WO2018199488A1 - Scroll compressor - Google Patents

Scroll compressor Download PDF

Info

Publication number
WO2018199488A1
WO2018199488A1 PCT/KR2018/003816 KR2018003816W WO2018199488A1 WO 2018199488 A1 WO2018199488 A1 WO 2018199488A1 KR 2018003816 W KR2018003816 W KR 2018003816W WO 2018199488 A1 WO2018199488 A1 WO 2018199488A1
Authority
WO
WIPO (PCT)
Prior art keywords
lap
wrap
scroll
thickness
limit
Prior art date
Application number
PCT/KR2018/003816
Other languages
French (fr)
Korean (ko)
Inventor
최용규
최중선
김철환
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to CN201880026948.0A priority Critical patent/CN110582643B/en
Publication of WO2018199488A1 publication Critical patent/WO2018199488A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0246Details concerning the involute wraps or their base, e.g. geometry
    • F04C18/0269Details concerning the involute wraps
    • F04C18/0284Details of the wrap tips

Definitions

  • the present invention relates to a scroll compressor, and more particularly to a compressor in which the compression unit is located on one side of the electric drive.
  • a scroll compressor is a compressor which engages a plurality of scrolls and makes a relative rotational movement and forms a compression chamber consisting of a suction chamber, an intermediate pressure chamber, and a discharge chamber between both scrolls.
  • Such a scroll compressor has a relatively high compression ratio compared to other types of compressors, and smoothly sucks, compresses, and discharges the refrigerant, thereby obtaining stable torque. Therefore, scroll compressors are widely used for refrigerant compression in air conditioners and the like. Recently, high-efficiency scroll compressors with an operating speed of 180 Hz or higher due to eccentric loads have been introduced.
  • the scroll compressor may be classified into a low pressure type in which a suction pipe communicates with an inner space of a casing forming a low pressure part, and a high pressure type in which a suction pipe directly communicates with a compression chamber. Accordingly, the low pressure type is installed in the suction space in which the drive portion is the low pressure portion, while the high pressure type is installed in the discharge space in which the drive portion is the high pressure portion.
  • Such a scroll compressor may be classified into an upper compression type and a lower compression type according to the position of the driving unit and the compression unit. If the compression unit is located above the driving unit, the upper compression type is used.
  • the rotating scroll is subjected to gas force in a direction away from the fixed scroll as the pressure in the compression chamber increases. Then, as the turning scroll is separated from the fixed scroll, leakage between the compression chambers is generated and the compression loss is increased.
  • the scroll compressor adopts a tip seal method for inserting a sealing member into the front end faces of the fixed wrap and the swing wrap, or forms a back pressure chamber that forms an intermediate pressure or a discharge pressure on the back of the swing scroll or the fixed scroll.
  • Back pressure is applied to press the turning scroll or the fixed scroll by the counter scroll with the pressure of.
  • a method in which a back pressure chamber is formed inside or outside the sealing member by installing a sealing member between the back surface of the swing scroll (or the back surface of the fixed scroll) and the corresponding frame.
  • a sealing member between the back surface of the swing scroll (or the back surface of the fixed scroll) and the corresponding frame.
  • an annular groove is formed in one member forming a thrust surface, and an annular sealing member having a rectangular cross-sectional shape is inserted into the annular groove. Then, during operation of the compressor, the medium pressure refrigerant compressed in the compression chamber is introduced into the annular groove, and the back pressure chamber is formed by floating the sealing member by being in close contact with the opposite member by the pressure of the medium pressure.
  • the back pressure and gas force applied to the center of the fixed wrap and the swing wrap are greater than the back pressure and gas force applied to the edge portion.
  • the central portion of the wrap or swing wrap may be deformed while bending towards the edges, resulting in deterioration of compressor efficiency while severe frictional loss or wear occurs between the scroll or the scroll facing the fixed wrap or swing wrap.
  • the size of the compression chamber could be reduced by reducing the size of the turning radius. This may be seen as a result of arbitrarily changing the shape of the wrap without considering the rigidity of the wrap.
  • An object of the present invention is to provide a scroll compressor that can prevent friction loss or abrasion while being excessively in close contact with the hard plate portion of the scroll facing the discharge end of the wrap by optimizing the discharge end rigidity of the wrap.
  • Another object of the present invention is to provide a scroll compressor capable of optimizing the discharge end stiffness of the lap to suppress the break while the vicinity of the discharge end of the lap is excessively deformed.
  • Another object of the present invention is to optimize the discharge end rigidity of the fixed wrap even when the rotating shaft penetrates the fixed scroll in a radial direction with the compression chamber to prevent the discharge end of the fixed wrap from being excessively deformed or broken.
  • Another object of the present invention is to provide a scroll compressor that can increase the efficiency and reliability of the compressor.
  • a scroll compressor that can prevent the wrap from being excessively deformed or broken by optimizing the discharge-side rigidity of the wrap formed on either of the two members that are mutually sliding.
  • the stiffness of the lap may define a range of stiffness coefficients defined based on the height and thickness of the lap and the radius of curvature.
  • the stiffness coefficient may be determined by the lap load + option value due to the slope of the lap x the gas force.
  • the first wrap having a discharge end in the center, and the suction end at the edge, each of which is formed by connecting a plurality of curves from the discharge end to the suction end; And a discharge end at the center and a suction end at the edge, and a plurality of curves are formed to be connected from the discharge end to the suction end, and the rotary shaft coupling part is coupled to the discharge end so that the rotating shaft overlaps with the first wrap. And a second lap formed in engagement with the first lap and pivoting with respect to the first lap to form a compression chamber moving toward the center with the first lap.
  • a specific section of at least one lap of the laps obtains a first value by dividing the lap average height in the specific section by the lap average thickness, and multiplies the first value by the average radius of curvature of the lap to obtain a second value.
  • a scroll compressor can be provided that is formed using a stiffness coefficient defined as the inverse of the second value.
  • the limiting range of the stiffness coefficient may be formed to be equal to or larger than the limiting limit defined by [(0.0001 to 0.0003) ⁇ lap load (N) + (7.0000 to 8.0000)].
  • the limit line limiting range may be defined as [0.0002 ⁇ lap load (N) +7.5202].
  • the specific section is in a range of 0 to 45 ° based on the rotation angle of the rotation shaft. Can be.
  • an arc compression surface is formed on one side of the rotation shaft coupling portion, and a recess is formed in the section between the arc compression surface and the outer surface of the rotation shaft coupling portion to reduce the thickness of the second wrap, and discharge of the first wrap
  • a protrusion may be formed to engage the recess of the second wrap, and at least a portion of the section in which the protrusion is formed may be formed to satisfy the range of the stiffness coefficient.
  • the first hard plate portion is formed in the center of the bearing shaft through which the rotating shaft penetrates, the discharge port is formed in the periphery of the bearing hole, the first protrusion formed on one side surface of the first hard plate portion A first scroll comprising a wrap; And a second hard plate portion having a rotary shaft coupling portion formed therein so as to be eccentrically coupled to the rotary shaft penetrating through the bearing hole of the first scroll in a central portion thereof, and protruding from one side of the second hard plate portion and engaged with the first wrap to form a compression chamber.
  • a second scroll comprising a second lap to form; wherein the first lap comprises: a lap stiffness divided by lap thickness, the value of which is defined as the inverse of the product of the first lap multiplied by the radius of curvature
  • the scroll compressor may be provided so as to be formed to be 0.005 mm or more.
  • the stiffness coefficient limiting range is defined for a section between any two points along the advancing direction of the lap in the first lap, and the lap height, the lap thickness, and the lap curvature radius are the average lap height and average of the corresponding lap.
  • Lap thickness, average lap curvature radius can be defined.
  • the stiffness coefficient limiting range is defined for any one point in the first lap, and the lap height, lap thickness, and lap curvature radius may be defined as a lap height, a lap thickness, and a lap curvature radius of the corresponding lap.
  • the limit range of the stiffness coefficient is [(0.0001 to 0.0003) ⁇ lap load (N) + ( 7.0000 to 8.0000)].
  • the casing in which the oil is stored in the inner space;
  • a drive motor provided in the inner space of the casing;
  • a rotating shaft coupled to the drive motor;
  • a frame provided below the drive motor;
  • a first scroll provided at a lower side of the frame and having a first wrap formed at one side thereof, a bearing hole through which the rotating shaft penetrates at a central portion thereof, and a discharge hole formed at a periphery of the bearing hole;
  • a second lap engaging with the first lap, the rotation axis being eccentrically coupled so as to radially overlap the second lap, between the first scroll and the first lap while pivoting with respect to the first scroll.
  • a second scroll forming a compression chamber It is provided between the frame and the second scroll and separates the interval between the frame and the second scroll into an inner interval on the central side and an outer interval on the edge side, oil sucked through the rotating shaft flows into the inner interval and back pressure
  • a sealing member configured to form a seal, wherein the first wrap is obtained by dividing the average wrap height by the average wrap thickness from the end of the side adjacent to the discharge port to the first point, and multiplying this value by the average wrap curvature radius.
  • a scroll compressor can be provided which is formed such that the stiffness coefficient limit defined by multiplying the inverse by an arbitrary value of 1000 mm is 5 or more.
  • the limiting range of the stiffness coefficient may be formed to be equal to or larger than the limiting limit defined by [(0.0001 to 0.0003) ⁇ lap load (N) + (7.0000 to 8.0000)].
  • the limit line limiting range may be defined as [0.0002 ⁇ lap load (N) +7.5202].
  • the central point of the first lap is referred to as an ejection end based on the rotation angle of the rotation shaft, and when the discharge end is referred to as 0 °, the first point is 0 to 60 ° based on the rotation angle of the rotation shaft. It may be any point within the range.
  • an arc compression surface is formed on one side of the rotation shaft coupling portion, and a recess is formed in the section between the arc compression surface and the outer surface of the rotation shaft coupling portion to reduce the thickness of the second wrap, and discharge of the first wrap
  • a protruding portion may be formed in the section near the end to engage with the concave portion of the second wrap, and at least a part of the section in which the protruding portion is formed may be formed to satisfy a limit range of the stiffness coefficient.
  • the scroll compressor according to the present invention is formed by optimizing the stiffness of the portion adjacent to the discharge end of the fixed lap or the swivel lap, thereby minimizing the lap deformation of the discharge end of the central side receiving relatively high back pressure and gas force. It can prevent excessive close contact toward the opposite scroll, which can reduce the friction loss or wear between the scrolls, thereby increasing the compressor efficiency.
  • the compression chamber can be suppressed to increase the efficiency of the compressor and the breakage of the wrap can be suppressed to increase the reliability of the compressor.
  • the stiffness of the wrap adjacent to the discharge end is optimized to reduce friction or wear between the fixed wrap and the scroll.
  • FIG. 1 is a longitudinal sectional view showing a lower compression scroll compressor according to the present invention
  • FIG. 2 is a cross-sectional view showing the compression unit in FIG.
  • FIG. 3 is a front view showing a part of a rotating shaft to explain the sliding part in FIG.
  • Figure 4 is a longitudinal sectional view shown to explain the oil supply passage between the back pressure chamber and the compression chamber in Figure 1,
  • FIG. 5 is a schematic diagram illustrating the deformation amount of the deformation around the discharge end of the first wrap for each part in the scroll compressor according to FIG. 1;
  • FIG. 6 is a schematic view showing the wrap shape at the front of the deformation amount in FIG. 5 from the front;
  • FIG. 9 is a cross-sectional view showing a deformation amount of the discharge end of the wrap having a stiffness coefficient limitation range of the wrap according to the present embodiment.
  • the scroll compressor according to the present invention will be described in detail with reference to the embodiment shown in the accompanying drawings.
  • the compression compressor will be described as a representative example of a scroll compressor having a rotary shaft overlapping with the swing wrap in the lower compression scroll compressor positioned below the electric drive.
  • Scroll compressors of this type are known to be suitable for applications in refrigeration cycles at high temperature and high compression ratio conditions.
  • FIG. 1 is a longitudinal sectional view showing a lower compression scroll compressor according to the present invention
  • Figure 2 is a cross-sectional view showing the compression portion in Figure 1
  • Figure 3 is a front view showing a part of the rotating shaft to explain the sliding portion in Figure 1
  • 4 is a longitudinal cross-sectional view shown to explain the oil supply passage between the back pressure chamber and the compression chamber in FIG.
  • an electric motor 20 that forms a driving motor and generates a rotational force is installed in the casing 10, and is provided below the electric motor 20.
  • a compression unit 30 may be installed to leave a predetermined space (hereinafter, intermediate space) 10a and receive a rotational force of the transmission unit 20 to compress the refrigerant.
  • the casing 10 includes a cylindrical shell 11 forming an airtight container, an upper shell 12 covering an upper part of the cylindrical shell 11 together to form a sealed container, and a lower part of the cylindrical shell 11 covering an airtight container together. At the same time it can be made of a lower shell 13 to form a reservoir 10c.
  • the refrigerant suction pipe 15 penetrates through the side surface of the cylindrical shell 11 and directly communicates with the suction chamber of the compression unit 30, and communicates with the upper space 10b of the casing 10 at the upper portion of the upper shell 12.
  • a refrigerant discharge tube 16 may be installed.
  • the refrigerant discharge tube 16 corresponds to a passage through which the compressed refrigerant discharged from the compression unit 30 to the upper space 10b of the casing 10 is discharged to the outside, and the upper space 10b forms a kind of oil separation space.
  • the refrigerant discharge pipe 16 may be inserted to the middle of the upper space 10b of the casing 10 so as to be formed.
  • an oil separator (not shown) for separating oil mixed in the refrigerant is connected to the refrigerant suction pipe 15 in the inner space or the upper space 10b of the casing 10 including the upper space 10b. Can be.
  • the transmission part 20 consists of the stator 21 and the rotor 22 rotating inside the stator 21.
  • the stator 21 has a plurality of coil windings (unsigned) forming teeth and slots in the circumferential direction thereof, and coils 250 are wound around the stator 21.
  • the second refrigerant path P G2 is formed by joining the gap and the coil winding part. Accordingly, the refrigerant discharged into the intermediate space 10c between the transmission unit 20 and the compression unit 30 through the first refrigerant passage P G1 to be described later is the second refrigerant passage formed in the transmission unit 20 ( It moves to the upper space 10b formed above the transmission part 20 via P G2 ).
  • a plurality of D-cut surfaces 21a are formed on the outer circumferential surface of the stator 21 along the circumferential direction, and the decut surfaces 21a are formed to allow oil to pass between the inner circumferential surfaces of the cylindrical shell 11. 1 oil path (P O1 ) may be formed.
  • P O1 oil path
  • the lower side of the stator 21 may be fixed to the inner circumferential surface of the casing 10, the frame 31 constituting the compression unit 30 at a predetermined interval.
  • the frame 31 may be fixedly coupled to its outer circumferential surface by being shrunk or welded to the inner circumferential surface of the cylindrical shell 11.
  • An annular frame side wall portion (first side wall portion) 311 is formed at the edge of the frame 31, and a plurality of communication grooves 311 b are formed in the outer circumferential surface of the first side wall portion 311 along the circumferential direction. Can be.
  • the communication groove 311b forms a second oil passage P O2 together with the communication groove 322b of the first scroll 32 which will be described later.
  • a first bearing portion 312 for supporting the main bearing portion 51 of the rotating shaft 50 to be described later is formed at the center of the frame 31, and the main bearing portion of the rotating shaft 50 is formed at the first bearing portion.
  • the first bearing hole 312a may be penetrated in the axial direction so that the 51 is rotatably inserted to be supported in the radial direction.
  • a fixed scroll hereinafter referred to as a first scroll
  • a pivoting scroll hereinafter referred to as a second scroll
  • the first scroll 32 may be fixedly coupled to the frame 31, but may also be coupled to be movable in the axial direction.
  • the first scroll 32 has a fixed hard plate portion (hereinafter referred to as a first hard plate portion) 321 having a substantially disc shape, and is coupled to the bottom edge of the frame 31 at the edge of the first hard plate portion 321.
  • a scroll sidewall portion (hereinafter, referred to as a second sidewall portion) 322 may be formed.
  • One side of the second side wall portion 322 is formed through the inlet 324 through which the refrigerant suction pipe 15 communicates with the suction chamber, and the compressed refrigerant is discharged in communication with the discharge chamber in the central portion of the first hard plate portion 321.
  • the discharge holes 325a and 325b may be formed. Although only one discharge port 325a and 325b may be formed so as to communicate with both the first compression chamber V1 and the second compression chamber V2, which will be described later, each of the compression chambers V1 and V2 is independent. Plural dogs may be formed to communicate with each other.
  • a communication groove 322b described above is formed on an outer circumferential surface of the second side wall portion 322, and the communication groove 322b stores oil recovered together with the communication groove 311b of the first side wall portion 311 in a lower space.
  • a second oil channel P O2 for guiding to 10c is formed.
  • a discharge cover 34 for guiding the refrigerant discharged from the compression chamber V to the refrigerant passage may be coupled to the lower side of the first scroll 32.
  • the discharge cover 34 accommodates the discharge holes 325a and 325b, and the refrigerant discharged from the compression chamber V through the discharge holes 325a and 325b, and the upper space of the casing 10. 10b), more precisely, may be formed to accommodate an inlet of the first refrigerant passage P G1 that guides into the space between the transmission part 20 and the compression part 30.
  • the first refrigerant passage (P G1 ) is the second side wall portion 322 of the fixed scroll (32) on the inside of the flow path separation unit 40, that is, the rotation shaft 50 inward with respect to the flow path separation unit 40. And may pass through the first sidewall portion 311 of the frame 31 in order.
  • the second oil passage P O2 described above is formed on the outside of the flow path separation unit 40 so as to communicate with the first oil passage P O1 .
  • a fixing wrap (hereinafter referred to as a first wrap) 323 may be formed on an upper surface of the first hard plate part 321 to form a compression chamber V by engaging with a turning wrap (hereinafter referred to as a second wrap) 332 to be described later. have.
  • the first wrap 323 will be described later together with the second wrap 332.
  • a second bearing portion 326 for supporting the sub bearing portion 52 of the rotating shaft 50 which will be described later, is formed at the center of the first hard plate portion 321, and the second bearing portion 326 is disposed in the axial direction.
  • a second bearing hole 326a may be formed to penetrate and support the sub bearing portion 52 in the radial direction.
  • the second scroll 33 may be formed in the shape of a substantially circular disk portion (hereinafter, the second hard plate portion) 331 331.
  • a second wrap 332 may be formed on a bottom surface of the second hard plate part 331 to form a compression chamber in engagement with the first wrap 322.
  • the second wrap 332 may be formed in an involute shape together with the first wrap 323, but may be formed in various other shapes.
  • the second wrap 332 has a shape in which a plurality of arcs having different diameters and origins are connected to each other, and the outermost curve may be formed in an approximately elliptical shape having a long axis and a short axis. . This may be formed in the first wrap 323 as well.
  • a central shaft portion of the second hard plate portion 331 forms an inner end of the second wrap 332, and the rotation shaft coupling portion 333 to which the eccentric portion 53 of the rotation shaft 50, which will be described later, is rotatably inserted and coupled thereto is a shaft. It can be formed through in the direction.
  • the outer circumferential portion of the rotation shaft coupling portion 333 is connected to the second wrap 332 to serve to form the compression chamber V together with the first wrap 322 in the compression process.
  • the rotation shaft coupling portion 333 is formed at a height overlapping with the second wrap 332 on the same plane, and the height at which the eccentric portion 53 of the rotation shaft 50 overlaps with the second wrap 332 on the same plane. Can be placed in.
  • the repulsive force and the compressive force of the refrigerant are offset to each other while being applied to the same plane with respect to the second hard plate part, thereby preventing the inclination of the second scroll 33 due to the action of the compressive force and the repulsive force.
  • the rotary shaft coupling portion 333 is formed with a recess 335 that is engaged with the protrusion 328 of the first wrap 323, which will be described later, on an outer circumferential portion facing the inner end of the first wrap 323.
  • One side of the concave portion 335 is formed with an increasing portion 335a which increases in thickness from the inner circumference portion to the outer circumference portion of the rotary shaft coupling portion 333 along the forming direction of the compression chamber V. This makes the compression path of the first compression chamber V1 immediately before the discharge long, so that the compression ratio of the first compression chamber V1 can be increased close to the pressure ratio of the second compression chamber V2.
  • the first compression chamber V1 is a compression chamber formed between the inner surface of the first wrap 323 and the outer surface of the second wrap 332, which will be described later separately from the second compression chamber V2.
  • the other side of the recess 335 is formed with an arc compression surface 335b having an arc shape.
  • the diameter of the arc compression surface 335b is determined by the thickness of the inner end of the first wrap 323 (ie, the thickness of the discharge end) and the turning radius of the second wrap 332. Increasing the end thickness increases the diameter of the arc compression surface 335b. As a result, the thickness of the second wrap around the arc compression surface 335b may also be increased to ensure durability, and the compression path may be longer to increase the compression ratio of the second compression chamber V2.
  • a protruding portion 328 protruding toward the outer circumferential side of the rotating shaft engaging portion 333 is formed near the inner end (suction end or starting end) of the first wrap 323 corresponding to the rotating shaft engaging portion 333.
  • a contact portion 328a may be formed at the 328 to protrude from the protrusion and to engage the recess 335. That is, the inner end of the first wrap 323 may be formed to have a larger thickness than other portions. As a result, the wrap strength of the inner end portion that receives the greatest compressive force among the first wraps 323 may be improved, and thus durability may be improved.
  • the compression chamber (V) is formed between the first hard plate portion 321 and the first wrap 323, and the second wrap 332 and the second hard plate portion 331, suction along the advancing direction of the wrap
  • the chamber, the intermediate pressure chamber, and the discharge chamber may be formed continuously.
  • the compression chamber V includes the first compression chamber V1 formed between the inner surface of the first wrap 323 and the outer surface of the second wrap 332 and the first wrap 323.
  • the second compression chamber V2 may be formed between the outer surface and the inner surface of the second wrap 332.
  • the first compression chamber V1 includes a compression chamber formed between two contact points P11 and P12 generated by contact between the inner surface of the first wrap 323 and the outer surface of the second wrap 332.
  • the second compression chamber V2 includes a compression chamber formed between two contact points P21 and P22 formed by the contact between the outer surface of the first wrap 323 and the inner surface of the second wrap 332.
  • the first compression chamber V1 immediately before the discharge has an angle having a larger value among the angles formed by the center of the eccentric portion, that is, the center O of the rotary shaft coupling portion and the two lines connecting the two contact points P11 and P12, respectively.
  • the center of the eccentric portion that is, the center O of the rotary shaft coupling portion and the two lines connecting the two contact points P11 and P12, respectively.
  • the first compression chamber immediately before the discharge has a smaller volume as compared with the case where the fixed wrap and the swiveling wrap formed of the involute curve are used. Therefore, the size of the first wrap 323 and the second wrap 332 is not increased. Both the compression ratio of the first compression chamber V1 and the compression ratio of the second compression chamber V2 can be improved.
  • the second scroll 33 may be rotatably installed between the frame 31 and the fixed scroll (32).
  • An old dam ring 35 is installed between the upper surface of the second scroll 33 and the lower surface of the frame 31 corresponding thereto to prevent rotation of the second scroll 33.
  • Sealing member 36 to form a back pressure chamber (S1) may be installed.
  • an intermediate pressure space is formed on the outside of the sealing member 36 by the oil supply hole 321a provided in the second scroll 32.
  • the intermediate pressure space communicates with the intermediate compression chamber (V) and may serve as a back pressure chamber as the medium pressure refrigerant is filled. Therefore, the back pressure chamber formed inside the center of the sealing member 36 can be called the 1st back pressure chamber S1, and the intermediate pressure space formed outside can be called the 2nd back pressure chamber S2.
  • the back pressure chamber S1 is a space formed by the bottom surface of the frame 31 and the top surface of the second scroll 33 around the sealing member 36. The back pressure chamber S1 will be described later with a sealing member.
  • the flow path separation unit 40 is installed in the intermediate space (10a) which is a transit space formed between the lower surface of the transmission unit 20 and the upper surface of the compression unit 30, the refrigerant discharged from the compression unit 30 It serves to prevent interference with the oil moving from the upper space (10b) of the oil separation space to the lower space (10c) of the compression section 30, the oil storage space.
  • the flow path separation unit 40 separates the first space 10a into a space (hereinafter, a refrigerant flow space) in which a refrigerant flows and a space (hereinafter, an oil flow space) in which oil flows.
  • a space hereinafter, a refrigerant flow space
  • an oil flow space in which oil flows.
  • the flow path guide may separate the first space 10a into a refrigerant flow space and an oil flow space by using only the flow path guide itself.
  • the flow path guide may serve as a flow path guide by combining a plurality of flow path guides.
  • the flow path separating unit includes a first flow path guide 410 provided on the frame 31 and extending upward, and a second flow path guide 420 provided on the stator 21 and extended downward.
  • the first flow guide 410 and the second flow guide 420 overlap in the axial direction so that the intermediate space 10a can be separated into the refrigerant flow space and the oil flow space.
  • the first flow path guide 410 is formed in an annular shape and fixedly coupled to the upper surface of the frame 31, the second flow path guide 420 is inserted into the stator 21 to extend from the insulator to insulate the winding coil Can be.
  • the first flow guide 410 may include a first annular wall portion 411 extending upwardly from the outside, a second annular wall portion 412 extending upwardly from the inside, and a first annular wall portion 411 and a second annular wall portion 412. It consists of an annular surface portion 413 extending radially so as to connect between.
  • the first annular wall portion 411 is formed higher than the second annular wall portion 412, and the refrigerant hole may be formed in the annular surface portion 413 such that the refrigerant hole communicated from the compression part 30 to the intermediate space 10a. Can be.
  • the balance weight 26 is positioned inside the second annular wall portion 412, that is, in the rotation axis direction, and the balance weight 26 is coupled to the rotor 22 or the rotation shaft 50 to rotate. At this time, while the balance weight 26 rotates, the refrigerant can be stirred, but the second circular wall portion 412 prevents the refrigerant from moving toward the balance weight 26, thereby preventing the refrigerant from being stirred by the balance weight 26. It can be suppressed.
  • the second flow path guide 420 may include a first extension part 421 extending downward from the outside of the insulator and a second extension part 422 extending downward from the inside of the insulator.
  • the first extension part 421 is formed to overlap the first annular wall part 411 in the axial direction, and serves to separate the refrigerant flow space and the oil flow space.
  • the second extension part 422 may not be formed as necessary, the second extension part 422 may be formed at a sufficient interval in the radial direction so that the refrigerant may sufficiently flow even if the second extension part 422 does not overlap or overlaps with the second annular wall part 412 in the axial direction. It is preferable to be.
  • the rotating shaft 50 may be coupled to the upper portion of the rotor 22 is pressed in the center while the lower portion is coupled to the compression unit 30 can be radially supported.
  • the rotation shaft 50 transmits the rotational force of the transmission unit 20 to the turning scroll 33 of the compression unit 30.
  • the second scroll 33 which is eccentrically coupled to the rotation shaft 50, rotates about the first scroll 32.
  • a main bearing portion (hereinafter referred to as a first bearing portion) 51 is formed to be inserted into the first bearing hole 312a of the frame 31 and supported radially, and the first bearing portion (
  • a sub bearing part (hereinafter referred to as a second bearing part) 52 may be formed below the 51 to be inserted into the second bearing hole 326a of the first scroll 32 to be radially supported.
  • an eccentric portion 53 may be formed between the first bearing portion 51 and the second bearing portion 52 so as to be inserted into and coupled to the rotation shaft coupling portion 333.
  • the first bearing portion 51 and the second bearing portion 52 are formed coaxially to have the same axial center, and the eccentric portion 53 is formed on the first bearing portion 51 or the second bearing portion 52. It may be formed radially eccentric with respect to.
  • the second bearing portion 52 may be eccentrically formed with respect to the first bearing portion 51.
  • the eccentric portion 53 must have an outer diameter smaller than the outer diameter of the first bearing portion 51 and larger than the outer diameter of the second bearing portion 52 so that the rotary shaft 50 can be formed with the respective bearing holes 312a and 326a. It may be advantageous to couple through the rotating shaft coupling portion 333. However, when the eccentric portion 53 is not formed integrally with the rotation shaft 50 and is formed using a separate bearing, the outer diameter of the second bearing portion 52 is not formed smaller than the outer diameter of the eccentric portion 53. Rotating shaft 50 can be inserted by inserting.
  • an oil supply passage 50a for supplying oil to each bearing part and the eccentric part may be formed along the axial direction in the rotation shaft 50.
  • the oil supply passage 50a is approximately the bottom or middle height of the stator 21 at the lower end of the rotating shaft 50 or the first bearing part 31 as the compression unit 30 is positioned below the transmission unit 20. Grooves can be formed up to a position higher than the top of the.
  • the rotation shaft 50 may be formed to penetrate in the axial direction.
  • an oil feeder 60 for pumping oil filled in the lower space 10c may be coupled to the lower end of the rotation shaft 50, that is, the lower end of the second bearing part 52.
  • the oil feeder 60 is composed of an oil supply pipe 61 inserted into and coupled to the oil supply flow path 50a of the rotation shaft 50 and a blocking member 62 that accommodates the oil supply pipe 61 to block intrusion of foreign substances. Can be.
  • the oil supply pipe 61 may be positioned to penetrate the discharge cover 34 to be immersed in the oil of the lower space 10c.
  • each bearing portion 51, 52 and the eccentric portion 53 of the rotating shaft 50 is connected to the oil supply passage (50a), the sliding portion for supplying oil to each sliding portion
  • the flow path F1 is formed.
  • the sliding part oil supply passage F1 includes a plurality of oil supply holes 511, 521, and 531 passing through the oil supply passage 50a toward the outer circumferential surface of the rotation shaft 50, and each bearing portion 51, 52. And a plurality of oil supply grooves 512 communicating with oil supply holes 511, 521, and 531 on the outer circumferential surface of the eccentric part 53 to lubricate each of the bearing parts 51, 52 and the eccentric part 53 ( 522 and 532.
  • the first bearing part 51 has a first oil supply hole 511 and a first oil supply groove 512
  • the second bearing part 52 has a second oil supply hole 521 and a second oil supply groove ( 522 and the eccentric portion 53 are provided with a third oil supply hole 531 and a third oil supply groove 532, respectively.
  • the first oil supply groove 512, the second oil supply groove 522, and the third oil supply groove 532 are each formed in a long groove shape in the axial direction or the inclined direction.
  • an annular first connecting groove 541 and a second connecting groove, respectively. 542 are formed, respectively.
  • the first connection groove 541 is connected to the lower end of the first oil supply groove 512
  • the second connection groove 542 is connected to the upper end of the second oil supply groove 522.
  • the oil lubricating the second bearing portion 52 through the second oil supply groove 522 and the oil lubricating the eccentric portion 53 through the third oil supply groove 532 are connected to the second connection groove 542. Gather may be introduced into the compression unit 30 through the front end surface of the rotary shaft coupling portion 333 and the first hard plate portion 321.
  • the oil discharged from the compression chamber (V) together with the refrigerant into the upper space (10b) of the casing 10 is separated from the refrigerant in the upper space (10b) of the casing 10, the outer peripheral surface of the transmission portion 20
  • the first oil path P O1 and the second oil channel P O2 formed on the outer circumferential surface of the compression unit 30 are recovered to the lower space 10c.
  • the flow path separation unit 40 is provided between the transmission unit 20 and the compression unit 30, the oil is separated from the refrigerant in the upper space (10b) is moved to the lower space (10c) compression unit 20 Oil is discharged through the different passages ((P O1 ) (P O2 )] [(P G1 ) (P G2 )] without interfering with the refrigerant discharged from the upper space 10b and moving to the upper space 10b.
  • the coolant can move to the upper space 10b.
  • the second scroll 33 is formed with a compression chamber supply passage (F2) for supplying the oil drawn through the oil supply passage (50a) to the compression chamber (V).
  • the compression chamber oil supply passage F2 is connected to the sliding part oil supply passage F1 described above.
  • the compression chamber oil supply passage F2 includes a first oil supply passage 371 communicating with the oil supply passage 50a and a second back pressure chamber S2 constituting an intermediate pressure space, and a second back pressure chamber S2.
  • the second oil supply passage 372 communicates with the intermediate pressure chamber of the compression chamber (V).
  • the compression chamber oil supply passage may be formed so as to communicate directly with the intermediate pressure chamber from the oil supply passage (50a) without passing through the second back pressure chamber (S2).
  • a refrigerant path for communicating the second back pressure chamber S2 and the intermediate pressure chamber V must be separately provided, and the oil is supplied to the old dam ring 35 positioned in the second back pressure chamber S2. Oil passages should be provided separately. This increases the number of passages, which complicates processing. Therefore, in order to reduce the number of passages by unifying the refrigerant passage and the oil passage, the oil supply passage 50a and the second back pressure chamber S2 communicate with each other as in the present embodiment, and the second back pressure chamber S2 is the intermediate pressure chamber. It may be desirable to communicate with (V).
  • the first oil supply passage 371 is formed with a first turning passage portion 371a which is formed in the thickness direction from the lower surface of the second hard plate portion 331 to the middle, and in the first turning passage portion 371a.
  • the second turning passage portion 371b is formed toward the outer circumferential surface of the second hard plate portion 331, and the third turning passage portion penetrates from the second turning passage portion 371b toward the upper surface of the second hard plate portion 331.
  • 371c is formed.
  • the first swing passage part 371a is formed at a position belonging to the first back pressure chamber S1
  • the third swing passage part 371c is formed at a position belonging to the second back pressure chamber S2.
  • the second turning passage part 371b includes a pressure reducing rod 375 to lower the pressure of the oil moving from the first back pressure chamber S1 to the second back pressure chamber S2 through the first oil supply passage 371. ) Is inserted.
  • the cross-sectional area of the second swing passage portion 371b except for the pressure reducing rod 375 is formed to be small in the first swing passage portion 371a or the third swing passage portion 371c and the second swing passage portion 371b.
  • the fourth pivot passage part 371d may be formed from the end of the third pivot passage part 371c toward the outer circumferential surface of the second hard plate part 331. As shown in FIG. 4, the fourth pivot passage part 371d may be formed as a groove in the upper surface of the second hard plate part 331 or may be formed as a hole in the second hard plate part 331.
  • the second oil supply passage 372 has a first fixed passage 372a formed in the thickness direction on the upper surface of the second side wall portion 322, and a second fixed passage in the radial direction from the first fixed passage portion 372a.
  • a portion 372b is formed, and a third fixed passage portion 372c communicating with the intermediate pressure chamber V from the second fixed passage portion 372b is formed.
  • Reference numeral 70 in the figure denotes an accumulator.
  • the lower compression scroll compressor according to the present embodiment as described above is operated as follows.
  • the coolant supplied through the coolant suction pipe 15 from the outside of the casing 10 flows into the compression chamber V, and the coolant flows in the volume of the compression chamber V by the swinging motion of the swing scroll 33. As it decreases, it is compressed and discharged into the inner space of the discharge cover 34 through the discharge holes 325a and 325b.
  • the refrigerant discharged into the internal space of the discharge cover 34 circulates through the internal space of the discharge cover 34 and moves to the space between the frame 31 and the stator 21 after the noise is reduced. Is moved to the upper space of the transmission unit 20 through the gap between the stator 21 and the rotor 22.
  • the coolant is discharged to the outside of the casing 10 through the coolant discharge pipe 16, while the oil is in the inner circumferential surface of the casing 10 and the stator ( 21 is repeated a series of processes to be recovered to the lower space (10c) of the storage space of the casing 10 through the flow path between the inner peripheral surface of the casing 10 and the outer peripheral surface of the compression unit 30.
  • the oil in the lower space (10c) is sucked through the oil supply passage (50a) of the rotating shaft 50, the oil is the oil supply holes 511, 521, 531 and the oil supply grooves (512) (522) 532 to lubricate the first bearing portion 51, the second bearing portion 52, and the eccentric portion 53, respectively.
  • the oil lubricated with the first bearing part 51 through the first oil supply hole 511 and the first oil supply groove 512 is the first connection groove between the first bearing part 51 and the eccentric part 53.
  • the oil flows into the first back pressure chamber S1.
  • This oil almost forms a discharge pressure, and the pressure of the 1st back pressure chamber S1 also forms almost a discharge pressure. Therefore, the center side of the second scroll 33 can be supported in the axial direction by the discharge pressure.
  • the oil in the first back pressure chamber (S1) is moved to the second back pressure chamber (S2) via the first oil supply passage 371 by the pressure difference with the second back pressure chamber (S2).
  • the second turning passage portion 371b constituting the first oil supply passage 371 is provided with a decompression rod 375, and the pressure of the oil directed to the second back pressure chamber S2 is reduced to an intermediate pressure.
  • the oil moving to the second back pressure chamber (intermediate pressure space) S2 supports the edge of the second scroll 33 and the second oil supply passage 372 according to the pressure difference with the intermediate pressure chamber V. It moves to the intermediate pressure chamber (V) through. However, when the pressure in the intermediate pressure chamber V becomes higher than the pressure in the second back pressure chamber S2 during operation of the compressor, the refrigerant flows in the second back pressure chamber S2 through the second oil supply passage 372. Will move to).
  • the second oil supply passage 372 serves as a passage through which the refrigerant and oil cross-move according to the pressure difference between the pressure in the second back pressure chamber S2 and the pressure in the intermediate pressure chamber V.
  • the back pressure chamber is formed on the rear surface of the second scroll, that is, the upper surface of the second scroll so as to prevent the second scroll from being pushed away by the pressure of the compression chamber and away from the first scroll.
  • the back pressure chamber is provided with a sealing member on the lower surface of the frame and the upper surface of the second scroll, so that the first back pressure chamber between the second scroll and the frame, and the second back pressure chamber between the second scroll and the frame and the first scroll, respectively. Is formed.
  • the sealing member has excellent sealing force between the frame and the second scroll and has excellent wear resistance in consideration of friction caused by the pivoting movement of the second scroll.
  • the sealing member is formed of a material and a structure that can be quickly floated even at low pressure because the sealing member is sealed by the pressure in the state inserted into the sealing member insertion groove provided in the second scroll.
  • the first back pressure chamber which is the center of the second scroll
  • the second back pressure chamber which is the edge
  • the intermediate pressure the back pressure at the center of the second scroll, which is the turning scroll
  • the pressure is higher than the back pressure of.
  • the second scroll has a central portion pressed more in the first scroll direction than the edge portion, so that the discharge end of the first wrap located at the central portion of the first scroll is excessively in close contact with the second hard plate portion.
  • the center portion of the first wrap forms a discharge end to receive the discharge pressure
  • the discharge end of the first wrap receives a strong gas force in the edge direction by the discharge pressure.
  • the discharge end of the first wrap receives the force of the central portion of the second scroll in the axial direction by the high back pressure of the first back pressure chamber while being pushed in the radial direction by the gas force of the discharge pressure.
  • the discharging end of the first lap may be bent outward from the root of the lap toward the front end face of the lap, that is, in the height direction of the lap.
  • This phenomenon may occur severely when a second bearing hole through which a rotating shaft penetrates is formed in the center of the first scroll which is a fixed scroll as in the present embodiment. That is, when the second bearing hole is formed in the center of the first scroll, the discharge end of the first wrap, which is the fixed wrap, cannot be formed by extending to the center of the first scroll due to the second bearing hole. This is because the discharging end of is located far from the center of the scroll, and the lap stiffness at the discharging end is reduced by that amount, thereby increasing the lap deformation.
  • FIG. 5 is a schematic view illustrating the deformation amount at the periphery of the discharge end of the first wrap for each part
  • FIG. 6 is a schematic view of the wrap shape at the site where the deformation amount is the greatest in FIG.
  • the deformation amount at the discharge end 323a is the largest, about 0.018 mm to 0.02 mm, and the deformation amount gradually decreases toward the suction end direction at the discharge end 323a. I can see that.
  • the deformation amount of the first hard plate part 321 including the discharge end 323a of the first wrap 323 may be about ⁇ 0.003 mm to ⁇ 0.005 mm. This may be seen that the first hard plate portion 321 is finely deformed by the force in the opposite direction in which the first wrap 323 is deformed.
  • the tip surface around the discharge end 323a is bent toward the edge at the right side, that is, the center of the drawing, while the inner edge 323a1 of the discharge end 323a is the highest point.
  • the tip surface around the discharge end 323a is bent toward the edge at the right side, that is, the center of the drawing, while the inner edge 323a1 of the discharge end 323a is the highest point.
  • the second scroll is pushed in the downward direction of the drawing by the back pressure.
  • the upper surface 321b of the first hard plate portion 321 and the front end surface 332c of the second wrap 332 are back pressured.
  • the distance t1 between the upper surface of the first hard plate portion 321 and the front end surface 332c of the second wrap 332 is the discharge end 323a and the second hard plate portion 331 of the first wrap 323.
  • the gap t2 between the front end surface 323c of the first wrap 323 and the lower surface 331b of the second hard plate portion 331 is removed by the back pressure.
  • the friction loss or wear described above may occur between the upper surface 321b and the front end surface 332c of the second wrap 332, and the vicinity of the discharge end of the first wrap may be broken.
  • the lap stiffness in the vicinity of the discharge end is optimized, so that the lap deformation due to the axial force generated by the back pressure and the radial force generated by the gas force can be minimized. In this way, friction loss or abrasion or wrap breakage between the wrap and the hard plate portion can be suppressed.
  • the first wrap according to the present embodiment may be implemented as the lap stiffness near the discharge end is formed so as to satisfy the optimal limit line range.
  • the stiffness coefficient A near the discharge end of the first lap (hereinafter referred to as lap center) is the average height h of the lap center section to the average thickness t of the lap center section.
  • the second value obtained by dividing the first value and multiplied by the first value multiplied by the average radius of curvature R, which is the distance between the center of the rotation axis with respect to the center portion of the lap (ie, the center of the second axis hole) and the centerline of the first lap.
  • the stiffness coefficient can be defined as the inverse of the second value.
  • the height of the first wrap 323 is formed so that the height of the lap gradually decreases from the suction end to the discharge end, the lap height in the center portion of the lap is formed differently along the direction of the wrap. Therefore, in order to accurately calculate the lap height in the corresponding section (lap center section), it is preferable to obtain and substitute the lap average height as described above. However, because the lap height difference is very small, you can ignore it and generalize it to lap height and substitute it. And this can be substituted by lap curvature radius generalized to lap curvature radius for the same reason. For reference, the radius of curvature of the lap is about 10-20 mm.
  • the height and thickness of the lap may be defined as the average lap height, the average lap thickness, and the average average curvature radius of a predetermined section, but in some cases, at a specific point based on the direction of the lap's progression, It can also be defined by lap height, lap thickness, and lap curvature radius. In general, however, it may be advantageous in terms of processing to define each element based on a certain interval.
  • the interval is 0 to 60 °, more precisely between 0 to 45 °.
  • the stiffness coefficient can also be calculated using the lap average height and lap average thickness.
  • the limit range for the stiffness coefficient A in the corresponding section is about 0.005 or more. That is, when the stiffness coefficient is obtained by referring to Equation (1) above, (h / t) does not exceed approximately 10. In general, when the average height of the lap divided by the average thickness of the lap is 10 or more, the lap stiffness becomes very weak and the lap stiffness is too high compared to the lap thickness, thereby causing lap fracture. Therefore, it is preferable to form (h / t) so that it may become 10 or less. The lowest value does not need to be limited as the stiffness increases as the lap thickness is larger than the lap height.
  • the deformation amount of the lap is 20 ⁇ m
  • the deformation amount of the lap is 31 ⁇ m
  • the deformation amount of the lap is 79 ⁇ m
  • the amount of lap strain is about 67 ⁇ m.
  • the line connecting the model 3 and the model 5 may be defined as a limit line, and the lap stiffness such that the amount of lap deformation falls on the right side can be defined based on the limit line.
  • the slope of the limit line may range from about 0.0001 to 0.0003, and the offset amount may range from 7.0000 to 8.0000. Accordingly, it may be preferable that the stiffness coefficient is formed to be larger than at least [(0.0001 to 0.0003) x lap load (N) + (7.000 to 8.0000) by gas force]]. More precisely, the stiffness coefficient is preferably formed larger than [0.0002 x lap load (N) + 7.5202 by gas force].
  • the range of the stiffness coefficient for optimizing the lap stiffness around the discharge end of the first lap has been described, but this may be applied to other sections of the first lap (or the second lap).
  • the limit line may be interpreted differently in another section of the first lap (or second lap)
  • the stiffness coefficient limit in the section may be defined according to the newly calculated limit line limit.
  • the discharge end of the center side of the first lap 323 (or the second lap) is extended outward. It is possible to suppress the deformation in the radial direction toward the top, thereby suppressing the leakage between the compression chamber (V1) (V2) to increase the compressor efficiency and at the same time suppress the breakage of the discharge end of the wrap to increase the reliability of the compressor. .
  • the wrap at the portion adjacent to the discharge end is performed.
  • the efficiency and reliability of the compressor can be increased by preventing friction, wear or deformation or fracture of the fixed wrap between the first wrap 323 (or the second wrap) and the corresponding second hard plate portion 331. Can be.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

According to the present invention, a scroll compressor comprises: a first scroll including a first end plate part having a shaft receiving hole, through which a rotary shaft passes, formed in the center portion thereof, and having a discharge port formed around the shaft receiving hole, and a first wrap formed to protrude from one surface of the first end plate part; and a second scroll including a second end plate part having a rotary shaft coupling part formed in the center portion thereof such that the rotary shaft passing through the shaft receiving hole of the first scroll is eccentrically coupled thereto, and a second wrap formed to protrude from one surface of the second end plate part, and engaging with the first wrap so as to form a compression chamber with the same, wherein the first wrap is formed such that a limit range of a stiffness modulus, which is defined as a reciprocal obtained by dividing a wrap height by a wrap thickness and multiplying the value by a curvature radius of the first wrap, is 0.005 mm or more so as to restrain the wraps from deforming, thereby preventing friction loss and wear and enabling the breakage of the wraps to be prevented.

