WO2024149337A1 - 一种光学性能可区域电控的功能元件及复合玻璃 - Google Patents
一种光学性能可区域电控的功能元件及复合玻璃 Download PDFInfo
- Publication number
- WO2024149337A1 WO2024149337A1 PCT/CN2024/071875 CN2024071875W WO2024149337A1 WO 2024149337 A1 WO2024149337 A1 WO 2024149337A1 CN 2024071875 W CN2024071875 W CN 2024071875W WO 2024149337 A1 WO2024149337 A1 WO 2024149337A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- planar electrode
- functional element
- busbar
- bus
- transparent substrate
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 64
- 239000011521 glass Substances 0.000 title claims abstract description 20
- 150000001875 compounds Chemical class 0.000 title abstract 2
- 238000005520 cutting process Methods 0.000 claims abstract description 87
- 239000000758 substrate Substances 0.000 claims abstract description 57
- 239000002346 layers by function Substances 0.000 claims abstract description 15
- 239000004020 conductor Substances 0.000 claims description 15
- 239000010410 layer Substances 0.000 claims description 14
- 238000005192 partition Methods 0.000 claims description 13
- 239000002131 composite material Substances 0.000 claims description 10
- 239000004983 Polymer Dispersed Liquid Crystal Substances 0.000 claims description 5
- 230000037072 sun protection Effects 0.000 claims description 4
- 208000008918 voyeurism Diseases 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 abstract description 9
- 238000010586 diagram Methods 0.000 description 7
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 3
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 2
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 238000012938 design process Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000011112 process operation Methods 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B17/00—Layered products essentially comprising sheet glass, or glass, slag, or like fibres
- B32B17/06—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
- B32B17/10—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
Definitions
- the present application relates to the technical field of special (optical and electrical) glass products, and in particular to a functional element and composite glass whose optical properties can be electrically controlled in a certain area.
- the patent with publication number CN114072281A discloses a functional element with electrically controllable optical performance, wherein the arrangement of the synchronous cutting line 16 and the bus bars 18 and 19 can realize the separate control of different areas.
- the general direction of the synchronous cutting line is parallel or approximately parallel to the direction of the bus, which results in a narrow area between the bus and the separate control area, such as the middle area of different cutting lines in Figure 1.
- the resistance of this middle area will be much greater than the resistance of the partitioned functional area, and in the partitioned functional area, the farther away from the bus, the greater the resistance of the middle area, which leads to a significant voltage drop under the same voltage. If the optical properties of the partitioned functional areas in different zones are to be consistent, it is necessary to reduce the resistance of the planar electrode (which will increase the cost) or increase the voltage used (which will increase the risk of use).
- the path of the cutting line is composed of at least one vertical part and a horizontal part, which will increase the complexity of manufacturing.
- the functional element with regional electrically controlled optical performance greatly simplifies the manufacturing complexity of the partitioned electrically controlled optical functional element, reduces the voltage drop between different partitioned functional areas, and ensures that the optical properties of each independent functional area are consistent.
- the present application provides a functional element whose optical performance can be electrically controlled in a region, comprising:
- a first planar electrode and a second planar electrode, the first planar electrode and the second planar electrode are located between the first transparent substrate and the second transparent substrate; the first planar electrode and the second planar electrode each have at least one bus bar;
- a dimming function layer is located between the first planar electrode and the second planar electrode;
- the functional element has a plurality of cutting surfaces so that the busbar on the first planar electrode and the busbar on the second planar electrode are exposed;
- the second planar electrode has a partition cutting line, which cuts the second planar electrode into independent sections along a direction perpendicular to the busbars on the second planar electrode.
- the number of independent sections corresponds to the number of busbars on the second planar electrode.
- At least a portion of the busbar on the second planar electrode and the busbar on the first planar electrode are located on the same side of the functional element.
- the busbar on the first planar electrode is in a zigzag shape and is located on one side of the busbar on the second planar electrode and on an adjacent side of the side.
- the cross-sectional area of the functional element is not less than 0.5 m 2
- the length of the busbar on the first planar electrode is not less than 300 mm and not greater than half of the perimeter of the cross section of the functional element.
- the busbar on the second planar electrode and the busbar on the first planar electrode are located on the same side of the functional element.
- the cross-sectional area of the functional element is less than 0.5 m 2
- the length of the busbar on the first planar electrode is not less than 100 mm.
- the busbar on the first planar electrode is located on a side adjacent to a side of the busbar on the second planar electrode in the functional element.
- the cross-sectional area of the functional element is not less than 0.5 m 2
- the length of the busbar on the first planar electrode is not less than 300 mm and not greater than half of the maximum cross-sectional perimeter of the functional element.
- the plurality of cutting surfaces include: a first cutting surface, a second cutting surface, a third cutting surface, and a fourth cutting surface, wherein:
- the first cutting plane cuts the first transparent substrate, the first planar electrode and the dimming function layer along a direction perpendicular to the busbar on the second planar electrode;
- the second cutting plane cuts the first transparent substrate, the first planar electrode and the dimming function layer along a direction parallel to the busbar on the second planar electrode;
- the third cutting plane cuts the second transparent substrate, the second planar electrode and the dimming function layer along a direction perpendicular to the busbar on the first planar electrode;
- the fourth cutting plane cuts the second transparent substrate, the second planar electrode and the second planar electrode in a direction parallel to the busbar on the second planar electrode. Dimming function layer.
- the multiple cutting surfaces also include: a fifth cutting surface; the fifth cutting surface cuts the second transparent substrate, the second planar electrode and the dimming functional layer along a direction perpendicular to the bus on the first planar electrode; and the fifth cutting surface intersects with the fourth cutting surface.
- the ratio of the length of the relatively shorter busbars to the relatively longer busbars on the second planar electrode and the busbars on the first planar electrode is not less than 0.5.
- a minimum spacing between a bus bar on the first planar electrode and a bus bar on the second planar electrode on a horizontal projection plane is not less than 5 mm.
- the functional element whose optical performance can be electrically controlled regionally further includes:
- the conductor has its lead-out bodies corresponding to the busbars on the first planar electrode and the busbars on the second planar electrode.
- the number of lead-out bodies is not less than the sum of the number of bus bars on the first planar electrode and the number of bus bars on the second planar electrode.
- the dimming functional layer includes: any one or more combinations of PDLC (Polymer Dispersed Liquid Crystal) dimming film, EC (Electrochromic) dimming film, SPD (Suspended Particle Device) dimming film and LV (Light Valve) dimming film.
- PDLC Polymer Dispersed Liquid Crystal
- EC Electrode
- SPD Small Particle Device
- LV Light Valve
- the present application also provides a composite glass, comprising a functional element with regional electrically controllable optical properties as described above, which is used to be installed on at least one of the vehicle's sunroof, side windows, front windshield and rear windshield, as well as the interior glass or exterior glass in a building, for sun protection or peeping protection.
