WO2024149137A1 - 同步信号块测量方法及装置 - Google Patents

同步信号块测量方法及装置 Download PDF

Info

Publication number
WO2024149137A1
WO2024149137A1 PCT/CN2024/070372 CN2024070372W WO2024149137A1 WO 2024149137 A1 WO2024149137 A1 WO 2024149137A1 CN 2024070372 W CN2024070372 W CN 2024070372W WO 2024149137 A1 WO2024149137 A1 WO 2024149137A1
Authority
WO
WIPO (PCT)
Prior art keywords
ssb
information
terminal device
index
measurement
Prior art date
Application number
PCT/CN2024/070372
Other languages
English (en)
French (fr)
Inventor
韩小江
张霄宇
石蒙
王妮
陈亮
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024149137A1 publication Critical patent/WO2024149137A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks

Definitions

  • the present application relates to the field of communication technology, and in particular to a synchronization signal block measurement method and device.
  • SSB synchronization signal block
  • the network device In a terrestrial communication system (such as a fifth generation (5G) mobile communication system), the network device indicates to each terminal device that the reference time for SSB measurement is subframe 0, and indicates through the offset configuration that the offset is the time position where the SSB index is 0.
  • the reference SSB for the terminal device to perform SSB measurement is the SSB with an index of 0 determined according to the instruction of the network device, and the terminal device measures all SSBs in each SSB cycle.
  • satellites have wide coverage and long transmission distances, and there are many SSBs in one SSB cycle. If the terminal device still performs SSB measurement according to the instructions in the ground communication system, that is, performs SSB measurement on all SSBs in one SSB cycle, it will cause a large energy consumption overhead.
  • the embodiments of the present application provide a synchronization signal block measurement method and device, which can reduce the energy consumption overhead of terminal equipment.
  • an embodiment of the present application provides a synchronization signal block measurement method, which can be applied to a terminal device (e.g., a device or chip of a terminal device).
  • the terminal device receives first information from a network device, and the first information is used to instruct the terminal device to perform synchronization signal block SSB measurement.
  • the terminal device performs SSB measurement on a first SSB according to a first reference SSB, and the first reference SSB is determined autonomously by the terminal device.
  • the first reference SSB based on which the terminal device performs SSB measurement is determined autonomously by the terminal device.
  • the network device cannot obtain the location information of the terminal device, and thus cannot obtain the SSB with better signal quality of the terminal device. Therefore, if the network device indicates to the terminal device the reference SSB based on which the SSB measurement is to be performed, the same reference SSB will be indicated to the terminal device in the idle state while taking into account the location information of all terminal devices in the idle state, which will result in a large number of SSBs required for the terminal device to perform SSB measurement, resulting in a large energy consumption overhead.
  • the terminal device in the idle state autonomously determines the first reference SSB based on which the SSB measurement is to be performed, and can autonomously determine a suitable first reference SSB on the premise that the number of SSBs to be measured is as small as possible, thereby reducing the energy consumption overhead of the terminal device.
  • the reference SSB of the terminal device is constantly changing. Therefore, if the network device instructs the terminal device on the reference SSB based on which the SSB measurement is to be performed, it is necessary to instruct the terminal device on the reference SSB based on which the SSB measurement is to be performed multiple times on different time domain resources according to the changes in the satellite, which will cause a large amount of signaling overhead.
  • the network device takes into account the continuous changes in the reference SSB caused by the rapid changes in the satellite, and instructs the terminal device once on the reference SSB based on which the SSB measurement is to be performed, the number of SSBs required for the SSB measurement to be determined by the terminal device based on the indicated reference SSB will be large, which will cause a large energy consumption overhead.
  • the terminal device in a connected state autonomously determines the first reference SSB based on which the SSB measurement is to be performed, and can autonomously determine the appropriate first reference SSB on the premise that the number of SSBs to be measured is as small as possible, which can reduce the energy consumption overhead of the terminal device.
  • this method does not require additional interaction between the terminal device and the network device, which can save signaling overhead.
  • the first information is specifically used to instruct the terminal device to perform SSB measurement according to the SSB index interval, so that the terminal device can perform SSB measurement according to the SSB index interval within the first cycle of SSB measurement, with the first reference SSB determined autonomously as a reference.
  • This method can reduce the number of SSBs that the terminal device needs to measure, thereby reducing the energy consumption of the terminal device.
  • the terminal device may also receive second information, where the second information is used to indicate an SSB index interval, where the SSB index interval is an integer greater than 1.
  • the terminal device may perform SSB measurement on the first SSB whose index is spaced from the index of the first reference SSB by a positive integer multiple of the SSB index interval. Then, the index of the first SSB is spaced from the index of the first reference SSB by a positive integer multiple of the SSB index interval.
  • the SSB index interval is an integer greater than 1, so that the number of first SSBs determined by the terminal device based on the first reference SSB and the SSB index interval is less than the number of SSBs in one SSB cycle, which can reduce the energy consumption overhead of the terminal device.
  • the terminal device may also receive third information, where the third information is used to indicate an SSB index window, and the number of SSBs in the SSB index window is less than the number of SSBs in an SSB cycle.
  • the terminal device may perform SSB measurement on the first SSB whose index is within the SSB index window starting with the index of the first reference SSB. Then, the index of the first SSB is within the SSB index window starting with the index of the first reference SSB.
  • the number of SSBs in the SSB index window is smaller than the number of SSBs in an SSB cycle. Therefore, the number of first SSBs determined by the terminal device based on the first reference SSB and the SSB index window is smaller than the number of SSBs in an SSB cycle, which can reduce the energy consumption overhead of the terminal device.