Description

스크롤 압축기Scroll compressor
본 발명은 스크롤 압축기에 관한 것으로, 특히 압축부가 전동부 일측에 위치하는 압축기에 관한 것이다.The present invention relates to a scroll compressor, and more particularly to a compressor in which the compression unit is located on one side of the electric drive.
스크롤 압축기는 복수 개의 스크롤에 맞물려 상대 선회운동을 하면서 양쪽 스크롤 사이에 흡입실, 중간압실, 토출실로 된 압축실을 형성하는 압축기이다. 이러한, 스크롤 압축기는 다른 종류의 압축기에 비하여 상대적으로 높은 압축비를 얻을 수 있으면서 냉매의 흡입,압축,토출 행정이 부드럽게 이어져 안정적인 토오크를 얻을 수 있다. 따라서, 스크롤 압축기는 공조장치 등에서 냉매압축용으로 널리 사용되고 있다. 최근에는 편심부하를 낮춰 운전 속도가 180Hz 이상인 고효율 스크롤 압축기가 소개되고 있다. A scroll compressor is a compressor which engages a plurality of scrolls and makes a relative rotational movement and forms a compression chamber consisting of a suction chamber, an intermediate pressure chamber, and a discharge chamber between both scrolls. Such a scroll compressor has a relatively high compression ratio compared to other types of compressors, and smoothly sucks, compresses, and discharges the refrigerant, thereby obtaining stable torque. Therefore, scroll compressors are widely used for refrigerant compression in air conditioners and the like. Recently, high-efficiency scroll compressors with an operating speed of 180 Hz or higher due to eccentric loads have been introduced.
스크롤 압축기는 흡입관이 저압부를 이루는 케이싱의 내부공간에 연통되는 저압식과, 흡입관이 압축실에 직접 연통되는 고압식으로 구분될 수 있다. 이에 따라, 저압식은 구동부가 저압부인 흡입공간에 설치되는 반면, 고압식은 구동부가 고압부인 토출공간에 설치된다.The scroll compressor may be classified into a low pressure type in which a suction pipe communicates with an inner space of a casing forming a low pressure part, and a high pressure type in which a suction pipe directly communicates with a compression chamber. Accordingly, the low pressure type is installed in the suction space in which the drive portion is the low pressure portion, while the high pressure type is installed in the discharge space in which the drive portion is the high pressure portion.
이러한 스크롤 압축기는 구동부와 압축부의 위치에 따라 상부압축식과 하부압축식으로 구분될 수 있는데, 압축부가 구동부보다 상측에 위치하면 상부압축식, 반대로 압축부가 구동부보다 하측에 위치하면 하부압축식이라고 한다.Such a scroll compressor may be classified into an upper compression type and a lower compression type according to the position of the driving unit and the compression unit. If the compression unit is located above the driving unit, the upper compression type is used.
스크롤 압축기에서는 통상 압축실의 압력이 상승하면서 선회스크롤이 고정스크롤로부터 멀어지는 방향으로 가스력을 받게 된다. 그러면 선회스크롤이 고정스크롤로부터 멀어지면서 압축실 간 누설이 발생하여 압축손실이 증가하게 된다. In a scroll compressor, the rotating scroll is subjected to gas force in a direction away from the fixed scroll as the pressure in the compression chamber increases. Then, as the turning scroll is separated from the fixed scroll, leakage between the compression chambers is generated and the compression loss is increased.
이를 감안하여, 스크롤 압축기에서는 고정랩과 선회랩의 선단면에 실링부재를 삽입하는 팁실방식을 적용하거나 또는 선회스크롤이나 고정스크롤의 배면에 중간압 또는 토출압을 이루는 배압실을 형성하여 그 배압실의 압력으로 선회스크롤 또는 고정스크롤을 상대측 스크롤로 가압하는 배압방식을 적용하고 있다. In view of this, the scroll compressor adopts a tip seal method for inserting a sealing member into the front end faces of the fixed wrap and the swing wrap, or forms a back pressure chamber that forms an intermediate pressure or a discharge pressure on the back of the swing scroll or the fixed scroll. Back pressure is applied to press the turning scroll or the fixed scroll by the counter scroll with the pressure of.
특히, 배압방식에서는 선회스크롤의 배면(또는 고정스크롤의 배면)과 이에 대응하는 프레임 사이에 실링부재를 설치하여 그 실링부재의 안쪽 또는 바깥쪽에 배압실이 형성되도록 하는 방식이 알려져 있다. 이러한 실링부재를 이용한 배압방식은 스러스트면을 이루는 한 쪽 부재에 환형홈을 형성하고, 그 환형홈에 사각단면 모양으로 된 환형의 실링부재를 삽입한다. 그러면 압축기의 운전시 압축실에서 압축된 중간압의 냉매가 환형홈으로 유입되고, 이 중간압의 압력에 의해 실링부재가 부상하여 맞은 편 부재에 밀착됨으로써 배압실이 형성되게 된다.In particular, in the back pressure method, a method is provided in which a back pressure chamber is formed inside or outside the sealing member by installing a sealing member between the back surface of the swing scroll (or the back surface of the fixed scroll) and the corresponding frame. In the back pressure method using such a sealing member, an annular groove is formed in one member forming a thrust surface, and an annular sealing member having a rectangular cross-sectional shape is inserted into the annular groove. Then, during operation of the compressor, the medium pressure refrigerant compressed in the compression chamber is introduced into the annular groove, and the back pressure chamber is formed by floating the sealing member by being in close contact with the opposite member by the pressure of the medium pressure.
그러나, 상기와 같은 종래 스크롤 압축기에서는, 고정스크롤의 중심부에 토출구가 형성됨에 따라 고정랩과 선회랩의 중심부가 받는 배압력과 가스력이 가장자리부가 받는 배압력과 가스력보다 크게 되고, 이에 따라 고정랩 또는 선회랩의 중심부는 가장자리부를 향해 휘어지면서 변형되어 고정랩 또는 선회랩이 이에 대면하는 스크롤과의 사이에서 심한 마찰손실이나 마모가 발생하면서 압축기 효율이 저하될 수 있다. However, in the conventional scroll compressor as described above, as the discharge port is formed in the center of the fixed scroll, the back pressure and gas force applied to the center of the fixed wrap and the swing wrap are greater than the back pressure and gas force applied to the edge portion. The central portion of the wrap or swing wrap may be deformed while bending towards the edges, resulting in deterioration of compressor efficiency while severe frictional loss or wear occurs between the scroll or the scroll facing the fixed wrap or swing wrap.
또, 상기와 같은 종래의 스크롤 압축기에서, 회전축이 압축실과 반경방향으로 중첩되는 소위 축관통 스크롤 압축기의 경우에는, 고정스크롤의 중심부에 회전축이 관통되어 결합됨에 따라, 고정랩의 토출단이 회전축에 의해 충분히 고정스크롤의 중심부까지 연장되지 못하게 되고, 이로 인해 고정랩의 토출단에 대한 강성이 약화되어 고정랩이 심하게 휘어지거나 아예 고정랩의 토출단이 파단될 수도 있었다. 더군다나, 한국등록특허 제10-1059880호에 개시된 바와 같이, 고정랩과 선회랩을 비정형성 형상으로 변경하여 압축실의 압축비를 높인 경우에는 고정랩의 토출단이 더욱 심하게 변형되어 파손될 우려가 있었다. 이는, 고정랩의 토출단에 돌기부를 형성하여 랩 지지력을 높인 경우에도 압축비의 증가에 따른 랩 변형을 완전히 억제하지 못하여, 마찰손실이나 마모 또는 랩 파단에 의해 압축기의 신뢰성이 저하될 수 있다.In the conventional scroll compressor as described above, in the case of a so-called shaft through scroll compressor in which the rotating shaft overlaps the compression chamber in the radial direction, as the rotating shaft penetrates through the center of the fixed scroll, the discharge end of the fixed wrap is connected to the rotating shaft. It is not possible to extend sufficiently to the center of the fixed scroll, which causes the rigidity of the discharge end of the fixed wrap is weakened, the fixed wrap may be severely bent or the discharge end of the fixed wrap may be broken at all. Furthermore, as disclosed in Korean Patent Registration No. 10-1059880, when the fixed wrap and the swiveling wrap are changed to an amorphous shape to increase the compression ratio of the compression chamber, the discharge end of the fixed wrap may be more severely deformed and damaged. In this case, even when a protrusion is formed at the discharging end of the fixed wrap to increase the support force of the wrap, the deformation of the wrap due to the increase in the compression ratio is not fully suppressed, and thus the reliability of the compressor may be reduced due to friction loss, wear, or break of the wrap.
또, 상기와 같은 종래의 스크롤 압축기에서는, 일본공개특허 공개번호 제2000-257573호에 개시된 바와 같이 랩의 형상 변경을 통해 랩(특히, 고정랩)의 변형이나 파단을 억제하고 있다. 하지만, 이와 같이 랩의 뿌리를 두껍게 형성하는 경우에는 마주보는 스크롤의 랩 선단에도 동일한 홈을 형성하여야 그만큼 랩의 제조공정도 복잡하게 될 뿐만 아니라, 랩의 중간에서 랩 선단까지는 랩 두께가 얇아져 결국 랩의 변형이나 파단 문제는 해결되지 못하는 한계가 있었다. In the conventional scroll compressor as described above, as described in Japanese Laid-Open Patent Publication No. 2000-257573, deformation and breaking of the wrap (especially the fixed wrap) are suppressed by changing the shape of the wrap. However, in the case of forming the root of the lap thickly, the same groove must be formed in the lap end of the facing scroll to complicate the manufacturing process of the lap, and the lap thickness becomes thinner from the middle of the lap to the end of the lap. The deformation or fracture problem of the was not solved.
또, 이를 감안하여, 랩 두께를 전체적으로 두껍게 형성하는 경우에는 그만큼 선회반경을 확보하기 위해 스크롤의 크기를 증가시켜 압축기가 커지게 되거나 반대로 선회반경이 감소하여 압축실의 체적이 감소하게 될 수 있었다. 이는 랩의 강성에 대한 구체적인 고려 없이 랩 형상을 임의로 변경함에 따라 발생한 것으로 볼 수 있다.In addition, in consideration of this, in the case where the overall thickness of the lap is formed to increase the size of the scroll to increase the size of the scroll by increasing the size of the compressor, or on the contrary, the size of the compression chamber could be reduced by reducing the size of the turning radius. This may be seen as a result of arbitrarily changing the shape of the wrap without considering the rigidity of the wrap.
본 발명의 목적은, 랩의 토출단 강성을 최적화하여 랩의 토출단이 마주보는 스크롤의 경판부에 과도하게 밀착되면서 마찰손실 또는 마모가 발생하는 것을 방지할 수 있는 스크롤 압축기를 제공하려는데 있다.SUMMARY OF THE INVENTION An object of the present invention is to provide a scroll compressor that can prevent friction loss or abrasion while being excessively in close contact with the hard plate portion of the scroll facing the discharge end of the wrap by optimizing the discharge end rigidity of the wrap.
또, 본 발명의 다른 목적은, 랩의 토출단 강성을 최적화하여 랩의 토출단 부근이 과도하게 변형되면서 파단되는 것을 억제할 수 있는 스크롤 압축기를 제공하려는데 있다.Another object of the present invention is to provide a scroll compressor capable of optimizing the discharge end stiffness of the lap to suppress the break while the vicinity of the discharge end of the lap is excessively deformed.
또, 본 발명의 다른 목적은, 회전축이 고정스크롤을 관통하여 압축실과 반경방향으로 중첩되는 경우에도 고정랩의 토출단 강성을 최적화하여 그 고정랩의 토출단이 과도하게 변형되거나 파단되는 것을 방지할 수 있고, 이를 통해 압축기의 효율과 신뢰성을 높일 수 있는 스크롤 압축기를 제공하려는데 있다.Another object of the present invention is to optimize the discharge end rigidity of the fixed wrap even when the rotating shaft penetrates the fixed scroll in a radial direction with the compression chamber to prevent the discharge end of the fixed wrap from being excessively deformed or broken. In addition, through this it is to provide a scroll compressor that can increase the efficiency and reliability of the compressor.
본 발명의 목적을 달성하기 위하여, 상호 미끄럼운동을 하는 두 부재중에서 어느 한 쪽 부재에 형성된 랩의 토출측 강성을 최적화하여 랩이 과도하게 변형되거나 파단되는 것을 방지할 수 있는 스크롤 압축기가 제공될 수 있다.In order to achieve the object of the present invention, there can be provided a scroll compressor that can prevent the wrap from being excessively deformed or broken by optimizing the discharge-side rigidity of the wrap formed on either of the two members that are mutually sliding. .
여기서, 상기 랩의 강성은 랩의 높이와 두께 그리고 곡률반경을 기초로 정의되는 강성계수의 범위를 한정할 수 있다.Here, the stiffness of the lap may define a range of stiffness coefficients defined based on the height and thickness of the lap and the radius of curvature.
그리고, 상기 강성계수는 랩의 기울기×가스력에 의한 랩 하중+옵션값에 의해 결정될 수 있다.In addition, the stiffness coefficient may be determined by the lap load + option value due to the slope of the lap x the gas force.
또, 본 발명의 목적을 달성하기 위하여, 중심부에는 토출단을, 가장자리부에는 흡입단을 각각 가지며, 상기 토출단에서 흡입단까지 복수 개의 곡선이 연결되어 형성되는 제1 랩; 및 중심부에는 토출단을, 가장자리부에는 흡입단을 각각 가지며, 상기 토출단에서 흡입단까지 복수 개의 곡선이 연결되어 형성되고, 상기 토출단에는 회전축이 상기 제1 랩과 중첩되어 결합되도록 회전축 결합부가 형성되며, 상기 제1 랩에 맞물려 상기 제1 랩에 대해 선회운동을 하면서 그 제1 랩과 함께 중심부를 향해 이동하는 압축실을 형성하는 제2 랩;을 포함하고, 상기 제1 랩과 제2 랩 중에서 적어도 어느 한쪽 랩의 특정 구간은 그 특정 구간에서의 랩 평균높이를 랩 평균두께로 나눠 제1 값을 구하고, 상기 제1 값에 상기 랩의 평균 곡률반경을 곱하여 제2 값을 구하며, 그 제2 값에 대한 역수로 정의되는 강성계수를 이용하여 형성되는 것을 특징으로 하는 스크롤 압축기가 제공될 수 있다.In addition, in order to achieve the object of the present invention, the first wrap having a discharge end in the center, and the suction end at the edge, each of which is formed by connecting a plurality of curves from the discharge end to the suction end; And a discharge end at the center and a suction end at the edge, and a plurality of curves are formed to be connected from the discharge end to the suction end, and the rotary shaft coupling part is coupled to the discharge end so that the rotating shaft overlaps with the first wrap. And a second lap formed in engagement with the first lap and pivoting with respect to the first lap to form a compression chamber moving toward the center with the first lap. A specific section of at least one lap of the laps obtains a first value by dividing the lap average height in the specific section by the lap average thickness, and multiplies the first value by the average radius of curvature of the lap to obtain a second value. A scroll compressor can be provided that is formed using a stiffness coefficient defined as the inverse of the second value.
여기서, 상기 강성계수의 제한범위가 [(0.0001~0.0003)×랩 하중(N)+(7.0000 ~ 8.0000)]으로 정의되는 한계선 제한범위 이상이 되도록 형성될 수 있다.In this case, the limiting range of the stiffness coefficient may be formed to be equal to or larger than the limiting limit defined by [(0.0001 to 0.0003) × lap load (N) + (7.0000 to 8.0000)].
그리고, 상기 한계선 제한범위는 [0.0002×랩 하중(N)+7.5202]으로 정의될 수 있다.The limit line limiting range may be defined as [0.0002 × lap load (N) +7.5202].
그리고, 상기 회전축의 회전각을 기준으로 상기 제1 랩의 중심부측을 토출단이라고 하고, 그 토출단을 0°라고 할 때, 상기 특정 구간은 상기 회전축의 회전각을 기준으로 0 ~ 45°범위일 수 있다.In addition, when the central end of the first lap is called the discharge end and the discharge end is 0 ° based on the rotation angle of the rotation shaft, the specific section is in a range of 0 to 45 ° based on the rotation angle of the rotation shaft. Can be.
그리고, 상기 회전축 결합부의 일측에는 원호압축면이 형성되고, 상기 원호압축면과 상기 회전축 결합부의 외측면 사이의 구간에는 상기 제2 랩의 두께가 감소하는 오목부가 형성되며, 상기 제1 랩의 토출단 부근의 구간에는 상기 제2 랩의 오목부와 맞물리도록 돌기부가 형성되고, 상기 돌기부가 형성되는 구간의 적어도 일부는 상기 강성계수의 범위를 만족하도록 형성될 수 있다.In addition, an arc compression surface is formed on one side of the rotation shaft coupling portion, and a recess is formed in the section between the arc compression surface and the outer surface of the rotation shaft coupling portion to reduce the thickness of the second wrap, and discharge of the first wrap In a section near the end, a protrusion may be formed to engage the recess of the second wrap, and at least a portion of the section in which the protrusion is formed may be formed to satisfy the range of the stiffness coefficient.
또, 본 발명의 목적을 달성하기 위하여, 중심부에 회전축이 관통되는 축수구멍이 형성되고 상기 축수구멍의 주변에 토출구가 형성되는 제1 경판부, 상기 제1 경판부의 일측면에 돌출 형성되는 제1 랩을 포함하는 제1 스크롤; 및 중심부에 상기 제1 스크롤의 축수구멍을 관통하는 회전축이 편심지게 결합되도록 회전축 결합부가 형성되는 제2 경판부, 상기 제2 경판부의 일측면에 돌출 형성되며 상기 제1 랩에 맞물려 함께 압축실을 형성하는 제2 랩을 포함하는 제2 스크롤;을 포함하고, 상기 제1 랩은 랩 높이를 랩 두께로 나누고, 그 값에 상기 제1 랩의 곡률반경을 곱한 역수로 정의되는 강성계수의 제한범위가 0.005mm 이상이 되도록 형성되는 것을 특징으로 하는 스크롤 압축기가 제공될 수 있다.In addition, in order to achieve the object of the present invention, the first hard plate portion is formed in the center of the bearing shaft through which the rotating shaft penetrates, the discharge port is formed in the periphery of the bearing hole, the first protrusion formed on one side surface of the first hard plate portion A first scroll comprising a wrap; And a second hard plate portion having a rotary shaft coupling portion formed therein so as to be eccentrically coupled to the rotary shaft penetrating through the bearing hole of the first scroll in a central portion thereof, and protruding from one side of the second hard plate portion and engaged with the first wrap to form a compression chamber. A second scroll comprising a second lap to form; wherein the first lap comprises: a lap stiffness divided by lap thickness, the value of which is defined as the inverse of the product of the first lap multiplied by the radius of curvature The scroll compressor may be provided so as to be formed to be 0.005 mm or more.
여기서, 상기 강성계수 제한범위는 상기 제1 랩에서 랩의 진행방향을 따라 임의의 두 지점 사이의 구간에 대해 정의되며, 상기 랩 높이, 랩 두께, 랩 곡률반경은 해당 구간의 평균 랩 높이, 평균 랩 두께, 평균 랩 곡률반경으로 정의될 수 있다.Herein, the stiffness coefficient limiting range is defined for a section between any two points along the advancing direction of the lap in the first lap, and the lap height, the lap thickness, and the lap curvature radius are the average lap height and average of the corresponding lap. Lap thickness, average lap curvature radius can be defined.
그리고, 상기 강성계수 제한범위는 상기 제1 랩에서 어느 한 지점에 대해 정의되며, 상기 랩 높이, 랩 두께, 랩 곡률반경은 해당 지점의 랩 높이, 랩 두께, 랩 곡률반경으로 정의될 수 있다.The stiffness coefficient limiting range is defined for any one point in the first lap, and the lap height, lap thickness, and lap curvature radius may be defined as a lap height, a lap thickness, and a lap curvature radius of the corresponding lap.
그리고, 상기 제1 랩에서 상기 토출구에 인접한 쪽의 단부에서 어느 한 지점까지의 구간 또는 상기 구간의 어느 한 지점에서는 상기 강성계수의 제한범위가 [(0.0001~0.0003)×랩 하중(N)+(7.0000 ~ 8.0000)]으로 정의되는 한계선 제한범위 이상으로 형성될 수 있다.In addition, in the section from the end of the first lap to the point adjacent to the discharge port or at any point of the section, the limit range of the stiffness coefficient is [(0.0001 to 0.0003) × lap load (N) + ( 7.0000 to 8.0000)].
또, 본 발명의 목적을 달성하기 위하여, 내부공간에 오일이 저장되는 케이싱; 상기 케이싱의 내부공간에 구비되는 구동모터; 상기 구동모터에 결합되는 회전축; 상기 구동모터의 하측에 구비되는 프레임; 상기 프레임의 하측에 구비되고 일측면에 제1 랩이 형성되며, 중심부에 상기 회전축이 관통되는 축수구멍이 형성되고, 상기 축수구멍의 주변에 토출구가 형성되는 제1 스크롤; 및 상기 제1 랩과 맞물리는 제2 랩이 형성되고, 상기 회전축이 상기 제2 랩과 반경방향으로 중첩되도록 편심 결합되며, 상기 제1 스크롤에 대해 선회운동을 하면서 그 제1 스크롤과의 사이에 압축실을 형성하는 제2 스크롤; 상기 프레임과 제2 스크롤 사이에 구비되어 그 프레임과 제2 스크롤 사이의 간격을 중심부측인 내측 간격과 가장자리측인 외측 간격으로 분리하며, 상기 회전축을 통해 흡상되는 오일이 상기 내측 간격으로 유입되어 배압실을 형성하도록 하는 실링부재;를 포함하고, 상기 제1 랩은 상기 토출구에 인접한 쪽의 단부에서 제1 지점까지는 평균 랩 높이를 평균 랩 두께로 나누고, 이 값에 평균 랩 곡률반경을 곱한 값의 역수에 임의의 값 1000mm를 곱해서 정의되는 강성계수 제한범위가 5 이상이 되도록 형성되는 것을 특징으로 하는 스크롤 압축기가 제공될 수 있다.In addition, in order to achieve the object of the present invention, the casing in which the oil is stored in the inner space; A drive motor provided in the inner space of the casing; A rotating shaft coupled to the drive motor; A frame provided below the drive motor; A first scroll provided at a lower side of the frame and having a first wrap formed at one side thereof, a bearing hole through which the rotating shaft penetrates at a central portion thereof, and a discharge hole formed at a periphery of the bearing hole; And a second lap engaging with the first lap, the rotation axis being eccentrically coupled so as to radially overlap the second lap, between the first scroll and the first lap while pivoting with respect to the first scroll. A second scroll forming a compression chamber; It is provided between the frame and the second scroll and separates the interval between the frame and the second scroll into an inner interval on the central side and an outer interval on the edge side, oil sucked through the rotating shaft flows into the inner interval and back pressure And a sealing member configured to form a seal, wherein the first wrap is obtained by dividing the average wrap height by the average wrap thickness from the end of the side adjacent to the discharge port to the first point, and multiplying this value by the average wrap curvature radius. A scroll compressor can be provided which is formed such that the stiffness coefficient limit defined by multiplying the inverse by an arbitrary value of 1000 mm is 5 or more.
