WO2024150706A1 - Hot-rolled steel sheet - Google Patents

Hot-rolled steel sheet Download PDF

Info

Publication number
WO2024150706A1
WO2024150706A1 PCT/JP2023/047323 JP2023047323W WO2024150706A1 WO 2024150706 A1 WO2024150706 A1 WO 2024150706A1 JP 2023047323 W JP2023047323 W JP 2023047323W WO 2024150706 A1 WO2024150706 A1 WO 2024150706A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
grain size
evaluated
content
ferrite
Prior art date
Application number
PCT/JP2023/047323
Other languages
French (fr)
Japanese (ja)
Inventor
靖之 荻巣
武 豊田
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Publication of WO2024150706A1 publication Critical patent/WO2024150706A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Definitions

  • the present invention relates to a hot-rolled steel sheet.
  • the present invention claims priority based on Japanese Patent Application No. 2023-003920, filed in Japan on January 13, 2023, the contents of which are incorporated herein by reference.
  • high carbon steel used in gears in various machines, automobile transmission parts, seat recliners, etc. is high carbon cold rolled steel sheet, which is manufactured through cold rolling. This steel sheet is cold worked into the desired shape, and then quenched as necessary to ensure the desired hardness, to become the required part.
  • the strength (hardness) and abrasion resistance ultimately required for high carbon cold rolled steel sheets as components are adjusted by the chemical composition of the steel sheet and the heat treatment conditions, basically the large amount of carbon contained and the final quenching treatment.
  • the problem of reduced cold rolling properties of hot rolled steel sheets due to the large amount of carbon contained is a problem, and for steel sheets immediately before cold rolling in the manufacturing process of high carbon cold rolled steel sheets (hot rolled steel sheets), what is required is elongation, i.e., excellent cold rolling properties, rather than strength (hardness).
  • Patent Document 1 discloses a high carbon hot rolled steel sheet having a composition containing, by mass%, C: 0.10 to 0.33%, Si: 0.15 to 0.35%, Mn: 0.5 to 0.9%, P: 0.03% or less, S: 0.010% or less, sol. Al: 0.10% or less, N: 0.0065% or less, Cr: 0.90 to 1.5%, with the balance being Fe and unavoidable impurities, a microstructure having ferrite and cementite, and further, a cementite density of 0.25 pieces/ ⁇ m 2 or less, a hardness of HV 110 to 160, and a total elongation of 40% or more.
  • Patent Document 1 has been subjected to spheroidizing annealing, and although it has excellent cold rolling properties, the increase in the number of processes due to spheroidizing annealing poses a problem. Therefore, there is a demand for a hot-rolled steel sheet with higher productivity than the high-carbon hot-rolled steel sheet in Patent Document 1.
  • the present invention was made in consideration of the above circumstances, and aims to provide a hot-rolled steel sheet with excellent productivity and cold rolling properties.
  • the inventors conducted detailed studies on the cold rolling properties of hot-rolled steel sheets, looking at the chemical composition, metal structure, and manufacturing conditions. The inventors discovered that by increasing the reduction rate in the early stages of hot rolling and rolling under light pressure in the final stage, the ferrite fraction of the resulting hot-rolled steel sheet increases and the grain size distribution changes, improving the cold rolling properties.
  • the hot-rolled steel sheet of aspect 1 of the present invention has, in mass%, C: 0.20 to 0.70%, Si: 0.010 to 0.300%, Mn: 0.3 to 2.0%, Al: 0.001 to 0.100%, N: 0.0010 to 0.0100%, P: 0.008% to 0.030%, S: 0.010% or less, O: 0.0025% or less, Cr: 1.500% or less, B: 0.010% or less, Nb: 0.50% or less, Mo: 0.50% or less, V: 0.50% or less, Ti: 0.3000% or less, Cu: 0.500% or less, W: 0.500% or less, Ta: 0.500% or less, Ni: 0.500% or less, Mg: 0.003%
  • the steel sheet has a chemical composition containing 0.003% or less Ca, 0.030% or less Y, 0.030% or less Zr, 0.030% or less La, 0.030% or less Ce, 0.030% or less Sn, 0.
  • the crystal grain size plus 2/3 of the difference between the first grain size and the third grain size is set as the fourth grain size
  • a range equal to or greater than the first grain size and equal to or less than the third grain size is set as the first grain size range
  • a range greater than the third grain size and equal to or less than the fourth grain size is set as the second grain size range
  • a range greater than the fourth grain size and equal to or less than the second grain size is set as the third grain size range
  • the number of the evaluated ferrite crystal grains in the first grain size range is 2.5 to 3.0 times the number of the evaluated ferrite crystal grains in the second grain size range
  • the number of the evaluated ferrite crystal grains in the third grain size range is 2.0 to 2.5 times the number of the evaluated ferrite crystal grains in the second grain size range.
  • the average grain size of the evaluated ferrite grains in the first grain size range may be 3 ⁇ m to 20 ⁇ m.
  • the average grain size of the evaluated ferrite grains in the third grain size range may be 80 ⁇ m to 120 ⁇ m.
  • a fourth aspect of the present invention may be such that, in the hot-rolled steel sheet according to any one of the first to third aspects, the Vickers hardness Hv at a depth position of 1 ⁇ 4 of the sheet thickness may be 160 or less.
  • a fifth aspect of the present invention is the hot-rolled steel sheet according to any one of the first to fourth aspects, in which the total elongation may be 40% or more.
  • the above aspect of the present invention makes it possible to provide a hot-rolled steel sheet with excellent productivity and cold rolling properties.
  • the chemical composition and metal structure of the hot-rolled steel sheet according to one embodiment of the present invention (hereinafter, sometimes simply referred to as the steel sheet according to this embodiment), as well as the rolling conditions in the manufacturing method for producing the steel sheet, are described in detail below.
  • C is an essential element for increasing the strength of steel sheets. If the C content is less than 0.20%, the effect of improving the cold rolling property by controlling the structure cannot be sufficiently obtained.
  • the C content is set to 0.20% or more, and preferably 0.25% or more.
  • the C content is set to 0.70% or less, and preferably 0.60% or less. . If the C content is within the above range, it is possible to ensure the usual level of tensile properties required for a high carbon cold rolled steel sheet after cold rolling and heat treatment.
  • Si is a solid solution strengthening element and is generally contained in high carbon cold rolled steel sheets to increase the strength of the steel sheets.
  • the Si content is set to 0.010% or more, and preferably to 0.100% or more.
  • the Si content is set to 0.300% or less.
  • the Si content is preferably 0.150% or less. If the Si content is within the above range, it is possible to ensure the usual level of tensile properties required for a high carbon cold rolled steel sheet after cold rolling and heat treatment.
  • Mn has the effect of improving the hardenability of steel and is an element that is generally contained in high carbon cold rolled steel sheets. If the Mn content is less than 0.3%, the effect of improving cold rolling properties by structure control is not achieved. Therefore, the Mn content is set to 0.3% or more, and preferably 1.0% or more. On the other hand, if the Mn content exceeds 2.0%, the formation of ferrite in the hot-rolled steel sheet is suppressed, and the desired cold rolling properties cannot be obtained. Therefore, the Mn content is set to 2.0% or less. The content is preferably 1.5% or less. If the Mn content is within the above range, it is possible to ensure the usual level of tensile properties required for a high carbon cold rolled steel sheet after cold rolling and heat treatment.
  • Al is an element that has a deoxidizing effect on steel. Therefore, Al may be contained in the steel. In order to obtain the above effect, the Al content is preferably 0.001% or more. Al Content is preferably 0.005% or more. On the other hand, if Al is contained in excess, not only does the above effect saturate, resulting in an increase in cost, but also the transformation temperature of the steel rises, increasing the load during hot rolling. The Al content is 100% or less. The Al content is preferably 0.090% or less. The Al content means the so-called total Al (T-Al) content.
  • N is an element that forms coarse nitrides in the steel sheet and deteriorates the cold rolling properties of the steel sheet. If the N content exceeds 0.0100%, the above deterioration becomes significant.
  • the N content is 0.0100% or less.
  • the N content may be 0.0090% or less, 0.0080% or less, or 0.0070% or less. On the other hand, if the N content is less than 0.0010%, the manufacturing cost increases significantly.
  • the N content is set to 0.0010% or more.
  • the N content may be set to 0.0020% or more.
  • P is an element contained in steel as an impurity, and segregates at grain boundaries to embrittle the steel and deteriorate the cold rolling properties. For this reason, the P content is set to 0.030% or less.
  • the P content is preferably 0.020% or less, and more preferably 0.010% or less. The lower the P content, the better, but taking into consideration the time and cost required for removing P, the P content is set to 0.008% or more.
  • S is an element contained in steel as an impurity and forms sulfide-based inclusions that deteriorate cold rolling properties, so the S content is set to 0.010% or less.
  • the S content is preferably 0.009% or less, and more preferably 0.007% or less. The lower the S content, the better, and 0% is acceptable. However, taking into consideration the time and cost required for removing S, a content of 0.009% or less is preferable. It may be 0.001% or more.
  • O is an element that forms coarse oxides in steel and deteriorates cold rolling properties. If the O content exceeds 0.0025%, the cold rolling properties tend to deteriorate significantly. Therefore, the O content is set to 0.0025% or less.
  • the O content may be 0.0020% or less, or 0.0015% or less.
  • the O content is preferably small. However, it is economically undesirable to set the O content to less than 0.0001% because of excessively high costs. For this reason, the O content is set to 0.0001% or more.
  • the O content may be set to 0.0010% or more.
  • the steel plate according to this embodiment may contain the above elements, with the remainder being Fe and impurities.
  • impurities are elements that are mixed in due to various factors in the manufacturing process and raw materials such as ores and scraps when industrially manufacturing steel, and their presence is permitted to the extent that they do not impair the properties of the steel plate according to this embodiment.
  • Impurities also include elements that are not intentionally added to the steel plate according to this embodiment.
  • the steel plate according to this embodiment may further contain one or more elements (optional elements) from the following: Cr, B, Nb, Mo, V, Ti, Cu, W, Ta, Ni, Mg, Ca, Y, Zr, La, Ce, Sn, Sb, and As. These elements do not necessarily have to be contained, so the lower limit is 0%.
  • Cr 1.500% or less
  • Cr is an element that is effective in increasing the hardenability and strength of steel sheets, and is generally used in high carbon cold rolled steel sheets. Therefore, Cr may be contained in the steel. In order to obtain the effect of improving the rollability, the Cr content is preferably 0.001% or more. On the other hand, if the Cr content exceeds 1.500%, Cr segregates in the center of the steel sheet to form coarse Cr carbides, which may deteriorate the cold rolling properties. 1.500% or less.
  • B suppresses the formation of ferrite and pearlite during the cooling process from austenite, promotes the formation of low-temperature transformation structures such as bainite or martensite, and is an element beneficial for increasing the strength of high-carbon cold-rolled steel sheets.
  • the B content is preferably 0.001% or more.
  • the formation of coarse B oxides and borides in the steel is prevented. This can lead to the formation of voids during cold rolling, which can deteriorate the cold rolling properties of the steel sheet. It inhibits the effect of improving rollability, so the B content is set to 0.010% or less.
  • Nb is an element effective for controlling the morphology of carbides, and is also an element effective for improving the toughness of steel plate because its addition refines the structure. Therefore, Nb may be contained in steel. In order to obtain the above effect due to Nb, the Nb content is preferably 0.01% or more. On the other hand, if Nb is added excessively, a large number of coarse Nb carbides are precipitated, which may cause voids during cold rolling. This may become the starting point and deteriorate the cold rolling property of the steel sheet. Therefore, the Nb content is set to 0.50% or less.
  • Mo is an element effective in strengthening high carbon cold rolled steel sheets. Therefore, Mo may be contained in the steel. In order to increase the strength of high carbon cold rolled steel sheets by Mo, the Mo content should be 0.05 or less. It is preferable that the Mo content is 0.01% or more. On the other hand, if added in excess, the cost increases and coarse Mo carbides are formed, which may deteriorate the cold rolling properties of the steel sheet. For this reason, the Mo content is set to 0.01% or more. . 50% or less.
  • V 0.50% or less
  • V is an element effective in controlling the morphology of carbides, and is also effective in improving the toughness of steel plates because it refines the structure when V is added. Therefore, V may be contained in steel. In order to obtain the effect of V, the V content is preferably 0.01% or more. On the other hand, if V is added in excess, a large number of fine V carbides are precipitated, which increases the strength of the steel sheet and significantly reduces the ductility. Therefore, the V content is set to 0.50% or less.
  • Ti 0.3000% or less
  • Ti is an important element for controlling the morphology of carbides, and a large amount of Ti promotes an increase in the strength of ferrite, so it is an element contained in high carbon cold rolled steel sheets.
  • the Ti content is 0.0001% or more, the effect of improving the strength of ferrite can be obtained.
  • excessive addition of Ti causes coarse Ti oxides or Ti carbo-nitrides to exist in the steel. Therefore, the Ti content is set to 0.3000% or less.
  • Cu 0.500% or less
  • Cu is an element that contributes to improving the strength of the steel sheet, and is contained in high carbon cold rolled steel sheet. Therefore, Cu may be contained in the steel.
  • the Cu content is It is preferable that the Cu content is 0.001% or more.
  • the Cu content is set to 0.500% or less, and preferably 0.300% or less.
  • W is a carbide-forming element and is an effective element for increasing the strength of steel sheets, and is contained in high carbon cold rolled steel sheets. Therefore, W may be contained in steel.
  • the W content is preferably 0.001% or more.
  • the W content is more preferably 0.005% or more.
  • the W content is further preferably 0.010% or more. .
  • W content is set to 0.500% or less.
  • the W content is set to 0.400% or less. It is preferable that:
  • Ta 0.500% or less
  • Ta is an element effective for controlling the morphology of carbides and improving the strength of steel sheets, and is contained in high carbon cold rolled steel sheets. Therefore, Ta may be contained in steel.
  • the Ta content is 0.001% or more.
  • the Ta content is set to 0.500% or less. It is more preferable that the Ta content is 0.300% or less. It is even more preferable that the Ta content is 0.200% or less.
  • Ni is an element effective in improving the strength of steel sheets, and is contained in high carbon cold rolled steel sheets. Therefore, Ni may be contained in steel.
  • the Ni content is The Ni content is preferably 0.001% or more.
  • the Ni content is more preferably 0.010% or more.
  • the Ni content is set to 0.500% or less, and preferably 0.400% or less.
  • Mg is an element that controls the morphology of sulfides and oxides and contributes to improving the bendability of the steel sheet, and is contained in high carbon cold rolled steel sheet, so Mg may be contained in the steel.
  • the Mg content is preferably 0.001% or more.
  • the Mg content is set to 0.003% or less, and preferably to 0.002% or less.
  • Ca is an element that can control the morphology of sulfides with a small amount of Ca. Therefore, Ca may be contained in the steel. In order to obtain the above effect, the Ca content should be 0.001% or more. However, if the Ca content is too high, coarse Ca oxides may be generated, and the Ca oxides may become the starting points for cracks during cold working, resulting in deterioration of cold rolling properties. Therefore, the Ca content is set to 0.003% or less, and preferably 0.002% or less.
  • Y is an element that effectively controls the morphology of sulfides even when the content is small. Therefore, Y may be contained in the steel. In order to obtain the above effect, the Y content However, if the Y content is too high, coarse Y oxides are generated, which may deteriorate the cold rolling property and the fracture resistance.
  • the content is set to 0.030% or less.
  • the Y content is preferably set to 0.020% or less.
  • Zr 0.030% or less
  • Zr is an element that can control the morphology of sulfides with a small amount. Therefore, Zr may be contained in the steel.
  • the Zr content is preferably 0.001% or more.
  • the Zr content is set to 0.030% or less. is preferably 0.020% or less.
  • La is an element that effectively controls the morphology of sulfides even when the content is small. Therefore, La may be contained in the steel.
  • the La content The La content is preferably 0.001% or more. However, if the La content is too high, coarse La oxides are generated, which may deteriorate the cold rolling property and the fracture resistance.
  • the La content is set to 0.030% or less.
  • the La content is preferably set to 0.020% or less.
  • Ce is an element that effectively controls the morphology of sulfides even when the content is small. Therefore, Ce may be contained in the steel.
  • the Ce content The Ce content is preferably 0.001% or more. However, if the Ce content is too high, coarse Ce oxides are generated, which may deteriorate the cold rolling property and the fracture resistance.
  • the Ce content is set to 0.030% or less.
  • the Ce content is preferably set to 0.020% or less.
  • Sn is an element that may be contained in a steel sheet when scrap is used as a raw material for the steel sheet.
  • Sn may cause a decrease in the cold rolling property of the steel sheet due to embrittlement of ferrite. For this reason, The lower the Sn content, the better.
  • the Sn content is set to 0.030% or less.
  • the Sn content is preferably set to 0.020% or less. However, it is not recommended to reduce the Sn content to less than 0.001%. However, this is not preferable because it leads to an excessive increase in refining costs. Therefore, the Sn content may be set to 0.001% or more.
  • Sb is an element that can be contained in steel sheets when scrap is used as the raw material for the steel sheets. Sb strongly segregates at grain boundaries, embrittling the grain boundaries, reducing ductility, and further increasing the cooling time. This may result in a decrease in hot rolling property. Therefore, the smaller the Sb content, the better.
  • the Sb content is set to 0.030% or less.
  • the Sb content is preferably set to 0.020% or less. Reducing the Sb content to less than 0.001% is not preferable because it leads to an excessive increase in refining costs. Therefore, the Sb content may be set to 0.001% or more.
  • As is an element that can be contained in steel sheets when scrap is used as the raw material for the steel sheets. As strongly segregates at grain boundaries and may cause a decrease in cold rolling properties. Therefore, the smaller the As content, the better.
  • the As content is set to 0.030% or less.
  • the As content is preferably set to 0.020% or less.
  • the As content is set to less than 0.001%. However, it is not preferable to reduce the As content to 0.001% or more because this leads to an excessive increase in refining costs.
  • the chemical composition of the steel sheet according to this embodiment can be determined by the following method.
  • the chemical composition of the steel sheet described above may be measured by a general chemical composition. For example, it may be measured using ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectrometry).
  • C and S may be measured using a combustion-infrared absorption method
  • N may be measured using an inert gas fusion-thermal conductivity method
  • O may be measured using an inert gas fusion-non-dispersive infrared absorption method.
  • the steel plate according to this embodiment has a metal structure at a depth position of 1/4 of the plate thickness (a position 1/4 of the plate thickness from the surface along the plate thickness direction) that is composed of 20 area % or more of ferrite, 40 area % or more of pearlite, and a remaining structure between 0 area % and 10 area %.
  • Ferrite 20% by area or more
  • Ferrite is a relatively soft phase in a high carbon steel sheet such as that of the present invention, and when it is mixed with a hard phase such as martensite, it improves the ductility of the steel sheet and improves the cold rolling properties. Therefore, at a depth position of 1/4 of the sheet thickness, ferrite is 20 area % or more. Ferrite is preferably 35 area % or more.
  • the upper limit of ferrite is not particularly limited, but in a high carbon steel sheet such as that of the present invention, it is, for example, 60 area % or less.
  • Pearlite is a structure that contains a large amount of cementite, and consumes C (carbon) in the steel, which contributes to increasing strength, and softens the steel. Therefore, at a depth position of 1/4 of the plate thickness, pearlite is 40 area % or more. More preferably, pearlite is 50 area % or more.
  • the upper limit of pearlite is not particularly limited, and is, for example, 80 area % or less.
  • the remaining structure is 0 area% or more and 10 area% or less.
  • the remaining structure refers to the remaining structure obtained by removing pearlite and ferrite from the metal structure.
  • the remaining structure includes at least one of bainite and martensite.
  • the remaining structure is preferably a structure mainly composed of at least one of bainite and martensite.
  • "a structure mainly composed of at least one of bainite and martensite” means that the total of bainite and martensite is 60 area% or more with respect to the total area of the remaining structure. More preferably, the total of bainite and martensite is 80 area% or more with respect to the total area of the remaining structure.
  • the upper limit of the total of bainite and martensite with respect to the total area of the remaining structure may be 100 area%. Since bainite is softer than martensite, it is preferable to control so that bainite is formed instead of martensite in the steel plate according to the present embodiment in which ductility is emphasized over strength.
  • martensite refers to fresh martensite and tempered martensite, but in the steel plate according to the present embodiment in which ductility is more important than strength, it is preferable to control so that tempered martensite is formed instead of fresh martensite.
  • bainite is 5 area% or more, preferably 7 area% or more. Martensite is, for example, 5 area% or less, preferably 3 area% or less.
  • Identification of each metal structure and calculation of its area and area ratio can be performed by EBSD (Electron Back Scattering Diffraction), X-ray measurement, corrosion using Nital reagent or Lepera solution, and by observing the steel plate cross section parallel to the rolling direction and perpendicular to the plate surface at a magnification of 1,000 to 50,000 times using a scanning electron microscope.
  • EBSD Electro Back Scattering Diffraction
  • X-ray measurement corrosion using Nital reagent or Lepera solution
  • the area and area ratio of ferrite can be measured by the following method. That is, the observation surface is finished by colloidal silica polishing or electrolytic polishing, and measurements are made at intervals (pitch) of 0.2 ⁇ m in a square region (square with a side length of 1/8 to 3/8 along the plate thickness direction) centered at 1/4 of the plate thickness from the surface of the steel plate and ranging from 1/8 to 3/8 of the plate thickness) using an EBSD attached to a scanning electron microscope.
  • the sample preparation conditions are within the range of conditions recommended in the Japan Society for Materials Science standard "Crystal orientation misorientation measurement standard for material evaluation using the electron backscatter diffraction (EBSD) method".
  • the value of the local misorientation average (Grain Average Misorientation: GAM) is calculated from the measurement data. Then, the area and area ratio are measured for areas where the local misorientation average value is less than 0.5° as ferrite.
  • the boundary with a crystal orientation misorientation of 15° or more is determined to be a grain boundary, and the area surrounded by this grain boundary is considered to be a crystal grain.
  • the local misorientation average is calculated by calculating the misorientation between adjacent measurement points and averaging it for all measurement points within the grain.
  • the area and area ratio of bainite are measured by taking a sample from a cross section of the steel plate parallel to the rolling direction, polishing the observed surface, etching the surface with nital solution, and observing a square region of 1/8 to 3/8 of the plate thickness centered at 1/4 of the plate thickness with a field emission scanning electron microscope (FE-SEM), and calculating the area ratio using known image analysis software.
  • the area ratio can be calculated using, for example, "ImageJ” as the image analysis software.
  • “ImageJ” is an open source, public domain image processing software that is widely used by those skilled in the art.
  • the structure in the above-mentioned square observation region is classified as follows.
  • Bainite is a collection of lath-shaped crystal grains, and the lath structure is a region that does not contain iron-based carbides with a major axis of 20 nm or more, or, if the lath structure contains iron-based carbides with a major axis of 20 nm or more, the carbides belong to a single variant, that is, a group of iron-based carbides elongated in the same direction.
  • the group of iron-based carbides elongated in the same direction refers to iron-based carbides whose elongation directions differ by within 5°.
  • the area ratio of martensite is measured by taking a sample from a cross section of the steel plate parallel to the rolling direction, polishing the observation surface, etching it with nital solution, and observing a square region of 1/8 to 3/8 of the plate thickness centered at 1/4 of the plate thickness with a field emission scanning electron microscope (FE-SEM), and calculating the area ratio using known image analysis software.
  • the area ratio can be calculated using, for example, "ImageJ” as the image analysis software.
  • “ImageJ” is an open source, public domain image processing software that is widely used by those skilled in the art. Martensite has a high dislocation density and has substructures such as blocks and packets within the grains, so it can be distinguished from other metal structures by electron channeling contrast images taken with a scanning electron microscope.
  • the pearlite area ratio can be measured by taking a sample from a cross section of the steel plate parallel to the rolling direction, polishing the observation surface, corroding it with Nital reagent, and observing a square region in the range of 1/8 to 3/8 thickness, centered at 1/4 of the plate thickness from the surface of the steel plate, using a secondary electron image taken with a scanning electron microscope. Regions in the secondary electron image where the bright and dark contrasts are lamellar are judged to be pearlite, and the area ratio is calculated using the image analysis software "ImageJ" mentioned above. Judging pearlite based on the contrast of secondary electron images is generally performed by those skilled in the art, and can be easily determined by those skilled in the art. If the total area ratio of each structure obtained by the above evaluation method is different from 100%, the area ratio of each structure is calculated by multiplying the area ratio of each structure by 100/(total area ratio of each structure).
  • the distribution state of the ferrite crystal grains in the sheet thickness direction is set within a predetermined range in order to ensure cold rolling properties. Specifically, fine ferrite crystal grains are relatively increased, and coarse ferrite crystal grains are relatively increased.
  • the reason why cold rolling properties can be ensured by setting the distribution state of the ferrite crystal grains in the sheet thickness direction within a predetermined range is not clear, but the inventor speculates as follows.
  • the mixture of fine and coarse grains causes a distribution of strain applied to each crystal grain. When the distribution is present, it is presumed that strain can be released from grains with high strain to grains with low strain during rolling (strain dispersion), and greater cold rolling properties can be ensured than in the case of a normal distribution.
  • the ferrite grains excluding 5% of the smallest grain size side and 5% of the largest grain size side of all ferrite grains are used as the ferrite grains for evaluation, and the distribution state of the grain size is evaluated.
  • the ferrite grains measured at a depth position of 1/4 of the plate thickness by the electron backscatter diffraction (EBSD) method described above ferrite grains excluding 5% of the total number of ferrite grains from the maximum grain size side and 5% of the total number of ferrite grains from the minimum grain size side of the ferrite grains are regarded as the evaluated ferrite grains.
  • the minimum value of the grain size of the evaluated ferrite grains is set as the first grain size
  • the maximum value of the grain size of the evaluated ferrite grains is set as the second grain size
  • the grain size obtained by adding 1/3 of the difference between the second grain size and the first grain size to the first grain size is set as the third grain size
  • the grain size obtained by adding 2/3 of the difference between the second grain size and the first grain size to the first grain size is regarded as the fourth grain size.
  • the range of the first particle size or more and the third particle size or less is set as the first particle size range
  • the range of the third particle size or more and the fourth particle size or less is set as the second particle size range
  • the range of the fourth particle size or more and the second particle size or less is set as the third particle size range.
  • the number of evaluated ferrite grains in the first grain size range of the steel plate according to this embodiment is 2.5 to 3.0 times the number of evaluated ferrite grains in the second grain size range.
  • the number of evaluated ferrite grains in the third grain size range of the steel plate according to this embodiment is 2.0 to 2.5 times the number of evaluated ferrite grains in the second grain size range.
  • the evaluated ferrite grains in each grain size range have a clear distribution, which makes the strain distribution remarkable and improves the cold rolling property of the steel plate.
  • the number of evaluated ferrite grains in the first grain size range of the steel plate according to this embodiment is 2.6 to 3.0 times the number of evaluated ferrite grains in the second grain size range.
  • the number of evaluated ferrite grains in the third grain size range is preferably 2.2 to 2.5 times the number of evaluated ferrite grains in the second grain size range.
  • the number of evaluated ferrite grains in the first grain size range is preferably 1.1 to 1.4 times the number of evaluated ferrite grains in the third grain size range. More preferably, the number of evaluated ferrite grains in the first grain size range of the steel plate according to this embodiment is 1.2 to 1.4 times the number of evaluated ferrite grains in the third grain size range. The number of evaluated ferrite grains in the first grain size range of the steel plate according to this embodiment is 1.1 to 1.4 times the number of evaluated ferrite grains in the third grain size range, thereby further improving the cold rolling properties of the steel plate.
  • the average grain size of the evaluated ferrite grains in the first grain size range is preferably 3 ⁇ m to 20 ⁇ m.
  • the more preferable average grain size of the evaluated ferrite grains in the first grain size range is 3 ⁇ m to 10 ⁇ m.
  • the average grain size of the evaluated ferrite grains in the second grain size range is more than 20 ⁇ m and less than 80 ⁇ m.
  • a more preferable average grain size of the evaluated ferrite grains in the second grain size range is 30 ⁇ m to 70 ⁇ m, and more preferably 40 ⁇ m to 60 ⁇ m.
  • the average grain size of the evaluated ferrite grains in the third grain size range is preferably 80 ⁇ m to 120 ⁇ m.
  • the more preferable average grain size of the evaluated ferrite grains in the third grain size range is 100 ⁇ m to 120 ⁇ m.
  • the average grain size of the evaluated ferrite grains in the third grain size range be 80 ⁇ m to 120 ⁇ m, the cold rolling properties of the steel sheet can be further improved.
  • Ferrite can be identified and the grain size calculated by observing the steel plate cross section parallel to the rolling direction and perpendicular to the plate surface at a magnification of 1,000 to 50,000 times using EBSD (Electron Back Scattering Diffraction) and a scanning electron microscope.
  • EBSD Electro Back Scattering Diffraction
  • the present invention uses software such as "OIM DataCollectionTM (ver. 7)" manufactured by TSL Solutions Co., Ltd. as software for acquiring crystal orientation data.
  • the observation surface is finished by colloidal silica polishing or electrolytic polishing, and measurements are taken at intervals (pitch) of 0.2 ⁇ m in a square region (square with sides of 1/8 to 3/8 of the thickness along the plate thickness direction) centered at 1/4 of the plate thickness from the surface of the steel plate, at 0.2 ⁇ m intervals (pitch).
  • the sample preparation conditions are within the range recommended in the Japan Society for Materials Science standard "Crystal orientation misorientation measurement standard for material evaluation using electron backscatter diffraction (EBSD) method".
  • the local misorientation average (Grain Average Misorientation: GAM) value is calculated from the measurement data. Areas where the local misorientation average value is less than 0.5° are considered to be ferrite crystal grains.
  • boundaries where the crystal orientation misorientation is 15° or more are considered to be grain boundaries, and the areas surrounded by these grain boundaries are considered to be crystal grains.
  • the average local orientation difference is calculated by calculating the orientation difference between adjacent measurement points and averaging it for all measurement points within the crystal grain.
  • the crystal grain size is measured for the obtained ferrite crystal grain.
  • the crystal grain size is the circle equivalent diameter.
  • the circle equivalent diameter of a crystal grain means the diameter of a circle having an area equal to the area of the crystal grain.
  • the Vickers hardness Hv at a depth position of 1/4 of the plate thickness of the steel plate according to this embodiment is preferably 160 or less. More preferably, the Vickers hardness Hv at a depth position of 1/4 of the plate thickness is 150 or less. By having the Vickers hardness Hv at a depth position of 1/4 of the plate thickness of 160 or less, the cold rolling properties can be further improved.
  • the Vickers hardness at a depth of 1/4 of the plate thickness of the steel plate can be measured by the following procedure. First, the plate thickness cross section parallel to the rolling direction and plate thickness direction of the steel plate is mechanically polished to a mirror finish. On this polished surface, the Vickers hardness (HV) is measured at 12 points on a straight line parallel to the rolling direction at a distance (depth) of 1/4 of the plate thickness from the surface of the steel plate toward the inside of the plate thickness, with an indentation load of 20 gf. The Vickers hardness at a depth of 1/4 of the plate thickness of the steel plate is determined by averaging the Vickers hardness of 10 points excluding the lowest and highest values from these 12 measured points.
  • the distance between each measurement point is preferably at least four times the distance of the indentation.
  • the distance at least four times the distance of the indentation referred to here is the distance obtained by multiplying the diagonal length of the indentation made by the diamond indenter by a value of at least four times when measuring the Vickers hardness.
  • Total elongation is 40% or more
  • the total elongation of the steel sheet according to the present embodiment is preferably 40% or more, and more preferably 50% or more.
  • Total elongation can be determined by taking a JIS No. 5 tensile test piece from the steel plate in the direction perpendicular to the rolling direction and plate thickness direction, and conducting a tensile test in accordance with JIS Z 2241:2011.
  • the thickness of the steel plate according to the present embodiment is not limited and may be, for example, 1.5 mm to 5.0 mm.
  • the steel sheet according to this embodiment can be manufactured by a manufacturing method including the following steps (I) to (IV).
  • a cooling step in which cooling is started at an average cooling rate of 30°C/s or more within 0.2 to 2.0 seconds after the end of the finish rolling step, and cooled to a temperature range of 550°C to 650°C.
  • a winding step in which, after the cooling step, the coiling temperature is in the temperature range of 550°C to 650°C. Each step will be described below. Each temperature below refers to the surface temperature of the slab or steel plate.
  • Heating process it is preferable to heat a slab having the same chemical composition as the steel plate according to the present embodiment described above to 1100°C or more and less than 1350°C. If the heating temperature is less than 1100°C, the homogenization of the material is likely to be insufficient. In addition, if the heating temperature is 1350°C or more, it becomes difficult for the number of evaluated ferrite grains in the first grain size range, the number of evaluated ferrite grains in the second grain size range, and the number of evaluated ferrite grains in the third grain size range to satisfy the predetermined relationship.
  • the slab after the heating step is subjected to rough rolling as necessary, and then passed through multiple rolling stands in succession for rolling.
  • unit: kgf/ mm2
  • exp(0.753+3000/T) ⁇ 0.21 ⁇ ' 0.13 ...(1)
  • T is the temperature (K) immediately before entering the stand
  • is the equivalent plastic strain
  • ⁇ ' is the strain rate (/s).
  • determined by the following formula (1), to 40 or more in each of the first four rolling stands, it is possible to increase the amount of strain accumulated in the steel sheet during and immediately after processing, and to appropriately refine the crystal grains formed by recrystallization during and after processing.
  • determined by the following formula (1)
  • the finish rolling process it is preferable to perform rolling so that 5 ⁇ 10 is satisfied in the last rolling stand.
  • determined by the following formula (1), is satisfied 40 ⁇ 80 in each of the first four rolling stands, and 5 ⁇ 10 is satisfied in the last rolling stand, a difference occurs in the amount of strain introduced into each crystal grain. This causes selective crystal grain growth during the coiling process, and a mixed grain structure of ferrite crystal grains, which is characteristic of the present invention, is formed after the austenite ⁇ ferrite transformation.
  • the finish rolling start temperature is 1000°C or higher. This makes it easier to accumulate appropriate strain in each of the first four rolling stands. If the finish rolling start temperature is 1000°C or higher, it makes it easier to accumulate appropriate strain in the austenite grains during and immediately after processing in each of the first four rolling stands.
  • the interpass time between each rolling stand in the finishing rolling process is preferably 10.0 seconds or less. This makes it easier to accumulate appropriate strain in the austenite grains during and immediately after processing. There is no particular need to set a lower limit, and it is possible to make it as short as possible, but considering a practical equipment configuration, the lower limit is about 0.1 seconds. Furthermore, by setting the interpass time between each rolling stand in the finishing rolling process to 0.2 seconds or more and 3.0 seconds or less, it becomes easier to accumulate appropriate strain.
  • the average interpass time between each rolling stand is preferably 0.2 seconds or more and 3.0 seconds or less.
  • the temperature at the exit of the final rolling stand in the finishing rolling process be 850°C or higher and 1000°C or lower.
  • the cumulative reduction rate in the finish rolling process is set to 60% or more. By setting the cumulative reduction rate to 60% or more, it becomes easier to accumulate appropriate strain in the austenite grains during and immediately after processing.
  • the cooling step it is preferable to start cooling at an average cooling rate of 30° C./s or more between 0.2 and 2.0 seconds after the end of the finish rolling step.
  • an average cooling rate of 30° C./s or more between 0.2 and 2.0 seconds after the end of the finish rolling step.
  • the average cooling rate can be calculated by dividing the difference between the temperature at the start of cooling and the temperature at the end of cooling by the time from the start of cooling to the end of cooling.
  • cooling process it is preferable to cool to a temperature range of 550°C to 650°C (cooling stop temperature range).
  • a temperature range of 550°C to 650°C cooling stop temperature range.
  • Winding process In the coiling process, after the cooling process, the coiling temperature is in the temperature range of 550 to 650° C. By coiling in the temperature range of 550 to 650° C., the formation of martensite and bainite can be suppressed and the formation of pearlite and ferrite can be promoted.
  • Test pieces for SEM observation were taken from the obtained hot-rolled steel sheet as described above, and the cross section of the sheet thickness parallel to the rolling direction was polished. The metal structure was then observed at a depth of 1/4 of the sheet thickness using the method described above, and the area ratios of ferrite, pearlite, bainite, and martensite at a depth of 1/4 of the sheet thickness were obtained. The results obtained are shown in Table 5. Similarly, the grain size of ferrite grains was measured using the method described above, and the number N1 and average grain size of ferrite grains evaluated in the first grain size range, the number N2 and average grain size of ferrite grains evaluated in the second grain size range, and the number N3 and average grain size of ferrite grains evaluated in the third grain size range were evaluated.
  • Table 5 shows the ratio (N1/N2) of the number N1 of ferrite grains evaluated in the first grain size range to the number N2 of ferrite grains evaluated in the second grain size range, the ratio (N3/N2) of the number N3 of ferrite grains evaluated in the third grain size range to the number N2 of ferrite grains evaluated in the second grain size range, the ratio (N1/N3) of the number N1 of ferrite grains evaluated in the first grain size range to the number N2 of ferrite grains evaluated in the third grain size range, and the Vickers hardness.
  • the total elongation was determined by taking JIS No. 5 tensile test pieces from the hot-rolled steel sheet in a direction perpendicular to the rolling direction and conducting a tensile test in accordance with JIS Z 2241:2011. The results are shown in Table 6.
  • the cold rolling properties of the above hot-rolled steel sheets were evaluated for 90° bending workability using a 90° V-block test.
  • the hot-rolled steel sheet disclosed herein has excellent cold rolling properties and is therefore highly applicable in industry.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

