffness portions 171 and mass portions 172.
복수 개의 강성부(171)는 얇은 봉형상으로 형성되어 원주방향을 따라 기설절된 간격으로 이격되고, 복수 개의 강성부(171)를 서로 연결하도록 환형으로 형성될 수 있다. 이에 따라 진동감쇠부재(170)의 상단을 이루는 강성부(171)는 고정스크롤(140)에 고정되는 반면 진동감쇠부재(170)의 하단을 이루는 질량부(172)는 토출커버(160)의 하측에 구비되어, 회전축(125)을 따라 전달되는 비틀림진동을 감쇠시킬 수 있다. 본 실시예에 따른 진동감쇠부재(170)에 대하여는 나중에 다시 설명한다.The plurality of rigid parts 171 may be formed in a thin rod shape and spaced apart at predetermined intervals along the circumferential direction, and may be formed in an annular shape to connect the plurality of rigid parts 171 to each other. Accordingly, the rigid part 171 forming the upper end of the vibration damping member 170 is fixed to the fixed scroll 140, while the mass part 172 forming the lower end of the vibration damping member 170 is attached to the lower side of the discharge cover 160. It is provided to attenuate torsional vibration transmitted along the rotation axis 125. The vibration damping member 170 according to this embodiment will be described later.
도면중 미설명 부호인 117은 기액분리관이고, 1271은 급유관이며, 1272는 급유필터이고, 180은 올담링이며, 190은 토출되는 냉매와 회수되는 오일을 분리하는 유로가이드이다.In the drawing, reference numeral 117 is a gas-liquid separation pipe, 1271 is an oil supply pipe, 1272 is an oil supply filter, 180 is an Oldham ring, and 190 is a flow guide that separates the discharged refrigerant from the recovered oil.
상기와 같은 본 실시예에 따른 스크롤 압축기는 다음과 같이 동작된다.The scroll compressor according to this embodiment as described above operates as follows.
즉, 구동모터(120)에 전원이 인가되면, 회전자(122)와 회전축(125)에 회전력이 발생되어 회전하고, 회전축(125)에 편심 결합된 선회스크롤(150)이 올담링(180)에 의해 고정스크롤(140)에 대해 선회운동을 하게 된다.That is, when power is applied to the drive motor 120, a rotational force is generated in the rotor 122 and the rotation shaft 125 to rotate, and the orbiting scroll 150 eccentrically coupled to the rotation shaft 125 rotates the Oldham ring 180. A turning movement is performed with respect to the fixed scroll 140.
그러면, 압축실(V)의 체적이 바깥쪽에서 안쪽으로 갈수록 점점 감소하게 된다. 그러면, 냉매가 냉매흡입관(115)을 통해 압축실(V)로 흡입되어 압축된 후 토출구(1411,1412)를 통해 토출커버(160)의 머플러공간(160a)으로 토출된다. Then, the volume of the compression chamber (V) gradually decreases from the outside to the inside. Then, the refrigerant is sucked into the compression chamber (V) through the refrigerant suction pipe 115, compressed, and then discharged into the muffler space 160a of the discharge cover 160 through the discharge ports 1411 and 1412.
그러면, 이 냉매는 토출커버(160)의 머플러공간(160a)을 거쳐 고정스크롤(140)의 배출구멍(미부호)을 통해 메인프레임(130)과 구동모터(120) 사이의 배출공간(S12)으로 이동하게 된다. 그리고 이 냉매는 구동모터(120)를 통과하여 그 구동모터(120)의 상측에 형성된 케이싱(110)의 상부공간(S2)으로 이동하게 된다. Then, this refrigerant passes through the muffler space (160a) of the discharge cover (160) and through the discharge hole (unmarked) of the fixed scroll (140) into the discharge space (S12) between the main frame (130) and the drive motor (120). moves to . Then, this refrigerant passes through the drive motor 120 and moves to the upper space (S2) of the casing 110 formed on the upper side of the drive motor 120.
상부공간(S2)으로 이동한 냉매는 그 상부공간(S2)에서 냉매와 오일로 분리되고, 상부공간에서 분리된 냉매는 냉매토출관(116)을 통해 케이싱(110)의 외부로 배출되는 반면 상부공간(S2)에서 냉매로부터 분리된 오일은 케이싱(110)의 저유공간(S11)으로 회수된다.The refrigerant that has moved to the upper space (S2) is separated into refrigerant and oil in the upper space (S2), and the refrigerant separated in the upper space is discharged to the outside of the casing (110) through the refrigerant discharge pipe (116). The oil separated from the refrigerant in space S2 is recovered into the storage space S11 of the casing 110.
이 오일은 회전축(125)의 급유통로(126)를 통해 각각의 베어링면(미부호)과 압축실(V)로 공급된다. 베어링면과 압축실(V)로 공급되는 오일은 냉매와 함께 토출커버(160)로 토출되어 회수되는 일련의 과정을 반복하게 된다.This oil is supplied to each bearing surface (not marked) and the compression chamber (V) through the oil supply passage 126 of the rotating shaft 125. The oil supplied to the bearing surface and the compression chamber (V) is discharged to the discharge cover 160 together with the refrigerant and a series of recovery processes are repeated.
한편, 앞서 설명한 바와 같이 압축기의 운전중에는 회전모터로 된 구동모터(120)의 회전력을 회전축(125)이 압축부에 전달하면서 비틀림진동이 발생되고, 이 비틀림진동은 압축부(C)를 통해 케이싱(110)으로 전달되어 압축기 진동을 가진시킬 수 있다.Meanwhile, as described above, during operation of the compressor, torsional vibration is generated as the rotational shaft 125 transmits the rotational force of the drive motor 120, which is a rotary motor, to the compression section, and this torsional vibration is transmitted to the casing through the compression section C. It can be transmitted to (110) to excite the compressor vibration.
이에, 본 실시예에서는 케이싱(110)의 내부공간(110a)에 동흡진기를 이루는 진동감쇠부재(170)를 구비함에 따라 회전축(125)을 통해 전달되는 비틀림진동을 감쇠시킬 수 있다. Accordingly, in this embodiment, by providing a vibration damping member 170 forming a dynamic absorber in the internal space 110a of the casing 110, torsional vibration transmitted through the rotation shaft 125 can be attenuated.
도 3은 본 실시예에 따른 진동감쇠부재를 분해하여 보인 사시도이고, 도 4는 본 실시예에 따른 진동감쇠부재를 조립하여 보인 정면도이며, 도 5는 본 실시예에 따른 진동감쇠부재의 작용효과를 보인 개략도이다.Figure 3 is a perspective view showing the vibration damping member according to the present embodiment disassembled, Figure 4 is a front view showing the vibration damping member according to the present embodiment assembled, and Figure 5 is the operational effect of the vibration damping member according to the present embodiment. This is a schematic diagram showing.
도 3 및 도 4를 참조하면, 본 실시예에 따른 진동감쇠부재(170)는 앞서 설명한 바와 같이 복수 개의 강성부(171) 및 질량부(172)를 포함하되, 복수 개의 강성부(171)는 고정스크롤(140)의 하면에 구비된 고정홈(141a)에 각각 삽입되어 결합될 수 있다. 예를 들어 복수 개의 강성부(171)의 일단은 고정스크롤(140)의 고정홈(141a)에 압입되어 결합될 수 있다. 이에 따라 복수 개의 강성부(171)는 고정스크롤(140)의 하면에서 하부쉘(113)의 저면을 향해 각각 축방향으로 길게 연장될 수 있다.Referring to Figures 3 and 4, the vibration damping member 170 according to the present embodiment includes a plurality of rigid parts 171 and a mass part 172 as described above, and the plurality of rigid parts 171 are fixed scroll They can be respectively inserted and coupled to the fixing grooves 141a provided on the lower surface of (140). For example, one end of the plurality of rigid parts 171 may be press-fitted into the fixing groove 141a of the fixed scroll 140 and coupled thereto. Accordingly, the plurality of rigid parts 171 may each extend long in the axial direction from the lower surface of the fixed scroll 140 toward the lower surface of the lower shell 113.