  • the terminal device may also receive fourth information, where the fourth information is used to indicate an SSB time window, where the SSB time window is less than one SSB cycle.
  • the terminal device can perform SSB measurement on the first SSB whose time domain position is within the SSB time window starting from the time domain position of the first reference SSB.
  • the time domain position of the first SSB is within the SSB time window starting from the time domain position of the first reference SSB.
  • the SSB time window is smaller than one SSB cycle, so that the number of first SSBs determined by the terminal device based on the first reference SSB and the SSB time window is smaller than the number of SSBs in one SSB cycle, which can reduce the energy consumption overhead of the terminal device.
  • the information received by the terminal device also includes two or three items of the second information, the third information, and the fourth information.
  • the terminal device may also receive the second information and the third information, or the terminal device may also receive the second information and the fourth information, or the terminal device may also receive the third information and the fourth information, or the terminal device may also receive the second information, the third information, and the fourth information.
  • the terminal device determines the first SSB according to the content indicated by the received information and the first reference SSB, and performs SSB measurement on the determined first SSB.
  • the information received by the terminal device includes the second information and the third information, and the terminal device obtains the SSB index interval and the SSB index window through the second information and the third information.
  • the terminal device can determine the first SSB according to the first reference SSB, the SSB index interval and the SSB index window.
  • the number of first SSBs determined by the terminal device is also smaller than the number of SSBs within an SSB cycle, thereby reducing the energy consumption overhead of the terminal device.
  • the fifth information may also be received, and the fifth information is used to indicate the scanning order of the satellite for the SSB. That is, when the terminal device obtains one or more of the SSB index interval, the SSB index window, and the SSB time window, the scanning order of the satellite for the SSB may also be learned through the fifth information. Furthermore, the terminal device determines the first SSB based on the first reference SSB, the scanning order of the satellite for the SSB, and one or more of the SSB index interval, the SSB index window, and the SSB time window.
  • the index of the first SSB is greater than the index of the first reference SSB; when the satellite scans SSB in descending order, the index of the first SSB is less than the index of the first reference SSB.
  • the terminal device may also perform SSB measurement on the second SSB according to a second reference SSB within the second cycle of the SSB measurement, where the second reference SSB is determined by the terminal device based on the measurement result of the SSB measurement within the first cycle.
  • This method allows the terminal device to determine the reference SSB for performing SSB measurement in the next SSB measurement cycle based on the measurement results in the previous SSB measurement cycle. That is, the reference SSB based on which the terminal device performs SSB measurement in the next SSB measurement cycle is still determined autonomously by the terminal device, which can reduce the number of SSBs on which the terminal device performs SSB measurement in each SSB measurement cycle, and can reduce the energy consumption overhead of the terminal device.
  • the embodiment of the present application also provides a synchronization signal block measurement method, which corresponds to the synchronization signal block measurement method described in the first aspect, and is described from the network device side (applicable to the device or chip of the network device).
  • the network device determines the first information, and determines one or more of the second information, the third information, and the fourth information.
  • the network device sends the first information to the terminal device, and sends one or more of the second information, the third information, and the fourth information.
  • the first information is used to instruct the terminal device to perform SSB measurement according to the synchronization signal block SSB index interval
  • the second information is used to indicate the SSB index interval
  • the third information is used to indicate the SSB index window
  • the fourth information is used to indicate the SSB time window.
  • the SSB index interval is an integer greater than 1
  • the number of SSBs in the SSB index window is less than the number of SSBs in one SSB cycle
  • the SSB time window is less than one SSB cycle.
  • the network device instructs the terminal device to perform SSB measurement according to the SSB index interval of the synchronization signal block through the first information, and instructs the terminal device to perform SSB measurement according to the SSB index interval through one or more of the second information, the third information and the fourth information, and determines the parameters based on which the SSB to be measured is based, thereby facilitating the terminal device to perform SSB measurement according to the SSB index interval based on the indicated parameters.
  • the SSB index interval is an integer greater than 1
  • the number of SSBs in the SSB index window is less than the number of SSBs in an SSB cycle
  • the SSB time window is less than an SSB cycle, which is beneficial for the terminal device to determine the number of SSBs to be tested based on these parameters, which is less than the number of SSBs in an SSB cycle, and thus helps to reduce the energy consumption overhead of the terminal device.
  • the network device when the network device sends the second information and/or the third information to the terminal device, the network device may also send the fifth information, where the fifth information is used to indicate the satellite's scanning order for the SSB, so that the terminal device can further determine the SSB to be tested in combination with the satellite's scanning order for the SSB.
  • an embodiment of the present application further provides a communication device.
  • the communication device has the function of implementing some or all of the functions of the terminal device described in the first aspect above, or implements some or all of the functions of the network device described in the second aspect above.
  • the functions of the communication device may have the functions of some or all of the embodiments of the terminal device described in the first aspect of the embodiment of the present application, or may have the functions of implementing any one of the embodiments of the present application separately.
  • the functions may be implemented by hardware, or may be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the structure of the communication device may include a processing unit and a communication unit, and the processing unit is configured to support the communication device to perform the corresponding functions in the above method.
  • the communication unit is used to support communication between the communication device and other communication devices.
  • the communication device may also include a storage unit, which is used to couple with the processing unit and the communication unit, and store the necessary program instructions and data of the communication device.
  • the communication device includes: a processing unit and a communication unit;
  • the communication unit is used to receive first information from a network device; the first information is used to instruct the terminal device to perform synchronization signal block SSB measurement;
  • the processing unit is used to perform the SSB measurement on the first SSB according to the first reference SSB within the first cycle of the SSB measurement; the first reference SSB is independently determined by the terminal device.