The present invention provides a hot-rolled steel sheet having excellent productivity and excellent cold rolling properties. This hot-rolled steel sheet has a prescribed chemical composition in which the carbon content is 0.20-0.70 mass%. The metal structure at a depth position of 1/4 of the sheet thickness comprises at least 20% by area of ferrite, at least 40% by area of pearlite, and 0-10% by area of the remainder composition. Ferrite crystal grains measured by electron backscatter diffraction satisfy a prescribed relationship.

Description

熱延鋼板Hot-rolled steel sheets
 本発明は熱延鋼板に関する。
 本発明は、2023年1月13日に、日本国で出願された特願2023-003920号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a hot-rolled steel sheet.
The present invention claims priority based on Japanese Patent Application No. 2023-003920, filed in Japan on January 13, 2023, the contents of which are incorporated herein by reference.
 各種機械におけるギア、自動車のトランスミッション部品、シートリクライナーなどに使用される、いわゆる高炭素鋼においては、冷間圧延を経て製造される高炭素冷延鋼板がある。この鋼板は冷間加工により所望の形状に加工した後、所望の硬さを確保するために必要に応じて焼入れ処理を施して必要な部材となる。 The so-called high carbon steel used in gears in various machines, automobile transmission parts, seat recliners, etc., is high carbon cold rolled steel sheet, which is manufactured through cold rolling. This steel sheet is cold worked into the desired shape, and then quenched as necessary to ensure the desired hardness, to become the required part.
 高炭素冷延鋼板については、部材として最終的に必要とされる強度(硬さ)や耐摩耗性などは、鋼板の化学組成と熱処理条件、基本的には多量に含有する炭素と最終的な焼入れ処理により調整される。しかし、多量の炭素含有に伴い、熱延鋼板の冷間圧延性が低下することが問題となっており、高炭素冷延鋼板の製造過程における冷間圧延直前の鋼板(熱延鋼板)においては、強度(硬さ)よりも、むしろ伸び、すなわち優れた冷間圧延性が求められている。 The strength (hardness) and abrasion resistance ultimately required for high carbon cold rolled steel sheets as components are adjusted by the chemical composition of the steel sheet and the heat treatment conditions, basically the large amount of carbon contained and the final quenching treatment. However, the problem of reduced cold rolling properties of hot rolled steel sheets due to the large amount of carbon contained is a problem, and for steel sheets immediately before cold rolling in the manufacturing process of high carbon cold rolled steel sheets (hot rolled steel sheets), what is required is elongation, i.e., excellent cold rolling properties, rather than strength (hardness).
 冷間圧延性に優れた鋼板として、特許文献1には、質量%で、C:0.10~0.33%、Si:0.15~0.35%、Mn:0.5~0.9%、P:0.03%以下、S:0.010%以下、sol.Al:0.10%以下、N:0.0065%以下、Cr:0.90~1.5%含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、フェライトとセメンタイトを有するミクロ組織を有し、さらに前記セメンタイト密度が0.25個/μm2以下であり、硬さがHVで110~160、全伸びが40%以上である高炭素熱延鋼板が開示されている。 As a steel sheet having excellent cold rolling properties, Patent Document 1 discloses a high carbon hot rolled steel sheet having a composition containing, by mass%, C: 0.10 to 0.33%, Si: 0.15 to 0.35%, Mn: 0.5 to 0.9%, P: 0.03% or less, S: 0.010% or less, sol. Al: 0.10% or less, N: 0.0065% or less, Cr: 0.90 to 1.5%, with the balance being Fe and unavoidable impurities, a microstructure having ferrite and cementite, and further, a cementite density of 0.25 pieces/μm 2 or less, a hardness of HV 110 to 160, and a total elongation of 40% or more.
国際公開第2018/155254号International Publication No. 2018/155254
 しかし、特許文献1の高炭素熱延鋼板は、球状化焼鈍を施しているので、冷間圧延性は優れるものの、球状化焼鈍による工程数の増加が問題となる。そのため、特許文献1の高炭素熱延鋼板より生産性の高い熱延鋼板が求められている。 However, the high-carbon hot-rolled steel sheet in Patent Document 1 has been subjected to spheroidizing annealing, and although it has excellent cold rolling properties, the increase in the number of processes due to spheroidizing annealing poses a problem. Therefore, there is a demand for a hot-rolled steel sheet with higher productivity than the high-carbon hot-rolled steel sheet in Patent Document 1.
 本発明は上記の事情を鑑みてされた発明であり、生産性に優れ、かつ、冷間圧延性に優れた熱延鋼板を提供することを目的とする。 The present invention was made in consideration of the above circumstances, and aims to provide a hot-rolled steel sheet with excellent productivity and cold rolling properties.
 本発明者らは、熱延鋼板の冷間圧延性について、化学組成、金属組織、および製造条件について、詳細に検討した。本発明者らは、熱間圧延前段の圧下率を高め、最終段を軽圧下で圧延することで、得られる熱延鋼板のフェライト分率が増大すると共に粒径分布が変化し、冷間圧延性が改善されることを見出した。 The inventors conducted detailed studies on the cold rolling properties of hot-rolled steel sheets, looking at the chemical composition, metal structure, and manufacturing conditions. The inventors discovered that by increasing the reduction rate in the early stages of hot rolling and rolling under light pressure in the final stage, the ferrite fraction of the resulting hot-rolled steel sheet increases and the grain size distribution changes, improving the cold rolling properties.
 本発明は上記の知見に鑑みてなされた。本発明の要旨は、以下のとおりである。
<1>本発明の態様1の熱延鋼板は、質量%で、C:0.20~0.70%、Si:0.010~0.300%、Mn:0.3~2.0%、Al:0.001~0.100%、N:0.0010~0.0100%、P:0.008%~0.030%、S:0.010%以下、O:0.0025%以下、Cr:1.500%以下、B:0.010%以下、Nb:0.50%以下、Mo:0.50%以下、V:0.50%以下、Ti:0.3000%以下、Cu:0.500%以下、W:0.500%以下、Ta:0.500%以下、Ni:0.500%以下、Mg:0.003%以下、Ca:0.003%以下、Y:0.030%以下、Zr:0.030%以下、La:0.030%以下、Ce:0.030%以下、Sn:0.030%以下、Sb:0.030%以下、及び、As:0.030%以下を含有し、残部がFeおよび不純物からなる化学組成を有し、板厚1/4の深さ位置において、金属組織が、20面積%以上のフェライトと、40面積%以上のパーライトと、0面積%以上10面積%以下の残部組織とからなり、前記残部組織がベイナイトおよびマルテンサイトのうち少なくとも一方を含み、電子後方散乱回折法で測定されるフェライト結晶粒のうち、最大結晶粒径側から、前記フェライト結晶粒の全個数に対して5%の前記フェライト結晶粒と、前記フェライト結晶粒の最小結晶粒径側から前記フェライト結晶粒の全個数に対して5%の前記フェライト結晶粒とを除いたフェライト結晶粒を評価フェライト結晶粒として扱い、前記評価フェライト結晶粒の結晶粒径の最小値を第1粒径に設定し、前記評価フェライト結晶粒の結晶粒径の最大値を第2粒径に設定し、前記第1粒径に、前記第2粒径と前記第1粒径との差の1/3を加えた結晶粒径を第3粒径に設定し、前記第1粒径に、前記第2粒径と前記第1粒径との差の2/3を加えた結晶粒径を第4粒径に設定し、前記第1粒径以上、前記第3粒径以下の範囲を第1粒径範囲に設定し、前記第3粒径超、前記第4粒径以下の範囲を第2粒径範囲に設定し、前記第4粒径超、前記第2粒径以下の範囲を第3粒径範囲に設定したとき、前記第1粒径範囲にある前記評価フェライト結晶粒の数は、前記第2粒径範囲にある前記評価フェライト結晶粒の数の2.5倍以上3.0倍以下であり、前記第3粒径範囲にある前記評価フェライト結晶粒の数は、前記第2粒径範囲にある前記評価フェライト結晶粒の数の2.0倍以上2.5倍以下である。
<2>本発明の態様2は、態様1の熱延鋼板において、前記第1粒径範囲にある前記評価フェライト結晶粒の平均結晶粒径が3μm~20μmであってもよい。
<3>本発明の態様3は、態様1または態様2の熱延鋼板において、前記第3粒径範囲にある前記評価フェライト結晶粒の平均結晶粒径が80μm~120μmであってもよい。
<4>本発明の態様4は、態様1~3のいずれか1つの熱延鋼板において、前記板厚1/4の深さ位置において、ビッカース硬さHvが160以下であってもよい。
<5>本発明の態様5は、態様1~4のいずれか1つに記載の熱延鋼板であって、全伸びが40%以上であってもよい。
The present invention has been made in view of the above findings.
<1> The hot-rolled steel sheet of aspect 1 of the present invention has, in mass%, C: 0.20 to 0.70%, Si: 0.010 to 0.300%, Mn: 0.3 to 2.0%, Al: 0.001 to 0.100%, N: 0.0010 to 0.0100%, P: 0.008% to 0.030%, S: 0.010% or less, O: 0.0025% or less, Cr: 1.500% or less, B: 0.010% or less, Nb: 0.50% or less, Mo: 0.50% or less, V: 0.50% or less, Ti: 0.3000% or less, Cu: 0.500% or less, W: 0.500% or less, Ta: 0.500% or less, Ni: 0.500% or less, Mg: 0.003% The steel sheet has a chemical composition containing 0.003% or less Ca, 0.030% or less Y, 0.030% or less Zr, 0.030% or less La, 0.030% or less Ce, 0.030% or less Sn, 0.030% or less Sb, and 0.030% or less As, with the balance being Fe and impurities, and at a depth position of 1/4 of the sheet thickness, the metal structure is composed of 20 area % or more ferrite, 40 area % or more pearlite, and a balance structure of 0 area % to 10 area %, and the balance structure contains at least one of bainite and martensite, and the ferrite structure measured by electron backscatter diffraction method is Among the crystal grains, ferrite crystal grains excluding 5% of the total number of the ferrite crystal grains from the maximum crystal grain size side and 5% of the total number of the ferrite crystal grains from the minimum crystal grain size side of the ferrite crystal grains are treated as evaluated ferrite crystal grains, the minimum value of the crystal grain size of the evaluated ferrite crystal grains is set as a first grain size, the maximum value of the crystal grain size of the evaluated ferrite crystal grains is set as a second grain size, a crystal grain size obtained by adding 1/3 of the difference between the second grain size and the first grain size to the first grain size is set as a third grain size, and a combination of the second grain size and the first grain size is set as a third grain size. When the crystal grain size plus 2/3 of the difference between the first grain size and the third grain size is set as the fourth grain size, a range equal to or greater than the first grain size and equal to or less than the third grain size is set as the first grain size range, a range greater than the third grain size and equal to or less than the fourth grain size is set as the second grain size range, and a range greater than the fourth grain size and equal to or less than the second grain size is set as the third grain size range, the number of the evaluated ferrite crystal grains in the first grain size range is 2.5 to 3.0 times the number of the evaluated ferrite crystal grains in the second grain size range, and the number of the evaluated ferrite crystal grains in the third grain size range is 2.0 to 2.5 times the number of the evaluated ferrite crystal grains in the second grain size range.
<2> According to a second aspect of the present invention, in the hot-rolled steel sheet of the first aspect, the average grain size of the evaluated ferrite grains in the first grain size range may be 3 μm to 20 μm.
<3> According to a third aspect of the present invention, in the hot-rolled steel sheet of the first or second aspect, the average grain size of the evaluated ferrite grains in the third grain size range may be 80 μm to 120 μm.
<4> A fourth aspect of the present invention may be such that, in the hot-rolled steel sheet according to any one of the first to third aspects, the Vickers hardness Hv at a depth position of ¼ of the sheet thickness may be 160 or less.
<5> A fifth aspect of the present invention is the hot-rolled steel sheet according to any one of the first to fourth aspects, in which the total elongation may be 40% or more.
 本発明の上記態様によれば、生産性に優れ、かつ、冷間圧延性に優れた熱延鋼板を提供することができる。 The above aspect of the present invention makes it possible to provide a hot-rolled steel sheet with excellent productivity and cold rolling properties.
 本発明の一実施形態に係る熱延鋼板(以下、単に本実施形態に係る鋼板という場合がある)における化学組成、金属組織、およびその鋼板を製造しうる製造方法における圧延条件等について以下に詳述する。 The chemical composition and metal structure of the hot-rolled steel sheet according to one embodiment of the present invention (hereinafter, sometimes simply referred to as the steel sheet according to this embodiment), as well as the rolling conditions in the manufacturing method for producing the steel sheet, are described in detail below.
<化学組成>
 まず、本実施形態に係る鋼板の化学組成について説明する。化学組成における各元素の含有量を示す「%」とは、断りがない限り、すべて質量%を意味する。本明細書中において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
<Chemical composition>
First, the chemical composition of the steel sheet according to this embodiment will be described. Unless otherwise specified, "%" indicating the content of each element in the chemical composition means mass%. In this specification, a numerical range expressed using "to" means a range including the numerical values written before and after "to" as the lower and upper limits.
[C:0.20~0.70%]
 C(炭素)は、鋼板の高強度化のために必須の元素である。C含有量が0.20%未満では組織制御による冷間圧延性向上効果を十分に得ることができない。そのため、C含有量を0.20%以上とする。C含有量は、好ましくは0.25%以上である。
 一方、C含有量が0.70%を超えると溶接性が低下するとともに冷間圧延性が劣化する。そのため、C含有量は0.70%以下とする。好ましくは0.60%以下である。
 なお、C含有量が上記の範囲内であれば、冷延および熱処理後の高炭素冷延鋼板として必要とされる通常レベルの引張特性の確保が可能である。
[C: 0.20-0.70%]
C (carbon) is an essential element for increasing the strength of steel sheets. If the C content is less than 0.20%, the effect of improving the cold rolling property by controlling the structure cannot be sufficiently obtained. The C content is set to 0.20% or more, and preferably 0.25% or more.
On the other hand, if the C content exceeds 0.70%, the weldability and cold rolling property are deteriorated. Therefore, the C content is set to 0.70% or less, and preferably 0.60% or less. .
If the C content is within the above range, it is possible to ensure the usual level of tensile properties required for a high carbon cold rolled steel sheet after cold rolling and heat treatment.
[Si:0.010~0.300%]
 Si(ケイ素)は固溶強化元素であり、鋼板の高強度化のため、高炭素冷延鋼板において一般的に含有させる元素である。組織制御による冷間圧延性向上効果を得るため、Si含有量を0.010%以上とする。Si含有量は好ましくは0.100%以上である。
 一方、Siを過剰に含有させると鋼板の脆化を招いて、組織制御を適用したとしても冷間圧延性を十分に確保することが困難となる。そのため、Si含有量を0.300%以下とする。Si含有量は、好ましくは0.150%以下である。
 なお、Si含有量が上記の範囲内であれば、冷延および熱処理後の高炭素冷延鋼板として必要とされる通常レベルの引張特性の確保が可能である。
[Si:0.010-0.300%]
Silicon (Si) is a solid solution strengthening element and is generally contained in high carbon cold rolled steel sheets to increase the strength of the steel sheets. The Si content is set to 0.010% or more, and preferably to 0.100% or more.
On the other hand, excessive Si content leads to embrittlement of the steel sheet, and it becomes difficult to ensure sufficient cold rolling properties even if microstructural control is applied. Therefore, the Si content is set to 0.300% or less. The Si content is preferably 0.150% or less.
If the Si content is within the above range, it is possible to ensure the usual level of tensile properties required for a high carbon cold rolled steel sheet after cold rolling and heat treatment.
[Mn:0.3~2.0%]
 Mnは、鋼の焼入性を向上させる作用を有し、高炭素冷延鋼板において一般的に含有させる元素である。Mn含有量が0.3%未満では組織制御による冷間圧延性向上効果を得ることが困難となる。したがって、Mn含有量は0.3%以上とする。Mn含有量は、好ましくは1.0%以上である。
 一方、Mn含有量が2.0%超では、熱延鋼板におけるフェライトの生成が抑制され、所望の冷間圧延性が得られない。したがって、Mn含有量は2.0%以下とする。Mn含有量は、好ましくは1.5%以下である。
 なお、Mn含有量が上記の範囲内であれば、冷延および熱処理後の高炭素冷延鋼板として必要とされる通常レベルの引張特性の確保が可能である。
[Mn: 0.3 to 2.0%]
Mn has the effect of improving the hardenability of steel and is an element that is generally contained in high carbon cold rolled steel sheets. If the Mn content is less than 0.3%, the effect of improving cold rolling properties by structure control is not achieved. Therefore, the Mn content is set to 0.3% or more, and preferably 1.0% or more.
On the other hand, if the Mn content exceeds 2.0%, the formation of ferrite in the hot-rolled steel sheet is suppressed, and the desired cold rolling properties cannot be obtained. Therefore, the Mn content is set to 2.0% or less. The content is preferably 1.5% or less.
If the Mn content is within the above range, it is possible to ensure the usual level of tensile properties required for a high carbon cold rolled steel sheet after cold rolling and heat treatment.
[Al:0.001~0.100%]
 Alは、鋼の脱酸作用を有する元素である。したがって、Alを鋼に含有させてもよい。上記効果を得るため、Al含有量を0.001%以上とすることが好ましい。Al含有量は、好ましくは0.005%以上である。
 一方、Alを過剰に含有させても上記効果が飽和してコスト上昇を招くばかりか、鋼の変態温度が上昇して、熱間圧延時の負荷が増大する。そのため、Al含有量は0.100%以下とする。Al含有量は、好ましくは0.090%以下である。Al含有量は、いわゆるtotal Al(T-Al)の含有量を意味する。
[Al: 0.001-0.100%]
Al is an element that has a deoxidizing effect on steel. Therefore, Al may be contained in the steel. In order to obtain the above effect, the Al content is preferably 0.001% or more. Al Content is preferably 0.005% or more.
On the other hand, if Al is contained in excess, not only does the above effect saturate, resulting in an increase in cost, but also the transformation temperature of the steel rises, increasing the load during hot rolling. The Al content is 100% or less. The Al content is preferably 0.090% or less. The Al content means the so-called total Al (T-Al) content.
[N:0.0010~0.0100%]
 Nは、鋼板中で粗大な窒化物を形成し、鋼板の冷間圧延性を劣化させる元素である。N含有量が0.0100%超では、上記の劣化が著しくなるので、N含有量を0.0100%以下とする。N含有量は0.0090%以下、0.0080%以下又は0.0070%以下であってもよい。
 一方、N含有量を0.0010%未満とする場合、製造コストが大幅に増加する。N含有量を0.0010%以上とする。N含有量を0.0020%以上としてもよい。
[N:0.0010-0.0100%]
N is an element that forms coarse nitrides in the steel sheet and deteriorates the cold rolling properties of the steel sheet. If the N content exceeds 0.0100%, the above deterioration becomes significant. The N content is 0.0100% or less. The N content may be 0.0090% or less, 0.0080% or less, or 0.0070% or less.