여기서, 상기 강성계수의 제한범위가 [(0.0001~0.0003)×랩 하중(N)+(7.0000 ~ 8.0000)]으로 정의되는 한계선 제한범위 이상이 되도록 형성될 수 있다.In this case, the limiting range of the stiffness coefficient may be formed to be equal to or larger than the limiting limit defined by [(0.0001 to 0.0003) × lap load (N) + (7.0000 to 8.0000)].
그리고, 상기 한계선 제한범위는 [0.0002×랩 하중(N)+7.5202]으로 정의될 수 있다.The limit line limiting range may be defined as [0.0002 × lap load (N) +7.5202].
그리고, 상기 회전축의 회전각을 기준으로 상기 제1 랩의 중심부측을 토출단이라고 하고, 그 토출단을 0°라고 할 때, 상기 제1 지점은 상기 회전축의 회전각을 기준으로 0 ~ 60°범위 이내의 어느 한 지점일 수 있다.The central point of the first lap is referred to as an ejection end based on the rotation angle of the rotation shaft, and when the discharge end is referred to as 0 °, the first point is 0 to 60 ° based on the rotation angle of the rotation shaft. It may be any point within the range.
그리고, 상기 회전축 결합부의 일측에는 원호압축면이 형성되고, 상기 원호압축면과 상기 회전축 결합부의 외측면 사이의 구간에는 상기 제2 랩의 두께가 감소하는 오목부가 형성되며, 상기 제1 랩의 토출단 부근의 구간에는 상기 제2 랩의 오목부와 맞물리도록 돌기부가 형성되고, 상기 돌기부가 형성되는 구간의 적어도 일부는 상기 강성계수의 제한범위를 만족하도록 형성될 수 있다.In addition, an arc compression surface is formed on one side of the rotation shaft coupling portion, and a recess is formed in the section between the arc compression surface and the outer surface of the rotation shaft coupling portion to reduce the thickness of the second wrap, and discharge of the first wrap A protruding portion may be formed in the section near the end to engage with the concave portion of the second wrap, and at least a part of the section in which the protruding portion is formed may be formed to satisfy a limit range of the stiffness coefficient.
본 발명에 의한 스크롤 압축기는, 고정랩 또는 선회랩의 토출단에 인접한 부분의 랩 강성을 최적화하여 형성함으로써, 상대적으로 높은 배압력과 가스력을 받는 중심부측 토출단의 랩 변형을 최소화하여 랩이 마주보는 스크롤을 향해 과도하게 밀착되는 것을 방지할 수 있고, 이를 통해 스크롤 사이의 마찰손실이나 마모를 줄여 압축기 효율을 높일 수 있다.The scroll compressor according to the present invention is formed by optimizing the stiffness of the portion adjacent to the discharge end of the fixed lap or the swivel lap, thereby minimizing the lap deformation of the discharge end of the central side receiving relatively high back pressure and gas force. It can prevent excessive close contact toward the opposite scroll, which can reduce the friction loss or wear between the scrolls, thereby increasing the compressor efficiency.
또, 고정랩 또는 선회랩의 토출단에 인접한 부분의 랩 강성을 최적화하여 형성함으로써, 고정랩 또는 선회랩의 중심부측 토출단이 바깥쪽을 향해 반경방향으로 휘어져 변형되는 것을 억제할 수 있고, 이를 통해 압축실 누설을 억제하여 압축기 효율을 높이는 동시에 랩의 파단을 억제하여 압축기의 신뢰성을 높일 수 있다.In addition, by optimizing the stiffness of the portion adjacent to the discharge end of the fixed wrap or the swivel wrap, it is possible to suppress the deformation of the discharge end of the center side of the fixed wrap or the swivel wrap in the radial direction outward, Through this, the compression chamber can be suppressed to increase the efficiency of the compressor and the breakage of the wrap can be suppressed to increase the reliability of the compressor.
또, 고정스크롤의 중심부를 회전축이 관통하여 고정랩의 토출단이 고정스크롤의 중심에서 멀리 위치하는 경우에도 토출단에 인접한 부분에서의 랩 강성을 최적화함으로써, 고정랩과 스크롤 사이의 마찰이나 마모 또는 고정랩의 변형이나 파단을 방지하여 압축기의 효율과 신뢰성을 높일 수 있다.In addition, even when the rotating shaft penetrates the center of the fixed scroll so that the discharge end of the fixed wrap is located away from the center of the fixed scroll, the stiffness of the wrap adjacent to the discharge end is optimized to reduce friction or wear between the fixed wrap and the scroll. By preventing deformation or breakage of the fixed wrap, the efficiency and reliability of the compressor can be improved.
도 1은 본 발명에 의한 하부 압축식 스크롤 압축기를 보인 종단면도,1 is a longitudinal sectional view showing a lower compression scroll compressor according to the present invention;
도 2는 도 1에서 압축부를 보인 횡단면도, 2 is a cross-sectional view showing the compression unit in FIG.
도 3은 도 1에서 습동부를 설명하기 위해 회전축의 일부를 보인 정면도,3 is a front view showing a part of a rotating shaft to explain the sliding part in FIG.
도 4는 도 1에서 배압실과 압축실 사이의 급유통로를 설명하기 위해 보인 종단면도,Figure 4 is a longitudinal sectional view shown to explain the oil supply passage between the back pressure chamber and the compression chamber in Figure 1,
도 5는 도 1에 따른 스크롤 압축기에서, 제1 랩의 토출단 주변에서의 변형량을 부위별로 해석하여 보인 모식도,FIG. 5 is a schematic diagram illustrating the deformation amount of the deformation around the discharge end of the first wrap for each part in the scroll compressor according to FIG. 1;
도 6은 도 5에서 변형량이 가장 큰 부위에서의 랩 형상을 정면에서 보인 개략도,6 is a schematic view showing the wrap shape at the front of the deformation amount in FIG. 5 from the front;
도 7은 본 실시예에 따른 랩의 토출단에 대한 규격을 설명하기 위해 보인 개략도,7 is a schematic view for explaining the standard for the discharge end of the wrap according to this embodiment,
도 8은 제1 랩에 대한 다양한 규격과 운전속도에 따른 랩 변형량을 해석한 그래프8 is a graph analyzing the amount of deformation of the lap according to various standards and operating speeds for the first lap;
도 9는 본 실시예에 따른 랩의 강성계수 제한범위를 가진 랩의 토출단에 대한 변형량을 종래와 비교하여 보인 단면도.9 is a cross-sectional view showing a deformation amount of the discharge end of the wrap having a stiffness coefficient limitation range of the wrap according to the present embodiment.
이하, 본 발명에 의한 스크롤 압축기를 첨부도면에 도시된 일실시예에 의거하여 상세하게 설명한다. 다만, 이하에서는 편의상 압축부가 전동부보다 하측에 위치하는 하부 압축식 스크롤 압축기에서 회전축이 선회랩과 동일 평면상에서 중첩되는 유형의 스크롤 압축기를 대표예로 삼아 살펴본다. 이러한 유형의 스크롤 압축기는 고온 고압축비 조건의 냉동사이클에 적용하기에 적합한 것으로 알려져 있다.Hereinafter, the scroll compressor according to the present invention will be described in detail with reference to the embodiment shown in the accompanying drawings. However, hereinafter, for convenience, the compression compressor will be described as a representative example of a scroll compressor having a rotary shaft overlapping with the swing wrap in the lower compression scroll compressor positioned below the electric drive. Scroll compressors of this type are known to be suitable for applications in refrigeration cycles at high temperature and high compression ratio conditions.
도 1은 본 발명에 의한 하부 압축식 스크롤 압축기를 보인 종단면도이고, 도 2는 도 1에서 압축부를 보인 횡단면도이며, 도 3은 도 1에서 습동부를 설명하기 위해 회전축의 일부를 보인 정면도이고, 도 4는 도 1에서 배압실과 압축실 사이의 급유통로를 설명하기 위해 보인 종단면도이다.1 is a longitudinal sectional view showing a lower compression scroll compressor according to the present invention, Figure 2 is a cross-sectional view showing the compression portion in Figure 1, Figure 3 is a front view showing a part of the rotating shaft to explain the sliding portion in Figure 1, 4 is a longitudinal cross-sectional view shown to explain the oil supply passage between the back pressure chamber and the compression chamber in FIG.
도 1을 참조하면, 본 실시예에 의한 하부 압축식 스크롤 압축기는, 케이싱(10)의 내부에 구동모터를 이루며 회전력을 발생하는 전동부(20)가 설치되고, 전동부(20)의 하측에는 소정의 공간(이하, 중간공간)(10a)을 두고 그 전동부(20)의 회전력을 전달받아 냉매를 압축하는 압축부(30)가 설치될 수 있다. Referring to FIG. 1, in the lower compression scroll compressor according to the present embodiment, an electric motor 20 that forms a driving motor and generates a rotational force is installed in the casing 10, and is provided below the electric motor 20. A compression unit 30 may be installed to leave a predetermined space (hereinafter, intermediate space) 10a and receive a rotational force of the transmission unit 20 to compress the refrigerant.
케이싱(10)은 밀폐용기를 이루는 원통 쉘(11)과, 원통 쉘(11)의 상부를 덮어 함께 밀폐용기를 이루는 상부 쉘(12)과, 원통 쉘(11)의 하부를 덮어 함께 밀폐용기를 이루는 동시에 저유공간(10c)을 형성하는 하부 쉘(13)로 이루어질 수 있다.The casing 10 includes a cylindrical shell 11 forming an airtight container, an upper shell 12 covering an upper part of the cylindrical shell 11 together to form a sealed container, and a lower part of the cylindrical shell 11 covering an airtight container together. At the same time it can be made of a lower shell 13 to form a reservoir 10c.
원통 쉘(11)의 측면으로 냉매 흡입관(15)이 관통하여 압축부(30)의 흡입실에 직접 연통되고, 상부 쉘(12)의 상부에는 케이싱(10)의 상측공간(10b)과 연통되는 냉매 토출관(16)이 설치될 수 있다. 냉매 토출관(16)은 압축부(30)에서 케이싱(10)의 상측공간(10b)으로 토출되는 압축된 냉매가 외부로 배출되는 통로에 해당되며, 상측공간(10b)이 일종의 유분리 공간을 형성할 수 있도록 냉매 토출관(16)이 케이싱(10)의 상측공간(10b) 중간까지 삽입될 수 있다. 그리고 경우에 따라서는 냉매에 혼입된 오일을 분리하는 오일 세퍼레이터(미도시)가 상측공간(10b)을 포함한 케이싱(10)의 내부 또는 상측공간(10b) 내에서 냉매 흡입관(15)에 연결하여 설치될 수 있다. The refrigerant suction pipe 15 penetrates through the side surface of the cylindrical shell 11 and directly communicates with the suction chamber of the compression unit 30, and communicates with the upper space 10b of the casing 10 at the upper portion of the upper shell 12. A refrigerant discharge tube 16 may be installed. The refrigerant discharge tube 16 corresponds to a passage through which the compressed refrigerant discharged from the compression unit 30 to the upper space 10b of the casing 10 is discharged to the outside, and the upper space 10b forms a kind of oil separation space. The refrigerant discharge pipe 16 may be inserted to the middle of the upper space 10b of the casing 10 so as to be formed. In some cases, an oil separator (not shown) for separating oil mixed in the refrigerant is connected to the refrigerant suction pipe 15 in the inner space or the upper space 10b of the casing 10 including the upper space 10b. Can be.
전동부(20)는 고정자(21)와 그 고정자(21)의 안쪽에서 회전하는 회전자(22)로 이루어진다. 고정자(21)는 그 내주면에 원주방향을 따라 다수 개의 코일권선부(미부호)를 이루는 티스와 슬롯이 형성되어 코일(250)이 권선되며, 고정자의 내주면과 회전자(22)의 외주면 사이의 간격과 코일권선부를 합쳐 제2 냉매유로(PG2)가 형성된다. 이로써, 후술할 제1 냉매유로(PG1)를 통해 전동부(20)와 압축부(30) 사이의 중간공간(10c)으로 토출되는 냉매는 전동부(20)에 형성되는 제2 냉매유로(PG2)를 통해 그 전동부(20)의 상측에 형성되는 상측공간(10b)으로 이동하게 된다.The transmission part 20 consists of the stator 21 and the rotor 22 rotating inside the stator 21. The stator 21 has a plurality of coil windings (unsigned) forming teeth and slots in the circumferential direction thereof, and coils 250 are wound around the stator 21. The second refrigerant path P G2 is formed by joining the gap and the coil winding part. Accordingly, the refrigerant discharged into the intermediate space 10c between the transmission unit 20 and the compression unit 30 through the first refrigerant passage P G1 to be described later is the second refrigerant passage formed in the transmission unit 20 ( It moves to the upper space 10b formed above the transmission part 20 via P G2 ).
그리고 고정자(21)의 외주면에는 원주방향을 따라 다수 개의 디컷(D-cut)면(21a)이 형성되며, 디컷면(21a)은 원통 쉘(11)의 내주면과의 사이에 오일이 통과하도록 제1 오일유로(PO1)가 형성될 수 있다. 이로써, 상측공간(10b)에서 냉매로부터 분리된 오일은 제1 오일유로(PO1)와 후술할 제2 오일유로(PO2)를 통해 하측공간(10c)으로 이동하게 된다.In addition, a plurality of D-cut surfaces 21a are formed on the outer circumferential surface of the stator 21 along the circumferential direction, and the decut surfaces 21a are formed to allow oil to pass between the inner circumferential surfaces of the cylindrical shell 11. 1 oil path (P O1 ) may be formed. Thus, the oil separated from the refrigerant in the upper space 10b is moved to the lower space 10c through the first oil passage P O1 and the second oil passage P O2 to be described later.
고정자(21)의 하측에는 소정의 간격을 두고 압축부(30)를 이루는 프레임(31)이 케이싱(10)의 내주면에 고정 결합될 수 있다. 프레임(31)은 그 외주면이 원통 쉘(11)의 내주면에 열박음되거나 용접되어 고정 결합될 수 있다. The lower side of the stator 21 may be fixed to the inner circumferential surface of the casing 10, the frame 31 constituting the compression unit 30 at a predetermined interval. The frame 31 may be fixedly coupled to its outer circumferential surface by being shrunk or welded to the inner circumferential surface of the cylindrical shell 11.
그리고 프레임(31)의 가장자리에는 환형으로 된 프레임 측벽부(제1 측벽부)(311)가 형성되고, 제1 측벽부(311)의 외주면에는 원주방향을 따라 복수 개의 연통홈(311b)이 형성될 수 있다. 이 연통홈(311b)은 후술할 제1 스크롤(32)의 연통홈(322b)과 함께 제2 오일유로(PO2)를 형성하게 된다. An annular frame side wall portion (first side wall portion) 311 is formed at the edge of the frame 31, and a plurality of communication grooves 311 b are formed in the outer circumferential surface of the first side wall portion 311 along the circumferential direction. Can be. The communication groove 311b forms a second oil passage P O2 together with the communication groove 322b of the first scroll 32 which will be described later.
또, 프레임(31)의 중심에는 후술할 회전축(50)의 메인 베어링부(51)를 지지하기 위한 제1 축수부(312)가 형성되고, 제1 축수부에는 회전축(50)의 메인 베어링부(51)가 회전 가능하게 삽입되어 반경방향으로 지지되도록 제1 축수구멍(312a)이 축방향으로 관통 형성될 수 있다. In addition, a first bearing portion 312 for supporting the main bearing portion 51 of the rotating shaft 50 to be described later is formed at the center of the frame 31, and the main bearing portion of the rotating shaft 50 is formed at the first bearing portion. The first bearing hole 312a may be penetrated in the axial direction so that the 51 is rotatably inserted to be supported in the radial direction.
그리고 프레임(31)의 하면에는 회전축(50)에 편심 결합된 선회스크롤(이하, 제2 스크롤)(33)을 사이에 두고 고정스크롤(이하, 제1 스크롤)(32)이 설치될 수 있다. 제1 스크롤(32)은 프레임(31)에 고정 결합될 수도 있지만, 축방향으로 이동 가능하게 결합될 수도 있다. In addition, a fixed scroll (hereinafter referred to as a first scroll) 32 may be installed on a lower surface of the frame 31 with a pivoting scroll (hereinafter referred to as a second scroll) 33 eccentrically coupled to the rotation shaft 50. The first scroll 32 may be fixedly coupled to the frame 31, but may also be coupled to be movable in the axial direction.
한편, 제1 스크롤(32)은 고정 경판부(이하, 제1 경판부)(321)가 대략 원판모양으로 형성되고, 제1 경판부(321)의 가장자리에는 프레임(31)의 하면 가장자리에 결합되는 스크롤 측벽부(이하, 제2 측벽부)(322)가 형성될 수 있다. Meanwhile, the first scroll 32 has a fixed hard plate portion (hereinafter referred to as a first hard plate portion) 321 having a substantially disc shape, and is coupled to the bottom edge of the frame 31 at the edge of the first hard plate portion 321. A scroll sidewall portion (hereinafter, referred to as a second sidewall portion) 322 may be formed.
제2 측벽부(322)의 일측에는 냉매 흡입관(15)과 흡입실이 연통되는 흡입구(324)가 관통 형성되고, 제1 경판부(321)의 중앙부에는 토출실과 연통되어 압축된 냉매가 토출되는 토출구(325a)(325b)가 형성될 수 있다. 토출구(325a)(325b)는 후술할 제1 압축실(V1)과 제2 압축실(V2)에 모두 연통될 수 있도록 한 개만 형성될 수도 있지만, 각각의 압축실(V1)(V2)과 독립적으로 연통될 수 있도록 복수 개가 형성될 수도 있다. One side of the second side wall portion 322 is formed through the inlet 324 through which the refrigerant suction pipe 15 communicates with the suction chamber, and the compressed refrigerant is discharged in communication with the discharge chamber in the central portion of the first hard plate portion 321. The discharge holes 325a and 325b may be formed. Although only one discharge port 325a and 325b may be formed so as to communicate with both the first compression chamber V1 and the second compression chamber V2, which will be described later, each of the compression chambers V1 and V2 is independent. Plural dogs may be formed to communicate with each other.
그리고 제2 측벽부(322)의 외주면에는 앞서 설명한 연통홈(322b)이 형성되고, 이 연통홈(322b)은 제1 측벽부(311)의 연통홈(311b)과 함께 회수되는 오일을 하측공간(10c)으로 안내하기 위한 제2 오일유로(PO2)를 형성하게 된다. In addition, a communication groove 322b described above is formed on an outer circumferential surface of the second side wall portion 322, and the communication groove 322b stores oil recovered together with the communication groove 311b of the first side wall portion 311 in a lower space. A second oil channel P O2 for guiding to 10c is formed.
또, 제1 스크롤(32)의 하측에는 압축실(V)에서 토출되는 냉매를 후술할 냉매유로로 안내하기 위한 토출커버(34)가 결합될 수 있다. 토출커버(34)는 그 내부공간이 토출구(325a)(325b)를 수용하는 동시에, 그 토출구(325a)(325b)를 통해 압축실(V)에서 토출된 냉매를 케이싱(10)의 상측공간(10b), 더 정확하게는 전동부(20)와 압축부(30) 사이의 공간으로 안내하는 제1 냉매유로(PG1)의 입구를 수용하도록 형성될 수 있다. In addition, a discharge cover 34 for guiding the refrigerant discharged from the compression chamber V to the refrigerant passage, which will be described later, may be coupled to the lower side of the first scroll 32. The discharge cover 34 accommodates the discharge holes 325a and 325b, and the refrigerant discharged from the compression chamber V through the discharge holes 325a and 325b, and the upper space of the casing 10. 10b), more precisely, may be formed to accommodate an inlet of the first refrigerant passage P G1 that guides into the space between the transmission part 20 and the compression part 30.
여기서, 제1 냉매유로(PG1)는 유로 분리유닛(40)의 안쪽, 즉 유로 분리유닛(40)을 기준으로 안쪽인 회전축(50)쪽에서 고정스크롤(32)의 제2 측벽부(322)와 프레임(31)의 제1 측벽부(311)를 차례로 관통하여 형성될 수 있다. 이로써, 유로 분리유닛(40)의 바깥쪽에는 앞서 설명한 제2 오일유로(PO2)가 제1 오일유로(PO1)와 연통되도록 형성된다. Here, the first refrigerant passage (P G1 ) is the second side wall portion 322 of the fixed scroll (32) on the inside of the flow path separation unit 40, that is, the rotation shaft 50 inward with respect to the flow path separation unit 40. And may pass through the first sidewall portion 311 of the frame 31 in order. As a result, the second oil passage P O2 described above is formed on the outside of the flow path separation unit 40 so as to communicate with the first oil passage P O1 .
그리고 제1 경판부(321)의 상면에는 후술할 선회랩(이하, 제2 랩)(332)과 맞물려 압축실(V)을 이루는 고정랩(이하, 제1 랩)(323)이 형성될 수 있다. 제1 랩(323)에 대해서는 나중에 제2 랩(332)과 함께 설명한다.In addition, a fixing wrap (hereinafter referred to as a first wrap) 323 may be formed on an upper surface of the first hard plate part 321 to form a compression chamber V by engaging with a turning wrap (hereinafter referred to as a second wrap) 332 to be described later. have. The first wrap 323 will be described later together with the second wrap 332.
또, 제1 경판부(321)의 중심에는 후술할 회전축(50)의 서브 베어링부(52)를 지지하는 제2 축수부(326)가 형성되고, 제2 축수부(326)에는 축방향으로 관통되어 서브 베어링부(52)를 반경방향으로 지지하는 제2 축수구멍(326a)이 형성될 수 있다. In addition, a second bearing portion 326 for supporting the sub bearing portion 52 of the rotating shaft 50, which will be described later, is formed at the center of the first hard plate portion 321, and the second bearing portion 326 is disposed in the axial direction. A second bearing hole 326a may be formed to penetrate and support the sub bearing portion 52 in the radial direction.
한편, 제2 스크롤(33)은 선회 경판부(이하, 제2 경판부)(331)가 대략 원판모양으로 형성될 수 있다. 제2 경판부(331)의 하면에는 제1 랩(322)과 맞물려 압축실을 이루는 제2 랩(332)이 형성될 수 있다. On the other hand, the second scroll 33 may be formed in the shape of a substantially circular disk portion (hereinafter, the second hard plate portion) 331 331. A second wrap 332 may be formed on a bottom surface of the second hard plate part 331 to form a compression chamber in engagement with the first wrap 322.
제2 랩(332)은 제1 랩(323)과 함께 인볼류트 형상으로 형성될 수 있지만 그 외의 다양한 형상으로 형성될 수 있다. 예를 들어, 도 2와 같이, 제2 랩(332)은 직경과 원점이 서로 다른 다수의 원호를 연결한 형태를 가지며, 최외곽의 곡선은 장축과 단축을 갖는 대략 타원형 형태로 형성될 수 있다. 이는 제1 랩(323)도 마찬가지로 형성될 수 있다.The second wrap 332 may be formed in an involute shape together with the first wrap 323, but may be formed in various other shapes. For example, as illustrated in FIG. 2, the second wrap 332 has a shape in which a plurality of arcs having different diameters and origins are connected to each other, and the outermost curve may be formed in an approximately elliptical shape having a long axis and a short axis. . This may be formed in the first wrap 323 as well.