  • the communication device includes: a processing unit and a communication unit; the communication unit is used to send and receive signaling/signals;
  • the processing unit is used to determine the first information, and determine one or more of the second information, the third information, and the fourth information;
  • the communication unit is used to send the first information, and one or more of the second information, the third information and the fourth information to the terminal device;
  • the first information is used to instruct the terminal device to perform SSB measurement according to the SSB index interval of the synchronization signal block
  • the second information is used to indicate the SSB index interval
  • the third information is used to indicate the SSB index window
  • the fourth information is used to indicate the SSB time window
  • the SSB index interval is an integer greater than 1
  • the number of SSBs in the SSB index window is less than the number of SSBs in an SSB cycle
  • the SSB time window is less than an SSB cycle.
  • the communication unit may be a transceiver or a communication interface
  • the storage unit may be a memory
  • the processing unit may be a processor
  • the communication device includes: a processor and a transceiver;
  • the transceiver is used to receive first information from a network device; the first information is used to instruct the terminal device to perform synchronization signal block SSB measurement;
  • the processor is used to perform the SSB measurement on the first SSB according to the first reference SSB within the first cycle of the SSB measurement; the first reference SSB is independently determined by the terminal device.
  • the communication device includes: a processor and a transceiver
  • the processor is configured to determine the first information and one or more of the second information, the third information, and the fourth information;
  • the transceiver is used to send the first information to the terminal device, and send one or more of the second information, the third information and the fourth information;
  • the first information is used to instruct the terminal device to perform SSB measurement according to the synchronization signal block SSB index interval
  • the second information is used to indicate the SSB index interval
  • the third information is used to indicate the SSB index window
  • the fourth information is used to indicate the SSB time window
  • the SSB index interval is an integer greater than 1
  • the number of SSBs in the SSB index window is less than the number of SSBs in one SSB cycle
  • the SSB time window is smaller than one SSB cycle.
  • the communication device is a chip or a chip system.
  • the processing unit may also be embodied as a processing circuit or a logic circuit; the communication unit may be an input/output interface, an interface circuit, an output circuit, an input circuit, a pin or a related circuit on the chip or the chip system.
  • the processor can be used to perform, for example, but not limited to, baseband-related processing
  • the transceiver can be used to perform, for example, but not limited to, radio frequency transceiver.
  • the above-mentioned devices can be respectively arranged on chips independent of each other, or at least partially or completely arranged on the same chip.
  • the processor can be further divided into an analog baseband processor and a digital baseband processor.
  • the analog baseband processor can be integrated with the transceiver on the same chip, and the digital baseband processor can be arranged on an independent chip. With the continuous development of integrated circuit technology, more and more devices can be integrated on the same chip.
  • a digital baseband processor can be integrated with a variety of application processors (such as but not limited to a graphics processor, a multimedia processor, etc.) on the same chip.
  • application processors such as but not limited to a graphics processor, a multimedia processor, etc.
  • Such a chip can be called a system on a chip (system on a chip, SoC). Whether each device is independently arranged on different chips or integrated on one or more chips often depends on the needs of product design.
  • SoC system on a chip
  • an embodiment of the present application further provides a processor for executing the above-mentioned various methods.
  • the process of sending the above-mentioned information and receiving the above-mentioned information in the above-mentioned method can be understood as the process of outputting the above-mentioned information by the processor, and the process of receiving the above-mentioned information input by the processor.
  • the processor When outputting the above-mentioned information, the processor outputs the above-mentioned information to the transceiver so that it can be transmitted by the transceiver. After the above-mentioned information is output by the processor, it may also need to be processed in other ways before it reaches the transceiver.
  • the transceiver receives the above-mentioned information and inputs it into the processor. Furthermore, after the transceiver receives the above-mentioned information, the above-mentioned information may need to be processed in other ways before it is input into the processor.
  • the processor may be a processor specifically used to execute these methods, or may be a processor that executes computer instructions in a memory to execute these methods, such as a general-purpose processor.
  • the memory may be a non-transitory memory, such as a read-only memory (ROM), which may be integrated with the processor on the same chip or may be separately arranged on different chips.
  • ROM read-only memory
  • an embodiment of the present application further provides a communication system, the system comprising a network device and a satellite.
  • the system further comprises a terminal device.
  • the system may further comprise other devices that interact with the terminal device, the network device, and the satellite.
  • an embodiment of the present application provides a computer-readable storage medium for storing instructions, which, when executed by a computer, implements the method described in the first or second aspect above.
  • an embodiment of the present application further provides a computer program product comprising instructions, which, when executed on a computer, implements the method described in the first or second aspect above.
  • an embodiment of the present application provides a chip system, which includes a processor and an interface, wherein the interface is used to obtain a program or instruction, and the processor is used to call the program or instruction to implement or support the terminal device to implement the functions involved in the first aspect, or to implement or support the network device to implement the functions involved in the second aspect. For example, determine or process at least one of the data and information involved in the above method.
  • the chip system also includes a memory, which is used to store program instructions and data necessary for the terminal.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • an embodiment of the present application provides a communication device, comprising a processor for executing a computer program or executable instructions stored in a memory, so that when the computer program or executable instructions are executed, the device executes a method in each possible implementation of the first aspect or the second aspect.
  • the processor and the memory are integrated together;
  • the memory is located outside the communication device.
  • the beneficial effects of the third to ninth aspects can refer to the beneficial effects of the first to second aspects, and will not be repeated here.
  • FIG1 is a schematic diagram of an NTN-based RAN system architecture provided in an embodiment of the present application.
  • FIG2 is a schematic diagram of another NTN-based RAN system architecture provided in an embodiment of the present application.