On the other hand, if the N content is less than 0.0010%, the manufacturing cost increases significantly. The N content is set to 0.0010% or more. The N content may be set to 0.0020% or more.
[P:0.008%~0.030%]
 Pは、不純物として鋼中に含有される元素であり、粒界に偏析して鋼を脆化させるとともに冷間圧延性を劣化させる元素である。このため、P含有量は0.030%以下とする。P含有量は、好ましくは0.020%以下であり、より好ましくは0.010%以下である。
 P含有量は少ないほど好ましいが、Pの除去時間、コストも考慮して0.008%以上とする。
[P: 0.008% to 0.030%]
P is an element contained in steel as an impurity, and segregates at grain boundaries to embrittle the steel and deteriorate the cold rolling properties. For this reason, the P content is set to 0.030% or less. The P content is preferably 0.020% or less, and more preferably 0.010% or less.
The lower the P content, the better, but taking into consideration the time and cost required for removing P, the P content is set to 0.008% or more.
[S:0.010%以下]
 Sは、不純物として鋼中に含有される元素であり、硫化物系介在物を形成して冷間圧延性を劣化させる元素である。このため、S含有量は0.010%以下とする。S含有量は、好ましくは0.009%以下、より好ましくは0.007%以下である。S含有量は少ないほど好ましく、0%でもよいが、Sの除去時間、コストも考慮して0.001%以上であってもよい。
[S: 0.010% or less]
S is an element contained in steel as an impurity and forms sulfide-based inclusions that deteriorate cold rolling properties, so the S content is set to 0.010% or less. The S content is preferably 0.009% or less, and more preferably 0.007% or less. The lower the S content, the better, and 0% is acceptable. However, taking into consideration the time and cost required for removing S, a content of 0.009% or less is preferable. It may be 0.001% or more.
[O:0.0025%以下]
 Oは、鋼中に粗大な酸化物を形成して冷間圧延性を劣化させる元素である。O含有量が0.0025%超では、冷間圧延性が顕著に劣化する傾向にある。このためO含有量を0.0025%以下とする。O含有量は0.0020%以下、0.0015%以下であってもよい。
 O含有量は少ない方が好ましい。しかしながら、O含有量を0.0001%未満とすることは、過度にコストが高くなるため経済的に好ましくない。このためO含有量を0.0001%以上としてもよい。O含有量を0.0010%以上としてもよい。
[O: 0.0025% or less]
O is an element that forms coarse oxides in steel and deteriorates cold rolling properties. If the O content exceeds 0.0025%, the cold rolling properties tend to deteriorate significantly. Therefore, the O content is set to 0.0025% or less. The O content may be 0.0020% or less, or 0.0015% or less.
The O content is preferably small. However, it is economically undesirable to set the O content to less than 0.0001% because of excessively high costs. For this reason, the O content is set to 0.0001% or more. The O content may be set to 0.0010% or more.
 本実施形態に係る鋼板は、上記の元素を含有し、残部がFe及び不純物であってもよい。ここで、不純物は、鋼を工業的に製造する際に、鉱石、スクラップ等の原料、製造工程の種々の要因によって混入する元素であって、本実施形態に係る鋼板の特性を阻害しない範囲で、存在が許容される元素である。また、不純物は、本実施形態に係る鋼板に対して意図的に添加した成分でないものを意味する元素も含む。 The steel plate according to this embodiment may contain the above elements, with the remainder being Fe and impurities. Here, impurities are elements that are mixed in due to various factors in the manufacturing process and raw materials such as ores and scraps when industrially manufacturing steel, and their presence is permitted to the extent that they do not impair the properties of the steel plate according to this embodiment. Impurities also include elements that are not intentionally added to the steel plate according to this embodiment.
 本実施形態に係る鋼板は、さらに、以下に示すCr、B、Nb、Mo、V、Ti、Cu、W、Ta、Ni、Mg、Ca、Y、Zr、La、Ce、Sn、Sb、Asのうち、1種以上の元素(任意元素)を含有してもよい。これらの元素は、必ずしも含まなくてよいので、下限は0%である。 The steel plate according to this embodiment may further contain one or more elements (optional elements) from the following: Cr, B, Nb, Mo, V, Ti, Cu, W, Ta, Ni, Mg, Ca, Y, Zr, La, Ce, Sn, Sb, and As. These elements do not necessarily have to be contained, so the lower limit is 0%.
[Cr:1.500%以下]
 Crは、焼入れ性を高めて鋼板の高強度化に有効で、高炭素冷延鋼板において一般的に活用される元素である。したがって、Crを鋼に含有させてもよい。組織制御による冷間圧延性向上効果を得るためには、Cr含有量は0.001%以上であることが好ましい。
 一方、Cr含有量が1.500%を超えると、Crが鋼板の中心部に偏析して粗大なCr炭化物が形成され、冷間圧延性を低下させる場合がある。このため、Cr含有量は1.500%以下とする。
[Cr: 1.500% or less]
Cr is an element that is effective in increasing the hardenability and strength of steel sheets, and is generally used in high carbon cold rolled steel sheets. Therefore, Cr may be contained in the steel. In order to obtain the effect of improving the rollability, the Cr content is preferably 0.001% or more.
On the other hand, if the Cr content exceeds 1.500%, Cr segregates in the center of the steel sheet to form coarse Cr carbides, which may deteriorate the cold rolling properties. 1.500% or less.
[B:0.010%以下]
 Bは、オーステナイトからの冷却過程においてフェライト及びパーライトの生成を抑え、ベイナイト又はマルテンサイト等の低温変態組織の生成を促し、高炭素冷延鋼板の高強度化に有益な元素である。したがって、鋼中にBを含有させてもよい。Bによる上記効果を得るためには、B含有量が0.001%以上であることが好ましい。一方、鋼中に粗大なB酸化物やホウ化物の生成を招き、それが冷間圧延時のボイドの発生起点となり、鋼板の冷間圧延性が劣化する場合がある。また、オーステナイトからの冷却過程においてフェライト及びパーライトの生成を抑え、組織制御による冷間圧延性向上効果を阻害する。このため、B含有量は0.010%以下とする。
[B: 0.010% or less]
B suppresses the formation of ferrite and pearlite during the cooling process from austenite, promotes the formation of low-temperature transformation structures such as bainite or martensite, and is an element beneficial for increasing the strength of high-carbon cold-rolled steel sheets. In order to obtain the above-mentioned effects of B, the B content is preferably 0.001% or more. On the other hand, the formation of coarse B oxides and borides in the steel is prevented. This can lead to the formation of voids during cold rolling, which can deteriorate the cold rolling properties of the steel sheet. It inhibits the effect of improving rollability, so the B content is set to 0.010% or less.
[Nb:0.50%以下]
 Nbは、炭化物の形態制御に有効な元素であり、その添加により組織を微細化するため鋼板の靭性の向上にも効果的な元素である。したがって、鋼中にNbを含有させてもよい。Nbによる当該効果を得るためには、Nb含有量を0.01%以上とすることが好ましい。一方、過剰に添加すると粗大なNb炭化物が多数析出し、それが冷間圧延時のボイドの発生起点となり、鋼板の冷間圧延性が劣化する場合がある。このため、Nb含有量は0.50%以下とする。
[Nb: 0.50% or less]
Nb is an element effective for controlling the morphology of carbides, and is also an element effective for improving the toughness of steel plate because its addition refines the structure. Therefore, Nb may be contained in steel. In order to obtain the above effect due to Nb, the Nb content is preferably 0.01% or more. On the other hand, if Nb is added excessively, a large number of coarse Nb carbides are precipitated, which may cause voids during cold rolling. This may become the starting point and deteriorate the cold rolling property of the steel sheet. Therefore, the Nb content is set to 0.50% or less.
[Mo:0.50%以下]
 Moは、高炭素冷延鋼板の強化に有効な元素である。したがって、Moを鋼に含有させてもよい。Moによって高炭素冷延鋼板を高強度化するためには、Mo含有量は0.01%以上であることが好ましい。一方、過剰に添加するとコストが上昇するとともに粗大なMo炭化物が形成されて鋼板の冷間圧延性が低下する場合がある。このため、Mo含有量は0.50%以下とする。
[Mo: 0.50% or less]
Mo is an element effective in strengthening high carbon cold rolled steel sheets. Therefore, Mo may be contained in the steel. In order to increase the strength of high carbon cold rolled steel sheets by Mo, the Mo content should be 0.05 or less. It is preferable that the Mo content is 0.01% or more. On the other hand, if added in excess, the cost increases and coarse Mo carbides are formed, which may deteriorate the cold rolling properties of the steel sheet. For this reason, the Mo content is set to 0.01% or more. . 50% or less.
[V:0.50%以下]
 Vは、炭化物の形態制御に有効な元素であり、その添加組織を微細化するため鋼板の靭性の向上にも効果的な元素である。したがって、鋼中にVを含有させてもよい。Vによる当該効果を得るためには、V含有量は0.01%以上であることが好ましい。一方、過剰に添加すると、微細なV炭化物が多数析出し、鋼板の強度が上昇するとともに延性が顕著に劣化し、冷間圧延性が低下する場合がある。このため、V含有量は0.50%以下とする。
[V: 0.50% or less]
V is an element effective in controlling the morphology of carbides, and is also effective in improving the toughness of steel plates because it refines the structure when V is added. Therefore, V may be contained in steel. In order to obtain the effect of V, the V content is preferably 0.01% or more. On the other hand, if V is added in excess, a large number of fine V carbides are precipitated, which increases the strength of the steel sheet and significantly reduces the ductility. Therefore, the V content is set to 0.50% or less.
[Ti:0.3000%以下]
 Tiは、炭化物の形態制御に重要な元素であり、多量の含有によりフェライトの強度増加を促すため、高炭素冷延鋼板に含有される元素である。したがって、鋼中にTiを含有させてもよい。しかし、Ti含有量が0.0001%以上であれば、フェライトの強度向上の効果が得られる。一方、過剰な添加は、粗大なTi酸化物又はTi炭窒化物が鋼中に存在して鋼板の冷間圧延性を低下させる場合がある。このため、Ti含有量は0.3000%以下とする。
[Ti: 0.3000% or less]
Ti is an important element for controlling the morphology of carbides, and a large amount of Ti promotes an increase in the strength of ferrite, so it is an element contained in high carbon cold rolled steel sheets. However, if the Ti content is 0.0001% or more, the effect of improving the strength of ferrite can be obtained. On the other hand, excessive addition of Ti causes coarse Ti oxides or Ti carbo-nitrides to exist in the steel. Therefore, the Ti content is set to 0.3000% or less.
[Cu:0.500%以下]
 Cuは、鋼板の強度の向上に寄与する元素であり、高炭素冷延鋼板に含有される。したがって、鋼中にCuを含有させてもよい。上記効果を得るためには、Cu含有量が0.001%以上であることが好ましい。ただし、Cu含有量が多すぎると、赤熱脆性を招き、熱間圧延での生産性を低下させるおそれがある。さらに、Cu含有量が多すぎると、粗大な介在物の形成による冷間圧延性の低下を引き起こすおそれがある。このため、Cu含有量は0.500%以下とする。Cu含有量は、0.300%以下であることが好ましい。
[Cu: 0.500% or less]
Cu is an element that contributes to improving the strength of the steel sheet, and is contained in high carbon cold rolled steel sheet. Therefore, Cu may be contained in the steel. In order to obtain the above effect, the Cu content is It is preferable that the Cu content is 0.001% or more. However, if the Cu content is too high, red shortness may be caused, and the productivity in hot rolling may be reduced. Furthermore, if the Cu content is too high, There is a risk of causing a deterioration in cold rolling property due to the formation of coarse inclusions. Therefore, the Cu content is set to 0.500% or less, and preferably 0.300% or less.
[W:0.500%以下]
 Wは炭化物形成元素であり、鋼板の高強度化に有効な元素であり、高炭素冷延鋼板に含有される。したがって、鋼中にWを含有させてもよい。上記の効果を得るためには、W含有量は0.001%以上であることが好ましい。W含有量は、0.005%以上であることがより好ましい。W含有量は、0.010%以上であることがさらに好ましい。
 一方、Wを過剰に含有させても効果が飽和し、コストが上昇する。したがって、Wを含有させる場合、W含有量を0.500%以下とする。W含有量は、0.400%以下であることが好ましい。
[W: 0.500% or less]
W is a carbide-forming element and is an effective element for increasing the strength of steel sheets, and is contained in high carbon cold rolled steel sheets. Therefore, W may be contained in steel. In the present invention, the W content is preferably 0.001% or more. The W content is more preferably 0.005% or more. The W content is further preferably 0.010% or more. .
On the other hand, if W is contained in an excessive amount, the effect saturates and the cost increases. Therefore, when W is contained, the W content is set to 0.500% or less. The W content is set to 0.400% or less. It is preferable that:
[Ta:0.500%以下]
 Taは、炭化物の形態制御と鋼板の強度の向上に有効な元素であり、高炭素冷延鋼板に含有される。したがって、鋼中にTaを含有させてもよい。上記効果を得るためには、Ta含有量が0.001%以上であることが好ましい。一方、Ta含有量が多すぎると、微細なTa炭化物が多数析出し、鋼板の延性の低下を招き、鋼板の冷間圧延性を低下させるおそれがある。このため、Ta含有量は0.500%以下とする。Ta含有量は、0.300%以下であることがより好ましい。Ta含有量は、0.200%以下であることがさらに好ましい。
[Ta: 0.500% or less]
Ta is an element effective for controlling the morphology of carbides and improving the strength of steel sheets, and is contained in high carbon cold rolled steel sheets. Therefore, Ta may be contained in steel. In order to obtain the above effect, it is preferable that the Ta content is 0.001% or more. On the other hand, if the Ta content is too high, a large number of fine Ta carbides are precipitated, which may lead to a decrease in the ductility of the steel sheet and a decrease in the cold rolling property of the steel sheet. For this reason, the Ta content is set to 0.500% or less. It is more preferable that the Ta content is 0.300% or less. It is even more preferable that the Ta content is 0.200% or less.
[Ni:0.500%]
 Niは、鋼板の強度の向上に有効な元素であり、高炭素冷延鋼板に含有される。したがって、鋼中にNiを含有させてもよい。上記効果を得るためには、Ni含有量が0.001%以上であることが好ましい。Ni含有量は、0.010%以上であることがより好ましい。一方、Ni含有量が多すぎると、鋼板の延性が低下して、冷間圧延性の低下を招くおそれがある。このため、Ni含有量は0.500%以下とする。Ni含有量は、0.400%以下であることが好ましい。
[Ni:0.500%]
Ni is an element effective in improving the strength of steel sheets, and is contained in high carbon cold rolled steel sheets. Therefore, Ni may be contained in steel. In order to obtain the above effect, the Ni content is The Ni content is preferably 0.001% or more. The Ni content is more preferably 0.010% or more. On the other hand, if the Ni content is too high, the ductility of the steel sheet decreases, and the cold rolling properties are deteriorated. Therefore, the Ni content is set to 0.500% or less, and preferably 0.400% or less.
[Mg:0.003%以下]
 Mgは、硫化物や酸化物の形態を制御し、鋼板の曲げ性の向上に寄与する元素であり、高炭素冷延鋼板に含有される。したがって、鋼中にMgを含有させてもよい。上記効果を得るためには、Mg含有量が0.001%以上であることが好ましい。しかし、Mg含有量が多すぎると、粗大な介在物の形成による冷間圧延性の低下を引き起こすおそれがある。このため、Mg含有量は、0.003%以下とする。Mg含有量は、0.002%以下であることが好ましい。
[Mg: 0.003% or less]
Mg is an element that controls the morphology of sulfides and oxides and contributes to improving the bendability of the steel sheet, and is contained in high carbon cold rolled steel sheet, so Mg may be contained in the steel. In order to obtain the above effects, the Mg content is preferably 0.001% or more. However, if the Mg content is too high, there is a risk of causing a decrease in cold rolling property due to the formation of coarse inclusions. For this reason, the Mg content is set to 0.003% or less, and preferably to 0.002% or less.
[Ca:0.003%以下]
 Caは、微量で硫化物の形態を制御できる元素である。したがって、鋼中にCaを含有させてもよい。上記効果を得るためには、Ca含有量は0.001%以上であることが好ましい。しかし、Ca含有量が多すぎると、粗大なCa酸化物が生成される場合があり、当該Ca酸化物は、冷間加工時に割れ発生の起点となり、その結果、冷間圧延性が劣化するおそれがある。このため、Ca含有量は、0.003%以下とする。Ca含有量は、0.002%以下であることが好ましい。
[Ca: 0.003% or less]
Ca is an element that can control the morphology of sulfides with a small amount of Ca. Therefore, Ca may be contained in the steel. In order to obtain the above effect, the Ca content should be 0.001% or more. However, if the Ca content is too high, coarse Ca oxides may be generated, and the Ca oxides may become the starting points for cracks during cold working, resulting in deterioration of cold rolling properties. Therefore, the Ca content is set to 0.003% or less, and preferably 0.002% or less.
[Y:0.030%以下]
 Yは、含有量が微量であっても、硫化物の形態制御に有効に作用する元素である。したがって、Yを鋼中に含有させてもよい。上記効果を得るためには、Y含有量は0.001%以上であることが好ましい。しかし、Y含有量が多すぎると、粗大なY酸化物が生成され、冷間圧延性や耐破断特性が低下するおそれがある。このため、Y含有量は、0.030%以下とする。Y含有量は、0.020%以下であることが好ましい。
[Y: 0.030% or less]
Y is an element that effectively controls the morphology of sulfides even when the content is small. Therefore, Y may be contained in the steel. In order to obtain the above effect, the Y content However, if the Y content is too high, coarse Y oxides are generated, which may deteriorate the cold rolling property and the fracture resistance. The content is set to 0.030% or less. The Y content is preferably set to 0.020% or less.
[Zr:0.030%以下]
 Zrは、微量で硫化物の形態を制御できる元素である。したがって、鋼中にZrを含有させてもよい。上記効果を得るために、Zr含有量は0.001%以上であることが好ましい。しかし、Zr含有量が多すぎると、粗大なZr酸化物が生成され、冷間圧延性が低下するおそれがある。このため、Zr含有量は、0.030%以下とする。Zr含有量は、0.020%以下であることが好ましい。
[Zr: 0.030% or less]
Zr is an element that can control the morphology of sulfides with a small amount. Therefore, Zr may be contained in the steel. In order to obtain the above effect, the Zr content is preferably 0.001% or more. However, if the Zr content is too high, coarse Zr oxides are generated, which may deteriorate the cold rolling property. Therefore, the Zr content is set to 0.030% or less. is preferably 0.020% or less.
[La:0.030%以下]
 Laは、含有量が微量であっても、硫化物の形態制御に有効に作用する元素である。したがって、Laを鋼中に含有させてもよい。上記効果を得るためには、La含有量は0.001%以上であることが好ましい。しかし、La含有量が多すぎると、粗大なLa酸化物が生成され、冷間圧延性や耐破断特性が低下するおそれがある。このため、La含有量は、0.030%以下とする。La含有量は、0.020%以下であることが好ましい。
[La: 0.030% or less]
La is an element that effectively controls the morphology of sulfides even when the content is small. Therefore, La may be contained in the steel. In order to obtain the above effect, the La content The La content is preferably 0.001% or more. However, if the La content is too high, coarse La oxides are generated, which may deteriorate the cold rolling property and the fracture resistance. The La content is set to 0.030% or less. The La content is preferably set to 0.020% or less.