- the embodiments of the present application provide a functional element and a composite glass with regional electrically controllable optical properties
- the functional element with regional electrically controllable optical properties includes: at least one first transparent substrate and at least one second transparent substrate; a first planar electrode and a second planar electrode, the first planar electrode and the second planar electrode are located between the first transparent substrate and the second transparent substrate; the first planar electrode and the second planar electrode each have at least one bus; a dimming functional layer, located between the first planar electrode and the second planar electrode;
- the functional element has a plurality of cutting surfaces to expose the bus on the first planar electrode and the bus on the second planar electrode;
- the second planar electrode has a partition cutting line, the partition cutting line cuts the second planar electrode into independent segments along a direction perpendicular to the bus on the second planar electrode, and the number of independent segments corresponds to the number of buses on the second planar electrode.
- the functional element with regional electrically controlled optical performance provided by the present application greatly simplifies the manufacturing complexity of the partitioned electrically controlled optical functional element, reduces the voltage drop between different partitioned functional areas, and ensures that the optical properties of each independent functional area are consistent.
- FIG1 is a schematic diagram of the structure of a functional element whose optical performance can be electrically controlled in a region in the prior art
- FIG2 is a schematic diagram of a structure of a functional element whose optical performance can be electrically controlled in a region in an embodiment of the present application;
- FIG3 is a top view of the functional element of FIG2 whose optical performance can be electrically controlled in a region;
- FIG4 is another schematic diagram of the structure of a functional element whose optical performance can be electrically controlled in a region in an embodiment of the present application;
- FIG5 is a side view of the functional element of FIG3 whose optical performance can be electrically controlled in a region;
- FIG6 is a schematic diagram of the positions of conductors in an embodiment of the present application.
- FIG. 7 is another schematic diagram of the structure of a functional element whose optical performance can be electrically controlled in a region in an embodiment of the present application;
- FIG8 is a top view of the functional element of FIG7 whose optical performance can be electrically controlled in a region;
- FIG9 is a side view of the functional element of FIG8 whose optical performance can be electrically controlled in a region;
- FIG10 is a top view of the functional element of FIG4 whose optical performance can be electrically controlled in a region;
- FIG11 is a side view of the functional element of FIG10 whose optical performance can be electrically controlled in a region;
- FIG. 12 is another side view (opposite to the side view direction of FIG. 11 ) of the functional element in FIG. 10 whose optical properties can be electrically controlled in a regional manner.
- FIG13 is a schematic diagram of a structure of a conductor in an embodiment of the present application.
- FIG14 is an enlarged schematic diagram of the circle position in FIG6 ;
- an embodiment of the present application provides a functional element whose optical performance can be electrically controlled in a region, including:
- a first planar electrode 3 and a second planar electrode 4 are located between the first transparent substrate 1 and the second transparent substrate 2; the first planar electrode 3 and the second planar electrode 4 each have at least one bus 5;
- the dimming functional layer 6 is located between the first planar electrode 3 and the second planar electrode 4;
- the functional element has a plurality of cutting surfaces (7, 8, 9, 10) so that the busbar 5 on the first planar electrode 3 and the busbar 5 on the second planar electrode 4 are exposed to the outside;
- the second planar electrode 4 has a partition cutting line 11, which cuts the second planar electrode 4 into independent segments along a direction perpendicular to the bus 5 on the second planar electrode 4.
- the number of independent segments corresponds to the number of bus bars 5 on the second planar electrode 4 (i.e., each independent segment divided by the partition cutting line 11 corresponds to a bus bar 5).
- the functional elements with regional electrically controlled optical properties Compared with the functional elements with electrically controlled optical properties in the prior art, the functional elements with regional electrically controlled optical properties provided in the embodiments of the present application achieve individual regional control through the setting of cutting lines and buses, greatly simplify the manufacturing complexity of partitioned electrically controlled optical functional elements, reduce the voltage drop between different partitioned functional areas, and ensure that the optical properties of each independent functional area are consistent.
- the busbar 5 on the second planar electrode 4 and the busbar 5 on the first planar electrode 3 are located on the same side of the functional element. That is, the busbar 5 on the first planar electrode 3 is in the form of a zigzag line (the zigzag line is located on one side of the busbar 5 on the second planar electrode 4 and the adjacent side of the side, and the embodiment of the zigzag line is not drawn in Fig. 2) and is in the form of a line segment (located only on one side of the busbar 5 on the second planar electrode 4).
- All or part of the busbar 5 on the first planar electrode 3 and the busbar 5 on the second planar electrode 4 are located on one side of the functional element whose optical performance can be regionally electrically controlled.
- the main purpose is to facilitate the subsequent flat conductor design and manufacturing costs and composite processing difficulty.
- the bus bar 5 on the first planar electrode 3 is isolated from the bus bar 5 on the second planar electrode 4 by the dimming function layer 6 .
- the busbars 5 of the first planar electrode 3 and the second planar electrode 4 are not directly adjacent to each other, and are separated by the dimming functional layer 6. Since the busbars 5 of the first planar electrode 3 and the second planar electrode 4 are on different planar electrode surfaces, they need to be processed separately from different transparent substrates during processing to form corresponding substrate cutting surfaces. If the spacing is too close, it may cause a short circuit between the two electrodes when cutting the transparent substrate, or burn through due to high voltage, or interfere with each other during processing, thereby damaging the corresponding busbars.
- the bus 5 on the first planar electrode 3 is in a zigzag shape (the zigzag is located on one side of the bus 5 on the second planar electrode 4 and on the adjacent side of the side), and is located on one side of the bus 5 on the second planar electrode 4 and on the adjacent side of the side.
- the cross-sectional area of the functional element is not less than 0.5m 2
- the length of the busbar 5 on the first planar electrode 3 is not less than 300mm and not greater than half of the circumference of the cross section of the functional element.
- the bus 5 on the first planar electrode 3 is located on one side of the bus 5 on the second planar electrode 4 in the functional element whose optical performance can be regionally electrically controlled, and on the adjacent side of the one side; and the cross-sectional area of the functional element whose optical performance can be regionally electrically controlled is not less than 0.5m2 , and the length of the bus 5 on the first planar electrode 3 is not less than 300mm, and is not greater than half of the maximum cross-sectional circumference of the functional element whose optical performance can be regionally electrically controlled.
- the busbar 5 on the first planar electrode 3 provided in this embodiment is in a zigzag shape, one side of the zigzag line is located on the same side as the busbar 5 on the second planar electrode 4, and the other side is located on the adjacent side of the same side (the side corresponding to the lower side in FIG3 ).
- This embodiment has the following beneficial effects: the area of the functional element whose optical performance can be regionally electrically controlled is large, and the corresponding voltage drop at the far end of the functional element is also large. If the electrode is too short, it will lead to inconsistent optical states on the front side. If the electrode is too long, it will bring disadvantages in manufacturing and cost. Therefore, the reasonable selection of the busbar length is crucial to the performance of the functional element.
- the cross-sectional area here refers to the largest cross-sectional area of the three cross-sectional areas that can be obtained along the three sides (length, width and height) of the functional element whose optical performance can be regionally electrically controlled.