구체적으로, 복수 개의 강성부(171)는 얇은 봉형상으로 형성되되, 원형단면 형상으로 형성될 수 있다. 이 경우 복수 개의 강성부(171)는 각각의 길이가 각각의 직경보다 크게 형성될 수 있다. 이에 따라 복수 개의 강성부(171)는 충분한 탄성을 가지게 되어 비틀림진동을 효과적으로 감쇠시킬 수 있다.Specifically, the plurality of rigid parts 171 are formed in a thin rod shape, and may be formed in a circular cross-section shape. In this case, the plurality of rigid parts 171 may each have a length larger than their respective diameters. Accordingly, the plurality of rigid parts 171 have sufficient elasticity and can effectively attenuate torsional vibration.
도면으로 도시하지는 않았으나, 복수 개의 강성부(171)는 각각 비원형단면 형상으로 형성될 수도 있다. 예를 들어 복수 개의 강성부(171)는 각각 원호형단면 형상으로 형성될 수도 있다. 이 경우에는 복수 개의 강성부(171)는 각각의 축방향길이가 각각의 원주방향직경보다 작거나 같게 형성될 수도 있다. 이에 따라 복수 개의 강성부(171)는 충분한 강성을 가지게 되어 강성부(171)의 개수를 줄일 수 있다.Although not shown in the drawings, each of the plurality of rigid parts 171 may be formed in a non-circular cross-sectional shape. For example, the plurality of rigid parts 171 may each be formed in an arc-shaped cross-section. In this case, the plurality of rigid parts 171 may be formed so that each axial length is smaller than or equal to each circumferential diameter. Accordingly, the plurality of rigid parts 171 have sufficient rigidity, so that the number of rigid parts 171 can be reduced.
또한, 복수 개의 강성부(171)는 하단이 토출커버(160)의 하측까지 연장되되, 오일픽업(127)의 하단보다는 높은 위치까지 연장될 수 있다. 다시 말해 복수 개의 강성부(171)는 오일픽업(127)을 이루는 급유필터(1272)를 감싸도록 배치되되, 그 각각의 하단이 오일픽업(127)과 반경방향으로 중첩되는 위치까지만 연장될 수 있다. 이에 따라 복수 개의 강성부(171)가 과도하게 길어지는 것을 억제하여 압축기의 부피가 증가하는 것을 방지할 수 있다.In addition, the lower end of the plurality of rigid parts 171 extends to the lower side of the discharge cover 160, and may extend to a position higher than the lower end of the oil pickup 127. In other words, the plurality of rigid parts 171 are arranged to surround the oil supply filter 1272 forming the oil pickup 127, and the lower ends of each may extend only to a position where they overlap the oil pickup 127 in the radial direction. Accordingly, it is possible to prevent the volume of the compressor from increasing by suppressing the plurality of rigid parts 171 from being excessively long.
또한, 복수 개의 강성부(171)는 서로 동일한 강성(stiffness)을 가지도록 형성될 수 있다. 예를 들어 복수 개의 강성부(171)는 서로 동일한 소재 및 동일한 규격으로 형성될 수 있다. 이에 따라 비틀림진동이 복수 개의 강성부(171)를 통해 균등하게 흡수되어 회전축(125)을 통해 전달되는 비틀림진동을 안정적으로 감쇠시킬 수 있다.Additionally, the plurality of rigid portions 171 may be formed to have the same stiffness. For example, the plurality of rigid parts 171 may be formed of the same material and the same standard. Accordingly, the torsional vibration is equally absorbed through the plurality of rigid parts 171, and the torsional vibration transmitted through the rotation shaft 125 can be stably attenuated.
한편, 본 실시예에 따른 질량부(172)는 앞서 설명한 바와 같이 환형으로 형성되어 고정스크롤(140)을 마주보는 상측면에 복수 개의 강성부(171)의 하단이 연결될 수 있다. 예를 들어 질량부(172)는 환형으로 형성되되, 토출커버(160)의 하면보다 하측에서 오일픽업(127)을 감싸도록 형성될 수 있다.Meanwhile, the mass portion 172 according to this embodiment is formed in an annular shape as described above, and the lower ends of the plurality of rigid portions 171 may be connected to the upper side facing the fixed scroll 140. For example, the mass portion 172 may be formed in an annular shape to surround the oil pickup 127 below the lower surface of the discharge cover 160.
다시 말해, 질량부(172)는 축방향투영시 토출커버(160)의 외경 및/또는 오일픽업(127)의 외경보다 크게 형성되어 토출커버(160)의 하측에서 오일픽업(127)과 반경방향으로 중첩되도록 배치될 수 있다. 이에 따라 케이싱(110)의 축방향 길이를 유지하면서도 그 케이싱(110)의 내부공간(110a)에 진동감쇠부재(170)를 설치할 수 있다.In other words, the mass portion 172 is formed to be larger than the outer diameter of the discharge cover 160 and/or the outer diameter of the oil pickup 127 when projected in the axial direction, so that the mass portion 172 is formed to be larger than the outer diameter of the oil pickup 127 at the lower side of the discharge cover 160 in the radial direction with the oil pickup 127. It can be arranged to overlap. Accordingly, the vibration damping member 170 can be installed in the internal space 110a of the casing 110 while maintaining the axial length of the casing 110.
도면으로 도시하지는 않았으나, 질량부(172)는 토출커버(160)와 반경방향으로 중첩되는 위치에 형성될 수도 있다. 이 경우에는 진동감쇠부재(170)가 저유공간에 담긴 오일의 유면보다 높게 배치될 수 있다. 이에 따라 진동감쇠부재(170)가 진동체와 동일한 주파수로 진동을 하더라도 저유공간에 담긴 오일에 영향을 미치지 않아 진동감쇠부재(170)의 진동으로 인한 기포발생을 억제할 수 있다. Although not shown in the drawing, the mass portion 172 may be formed at a position that overlaps the discharge cover 160 in the radial direction. In this case, the vibration damping member 170 may be placed higher than the oil level of the oil contained in the oil storage space. Accordingly, even if the vibration damping member 170 vibrates at the same frequency as the vibrating body, it does not affect the oil contained in the reservoir space, thereby suppressing the generation of bubbles due to the vibration of the vibration damping member 170.
또한, 질량부(172)는 원주방향을 따라 동일한 단면적을 가지도록 형성될 수도 있고, 원주방향을 따라 복수 개의 단면적을 가지도록 형성될 수도 있다. 본 실시예에서는 질량부(172)가 원주방향을 따라 동일한 단면적을 가지도록 형성된 예를 도시하고 있다.Additionally, the mass portion 172 may be formed to have the same cross-sectional area along the circumferential direction, or may be formed to have a plurality of cross-sectional areas along the circumferential direction. This embodiment shows an example in which the mass portion 172 is formed to have the same cross-sectional area along the circumferential direction.