[Ce:0.030%以下]
 Ceは、含有量が微量であっても、硫化物の形態制御に有効に作用する元素である。したがって、Ceを鋼中に含有させてもよい。上記効果を得るためには、Ce含有量は0.001%以上であることが好ましい。しかし、Ce含有量が多すぎると、粗大なCe酸化物が生成され、冷間圧延性や耐破断特性が低下するおそれがある。このため、Ce含有量は、0.030%以下とする。Ce含有量は、0.020%以下であることが好ましい。
[Ce: 0.030% or less]
Ce is an element that effectively controls the morphology of sulfides even when the content is small. Therefore, Ce may be contained in the steel. In order to obtain the above effect, the Ce content The Ce content is preferably 0.001% or more. However, if the Ce content is too high, coarse Ce oxides are generated, which may deteriorate the cold rolling property and the fracture resistance. The Ce content is set to 0.030% or less. The Ce content is preferably set to 0.020% or less.
[Sn:0.030%以下]
 Snは、鋼板の原料としてスクラップを用いた場合に、鋼板に含有され得る元素である。また、Snは、フェライトの脆化による鋼板の冷間圧延性の低下を引き起こす虞がある。このため、Sn含有量は少ないほど好ましい。Sn含有量は、0.030%以下とする。Sn含有量は、0.020%以下であることが好ましい。しかし、Sn含有量を0.001%未満へ低減することは、精錬コストの過度な増加を招くため、好ましくない。そのため、Sn含有量を0.001%以上としてもよい。
[Sn: 0.030% or less]
Sn is an element that may be contained in a steel sheet when scrap is used as a raw material for the steel sheet. In addition, Sn may cause a decrease in the cold rolling property of the steel sheet due to embrittlement of ferrite. For this reason, The lower the Sn content, the better. The Sn content is set to 0.030% or less. The Sn content is preferably set to 0.020% or less. However, it is not recommended to reduce the Sn content to less than 0.001%. However, this is not preferable because it leads to an excessive increase in refining costs. Therefore, the Sn content may be set to 0.001% or more.
[Sb:0.030%以下]
 Sbは、Snと同様に、鋼板の原料としてスクラップを用いた場合に鋼板に含有され得る元素である。Sbは、粒界に強く偏析し、粒界の脆化、延性の低下、さらには冷間圧延性の低下を招くおそれがある。このため、Sb含有量は少ないほど好ましい。Sb含有量は、0.030%以下とする。Sb含有量は、0.020%以下であることが好ましい。Sb含有量を0.001%未満へ低減することは、精錬コストの過度な増加を招くため、好ましくない。そのため、Sb含有量を0.001%以上としてもよい。
[Sb: 0.030% or less]
Like Sn, Sb is an element that can be contained in steel sheets when scrap is used as the raw material for the steel sheets. Sb strongly segregates at grain boundaries, embrittling the grain boundaries, reducing ductility, and further increasing the cooling time. This may result in a decrease in hot rolling property. Therefore, the smaller the Sb content, the better. The Sb content is set to 0.030% or less. The Sb content is preferably set to 0.020% or less. Reducing the Sb content to less than 0.001% is not preferable because it leads to an excessive increase in refining costs. Therefore, the Sb content may be set to 0.001% or more.
[As:0~0.030%]
 Asは、Sn、Sbと同様に、鋼板の原料としてスクラップを用いた場合に鋼板に含有され得る元素である。Asは、粒界に強く偏析し、冷間圧延性の低下を招くおそれがある。このため、As含有量は少ないほど好ましい。As含有量は、0.030%以下とする。As含有量は、0.020%以下であることが好ましい。As含有量を0.001%未満へ低減することは、精錬コストの過度な増加を招くため、好ましくない。そのため、As含有量を0.001%以上としてもよい。
[As: 0 to 0.030%]
Like Sn and Sb, As is an element that can be contained in steel sheets when scrap is used as the raw material for the steel sheets. As strongly segregates at grain boundaries and may cause a decrease in cold rolling properties. Therefore, the smaller the As content, the better. The As content is set to 0.030% or less. The As content is preferably set to 0.020% or less. The As content is set to less than 0.001%. However, it is not preferable to reduce the As content to 0.001% or more because this leads to an excessive increase in refining costs.
 本実施形態に係る鋼板の化学組成は、以下の方法で求めることができる。
 上述した鋼板の化学組成は、一般的な化学組成によって測定すればよい。例えば、ICP-AES(Inductively Coupled Plasma-Atomic Emission Spectrometry)を用いて測定すればよい。また、CおよびSは燃焼-赤外線吸収法を用い、Nは不活性ガス融解-熱伝導度法を用い、Oは不活性ガス融解-非分散型赤外線吸収法を用いて測定すればよい。
The chemical composition of the steel sheet according to this embodiment can be determined by the following method.
The chemical composition of the steel sheet described above may be measured by a general chemical composition. For example, it may be measured using ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectrometry). In addition, C and S may be measured using a combustion-infrared absorption method, N may be measured using an inert gas fusion-thermal conductivity method, and O may be measured using an inert gas fusion-non-dispersive infrared absorption method.
<板厚1/4の深さ位置の金属組織>
 次に、本実施形態に係る鋼板の板厚1/4の深さ位置(板厚方向に沿って、表面から板厚の1/4の位置)の金属組織について説明する。
 本実施形態に係る鋼板の金属組織の説明において、組織分率は面積率で表す。従って、特に断りがなければ金属組織の説明における「%」は「面積%」を表す。
<Metal structure at a depth of 1/4 of the plate thickness>
Next, the metal structure at a depth position of 1/4 of the plate thickness of the steel plate according to this embodiment (a position 1/4 of the plate thickness from the surface along the plate thickness direction) will be described.
In the description of the metal structure of the steel sheet according to the present embodiment, the structure fraction is expressed as an area fraction. Therefore, unless otherwise specified, "%" in the description of the metal structure represents "area %".
 本実施形態に係る鋼板は、板厚1/4の深さ位置(板厚方向に沿って、表面から板厚の1/4の位置)において、金属組織が、20面積%以上のフェライトと、40面積%以上のパーライト、0面積%以上10面積%以下の残部組織とからなる。 The steel plate according to this embodiment has a metal structure at a depth position of 1/4 of the plate thickness (a position 1/4 of the plate thickness from the surface along the plate thickness direction) that is composed of 20 area % or more of ferrite, 40 area % or more of pearlite, and a remaining structure between 0 area % and 10 area %.
(フェライト:20面積%以上)
 フェライトは、本発明のような高炭素鋼板においては相対的に軟質な相であり、マルテンサイトのような硬質相と混在する場合には鋼板の延性を改善し冷間圧延性を向上させる。そのため、板厚1/4の深さ位置において、フェライトは20面積%以上である。フェライトは、35面積%以上であることが好ましい。フェライトの上限値は特に限定されないが、本発明のような高炭素鋼板においては、例えば、60面積%以下である。
(Ferrite: 20% by area or more)
Ferrite is a relatively soft phase in a high carbon steel sheet such as that of the present invention, and when it is mixed with a hard phase such as martensite, it improves the ductility of the steel sheet and improves the cold rolling properties. Therefore, at a depth position of 1/4 of the sheet thickness, ferrite is 20 area % or more. Ferrite is preferably 35 area % or more. The upper limit of ferrite is not particularly limited, but in a high carbon steel sheet such as that of the present invention, it is, for example, 60 area % or less.
(パーライト:40面積%以上)
 パーライトは、組織内に多量のセメンタイトを有する組織であり強度の上昇に寄与する鋼中のC(炭素)を消費し、軟質化する。そのため、板厚1/4の深さ位置において、パーライトは40面積%以上である。より好ましくはパーライトは50面積%以上である。
 パーライトの上限値は特に限定されず、例えば、80面積%以下である。
(Perlite: 40% or more by area)
Pearlite is a structure that contains a large amount of cementite, and consumes C (carbon) in the steel, which contributes to increasing strength, and softens the steel. Therefore, at a depth position of 1/4 of the plate thickness, pearlite is 40 area % or more. More preferably, pearlite is 50 area % or more.
The upper limit of pearlite is not particularly limited, and is, for example, 80 area % or less.
(残部組織)
 残部組織は、0面積%以上10面積%以下である。残部組織は、金属組織からパーライトおよびフェライトを除いた残りの組織をいう。残部組織は、ベイナイトおよびマルテンサイトのうち少なくとも一方を含む。残部組織は、ベイナイトおよびマルテンサイトのうち少なくとも一方を主体とする組織であることが好ましい。ここで、「ベイナイトおよびマルテンサイトのうち少なくとも一方を主体とする組織」とは、残部組織の全面積に対して、ベイナイトおよびマルテンサイトの合計が60面積%以上であることをいう。より好ましくは、残部組織の全面積に対してベイナイト及びマルテンサイトの合計が80面積%以上である。残部組織の全面積に対してベイナイトおよびマルテンサイトの合計の上限は100面積%であってもよい。ベイナイトは、マルテンサイトに対して軟質であるので強度よりも延性を重視する本実施形態に係る鋼板においてはマルテンサイトに代えてベイナイトが形成されるよう制御することが好ましい。ここで、マルテンサイトは、フレッシュマルテンサイトおよび焼戻しマルテンサイトを指すが、強度よりも延性を重視する本実施形態に係る鋼板においてはフレッシュマルテンサイトに代えて焼戻しマルテンサイトが形成されるように制御することが好ましい。例えば、ベイナイトは、5面積%以上とする。好ましくは7面積%以上である。マルテンサイトは、例えば、5面積%以下とする。好ましくは3面積%以下である。
(Remainder structure)
The remaining structure is 0 area% or more and 10 area% or less. The remaining structure refers to the remaining structure obtained by removing pearlite and ferrite from the metal structure. The remaining structure includes at least one of bainite and martensite. The remaining structure is preferably a structure mainly composed of at least one of bainite and martensite. Here, "a structure mainly composed of at least one of bainite and martensite" means that the total of bainite and martensite is 60 area% or more with respect to the total area of the remaining structure. More preferably, the total of bainite and martensite is 80 area% or more with respect to the total area of the remaining structure. The upper limit of the total of bainite and martensite with respect to the total area of the remaining structure may be 100 area%. Since bainite is softer than martensite, it is preferable to control so that bainite is formed instead of martensite in the steel plate according to the present embodiment in which ductility is emphasized over strength. Here, martensite refers to fresh martensite and tempered martensite, but in the steel plate according to the present embodiment in which ductility is more important than strength, it is preferable to control so that tempered martensite is formed instead of fresh martensite. For example, bainite is 5 area% or more, preferably 7 area% or more. Martensite is, for example, 5 area% or less, preferably 3 area% or less.
 次に、板厚1/4の深さ位置における各金属組織の同定と面積率の算出方法について説明する。 Next, we will explain how to identify each metal structure at a depth of 1/4 of the plate thickness and calculate the area ratio.
 各金属組織の同定と面積および面積率の算出は、EBSD(Electron Back Scattering Diffraction)、X線測定、ナイタール試薬又はレペラ液を用いる腐食、及び、走査型電子顕微鏡により、圧延方向に平行且つ板面に垂直な鋼板断面を、1000~50000倍の倍率で観察して行うことができる。なお、いずれの組織の面積率の測定に当たっても、3か所で測定し、その平均値を算出することとする。この際に、本発明では結晶方位のデータ取得ソフトとして、例えば、株式会社TSLソリューションズ製のソフトウェア「OIM DataCollectionTM(ver.7)」等を用いる。 Identification of each metal structure and calculation of its area and area ratio can be performed by EBSD (Electron Back Scattering Diffraction), X-ray measurement, corrosion using Nital reagent or Lepera solution, and by observing the steel plate cross section parallel to the rolling direction and perpendicular to the plate surface at a magnification of 1,000 to 50,000 times using a scanning electron microscope. When measuring the area ratio of any structure, measurements are taken at three locations and the average value is calculated. In this case, in the present invention, software such as "OIM DataCollectionTM (ver.7)" made by TSL Solutions Co., Ltd. is used as the crystal orientation data acquisition software.
 フェライトの面積および面積率は、以下の方法で測定することができる。すなわち、コロイダルシリカ研磨または電解研磨により観察面を仕上げ、走査型電子顕微鏡に付属のEBSDにより、鋼板の表面から板厚の1/4の位置を中心とする1/8~3/8厚の範囲の正方形領域(板厚方向に沿って1/8~3/8の範囲の長さを一辺とする正方形)において、0.2μmの間隔(ピッチ)で測定する。なお、試料作製条件などは日本材料学会標準「電子後方散乱回折(EBSD)法による材料評価のための結晶方位差測定標準」で推奨されている条件の範囲とする。測定データから局所方位差平均(Grain Average Misorientation:GAM)の値を計算する。そして、局所方位差平均の値が0.5°未満の領域をフェライトとして扱い、その面積と面積率を測定する。ここで、結晶方位差が15°以上の境界を粒界と判断し、この粒界で囲まれた領域を結晶粒とする。局所方位差平均は、隣り合う測定点間の方位差を計算し、それを結晶粒内の測定点すべてについて平均化した値である。 The area and area ratio of ferrite can be measured by the following method. That is, the observation surface is finished by colloidal silica polishing or electrolytic polishing, and measurements are made at intervals (pitch) of 0.2 μm in a square region (square with a side length of 1/8 to 3/8 along the plate thickness direction) centered at 1/4 of the plate thickness from the surface of the steel plate and ranging from 1/8 to 3/8 of the plate thickness) using an EBSD attached to a scanning electron microscope. The sample preparation conditions are within the range of conditions recommended in the Japan Society for Materials Science standard "Crystal orientation misorientation measurement standard for material evaluation using the electron backscatter diffraction (EBSD) method". The value of the local misorientation average (Grain Average Misorientation: GAM) is calculated from the measurement data. Then, the area and area ratio are measured for areas where the local misorientation average value is less than 0.5° as ferrite. Here, the boundary with a crystal orientation misorientation of 15° or more is determined to be a grain boundary, and the area surrounded by this grain boundary is considered to be a crystal grain. The local misorientation average is calculated by calculating the misorientation between adjacent measurement points and averaging it for all measurement points within the grain.
 ベイナイトの面積および面積率については、鋼板の圧延方向に平行な板厚断面を観察面として試料を採取し、観察面を研磨し、ナイタール液でエッチングし、板厚の1/4を中心とする1/8~3/8厚の正方形領域を電界放射型走査型電子顕微鏡(FE-SEM:Field Emission Scanning Electron Microscope)で観察して、公知の画像解析ソフトを用いて算出する。なお画像解析ソフトとしては例えば「ImageJ」を用いて面積率を算出できる。ここで「ImageJ」とは、オープンソースでパブリックドメインの画像処理ソフトウェアであり、当業者の間で広く利用されているものである。
 なお、FE-SEMでの観察においては、例えば、上記正方形とした観察領域における組織を以下のように区別する。ベイナイトは、ラス状の結晶粒の集合であり、そのラス組織の内部に長径20nm以上の鉄系炭化物を含まない領域、又は、ラス組織内部に長径20nm以上の鉄系炭化物を含む場合は、その炭化物が、単一のバリアント、即ち、同一方向に伸張した鉄系炭化物群に属する領域である。ここで、同一方向に伸長した鉄系炭化物群とは、鉄系炭化物群の伸長方向の差異が5°以内であるものをいう。
The area and area ratio of bainite are measured by taking a sample from a cross section of the steel plate parallel to the rolling direction, polishing the observed surface, etching the surface with nital solution, and observing a square region of 1/8 to 3/8 of the plate thickness centered at 1/4 of the plate thickness with a field emission scanning electron microscope (FE-SEM), and calculating the area ratio using known image analysis software. Note that the area ratio can be calculated using, for example, "ImageJ" as the image analysis software. Here, "ImageJ" is an open source, public domain image processing software that is widely used by those skilled in the art.
In observation with an FE-SEM, for example, the structure in the above-mentioned square observation region is classified as follows. Bainite is a collection of lath-shaped crystal grains, and the lath structure is a region that does not contain iron-based carbides with a major axis of 20 nm or more, or, if the lath structure contains iron-based carbides with a major axis of 20 nm or more, the carbides belong to a single variant, that is, a group of iron-based carbides elongated in the same direction. Here, the group of iron-based carbides elongated in the same direction refers to iron-based carbides whose elongation directions differ by within 5°.
 マルテンサイトの面積率は、ベイナイトと同様に鋼板の圧延方向に平行な板厚断面を観察面として試料を採取し、観察面を研磨し、ナイタール液でエッチングし、板厚の1/4を中心とする1/8~3/8厚の正方形領域を電界放射型走査型電子顕微鏡(FE-SEM:Field Emission Scanning Electron Microscope)で観察して、公知の画像解析ソフトを用いて算出する。なお画像解析ソフトとしては例えば「ImageJ」を用いて面積率を算出できる。ここで「ImageJ」とは、オープンソースでパブリックドメインの画像処理ソフトウェアであり、当業者の間で広く利用されているものである。マルテンサイトは転位密度が高くかつ粒内にブロックやパケットといった下部組織を持つので、走査型電子顕微鏡を用いた電子チャンネリングコントラスト像により、他の金属組織と区別される。 As with bainite, the area ratio of martensite is measured by taking a sample from a cross section of the steel plate parallel to the rolling direction, polishing the observation surface, etching it with nital solution, and observing a square region of 1/8 to 3/8 of the plate thickness centered at 1/4 of the plate thickness with a field emission scanning electron microscope (FE-SEM), and calculating the area ratio using known image analysis software. The area ratio can be calculated using, for example, "ImageJ" as the image analysis software. "ImageJ" is an open source, public domain image processing software that is widely used by those skilled in the art. Martensite has a high dislocation density and has substructures such as blocks and packets within the grains, so it can be distinguished from other metal structures by electron channeling contrast images taken with a scanning electron microscope.