제2 경판부(331)의 중앙부위에는 제2 랩(332)의 내측 단부를 이루며, 후술할 회전축(50)의 편심부(53)가 회전가능하게 삽입되어 결합되는 회전축 결합부(333)가 축방향으로 관통 형성될 수 있다. A central shaft portion of the second hard plate portion 331 forms an inner end of the second wrap 332, and the rotation shaft coupling portion 333 to which the eccentric portion 53 of the rotation shaft 50, which will be described later, is rotatably inserted and coupled thereto is a shaft. It can be formed through in the direction.
회전축 결합부(333)의 외주부는 제2 랩(332)과 연결되어 압축과정에서 제1 랩(322)과 함께 압축실(V)을 형성하는 역할을 하게 된다. The outer circumferential portion of the rotation shaft coupling portion 333 is connected to the second wrap 332 to serve to form the compression chamber V together with the first wrap 322 in the compression process.
또, 회전축 결합부(333)는 제2 랩(332)과 동일 평면상에서 중첩되는 높이로 형성되어, 회전축(50)의 편심부(53)가 제2 랩(332)과 동일 평면상에서 중첩되는 높이에 배치될 수 있다. 이를 통해, 냉매의 반발력과 압축력이 제2 경판부를 기준으로 하여 동일 평면에 가해지면서 서로 상쇄되어, 압축력과 반발력의 작용에 의한 제2 스크롤(33)의 기울어짐이 방지될 수 있다. In addition, the rotation shaft coupling portion 333 is formed at a height overlapping with the second wrap 332 on the same plane, and the height at which the eccentric portion 53 of the rotation shaft 50 overlaps with the second wrap 332 on the same plane. Can be placed in. As a result, the repulsive force and the compressive force of the refrigerant are offset to each other while being applied to the same plane with respect to the second hard plate part, thereby preventing the inclination of the second scroll 33 due to the action of the compressive force and the repulsive force.
또, 회전축 결합부(333)는 제1 랩(323)의 내측 단부와 대향되는 외주부에 후술할 제1 랩(323)의 돌기부(328)와 맞물리게 되는 오목부(335)가 형성된다. 이 오목부(335)의 일측은 압축실(V)의 형성방향을 따라 상류측에 회전축 결합부(333)의 내주부에서 외주부까지의 두께가 증가하는 증가부(335a)가 형성된다. 이는 토출 직전의 제1 압축실(V1)의 압축 경로가 길어져, 결과적으로 제1 압축실(V1)의 압축비를 제2 압축실(V2)의 압력비에 근접하게 높일 수 있게 한다. 제1 압축실(V1)은 제1 랩(323)의 내측면과 제2 랩(332)의 외측면 사이에 형성되는 압축실로서, 제2 압축실(V2)과 구분하여 나중에 설명한다. In addition, the rotary shaft coupling portion 333 is formed with a recess 335 that is engaged with the protrusion 328 of the first wrap 323, which will be described later, on an outer circumferential portion facing the inner end of the first wrap 323. One side of the concave portion 335 is formed with an increasing portion 335a which increases in thickness from the inner circumference portion to the outer circumference portion of the rotary shaft coupling portion 333 along the forming direction of the compression chamber V. This makes the compression path of the first compression chamber V1 immediately before the discharge long, so that the compression ratio of the first compression chamber V1 can be increased close to the pressure ratio of the second compression chamber V2. The first compression chamber V1 is a compression chamber formed between the inner surface of the first wrap 323 and the outer surface of the second wrap 332, which will be described later separately from the second compression chamber V2.
오목부(335)의 타측은 원호 형태를 갖는 원호압축면(335b)이 형성된다. 원호압축면(335b)의 직경은 제1 랩(323)의 내측 단부 두께(즉, 토출단의 두께) 및 제2 랩(332)의 선회반경에 의해 결정되는데, 제1 랩(323)의 내측 단부 두께를 증가시키면 원호압축면(335b)의 직경이 커지게 된다. 이로 인해, 원호압축면(335b) 주위의 제2 랩 두께도 증가되어 내구성이 확보될 수 있고, 압축 경로가 길어져서 그만큼 제2 압축실(V2)의 압축비도 증가할 수 있다.The other side of the recess 335 is formed with an arc compression surface 335b having an arc shape. The diameter of the arc compression surface 335b is determined by the thickness of the inner end of the first wrap 323 (ie, the thickness of the discharge end) and the turning radius of the second wrap 332. Increasing the end thickness increases the diameter of the arc compression surface 335b. As a result, the thickness of the second wrap around the arc compression surface 335b may also be increased to ensure durability, and the compression path may be longer to increase the compression ratio of the second compression chamber V2.
또, 회전축 결합부(333)에 대응하는 제1 랩(323)의 내측 단부(흡입단 또는 시작단) 부근에는 회전축 결합부(333)의 외주부측으로 돌출되는 돌기부(328)가 형성되는데, 돌기부(328)에는 그 돌기부로부터 돌출되어 오목부(335)와 맞물리는 접촉부(328a)가 형성될 수 있다. 즉, 제1 랩(323)의 내측 단부는 다른 부분에 비해서 큰 두께를 갖도록 형성될 수 있다. 이로 인해, 제1 랩(323) 중에서 가장 큰 압축력을 받게 되는 내측 단부의 랩 강도가 향상되어 내구성이 향상될 수 있다.In addition, a protruding portion 328 protruding toward the outer circumferential side of the rotating shaft engaging portion 333 is formed near the inner end (suction end or starting end) of the first wrap 323 corresponding to the rotating shaft engaging portion 333. A contact portion 328a may be formed at the 328 to protrude from the protrusion and to engage the recess 335. That is, the inner end of the first wrap 323 may be formed to have a larger thickness than other portions. As a result, the wrap strength of the inner end portion that receives the greatest compressive force among the first wraps 323 may be improved, and thus durability may be improved.
한편, 압축실(V)은 제1 경판부(321)와 제1 랩(323), 그리고 제2 랩(332)과 제2 경판부(331) 사이에 형성되며, 랩의 진행방향을 따라 흡입실, 중간압실, 토출실이 연속으로 형성되어 이루어질 수 있다.On the other hand, the compression chamber (V) is formed between the first hard plate portion 321 and the first wrap 323, and the second wrap 332 and the second hard plate portion 331, suction along the advancing direction of the wrap The chamber, the intermediate pressure chamber, and the discharge chamber may be formed continuously.
도 2와 같이, 압축실(V)은 제1 랩(323)의 내측면과 제2 랩(332)의 외측면 사이에 형성되는 제1 압축실(V1)과, 제1 랩(323)의 외측면과 제2 랩(332)의 내측면 사이에 형성되는 제2 압축실(V2)로 이루어질 수 있다. As shown in FIG. 2, the compression chamber V includes the first compression chamber V1 formed between the inner surface of the first wrap 323 and the outer surface of the second wrap 332 and the first wrap 323. The second compression chamber V2 may be formed between the outer surface and the inner surface of the second wrap 332.
즉, 제1 압축실(V1)은 제1 랩(323)의 내측면과 제2 랩(332)의 외측면이 접촉하여 생기는 두 개의 접촉점(P11, P12) 사이에 형성되는 압축실을 포함하고, 제2 압축실(V2)은 제1 랩(323)의 외측면과 제2 랩(332)의 내측면이 접촉하여 생기는 두 개의 접촉점(P21, P22) 사이에 형성되는 압축실을 포함한다. That is, the first compression chamber V1 includes a compression chamber formed between two contact points P11 and P12 generated by contact between the inner surface of the first wrap 323 and the outer surface of the second wrap 332. The second compression chamber V2 includes a compression chamber formed between two contact points P21 and P22 formed by the contact between the outer surface of the first wrap 323 and the inner surface of the second wrap 332.
여기서, 토출 직전의 제1 압축실(V1)은 편심부의 중심, 즉 회전축 결합부의 중심(O)과 두 개의 접촉점(P11, P12)을 각각 연결한 두 개의 선이 이루는 각도 중 큰 값을 갖는 각도를 α라 할 때, 적어도 토출 개시 직전에 α < 360°이고, 두 개의 접촉점(P11, P12)에서의 법선 벡터 사이의 거리 ℓ도 0보다 큰 값을 갖게 된다. Here, the first compression chamber V1 immediately before the discharge has an angle having a larger value among the angles formed by the center of the eccentric portion, that is, the center O of the rotary shaft coupling portion and the two lines connecting the two contact points P11 and P12, respectively. When? Is?, At least immediately before the discharge start,? <360 ° and the distance l between the normal vectors at the two contact points P11 and P12 also has a value greater than zero.
이로 인해, 토출 직전의 제1 압축실이 인볼류트 곡선으로 이루어진 고정랩과 선회랩을 갖는 경우에 비해서 더 작은 볼륨을 갖게 되므로, 제1 랩(323)과 제2 랩(332)의 크기를 늘리지 않고도 제1 압축실(V1)의 압축비와 제2 압축실(V2)의 압축비가 모두 향상될 수 있다.As a result, the first compression chamber immediately before the discharge has a smaller volume as compared with the case where the fixed wrap and the swiveling wrap formed of the involute curve are used. Therefore, the size of the first wrap 323 and the second wrap 332 is not increased. Both the compression ratio of the first compression chamber V1 and the compression ratio of the second compression chamber V2 can be improved.
한편, 앞서 설명한 바와 같이, 제2 스크롤(33)은 프레임(31)과 고정스크롤(32) 사이에서 선회 가능하게 설치될 수 있다. 그리고 제2 스크롤(33)의 상면과 이에 대응하는 프레임(31)의 하면 사이에는 제2 스크롤(33)의 자전을 방지하는 올담링(35)이 설치되고, 올담링(35)보다 안쪽에는 후술할 배압실(S1)을 형성하는 실링부재(36)가 설치될 수 있다. On the other hand, as described above, the second scroll 33 may be rotatably installed between the frame 31 and the fixed scroll (32). An old dam ring 35 is installed between the upper surface of the second scroll 33 and the lower surface of the frame 31 corresponding thereto to prevent rotation of the second scroll 33. Sealing member 36 to form a back pressure chamber (S1) may be installed.
그리고 실링부재(36)의 바깥쪽에는 제2 스크롤(32)에 구비되는 급유구멍(321a)에 의해 중간압 공간을 형성하게 된다. 이 중간압 공간은 중간 압축실(V)과 연통되어 중간압의 냉매가 채워짐에 따라 배압실의 역할을 할 수 있다. 따라서, 실링부재(36)를 중심으로 안쪽에 형성되는 배압실을 제1 배압실(S1)이라고 하고, 바깥쪽에 형성되는 중간압 공간을 제2 배압실(S2)이라고 할 수 있다. 결국, 배압실(S1)은 실링부재(36)를 중심으로 프레임(31)의 하면과 제2 스크롤(33)의 상면에 의해 형성되는 공간으로, 이 배압실(S1)에 대해서는 후술할 실링부재와 함께 다시 설명한다. In addition, an intermediate pressure space is formed on the outside of the sealing member 36 by the oil supply hole 321a provided in the second scroll 32. The intermediate pressure space communicates with the intermediate compression chamber (V) and may serve as a back pressure chamber as the medium pressure refrigerant is filled. Therefore, the back pressure chamber formed inside the center of the sealing member 36 can be called the 1st back pressure chamber S1, and the intermediate pressure space formed outside can be called the 2nd back pressure chamber S2. As a result, the back pressure chamber S1 is a space formed by the bottom surface of the frame 31 and the top surface of the second scroll 33 around the sealing member 36. The back pressure chamber S1 will be described later with a sealing member. Explain again with
한편, 유로 분리유닛(40)은 전동부(20)의 하면과 압축부(30)의 상면 사이에 형성되는 경유공간인 중간공간(10a)에 설치되어, 압축부(30)로부터 토출되는 냉매가 유분리 공간인 전동부(20)의 상측공간(10b)에서 저유공간인 압축부(30)의 하측공간(10c)으로 이동하는 오일과 간섭되는 것을 방지하는 역할을 하게 된다.On the other hand, the flow path separation unit 40 is installed in the intermediate space (10a) which is a transit space formed between the lower surface of the transmission unit 20 and the upper surface of the compression unit 30, the refrigerant discharged from the compression unit 30 It serves to prevent interference with the oil moving from the upper space (10b) of the oil separation space to the lower space (10c) of the compression section 30, the oil storage space.
이를 위해, 본 실시예에 따른 유로 분리유닛(40)은 제1 공간(10a)을 냉매가 유동하는 공간(이하, 냉매 유동공간)과 오일이 유동하는 공간(이하, 오일 유동공간)으로 분리하는 유로 가이드를 포함한다. 유로 가이드는 그 유로 가이드 자체만으로 제1 공간(10a)을 냉매 유동공간과 오일 유동공간으로 분리할 수 있지만, 경우에 따라서는 복수 개의 유로 가이드를 조합하여 유로 가이드의 역할을 하도록 할 수도 있다.To this end, the flow path separation unit 40 according to the present embodiment separates the first space 10a into a space (hereinafter, a refrigerant flow space) in which a refrigerant flows and a space (hereinafter, an oil flow space) in which oil flows. Includes a euro guide. The flow path guide may separate the first space 10a into a refrigerant flow space and an oil flow space by using only the flow path guide itself. However, in some cases, the flow path guide may serve as a flow path guide by combining a plurality of flow path guides.
본 실시예에 따른 유로 분리유닛은 프레임(31)에 구비되어 상향 연장되는 제1 유로 가이드(410)와, 고정자(21)에 구비되어 하향 연장되는 제2 유로 가이드(420)로 이루어진다. 제1 유로 가이드(410)와 제2 유로 가이드(420)가 축방향으로 중첩되어 중간공간(10a)이 냉매 유동공간과 오일 유동공간으로 분리될 수 있도록 한다. The flow path separating unit according to the present embodiment includes a first flow path guide 410 provided on the frame 31 and extending upward, and a second flow path guide 420 provided on the stator 21 and extended downward. The first flow guide 410 and the second flow guide 420 overlap in the axial direction so that the intermediate space 10a can be separated into the refrigerant flow space and the oil flow space.
여기서, 제1 유로 가이드(410)는 환형으로 제작되어 프레임(31)의 상면에 고정 결합되고, 제2 유로 가이드(420)는 고정자(21)에 삽입되어 권선코일을 절연하는 인슐레이터에서 연장 형성될 수 있다.Here, the first flow path guide 410 is formed in an annular shape and fixedly coupled to the upper surface of the frame 31, the second flow path guide 420 is inserted into the stator 21 to extend from the insulator to insulate the winding coil Can be.
제1 유로 가이드(410)는 외측에서 상향 연장되는 제1 환벽부(411)와, 내측에서 상향 연장되는 제2 환벽부(412), 그리고 제1 환벽부(411)와 제2 환벽부(412) 사이를 연결하도록 반경방향으로 연장되는 환면부(413)로 이루어진다. 제1 환벽부(411)는 제2 환벽부(412)보다 높게 형성되고, 환면부(413)에는 압축부(30)에서 중간공간(10a)으로 연통되는 냉매구멍이 연통되도록 냉매통공이 형성될 수 있다.The first flow guide 410 may include a first annular wall portion 411 extending upwardly from the outside, a second annular wall portion 412 extending upwardly from the inside, and a first annular wall portion 411 and a second annular wall portion 412. It consists of an annular surface portion 413 extending radially so as to connect between. The first annular wall portion 411 is formed higher than the second annular wall portion 412, and the refrigerant hole may be formed in the annular surface portion 413 such that the refrigerant hole communicated from the compression part 30 to the intermediate space 10a. Can be.
그리고, 제2 환벽부(412)의 안쪽, 즉 회전축 방향에 밸런스 웨이트(26)가 위치하며, 밸런스 웨이트(26)는 회전자(22) 또는 회전축(50)에 결합되어 회전한다. 이때, 밸런스 웨이트(26)가 회전하면서 냉매를 교반할 수 있지만, 제2 환벽부(412)에 의해 냉매가 밸런스 웨이트(26)쪽으로 이동하는 것을 막아 냉매가 밸런스 웨이트(26)에 의해 교반되는 것을 억제할 수 있다.In addition, the balance weight 26 is positioned inside the second annular wall portion 412, that is, in the rotation axis direction, and the balance weight 26 is coupled to the rotor 22 or the rotation shaft 50 to rotate. At this time, while the balance weight 26 rotates, the refrigerant can be stirred, but the second circular wall portion 412 prevents the refrigerant from moving toward the balance weight 26, thereby preventing the refrigerant from being stirred by the balance weight 26. It can be suppressed.
제2 유로 가이드(420)는 인슐레이터의 외측에서 하향 연장되는 제1 연장부(421)와, 인슐레이터의 내측에서 하향 연장되는 제2 연장부(422)로 이루어질 수 있다. 제1 연장부(421)는 제1 환벽부(411)와 축방향으로 중첩되도록 형성되어, 냉매 유동공간과 오일 유동공간으로 분리하는 역할을 한다. 제2 연장부(422)는 필요에 따라 형성되지 않을 수도 있지만, 형성되더라도 제2 환벽부(412)와 축방향으로 중첩되지 않거나 중첩되더라도 냉매가 충분히 유동할 수 있도록 반경방향으로 충분한 간격을 두고 형성되는 것이 바람직하다. The second flow path guide 420 may include a first extension part 421 extending downward from the outside of the insulator and a second extension part 422 extending downward from the inside of the insulator. The first extension part 421 is formed to overlap the first annular wall part 411 in the axial direction, and serves to separate the refrigerant flow space and the oil flow space. Although the second extension part 422 may not be formed as necessary, the second extension part 422 may be formed at a sufficient interval in the radial direction so that the refrigerant may sufficiently flow even if the second extension part 422 does not overlap or overlaps with the second annular wall part 412 in the axial direction. It is preferable to be.
한편, 회전축(50)은 그 상부는 회전자(22)의 중심에 압입되어 결합되는 반면 하부는 압축부(30)에 결합되어 반경방향으로 지지될 수 있다. 이로써, 회전축(50)은 전동부(20)의 회전력을 압축부(30)의 선회스크롤(33)에 전달하게 된다. 그러면 회전축(50)에 편심 결합된 제2 스크롤(33)이 제1 스크롤(32)에 대해 선회운동을 하게 된다.On the other hand, the rotating shaft 50 may be coupled to the upper portion of the rotor 22 is pressed in the center while the lower portion is coupled to the compression unit 30 can be radially supported. As a result, the rotation shaft 50 transmits the rotational force of the transmission unit 20 to the turning scroll 33 of the compression unit 30. Then, the second scroll 33, which is eccentrically coupled to the rotation shaft 50, rotates about the first scroll 32.
회전축(50)의 하반부에는 프레임(31)의 제1 축수구멍(312a)에 삽입되어 반경방향으로 지지되도록 메인 베어링부(이하, 제1 베어링부)(51)가 형성되고, 제1 베어링부(51)의 하측에는 제1 스크롤(32)의 제2 축수구멍(326a)에 삽입되어 반경방향으로 지지되도록 서브 베어링부(이하, 제2 베어링부)(52)가 형성될 수 있다. 그리고 제1 베어링부(51)와 제2 베어링부(52)의 사이에는 회전축 결합부(333)에 삽입되어 결합되도록 편심부(53)가 형성될 수 있다. In the lower half of the rotating shaft 50, a main bearing portion (hereinafter referred to as a first bearing portion) 51 is formed to be inserted into the first bearing hole 312a of the frame 31 and supported radially, and the first bearing portion ( A sub bearing part (hereinafter referred to as a second bearing part) 52 may be formed below the 51 to be inserted into the second bearing hole 326a of the first scroll 32 to be radially supported. In addition, an eccentric portion 53 may be formed between the first bearing portion 51 and the second bearing portion 52 so as to be inserted into and coupled to the rotation shaft coupling portion 333.
제1 베어링부(51)와 제2 베어링부(52)는 동일 축중심을 가지도록 동축 선상에 형성되고, 편심부(53)는 제1 베어링부(51) 또는 제2 베어링부(52)에 대해 반경방향으로 편심지게 형성될 수 있다. 제2 베어링부(52)는 제1 베어링부(51)에 대해 편심지게 형성될 수도 있다.The first bearing portion 51 and the second bearing portion 52 are formed coaxially to have the same axial center, and the eccentric portion 53 is formed on the first bearing portion 51 or the second bearing portion 52. It may be formed radially eccentric with respect to. The second bearing portion 52 may be eccentrically formed with respect to the first bearing portion 51.
편심부(53)는 그 외경이 제1 베어링부(51)의 외경보다는 작게, 제2 베어링부(52)의 외경보다는 크게 형성되어야 회전축(50)을 각각의 축수구멍(312a)(326a)과 회전축 결합부(333)를 통과하여 결합시키는데 유리할 수 있다. 하지만, 편심부(53)가 회전축(50)에 일체로 형성되지 않고 별도의 베어링을 이용하여 형성하는 경우에는 제2 베어링부(52)의 외경이 편심부(53)의 외경보다 작게 형성되지 않고도 회전축(50)을 삽입하여 결합할 수 있다.The eccentric portion 53 must have an outer diameter smaller than the outer diameter of the first bearing portion 51 and larger than the outer diameter of the second bearing portion 52 so that the rotary shaft 50 can be formed with the respective bearing holes 312a and 326a. It may be advantageous to couple through the rotating shaft coupling portion 333. However, when the eccentric portion 53 is not formed integrally with the rotation shaft 50 and is formed using a separate bearing, the outer diameter of the second bearing portion 52 is not formed smaller than the outer diameter of the eccentric portion 53. Rotating shaft 50 can be inserted by inserting.
그리고 회전축(50)의 내부에는 각 베어링부와 편심부에 오일을 공급하기 위한 오일공급유로(50a)가 축방향을 따라 형성될 수 있다. 오일공급유로(50a)는 압축부(30)가 전동부(20)보다 하측에 위치함에 따라 회전축(50)의 하단에서 대략 고정자(21)의 하단이나 중간 높이, 또는 제1 베어링부(31)의 상단보다는 높은 위치까지 홈파기로 형성될 수 있다. 물론, 경우에 따라서는 회전축(50)을 축방향으로 관통하여 형성될 수도 있다.In addition, an oil supply passage 50a for supplying oil to each bearing part and the eccentric part may be formed along the axial direction in the rotation shaft 50. The oil supply passage 50a is approximately the bottom or middle height of the stator 21 at the lower end of the rotating shaft 50 or the first bearing part 31 as the compression unit 30 is positioned below the transmission unit 20. Grooves can be formed up to a position higher than the top of the. Of course, in some cases, the rotation shaft 50 may be formed to penetrate in the axial direction.