  • FIG3 is a schematic diagram of another NTN-based RAN system architecture provided in an embodiment of the present application.
  • FIG4 is a schematic diagram of another NTN-based RAN system architecture provided in an embodiment of the present application.
  • FIG5 is a schematic diagram of beam coverage in a satellite mobile scenario provided by an embodiment of the present application.
  • FIG6 is a schematic diagram of beam coverage in another satellite mobile scenario provided by an embodiment of the present application.
  • FIG7 is a schematic diagram of an SSB frame structure provided in an embodiment of the present application.
  • FIG8 is an interactive schematic diagram of a synchronization signal block measurement method provided in an embodiment of the present application.
  • FIG9 is a schematic diagram of a satellite scanning SSB provided in an embodiment of the present application.
  • FIG10 is a schematic diagram of another satellite scanning SSB provided in an embodiment of the present application.
  • FIG11 is an interactive schematic diagram of another synchronization signal block measurement method provided in an embodiment of the present application.
  • FIG12 is an interactive schematic diagram of another synchronization signal block measurement method provided in an embodiment of the present application.
  • FIG13 is an interactive schematic diagram of another synchronization signal block measurement method provided in an embodiment of the present application.
  • FIG14 is a schematic diagram of the structure of a communication device provided in an embodiment of the present application.
  • FIG. 15 is a schematic diagram of the structure of another communication device provided in an embodiment of the present application.
  • the embodiments of the present application can be applied to the system architecture of the wireless access network (RAN) based on the non-terrestrial network (NTN).
  • RAN wireless access network
  • NTN non-terrestrial network
  • FIG. 1 is a schematic diagram of a RAN system architecture based on NTN.
  • the RAN system architecture carries a transparent satellite, and the system architecture also includes terminal equipment, NTN gateway, 5G base station (gNB), 5G core network and data network (DN).
  • the link between the NTN gateway and the satellite is called the feeder link
  • the link between the satellite and the terminal equipment is called the service link
  • N6 represents the interface between the user plane function (UPF) of the 5G core network and DN
  • NG represents the interface between gNB and 5G core network
  • the new radio (NR)-Uu interface represents the interface between the terminal equipment and gNB
  • the satellite and NTN gateway constitute a remote radio unit.
  • the role of the satellite is to achieve frequency conversion and wireless frequency amplification, which is equivalent to an analog RF repeater. Therefore, from the feeder link to the service link, the satellite forwards the NR-Uu interface signal, which is the signal between the terminal device and the gNB. Conversely, from the service link to the feeder link, the satellite forwards the NR-Uu interface signal to the gNB through the NTN gateway.
  • the NTN gateway is used for communication between the satellite and the 5G base station. It is a transmission network layer node and supports all necessary functions for forwarding the NR-Uu interface signal.
  • different satellites can be connected to the same ground 5G base station through the NTN gateway.
  • FIG. 2 is a schematic diagram of another RAN system architecture based on NTN.
  • the system architecture includes terminal equipment, satellite, NTN gateway, 5G core network, and data network DN.
  • the 5G base station is deployed on the satellite, so the satellite can also be called a satellite base station.
  • the service link between the terminal equipment and the satellite transmits the NR-Uu interface signal, and the feeder link between the NTN gateway and the satellite transmits the satellite radio interface (Satellite Radio Interface, SRI) signal.
  • the SRI signal is the signal between the NTN gateway and the satellite.
  • the NG interface signal is transmitted from the satellite base station to the 5G core network.
  • the satellite base station transmits it to the NTN gateway through SRI, and then forwards it to the ground 5G core network through the NTN gateway.
  • the process of transmitting the NG interface signal from the 5G core network to the satellite base station is similar and will not be repeated.
  • FIG3 is another schematic diagram of the RAN system architecture based on NTN. As shown in FIG3, the difference between the system architecture shown in FIG2 is that there are inter-satellite links (ISLs) between satellites in the system architecture of FIG3. Terminal devices served by a satellite base station can access the 5G core network through the ISL, and different satellite base stations can be connected to the same terrestrial 5G core network.
  • ISLs inter-satellite links
  • Figure 4 is another schematic diagram of the RAN system architecture based on NTN.
  • the centralized unit (CU) and distributed unit (DU) of the gNB are separated, and the distributed unit DU (gNB-DU) of the 5G base station is deployed on the satellite.
  • the DUs deployed on different satellites can be connected to the same ground CU.
  • the service link between the terminal device and the satellite transmits the NR-Uu interface signal, and the feeder link between the NTN gateway and the satellite transmits the SRI signal.
  • the NTN-based RAN system architecture applicable to the embodiments of the present application includes but is not limited to the system architecture shown in Figures 1 to 4.
  • the RAN system architecture based on the NTN is similar to the system architecture shown in Figures 1 to 4 above. The difference is that when the NTN is applied to the evolved 6G mobile communication system, in the RAN system architecture based on the NTN, the base station communicating with the terminal device is a 6G base station, the CN communicating with the base station is a 6G CN, and the interface in the system is a 6G interface.
  • the communication system to which the embodiments of the present application are applicable includes a network device and a satellite.
  • the network device can be deployed on the satellite.
  • the system may also include a terminal device.
  • the system may also include other devices that interact with the terminal device, the network device, and the satellite.
  • NTN communication systems to which the embodiments of the present application are applicable include but are not limited to: narrowband Internet of Things (NB-IoT) system, long term evolution (LTE) system, 5G/6G mobile communication system, wireless fidelity (WiFi) system, etc.
  • NB-IoT narrowband Internet of Things
  • LTE long term evolution
  • WiFi wireless fidelity
  • the embodiments of the present application may also be applicable to the following application scenarios: enhanced mobile broadband (eMBB), ultra-reliable low latency communication (URLLC) and massive machine type of communication (mMTC).