 パーライトの面積率は、鋼板の圧延方向に平行な板厚断面を観察面として試料を採取し、観察面を研磨し、ナイタール試薬により腐食し、鋼板の表面から板厚の1/4の位置を中心とする1/8~3/8厚の範囲の正方形領域を、走査型電子顕微鏡による2次電子像を用いて観察することにより行うことができる。2次電子像で明るいコントラストと暗いコントラストがラメラ状である領域をパーライトと判断し、上述の画像解析ソフト「ImageJ」を用いて面積率を算出する。2次電子像のコントラストによるパーライトの判断は、一般的に当業者が通常実施しているものであり、当業者であれば容易に判定可能なものである。上記の評価方法で得られた各組織の合計の面積率が100%と異なった場合、各組織の面積率に100/(各組織の合計の面積率)を乗じて得られる値を各組織の面積率とする。 The pearlite area ratio can be measured by taking a sample from a cross section of the steel plate parallel to the rolling direction, polishing the observation surface, corroding it with Nital reagent, and observing a square region in the range of 1/8 to 3/8 thickness, centered at 1/4 of the plate thickness from the surface of the steel plate, using a secondary electron image taken with a scanning electron microscope. Regions in the secondary electron image where the bright and dark contrasts are lamellar are judged to be pearlite, and the area ratio is calculated using the image analysis software "ImageJ" mentioned above. Judging pearlite based on the contrast of secondary electron images is generally performed by those skilled in the art, and can be easily determined by those skilled in the art. If the total area ratio of each structure obtained by the above evaluation method is different from 100%, the area ratio of each structure is calculated by multiplying the area ratio of each structure by 100/(total area ratio of each structure).
(評価フェライト結晶粒)
 本実施形態の鋼板は、冷間圧延性を確保するために、フェライト結晶粒の板厚方向の分布状態を所定の範囲内とする。具体的には、微細なフェライト結晶粒を相対的に増大させるとともに、粗大なフェライト結晶粒を相対的に増大させる。フェライト結晶粒の板厚方向の分布状態を所定の範囲内とすることで冷間圧延性を確保することができる理由は明らかではないが、発明者は以下のように推測している。微細粒と粗大粒が混在することにより、各結晶粒に加わるひずみに分布が生じる。分布を持つ場合、圧延中においてひずみが高い粒からひずみが低い粒へひずみを逃がすこと(ひずみ分散)ができ、通常の分布を持つ場合よりも大きな冷間圧延性が確保できると推測される。なお、フェライト結晶粒の粒径の分布状態をより精緻に評価するために、全フェライト粒のうち、最小結晶粒径側の5%および最大結晶粒径側の5%を除外したフェライト粒を評価用のフェライト結晶粒として、粒径の分布状態を評価することとする。
 具体的には、前述する電子後方散乱回折(EBSD)法で板厚1/4の深さ位置で測定されるフェライト結晶粒において、最大結晶粒径側から、フェライト結晶粒の全個数に対して5%のフェライト結晶粒と、フェライト結晶粒の最小結晶粒径側からフェライト結晶粒の全個数に対して5%のフェライト結晶粒と、を除いたフェライト結晶粒を評価フェライト結晶粒とする。この際、最大結晶粒径側または最小結晶粒径側からn個の個数が全個数の5%未満であり、n+1個の個数が全個数の5%超となる場合は、n+1個の結晶粒を除くものとする。ここで、評価フェライト結晶粒の結晶粒径の最小値を第1粒径に設定し、評価フェライト結晶粒の結晶粒径の最大値を第2粒径に設定し、第1粒径に、前記第2粒径と前記第1粒径との差の1/3を加えた結晶粒径を第3粒径に設定し、第1粒径に、前記第2粒径と前記第1粒径との差の2/3加えた結晶粒径を第4粒径とする。また、第1粒径以上、前記第3粒径以下の範囲を第1粒径範囲に設定し、第3粒径超、前記第4粒径以下の範囲を第2粒径範囲に設定し、第4粒径超、前記第2粒径以下の範囲を第3粒径範囲とする。
(Evaluated ferrite grains)
In the steel sheet of this embodiment, the distribution state of the ferrite crystal grains in the sheet thickness direction is set within a predetermined range in order to ensure cold rolling properties. Specifically, fine ferrite crystal grains are relatively increased, and coarse ferrite crystal grains are relatively increased. The reason why cold rolling properties can be ensured by setting the distribution state of the ferrite crystal grains in the sheet thickness direction within a predetermined range is not clear, but the inventor speculates as follows. The mixture of fine and coarse grains causes a distribution of strain applied to each crystal grain. When the distribution is present, it is presumed that strain can be released from grains with high strain to grains with low strain during rolling (strain dispersion), and greater cold rolling properties can be ensured than in the case of a normal distribution. In order to evaluate the distribution state of the grain size of the ferrite crystal grains more precisely, the ferrite grains excluding 5% of the smallest grain size side and 5% of the largest grain size side of all ferrite grains are used as the ferrite grains for evaluation, and the distribution state of the grain size is evaluated.
Specifically, in the ferrite grains measured at a depth position of 1/4 of the plate thickness by the electron backscatter diffraction (EBSD) method described above, ferrite grains excluding 5% of the total number of ferrite grains from the maximum grain size side and 5% of the total number of ferrite grains from the minimum grain size side of the ferrite grains are regarded as the evaluated ferrite grains. In this case, if the number of n grains from the maximum grain size side or the minimum grain size side is less than 5% of the total number and the number of n+1 grains is more than 5% of the total number, n+1 grains are excluded. Here, the minimum value of the grain size of the evaluated ferrite grains is set as the first grain size, the maximum value of the grain size of the evaluated ferrite grains is set as the second grain size, the grain size obtained by adding 1/3 of the difference between the second grain size and the first grain size to the first grain size is set as the third grain size, and the grain size obtained by adding 2/3 of the difference between the second grain size and the first grain size to the first grain size is regarded as the fourth grain size. In addition, the range of the first particle size or more and the third particle size or less is set as the first particle size range, the range of the third particle size or more and the fourth particle size or less is set as the second particle size range, and the range of the fourth particle size or more and the second particle size or less is set as the third particle size range.
 本実施形態に係る鋼板の第1粒径範囲にある評価フェライト結晶粒の数は、第2粒径範囲にある評価フェライト結晶粒の数の2.5倍以上3.0倍以下である。また、本実施形態に係る鋼板は、第3粒径範囲にある評価フェライト結晶粒の数は、第2粒径範囲にある評価フェライト結晶粒の数の2.0倍以上2.5倍以下である。このように第1粒径範囲にある評価フェライト結晶粒の数を第2粒径範囲にある評価フェライト結晶粒の数の2.5倍以上3.0倍以下、かつ、第3粒径範囲にある評価フェライト結晶粒の数を第2粒径範囲にある評価フェライト結晶粒の2.0倍以上2.5倍以下とすることで、各粒径範囲の評価フェライト結晶粒が明確な分布を持つことで、ひずみ分散が顕著になり、鋼板の冷間圧延性を向上することができる。本実施形態に係る鋼板の第1粒径範囲にある評価フェライト結晶粒の数は、第2粒径範囲にある評価フェライト結晶粒の数の2.6倍以上3.0倍以下であることが好ましい。本実施形態に抱える鋼板の第3粒径範囲にある評価フェライト結晶粒の数は、第2粒径範囲にある評価フェライト結晶粒の数の2.2倍以上2.5倍以下であることが好ましい。 The number of evaluated ferrite grains in the first grain size range of the steel plate according to this embodiment is 2.5 to 3.0 times the number of evaluated ferrite grains in the second grain size range. In addition, the number of evaluated ferrite grains in the third grain size range of the steel plate according to this embodiment is 2.0 to 2.5 times the number of evaluated ferrite grains in the second grain size range. In this way, by making the number of evaluated ferrite grains in the first grain size range 2.5 to 3.0 times the number of evaluated ferrite grains in the second grain size range and the number of evaluated ferrite grains in the third grain size range 2.0 to 2.5 times the number of evaluated ferrite grains in the second grain size range, the evaluated ferrite grains in each grain size range have a clear distribution, which makes the strain distribution remarkable and improves the cold rolling property of the steel plate. It is preferable that the number of evaluated ferrite grains in the first grain size range of the steel plate according to this embodiment is 2.6 to 3.0 times the number of evaluated ferrite grains in the second grain size range. In the steel plate of this embodiment, the number of evaluated ferrite grains in the third grain size range is preferably 2.2 to 2.5 times the number of evaluated ferrite grains in the second grain size range.
 本実施形態に係る鋼板の第1粒径範囲にある評価フェライト結晶粒の数は、第3粒径範囲にある評価フェライト結晶粒の数の1.1倍以上1.4倍以下であることが好ましい。
 より好ましくは、本実施形態に係る鋼板の第1粒径範囲にある評価フェライト結晶粒の数は、第3粒径範囲にある評価フェライト結晶粒の数の1.2倍以上1.4倍以下である。
 本実施形態に係る鋼板の第1粒径範囲にある評価フェライト結晶粒の数は、第3粒径範囲にある評価フェライト結晶粒の数の1.1倍以上1.4倍倍以下であることで、鋼板の冷間圧延性をより向上させることができる。
In the steel plate according to this embodiment, the number of evaluated ferrite grains in the first grain size range is preferably 1.1 to 1.4 times the number of evaluated ferrite grains in the third grain size range.
More preferably, the number of evaluated ferrite grains in the first grain size range of the steel plate according to this embodiment is 1.2 to 1.4 times the number of evaluated ferrite grains in the third grain size range.
The number of evaluated ferrite grains in the first grain size range of the steel plate according to this embodiment is 1.1 to 1.4 times the number of evaluated ferrite grains in the third grain size range, thereby further improving the cold rolling properties of the steel plate.
 第1粒径範囲の評価フェライト結晶粒の平均結晶粒径が3μm~20μmであることが好ましい。より好ましい第1粒径範囲の評価フェライト結晶粒の平均結晶粒径は、3μm~10μmである。第1粒径範囲の評価フェライト結晶粒の平均結晶粒径が3μm~20μmであることで、微細な結晶粒が多くのひずみを蓄積することができ、結晶粒が大きい方へひずみを効率よく分散できるため、鋼板の冷間圧延性をより向上することができる。 The average grain size of the evaluated ferrite grains in the first grain size range is preferably 3 μm to 20 μm. The more preferable average grain size of the evaluated ferrite grains in the first grain size range is 3 μm to 10 μm. By having the average grain size of the evaluated ferrite grains in the first grain size range be 3 μm to 20 μm, the fine grains can accumulate a lot of strain, and the strain can be efficiently distributed toward the larger grains, thereby further improving the cold rolling properties of the steel sheet.
 第2粒径範囲の評価フェライト結晶粒の平均結晶粒径が20μm超80μm未満であることが好ましい。より好ましい第2粒径範囲の評価フェライト結晶粒の平均結晶粒径は、30μm~70μm、より好ましくは40μm~60μmである。第2粒径範囲の評価フェライト結晶粒の平均結晶粒径が30μm~70μmであることで、鋼板の冷間圧延性をより向上することができる。 It is preferable that the average grain size of the evaluated ferrite grains in the second grain size range is more than 20 μm and less than 80 μm. A more preferable average grain size of the evaluated ferrite grains in the second grain size range is 30 μm to 70 μm, and more preferably 40 μm to 60 μm. By having the average grain size of the evaluated ferrite grains in the second grain size range be 30 μm to 70 μm, the cold rolling properties of the steel sheet can be further improved.
 第3粒径範囲の評価フェライト結晶粒の平均結晶粒径が80μm~120μmであることが好ましい。より好ましい第3粒径範囲の評価フェライト結晶粒の平均結晶粒径は、100μm~120μmである。第3粒径範囲の評価フェライト結晶粒の平均結晶粒径が80μm~120μmであることで、鋼板の冷間圧延性をより向上することができる。 The average grain size of the evaluated ferrite grains in the third grain size range is preferably 80 μm to 120 μm. The more preferable average grain size of the evaluated ferrite grains in the third grain size range is 100 μm to 120 μm. By having the average grain size of the evaluated ferrite grains in the third grain size range be 80 μm to 120 μm, the cold rolling properties of the steel sheet can be further improved.
 次に、板厚1/4の深さ位置におけるフェライト結晶粒の測定方法について説明する。 Next, we will explain how to measure ferrite grains at a depth of 1/4 of the plate thickness.
 フェライトの同定および結晶粒径の算出は、EBSD(Electron Back Scattering Diffraction)及び、走査型電子顕微鏡により、圧延方向に平行且つ板面に垂直な鋼板断面を、1000~50000倍の倍率で観察して行うことができる。この際に、本発明では結晶方位のデータ取得ソフトとして、例えば、株式会社TSLソリューションズ製のソフトウェア「OIM DataCollectionTM(ver.7)」等を用いる。 Ferrite can be identified and the grain size calculated by observing the steel plate cross section parallel to the rolling direction and perpendicular to the plate surface at a magnification of 1,000 to 50,000 times using EBSD (Electron Back Scattering Diffraction) and a scanning electron microscope. In this case, the present invention uses software such as "OIM DataCollectionTM (ver. 7)" manufactured by TSL Solutions Co., Ltd. as software for acquiring crystal orientation data.
 コロイダルシリカ研磨または電解研磨により観察面を仕上げ、走査型電子顕微鏡に付属のEBSDにより、鋼板の表面から板厚の1/4の位置を中心とする1/8~3/8厚の範囲の正方形領域(板厚方向に沿って1/8~3/8の範囲の長さを一辺とする正方形)において、0.2μmの間隔(ピッチ)で測定する。なお、試料作製条件などは日本材料学会標準「電子後方散乱回折(EBSD)法による材料評価のための結晶方位差測定標準」で推奨されている条件の範囲とする。測定データから局所方位差平均(Grain Average Misorientation:GAM)の値を計算する。そして、局所方位差平均の値が0.5°未満の領域をフェライト結晶粒とする。ここで、結晶方位差が15°以上の境界を粒界と判断し、この粒界で囲まれた領域を結晶粒とする。局所方位差平均は、隣り合う測定点間の方位差を計算し、それを結晶粒内の測定点すべてについて平均化した値である。得られたフェライト結晶粒に対し、結晶粒径を測定する。結晶粒径は、円相当径とする。ここで、結晶粒の円相当径とは、結晶粒の面積に等しい面積を有する円の直径を意味する。 The observation surface is finished by colloidal silica polishing or electrolytic polishing, and measurements are taken at intervals (pitch) of 0.2 μm in a square region (square with sides of 1/8 to 3/8 of the thickness along the plate thickness direction) centered at 1/4 of the plate thickness from the surface of the steel plate, at 0.2 μm intervals (pitch). The sample preparation conditions are within the range recommended in the Japan Society for Materials Science standard "Crystal orientation misorientation measurement standard for material evaluation using electron backscatter diffraction (EBSD) method". The local misorientation average (Grain Average Misorientation: GAM) value is calculated from the measurement data. Areas where the local misorientation average value is less than 0.5° are considered to be ferrite crystal grains. Here, boundaries where the crystal orientation misorientation is 15° or more are considered to be grain boundaries, and the areas surrounded by these grain boundaries are considered to be crystal grains. The average local orientation difference is calculated by calculating the orientation difference between adjacent measurement points and averaging it for all measurement points within the crystal grain. The crystal grain size is measured for the obtained ferrite crystal grain. The crystal grain size is the circle equivalent diameter. Here, the circle equivalent diameter of a crystal grain means the diameter of a circle having an area equal to the area of the crystal grain.
<板厚1/4の深さ位置のビッカース硬さ>
 本実施形態に係る鋼板の板厚1/4の深さ位置のビッカース硬さHvは、冷間圧延性の観点から、160以下であることが好ましい。より好ましくは、板厚1/4の深さ位置のビッカース硬さHvが150以下である。板厚1/4の深さ位置のビッカース硬さHvが160以下であることで、より冷間圧延性を向上することができる。
<Vickers hardness at a depth of 1/4 of the plate thickness>
From the viewpoint of cold rolling properties, the Vickers hardness Hv at a depth position of 1/4 of the plate thickness of the steel plate according to this embodiment is preferably 160 or less. More preferably, the Vickers hardness Hv at a depth position of 1/4 of the plate thickness is 150 or less. By having the Vickers hardness Hv at a depth position of 1/4 of the plate thickness of 160 or less, the cold rolling properties can be further improved.
 鋼板の板厚1/4の深さ位置のビッカース硬さは、以下の手順で測定することができる。まず、鋼板の圧延方向と板厚方向とに平行な板厚断面を、機械研磨により鏡面に仕上げる。この研磨面のうち、鋼板表面から板厚内部に向かって板厚の1/4深さの距離(深さ)であって、圧延方向に平行な直線上の12箇所において、押し込み荷重20gfでビッカース硬さ(HV)を測定する。これら測定した12点のビッカース硬さのうち、最も低い値と最も高い値を除いた10点のビッカース硬さの平均値を、鋼板の板厚1/4の深さ位置のビッカース硬さHvとする。なお、各測定点の間隔は、圧痕の4倍以上の距離とすることが好ましい。ここで述べる圧痕の4倍以上の距離とは、ビッカース硬さの測定の際に、ダイヤモンド圧子によって生じた圧痕の対角線の長さに対して4倍以上の数値を乗じた距離である。 The Vickers hardness at a depth of 1/4 of the plate thickness of the steel plate can be measured by the following procedure. First, the plate thickness cross section parallel to the rolling direction and plate thickness direction of the steel plate is mechanically polished to a mirror finish. On this polished surface, the Vickers hardness (HV) is measured at 12 points on a straight line parallel to the rolling direction at a distance (depth) of 1/4 of the plate thickness from the surface of the steel plate toward the inside of the plate thickness, with an indentation load of 20 gf. The Vickers hardness at a depth of 1/4 of the plate thickness of the steel plate is determined by averaging the Vickers hardness of 10 points excluding the lowest and highest values from these 12 measured points. The distance between each measurement point is preferably at least four times the distance of the indentation. The distance at least four times the distance of the indentation referred to here is the distance obtained by multiplying the diagonal length of the indentation made by the diamond indenter by a value of at least four times when measuring the Vickers hardness.
[全伸びが40%以上]
 本実施形態に係る鋼板の全伸びは、冷間圧延性の観点から、40%以上であることが好ましい。より好ましくは、全伸びは50%以上である。
[Total elongation is 40% or more]
From the viewpoint of cold rolling properties, the total elongation of the steel sheet according to the present embodiment is preferably 40% or more, and more preferably 50% or more.
 全伸びは、鋼板から、圧延方向および板厚方向に垂直方向にJIS5号引張試験片を採取し、JIS Z 2241:2011に沿って引張試験を行うことにより求めることができる。 Total elongation can be determined by taking a JIS No. 5 tensile test piece from the steel plate in the direction perpendicular to the rolling direction and plate thickness direction, and conducting a tensile test in accordance with JIS Z 2241:2011.
<板厚>
 本実施形態に係る鋼板の板厚は限定されない。本実施形態に係る鋼板の板厚は、例えば、1.5mm~5.0mmであってもよい。
<Thickness>
The thickness of the steel plate according to the present embodiment is not limited and may be, for example, 1.5 mm to 5.0 mm.