예를 들어, 질량부(172)는 원주방향 단면적이 각 강성부(171)의 길이방향 단면적보다 크거나 같은 환형으로 형성될 수 있다. 이에 따라 진동감쇠부재(170)는 회전축(125)을 따라 전달되는 비틀림진동을 흡수하여 감쇠할 수 있다.For example, the mass portion 172 may be formed in an annular shape in which the circumferential cross-sectional area is greater than or equal to the longitudinal cross-sectional area of each rigid portion 171. Accordingly, the vibration damping member 170 can absorb and attenuate torsional vibration transmitted along the rotation axis 125.
또한, 질량부(172)는 강성부(171)와 동일한 소재로 형성될 수도 있으나, 경우에 따라서는 강성부(171)와 서로 다른 소재로 형성될 수도 있다. 본 실시예는 질량부(172)가 강성부(171)와 동일한 소재로 형성된 예를 도시하고 있다. 이에 따라 질량부(172)는 강성부(171)와 용이하게 연결할 수 있다.Additionally, the mass portion 172 may be formed of the same material as the rigid portion 171, but in some cases, it may be formed of a different material from the rigid portion 171. This embodiment shows an example in which the mass portion 172 is formed of the same material as the rigid portion 171. Accordingly, the mass portion 172 can be easily connected to the rigid portion 171.
예를 들어, 질량부(172)와 강성부(171)는 동일한 철계소재로 형성되되, 단일체로 연장될 수 있다. 다시 말해 질량부(172)의 일측면(상면)에서 복수 개의 강성부(171)가 각각 축방향을 따라 단일체로 연장될 수 있다. 이 경우에는 질량부(172)를 강성부(171)에 별도로 결합할 필요가 없어 그만큼 강성부(171)와 질량부(172) 사이에서의 조립성을 높일 수 있다.For example, the mass portion 172 and the rigid portion 171 may be formed of the same iron-based material, but may be extended as a single body. In other words, a plurality of rigid parts 171 may each extend as a single body along the axial direction on one side (upper surface) of the mass part 172. In this case, there is no need to separately couple the mass portion 172 to the rigid portion 171, thereby improving the assembly efficiency between the rigid portion 171 and the mass portion 172.
상기와 같이 케이싱(110)의 내부공간(110a)에 동흡진기를 이루는 진동감쇠부재(170)가 구비됨에 따라, 케이싱(110)의 내부공간(110a)에 회전모터로 된 구동모터(120)가 구비되더라도 그로 인한 비틀림진동을 진동감쇠부재(170)가 흡수하여 압축기의 진동소음을 효과적으로 낮출 수 있다. (도 5 참조)As the vibration damping member 170 forming a dynamic absorber is provided in the internal space 110a of the casing 110 as described above, the driving motor 120, which is a rotating motor, is installed in the internal space 110a of the casing 110. Even if it is provided, the vibration damping member 170 absorbs the resulting torsional vibration, thereby effectively reducing the vibration noise of the compressor. (see Figure 5)
또한, 동흡진기를 이루는 진동감쇠부재(170)가 하부공간인 토출커버(160)의 하측에 구비되되, 회전축(125)의 급유통로(126)에 연통되는 오일픽업(127)을 감싸도록 설치될 수 있다. 이에 따라 케이싱(110)의 크기가 과도하게 증가하지 않으면서도 진동감쇠부재(170)를 케이싱(110)의 내부공간(110a)에 설치하여 진동감쇠부재(170)의 설치로 인한 압축기의 부피가 증가하는 것을 억제할 수 있다.In addition, the vibration damping member 170, which forms a dynamic absorber, is provided on the lower side of the discharge cover 160, which is the lower space, and is installed to surround the oil pickup 127 that communicates with the oil supply passage 126 of the rotating shaft 125. It can be. Accordingly, the vibration damping member 170 is installed in the internal space 110a of the casing 110 without excessively increasing the size of the casing 110, thereby increasing the volume of the compressor due to the installation of the vibration damping member 170. It can be suppressed from doing so.
또한, 동흡진기를 이루는 진동감쇠부재(170)가 봉형상으로 된 복수 개의 강성부(171)와 환형으로 된 질량부(172)로 이루어지되, 복수 개의 강성부(171)와 질량부(172)를 단일체로 형성함에 따라 진동감쇠부재(170)의 조립을 간소화할 수 있다.In addition, the vibration damping member 170 forming the dynamic absorber is composed of a plurality of rod-shaped rigid parts 171 and an annular mass part 172, and the plurality of rigid parts 171 and the mass part 172 are formed as a single body. By forming, the assembly of the vibration damping member 170 can be simplified.
도면으로 도시하지는 않았으나, 질량부(172)는 복수 개의 원호 형상으로 형성될 수도 있다. 이 경우 복수 개의 질량부(172)는 복수 개의 강성부(171)와 일대일로 매칭되어 형성될 수도 있다. 이 경우에는 진동감쇠부재(170)에 대한 조립성을 높이는 동시에 다양한 주파수 대역의 진동을 감쇠시킬 수 있다.Although not shown in the drawing, the mass portion 172 may be formed in a plurality of circular arc shapes. In this case, the plurality of mass parts 172 may be formed in one-to-one matching with the plurality of rigid parts 171. In this case, it is possible to improve the assembling of the vibration damping member 170 and at the same time attenuate vibrations in various frequency bands.
한편, 진동감쇠부재에 대한 다른 실시예가 있는 경우는 다음과 같다.Meanwhile, other examples of vibration damping members are as follows.
즉, 전술한 실시예에서는 복수 개의 강성부와 질량부가 단일체로 형성되는 것이나, 경우에 따라서는 복수 개의 강성부가 질량부에 후조립될 수도 있다.That is, in the above-described embodiment, a plurality of rigid parts and a mass part are formed as a single body, but in some cases, a plurality of rigid parts may be post-assembled into the mass part.
도 6은 도 1에서 진동감쇠부재의 다른 실시예를 분해하여 보인 사시도이고, 도 7은 도 6의 조립 정면도이다.Figure 6 is an exploded perspective view of another embodiment of the vibration damping member in Figure 1, and Figure 7 is an assembled front view of Figure 6.
도 6 및 도 7을 참조하면, 본 실시예에 따른 스크롤 압축기의 기본적인 구성 및 그에 따른 작용효과는 전술한 실시예와 동일하다. 예를 들어 본 실시예에 따른 스크롤 압축기는 케이싱(110), 전동부를 이루며 회전모터로 된 구동모터(120), 고정스크롤(140)과 선회스크롤(150) 그리고 토출커버(160)와 진동감쇠부재(170)를 포함하는 압축부(C)를 구비하며, 이들 케이싱(110), 구동모터(120) 및 압축부(C)에 대한 기본적인 구성 및 그에 따른 작용효과는 전술한 실시예와 동일하다.Referring to Figures 6 and 7, the basic configuration and resulting effects of the scroll compressor according to this embodiment are the same as the above-described embodiment. For example, the scroll compressor according to this embodiment includes a casing 110, a driving motor 120 that forms a rotating motor and a rotating motor, a fixed scroll 140, a turning scroll 150, a discharge cover 160, and a vibration damping member. It is provided with a compression unit (C) including (170), and the basic configuration and effect of the casing 110, the drive motor 120, and the compression unit (C) are the same as the above-described embodiment.