그리고 회전축(50)의 하단, 즉 제2 베어링부(52)의 하단에는 하측공간(10c)에 채워진 오일을 펌핑하기 위한 오일피더(60)가 결합될 수 있다. 오일피더(60)는 회전축(50)의 오일공급유로(50a)에 삽입되어 결합되는 오일공급관(61)과, 오일공급관(61)을 수용하여 이물질의 침입을 차단하는 차단부재(62)로 이루어질 수 있다. 오일공급관(61)은 토출커버(34)를 관통하여 하측공간(10c)의 오일에 잠기도록 위치될 수 있다.In addition, an oil feeder 60 for pumping oil filled in the lower space 10c may be coupled to the lower end of the rotation shaft 50, that is, the lower end of the second bearing part 52. The oil feeder 60 is composed of an oil supply pipe 61 inserted into and coupled to the oil supply flow path 50a of the rotation shaft 50 and a blocking member 62 that accommodates the oil supply pipe 61 to block intrusion of foreign substances. Can be. The oil supply pipe 61 may be positioned to penetrate the discharge cover 34 to be immersed in the oil of the lower space 10c.
한편, 도 3에서와 같이, 회전축(50)의 각 베어링부(51)(52)와 편심부(53)에는 오일공급유로(50a)에 연결되어 각 습동부로 오일을 공급하기 위한 습동부 급유통로(F1)가 형성된다.On the other hand, as shown in Figure 3, each bearing portion 51, 52 and the eccentric portion 53 of the rotating shaft 50 is connected to the oil supply passage (50a), the sliding portion for supplying oil to each sliding portion The flow path F1 is formed.
습동부 급유통로(F1)는 오일공급유로(50a)에서 회전축(50)의 외주면을 향해 관통되는 복수 개의 급유구멍(511)(521)(531)과, 각 베어링부(51)(52)와 편심부(53)의 외주면에는 급유구멍(511)(521)(531)에 각각 연통되어 각 베어링부(51)(52)와 편심부(53)를 윤활하는 복수 개의 급유홈(512)(522)(532)으로 이루어진다. The sliding part oil supply passage F1 includes a plurality of oil supply holes 511, 521, and 531 passing through the oil supply passage 50a toward the outer circumferential surface of the rotation shaft 50, and each bearing portion 51, 52. And a plurality of oil supply grooves 512 communicating with oil supply holes 511, 521, and 531 on the outer circumferential surface of the eccentric part 53 to lubricate each of the bearing parts 51, 52 and the eccentric part 53 ( 522 and 532.
예를 들어, 제1 베어링부(51)에는 제1 급유구멍(511)과 제1 급유홈(512)이, 제2 베어링부(52)에는 제2 급유구멍(521)과 제2 급유홈(522)이, 그리고 편심부(53)에는 제3 급유구멍(531)과 제3 급유홈(532)이 각각 형성된다. 제1 급유홈(512)과 제2 급유홈(522), 그리고 제3 급유홈(532)은 각각 축방향 또는 경사방향으로 길게 장홈 형상으로 형성된다.For example, the first bearing part 51 has a first oil supply hole 511 and a first oil supply groove 512, and the second bearing part 52 has a second oil supply hole 521 and a second oil supply groove ( 522 and the eccentric portion 53 are provided with a third oil supply hole 531 and a third oil supply groove 532, respectively. The first oil supply groove 512, the second oil supply groove 522, and the third oil supply groove 532 are each formed in a long groove shape in the axial direction or the inclined direction.
그리고, 제1 베어링부(51)와 편심부(53)의 사이, 편심부(53)와 제2 베어링부(52)의 사이에는 각각 환형으로 된 제1 연결홈(541)과 제2 연결홈(542)이 각각 형성된다. 이 제1 연결홈(541)은 제1 급유홈(512)의 하단이 연통되고, 제2 연결홈(542)은 제2 급유홈(522)의 상단이 연결된다. 이에 따라, 제1 급유홈(512)을 통해 제1 베어링부(51)를 윤활하는 오일의 일부는 제1 연결홈(541)으로 흘러내려 모이게 되고, 이 오일은 제1 배압실(S1)로 유입되어 토출압의 배압력을 형성하게 된다. 또, 제2 급유홈(522)을 통해 제2 베어링부(52)를 윤활하는 오일과 제3 급유홈(532)을 통해 편심부(53)를 윤활하는 오일은 제2 연결홈(542)으로 모여 회전축 결합부(333)의 선단면과 제1 경판부(321) 사이를 거쳐 압축부(30)로 유입될 수 있다.In addition, between the first bearing portion 51 and the eccentric portion 53, and between the eccentric portion 53 and the second bearing portion 52, an annular first connecting groove 541 and a second connecting groove, respectively. 542 are formed, respectively. The first connection groove 541 is connected to the lower end of the first oil supply groove 512, the second connection groove 542 is connected to the upper end of the second oil supply groove 522. As a result, a part of the oil lubricating the first bearing part 51 through the first oil supply groove 512 flows into the first connection groove 541, and the oil is collected into the first back pressure chamber S1. It is introduced to form a back pressure of the discharge pressure. In addition, the oil lubricating the second bearing portion 52 through the second oil supply groove 522 and the oil lubricating the eccentric portion 53 through the third oil supply groove 532 are connected to the second connection groove 542. Gather may be introduced into the compression unit 30 through the front end surface of the rotary shaft coupling portion 333 and the first hard plate portion 321.
그리고 제1 베어링부(51)의 상단방향으로 흡상되는 소량의 오일은 프레임(31)의 제1 축수부(312) 상단에서 베어링면 밖으로 흘러나와 그 제1 축수부(312)를 따라 프레임(31)의 상면(31a)으로 흘러내린 후, 그 프레임(31)의 외주면(또는 상면에서 외주면으로 연통되는 홈)과 제1 스크롤(32)의 외주면에 연속으로 형성되는 오일유로(PO1)(PO2)를 통해 하측공간(10c)으로 회수된다.In addition, a small amount of oil sucked in the upper direction of the first bearing part 51 flows out of the bearing surface at the upper end of the first bearing part 312 of the frame 31, and the frame 31 is along the first bearing part 312. After flowing down to the upper surface 31a of), the oil passage P O1 (P O1 ) (P O1 ) formed continuously on the outer circumferential surface (or the groove communicating from the upper surface to the outer circumferential surface) of the frame 31 and the outer circumferential surface of the first scroll 32 O2 ) is recovered to the lower space 10c.
아울러, 압축실(V)에서 냉매와 함께 케이싱(10)의 상측공간(10b)으로 토출되는 오일은 케이싱(10)의 상측공간(10b)에서 냉매로부터 분리되어, 전동부(20)의 외주면에 형성되는 제1 오일유로(PO1) 및 압축부(30)의 외주면에 형성되는 제2 오일유로(PO2)를 통해 하측공간(10c)으로 회수된다. 이때, 전동부(20)와 압축부(30)의 사이에는 유로 분리유닛(40)이 구비되어, 상측공간(10b)에서 냉매로부터 분리되어 하측공간(10c)으로 이동되는 오일이 압축부(20)에서 토출되어 상측공간(10b)으로 이동하는 냉매와 간섭되어 재혼합되지 않고 서로 다른 통로[(PO1)(PO2)][(PG1)(PG2)]를 통해 각각 오일은 하측공간(10c)으로, 냉매는 상측공간(10b)으로 이동할 수 있게 된다. In addition, the oil discharged from the compression chamber (V) together with the refrigerant into the upper space (10b) of the casing 10 is separated from the refrigerant in the upper space (10b) of the casing 10, the outer peripheral surface of the transmission portion 20 The first oil path P O1 and the second oil channel P O2 formed on the outer circumferential surface of the compression unit 30 are recovered to the lower space 10c. At this time, the flow path separation unit 40 is provided between the transmission unit 20 and the compression unit 30, the oil is separated from the refrigerant in the upper space (10b) is moved to the lower space (10c) compression unit 20 Oil is discharged through the different passages ((P O1 ) (P O2 )] [(P G1 ) (P G2 )] without interfering with the refrigerant discharged from the upper space 10b and moving to the upper space 10b. At 10c, the coolant can move to the upper space 10b.
한편, 제2 스크롤(33)에는 오일공급유로(50a)를 통해 흡상되는 오일을 압축실(V)로 공급하기 위한 압축실 급유통로(F2)가 형성된다. 압축실 급유통로(F2)는 앞서 설명한 습동부 급유통로(F1)에 연결된다.On the other hand, the second scroll 33 is formed with a compression chamber supply passage (F2) for supplying the oil drawn through the oil supply passage (50a) to the compression chamber (V). The compression chamber oil supply passage F2 is connected to the sliding part oil supply passage F1 described above.
압축실 급유통로(F2)는 오일공급유로(50a)와 중간압 공간을 이루는 제2 배압실(S2) 사이에 연통되는 제1 급유통로(371)와, 제2 배압실(S2)과 압축실(V)의 중간압실에 연통되는 제2 급유통로(372)로 이루어질 수 있다. The compression chamber oil supply passage F2 includes a first oil supply passage 371 communicating with the oil supply passage 50a and a second back pressure chamber S2 constituting an intermediate pressure space, and a second back pressure chamber S2. The second oil supply passage 372 communicates with the intermediate pressure chamber of the compression chamber (V).
물론, 압축실 급유통로는 제2 배압실(S2)을 경유하지 않고 오일공급유로(50a)에서 중간압실로 직접 연통되도록 형성될 수도 있다. 하지만, 이 경우에는 제2 배압실(S2)과 중간압실(V)을 연통시키는 냉매유로를 별도로 구비하여야 하고, 제2 배압실(S2)에 위치하는 올담링(35)에 오일을 공급하기 위한 오일유로를 별도로 구비해야 한다. 이로 인해 통로의 개수가 많아져 가공이 복잡하게 된다. 따라서, 냉매유로와 오일유로를 단일화하여 통로의 개수를 줄이기 위해서라도 본 실시예와 같이 오일공급유로(50a)와 제2 배압실(S2)을 연통시키고, 제2 배압실(S2)을 중간압실(V)에 연통시키는 것이 바람직할 수 있다.Of course, the compression chamber oil supply passage may be formed so as to communicate directly with the intermediate pressure chamber from the oil supply passage (50a) without passing through the second back pressure chamber (S2). However, in this case, a refrigerant path for communicating the second back pressure chamber S2 and the intermediate pressure chamber V must be separately provided, and the oil is supplied to the old dam ring 35 positioned in the second back pressure chamber S2. Oil passages should be provided separately. This increases the number of passages, which complicates processing. Therefore, in order to reduce the number of passages by unifying the refrigerant passage and the oil passage, the oil supply passage 50a and the second back pressure chamber S2 communicate with each other as in the present embodiment, and the second back pressure chamber S2 is the intermediate pressure chamber. It may be desirable to communicate with (V).
이를 위해, 제1 급유통로(371)는 제2 경판부(331)의 하면에서 두께방향으로 중간까지 형성되는 제1 선회통로부(371a)가 형성되고, 제1 선회통로부(371a)에서 제2 경판부(331)의 외주면을 향해 제2 선회통로부(371b)가 형성되며, 제2 선회통로부(371b)에서 제2 경판부(331)의 상면을 향해 관통되는 제3 선회통로부(371c)가 형성된다. To this end, the first oil supply passage 371 is formed with a first turning passage portion 371a which is formed in the thickness direction from the lower surface of the second hard plate portion 331 to the middle, and in the first turning passage portion 371a. The second turning passage portion 371b is formed toward the outer circumferential surface of the second hard plate portion 331, and the third turning passage portion penetrates from the second turning passage portion 371b toward the upper surface of the second hard plate portion 331. 371c is formed.
그리고, 제1 선회통로부(371a)는 제1 배압실(S1)에 속하는 위치에 형성되고, 제3 선회통로부(371c)는 제2 배압실(S2)에 속하는 위치에 형성된다. 그리고 제2 선회통로부(371b)에는 그 제1 급유통로(371)를 통해 제1 배압실(S1)에서 제2 배압실(S2)로 이동하는 오일의 압력을 낮출 수 있도록 감압봉(375)이 삽입된다. 이로써, 감압봉(375)을 제외한 제2 선회통로부(371b)의 단면적은 제1 선회통로부(371a) 또는 제3 선회통로부(371c)제2 선회통로부(371b)작게 형성된다.The first swing passage part 371a is formed at a position belonging to the first back pressure chamber S1, and the third swing passage part 371c is formed at a position belonging to the second back pressure chamber S2. In addition, the second turning passage part 371b includes a pressure reducing rod 375 to lower the pressure of the oil moving from the first back pressure chamber S1 to the second back pressure chamber S2 through the first oil supply passage 371. ) Is inserted. Thus, the cross-sectional area of the second swing passage portion 371b except for the pressure reducing rod 375 is formed to be small in the first swing passage portion 371a or the third swing passage portion 371c and the second swing passage portion 371b.
여기서, 제3 선회통로부(371c)의 단부가 올담링(35)의 안쪽, 즉 올담링(35)과 실링부재(36)의 사이에 위치하도록 형성되는 경우에는 그 제1 급유통로(371)를 통해 이동하는 오일이 올담링(35)에 막혀 제2 배압실(S2)로 원활하게 이동하지 못하게 된다. 따라서, 이 경우에는 제3 선회통로부(371c)의 단부에서 제2 경판부(331)의 외주면을 향해 제4 선회통로부(371d)가 형성될 수 있다. 제4 선회통로부(371d)는 도 4와 같이 제2 경판부(331)의 상면에 홈으로 형성될 수도 있고, 제2 경판부(331)의 내부에 구멍으로 형성될 수도 있다. Here, when the end portion of the third turning passage portion 371c is formed to be located inside the old dam ring 35, that is, between the old dam ring 35 and the sealing member 36, the first oil supply passage 371. The oil moving through) is blocked by the old dam ring 35 and thus cannot be smoothly moved to the second back pressure chamber S2. Therefore, in this case, the fourth pivot passage part 371d may be formed from the end of the third pivot passage part 371c toward the outer circumferential surface of the second hard plate part 331. As shown in FIG. 4, the fourth pivot passage part 371d may be formed as a groove in the upper surface of the second hard plate part 331 or may be formed as a hole in the second hard plate part 331.
제2 급유통로(372)는 제2 측벽부(322)의 상면에서 두께방향으로 제1 고정통로부(372a)가 형성되고, 제1 고정통로부(372a)에서 반경방향으로 제2 고정통로부(372b)가 형성되며, 제2 고정통로부(372b)에서 중간압실(V)로 연통되는 제3 고정통로부(372c)가 형성된다.The second oil supply passage 372 has a first fixed passage 372a formed in the thickness direction on the upper surface of the second side wall portion 322, and a second fixed passage in the radial direction from the first fixed passage portion 372a. A portion 372b is formed, and a third fixed passage portion 372c communicating with the intermediate pressure chamber V from the second fixed passage portion 372b is formed.
도면중 미설명 부호인 70은 어큐뮬레이터이다. Reference numeral 70 in the figure denotes an accumulator.
상기와 같은 본 실시예에 의한 하부 압축식 스크롤 압축기는 다음과 같이 동작된다.The lower compression scroll compressor according to the present embodiment as described above is operated as follows.
즉, 전동부(20)에 전원이 인가되면, 회전자(22)와 회전축(50)에 회전력이 발생되어 회전하고, 회전축(50)이 회전함에 따라 그 회전축(50)에 편심 결합된 선회스크롤(33)이 올담링(35)에 의해 선회운동을 하게 된다.That is, when power is applied to the transmission unit 20, rotational force is generated by the rotor 22 and the rotating shaft 50 to rotate, and the rotating shaft 50 is eccentrically coupled to the rotating shaft 50 as the rotating shaft 50 rotates The 33 is swiveling by Oldham Ring 35.
그러면, 케이싱(10)의 외부에서 냉매 흡입관(15)을 통하여 공급되는 냉매는 압축실(V)로 유입되고, 이 냉매는 선회스크롤(33)의 선회운동에 의해 압축실(V)의 체적이 감소함에 따라 압축되어 토출구(325a)(325b)를 통해 토출커버(34)의 내부공간으로 토출된다. Then, the coolant supplied through the coolant suction pipe 15 from the outside of the casing 10 flows into the compression chamber V, and the coolant flows in the volume of the compression chamber V by the swinging motion of the swing scroll 33. As it decreases, it is compressed and discharged into the inner space of the discharge cover 34 through the discharge holes 325a and 325b.
그러면, 토출커버(34)의 내부공간으로 토출된 냉매는 그 토출커버(34)의 내부공간을 순환하며 소음이 감소된 후 프레임(31)과 고정자(21) 사이의 공간으로 이동하고, 이 냉매는 고정자(21)와 회전자(22) 사이의 간격을 통해 전동부(20)의 상측공간으로 이동하게 된다. Then, the refrigerant discharged into the internal space of the discharge cover 34 circulates through the internal space of the discharge cover 34 and moves to the space between the frame 31 and the stator 21 after the noise is reduced. Is moved to the upper space of the transmission unit 20 through the gap between the stator 21 and the rotor 22.
그러면, 전동부(20)의 상측공간에서 냉매로부터 오일이 분리된 후 냉매는 냉매 토출관(16)을 통해 케이싱(10)의 외부로 배출되는 반면, 오일은 케이싱(10)의 내주면과 고정자(21) 사이의 유로 및 케이싱(10)의 내주면과 압축부(30)의 외주면 사이의 유로를 통해 케이싱(10)의 저유공간인 하측공간(10c)으로 회수되는 일련의 과정을 반복한다. Then, after the oil is separated from the coolant in the upper space of the transmission unit 20, the coolant is discharged to the outside of the casing 10 through the coolant discharge pipe 16, while the oil is in the inner circumferential surface of the casing 10 and the stator ( 21 is repeated a series of processes to be recovered to the lower space (10c) of the storage space of the casing 10 through the flow path between the inner peripheral surface of the casing 10 and the outer peripheral surface of the compression unit 30.
이때, 하측공간(10c)의 오일은 회전축(50)의 오일공급유로(50a)를 통해 흡상되고, 이 오일은 각각의 급유구멍(511)(521)(531)과 급유홈(512)(522)(532)을 통해 제1 베어링부(51)와 제2 베어링부(52), 그리고 편심부(53)를 각각 윤활하게 된다. At this time, the oil in the lower space (10c) is sucked through the oil supply passage (50a) of the rotating shaft 50, the oil is the oil supply holes 511, 521, 531 and the oil supply grooves (512) (522) 532 to lubricate the first bearing portion 51, the second bearing portion 52, and the eccentric portion 53, respectively.
이 중에서 제1 급유구멍(511)과 제1 급유홈(512)을 통해 제1 베어링부(51)를 윤활한 오일은 제1 베어링부(51)와 편심부(53) 사이의 제1 연결홈(541)으로 모이고, 이 오일은 제1 배압실(S1)로 유입된다. 이 오일은 거의 토출압을 형성하게 되어 제1 배압실(S1)의 압력도 거의 토출압을 형성하게 된다. 따라서, 제2 스크롤(33)의 중심부측은 토출압에 의해 축방향으로 지지할 수 있게 된다.Among these, the oil lubricated with the first bearing part 51 through the first oil supply hole 511 and the first oil supply groove 512 is the first connection groove between the first bearing part 51 and the eccentric part 53. At 541, the oil flows into the first back pressure chamber S1. This oil almost forms a discharge pressure, and the pressure of the 1st back pressure chamber S1 also forms almost a discharge pressure. Therefore, the center side of the second scroll 33 can be supported in the axial direction by the discharge pressure.
한편, 제1 배압실(S1)의 오일은 제2 배압실(S2)과의 압력차이에 의해 제1 급유통로(371)를 거쳐 제2 배압실(S2)로 이동을 하게 된다. 이때, 제1 급유통로(371)를 이루는 제2 선회통로부(371b)에는 감압봉(375)이 구비되어, 제2 배압실(S2)로 향하는 오일의 압력이 중간압으로 감압된다. On the other hand, the oil in the first back pressure chamber (S1) is moved to the second back pressure chamber (S2) via the first oil supply passage 371 by the pressure difference with the second back pressure chamber (S2). At this time, the second turning passage portion 371b constituting the first oil supply passage 371 is provided with a decompression rod 375, and the pressure of the oil directed to the second back pressure chamber S2 is reduced to an intermediate pressure.
그리고, 제2 배압실(중간압 공간)(S2)로 이동하는 오일은 제2 스크롤(33)의 가장자리부를 지지하는 동시에 중간압실(V)과의 압력차이에 따라 제2 급유통로(372)를 통해 중간압실(V)로 이동하게 된다. 하지만, 압축기의 운전중에서 중간압실(V)의 압력이 제2 배압실(S2)의 압력보다 높아지게 되면 제2 급유통로(372)를 통해 중간압실(V)에서 냉매가 제2 배압실(S2)쪽으로 이동하게 된다. 다시 말해, 제2 급유통로(372)는 제2 배압실(S2)의 압력과 중간압실(V)의 압력 차이에 따라 냉매와 오일이 교차 이동하는 통로 역할을 한다. The oil moving to the second back pressure chamber (intermediate pressure space) S2 supports the edge of the second scroll 33 and the second oil supply passage 372 according to the pressure difference with the intermediate pressure chamber V. It moves to the intermediate pressure chamber (V) through. However, when the pressure in the intermediate pressure chamber V becomes higher than the pressure in the second back pressure chamber S2 during operation of the compressor, the refrigerant flows in the second back pressure chamber S2 through the second oil supply passage 372. Will move to). In other words, the second oil supply passage 372 serves as a passage through which the refrigerant and oil cross-move according to the pressure difference between the pressure in the second back pressure chamber S2 and the pressure in the intermediate pressure chamber V.
한편, 앞서 설명한 바와 같이, 제2 스크롤의 배면, 즉 제2 스크롤의 상면에는 제2 스크롤이 압축실의 압력에 의해 밀려 제1 스크롤로부터 멀어지는 것을 방지하도록 배압실이 형성된다. On the other hand, as described above, the back pressure chamber is formed on the rear surface of the second scroll, that is, the upper surface of the second scroll so as to prevent the second scroll from being pushed away by the pressure of the compression chamber and away from the first scroll.
즉, 배압실은 프레임의 하면과 제2 스크롤의 상면에 실링부재가 구비되어, 제2 스크롤과 프레임 사이에 제1 배압실이, 제2 스크롤과 프레임 그리고 제1 스크롤 사이에 제2 배압실이 각각 형성된다. That is, the back pressure chamber is provided with a sealing member on the lower surface of the frame and the upper surface of the second scroll, so that the first back pressure chamber between the second scroll and the frame, and the second back pressure chamber between the second scroll and the frame and the first scroll, respectively. Is formed.
따라서, 실링부재는 프레임과 제2 스크롤 사이의 실링력이 우수하며 제2 스크롤의 선회운동에 의한 마찰을 고려하여 내마모성이 우수한 것이 바람직하다. 아울러, 실링부재는 제2 스크롤에 구비되는 실링부재 삽입홈에 삽입된 상태에서 압력에 의해 부상하면서 축방향을 실링하게 되므로 낮은 압력에도 신속하게 부상할 수 있는 재질과 구조로 형성되는 것이 바람직하다.Therefore, it is preferable that the sealing member has excellent sealing force between the frame and the second scroll and has excellent wear resistance in consideration of friction caused by the pivoting movement of the second scroll. In addition, the sealing member is formed of a material and a structure that can be quickly floated even at low pressure because the sealing member is sealed by the pressure in the state inserted into the sealing member insertion groove provided in the second scroll.