<製造方法>
 本実施形態に係る鋼板は、以下の工程(I)~(IV)を含む製造方法によって製造可能である。
(I)上述した成分組成を有するスラブを1100℃以上、1350℃未満に加熱する加熱工程
(II)加熱工程後のスラブを、複数の圧延スタンドに連続して通過させて圧延を行う仕上げ圧延工程であって、最初の4つの各圧延スタンドにおいて下記式(1)によって定めるσが40≦σ≦80を満足し、かつ、最後のスタンドにおいて、5≦σ≦10を満足するように圧延する仕上げ圧延工程
(III)仕上げ圧延工程終了後0.2秒から2.0秒以内に30℃/s以上の平均冷却速度で冷却を開始して、550℃~650℃の温度域まで冷却する冷却工程(IV)冷却工程後、巻取り温度が550℃~650℃の温度域となるように巻取る巻取り工程
 以下、各工程について説明する。以降の各温度は、スラブまたは鋼板の表面温度とする。
<Production Method>
The steel sheet according to this embodiment can be manufactured by a manufacturing method including the following steps (I) to (IV).
(I) A heating step in which a slab having the above-mentioned composition is heated to 1100°C or more and less than 1350°C. (II) A finish rolling step in which the slab after the heating step is passed through a plurality of rolling stands in succession to be rolled, in which σ determined by the following formula (1) satisfies 40≦σ≦80 in each of the first four rolling stands and 5≦σ≦10 in the last stand. (III) A cooling step in which cooling is started at an average cooling rate of 30°C/s or more within 0.2 to 2.0 seconds after the end of the finish rolling step, and cooled to a temperature range of 550°C to 650°C. (IV) A winding step in which, after the cooling step, the coiling temperature is in the temperature range of 550°C to 650°C. Each step will be described below. Each temperature below refers to the surface temperature of the slab or steel plate.
[加熱工程]
 加熱工程では、上述した本実施形態に係る鋼板と同様の化学組成を有するスラブを1100℃以上、1350℃未満に加熱することが好ましい。加熱温度が1100℃未満では、材料の均質化が不十分となりやすい。また、加熱温度を1350℃以上にすると、第1粒径範囲の評価フェライト結晶粒の数、第2粒径範囲の評価フェライト結晶粒の数、および第3粒径範囲の評価フェライト結晶粒の数が所定の関係を満足しにくくなる。
[Heating process]
In the heating step, it is preferable to heat a slab having the same chemical composition as the steel plate according to the present embodiment described above to 1100°C or more and less than 1350°C. If the heating temperature is less than 1100°C, the homogenization of the material is likely to be insufficient. In addition, if the heating temperature is 1350°C or more, it becomes difficult for the number of evaluated ferrite grains in the first grain size range, the number of evaluated ferrite grains in the second grain size range, and the number of evaluated ferrite grains in the third grain size range to satisfy the predetermined relationship.
[仕上げ圧延工程]
 仕上げ圧延工程では、加熱工程後のスラブを必要に応じて粗圧延を実施した後、複数の圧延スタンドに連続して通過させて圧延を行う。本実施形態に係る鋼板の製造方法では、加熱工程後のスラブを、最初の4つの各圧延スタンドにおいて下記式(1)によって定めるσ(単位:kgf/mm)が40≦σ≦80を満足し、かつ、最後の圧延スタンドにおいて、5≦σ≦10を満足するように圧延することが好ましい。
 σ=exp(0.753+3000/T)×ε0.21×ε’0.13・・・(1)
 ここで、Tは前記スタンドに入る直前の温度(K)であり、εは相当塑性ひずみであり、ε’はひずみ速度(/s)である。
[Finish rolling process]
In the finish rolling step, the slab after the heating step is subjected to rough rolling as necessary, and then passed through multiple rolling stands in succession for rolling. In the method for producing a steel sheet according to this embodiment, it is preferable to roll the slab after the heating step so that σ (unit: kgf/ mm2 ) defined by the following formula (1) satisfies 40≦σ≦80 in each of the first four rolling stands, and satisfies 5≦σ≦10 in the final rolling stand.
σ=exp(0.753+3000/T)×ε 0.21 ×ε' 0.13 ...(1)
Here, T is the temperature (K) immediately before entering the stand, ε is the equivalent plastic strain, and ε' is the strain rate (/s).
 最初の4つの各圧延スタンドにおいて下記式(1)によって定めるσを40以上とすることで、加工中および加工直後の鋼板に蓄積されるひずみ量を高くすることができ、加工中および加工後に再結晶により形成される結晶粒を適度に微細化することができる。これに加え、後述する最終の圧延スタンドの圧延条件を制御することで、オーステナイト→フェライト変態後の第1粒径範囲の評価フェライト結晶粒の数、第2粒径範囲の評価フェライト結晶粒の数、および第3粒径範囲の評価フェライト結晶粒の数が所定の関係を満足しやすくなる。 By setting σ, determined by the following formula (1), to 40 or more in each of the first four rolling stands, it is possible to increase the amount of strain accumulated in the steel sheet during and immediately after processing, and to appropriately refine the crystal grains formed by recrystallization during and after processing. In addition, by controlling the rolling conditions of the final rolling stand described below, it becomes easier for the number of evaluated ferrite grains in the first grain size range, the number of evaluated ferrite grains in the second grain size range, and the number of evaluated ferrite grains in the third grain size range after austenite → ferrite transformation to satisfy the specified relationship.
 最初の4つの各圧延スタンドにおいて上記式(1)によって定めるσを80超になるように圧延するのが困難であることに加え、σが80超となるように圧延すると過度な微細組織となってしまい、次に述べる最終の圧延スタンドの圧延条件を制御しても、オーステナイト→フェライト変態後の第1粒径範囲の評価フェライト結晶粒の数、第2粒径範囲の評価フェライト結晶粒の数、および第3粒径範囲の評価フェライト結晶粒の数が所定の関係を満足しにくくなる。 In addition to the difficulty of rolling in each of the first four rolling stands so that σ, as determined by the above formula (1), exceeds 80, rolling to make σ exceed 80 results in an excessively fine structure, and even if the rolling conditions of the final rolling stand described below are controlled, it becomes difficult for the number of evaluated ferrite grains in the first grain size range, the number of evaluated ferrite grains in the second grain size range, and the number of evaluated ferrite grains in the third grain size range after austenite → ferrite transformation to satisfy the specified relationship.
 仕上げ圧延工程において、最後の圧延スタンドにおいて、5≦σ≦10を満足するように圧延することが好ましい。最初の4つの各圧延スタンドにおいて下記式(1)によって定めるσが40≦σ≦80を満足し、かつ、最後の圧延スタンドで5≦σ≦10を満足するように圧延することで、結晶粒毎に入るひずみ量に差が生じる。これによって、巻取り工程時に選択的な結晶粒成長が生じ、オーステナイト→フェライト変態後に本発明で特徴的なフェライト結晶粒の混粒組織が形成される。また、最後の圧延スタンドで5≦σ≦10を満足するように圧延することで、一部の結晶粒が十分に成長し粗大化するため、オーステナイト→フェライト変態後の鋼板において、板厚1/4の深さ位置におけるビッカース硬さHvを160以下にすることができる。 In the finish rolling process, it is preferable to perform rolling so that 5≦σ≦10 is satisfied in the last rolling stand. By performing rolling so that σ, determined by the following formula (1), is satisfied 40≦σ≦80 in each of the first four rolling stands, and 5≦σ≦10 is satisfied in the last rolling stand, a difference occurs in the amount of strain introduced into each crystal grain. This causes selective crystal grain growth during the coiling process, and a mixed grain structure of ferrite crystal grains, which is characteristic of the present invention, is formed after the austenite → ferrite transformation. In addition, by rolling so that 5≦σ≦10 is satisfied in the last rolling stand, some crystal grains grow sufficiently and become coarse, so that the Vickers hardness Hv at a depth position of 1/4 of the plate thickness can be reduced to 160 or less in the steel plate after the austenite → ferrite transformation.
 仕上げ圧延開始温度を1000℃以上とすることが好ましい。これにより、最初の4つの各圧延スタンドにおいて適切なひずみを蓄積させやすくなる。仕上げ圧延開始温度が1000℃℃以上であれば、最初の4つの各圧延スタンドにおいて、加工中および加工直後のオーステナイト結晶粒に適切なひずみを蓄積させやすくなる。 It is preferable that the finish rolling start temperature is 1000°C or higher. This makes it easier to accumulate appropriate strain in each of the first four rolling stands. If the finish rolling start temperature is 1000°C or higher, it makes it easier to accumulate appropriate strain in the austenite grains during and immediately after processing in each of the first four rolling stands.
 仕上げ圧延工程における各圧延スタンド間のパス間時間は、10.0秒以下であることが好ましい。これにより、加工中および加工直後のオーステナイト結晶粒に適切なひずみを蓄積させやすくなる。下限は特に限定する必要はなく可能な限り短時間とすることでもかなわないが、実用的な設備構成を考えると、0.1秒程度が下限となる。さらに仕上げ圧延工程における各圧延スタンド間のパス間時間が、0.2秒以上3.0秒以下とすることで、適切なひずみを蓄積させやすくなる。各圧延スタンド間の平均パス間時間は、0.2秒以上3.0秒以下とすることが好ましい。 The interpass time between each rolling stand in the finishing rolling process is preferably 10.0 seconds or less. This makes it easier to accumulate appropriate strain in the austenite grains during and immediately after processing. There is no particular need to set a lower limit, and it is possible to make it as short as possible, but considering a practical equipment configuration, the lower limit is about 0.1 seconds. Furthermore, by setting the interpass time between each rolling stand in the finishing rolling process to 0.2 seconds or more and 3.0 seconds or less, it becomes easier to accumulate appropriate strain. The average interpass time between each rolling stand is preferably 0.2 seconds or more and 3.0 seconds or less.
 仕上げ圧延工程における最後の圧延スタンド出側の温度を850℃以上1000℃以下とすることが好ましい。最後の圧延スタンド出側の温度を850℃以上1000℃以下とすることで、最後の圧延スタンドにおいて加工中および加工直後のオーステナイト結晶粒に適切なひずみを蓄積させやすくなる。 It is preferable that the temperature at the exit of the final rolling stand in the finishing rolling process be 850°C or higher and 1000°C or lower. By setting the temperature at the exit of the final rolling stand to 850°C or higher and 1000°C or lower, it becomes easier to accumulate appropriate strain in the austenite grains during and immediately after processing in the final rolling stand.
 仕上げ圧延工程における累積の圧下率を60%以上とすることが好ましい。累積の圧下率を60%以上とすることで、加工中および加工直後のオーステナイト結晶粒に適切なひずみを蓄積させやすくなる。 It is preferable to set the cumulative reduction rate in the finish rolling process to 60% or more. By setting the cumulative reduction rate to 60% or more, it becomes easier to accumulate appropriate strain in the austenite grains during and immediately after processing.
「冷却工程」
 冷却工程では、仕上げ圧延工程終了後0.2秒から2.0秒の間に30℃/秒以上の平均冷却速度で冷却を開始することが好ましい。0.2秒から2.0秒の間に30℃/秒以上で冷却することでオーステナイト結晶粒の成長を止めることができる。これによって、オーステナイト→フェライト変態後に第1粒径範囲の評価フェライト結晶粒の数が第2粒径範囲の評価フェライト結晶粒の数の2.5倍以上3.0倍以下となり、かつ、第3粒径範囲の評価フェライト結晶粒の数が第2粒径範囲の評価フェライト結晶粒の数の2.0倍以上、2.5倍以下となりやすくなる。平均冷却速度は、冷却開始の温度と冷却終了の温度との差を冷却開始から冷却終了までの時間で除することで求めることができる。
"Cooling process"
In the cooling step, it is preferable to start cooling at an average cooling rate of 30° C./s or more between 0.2 and 2.0 seconds after the end of the finish rolling step. By cooling at 30° C./s or more between 0.2 and 2.0 seconds, the growth of austenite grains can be stopped. This makes it easier for the number of evaluated ferrite grains in the first grain size range to be 2.5 to 3.0 times the number of evaluated ferrite grains in the second grain size range after austenite-to-ferrite transformation, and for the number of evaluated ferrite grains in the third grain size range to be 2.0 to 2.5 times the number of evaluated ferrite grains in the second grain size range. The average cooling rate can be calculated by dividing the difference between the temperature at the start of cooling and the temperature at the end of cooling by the time from the start of cooling to the end of cooling.
 冷却工程では、550℃~650℃の温度域(冷却停止温度域)まで冷却することが好ましい。550℃~650℃の温度域までの冷却とすることで、マルテンサイト、ベイナイトの形成を抑制し、パーライト、フェライトの形成を促進することができる。 In the cooling process, it is preferable to cool to a temperature range of 550°C to 650°C (cooling stop temperature range). By cooling to a temperature range of 550°C to 650°C, the formation of martensite and bainite can be suppressed and the formation of pearlite and ferrite can be promoted.
「巻取り工程」
 巻取り工程では、冷却工程後、巻取り温度が550~650℃の温度域となるように巻取る。550℃~650℃の温度域で巻取りすることで、マルテンサイト、ベイナイトの形成を抑制し、パーライト、フェライトの形成を促進することができる。
"Winding process"
In the coiling process, after the cooling process, the coiling temperature is in the temperature range of 550 to 650° C. By coiling in the temperature range of 550 to 650° C., the formation of martensite and bainite can be suppressed and the formation of pearlite and ferrite can be promoted.
 本発明を、実施例を参照しながらより具体的に説明する。
 表1および表2に示される化学組成を有するスラブを鋳造した。鋳造後のスラブを表3の条件で加熱し、仕上げ圧延を行った。仕上げ圧延後、表2A、表2Bの条件で冷却および巻取りを行った。表3中の各圧延スタンド間の平均パス間時間は、各圧延スタンド間のパス間時間の平均値である。なお、各実施例の各圧延スタンド間のパス間時間は、0.2秒以上3.0秒以下であった。
The present invention will now be described more specifically with reference to examples.
Slabs having the chemical compositions shown in Tables 1 and 2 were cast. The cast slabs were heated under the conditions in Table 3 and subjected to finish rolling. After finish rolling, the slabs were cooled and coiled under the conditions in Tables 2A and 2B. The average interpass time between each rolling stand in Table 3 is the average value of the interpass times between each rolling stand. The interpass time between each rolling stand in each Example was 0.2 seconds or more and 3.0 seconds or less.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 得られた熱延鋼板から、前述の様にSEM観察用試験片を採取し、圧延方向に平行な板厚断面を研磨した後、上述の方法で板厚1/4の深さ位置における金属組織を観察し、板厚1/4の深さ位置のフェライト、パーライト、ベイナイト、マルテンサイトの面積率を得た。得られた結果を表5に示す。同様に、上述の方法で、フェライト結晶粒の結晶粒径を測定し、第1粒径範囲の評価フェライト結晶粒の数N1および平均結晶粒径、第2粒径範囲の評価フェライト結晶粒の数N2および平均結晶粒径、第3粒径範囲の評価フェライト結晶粒の数N3および平均結晶粒径を評価した。得られた結果を表5に示す。第1粒径範囲の評価フェライト結晶粒の数N1と第2粒径範囲の評価フェライト結晶粒の数N2との比(N1/N2)、第3粒径範囲の評価フェライト結晶粒の数N3と第2粒径範囲の評価フェライト結晶粒の数N2との比(N3/N2)、第1粒径範囲の評価フェライト結晶粒の数N1と第3粒径範囲の評価フェライト結晶粒の数N2との比(N1/N3)、ビッカース硬さを表6に示す。  Test pieces for SEM observation were taken from the obtained hot-rolled steel sheet as described above, and the cross section of the sheet thickness parallel to the rolling direction was polished. The metal structure was then observed at a depth of 1/4 of the sheet thickness using the method described above, and the area ratios of ferrite, pearlite, bainite, and martensite at a depth of 1/4 of the sheet thickness were obtained. The results obtained are shown in Table 5. Similarly, the grain size of ferrite grains was measured using the method described above, and the number N1 and average grain size of ferrite grains evaluated in the first grain size range, the number N2 and average grain size of ferrite grains evaluated in the second grain size range, and the number N3 and average grain size of ferrite grains evaluated in the third grain size range were evaluated. The results obtained are shown in Table 5. Table 6 shows the ratio (N1/N2) of the number N1 of ferrite grains evaluated in the first grain size range to the number N2 of ferrite grains evaluated in the second grain size range, the ratio (N3/N2) of the number N3 of ferrite grains evaluated in the third grain size range to the number N2 of ferrite grains evaluated in the second grain size range, the ratio (N1/N3) of the number N1 of ferrite grains evaluated in the first grain size range to the number N2 of ferrite grains evaluated in the third grain size range, and the Vickers hardness.
 全伸びは、熱延鋼板から、圧延方向に対し垂直方向にJIS5号引張試験片を採取し、JIS Z 2241:2011に沿って引張試験を行うことにより求めた。得られた結果を表6に示す。 The total elongation was determined by taking JIS No. 5 tensile test pieces from the hot-rolled steel sheet in a direction perpendicular to the rolling direction and conducting a tensile test in accordance with JIS Z 2241:2011. The results are shown in Table 6.
 また、上記熱延鋼板の冷間圧延性については、90°Vブロック試験により90°曲げ加工性を評価した。鋼板の板厚をt、パンチの内側最小曲げ半径をRとしたとき、その比R/t=1となる曲率を有する90度パンチを用いて、試験片を90度のダイの中に押し込んだ後、試験片を取り出し、曲げの外側を目視で観察した。目視観察の結果、割れが発生した場合を×、異常が見られない場合を〇とした。なお、隙間の最大幅が、1mm以上のものを「割れ」と定義した。得られた結果を表6に示す。 In addition, the cold rolling properties of the above hot-rolled steel sheets were evaluated for 90° bending workability using a 90° V-block test. When the thickness of the steel sheet is t and the inside minimum bending radius of the punch is R, a 90° punch with a curvature of R/t = 1 was used to press the test piece into a 90° die, after which the test piece was removed and the outside of the bend was visually observed. If cracks were found as a result of the visual observation, they were marked with an X, and if no abnormalities were found, an ◯. A gap with a maximum width of 1 mm or more was defined as a "crack". The results are shown in Table 6.
 表6から分かるように、本発明鋼はいずれも冷間圧延性に優れていた。また、本発明鋼は、球状化焼鈍をせずに冷間圧延性に優れているので、生産性に優れていた。 As can be seen from Table 6, all of the steels of the present invention had excellent cold rolling properties. In addition, the steels of the present invention had excellent cold rolling properties without spheroidizing annealing, and therefore had excellent productivity.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 本開示の熱延鋼板は、冷間圧延性に優れるので、産業上の利用可能性が高い。 The hot-rolled steel sheet disclosed herein has excellent cold rolling properties and is therefore highly applicable in industry.