다만, 본 실시예에서는 진동감쇠부재(170)를 이루는 강성부(171)와 질량부(172)가 전술한 도 3의 실시예와는 상이하게 후조립될 수 있다. 예를 들어 질량부(172)는 환형으로 형성되되, 원주방향을 따라 복수 개의 체결구멍 및/또는 체결홈(이하에서는 체결구멍을 예로들어 설명한다)172a)이 기설정된 간격만큼 이격되어 형성될 수 있다. 다시 말해 질량부(172)에는 복수 개의 체결구멍(172a)이 형성되되, 이들 체결구멍(172a)은 고정스크롤(140)의 고정홈(141a)과 동일축선상에 형성될 수 있다.However, in this embodiment, the rigid portion 171 and the mass portion 172 forming the vibration damping member 170 may be post-assembled differently from the embodiment of FIG. 3 described above. For example, the mass portion 172 is formed in an annular shape, and a plurality of fastening holes and/or fastening grooves (hereinafter, fastening holes will be described as an example) 172a) may be formed along the circumferential direction and spaced apart by a preset distance. there is. In other words, a plurality of fastening holes 172a are formed in the mass portion 172, and these fastening holes 172a may be formed on the same axis as the fixing groove 141a of the fixed scroll 140.
강성부(171)는 전술한 도 3의 실시예와 같이 얇은 원봉 형상으로 형성되되, 강성부(171)의 외경이 체결구멍(172a)의 내경보다는 크게 형성될 수 있다. 이 경우 질량부(172)에 체결되는 강성부(171)의 하단에는 체결구멍(172a)에 삽입되거나 관통되어 체결되는 체결돌부(171a)가 단차지게 형성될 수 있다. 예를 들어 체결돌부(171a)의 길이는 체결구멍(172a)의 길이보다 길게 형성되어 질량부(172)의 타측면(하면)에서 체결너트(175)로 체결될 수 있다.The rigid portion 171 is formed in the shape of a thin circular rod as in the above-described embodiment of FIG. 3, but the outer diameter of the rigid portion 171 may be formed to be larger than the inner diameter of the fastening hole 172a. In this case, a fastening protrusion 171a that is inserted into or penetrates the fastening hole 172a and fastened to the lower end of the rigid portion 171 fastened to the mass portion 172 may be formed to be stepped. For example, the length of the fastening protrusion 171a may be longer than the length of the fastening hole 172a and may be fastened with the fastening nut 175 on the other side (lower surface) of the mass portion 172.
또한, 강성부(171)의 상단은 전술한 실시예와 같이 고정스크롤(140)의 고정홈(141a)에 압입될 수도 있고, 체결될 수도 있다. 본 실시예에서는 강성부(171)의 상단과 고정스크롤(140)의 고정홈(141a)에 각각 나사산이 형성되어 서로 체결되는 예를 도시하고 있다.Additionally, the upper end of the rigid portion 171 may be press-fitted into or fastened to the fixing groove 141a of the fixed scroll 140 as in the above-described embodiment. This embodiment shows an example in which screw threads are formed at the top of the rigid portion 171 and the fixing groove 141a of the fixed scroll 140 and are fastened to each other.
상기와 같이 강성부(171)와 질량부(172)가 후조립되는 경우에는 강성부(171)와 질량부(172)를 동종 소재로 형성할 수도 있지만, 경우에 따라서는 강성부(171)와 질량부(172)를 서로 다른 소재로 형성할 수 있다. 예를 들어 강성부(171)는 질량부(172)에 비해 단위면적당 강성이 더 큰 소재로 형성할 수 있고, 질량부(172)는 강성부(171)에 비해 단위면적당 질량이 더 큰 소재로 형성할 수 있다. 반면 경우에 따라서는 이와 반대로 형성할 수도 있다. 이를 통해 다양한 주파수 대역의 비틀림진동을 효과적으로 감쇠할 수 있어 압축기 용량에 따라 적절하게 변경하여 적용될 수 있다.When the rigid portion 171 and the mass portion 172 are post-assembled as described above, the rigid portion 171 and the mass portion 172 may be formed of the same material, but in some cases, the rigid portion 171 and the mass portion ( 172) can be formed from different materials. For example, the rigid portion 171 may be formed of a material with greater rigidity per unit area than the mass portion 172, and the mass portion 172 may be formed of a material with a greater mass per unit area than the rigid portion 171. You can. On the other hand, in some cases, it can be formed in the opposite way. Through this, torsional vibration in various frequency bands can be effectively attenuated and can be appropriately changed and applied depending on the compressor capacity.
도면으로 도시하지는 않았으나, 진동감쇠부재(170)의 일부를 이루는 복수 개의 강성부(171)가 고정스크롤(140)에서 단일체로 연장되고, 진동감쇠부재(170)의 다른 일부를 이루는 질량부(172)가 복수 개의 강성부(171)의 하단에 체결될 수도 있다. 이 경우에도 복수 개의 강성부(171)와 질량부(172)가 체결되는 구조는 앞서 설명한 도 3의 실시예와 동일할 수 있다.Although not shown in the drawing, a plurality of rigid parts 171 forming part of the vibration damping member 170 extend as a single body from the fixed scroll 140, and a mass part 172 forming another part of the vibration damping member 170 may be fastened to the bottom of the plurality of rigid parts 171. In this case as well, the structure in which the plurality of rigid parts 171 and the mass part 172 are fastened may be the same as the embodiment of FIG. 3 described above.
한편, 진동감쇠부재에 대한 또 다른 실시예가 있는 경우는 다음과 같다.Meanwhile, another example of the vibration damping member is as follows.
즉, 전술한 실시예들에서는 진동감쇠부재가 고정스크롤에 조립되는 것이나, 경우에 따라서는 진동감쇠부재가 회전축에 결합될 수도 있다.That is, in the above-described embodiments, the vibration damping member is assembled to the fixed scroll, but in some cases, the vibration damping member may be coupled to the rotating shaft.
도 8은 도 1에서 진동감쇠부재의 또 다른 실시예를 분해하여 보인 사시도이고, 도 9는 8에 따른 진동감쇠부재의 작용효과를 보인 개략도이다.Figure 8 is an exploded perspective view of another embodiment of the vibration damping member in Figure 1, and Figure 9 is a schematic diagram showing the effect of the vibration damping member according to Figure 8.
다시 도 2를 참조하면, 본 실시예에 따른 스크롤 압축기의 기본적인 구성 및 그에 따른 작용효과는 전술한 실시예와 동일하다. 예를 들어 본 실시예에 따른 스크롤 압축기는 케이싱(110), 전동부를 이루며 회전모터로 된 구동모터(120), 고정스크롤(140)과 선회스크롤(150) 그리고 토출커버(160)와 진동감쇠부재(170)를 포함하는 압축부(C)를 구비하며, 이들 케이싱(110), 구동모터(120) 및 압축부(C)에 대한 기본적인 구성 및 그에 따른 작용효과는 전술한 실시예와 동일하다.Referring again to FIG. 2, the basic configuration and resulting effects of the scroll compressor according to this embodiment are the same as the above-described embodiment. For example, the scroll compressor according to this embodiment includes a casing 110, a driving motor 120 that forms a rotating motor and a rotating motor, a fixed scroll 140, a turning scroll 150, a discharge cover 160, and a vibration damping member. It is provided with a compression unit (C) including (170), and the basic configuration and effect of the casing 110, the drive motor 120, and the compression unit (C) are the same as the above-described embodiment.