- the cross-sectional area is equal to the product of the lengths of the two sides.
- the present application further provides an embodiment in which the busbar 5 on the second planar electrode 4 and the busbar 5 on the first planar electrode 3 are located on the same side of the functional element.
- the cross-sectional area of the functional element is less than 0.5 m 2
- the length of the busbar 5 on the first planar electrode 3 is not less than 100 mm.
- the single-sided electrode can ensure the overall uniformity of the diaphragm, and the bus length is greater than 100 mm mainly considering the convenience of process operation.
- the busbar 5 on the first planar electrode 3 is located on an adjacent side of one side of the busbar 5 on the second planar electrode 4 in the functional element.
- the busbar 5 on the first planar electrode 3 and the busbar 5 on the second planar electrode 4 are located on two adjacent sides, that is, no part of the busbar 5 on the second planar electrode 4 is located on one side of the busbar 5 on the first planar electrode 3. It can be understood that such a design can greatly reduce the manufacturing cost and the difficulty of composite processing in the subsequent flat conductor design process.
- the cross-sectional area of the functional element is not less than 0.5m 2
- the length of the busbar 5 on the first planar electrode 3 is not less than 300mm, and is not greater than half of the maximum cross-sectional perimeter of the functional element.
- the partition cutting line 11 not only cuts the second planar electrode 4 in the portion formed by the cutting surface, It further extends to the end of the second planar electrode 4 (from one end to the other end).
- FIG. 5 is a cross-sectional view taken along the dotted solid line in FIG. 3 . It should be noted that the partition cutting line 11 only needs to be between two adjacent bus bars 5 , and there is no requirement for the distance.
- the plurality of cutting surfaces include: a first cutting surface 7 , a second cutting surface 8 , a third cutting surface 9 and a fourth cutting surface 10 ; wherein:
- the first cutting surface 7 cuts the first transparent substrate 1, the first planar electrode 3 and the dimming function layer 6 along a direction perpendicular to the bus bar 5 on the second planar electrode 4;
- the second cutting plane 8 cuts the first transparent substrate 1 , the first planar electrode 3 and the dimming function layer 6 along a direction parallel to the bus bar 5 on the second planar electrode 4 ;
- the third cutting surface 9 cuts the second transparent substrate 2, the second planar electrode 4 and the dimming function layer 6 along a direction perpendicular to the bus bar 5 on the first planar electrode 3;
- the fourth cutting plane 10 cuts the second transparent substrate 2 , the second planar electrode 4 and the dimming function layer 6 along a direction parallel to the busbar 5 on the second planar electrode 4 .
- the first cutting surface 7 and the second cutting surface 8 cooperate to expose the bus 5 on the second planar electrode 4 outside the functional element whose optical performance can be regionally electrically controlled; the third cutting surface 9 and the fourth cutting surface 10 cooperate to expose the bus 5 on the first planar electrode 3 outside the functional element whose optical performance can be regionally electrically controlled.
- the first cutting surface 7 intersects with the second cutting surface 8, and the first cutting surface 7 intersects with the second cutting surface 8.
- busbars 5 on the first planar electrode 3 their types may be the same or different.
- busbars 5 on the second planar electrode 4 their types may be the same or different, and the types of the busbars 5 on the first planar electrode 3 and the second planar electrode 4 may be the same or different.
- the direction of the bus 5 here refers to the direction of its long side.
- the cutting direction refers to being roughly perpendicular to the bus 5, and does not require absolute perpendicularity. The present application is not limited to this.
- most of the partition cutting line 11 is roughly perpendicular to the direction of the bus 5.
- the partition cutting line 11 bends at the position of the bus 5, bypasses the bus 5 at that location, and then extends in a direction roughly perpendicular to the bus 5.
- the multiple cutting surfaces also include: a fifth cutting surface 12; the fifth cutting surface 12 cuts the second transparent substrate 2, the second planar electrode 4 and the dimming functional layer 6 along a direction perpendicular to the bus 5 on the first planar electrode 3; and the fifth cutting surface 12 intersects with the fourth cutting surface 10.
- FIG8 is a top view of a functional element with regional electrically controllable optical performance provided by the above embodiment (the dotted line in the figure corresponds to the cutting surface), and FIG9 is a cross-sectional view of FIG8 along the dotted solid line.
- the third cutting plane 9 starts to split from the opposite side of the bus 5 of the second planar electrode 4 (on the functional element whose optical performance can be regionally electrically controlled), and it does not extend to one side of the bus 5 of the second planar electrode 4, and stops after intersecting with the fourth cutting plane 10.
- the ratio of the length of the relatively shorter busbar 5 to the relatively longer busbar 5 between the busbar 5 on the second planar electrode 4 and the busbar 5 on the first planar electrode 3 is not less than 0.5.
- the length difference between the busbar 5 on the second planar electrode 4 and the busbar 5 on the first planar electrode 3 should be no greater than 50%. If the difference between the busbars is too large, the optical performance will not be effective.
- the difference is less than 30%, and more preferably, the difference is less than 10%.
- the distance between the bus bar 5 on the first planar electrode 3 and the bus bar 5 on the second planar electrode 4 on the same side of the functional element with regional electrically controllable optical properties is not less than 5 mm.
- the bus 5 on the first planar electrode 3 and the bus 5 on the second planar electrode 4 are on different planar electrode surfaces, they need to be processed separately from different transparent substrates to form corresponding substrate cutting surfaces. If the spacing is too close, it may cause a short circuit between the two electrodes when cutting the transparent substrate, or high voltage burns through, or the processing interferes with each other, damaging the corresponding bus.
- the functional element whose optical performance can be electrically controlled regionally further includes:
- the conductor 14 whose lead body 13 corresponds to the busbar 5 on the first planar electrode 3 and the busbar 5 on the second planar electrode 4 .
- the conductor 14 can be a flat conductor.
- the busbar 5 on the first planar electrode 3 and the busbar 5 on the second planar electrode 4 can be led out through the same flat conductor, and the flat conductor is designed as a flexible printed circuit board, wherein each lead-out body 13 of the flat conductor corresponds to the busbar 5 on the first planar electrode 3 and the busbar 5 on the second planar electrode 4, 15 in the figure is a protective layer, and 16 is an external welding body (preferably, the conductor 14 in Figure 13 can be made of conductive copper foil).
- the number of lead-out bodies 13 is not less than the sum of the number of busbars 5 on the first planar electrode 3 and the number of busbars 5 on the second planar electrode 4. That is, the number of lead-out bodies 13 of the flat conductor is greater than or equal to the sum of the number of conductors of the busbars 5 on the first planar electrode 3 and the busbars 5 on the second planar electrode 4.
- the dimming functional layer 6 includes: any one or more combinations of PDLC dimming film, EC dimming film, SPD dimming film and LV dimming film (the dimming functional layer 6 can be PDLC, EC, SPD, LV and other dimming technologies).