  • eMBB enhanced mobile broadband
  • URLLC ultra-reliable low latency communication
  • mMTC massive machine type of communication
  • the network device is a device with wireless transceiver functions, which is used to communicate with the terminal device. It can be an evolved base station (evolved Node B, eNB or eNodeB) in LTE, or a base station in a 5G/6G network or a base station in a future evolved public land mobile network (public land mobile network, PLMN), a broadband network service gateway (broadband network gateway, BNG), an aggregation switch or a non-third generation partnership project (3GPP) access device, etc.
  • eNB evolved Node B
  • eNodeB evolved public land mobile network
  • PLMN public land mobile network
  • BNG broadband network service gateway
  • 3GPP non-third generation partnership project
  • the network devices in the embodiments of the present application may include various forms of base stations, such as: macro base stations, micro base stations (also called small stations), relay stations, access points, devices that will realize base station functions in the future, access points (AP) in WiFi systems, transmitting and receiving points (TRP), transmitting points (TP), mobile switching centers, and device-to-device (D2D), vehicle-to-everything (V2X), and machine-to-machine (M2M) ) communication, equipment that implements the base station function in the communication system evolved after 5G, integrated access and backhaul (IAB), and can also include the centralized unit CU and distributed unit DU in the cloud radio access network (C-RAN) system, and the network equipment in the NTN communication system, that is, it can be deployed on a high-altitude platform or satellite, and can also be various types of equipment that constitute an access node, such as an active antenna unit (AAU), a baseband unit (BBU), etc., which is not specifically limited in the embodiments of the embodiments
  • Network devices can communicate and interact with core network devices to provide communication services to terminal devices.
  • Core network devices are, for example, devices in the 5G network core network.
  • the core network provides an interface to the data network, provides communication connection, authentication, management, policy control, and data service bearing for the terminal.
  • the terminal devices involved in the embodiments of the present application may include various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices or other processing devices connected to a wireless modem.
  • the terminal device may also be referred to as a terminal.
  • the terminal device may also refer to user equipment (UE), access terminal, subscriber unit, user agent, cellular phone, smart phone, wireless data card, personal digital assistant (PDA) computer, tablet computer, wireless modem, handheld device (handset), laptop computer, smart point of sale (POS) machine, customer-premises equipment (CPE), machine type communication (MTC) terminal, communication equipment carried on high-altitude aircraft , wearable devices, drones, robots, terminals in D2D, terminals in vehicle to everything (V2X), virtual reality (VR) terminal equipment, augmented reality (AR) terminal equipment, wireless terminals in industrial control, wireless terminals in self driving, wireless terminals in remote medical, wireless terminals in smart grid, wireless terminals in transportation safety, wireless terminals in smart city, wireless terminals in smart home or terminal
  • the beam carrying the best synchronization signal block (SSB) measured by the terminal device will change in real time.
  • the best SSB refers to the SSB with a signal quality greater than a preset threshold among multiple SSBs.
  • FIG5 is a schematic diagram of beam coverage in a satellite mobile scenario.
  • the beams covered by the satellite before moving include beams indexed from 1 to 64, and the beams covered after the satellite moves at high speed are still beams indexed from 1 to 64.
  • the beam coverage range of the satellite does not change before and after the satellite moves.
  • the satellite coverage range of the terminal device has changed, which will cause the beam range of the terminal device to change, and then the optimal beam of the terminal device will change.
  • the terminal device is cut out from the beam indexed by the shaded part on the left side of FIG5 (i.e., indexed from 1 to 8)), and cuts into the beam indexed by the shaded part on the right side (i.e., indexed from 61 to 64).
  • FIG6 is a schematic diagram of beam coverage in another satellite moving scenario.
  • the beam coverage of the satellite before moving When the satellite moves to point M, its beam coverage range is beam coverage range 2; when the satellite moves to point N, its beam coverage range is beam coverage range 3.
  • the beams covered by the satellite are different, so the optimal beam of the terminal device will also change.
  • the optimal beam of the terminal device will change, and the optimal SSB of the terminal device will also change.
  • the terminal device needs to perform SSB measurement in real time.
  • the network device indicates to each terminal device that the reference time for performing SSB measurement is subframe 0, and indicates through the offset configuration that the offset is the time position of the SSB index 0. That is to say, the reference SSB for the terminal device to perform SSB measurement is the SSB with an index of 0 determined by the instruction of the network device, and the terminal device will measure all SSBs in each SSB cycle.
  • the satellite communication system the satellite has a wide coverage and a large transmission distance, and there are more SSBs in one SSB cycle, so one SSB cycle is longer. For example, taking the NR communication system as an example, 8 SSBs are measured every 20ms.
  • the frame structure of the SSB in one SSB cycle can be shown in Figure 7. According to the frame structure shown in Figure 7, it can be calculated that one SSB cycle is 640ms. If the terminal device still performs SSB measurement on all SSBs in each SSB cycle according to the instructions in the terrestrial communication system, it will cause a large energy consumption overhead.
  • the terminal device when a terminal device in an idle state performs SSB measurements on all SSBs in each SSB cycle in real time to select the optimal SSB as the SSB to reside in the next cycle, the terminal device will have a short sleep time and high energy consumption.
  • the terminal device in an idle state when a terminal device in an idle state also measures all SSBs in each SSB cycle of a neighboring cell to support cell reselection, the terminal device will have a long measurement cycle and high energy consumption.