다만, 도 8 및 도 9와 같이, 본 실시예에서는 진동감쇠부재(170)가 전술한 실시예들과는 상이하게 회전축(125)에 직접 결합될 수도 있다. 예를 들어 회전축(125)의 하단이 서브베어링부(143)의 하단으로부터 돌출되도록 길게 연장되어, 그 회전축(125)의 하단 부에 진동감쇠부재(170)가 체결될 수 있다. 이 경우 진동감쇠부재(170)는 고정스크롤(140)과 오일픽업(127)의 사이, 예를 들어 서브베어링부(143)와 오일픽업(127)을 이루는 급유관(1271)의 사이에서 회전축(125)에 체결될 수 있다.However, as shown in FIGS. 8 and 9, in this embodiment, the vibration damping member 170 may be directly coupled to the rotation shaft 125, differently from the above-described embodiments. For example, the lower end of the rotating shaft 125 may extend long enough to protrude from the lower end of the sub-bearing unit 143, and the vibration damping member 170 may be fastened to the lower end of the rotating shaft 125. In this case, the vibration damping member 170 is located between the fixed scroll 140 and the oil pickup 127, for example, between the sub-bearing portion 143 and the oil supply pipe 1271 forming the oil pickup 127. 125).
구체적으로, 진동감쇠부재(170)는 복수 개의 강성부(171), 질량부(172) 및 고정부(173)를 포함할 수 있다. 복수 개의 강성부(171)는 전술한 실시예들과는 달리 반경방향으로 연장되어 질량부(172)의 내주면과 고정부(173)의 외주면에 단일체로 형성될 수 있다. 질량부(172)는 환형으로 형성되어 그 내주면이 복수 개의 강성부(171)의 외측단에 각각 연결되고, 고정부(173)는 환형으로 형성되어 그 외주면이 복수 개의 강성부(171)의 내측단에 각각 연결될 수 있다. 고정부(173)는 회전축(125)의 외주면에 압입될 수도 있고, 후조립될 수도 있다. 본 실시예는 고정부(173)가 회전축(125)의 외주면에 압입된 예를 도시하고 있다.Specifically, the vibration damping member 170 may include a plurality of rigid parts 171, mass parts 172, and fixing parts 173. Unlike the above-described embodiments, the plurality of rigid parts 171 may extend in the radial direction and be formed as a single body on the inner peripheral surface of the mass portion 172 and the outer peripheral surface of the fixing portion 173. The mass portion 172 is formed in an annular shape so that its inner circumferential surface is connected to the outer ends of the plurality of rigid portions 171, and the fixing portion 173 is formed in an annular shape so that its outer peripheral surface is connected to the inner ends of the plurality of rigid portions 171. Each can be connected. The fixing part 173 may be press-fitted to the outer peripheral surface of the rotating shaft 125 or may be post-assembled. This embodiment shows an example in which the fixing part 173 is press-fitted to the outer peripheral surface of the rotating shaft 125.
이 경우에도 각 강성부(171)의 단면적은 질량부(172)의 단면적보다 작거나 같게 형성될 수 있다. 이에 따라 회전축(125)을 통해 전달되는 비틀림진동을 효과적으로 감쇠시킬 수 있다.In this case as well, the cross-sectional area of each rigid portion 171 may be smaller than or equal to the cross-sectional area of the mass portion 172. Accordingly, torsional vibration transmitted through the rotation shaft 125 can be effectively attenuated.
또한, 고정부(173)의 단면적은 질량부(172)의 단면적보다는 작거나 같게 형성될 수 있다. 이에 따라 진동감쇠부재(170) 중에서 진동감쇠에 관여하지 않는 부분의 무게를 최소화하여 회전체의 일부를 이루는 진동감쇠부재(170)의 무게가 과도하게 상승하는 것을 억제함으로써 진동감쇠부재(170)로 인한 압축기 효율의 저하를 최소화할 수 있다.Additionally, the cross-sectional area of the fixing part 173 may be smaller than or equal to the cross-sectional area of the mass part 172. Accordingly, the weight of the part of the vibration damping member 170 that is not involved in vibration damping is minimized and the weight of the vibration damping member 170, which forms part of the rotating body, is prevented from increasing excessively, thereby reducing the weight of the vibration damping member 170. Deterioration in compressor efficiency can be minimized.
상기와 같이 진동감쇠부재(170)가 회전축(125)에 결합되는 경우에는 비틀림진동의 근원지인 회전축(125)에 진동감쇠부재(170)가 직접 결합됨에 따라 비틀림진동을 더욱 효과적으로 감쇠시킬 수 있다. 이를 통해 압축기 진동을 더욱 낮출 수 있다. (도 9 참조)When the vibration damping member 170 is coupled to the rotating shaft 125 as described above, the torsional vibration can be attenuated more effectively because the vibration damping member 170 is directly coupled to the rotating shaft 125, which is the source of the torsional vibration. This can further reduce compressor vibration. (see Figure 9)
한편, 진동감쇠부재에 대한 또 다른 실시예가 있는 경우는 다음과 같다.Meanwhile, another example of the vibration damping member is as follows.
즉, 전술한 실시예들에서는 진동감쇠부재가 케이싱의 내부에 구비되는 것이나, 경우에 따라서는 진동감쇠부재가 케이싱의 외부에 구비될 수도 있다.That is, in the above-described embodiments, the vibration damping member is provided inside the casing, but in some cases, the vibration damping member may be provided outside the casing.
도 10은 도 1에서 진동감쇠부재의 또 다른 실시예를 보인 사시도이고, 도 11은 도 10의 정면도이며, 도 12는 도 10에 따른 진동감쇠부재를 분해하여 보인 사시도이고, 도 13은 도 10에 따른 진동감쇠부재의 작용효과를 보인 개략도이다.Figure 10 is a perspective view showing another embodiment of the vibration damping member in Figure 1, Figure 11 is a front view of Figure 10, Figure 12 is an exploded perspective view of the vibration damping member according to Figure 10, and Figure 13 is a perspective view of Figure 10. This is a schematic diagram showing the effect of the vibration damping member according to .
다시 도 2를 참조하면, 본 실시예에 따른 스크롤 압축기의 기본적인 구성 및 그에 따른 작용효과는 전술한 실시예와 동일하다. 예를 들어 본 실시예에 따른 스크롤 압축기는 케이싱(110), 전동부를 이루며 회전모터로 된 구동모터(120), 고정스크롤(140)과 선회스크롤(150) 및 토출커버(160)를 포함하는 압축부(C)를 구비하며, 이들 케이싱(110), 구동모터(120) 및 압축부(C)에 대한 기본적인 구성 및 그에 따른 작용효과는 전술한 실시예와 동일하다.Referring again to FIG. 2, the basic configuration and resulting effects of the scroll compressor according to this embodiment are the same as the above-described embodiment. For example, the scroll compressor according to this embodiment includes a casing 110, a driving motor 120 that forms a rotating motor and is a rotating motor, a fixed scroll 140, a turning scroll 150, and a discharge cover 160. It is provided with a unit (C), and the basic configuration and effect of the casing (110), the drive motor (120), and the compression unit (C) are the same as the above-described embodiment.
다만, 도 10 내지 도 12와 같이, 본 실시예에서는 진동감쇠부재(170)가 전술한 실시예들과는 다르게 케이싱(110)의 외부에 설치될 수 있다. 예를 들어 진동감쇠부재(170)는 케이싱(110)의 일부를 이루는 베이스(114)에 설치될 수 있다.However, as shown in FIGS. 10 to 12, in this embodiment, the vibration damping member 170 may be installed outside the casing 110, unlike the above-described embodiments. For example, the vibration damping member 170 may be installed on the base 114 that forms part of the casing 110.