- the multiple first transparent substrates 1 and multiple second transparent substrates 2 are arranged in the vertical direction. That is, in the vertical direction, according to the order of FIG. 1, there are N second transparent substrates 2 (covered in sequence in the vertical direction), the second planar electrode 4, the dimming functional layer 6, the first planar electrode 3, and N first transparent substrates 1 (covered in sequence in the vertical direction).
- N second transparent substrates 2 here can be replaced by N different transparent substrates
- the N first transparent substrates 1 can also be replaced by N different transparent substrates, but the corresponding first transparent substrates 1 and second transparent substrates 2 on both sides of the dimming functional layer 6 are required to be consistent.
- the present application also provides a composite glass, including any functional element whose optical properties can be regionally electrically controlled as in the above embodiments, which is used to be installed on at least one of the sunroof, side windows, front windshield and rear windshield of a vehicle, as well as the interior glass or exterior glass in a building, for sun protection or peeping protection.
- the composite glass installed on the vehicle described in the above embodiment can control the optical properties of vehicle glass in different areas in a zone without affecting the line of sight between the passengers and the outside of the vehicle, that is, without affecting its function as a vehicle window itself, and can also control the optical properties of different positions in a piece of vehicle glass in the same area.
- composite glass can also be used for subway windows, train windows, bus windows, ship interior windows, windows on both sides of aircraft interiors, and interior or exterior glass in buildings for sun protection or peeping protection.
- the embodiments of the present application provide a functional element and a composite glass with regional electrically controllable optical properties
- the functional element with regional electrically controllable optical properties includes: at least one first transparent substrate and at least one second transparent substrate; a first planar electrode and a second planar electrode, the first planar electrode and the second planar electrode are located between the first transparent substrate and the second transparent substrate; the first planar electrode and the second planar electrode each have at least one bus; a dimming functional layer, located between the first planar electrode and the second planar electrode;
- the functional element has a plurality of cutting surfaces to expose the bus on the first planar electrode and the bus on the second planar electrode;
- the second planar electrode has a partition cutting line, the partition cutting line cuts the second planar electrode into independent segments along a direction perpendicular to the bus on the second planar electrode, and the number of independent segments corresponds to the number of buses on the second planar electrode.
- the functional elements with regional electrically controlled optical properties achieved by individual regional control through the setting of cutting lines and buses.
- the terms “installed”, “connected”, and “connected” should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection, or it can be indirectly connected through an intermediate medium, or it can be the internal communication of two components.