한편, 앞서 설명한 바와 같이, 제2 스크롤의 중앙부인 제1 배압실은 토출압을, 가장자리부인 제2 배압실은 중간압을 형성함에 따라, 선회스크롤인 제2 스크롤의 중심부에서의 배압력이 가장자리부에서의 배압력보다 높은 압력을 발생하게 된다. 그러면서, 제2 스크롤은 중심부가 가장자리부보다 제1 스크롤 방향으로 더 많이 눌리게 되고, 이에 따라 제1 스크롤의 중심부에 위치한 제1 랩의 토출단은 제2 경판부에 과도하게 밀착된다. 이와 동시에, 제1 랩의 중심부는 토출단을 형성하게 되어 토출압을 받게 되고, 이 토출압에 의해 제1 랩의 토출단은 가장자리 방향으로 강한 가스력을 받게 된다. On the other hand, as described above, as the first back pressure chamber, which is the center of the second scroll, forms the discharge pressure, and the second back pressure chamber, which is the edge, forms the intermediate pressure, the back pressure at the center of the second scroll, which is the turning scroll, The pressure is higher than the back pressure of. In the meantime, the second scroll has a central portion pressed more in the first scroll direction than the edge portion, so that the discharge end of the first wrap located at the central portion of the first scroll is excessively in close contact with the second hard plate portion. At the same time, the center portion of the first wrap forms a discharge end to receive the discharge pressure, and the discharge end of the first wrap receives a strong gas force in the edge direction by the discharge pressure.
이에 따라, 제1 랩의 토출단은 제2 스크롤의 중심부가 제1 배압실의 높은 배압력에 의해 축방향으로 누르는 힘을 받는 동시에 토출압의 가스력에 의해 반경방향으로 미는 힘을 받게 받게 되어, 결국 제1 랩의 토출단은 랩의 뿌리에서 랩의 선단면쪽, 즉 랩의 높이방향으로 갈수록 바깥쪽을 향해 휘어질 수 있다. As a result, the discharge end of the first wrap receives the force of the central portion of the second scroll in the axial direction by the high back pressure of the first back pressure chamber while being pushed in the radial direction by the gas force of the discharge pressure. In other words, the discharging end of the first lap may be bent outward from the root of the lap toward the front end face of the lap, that is, in the height direction of the lap.
이러한 현상은 본 실시예와 같이 고정스크롤인 제1 스크롤의 중심부에 회전축이 관통되는 제2 축수구멍이 형성되는 경우 심하게 발생할 수 있다. 즉, 제1 스크롤의 중심에 제2 축수구멍이 형성되면 그 제2 축수구멍으로 인해 고정랩인 제1 랩의 토출단이 제1 스크롤의 중심까지 연장되어 형성되지 못하게 되고, 이로 인해 제1 랩의 토출단이 스크롤의 중심으로부터 멀리 위치하게 되어 그만큼 토출단에서의 랩 강성이 저하되면서 랩 변형이 증가하기 때문이다. This phenomenon may occur severely when a second bearing hole through which a rotating shaft penetrates is formed in the center of the first scroll which is a fixed scroll as in the present embodiment. That is, when the second bearing hole is formed in the center of the first scroll, the discharge end of the first wrap, which is the fixed wrap, cannot be formed by extending to the center of the first scroll due to the second bearing hole. This is because the discharging end of is located far from the center of the scroll, and the lap stiffness at the discharging end is reduced by that amount, thereby increasing the lap deformation.
그리고 이러한 현상은 본 실시예와 같이 제1 랩과 제2 랩을 비정형성 형상으로 변경하여 압축비를 높인 경우에 더욱 심하게 발생할 수 있다. 다만, 본 실시예에서는 제1 랩의 토출단에 돌기부가 형성되어 랩 지지력이 일정정도 향상되고 있으나, 압축비의 증가만큼 랩 지지력이 증가하지 못하여 제1 랩의 토출단에서의 랩 변형으로 인한 마찰손실이나 마모, 또는 랩 파단이 우려될 수 있다. 도 5는 이를 설명하기 위해 제1 랩의 토출단 주변에서의 변형량을 부위별로 해석하여 보인 모식도이고, 도 6은 도 5에서 변형량이 가장 큰 부위에서의 랩 형상을 정면에서 보인 개략도이다. This phenomenon may occur more seriously when the compression ratio is increased by changing the first wrap and the second wrap to an amorphous shape as in the present embodiment. However, in the present embodiment, the protrusion is formed at the discharge end of the first wrap, the lap holding force is improved to a certain degree, but the frictional loss due to the deformation of the lap at the discharge end of the first lap is not increased due to the increase in the compression ratio. Abrasion or lap breakage may occur. FIG. 5 is a schematic view illustrating the deformation amount at the periphery of the discharge end of the first wrap for each part, and FIG. 6 is a schematic view of the wrap shape at the site where the deformation amount is the greatest in FIG.
도 5에 도시된 바와 같이, 제1 랩(323)의 경우 토출단(323a)에서의 변형량이 대략 0.018mm ~ 0.02mm 정도로 가장 크고, 토출단(323a)에서 흡입단 방향으로 갈수록 변형량은 점점 감소하는 것을 볼 수 있다. 그리고, 제1 랩(323)의 토출단(323a) 주변을 포함하는 제1 경판부(321)의 변형량은 대략 -0.003mm ~ -0.005mm 정도인 것을 볼 수 있다. 이는 제1 경판부(321)가 제1 랩(323)이 변형되는 반대방향으로 힘을 받아 미세하게 변형되는 것으로 볼 수 있다. As shown in FIG. 5, in the case of the first wrap 323, the deformation amount at the discharge end 323a is the largest, about 0.018 mm to 0.02 mm, and the deformation amount gradually decreases toward the suction end direction at the discharge end 323a. I can see that. In addition, the deformation amount of the first hard plate part 321 including the discharge end 323a of the first wrap 323 may be about −0.003 mm to −0.005 mm. This may be seen that the first hard plate portion 321 is finely deformed by the force in the opposite direction in which the first wrap 323 is deformed.
이에 따라, 도 6과 같이, 토출단(323a) 주변의 선단면이 가스력을 받아 도면의 우측, 즉 중심부에서 가장자리부를 향해 휘어지게 되고, 그러면서 토출단(323a)의 내측 모서리(323a1)가 최고점을 이루면서 제2 경판부(331)의 하면에 대면하게 된다. Accordingly, as shown in FIG. 6, the tip surface around the discharge end 323a is bent toward the edge at the right side, that is, the center of the drawing, while the inner edge 323a1 of the discharge end 323a is the highest point. To form a lower surface of the second hard plate portion 331 to face.
이와 동시에, 제2 스크롤이 배압력을 받아 도면의 하측방향으로 눌려 이동하게 된다. 하지만, 제1 랩(323)의 토출단(323a)이 바깥쪽으로 휘어져 변형됨에 따라, 제1 경판부(321)의 상면(321b)과 제2 랩(332)의 선단면(332c)이 배압력에 의해 채 접촉하기 전에 제1 랩(323)의 토출단(323a)과 제2 경판부(331)의 하면(331b)이 먼저 접촉하게 된다. 즉, 제1 경판부(321)의 상면과 제2 랩(332)의 선단면(332c) 사이의 간격(t1)이 제1 랩(323)의 토출단(323a)과 제2 경판부(331)의 하면(331b) 사이의 간격(t2)보다 크게 된다. 따라서, 배압력에 의해 제1 랩(323)의 선단면(323c)과 제2 경판부(331)의 하면(331b) 사이의 간격(t2)이 제거되는 과정에서 제1 경판부(321)의 상면(321b)과 제2 랩(332)의 선단면(332c) 사이에서는 앞서 설명한 마찰손실 또는 마모가 발생할 수 있고, 제1 랩의 토출단 부근이 파단될 수 있다.At the same time, the second scroll is pushed in the downward direction of the drawing by the back pressure. However, as the discharge end 323a of the first wrap 323 is bent outward and deformed, the upper surface 321b of the first hard plate portion 321 and the front end surface 332c of the second wrap 332 are back pressured. By contacting by the first contact with the discharge end 323a of the first wrap 323 and the lower surface 331b of the second hard plate portion 331 first. That is, the distance t1 between the upper surface of the first hard plate portion 321 and the front end surface 332c of the second wrap 332 is the discharge end 323a and the second hard plate portion 331 of the first wrap 323. ) Is larger than the interval t2 between the lower surfaces 331b. Therefore, the gap t2 between the front end surface 323c of the first wrap 323 and the lower surface 331b of the second hard plate portion 331 is removed by the back pressure. The friction loss or wear described above may occur between the upper surface 321b and the front end surface 332c of the second wrap 332, and the vicinity of the discharge end of the first wrap may be broken.
이를 감안하여, 본 실시예에서는 토출단 부근에서의 랩 강성을 최적화하여, 랩이 배압력에 의해 발생되는 축방향 힘과 가스력에 의해 발생되는 반경방향 힘을 받더라도 그로 인한 랩 변형을 최소화할 수 있고, 이를 통해 랩과 경판부 사이에서의 마찰손실이나 마모, 또는 랩 파손을 억제할 수 있다. In view of this, in this embodiment, the lap stiffness in the vicinity of the discharge end is optimized, so that the lap deformation due to the axial force generated by the back pressure and the radial force generated by the gas force can be minimized. In this way, friction loss or abrasion or wrap breakage between the wrap and the hard plate portion can be suppressed.
본 실시예에 따른 제1 랩은 그 토출단 부근에서의 랩 강성이 다음과 같이 정의되는 강성계수의 범위가 최적의 한계선 범위를 만족하도록 형성됨에 따라 구현될 수 있다.The first wrap according to the present embodiment may be implemented as the lap stiffness near the discharge end is formed so as to satisfy the optimal limit line range.
즉, 도 7을 참조하면, 제1 랩에 대한 토출단 부근(이하, 랩 중심부)에서의 강성계수(A)는 랩 중심부 구간의 평균 높이(h)를 랩 중심부 구간의 평균 두께(t)로 나눈 제1 값을 구하고, 그 제1 값에 랩 중심부 구간에 대한 회전축의 중심(즉, 제2 축수구멍의 중심)에서 제1 랩의 중심선 사이의 거리인 평균 곡률반경(R)을 곱한 제2 값을 구하며, 그 제2 값의 역수로 강성계수가 정의될 수 있다. 여기서, 제1 랩(323)의 높이는 흡입단에서 토출단으로 갈수록 랩의 높이가 점차 낮아지도록 형성되므로, 랩 중심부 구간에서의 랩 높이는 랩의 진행방향을 따라 다르게 형성된다. 따라서, 이상적으로는 해당 구간(랩 중심부 구간)에서의 랩 높이를 정확하게 산출하기 위해서는 앞서 설명한 바와 같이 랩 평균 높이를 구하여 대입하여야 바람직하다. 하지만, 랩 높이 차이가 극히 작기 때문에 이를 무시하고 랩 높이로 일반화하여 대입할 수도 있다. 그리고 이는 랩의 곡률반경 역시 같은 이유로 랩 곡률반경으로 일반화하여 대입할 수 있다. 참고로, 랩의 곡률반경은 대략 10~20mm 정도가 된다.That is, referring to FIG. 7, the stiffness coefficient A near the discharge end of the first lap (hereinafter referred to as lap center) is the average height h of the lap center section to the average thickness t of the lap center section. The second value obtained by dividing the first value and multiplied by the first value multiplied by the average radius of curvature R, which is the distance between the center of the rotation axis with respect to the center portion of the lap (ie, the center of the second axis hole) and the centerline of the first lap. The stiffness coefficient can be defined as the inverse of the second value. Here, the height of the first wrap 323 is formed so that the height of the lap gradually decreases from the suction end to the discharge end, the lap height in the center portion of the lap is formed differently along the direction of the wrap. Therefore, in order to accurately calculate the lap height in the corresponding section (lap center section), it is preferable to obtain and substitute the lap average height as described above. However, because the lap height difference is very small, you can ignore it and generalize it to lap height and substitute it. And this can be substituted by lap curvature radius generalized to lap curvature radius for the same reason. For reference, the radius of curvature of the lap is about 10-20 mm.
즉, 이를 식(1)으로 표현하면, In other words, this is expressed by equation (1),
A = 1/((h/t)×R) ----------- 식(1)A = 1 / ((h / t) × R) ----------- Formula (1)
과 같다. 여기에, 임의의 값 1000mm를 곱할 수 있다.Same as It can be multiplied by any value 1000mm.
다만, 랩의 높이와 두께는 앞서 설명한 바와 같이 일정 구간의 평균 랩 높이와 평균 랩 두께, 그리고 평균 평균 곡률반경으로 정의할 수 있지만, 경우에 따라서는 랩의 진행방향을 기준으로 어떤 특정지점에서의 랩 높이와 랩 두께, 그리고 랩 곡률반경으로 정의할 수도 있다. 하지만, 일반적으로는 일정 구간을 기준으로 각 요소들을 정의하는 것이 가공 측면에서 유리할 수 있다. However, as described above, the height and thickness of the lap may be defined as the average lap height, the average lap thickness, and the average average curvature radius of a predetermined section, but in some cases, at a specific point based on the direction of the lap's progression, It can also be defined by lap height, lap thickness, and lap curvature radius. In general, however, it may be advantageous in terms of processing to define each element based on a certain interval.
예를 들어, 본 실시예의 경우 가장 큰 랩 변형량을 보이는 구간이 0 ~ 60°(여기서, 0°는 토출단)라고 한다면, 해당 구간인 0 ~ 60°사이, 더 정확하게는 0 ~ 45°사이의 랩 평균 높이와 랩 평균 두께를 이용하여 강성계수를 산출할 수도 있다.For example, in the present embodiment, if the section showing the largest lap deformation amount is 0 to 60 ° (where 0 ° is the discharge end), the interval is 0 to 60 °, more precisely between 0 to 45 °. The stiffness coefficient can also be calculated using the lap average height and lap average thickness.
여기서, 해당 구간에서의 강성계수(A)에 대한 제한 범위는 대략 0.005 이상이 되도록 하는 것이 바람직하다. 즉, 위의 식(1)을 참고하여 강성계수를 구하게 되면, (h/t)는 대략 10을 넘지 않는다. 통상 랩 평균 높이를 랩 평균 두께로 나눈 값이 10 이상이 되면 랩 두께에 비해 랩 높이가 너무 높아 랩 강성이 매우 취약하게 되면서 랩 파단이 발생하게 된다. 따라서, (h/t)는 10 이하가 되도록 형성하는 것이 바람직하다. 최하값은 랩 두께가 랩 높이에 비해 크면 클수록 강성이 증가되므로 굳이 한정할 필요는 없다. Here, it is preferable that the limit range for the stiffness coefficient A in the corresponding section is about 0.005 or more. That is, when the stiffness coefficient is obtained by referring to Equation (1) above, (h / t) does not exceed approximately 10. In general, when the average height of the lap divided by the average thickness of the lap is 10 or more, the lap stiffness becomes very weak and the lap stiffness is too high compared to the lap thickness, thereby causing lap fracture. Therefore, it is preferable to form (h / t) so that it may become 10 or less. The lowest value does not need to be limited as the stiffness increases as the lap thickness is larger than the lap height.
또, 랩 평균 곡률반경은 대략 10~20mm 정도가 된다. 랩 곡률반경은 가급적 작을 수록 랩 강성이 증가하게 되므로, 이 경우에도 굳이 랩 곡률반경이 작은 경우에 대해서는 한정할 필요가 없다. 따라서, 랩 평균 곡률반경을 20mm로 하여, 위 식(1)에 대입하면 강성계수(A) = 1/((10)×20)이 된다. 따라서, 강성계수는 0.005mm가 되고, 여기에 임의의 값 1000mm를 곱하면 강성계수는 5가 된다. 이는, 최소 강성계수 값에 해당하므로 랩의 토출단에 대한 강성계수의 제한 범위는 5 이상이 되도록 형성하는 것이 바람직하다.Moreover, the lap average curvature radius will be about 10-20 mm. Since the lap stiffness of the lap curvature increases as small as possible, there is no need to limit the case where the lap curvature radius is small. Therefore, when the lap average curvature radius is set to 20 mm and substituted into Equation (1), the stiffness coefficient A = 1 / ((10) x 20). Therefore, the stiffness coefficient is 0.005 mm, and the stiffness coefficient is 5. Since this corresponds to the minimum stiffness coefficient value, it is preferable that the limit range of the stiffness coefficient with respect to the discharge end of the wrap is 5 or more.
그리고 이러한 강성계수 제한범위를 기초로 하여 적정한 토출단의 랩 형상을 결정할 수 있다. 도 8은 제1 랩에 대한 다양한 규격과 운전속도에 따른 랩 변형량을 해석한 그래프이다. And the appropriate wrap shape of the discharge stage can be determined based on the stiffness coefficient limitation range. 8 is a graph analyzing the amount of deformation of the lab wrap according to various standards and operating speeds for the first lab.
이에 도시된 바와 같이, 모델①의 경우는 랩 변형량이 20㎛, 모델②의 경우는 랩 변형량이 31㎛, 모델③의 경우는 랩 변형량이 79㎛, 모델④의 경우는 랩 변형량이 60㎛, 그리고 모델⑤의 경우는 랩 변형량이 67㎛ 정도가 되는 것을 볼 수 있다.As shown in this figure, in the case of the model ①, the deformation amount of the lap is 20 µm, in the case of the model ②, the deformation amount of the lap is 31 µm, in the case of the model ③, the deformation amount of the lap is 79 µm, In the case of model ⑤, it can be seen that the amount of lap strain is about 67 µm.
이들 모델 중에서 상대적으로 랩 변형량이 큰 모델③과 모델⑤에서는 랩의 토출단 부근이 파단되는 반면, 나머지 모델①, ②, ④에서는 랩의 토출단 부근이 파손되지 않고 유지되는 것을 볼 수 있다. 따라서, 모델③과 모델⑤를 연결하는 선을 한계선이라고 정의하고, 그 한계선을 기준으로 랩 변형량이 우측에 속하도록 하는 랩 강성을 한정할 수 있다.It can be seen that in the models ③ and model ⑤ where the amount of lap deformation is relatively large, the vicinity of the discharging end of the lap is broken, while in the remaining models ①, ②, and ④, the vicinity of the discharging end of the lap is maintained without being damaged. Accordingly, the line connecting the model ③ and the model ⑤ may be defined as a limit line, and the lap stiffness such that the amount of lap deformation falls on the right side can be defined based on the limit line.
여기서, 한계선은 도 8을 참조할 때, 한계선의 기울기는 대략 0.0001~0.0003의 범위, 옵셋량은 7.0000 ~ 8.0000의 범위일 수 있다. 이에 따라, 강성계수는 적어도 [(0.0001~0.0003)×가스력에 의한 랩 하중(N)+(7.000 ~ 8.0000)]보다는 크게 형성되는 것이 바람직할 수 있다. 더 정확하게는 강성계수는 [0.0002×가스력에 의한 랩 하중(N)+7.5202] 보다 크게 형성되는 것이 바람직하다.Here, when the limit line refers to FIG. 8, the slope of the limit line may range from about 0.0001 to 0.0003, and the offset amount may range from 7.0000 to 8.0000. Accordingly, it may be preferable that the stiffness coefficient is formed to be larger than at least [(0.0001 to 0.0003) x lap load (N) + (7.000 to 8.0000) by gas force]]. More precisely, the stiffness coefficient is preferably formed larger than [0.0002 x lap load (N) + 7.5202 by gas force].
한편, 본 실시예에서는 제1 랩의 토출단 부근에 대한 랩 강성을 최적화하기 위한 강성계수의 제한범위를 살펴보았으나, 이는 제1 랩(또는 제2 랩)의 다른 구간에도 적용될 수 있다. 다만, 제1 랩(또는 제2 랩)의 다른 구간에서는 그에 따른 한계선이 다르게 해석될 수 있으므로, 그 구간에서의 강성계수 제한범위는 새로이 산출되는 한계선 제한범위에 따라 정의될 수 있다.Meanwhile, in the present embodiment, the range of the stiffness coefficient for optimizing the lap stiffness around the discharge end of the first lap has been described, but this may be applied to other sections of the first lap (or the second lap). However, since the limit line may be interpreted differently in another section of the first lap (or second lap), the stiffness coefficient limit in the section may be defined according to the newly calculated limit line limit.
상기와 같이, 제1 랩(또는 제2 랩)의 토출단에 인접한 부분의 랩 강성을 최적화하여 형성함으로써, 도 9와 같이 상대적으로 높은 배압력과 가스력(및 원심력)을 받는 중심부측 토출단의 랩 변형을 종래(점선 표시)에 비해 최소화할 수 있고, 이를 통해 제1 랩(323)이 마주보는 제2 스크롤(33)의 제2 경판부(331)를 향해 과도하게 밀착되는 것을 방지하여 제1 랩(323)과 제2 경판부(331)(또는 제2 랩과 제1 경판부) 사이에서의 마찰손실이나 마모를 줄여 압축기 효율을 높일 수 있다.As described above, by optimizing the stiffness of the portion adjacent to the discharge end of the first lap (or the second lap), as shown in Fig. 9, the discharge end of the center side receiving a relatively high back pressure and gas force (and centrifugal force) It is possible to minimize the deformation of the lap compared to the conventional (dotted line display), thereby preventing the first lap 323 from being in close contact with the second hard plate portion 331 of the second scroll 33 facing each other. Compressor efficiency can be improved by reducing friction loss or wear between the first wrap 323 and the second hard plate portion 331 (or the second wrap and the first hard plate portion).
또, 제1 랩(323)(또는 제2 랩)의 토출단에 인접한 부분의 랩 강성을 최적화하여 형성함으로써, 제1 랩(323)(또는 제2 랩)의 중심부측 토출단이 바깥쪽을 향해 반경방향으로 휘어져 변형되는 것을 억제할 수 있고, 이를 통해 압축실(V1)(V2) 간의 누설을 억제하여 압축기 효율을 높이는 동시에 랩의 토출단이 파단되는 것을 억제하여 압축기의 신뢰성을 높일 수 있다.In addition, by optimizing the stiffness of the portion adjacent to the discharge end of the first lap 323 (or the second lap), the discharge end of the center side of the first lap 323 (or the second lap) is extended outward. It is possible to suppress the deformation in the radial direction toward the top, thereby suppressing the leakage between the compression chamber (V1) (V2) to increase the compressor efficiency and at the same time suppress the breakage of the discharge end of the wrap to increase the reliability of the compressor. .
또, 제1 스크롤(32)의 중심부를 회전축(50)이 관통하여 제1 랩(323)의 토출단이 제1 스크롤(32)의 중심에서 멀리 위치하는 경우에도 토출단에 인접한 부분에서의 랩 강성을 최적화함으로써, 제1 랩(323)(또는 제2 랩)과 이에 대응하는 제2 경판부(331) 사이의 마찰이나 마모 또는 고정랩의 변형이나 파단을 방지하여 압축기의 효율과 신뢰성을 높일 수 있다.In addition, even when the rotating shaft 50 penetrates the center of the first scroll 32 so that the discharge end of the first wrap 323 is located far from the center of the first scroll 32, the wrap at the portion adjacent to the discharge end is performed. By stiffness, the efficiency and reliability of the compressor can be increased by preventing friction, wear or deformation or fracture of the fixed wrap between the first wrap 323 (or the second wrap) and the corresponding second hard plate portion 331. Can be.