구체적으로, 진동감쇠부재(170)는 복수 개의 강성부(171) 및 질량부(172)를 포함하되, 복수 개의 강성부(171)는 베이스(114)의 일부를 이루는 각각의 제2베이스부(1142)에서 축방향을 따라 상측으로 연장될 수 있다. 이에 따라 질량부(172)가 환형으로 형성되어 케이싱(110)의 일부를 이루는 원통쉘(111)의 외주면으로부터 기설정된 간격을 두고 감싸도록 배치될 수 있다.Specifically, the vibration damping member 170 includes a plurality of rigid parts 171 and a mass part 172, and the plurality of rigid parts 171 are each of the second base parts 1142 that form part of the base 114. It may extend upward along the axial direction. Accordingly, the mass portion 172 may be formed in an annular shape and arranged to surround the outer peripheral surface of the cylindrical shell 111 forming part of the casing 110 at a predetermined distance.
예를 들어, 원통쉘(111)의 일측에는 냉매흡입관(115)이 연결되고, 질량부(172)는 환형으로 형성되어 원통쉘(111)을 감싸되 냉매흡입관(115)보다는 낮게 배치될 수 있다. 다시 말해 축방향 투영시 질량부(172)의 외주면이 냉매흡입관(115)의 범위 내에 위치하도록 형성될 수 있다. 이에 따라 진동감쇠부재(170)의 외경이 과도하게 크게 형성되어 그 진동감쇠부재(170)를 포함한 압축기의 부피가 증가하는 것을 억제할 수 있다.For example, the refrigerant suction pipe 115 is connected to one side of the cylindrical shell 111, and the mass portion 172 is formed in an annular shape to surround the cylindrical shell 111, but may be placed lower than the refrigerant suction pipe 115. . In other words, when projected in the axial direction, the outer peripheral surface of the mass portion 172 may be formed to be located within the range of the refrigerant suction pipe 115. Accordingly, the outer diameter of the vibration damping member 170 may be formed to be excessively large, thereby preventing an increase in the volume of the compressor including the vibration damping member 170.
또한, 복수 개의 강성부(171)와 질량부(172)는 전술한 도 3의 실시예와 같이 단일체로 형성되거나 또는 도 6의 실시예와 같이 후조립될 수 있다. 본 실시예는 복수 개의 강성부(171)와 질량부(172)가 후조립된 예를 도시하고 있다.Additionally, the plurality of rigid portions 171 and mass portions 172 may be formed as a single body as in the above-described embodiment of FIG. 3 or may be post-assembled as in the embodiment of FIG. 6 . This embodiment shows an example in which a plurality of rigid parts 171 and mass parts 172 are post-assembled.
또한, 복수 개의 강성부(171)는 제2베이스부(1142)에 각각 압입되거나, 또는 체결너트(175)를 이용하여 각각 체결될 수 있다. 본 실시예는 각각의 강성부(171)가 제2베이스부(1142)에 체결너트(175)를 이용하여 체결된 예를 도시하고 있다. Additionally, the plurality of rigid parts 171 may be press-fitted into the second base part 1142, or may be fastened to each other using fastening nuts 175. This embodiment shows an example in which each rigid part 171 is fastened to the second base part 1142 using a fastening nut 175.
이 경우에 각각의 강성부(171)의 하단에는 도 6의 실시예와 같은 체결돌부(171a)가 단차지게 형성되어 제2베이스부(1142)에 구비된 체결구멍(1142a)에 삽입된 상태에서 제2베이스부(1142)의 하면에서 체결너트(175)로 체결될 수 있다.In this case, a fastening protrusion 171a similar to the embodiment of FIG. 6 is formed at the bottom of each rigid part 171 to be stepped, and is inserted into the fastening hole 1142a provided in the second base portion 1142. 2 It can be fastened to the bottom of the base portion 1142 with a fastening nut 175.
또한, 이 경우에도 복수 개의 강성부(171)와 질량부(172)는 동일 소재로 형성할 수도 있고, 서로 다른 소재로 형성할 수 있다. 다시 말해 강성부(171)가 질량부(172)보다 강성이 더 크거나 작은 소재로 형성될 수 있고, 질량부(172)가 강성부(171)보다 더 무겁거나 가벼운 소재로 형성될 수 있다.Also, in this case, the plurality of rigid portions 171 and mass portions 172 may be formed of the same material or may be formed of different materials. In other words, the rigid portion 171 may be formed of a material with greater or lesser rigidity than the mass portion 172, and the mass portion 172 may be formed of a material heavier or lighter than the rigid portion 171.
상기와 같이 진동감쇠부재(170)가 케이싱(110)의 외부에 설치되는 경우에는 그 진동감쇠부재(170)가 케이싱(110)으로 전달된 비틀림진동을 흡수하여 감쇠시키게 된다. (도 13 참조) When the vibration damping member 170 is installed outside the casing 110 as described above, the vibration damping member 170 absorbs and attenuates torsional vibration transmitted to the casing 110. (see Figure 13)
이 경우에는 진동감쇠부재(170)가 케이싱(110)의 외부에 설치됨에 따라 그 진동감쇠부재(170)의 규격 및/또는 형상을 다양하게 적용할 수 있다. 나아가 진동감쇠부재(170)가 베이스(114)에 설치되는 경우에는 그 진동감쇠부재(170)를 고정하기 위한 별도의 부품을 배제할 수 있어 부품수를 최소화하면서도 동흡진기를 이루는 진동감쇠부재(170)를 케이싱(110)의 외부에 설치할 수 있다.In this case, as the vibration damping member 170 is installed outside the casing 110, the specifications and/or shapes of the vibration damping member 170 can be applied in various ways. Furthermore, when the vibration damping member 170 is installed on the base 114, separate parts for fixing the vibration damping member 170 can be excluded, thereby minimizing the number of parts and forming the vibration damping member 170 ) can be installed on the outside of the casing 110.
도면으로 도시하지는 않았으나, 진동감쇠부재(170)는 케이싱(110)의 외주면, 예를 들어 원통쉘(111) 및/또는 상부쉘(112) 및/또는 하부쉘(113)의 외주면에 설치할 수도 있다. 이 경우에는 복수 개의 강성부(171)가 케이싱(110)의 외주면에 직접 연결되어 반경방향으로 연장될 수도 있고, 도 8의 실시예와 같이 별도의 고정부(173)가 케이싱(110)에 결합된 상태에서 그 고정부(173)의 외주면 복수 개의 강성부(171)가 반경방향으로 연장될 수도 있다.Although not shown in the drawing, the vibration damping member 170 may be installed on the outer peripheral surface of the casing 110, for example, the outer peripheral surface of the cylindrical shell 111 and/or upper shell 112 and/or lower shell 113. . In this case, a plurality of rigid parts 171 may be directly connected to the outer peripheral surface of the casing 110 and extend in the radial direction, and as in the embodiment of FIG. 8, a separate fixing part 173 is coupled to the casing 110. In this state, a plurality of rigid parts 171 on the outer peripheral surface of the fixing part 173 may extend in the radial direction.
한편, 전술한 실시예들에서는 스크롤 압축기를 예로 들어 설명하였으나, 회전모터로 된 전동부를 구비한 압축기에는 동일하게 적용될 수 있다.Meanwhile, in the above-described embodiments, a scroll compressor has been described as an example, but the same can be applied to a compressor having a transmission unit made of a rotary motor.