- installed should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection, or it can be indirectly connected through an intermediate medium, or it can be the internal communication of two components.
Landscapes
- Photovoltaic Devices (AREA)
Abstract
一种光学性能可区域电控的功能元件及复合玻璃,光学性能可区域电控的功能元件包括:至少一个第一透明基板(1)以及至少一个第二透明基板(2);第一平面电极(3)以及第二平面电极(4),第一平面电极(3)以及第二平面电极(4)位于第一透明基板(1)与第二透明基板(2)之间;第一平面电极(3)以及第二平面电极(4)上均具有至少一个汇流排(5);调光功能层,位于第一平面电极(3)与第二平面电极(4)之间;功能元件上具有多个切割面(7、8、9、10),以使第一平面电极(3)上的汇流排(5)以及第二平面电极(4)上的汇流排(5)暴露在外;光学性能可区域电控的功能元件,可以大大简化分区电控光学功能元件的制造复杂程度,并减少不同分区功能区域之间的压降,从而保证各个独立的功能区域的光学性质一致。
Description
相关申请
本申请要求于2023年1月13日递交的申请号为202310067709.2的中国专利申请,以及于2023年1月13日递交的申请号为202320117169.X的中国专利申请的优先权,并引用上述专利申请公开的内容作为本申请的一部分。
本申请涉及特种(光学与电学)玻璃产品技术领域,具体涉及一种光学性能可区域电控的功能元件及复合玻璃。
参见图1,公开号为CN114072281A的专利公开了一种具有可电控光学性能的功能元件,其中同步切割线16、汇流排18和19的设置可以实现对不同区域的单独控制。
现有技术中,同步切割线大致的方向与汇流排方向为平行或大致平行,从而导致在汇流排到单独控制区域之间会出现一段窄面积区域,如图1中不同切割线中间区域。此中间区域的电阻会远大于分区功能区域电阻,而且在分区功能区域中,距离汇流排越远,中间区域电阻越大,这导致相同电压情况下,压降明显,若要保证不同区分区功能区域的光学特性一致,则需降低平面电极的电阻(会导致成本增加),或者加大使用电压(会增大使用风险)。另外通过上述的切割线方式实现分区的过程中,切割线的路径通过至少一个垂直部分以及水平部分构成,会增加的制造的复杂程度。
发明内容
针对现有技术中的问题,本申请所提供的光学性能可区域电控的功能元件,大大简化分区电控光学功能元件的制造复杂程度,并减少不同分区功能区域之间的压降,以及保证各个独立的功能区域的光学性质一致。
为解决上述技术问题,本申请提供以下技术方案:
本申请提供一种光学性能可区域电控的功能元件,包括:
至少一个第一透明基板以及至少一个第二透明基板;
第一平面电极以及第二平面电极,第一平面电极以及第二平面电极位于第一透明基板与第二透明基板之间;第一平面电极以及第二平面电极上均具有至少一个汇流排;
调光功能层,位于第一平面电极与第二平面电极之间;
功能元件上具有多个切割面,以使第一平面电极上的汇流排以及第二平面电极上的汇流排暴露在外;
第二平面电极具有分区切割线,分区切割线沿与第二平面电极上汇流排垂直方向将第二平面电极切割为独立区段,独立区段数量与第二平面电极上汇流排数量对应。
在本申请一些实施中,第二平面电极上的汇流排与第一平面电极上的汇流排的至少一部分位于功能元件同一侧。
在本申请一些实施中,第一平面电极上的汇流排呈折线形,且位于第二平面电极上的汇流排的一侧,以及该侧的相邻侧。
在本申请一些实施中,功能元件的截面积不小于0.5m2,以及第一平面电极上的汇流排长度不小于300mm,且不大于功能元件横截面周长的一半。
在本申请一些实施中,第二平面电极上的汇流排与第一平面电极上的汇流排位于功能元件同一侧。
在本申请一些实施中,功能元件的截面积小于0.5m2,以及第一平面电极上的汇流排长度不小于100mm。
在本申请一些实施中,第一平面电极上的汇流排位于功能元件中第二平面电极上汇流排的一侧的相邻侧。
在本申请一些实施中,功能元件的截面积不小于0.5m2,以及第一平面电极上的汇流排长度不小于300mm,且不大于功能元件最大截面周长的一半。
在本申请一些实施中,多个切割面包括:第一切割面、第二切割面、第三切割面以及第四切割面,其中:
第一切割面沿与第二平面电极上汇流排垂直方向切割第一透明基板、第一平面电极以及调光功能层;
第二切割面沿与第二平面电极上汇流排平行方向切割第一透明基板、第一平面电极以及调光功能层;
第三切割面沿与第一平面电极上汇流排垂直方向切割第二透明基板、第二平面电极以及调光功能层;
第四切割面沿与第二平面电极上汇流排平行方向切割第二透明基板、第二平面电极以及
调光功能层。
在本申请一些实施中,多个切割面还包括:第五切割面;第五切割面沿与第一平面电极上汇流排垂直方向切割第二透明基板、第二平面电极以及调光功能层;且第五切割面与第四切割面相交。
在本申请一些实施中,第二平面电极上的汇流排与第一平面电极上的汇流排中,相对较短的汇流排与相对较长的汇流排长度之比不小于0.5。
在本申请一些实施中,第一平面电极上的汇流排与第二平面电极上的汇流排在水平投影面上的最小间距不小于5mm。
在本申请一些实施中,光学性能可区域电控的功能元件还包括:
导体,其引出体与第一平面电极上的汇流排与第二平面电极上的汇流排对应。
在本申请一些实施中,引出体数量不小于第一平面电极上的汇流排数量与第二平面电极上的汇流排数量之和。
在本申请一些实施中,调光功能层包括:PDLC(Polymer Dispersed Liquid Crystal,液晶电控)调光膜,EC(Electrochromic)调光膜,SPD(Suspended Particle Device)调光膜以及LV(Light Valve)调光膜中的任意一种或多种组合。
第二方面,本申请还提供一种复合玻璃,包括如上的光学性能可区域电控的功能元件,用于安装在车辆的天窗、侧窗、前挡窗以及后挡窗中的至少之一上,以及建筑物中的内部玻璃或外部玻璃,用于防晒或者防窥。
从上述描述可知,本申请实施例所提供一种光学性能可区域电控的功能元件及复合玻璃,光学性能可区域电控的功能元件包括:至少一个第一透明基板以及至少一个第二透明基板;第一平面电极以及第二平面电极,第一平面电极以及第二平面电极位于第一透明基板与第二透明基板之间;第一平面电极以及第二平面电极上均具有至少一个汇流排;调光功能层,位于第一平面电极与第二平面电极之间;功能元件上具有多个切割面,以使第一平面电极上的汇流排以及第二平面电极上的汇流排暴露在外;第二平面电极具有分区切割线,分区切割线沿与第二平面电极上汇流排垂直方向将第二平面电极切割为独立区段,独立区段数量与第二平面电极上汇流排数量对应。
本申请所提供的光学性能可区域电控的功能元件,大大简化分区电控光学功能元件的制造复杂程度,并减少不同分区功能区域之间的压降,以及保证各个独立的功能区域的光学性质一致。
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为现有技术中光学性能可区域电控的功能元件的结构示意图;
图2为本申请实施例中的光学性能可区域电控的功能元件的一结构示意图;
图3为图2中的光学性能可区域电控的功能元件的俯视图;
图4为本申请实施例中的光学性能可区域电控的功能元件的另一结构示意图;
图5为图3中的光学性能可区域电控的功能元件的侧视图;
图6为本申请实施例中的导体的位置示意图;
图7为本申请实施例中的光学性能可区域电控的功能元件的另一结构示意图;
图8为图7中的光学性能可区域电控的功能元件的俯视图;
图9为图8中的光学性能可区域电控的功能元件的侧视图;
图10为图4中的光学性能可区域电控的功能元件的俯视图;
图11为图10中的光学性能可区域电控的功能元件的一侧视图;
图12为图10中的光学性能可区域电控的功能元件的另一侧视图(与图11的侧视方向相对)。
图13为本申请实施例中的导体的一结构示意图;
图14为图6中的圆圈位置的放大示意图;
为使本申请实施例的目的、技术方案和优点更加清楚明白,下面结合附图对本申请实施例做进一步详细说明。在此,本申请的示意性实施例及其说明用于解释本申请,但并不作为对本申请的限定。显然,所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本申请保护的范围。
参见图2,首先,本申请实施例提供一种光学性能可区域电控的功能元件,包括:
至少一个第一透明基板1以及至少一个第二透明基板2;