Claims (14)

  1. 중심부에는 토출단을, 가장자리부에는 흡입단을 각각 가지며, 상기 토출단에서 흡입단까지 복수 개의 곡선이 연결되어 형성되는 제1 랩; 및A first wrap having a discharge end at a center portion and a suction end at an edge portion thereof, the first wrap being formed by connecting a plurality of curves from the discharge end to the suction end; And
    중심부에는 토출단을, 가장자리부에는 흡입단을 각각 가지며, 상기 토출단에서 흡입단까지 복수 개의 곡선이 연결되어 형성되고, 상기 토출단에는 회전축이 상기 제1 랩과 중첩되어 결합되도록 회전축 결합부가 형성되며, 상기 제1 랩에 맞물려 상기 제1 랩에 대해 선회운동을 하면서 그 제1 랩과 함께 중심부를 향해 이동하는 압축실을 형성하는 제2 랩;을 포함하고,It has a discharge end at the center and a suction end at the edge, respectively, a plurality of curves are formed from the discharge end to the suction end, the rotary shaft coupling portion is formed so that the rotary shaft is coupled to overlap the first wrap And a second wrap that engages with the first wrap and forms a compression chamber that moves toward the center with the first wrap while pivoting about the first wrap.
    상기 제1 랩과 제2 랩 중에서 적어도 어느 한쪽 랩의 특정 구간은 그 특정 구간에서의 랩 평균높이를 랩 평균두께로 나눠 제1 값을 구하고, 상기 제1 값에 상기 랩의 평균 곡률반경을 곱하여 제2 값을 구하며, 그 제2 값에 대한 역수로 정의되는 강성계수를 이용하여 형성되는 것을 특징으로 하는 스크롤 압축기.In a specific section of at least one of the first lap and the second lap, a lap average height in the specific lap is divided by a lap average thickness to obtain a first value, and the first value is multiplied by the average radius of curvature of the lap. And a second value is obtained and is formed using a stiffness coefficient defined by the inverse of the second value.
  2. 제1항에 있어서,The method of claim 1,
    상기 강성계수의 제한범위가 [(0.0001~0.0003)×랩 하중(N)+(7.0000 ~ 8.0000)]으로 정의되는 한계선 제한범위 이상이 되도록 형성되는 것을 특징으로 하는 스크롤 압축기.And a limit range of the stiffness coefficient is greater than or equal to the limit line limit range defined by [(0.0001 to 0.0003) x lap load (N) + (7.0000 to 8.0000)].
  3. 제2항에 있어서,The method of claim 2,
    상기 한계선 제한범위는 [0.0002×랩 하중(N)+7.5202]으로 정의되는 것을 특징으로 하는 스크롤 압축기. The limit line limit range is defined as [0.0002 × lap load (N) + 7.5202] scroll compressor.
  4. 제2항에 있어서,The method of claim 2,
    상기 회전축의 회전각을 기준으로 상기 제1 랩의 중심부측을 토출단이라고 하고, 그 토출단을 0°라고 할 때, When the center side of the first lap is called an ejection end and the ejection end is 0 ° based on the rotation angle of the rotation shaft,
    상기 특정 구간은 상기 회전축의 회전각을 기준으로 0 ~ 45°범위인 것을 특징으로 하는 스크롤 압축기.The specific section is a scroll compressor, characterized in that the range of 0 ~ 45 ° based on the rotation angle of the rotary shaft.
  5. 제1항 내지 제4항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 4,
    상기 회전축 결합부의 일측에는 원호압축면이 형성되고, One side of the rotating shaft coupling portion is formed with an arc compression surface,
    상기 원호압축면과 상기 회전축 결합부의 외측면 사이의 구간에는 상기 제2 랩의 두께가 감소하는 오목부가 형성되며, 상기 제1 랩의 토출단 부근의 구간에는 상기 제2 랩의 오목부와 맞물리도록 돌기부가 형성되고, A recess is formed in the section between the arc compression surface and the outer surface of the rotating shaft coupling portion to reduce the thickness of the second wrap, and in a section near the discharge end of the first wrap to engage the recess of the second wrap. Protrusions are formed,
    상기 돌기부가 형성되는 구간의 적어도 일부는 상기 강성계수의 범위를 만족하도록 형성되는 것을 특징으로 하는 스크롤 압축기.At least a portion of the section in which the projection is formed is characterized in that the scroll compressor is formed to satisfy the range of the stiffness coefficient.
  6. 중심부에 회전축이 관통되는 축수구멍이 형성되고 상기 축수구멍의 주변에 토출구가 형성되는 제1 경판부, 상기 제1 경판부의 일측면에 돌출 형성되는 제1 랩을 포함하는 제1 스크롤; 및A first scroll including a first hard plate portion having a rotating shaft penetrating a rotation shaft at a central portion thereof, and a first wrap portion protruding from one side of the first hard plate portion; And
    중심부에 상기 제1 스크롤의 축수구멍을 관통하는 회전축이 편심지게 결합되도록 회전축 결합부가 형성되는 제2 경판부, 상기 제2 경판부의 일측면에 돌출 형성되며 상기 제1 랩에 맞물려 함께 압축실을 형성하는 제2 랩을 포함하는 제2 스크롤;을 포함하고,A second hard plate portion having a rotary shaft coupling portion formed therein so as to eccentrically engage a rotary shaft penetrating the bearing hole of the first scroll in a central portion thereof, and protruding from one side of the second hard plate portion and engaging the first wrap to form a compression chamber together; And a second scroll comprising a second wrap to
    상기 제1 랩은 랩 높이를 랩 두께로 나누고, 그 값에 상기 제1 랩의 곡률반경을 곱한 역수로 정의되는 강성계수의 제한범위가 0.005mm 이상이 되도록 형성되는 것을 특징으로 하는 스크롤 압축기.And the first lap is formed such that the lap height is divided by the lap thickness, and a limit of the stiffness coefficient defined by the inverse of the value of the lap thickness of the first lap is 0.005 mm or more.
  7. 제6항에 있어서,The method of claim 6,
    상기 강성계수 제한범위는 상기 제1 랩에서 랩의 진행방향을 따라 임의의 두 지점 사이의 구간에 대해 정의되며,The stiffness limit range is defined for a section between any two points along the direction of travel of the lap in the first lap,
    상기 랩 높이, 랩 두께, 랩 곡률반경은 해당 구간의 평균 랩 높이, 평균 랩 두께, 평균 랩 곡률반경으로 정의되는 것을 특징으로 하는 스크롤 압축기.The lap height, lap thickness, lap curvature radius is a scroll compressor, characterized in that defined by the average lap height, average lap thickness, the average lap curvature radius.
  8. 제6항에 있어서,The method of claim 6,
    상기 강성계수 제한범위는 상기 제1 랩에서 어느 한 지점에 대해 정의되며,The stiffness limit is defined for any point in the first lap,
    상기 랩 높이, 랩 두께, 랩 곡률반경은 해당 지점의 랩 높이, 랩 두께, 랩 곡률반경으로 정의되는 것을 특징으로는 것을 특징으로 하는 스크롤 압축기.The lap height, lap thickness, lap radius of curvature is characterized in that the scroll height, lap thickness, lap radius of curvature of the point characterized in that the scroll compressor.
  9. 제7항 또는 제8항에 있어서,The method according to claim 7 or 8,
    상기 제1 랩에서 상기 토출구에 인접한 쪽의 단부에서 어느 한 지점까지의 구간 또는 상기 구간의 어느 한 지점에서는 상기 강성계수의 제한범위가 [(0.0001~0.0003)×랩 하중(N)+(7.0000 ~ 8.0000)]으로 정의되는 한계선 제한범위 이상으로 형성되는 것을 특징으로 하는 스크롤 압축기.In the section from the end of the first lap to the point adjacent to the discharge port or at any point of the section, the limit of the stiffness coefficient is [(0.0001 to 0.0003) x lap load (N) + (7.0000 to 8.0000)], wherein the scroll compressor is formed beyond the limit line limit.
  10. 내부공간에 오일이 저장되는 케이싱;Casing in which the oil is stored in the inner space;
    상기 케이싱의 내부공간에 구비되는 구동모터;A drive motor provided in the inner space of the casing;
    상기 구동모터에 결합되는 회전축;A rotating shaft coupled to the drive motor;
    상기 구동모터의 하측에 구비되는 프레임;A frame provided below the drive motor;
    상기 프레임의 하측에 구비되고 일측면에 제1 랩이 형성되며, 중심부에 상기 회전축이 관통되는 축수구멍이 형성되고, 상기 축수구멍의 주변에 토출구가 형성되는 제1 스크롤; 및A first scroll provided at a lower side of the frame and having a first wrap formed at one side thereof, a bearing hole through which the rotating shaft penetrates at a central portion thereof, and a discharge hole formed at a periphery of the bearing hole; And
    상기 제1 랩과 맞물리는 제2 랩이 형성되고, 상기 회전축이 상기 제2 랩과 반경방향으로 중첩되도록 편심 결합되며, 상기 제1 스크롤에 대해 선회운동을 하면서 그 제1 스크롤과의 사이에 압축실을 형성하는 제2 스크롤; A second lap is formed to engage the first lap, the rotation axis is eccentrically coupled so as to radially overlap the second lap, and is compressed between the first lap while pivoting with respect to the first scroll. A second scroll forming a thread;
    상기 프레임과 제2 스크롤 사이에 구비되어 그 프레임과 제2 스크롤 사이의 간격을 중심부측인 내측 간격과 가장자리측인 외측 간격으로 분리하며, 상기 회전축을 통해 흡상되는 오일이 상기 내측 간격으로 유입되어 배압실을 형성하도록 하는 실링부재;를 포함하고,It is provided between the frame and the second scroll and separates the interval between the frame and the second scroll into an inner interval on the central side and an outer interval on the edge side, oil sucked through the rotating shaft flows into the inner interval and back pressure Includes; sealing member to form a seal,
    상기 제1 랩은 상기 토출구에 인접한 쪽의 단부에서 제1 지점까지는 평균 랩 높이를 평균 랩 두께으로 나누고, 이 값에 평균 랩 곡률반경을 곱한 값의 역수에 임의의 값 1000mm를 곱해서 정의되는 강성계수 제한범위가 5 이상이 되도록 형성되는 것을 특징으로 하는 스크롤 압축기.The first lap is a stiffness coefficient defined by multiplying the average lap height by the average lap thickness from the end of the side adjacent to the outlet to the first point, and multiplying this value by the reciprocal of the average lap curvature radius by an arbitrary value of 1000 mm. Scroll compressor, characterized in that formed so that the limit is 5 or more.
  11. 제10항에 있어서,The method of claim 10,
    상기 강성계수의 제한범위가 [(0.0001~0.0003)×랩 하중(N)+(7.0000 ~ 8.0000)]으로 정의되는 한계선 제한범위 이상이 되도록 형성되는 것을 특징으로 하는 스크롤 압축기.And a limit range of the stiffness coefficient is greater than or equal to the limit line limit range defined by [(0.0001 to 0.0003) x lap load (N) + (7.0000 to 8.0000)].
  12. 제11항에 있어서,The method of claim 11,
    상기 한계선 제한범위는 [0.0002×랩 하중(N)+7.5202]으로 정의되는 것을 특징으로 하는 스크롤 압축기. The limit line limit range is defined as [0.0002 × lap load (N) + 7.5202] scroll compressor.
  13. 제10항에 있어서,The method of claim 10,
    상기 회전축의 회전각을 기준으로 상기 제1 랩의 중심부측을 토출단이라고 하고, 그 토출단을 0°라고 할 때, When the center side of the first lap is called an ejection end and the ejection end is 0 ° based on the rotation angle of the rotation shaft,
    상기 제1 지점은 상기 회전축의 회전각을 기준으로 0 ~ 60°범위 이내의 어느 한 지점인 것을 특징으로 하는 스크롤 압축기.The first point is a scroll compressor, characterized in that any point within the range of 0 ~ 60 ° based on the rotation angle of the rotary shaft.
  14. 제10항에 있어서,The method of claim 10,
    상기 회전축 결합부의 일측에는 원호압축면이 형성되고, One side of the rotating shaft coupling portion is formed with an arc compression surface,
    상기 원호압축면과 상기 회전축 결합부의 외측면 사이의 구간에는 상기 제2 랩의 두께가 감소하는 오목부가 형성되며, 상기 제1 랩의 토출단 부근의 구간에는 상기 제2 랩의 오목부와 맞물리도록 돌기부가 형성되고, A recess is formed in the section between the arc compression surface and the outer surface of the rotating shaft coupling portion to reduce the thickness of the second wrap, and in a section near the discharge end of the first wrap to engage the recess of the second wrap. Protrusions are formed,
    상기 돌기부가 형성되는 구간의 적어도 일부는 상기 강성계수의 제한범위를 만족하도록 형성되는 것을 특징으로 하는 스크롤 압축기.At least a portion of the section in which the protrusion is formed is characterized in that the scroll compressor is formed to satisfy the limit of the stiffness coefficient.
PCT/KR2018/003816 2017-04-24 2018-03-30 Scroll compressor WO2018199488A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880026948.0A CN110582643B (en) 2017-04-24 2018-03-30 Scroll compressor having a discharge port