Claims (18)

  1. 케이싱;casing;
    상기 케이싱의 내부공간에 구비되어 회전력을 발생하는 구동모터;A drive motor provided in the inner space of the casing to generate rotational force;
    상기 케이싱의 내부공간에 구비되어 상기 구동모터에서 발생되는 회전력에 의해 작동하면서 냉매를 압축하는 압축부;A compression unit provided in the inner space of the casing and compressing the refrigerant while operating by rotational force generated by the drive motor;
    상기 구동모터와 상기 압축부 사이를 연결하여 상기 구동모터의 회전력을 상기 압축부에 전달하는 회전축; 및a rotation shaft that connects the drive motor and the compression unit to transmit the rotational force of the drive motor to the compression unit; and
    상기 케이싱의 내부 또는 상기 케이싱의 외부에 구비되어 진동을 감쇠(damping)하는 진동감쇠부재를 포함하고,It includes a vibration damping member provided inside or outside the casing to dampen vibration,
    상기 진동감쇠부재는,The vibration damping member is,
    진동체를 중심으로 원주방향을 따라 기설정된 간격을 두고 배치되어 상기 진동체에 결합되는 복수 개의 강성부; 및A plurality of rigid parts arranged at preset intervals along the circumferential direction around the vibrating body and coupled to the vibrating body; and
    상기 복수 개의 강성부를 서로 연결하도록 환형으로 형성되거나 또는 상기 복수 개의 강성부마다 독립적으로 연결되도록 원호형으로 형성되는 질량부를 포함하는 밀폐형 압축기.A hermetic compressor including a mass portion formed in an annular shape to connect the plurality of rigid portions to each other, or an arc-shaped mass portion to be independently connected to each of the plurality of rigid portions.
  2. 제1항에 있어서,According to paragraph 1,
    상기 압축부는,The compression unit,
    상기 케이싱의 내부공간에 고정되는 메인프레임;A main frame fixed to the inner space of the casing;
    상기 구동모터의 반대쪽에서 상기 메인프레임에 결합되는 고정스크롤; 및a fixed scroll coupled to the main frame on the opposite side of the drive motor; and
    상기 메인프레임과 상기 고정스크롤 사이에 구비되어 상기 고정스크롤과의 사이에 압축실을 형성하는 선회스크롤을 포함하고,An orbiting scroll is provided between the main frame and the fixed scroll to form a compression chamber between the main frame and the fixed scroll,
    상기 진동감쇠부재는,The vibration damping member is,
    상기 케이싱의 내부공간에 구비되는 밀폐형 압축기.A sealed compressor provided in the inner space of the casing.
  3. 제2항에 있어서,According to paragraph 2,
    상기 압축부는 상기 구동모터의 하측에 구비되며, The compression unit is provided on the lower side of the drive motor,
    상기 진동감쇠부재는,The vibration damping member is,
    상기 압축부의 축방향 양쪽 측면 중에서 상기 구동모터를 마주보는 쪽 측면의 반대쪽 측면에 구비되는 밀폐형 압축기.A sealed compressor provided on a side opposite to the side facing the drive motor among both axial sides of the compression section.
  4. 제1항에 있어서,According to paragraph 1,
    상기 압축부는,The compression unit,
    상기 케이싱의 내부공간에 고정되는 메인프레임;A main frame fixed to the inner space of the casing;
    상기 구동모터의 반대쪽에서 상기 메인프레임에 결합되는 고정스크롤; 및a fixed scroll coupled to the main frame on the opposite side of the drive motor; and
    상기 메인프레임과 상기 고정스크롤 사이에 구비되어 상기 고정스크롤과의 사이에 압축실을 형성하는 선회스크롤을 포함하고,An orbiting scroll is provided between the main frame and the fixed scroll to form a compression chamber between the main frame and the fixed scroll,
    상기 진동감쇠부재는,The vibration damping member is,
    상기 강성부의 일단이 상기 고정스크롤에서 상기 메인프레임의 반대쪽으로 연장되는 밀폐형 압축기.A closed compressor wherein one end of the rigid portion extends from the fixed scroll to the opposite side of the main frame.
  5. 제4항에 있어서,According to paragraph 4,
    상기 고정스크롤의 하면에는 복수 개의 고정홈이 원주방향을 따라 기설정된 간격을 두고 축방향으로 함몰되어 형성되며,A plurality of fixing grooves are formed on the lower surface of the fixed scroll by being depressed in the axial direction at preset intervals along the circumferential direction,
    상기 복수 개의 강성부는,The plurality of rigid parts,
    각각의 일단이 상기 복수 개의 고정홈에 각각 삽입되어 결합되는 밀폐형 압축기.A closed compressor in which each end is inserted and coupled to the plurality of fixing grooves.
  6. 제5항에 있어서,According to clause 5,
    상기 질량부는 환형으로 형성되고, The mass portion is formed in a ring shape,
    상기 복수 개의 강성부는,The plurality of rigid parts,
    상기 질량부의 일측면에서 단일체로 연장되는 밀폐형 압축기.A closed compressor extending as a single body from one side of the mass portion.
  7. 제5항에 있어서,According to clause 5,
    상기 질량부는 환형으로 형성되고, 상기 질량부에는 복수 개의 체결구멍이 원주방향을 따라 기설정된 간격을 두고 형성되며,The mass portion is formed in an annular shape, and a plurality of fastening holes are formed in the mass portion at predetermined intervals along the circumferential direction,
    상기 복수 개의 강성부는, The plurality of rigid parts,
    상기 복수 개의 체결구멍을 각각 관통하여 상기 질량부에 체결되는 밀폐형 압축기.A closed compressor that is fastened to the mass portion by passing through each of the plurality of fastening holes.
  8. 제7항에 있어서,In clause 7,
    상기 복수 개의 강성부는 상기 질량부와 서로 다른 강성(stiffness)을 가지는 소재로 형성되는 밀폐형 압축기.A closed compressor wherein the plurality of rigid parts are formed of a material having different stiffness from that of the mass part.
  9. 제4항에 있어서,According to paragraph 4,
    상기 선회스크롤의 반대쪽 측면을 이루는 상기 고정스크롤의 일측에는 상기 압축실에서 토출되는 냉매를 수용하는 토출커버가 구비되고,A discharge cover for accommodating refrigerant discharged from the compression chamber is provided on one side of the fixed scroll, which forms a side opposite to the orbiting scroll,
    상기 질량부는,The mass part is,
    상기 고정스크롤로부터 상기 토출커버보다 축방향으로 멀게 위치하는 밀폐형 압축기.A closed compressor located axially farther from the fixed scroll than the discharge cover.
  10. 제4항에 있어서,According to paragraph 4,
    상기 선회스크롤의 반대쪽 측면을 이루는 상기 고정스크롤의 일측에는 상기 회전축의 급유통로와 연통되도록 오일픽업이 구비되고,An oil pickup is provided on one side of the fixed scroll, which forms a side opposite to the orbiting scroll, to communicate with the oil supply passage of the rotating shaft,
    상기 질량부는,The mass part is,
    상기 오일픽업을 감싸도록 구비되는 밀폐형 압축기.A sealed compressor provided to surround the oil pickup.
  11. 제1항에 있어서,According to paragraph 1,
    상기 압축부는,The compression unit,
    상기 케이싱의 내부공간에 고정되는 메인프레임;A main frame fixed to the inner space of the casing;
    상기 구동모터의 반대쪽에서 상기 메인프레임에 결합되는 고정스크롤; 및a fixed scroll coupled to the main frame on the opposite side of the drive motor; and
    상기 메인프레임과 상기 고정스크롤 사이에 구비되어 상기 고정스크롤과의 사이에 압축실을 형성하는 선회스크롤을 포함하고,An orbiting scroll is provided between the main frame and the fixed scroll to form a compression chamber between the main frame and the fixed scroll,
    상기 회전축은 상기 메인프레임, 상기 선회스크롤 및 상기 고정스크롤을 관통하여 상기 메인프레임과 상기 고정스크롤에 지지되며,The rotation axis passes through the main frame, the orbiting scroll, and the fixed scroll and is supported on the main frame and the fixed scroll,
    상기 진동감쇠부재는,The vibration damping member is,
    상기 고정스크롤보다 하측에서 상기 회전축에 결합되는 밀폐형 압축기.A closed compressor coupled to the rotating shaft below the fixed scroll.