第一平面电极3以及第二平面电极4,第一平面电极3以及第二平面电极4位于第一透明基板1与第二透明基板2之间;第一平面电极3以及第二平面电极4上均具有至少一个汇流排5;
调光功能层6,位于第一平面电极3与第二平面电极4之间;
功能元件上具有多个切割面(7、8、9、10),以使第一平面电极3上的汇流排5以及第二平面电极4上的汇流排5暴露在外;
第二平面电极4具有分区切割线11,分区切割线11沿与第二平面电极4上汇流排5垂直方向将第二平面电极4切割为独立区段,独立区段数量与第二平面电极4上汇流排5数量对应(即每一个被分区切割线11分割的独立区段对应一个汇流排5)。
相比于现有技术中的电控光学性能的功能元件,本申请实施例所提供的光学性能可区域电控的功能元件通过切割线和汇流排的设置方式,实现了单独区域控制,且大大简化分区电控光学功能元件的制造复杂程度,并减少不同分区功能区域之间的压降,以及保证各个独立的功能区域的光学性质一致。
参见图2,在本申请一些实施例中,第二平面电极4上的汇流排5与第一平面电极3上的汇流排5的至少一部分位于功能元件同一侧。即同时包含第一平面电极3上的汇流排5为折线形(该折线同时位于第二平面电极4上的汇流排5的一侧以及该侧的相邻侧,折线形的实施例图2中未画出)以及为线段性(仅位于第二平面电极4上的汇流排5的一侧)的情况。
第一平面电极3上的汇流排5的全部或部分与第二平面电极4上的汇流排5位于光学性能可区域电控的功能元件的一侧,其主要目的是在为后续的扁平导体设计制造成本和复合加工难度提供便利。
继续参见图2,在本申请一些实施例中,第一平面电极3上的汇流排5与第二平面电极4上的汇流排5通过调光功能层6隔离开。
第一平面电极3以及第二平面电极4的汇流排5未直接相邻,通过调光功能层6将两者隔离开,由于第一平面电极3以及第二平面电极4的汇流排5在不同的平面电极面上,其加工时需要从不同的透明基板分别处理,从而形成对应的基材切割面,若间距太近可能在做透明基板切裁时会导致两个电极之间距离太近短路,或高电压烧穿,或加工处理相互干涉,损伤对应的汇流排。
在本申请一些实施例中,第一平面电极3上的汇流排5呈折线形(该折线同时位于第二平面电极4上的汇流排5的一侧以及该侧的相邻侧),且位于第二平面电极上4的汇流排5的一侧,以及该侧的相邻侧。
在本申请一些实施例中,在第一平面电极3上的汇流排5呈折线形,且位于第二平面电极4上的汇流排5的一侧,以及该侧的相邻侧的情况下:功能元件的截面积不小于0.5m2,以及第一平面电极3上的汇流排5长度不小于300mm,且不大于功能元件横截面周长的一半。
在本申请一些实施例中,第一平面电极3上的汇流排5位于光学性能可区域电控的功能元件中第二平面电极4上汇流排5的一侧,以及该一侧的相邻侧;且光学性能可区域电控的功能元件的截面积不小于0.5m2,以及第一平面电极3上的汇流排5长度不小于300mm,以及不大于光学性能可区域电控的功能元件最大截面周长的一半。
该实施例所提供的第一平面电极3上的汇流排5呈折线形,其折线的一边侧与第二平面电极4上的汇流排5位于同一侧,另一边测位于该同一侧的相邻侧(图3中下边所对应的一侧)。该实施例的具有如下有益效果:光学性能可区域电控的功能元件面积大,对应的功能元件远端的压降对也大,若电极太短,会导致正面光学状态不一致,若电极太长会又带来制造和成本上的劣势,故合理的选择汇流排长度对功能元件性能的影响至关重要。
另外,参见图3,这里的截面积是指光学性能可区域电控的功能元件的沿其三个边(长宽高)所能得到三个截面积中最大的截面积,在图3中,该截面积等于两个边长度的乘积。
相对于上述的第一平面电极3上的汇流排5位于第二平面电极4上汇流排5的一侧以及该侧的相邻侧,本申请还提供一种第二平面电极4上的汇流排5与第一平面电极3上的汇流排5位于功能元件同一侧的实施方式。在此种的实施方式下:功能元件的截面积小于0.5m2,以及第一平面电极3上的汇流排5长度不小于100mm。
可以理解的是,主要由于膜片面积小,平面电极压降有限,单侧电极可以保证膜片的整体均匀性,而汇流排长度大于100mm主要是考虑到工艺操作的便捷性。
在本申请一些实施例中,参见图4,第一平面电极3上的汇流排5位于功能元件中第二平面电极4上汇流排5的一侧的相邻侧。
不同于图2中的光学性能可区域电控的功能元件,在本实施例中,第一平面电极3上的汇流排5与第二平面电极4上的汇流排5位于相邻两侧,即第二平面电极4上的汇流排5没有任何一部分位于第一平面电极3上的汇流排5的一侧。可以理解的是,这样的设计可以在后续的扁平导体设计过程中,大大降低制造成本和复合加工难度。在此种实施方式下,功能元件的截面积不小于0.5m2,以及第一平面电极3上的汇流排5长度不小于300mm,且不大于功能元件最大截面周长的一半。
在本申请一些实施例中,参见图3(光学性能可区域电控的功能元件的俯视图(图中虚线对应切割面)),分区切割线11不仅在由切割面所形成的部分对第二平面电极4进行切割,
其进一步延伸至第二平面电极4的端部(从一端到另一端)。
图5是在图3中沿点实线进行截面的截面图,需要说明的是,分区切割线11仅需要在相邻的两个汇流排5之间即可,对距离并没有要求。
在本申请一些实施例中,参见图2,多个切割面包括:第一切割面7、第二切割面8、第三切割面9以及第四切割面10;其中:
第一切割面7沿与第二平面电极4上汇流排5垂直方向切割第一透明基板1、第一平面电极3以及调光功能层6;
第二切割面8沿与第二平面电极4上汇流排5平行方向切割第一透明基板1、第一平面电极3以及调光功能层6;
第三切割面9沿与第一平面电极3上汇流排5垂直方向切割第二透明基板2、第二平面电极4以及调光功能层6;
第四切割面10沿与第二平面电极4上汇流排5平行方向切割第二透明基板2、第二平面电极4以及调光功能层6。
在上述的切割方式下,第一切割面7以及第二切割面8配合使第二平面电极4上汇流排5暴露在光学性能可区域电控的功能元件之外;第三切割面9以及第四切割面10配合使第一平面电极3上汇流排5暴露在光学性能可区域电控的功能元件之外。另外,第一切割面7与第二切割面8相交,以及第一切割面7与第二切割面8相交。
需要指出的是,当第一平面电极3上汇流排5数量为多个时,其类型可以相同,也可以不同。同样地,当第二平面电极4上汇流排5数量为多个时,其类型可以相同,也可以不同,而且第一平面电极3与第二平面电极4上的汇流排5的类型可以相同,也可以不同。
需要指出的是,这里的汇流排5方向是指其长边方向,另外,切割方向是指与汇流排5大致垂直即可,并不要求绝对垂直,本申请不以此为限。
在本申请实施例中,分区切割线11大部分与汇流排5方向大致垂直即可,参照图6,分区切割线11在汇流排5的位置处发生弯曲,绕过该处的汇流排5,然后又沿着与汇流排5大致垂直的方向延伸。
参见图7,在本申请一些实施例中,还提供另一种切割方式:多个切割面还包括:第五切割面12;第五切割面12沿与第一平面电极3上汇流排5垂直方向切割第二透明基板2、第二平面电极4以及调光功能层6;且第五切割面12与第四切割面10相交。
图8是上述实施例所提供的光学性能可区域电控的功能元件的俯视图(图中虚线对应切割面),图9是图8沿点实线进行截面的截面图。
在本申请一些实施例中,当第一平面电极3上的汇流排5与第二平面电极4上的汇流排5位于相邻两侧,即第二平面电极4上的汇流排5没有任何一部分位于第一平面电极3上的汇流排5的同一侧的时候,参见图4、图10至图12,第三切割面9从第二平面电极4的汇流排5的相对一侧(在光学性能可区域电控的功能元件上)开始分割,而且其并未延伸至第二平面电极4的汇流排5的一侧,与第四切割面10相交之后停止。
在本申请一些实施例中,第二平面电极4上的汇流排5与第一平面电极3上的汇流排5中,相对较短的汇流排5与相对较长的汇流排5长度之比不小于0.5。具体地,第二平面电极4上的汇流排5与第一平面电极3上的汇流排5中,两者长度差异应不大于50%,汇流排差异过大,亦会造成光学上的表现不加效果,优选差异小于30%,再优选差异小于10%。
在本申请一些实施例中,位于光学性能可区域电控的功能元件同一侧上的第一平面电极3上的汇流排5与第二平面电极4上的汇流排5之间的距离不小于5mm。
由于第一平面电极3上的汇流排5与第二平面电极4上的汇流排5在不同的平面电极面上,其加工时需要从不同的透明基板分别处理,从而形成对应的基材切割面,若间距太近可能在做透明基板切裁时会导致两个电极之间距离太近短路,或高电压烧穿,或加工处理相互干涉,损伤对应的汇流排。
参见图6、图13以及图14,在本申请一些实施例中,光学性能可区域电控的功能元件还包括:
导体14,其引出体13与第一平面电极3上的汇流排5与第二平面电极4上的汇流排5对应。
优选地,导体14可以为一扁平导体。进一步的,第一平面电极3上的汇流排5与第二平面电极4上的汇流排5可以通过同一根扁平导体引出,扁平导体被设计为柔性印刷电路板,其中扁平导体的每一个引出体13同第一平面电极3上的汇流排5与第二平面电极4上的汇流排5对应,图中15为保护层,16为外部焊接体(优选的,图13中的导体14材质可以为导电铜箔)。
在本申请一些实施例中,引出体13数量不小于第一平面电极3上的汇流排5数量与第二平面电极4上的汇流排5数量之和。即扁平导体的引出体13数量大于等于第一平面电极3上的汇流排5与第二平面电极4上的汇流排5的导体数总和。
在本申请一些实施例中,调光功能层6包括:PDLC调光膜,EC调光膜,SPD调光膜以及LV调光膜中的任意一种或多种组合(调光功能层6可以是PDLC,EC,SPD,LV等调光技术)。
在本申请一些实施例中,当第一透明基板1以及第二透明基板2为多个时,多个第一透明基板1以及多个第二透明基板2沿竖直方向上罗列。即在竖直方向上,依据图1的顺序依次(从下到上)有,N个第二透明基板2(竖直方向依次覆盖),第二平面电极4、调光功能层6,第一平面电极3,N个第一透明基板1(竖直方向依次覆盖),需要指出的是,这里的N个第二透明基板2可以替换为N个不同的透明基板,N个第一透明基板1同样可以替换为N个不同的透明基板,但要求调光功能层6两侧的相对应的第一透明基板1与第二透明基板2一致。
一实施例中,本申请还提供一种复合玻璃,包括如上实施例中任何一种光学性能可区域电控的功能元件,用于安装在车辆的天窗、侧窗、前挡窗以及后挡窗中的至少之一上,以及建筑物中的内部玻璃或外部玻璃,用于防晒或者防窥。
上述实施例所描述的安装在车辆上复合玻璃可以在不影响乘客与车外之间的视线,即不影响其作为车窗本身的功能的前提下,分区域控制不同区域车辆玻璃的光学性质,也可以控制同一区域中的某一块车辆玻璃中不同位置的光学性质。
可以理解的是复合玻璃还可以用于地铁上车窗的玻璃、火车车窗上的玻璃、公交车车窗上的玻璃,轮船室内窗户的玻璃、飞机室内两边的窗户玻璃,以及建筑物中的内部玻璃或外部玻璃,用于防晒或者防窥。
从上述描述可知,本申请实施例所提供一种光学性能可区域电控的功能元件及复合玻璃,光学性能可区域电控的功能元件包括:至少一个第一透明基板以及至少一个第二透明基板;第一平面电极以及第二平面电极,第一平面电极以及第二平面电极位于第一透明基板与第二透明基板之间;第一平面电极以及第二平面电极上均具有至少一个汇流排;调光功能层,位于第一平面电极与第二平面电极之间;功能元件上具有多个切割面,以使第一平面电极上的汇流排以及第二平面电极上的汇流排暴露在外;第二平面电极具有分区切割线,分区切割线沿与第二平面电极上汇流排垂直方向将第二平面电极切割为独立区段,独立区段数量与第二平面电极上汇流排数量对应。
相比于现有技术中的电控光学性能的功能元件,本申请实施例所提供的光学性能可区域电控的功能元件通过切割线和汇流排的设置,一方面,实现了单独区域控制,另一方面,大简化分区电控光学功能元件的制造复杂程度,并减少不同分区功能区域之间的压降,以及保证各个独立的功能区域的光学性质一致。
在本说明书的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基
于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”等的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
参考术语“一个实施例”、“一个具体实施例”、“一些实施例”、“例如”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。各实施例中涉及的步骤顺序用于示意性说明本申请的实施,其中的步骤顺序不作限定,可根据需要作适当调整。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以通过具体情况理解上述术语在本申请中的具体含义。
以上所述的具体实施例,对本申请的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本申请的具体实施例而已,并不用于限定本申请的保护范围,凡在本申请的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
Claims (16)
- 一种光学性能可区域电控的功能元件,其特征在于,包括:至少一个第一透明基板以及至少一个第二透明基板;第一平面电极以及第二平面电极,所述第一平面电极以及所述第二平面电极位于所述第一透明基板与所述第二透明基板之间;所述第一平面电极以及第二平面电极上均具有至少一个汇流排;调光功能层,位于所述第一平面电极与所述第二平面电极之间;所述功能元件上具有多个切割面,以使所述第一平面电极上的汇流排以及所述第二平面电极上的汇流排暴露在外;所述第二平面电极具有分区切割线,所述分区切割线沿与所述第二平面电极上汇流排垂直方向将所述第二平面电极切割为独立区段,所述独立区段数量与所述第二平面电极上汇流排数量对应。
- 根据权利要求1所述的功能元件,其特征在于,所述第二平面电极上的汇流排与所述第一平面电极上的汇流排的至少一部分位于所述功能元件同一侧。
- 根据权利要求2所述的功能元件,其特征在于,所述第一平面电极上的汇流排呈折线形,且位于所述第二平面电极上的汇流排的一侧,以及该侧的相邻侧。
- 根据权利要求3所述的功能元件,其特征在于,所述功能元件的截面积不小于0.5m2,以及所述第一平面电极上的汇流排长度不小于300mm,且不大于所述功能元件横截面周长的一半。
- 根据权利要求2所述的功能元件,其特征在于,所述第二平面电极上的汇流排与所述第一平面电极上的汇流排位于所述功能元件同一侧。
- 根据权利要求5所述的功能元件,其特征在于,所述功能元件的截面积小于0.5m2,以及所述第一平面电极上的汇流排长度不小于100mm。
- 根据权利要求1所述的功能元件,其特征在于,所述第一平面电极上的汇流排位于所述功能元件中第二平面电极上汇流排的一侧的相邻侧。
- 根据权利要求7所述的功能元件,其特征在于,所述功能元件的截面积不小于0.5m2,以及所述第一平面电极上的汇流排长度不小于300mm,且不大于所述功能元件最大截面周长的一半。
- 根据权利要求1所述的功能元件,其特征在于,所述多个切割面包括:第一切割面、第二切割面、第三切割面以及第四切割面,其中:所述第一切割面沿与所述第二平面电极上汇流排垂直方向切割所述第一透明基板、所述第一平面电极以及所述调光功能层;所述第二切割面沿与所述第二平面电极上汇流排平行方向切割所述第一透明基板、所述第一平面电极以及所述调光功能层;所述第三切割面沿与所述第一平面电极上汇流排垂直方向切割所述第二透明基板、所述第二平面电极以及所述调光功能层;所述第四切割面沿与所述第二平面电极上汇流排平行方向切割所述第二透明基板、所述第二平面电极以及所述调光功能层。
- 根据权利要求9所述的功能元件,其特征在于,所述多个切割面还包括:第五切割面;所述第五切割面沿与所述第一平面电极上汇流排垂直方向切割所述第二透明基板、所述第二平面电极以及所述调光功能层;且所述第五切割面与所述第四切割面相交。
- 根据权利要求1所述的功能元件,其特征在于,所述第二平面电极上的汇流排与所述第一平面电极上的汇流排中,相对较短的汇流排与相对较长的汇流排长度之比不小于0.5。
- 根据权利要求1所述的功能元件,其特征在于,所述第一平面电极上的汇流排与所述第二平面电极上的汇流排在水平投影面上的最小间距不小于5mm。
- 根据权利要求1所述的功能元件,其特征在于,还包括:导体,其引出体与所述第一平面电极上的汇流排与所述第二平面电极上的汇流排对应。
- 根据权利要求13所述的功能元件,其特征在于,所述引出体数量不小于所述第一平面电极上的汇流排数量与所述第二平面电极上的汇流排数量之和。
- 根据权利要求1所述的功能元件,其特征在于,所述调光功能层包括:PDLC调光膜,EC调光膜,SPD调光膜以及LV调光膜中的任意一种或多种组合。
- 一种复合玻璃,其特征在于,包括如权利要求1至14任一项所述的光学性能可区域电控的功能元件,用于安装在车辆的天窗、侧窗、前挡窗以及后挡窗中的至少之一上,以及建筑物中的内部玻璃或外部玻璃,用于防晒或者防窥。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202320117169.X | 2023-01-13 | ||