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170052516A KR102318124B1 (en) 2017-04-24 2017-04-24 Scroll compressor
KR10-2017-0052516 2017-04-24

Publications (1)

Publication Number Publication Date
WO2018199488A1 true WO2018199488A1 (en) 2018-11-01

Family

ID=63919909

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/003816 WO2018199488A1 (en) 2017-04-24 2018-03-30 Scroll compressor

Country Status (3)

Country Link
KR (1) KR102318124B1 (en)
CN (1) CN110582643B (en)
WO (1) WO2018199488A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102512409B1 (en) * 2021-02-15 2023-03-21 엘지전자 주식회사 Scroll compressor
KR102589771B1 (en) * 2021-11-30 2023-10-17 엘지전자 주식회사 Scroll Compressor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101059880B1 (en) * 2011-03-09 2011-08-29 엘지전자 주식회사 Scroll compressor
JP2012233421A (en) * 2011-04-28 2012-11-29 Sanyo Electric Co Ltd Scroll compressor
JP5109351B2 (en) * 2006-03-17 2012-12-26 ダイキン工業株式会社 Scroll member and scroll compressor provided with the same
KR20160022146A (en) * 2014-08-19 2016-02-29 엘지전자 주식회사 compressor
KR20160074301A (en) * 2014-12-18 2016-06-28 엘지전자 주식회사 Scroll compressor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04140492A (en) * 1990-10-01 1992-05-14 Toshiba Corp Gas compressing device
JP3350024B2 (en) 1995-08-31 2002-11-25 三菱重工業株式会社 Scroll type fluid machine
JP5352384B2 (en) * 2009-08-31 2013-11-27 株式会社日立産機システム Scroll type fluid machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5109351B2 (en) * 2006-03-17 2012-12-26 ダイキン工業株式会社 Scroll member and scroll compressor provided with the same
KR101059880B1 (en) * 2011-03-09 2011-08-29 엘지전자 주식회사 Scroll compressor
JP2012233421A (en) * 2011-04-28 2012-11-29 Sanyo Electric Co Ltd Scroll compressor
KR20160022146A (en) * 2014-08-19 2016-02-29 엘지전자 주식회사 compressor
KR20160074301A (en) * 2014-12-18 2016-06-28 엘지전자 주식회사 Scroll compressor

Also Published As

Publication number Publication date
CN110582643B (en) 2022-03-01
KR20180119054A (en) 2018-11-01
KR102318124B1 (en) 2021-10-27
CN110582643A (en) 2019-12-17

Similar Documents

Publication Publication Date Title
WO2018208024A1 (en) Scroll compressor
WO2018208023A1 (en) Scroll compressor
WO2017188557A1 (en) Scroll compressor
WO2017188573A1 (en) Scroll compressor
WO2017188558A1 (en) Scroll compressor
WO2018190520A1 (en) Scroll compressor
KR970003259B1 (en) Scroll compressor
WO2017188576A1 (en) Scroll compressor
WO2012091389A1 (en) Compressor
WO2018194294A1 (en) Rotary compressor
WO2017188575A1 (en) Scroll compressor
WO2018199488A1 (en) Scroll compressor
EP3824186A1 (en) Scroll compressor
WO2019045454A1 (en) Scroll compressor
WO2017188574A1 (en) Scroll compressor
WO2019045298A1 (en) Scroll compressor
WO2012091386A1 (en) Compressor
WO2018236143A1 (en) Scroll compressor and air conditioner including same
WO2018147562A1 (en) Hermetic compressor
WO2014014182A1 (en) Vane rotary compressor
WO2020116781A1 (en) High-pressure scroll compressor
WO2018190544A1 (en) Scroll compressor
WO2016143952A1 (en) Scroll compressor
WO2018230827A1 (en) Scroll compressor
EP2726743A1 (en) Scroll compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18791315

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18791315

Country of ref document: EP

Kind code of ref document: A1