  • a terminal device in a connected state when a terminal device in a connected state measures all SSBs in each SSB cycle of a neighboring cell to select a cell to be switched, it will cause a large energy consumption overhead. In addition, the frequency difference between different cells is large. When a terminal device in a connected state performs neighboring cell measurements, it cannot perform services in the serving cell. Therefore, if a terminal device in a connected state performs SSB measurements for a long time, it will affect the communication services of this cell.
  • the embodiment of the present application provides a synchronization signal block measurement method 100.
  • the network device determines first information, and the first information is used to instruct the terminal device to perform synchronization signal block SSB measurement.
  • the network device sends the first information to the terminal device.
  • the terminal device performs SSB measurement on the first SSB according to the first reference SSB, and the first SSB is determined autonomously by the terminal device.
  • the network device For a terminal device in an idle state, the network device cannot obtain the location information of the terminal device, and thus cannot obtain the SSB with better signal quality of the terminal device. Therefore, if the network device instructs the terminal device on the reference SSB based on which to perform SSB measurement, the same reference SSB will be indicated to the terminal device in the idle state while taking into account the location information of all terminal devices in the idle state, which will result in a large number of SSBs required for each terminal device to perform SSB measurement, resulting in a large energy consumption overhead.
  • the terminal device in the idle state autonomously determines the first reference SSB based on which to perform SSB measurement, and can autonomously determine a suitable first reference SSB on the premise that the number of SSBs to be measured is as small as possible, thereby reducing the energy consumption overhead of the terminal device.
  • the network device For a terminal device in a connected state, when the satellite changes rapidly, the reference SSB of the terminal device is constantly changing. Therefore, if the network device indicates to the terminal device the reference SSB on which the SSB measurement is based, the network device needs to indicate to the terminal device the reference SSB on which the SSB measurement is based multiple times on different time domain resources according to the changes in the satellite, which will cause a large amount of signaling overhead. In addition, if the network device takes into account the continuous changes in the reference SSB caused by the rapid changes in the satellite, and indicates to the terminal device once the reference SSB on which the SSB measurement is based, the terminal device will determine the number of SSBs required to perform the SSB measurement based on the indicated reference SSB.
  • the terminal device in a connected state autonomously determines the first reference SSB on which the SSB measurement is based, and can autonomously determine the appropriate first reference SSB on the premise that the number of SSBs to be measured is as small as possible, which can reduce the energy consumption overhead of the terminal device.
  • this method does not require additional interaction between the terminal device and the network device, which can save signaling overhead.
  • An embodiment of the present application also provides a synchronization signal block measurement method 200.
  • a network device determines first information and second information, the first information is used to instruct a terminal device to perform SSB measurement according to an SSB index interval, and the second information is used to indicate an SSB index interval, where the SSB index interval is an integer greater than 1.
  • the network device sends the first information and the second information to the terminal device.
  • the terminal device determines a first SSB based on the SSB index interval and an autonomously determined first reference SSB.
  • the terminal device performs SSB measurement on the first SSB within a first cycle of SSB measurement. In this manner, the first SSB determined by the terminal device is a partial SSB within an SSB cycle, which can reduce the energy consumption overhead of the terminal device.
  • the embodiment of the present application also provides a synchronization signal block measurement method 300.
  • the network device determines the first information and the third information, the first information is used to instruct the terminal device to perform SSB measurement according to the SSB index interval, and the third information is used to indicate the SSB index window, and the number of SSBs in the SSB index window is less than the number of SSBs in an SSB cycle.
  • the network device sends the first information and the third information to the terminal device.
  • the terminal device determines the first SSB based on the SSB index window and the first reference SSB determined autonomously.
  • the terminal device performs SSB measurement on the first SSB in the first cycle of the SSB measurement.
  • the first SSB determined by the terminal device is also within an SSB cycle. Partial SSB can reduce the energy consumption of terminal devices.
  • An embodiment of the present application also provides a synchronization signal block measurement method 400.
  • the network device determines the first information and the fourth information, the first information is used to instruct the terminal device to perform SSB measurement according to the SSB index interval, and the fourth information is used to indicate the SSB time window, and the SSB time window is less than one SSB cycle.
  • the network device sends the first information and the fourth information to the terminal device.
  • the terminal device determines the first SSB based on the SSB time window and the autonomously determined first reference SSB.
  • the terminal device performs SSB measurement on the first SSB within the first cycle of the SSB measurement. In this manner, the determined first SSB is also a partial SSB within an SSB cycle, which can reduce the energy consumption overhead of the terminal device.
  • FIG8 is an interactive schematic diagram of the synchronization signal block measurement method 100.
  • the synchronization signal block measurement method 100 is described from the perspective of the interaction between the network device and the terminal device.
  • the synchronization signal block measurement method 100 includes but is not limited to the following steps:
  • the network device determines first information, and the first information is used to instruct the terminal device to perform synchronization signal block SSB measurement.
  • the network device instructs the terminal device to perform SSB measurement through the first information, so that the terminal device can perform SSB measurement in real time when the satellite moves.
  • the network device sends first information to the terminal device.
  • the terminal device receives the first information from the network device.
  • the terminal device performs SSB measurement on the first SBB according to the first reference SSB, where the first reference SSB is determined autonomously by the terminal device.
  • the first period of SSB measurement may be configured by the network device to the terminal device.
  • the first period of SSB measurement is configured by the network device to the terminal device through the first information.
  • the first period of SSB measurement may also be understood as the first measurement period in which the terminal device performs SSB measurement.