Claims (5)

  1.  質量%で、
    C:0.20~0.70%、
    Si:0.010~0.300%、
    Mn:0.3~2.0%、
    Al:0.001~0.100%、
    N:0.0010~0.0100%、
    P:0.008%~0.030%、
    S:0.010%以下、
    O:0.0025%以下、
    Cr:1.500%以下、
    B:0.010%以下、
    Nb:0.50%以下、
    Mo:0.50%以下、
    V:0.50%以下、
    Ti:0.3000%以下、
    Cu:0.500%以下、
    W:0.500%以下、
    Ta:0.500%以下、
    Ni:0.500%以下、
    Mg:0.003%以下、
    Ca:0.003%以下、
    Y:0.030%以下、
    Zr:0.030%以下、
    La:0.030%以下、
    Ce:0.030%以下、
    Sn:0.030%以下、
    Sb:0.030%以下、及び、
    As:0.030%以下
    を含有し、残部がFeおよび不純物からなる化学組成を有し、板厚1/4の深さ位置において、金属組織が、
     20面積%以上のフェライトと、
     40面積%以上のパーライトと、
     0面積%以上10面積%以下の残部組織とからなり、
     前記残部組織がベイナイトおよびマルテンサイトのうち少なくとも一方を含み、
     電子後方散乱回折法で測定されるフェライト結晶粒において、最大結晶粒径側から、前記フェライト結晶粒の全個数に対して5%の前記フェライト結晶粒と、前記フェライト結晶粒の最小結晶粒径側から前記フェライト結晶粒の全個数に対して5%の前記フェライト結晶粒とを除いたフェライト結晶粒を評価フェライト結晶粒として扱い、
     前記評価フェライト結晶粒の結晶粒径の最小値を第1粒径に設定し、
     前記評価フェライト結晶粒の結晶粒径の最大値を第2粒径に設定し、
     前記第1粒径に、前記第2粒径と前記第1粒径との差の1/3を加えた結晶粒径を第3粒径に設定し、
     前記第1粒径に、前記第2粒径と前記第1粒径との差の2/3を加えた結晶粒径を第4粒径に設定し、
     前記第1粒径以上、前記第3粒径以下の範囲を第1粒径範囲に設定し、
     前記第3粒径超、前記第4粒径以下の範囲を第2粒径範囲に設定し、
     前記第4粒径超、前記第2粒径以下の範囲を第3粒径範囲に設定したとき、
     前記第1粒径範囲にある前記評価フェライト結晶粒の数は、前記第2粒径範囲にある前記評価フェライト結晶粒の数の2.5倍以上3.0倍以下であり、
     前記第3粒径範囲にある前記評価フェライト結晶粒の数は、前記第2粒径範囲にある前記評価フェライト結晶粒の数の2.0倍以上2.5倍以下である、熱延鋼板。
    In mass percent,
    C: 0.20-0.70%,
    Si: 0.010-0.300%,
    Mn: 0.3-2.0%,
    Al: 0.001-0.100%,
    N: 0.0010-0.0100%,
    P: 0.008% to 0.030%,
    S: 0.010% or less,
    O: 0.0025% or less,
    Cr: 1.500% or less,
    B: 0.010% or less,
    Nb: 0.50% or less,
    Mo: 0.50% or less,
    V: 0.50% or less,
    Ti: 0.3000% or less,
    Cu: 0.500% or less,
    W: 0.500% or less,
    Ta: 0.500% or less,
    Ni: 0.500% or less,
    Mg: 0.003% or less,
    Ca: 0.003% or less,
    Y: 0.030% or less,
    Zr: 0.030% or less,
    La: 0.030% or less,
    Ce: 0.030% or less,
    Sn: 0.030% or less,
    Sb: 0.030% or less, and
    As: 0.030% or less, the balance being Fe and impurities, and the metal structure at a depth position of 1/4 of the plate thickness is
    20% or more by area of ferrite;
    40% or more by area of pearlite;
    The remaining structure is 0 area % or more and 10 area % or less,
    the remaining structure includes at least one of bainite and martensite,
    In the ferrite grains measured by the electron backscatter diffraction method, ferrite grains excluding 5% of the total number of the ferrite grains from the maximum grain size side and 5% of the total number of the ferrite grains from the minimum grain size side of the ferrite grains are treated as evaluation ferrite grains;
    A minimum value of the grain size of the evaluated ferrite grains is set as a first grain size;
    The maximum value of the grain size of the evaluated ferrite grains is set as a second grain size;
    A crystal grain size obtained by adding 1/3 of the difference between the second grain size and the first grain size to the first grain size is set as a third grain size;
    A fourth grain size is set to a crystal grain size obtained by adding 2/3 of the difference between the second grain size and the first grain size to the first grain size;
    A range of the first particle size range is set to be equal to or larger than the first particle size and equal to or smaller than the third particle size,
    A range exceeding the third particle size and equal to or smaller than the fourth particle size is set as a second particle size range;
    When the range exceeding the fourth particle size and equal to or less than the second particle size is set as the third particle size range,
    the number of the evaluated ferrite grains in the first grain size range is 2.5 times or more and 3.0 times or less the number of the evaluated ferrite grains in the second grain size range,
    A hot-rolled steel sheet, wherein the number of the evaluated ferrite grains in the third grain size range is 2.0 to 2.5 times the number of the evaluated ferrite grains in the second grain size range.
  2.  前記第1粒径範囲にある前記評価フェライト結晶粒の平均結晶粒径が3μm~20μmである、請求項1に記載の熱延鋼板。 The hot-rolled steel sheet according to claim 1, wherein the average grain size of the evaluated ferrite grains in the first grain size range is 3 μm to 20 μm.
  3.  前記第3粒径範囲にある前記評価フェライト結晶粒の平均結晶粒径が80μm~120μmである、請求項1に記載の熱延鋼板。 The hot-rolled steel sheet according to claim 1, wherein the average grain size of the evaluated ferrite grains in the third grain size range is 80 μm to 120 μm.
  4.  前記板厚1/4の深さ位置において、ビッカース硬さHvが160以下である、請求項1に記載の熱延鋼板。 The hot-rolled steel sheet according to claim 1, in which the Vickers hardness Hv is 160 or less at a depth position of 1/4 of the sheet thickness.
  5.  全伸びが40%以上である、請求項1~4のいずれか1項に記載の熱延鋼板。 Hot-rolled steel sheet according to any one of claims 1 to 4, having a total elongation of 40% or more.
PCT/JP2023/047323 2023-01-13 2023-12-28 Hot-rolled steel sheet WO2024150706A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023003920 2023-01-13
JP2023-003920 2023-01-13