  12. 제11항에 있어서,According to clause 11,
    상기 진동감쇠부재는 상기 회전축의 외주면에 삽입되어 결합되는 고정부가 더 구비되고,The vibration damping member further includes a fixing part inserted and coupled to the outer peripheral surface of the rotating shaft,
    상기 복수 개의 강성부는,The plurality of rigid parts,
    상기 고정부의 외주면에서 각각 반경방향으로 연장되는 밀폐형 압축기.A sealed compressor extending radially from the outer peripheral surface of the fixing part.
  13. 제12항에 있어서,According to clause 12,
    상기 고정부와 상기 복수 개의 강성부, 그리고 상기 질량부는 단일체로 형성되는 밀폐형 압축기.A closed compressor in which the fixing part, the plurality of rigid parts, and the mass part are formed as a single body.
  14. 제1항에 있어서,According to paragraph 1,
    상기 압축부는,The compression unit,
    상기 케이싱의 내부공간에 고정되는 메인프레임;A main frame fixed to the inner space of the casing;
    상기 구동모터의 반대쪽에서 상기 메인프레임에 결합되는 고정스크롤; 및a fixed scroll coupled to the main frame on the opposite side of the drive motor; and
    상기 메인프레임과 상기 고정스크롤 사이에 구비되어 상기 고정스크롤과의 사이에 압축실을 형성하는 선회스크롤을 포함하고,An orbiting scroll is provided between the main frame and the fixed scroll to form a compression chamber between the main frame and the fixed scroll,
    상기 진동감쇠부재는,The vibration damping member is,
    상기 케이싱의 외부에 구비되는 밀폐형 압축기.A sealed compressor provided outside the casing.
  15. 제14항에 있어서,According to clause 14,
    상기 케이싱의 하면에는 상기 케이싱을 압축기설치면에 지지하는 베이스가 구비되고,A base is provided on the lower surface of the casing to support the casing on the compressor installation surface,
    상기 복수 개의 강성부는,The plurality of rigid parts,
    상기 베이스에서 상기 압축기설치면의 반대방향으로 연장되는 밀폐형 압축기.A closed compressor extending from the base in a direction opposite to the compressor installation surface.
  16. 제15항에 있어서,According to clause 15,
    상기 베이스는,The base is,
    상기 케이싱의 하면에 접하는 제1베이스부; 및 a first base portion in contact with the lower surface of the casing; and
    상기 제1베이스부에서 반경방향으로 연장되어 상기 압축기설치면에 지지되는 복수 개의 제2베이스부를 포함하고,It includes a plurality of second base parts extending radially from the first base part and supported on the compressor installation surface,
    상기 복수 개의 강성부는,The plurality of rigid parts,
    상기 복수 개의 제2베이스부에서 각각 축방향을 따라 연장되는 밀폐형 압축기.A closed compressor extending along an axial direction from each of the plurality of second base parts.
  17. 제16항에 있어서,According to clause 16,
    상기 복수 개의 제2베이스부에는 체결홈 또는 체결구멍이 각각 형성되고, A fastening groove or fastening hole is formed in each of the plurality of second base parts,
    상기 복수 개의 강성부는,The plurality of rigid parts,
    일단이 상기 체결홈 또는 상기 체결구멍에 삽입되어 체결되는 밀폐형 압축기.A closed compressor whose end is inserted into the fastening groove or the fastening hole and fastened.
  18. 제14항에 있어서,According to clause 14,
    상기 케이싱에는 상기 압축실에 연통되는 냉매흡입관이 관통되어 결합되고,A refrigerant suction pipe communicating with the compression chamber is penetrated and coupled to the casing,
    상기 질량부는,The mass part is,
    상기 냉매흡입관보다 하측에 위치하는 밀폐형 압축기.A closed compressor located below the refrigerant intake pipe.
PCT/KR2023/000580 2023-01-12 2023-01-12 Hermetic compressor WO2024150854A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2023/000580 WO2024150854A1 (en) 2023-01-12 2023-01-12 Hermetic compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2023/000580 WO2024150854A1 (en) 2023-01-12 2023-01-12 Hermetic compressor

Publications (1)

Publication Number Publication Date
WO2024150854A1 true WO2024150854A1 (en) 2024-07-18

Family

ID=91897132

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/000580 WO2024150854A1 (en) 2023-01-12 2023-01-12 Hermetic compressor

Country Status (1)

Country Link
WO (1) WO2024150854A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060087940A (en) * 2005-01-31 2006-08-03 삼성전자주식회사 Compressor
JP2010209898A (en) * 2009-03-12 2010-09-24 Mitsubishi Heavy Ind Ltd Outdoor unit of air conditioner
JP2013068295A (en) * 2011-09-25 2013-04-18 Denso Corp Vibration control device of rotating equipment
CN113883750A (en) * 2021-10-18 2022-01-04 安徽美芝精密制造有限公司 Compressor assembly and refrigeration equipment
CN114060465A (en) * 2020-07-31 2022-02-18 上海海立电器有限公司 Compressor and damper thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060087940A (en) * 2005-01-31 2006-08-03 삼성전자주식회사 Compressor
JP2010209898A (en) * 2009-03-12 2010-09-24 Mitsubishi Heavy Ind Ltd Outdoor unit of air conditioner
JP2013068295A (en) * 2011-09-25 2013-04-18 Denso Corp Vibration control device of rotating equipment
CN114060465A (en) * 2020-07-31 2022-02-18 上海海立电器有限公司 Compressor and damper thereof
CN113883750A (en) * 2021-10-18 2022-01-04 安徽美芝精密制造有限公司 Compressor assembly and refrigeration equipment

Similar Documents

Publication Publication Date Title
WO2018164393A1 (en) Scroll compressor
WO2012091389A1 (en) Compressor
WO2012091388A1 (en) Compressor
WO2012091386A1 (en) Compressor
WO2018208024A1 (en) Scroll compressor
WO2017175945A1 (en) Motor-operated compressor
WO2019045454A1 (en) Scroll compressor
WO2018131827A1 (en) Turbo compressor
EP3824186A1 (en) Scroll compressor
WO2018190520A1 (en) Scroll compressor
JPH02140474A (en) Compressor
WO2021167288A1 (en) Scroll compressor
WO2016093499A1 (en) Compressor
WO2024150854A1 (en) Hermetic compressor
WO2022158680A1 (en) Scroll compressor
WO2021040140A1 (en) Electric compressor having built-in inverter circuit board
WO2018199488A1 (en) Scroll compressor
WO2020067739A1 (en) Scroll compressor
KR101567087B1 (en) compressor
WO2021045372A1 (en) Reciprocating compressor
WO2019066288A1 (en) Reciprocating compressor
WO2023204355A1 (en) Reciprocating compressor
WO2024150908A1 (en) Scroll compressor
WO2022181959A1 (en) Scroll compressor
WO2023200061A1 (en) Reciprocating compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23916339

Country of ref document: EP

Kind code of ref document: A1