  • the SSB used for initial synchronization with the serving cell can be determined as the first reference SSB, or the SSB whose signal quality among the multiple measured SSBs is greater than a preset threshold is determined as the first reference SSB, wherein the initial synchronization between the terminal device and the serving cell means that when the terminal device first accesses the network, it synchronizes time, frequency and other information with the network equipment of the serving cell to obtain system messages; when the terminal device performs SSB measurement on the SSB of a neighboring cell, the SSB used for initial synchronization with the neighboring cell can be determined as the first reference SSB, or the network equipment indicates to the terminal device the deviation value between the first reference SSB based on which the SSB measurement of the serving cell is performed and the first reference SSB based on which the SSB measurement of the neighboring cell is performed, and
  • the terminal device autonomously determines the first reference SSB based on which to perform SSB measurement on the SSB of the serving cell, and determines the implementation method of the first reference SSB based on which to perform SSB measurement on the SSB of the neighboring cell. Please refer to the implementation method of determining the first reference SSB by the terminal device in the idle state mentioned above, and will not be repeated here.
  • the first reference SSB based on which the terminal device in a connected state performs SSB measurement on the SSB of the neighboring cell may also be indicated to the terminal device by the network device.
  • the neighboring base station of the terminal device sends the SSB coverage range of the terminal device to the source base station of the serving cell.
  • the source base station determines the first reference SSB based on which the terminal device performs SSB measurement on the SSB of the neighboring cell according to the SSB coverage range of the neighboring base station where the terminal device is located, and sends it to the terminal device.
  • the source base station may send the location information of the terminal device to the neighboring base station, and the neighboring base station determines the first reference SSB based on which the terminal device performs SSB measurement on the SSB of the neighboring cell according to the location of the terminal device and the SSB coverage of the neighboring base station.
  • the neighboring base station then sends the determined first reference SSB to the source base station, and the source base station forwards the first reference SSB to the terminal device, so that the terminal device obtains the first reference SSB based on which the SSB of the neighboring cell is performed.
  • the terminal device can autonomously determine the first SSB based on which the SSB measurement of the serving cell is performed, and the first reference SSB based on which the SSB measurement of the neighboring cell is performed.
  • the implementation method of the terminal device autonomously determining the first reference SSB includes but is not limited to the implementation method described above.
  • the terminal device receives the first indication information for indicating the SSB measurement, and within the first cycle of the SSB measurement, performs SSB measurement on the first SSB according to the first reference SSB determined autonomously.
  • the network device cannot obtain the location information of the terminal device, and thus cannot obtain the SSB with better signal quality for the terminal device. Therefore, if the network device instructs the terminal device to perform SSB measurement based on a reference SSB, the same reference SSB will be indicated to the terminal device in the idle state while taking into account the location information of all terminal devices in the idle state. As a result, each terminal device will need to perform SSB measurement on a larger number of SSBs, resulting in greater energy consumption overhead. For example, the network device instructs the terminal device in the idle state that the reference SSB for performing SSB measurement is the SSB with an index of 0.
  • the location information of all terminal devices in the idle state can be taken into account, so that each terminal device in the idle state needs to start from the SSB with an index of 0. Then, for the terminal devices in the NTN network, the terminal devices need to perform SSB measurements for a long time, which will cause a large energy consumption overhead for the terminal devices.
  • the terminal device in the idle state autonomously determines the first reference SSB based on which the SSB measurement is performed, and can autonomously determine the appropriate first reference SSB on the premise that the number of SSBs to be measured is as small as possible, thereby reducing the energy consumption overhead of the terminal device.
  • the terminal device in the idle state determines the SSB used for initial synchronization in the neighboring cell as the first reference SSB, and the terminal device performs SSB measurement from the SSB used for initial synchronization in the neighboring cell.
  • an SSB cycle includes 256 SSBs, and the SSB used by the terminal device for initial synchronization in the neighboring cell is the SSB with an index of 100.
  • the terminal device can perform SSB measurement from the SSB with an index of 100, which can reduce the energy consumption overhead of the terminal device compared to the terminal device performing SSB measurement on 256 SSBs in an SSB cycle.
  • the reference SSB of the terminal device is constantly changing when the satellite changes rapidly. Therefore, if the network device instructs the terminal device on the reference SSB based on which the SSB measurement is to be performed, the network device needs to instruct the terminal device on the reference SSB based on which the SSB measurement is to be performed multiple times on different time domain resources according to the changes in the satellite, which will cause a large amount of signaling overhead.
  • the network device determines the reference SSB-1 based on which the terminal device performs the SSB measurement according to the beam coverage of the terminal device on the satellite, and sends the reference SSB-1 to the terminal device on time slot 1; when the satellite is in position 2 after rapid movement, the network device determines the reference SSB-2 based on which the terminal device performs the SSB measurement according to the latest beam coverage of the terminal device on the satellite, and sends the reference SSB-2 to the terminal device on time slot 2.
  • the terminal device will determine a large number of SSBs required to perform SSB measurement based on the indicated reference SSB, which will result in greater energy consumption overhead.
  • the terminal device in the connected state autonomously determines the first reference SSB based on which the SSB measurement is performed, and can autonomously determine the appropriate first reference SSB under the premise that the number of SSBs to be measured is as small as possible, which can reduce the energy consumption of the terminal device.
  • this method does not require the network device to indicate the reference SSB to the terminal device through signaling, that is, no additional interaction is required between the terminal device and the network device, which can save signaling overhead.
  • the first information is specifically used to instruct the terminal device to perform SSB measurement according to the SSB index interval.
  • This method is beneficial for the terminal device not to perform SSB measurement on the SSB on each time slot resource, but to perform SSB measurement according to the SSB index interval, thereby reducing the number of SSBs for SSB measurement by the terminal device and reducing the energy consumption overhead of the terminal device.
  • the network device may also determine the second information and send the second information to the terminal device.