Publications (1)

Publication Number Publication Date
WO2024150706A1 true WO2024150706A1 (en) 2024-07-18

Family

ID=91896911

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/047323 WO2024150706A1 (en) 2023-01-13 2023-12-28 Hot-rolled steel sheet

Country Status (1)

Country Link
WO (1) WO2024150706A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999013123A1 (en) * 1997-09-11 1999-03-18 Kawasaki Steel Corporation Hot rolled steel plate to be processed having hyper fine particles, method of manufacturing the same, and method of manufacturing cold rolled steel plate
JP2010144242A (en) * 2008-12-22 2010-07-01 Nippon Steel Corp Medium and high carbon steel plate and manufacturing method of the same
JP2017197794A (en) * 2016-04-25 2017-11-02 新日鐵住金株式会社 Hot rolled steel sheet and manufacturing method of hot rolled steel sheet
JP2021031700A (en) * 2019-08-20 2021-03-01 日本製鉄株式会社 High-strength hot-rolled steel sheet and method for manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999013123A1 (en) * 1997-09-11 1999-03-18 Kawasaki Steel Corporation Hot rolled steel plate to be processed having hyper fine particles, method of manufacturing the same, and method of manufacturing cold rolled steel plate
JP2010144242A (en) * 2008-12-22 2010-07-01 Nippon Steel Corp Medium and high carbon steel plate and manufacturing method of the same
JP2017197794A (en) * 2016-04-25 2017-11-02 新日鐵住金株式会社 Hot rolled steel sheet and manufacturing method of hot rolled steel sheet
JP2021031700A (en) * 2019-08-20 2021-03-01 日本製鉄株式会社 High-strength hot-rolled steel sheet and method for manufacturing the same

Similar Documents

Publication Publication Date Title
US11236412B2 (en) Steel sheet and plated steel sheet
EP1243664B1 (en) Bar or wire product for use in cold forging and method for producing the same
EP2090671A1 (en) High-strength wire rod excelling in wire drawability and process for producing the same
EP2083094A1 (en) High-strength steel wire excelling in ductility and process for producing the same
KR20140135264A (en) Steel wire rod or steel bar having excellent cold forgeability
US11401569B2 (en) High-strength cold-rolled steel sheet and method for manufacturing same
KR101751242B1 (en) Full hard cold-rolled steel sheet and method for manufacturing the same
WO2023063010A1 (en) Hot-rolled steel plate
WO2020179737A1 (en) Hot-rolled steel sheet and production method therefor
KR20100076073A (en) Steel sheets and process for manufacturing the same
JP4016894B2 (en) Steel wire rod and method for manufacturing steel wire
KR20220146419A (en) hot rolled steel sheet
JP7239071B1 (en) High-strength hot-rolled steel sheet and method for producing high-strength hot-rolled steel sheet
JP2008081823A (en) Steel plate having excellent fine blanking workability, and manufacturing method therefor
WO2024150706A1 (en) Hot-rolled steel sheet
JP2007291468A (en) Medium carbon steel sheet and its production method
KR20230040349A (en) hot rolled steel
US11242583B2 (en) Steel sheet
WO2024150687A1 (en) Hot-rolled steel sheet
EP4074855B1 (en) Hot-rolled steel sheet
WO2022085708A1 (en) Ferritic stainless steel, and method for manufacturing ferritic stainless steel
WO2023037878A1 (en) Cold-rolled steel sheet and method for manufacturing same
WO2023038084A1 (en) Hot-rolled steel sheet
JP2007270326A (en) Steel plate superior in fine blanking workability, and manufacturing method therefor
WO2024128245A1 (en) Steel sheet and method for manufacturing steel sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23916319

Country of ref document: EP

Kind code of ref document: A1