CN202310067709.2 | 2023-01-13 | ||
CN202310067709.2A CN116009287A (zh) | 2023-01-13 | 2023-01-13 | 一种光学性能可区域电控的功能元件及复合玻璃 |
CN202320117169.XU CN219266719U (zh) | 2023-01-13 | 2023-01-13 | 一种光学性能可区域电控的功能元件及复合玻璃 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024149337A1 true WO2024149337A1 (zh) | 2024-07-18 |
Family
ID=91897788
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2024/071875 WO2024149337A1 (zh) | 2023-01-13 | 2024-01-11 | 一种光学性能可区域电控的功能元件及复合玻璃 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024149337A1 (zh) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE202018102520U1 (de) * | 2018-05-07 | 2018-05-24 | Saint-Gobain Glass France | Verbundscheibe mit einem Funktionselement |
CN111386194A (zh) * | 2018-10-26 | 2020-07-07 | 法国圣戈班玻璃厂 | 包括具有可电控光学性能的可区段状切换的功能元件的复合玻璃板 |
CN111386193A (zh) * | 2018-10-26 | 2020-07-07 | 法国圣戈班玻璃厂 | 包括具有可电控光学性能的可区段状切换的功能元件的复合玻璃板 |
CN113508031A (zh) * | 2020-02-07 | 2021-10-15 | 法国圣戈班玻璃厂 | 具有复合玻璃板和功能元件的连接装置 |
CN113518717A (zh) * | 2020-02-07 | 2021-10-19 | 法国圣戈班玻璃厂 | 具有柔性扁形电缆的连接装置 |
CN114072281A (zh) * | 2020-04-16 | 2022-02-18 | 法国圣戈班玻璃厂 | 具有可电控光学性能的功能元件 |
CN116009287A (zh) * | 2023-01-13 | 2023-04-25 | 福耀玻璃工业集团股份有限公司 | 一种光学性能可区域电控的功能元件及复合玻璃 |
CN219266719U (zh) * | 2023-01-13 | 2023-06-27 | 福耀玻璃工业集团股份有限公司 | 一种光学性能可区域电控的功能元件及复合玻璃 |
-
2024
- 2024-01-11 WO PCT/CN2024/071875 patent/WO2024149337A1/zh unknown
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE202018102520U1 (de) * | 2018-05-07 | 2018-05-24 | Saint-Gobain Glass France | Verbundscheibe mit einem Funktionselement |
CN111386194A (zh) * | 2018-10-26 | 2020-07-07 | 法国圣戈班玻璃厂 | 包括具有可电控光学性能的可区段状切换的功能元件的复合玻璃板 |
CN111386193A (zh) * | 2018-10-26 | 2020-07-07 | 法国圣戈班玻璃厂 | 包括具有可电控光学性能的可区段状切换的功能元件的复合玻璃板 |
CN113508031A (zh) * | 2020-02-07 | 2021-10-15 | 法国圣戈班玻璃厂 | 具有复合玻璃板和功能元件的连接装置 |
CN113518717A (zh) * | 2020-02-07 | 2021-10-19 | 法国圣戈班玻璃厂 | 具有柔性扁形电缆的连接装置 |
CN114072281A (zh) * | 2020-04-16 | 2022-02-18 | 法国圣戈班玻璃厂 | 具有可电控光学性能的功能元件 |
CN116009287A (zh) * | 2023-01-13 | 2023-04-25 | 福耀玻璃工业集团股份有限公司 | 一种光学性能可区域电控的功能元件及复合玻璃 |
CN219266719U (zh) * | 2023-01-13 | 2023-06-27 | 福耀玻璃工业集团股份有限公司 | 一种光学性能可区域电控的功能元件及复合玻璃 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8289609B2 (en) | Controlled-transparency electrochromic device | |
JP5646597B2 (ja) | 透明度制御エレクトロクロミック素子 | |
JP5372372B2 (ja) | 抵抗性加熱コーティングを備える透明窓ガラス | |
EP2766773B1 (en) | Series connected electrochromic devices | |
WO2023005947A1 (zh) | 电致变色膜、装置及其制作方法、电致变色玻璃和车辆 | |
KR100775946B1 (ko) | 전기변색 또는 광기전 디바이스와 같은 전기화학적 디바이스 | |
KR101868241B1 (ko) | 가열가능한 적층된 측면 판유리 | |
JP5416701B2 (ja) | 電気的に加熱可能なコーティングを備える透明な窓 | |
JPH025391A (ja) | 電気で加熱される透明物 | |
CN110703530B (zh) | 一种具有电加热及电磁屏蔽的电致变色汽车玻璃 | |
CN110442259B (zh) | 触控基板及显示面板 | |
CN111965905B (zh) | 可调光面板、智能窗玻璃、制作方法及控制方法 | |
JP2022517678A (ja) | 電気光学機能的要素を有する積層ペイン配置 | |
WO2019039318A1 (ja) | 合わせガラス | |
CN219266719U (zh) | 一种光学性能可区域电控的功能元件及复合玻璃 | |
RU2696615C2 (ru) | Электрообогреваемое ламинированное окно | |
KR20240110782A (ko) | 글라스 열선 구조 | |
WO2024149337A1 (zh) | 一种光学性能可区域电控的功能元件及复合玻璃 | |
CN116009287A (zh) | 一种光学性能可区域电控的功能元件及复合玻璃 | |
JP2017505256A (ja) | 加熱されるフロントガラス | |
US4035576A (en) | Electrical circuit panel with conductive bridge plate over a non-solderable surface area | |
CN105338672A (zh) | 一种可均匀电加热的汽车夹层玻璃 | |
JP7427798B2 (ja) | 複合ペインと機能素子とを有する接続アセンブリ | |
US20230121640A1 (en) | Laminated glazing with electrically connected layer and method of preparing a laminated glazing | |
CN220569048U (zh) | 一种电致变色膜片、变色装置及终端产品 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 24741333 Country of ref document: EP Kind code of ref document: A1 |