  • the second information is used to indicate the SSB index interval, and the SSB index interval is an integer greater than 1. Accordingly, the terminal device may also receive the second information from the network device.
  • the terminal device determines the second information based on the orbital direction of the satellite and the index arrangement direction of the SSB.
  • the orbital direction of the satellite refers to the direction in which the satellite moves
  • the index arrangement direction of the SSB refers to the direction in which the indexes of the SSBs are arranged in order from small to large.
  • the number of SSBs in an SSB cycle and the SSB index arrangement direction in an SSB cycle may be predefined.
  • the network device determines the second information, that is, determines the SSB index interval.
  • the specific value of the SSB index interval can be determined by the network device according to the index arrangement rule of the SSB.
  • FIG9 is a schematic diagram of a satellite scanning SSB.
  • an SSB cycle includes 256 SSBs, the orbital direction of the satellite is horizontal to the left, and when the indexes of the SSBs are arranged in order from small to large, the arrangement direction is vertically downward, that is, the orbital direction of the satellite is perpendicular to the index arrangement direction of the SSB.
  • the SSB coverage range of the terminal device under the satellite moves horizontally to the right.
  • the network device can instruct the terminal device to perform SSB measurement on the SSB with a multiple SSB interval from the current SSB with better signal quality through the SSB index interval. That is, the network device can indicate the SSB index interval to the terminal device so that the terminal device performs SSB measurement on the SSB with an index that is a positive integer multiple of the SSB index interval between the index and the index of the current SSB with better signal quality. Under the SSB index arrangement rule shown in FIG9 , the network device may determine that the SSB index interval is 16.
  • the way in which the network device indicates the SSB index interval to the terminal device can enable the terminal device to perform SSB measurement on the first SSB determined according to the first reference SSB and the SSB index interval within the first cycle of the SSB measurement.
  • the SSB index interval is an integer greater than 1, so that the first SSB determined by the terminal device according to the first reference SSB and the SSB index interval is not all SSBs within an SSB cycle, but part of the SSBs within an SSB cycle, thereby reducing the number of SSBs for which the terminal device performs SSB measurement, and saving the energy consumption overhead of the terminal device.
  • the network device may also determine third information and send the third information to the terminal device.
  • the third information is used to indicate the SSB index window, and the number of SSBs in the SSB index window is less than the number of SSBs in one SSB cycle. Accordingly, the terminal device may also receive the third information from the network device.
  • the terminal device may also determine the third information according to the orbital direction of the satellite and the index arrangement direction of the SSB. It is understandable that the network device determines the third information, that is, determines the SSB index window, when the orbital direction of the satellite is horizontal to the index arrangement direction of the SSB.
  • the specific value of the SSB index window may be determined by the network device according to the index arrangement rule of the SSB.
  • FIG10 is another schematic diagram of a satellite scanning SSB.
  • an SSB cycle includes 256 SSBs, the orbital direction of the satellite is vertically upward, and the index arrangement direction of the SSB is vertically downward, that is, the orbital direction of the satellite is horizontal to the index arrangement direction of the SSB.
  • the terminal device moves vertically downward in the SSB coverage range of the satellite. If the SSB with better signal quality of the terminal device is the SSB with an index of 16, then after the satellite moves, the SSB with better signal quality of the terminal device may be the SSB with an index of 17, 18, 19, 20, etc.
  • the network device can instruct the terminal device to perform SSB measurement on multiple SSBs that are continuous with the current SSB with better signal quality through the SSB index window. That is, the network device can indicate the SSB index window to the terminal device so that the terminal device performs SSB measurement on the SSB indexed in the SSB index window with the index of the current SSB with better signal quality as the starting index. Under the SSB index arrangement rule shown in FIG10 , the network device may determine that the SSB index window is 16.
  • the way in which the network device indicates the SSB index window to the terminal device can enable the terminal device to perform SSB measurement on the first SSB determined according to the first reference SSB and the SSB index window within the first cycle of the SSB measurement.
  • the number of SSBs within the SSB index window is less than the number of SSBs within one SSB cycle, so that the first SSB determined by the terminal device according to the first reference SSB and the SSB index window is a partial SSB within one SSB cycle, which can save the energy consumption of the terminal device.
  • the network device may also determine fourth information and send the fourth information to the terminal device.
  • the fourth information is used to indicate the SSB time window, and the SSB time window is less than one SSB cycle. Accordingly, the terminal device may also receive the fourth information from the network device.
  • the terminal device may also determine the fourth information according to the orbital direction of the satellite and the index arrangement direction of the SSB. It is understandable that the network device determines the fourth information, that is, determines the SSB time window, when the orbital direction of the satellite is horizontal to the index arrangement direction of the SSB. The network device may determine the specific value of the SSB time window according to an SSB cycle.
  • FIG10 a schematic diagram of the satellite scanning of SSB is shown in FIG10, and the orbital direction of the satellite is horizontal to the index arrangement direction of the SSB.
  • the SSB coverage range of the terminal device under the satellite moves vertically downward. If the SSB with better signal quality of the terminal device is the SSB with index 16, then after the satellite moves, the SSB with better signal quality of the terminal device may be the SSB with indexes 17, 18, 19, 20, etc., that is, it may be the SSB whose time domain position is after the SSB with index 16.
  • the network device can instruct the terminal device to perform SSB measurement on the SSB whose time domain position is after the SSB with index 16 through the SSB time window, so that the terminal device can obtain the SSB with better signal quality when the satellite moves. If an SSB cycle includes 256 SSBs and an SSB cycle is 640ms, the network device can determine the SSB time window to be 20ms, 40ms, 80ms, 100ms, and so on.
  • the manner in which the network device indicates the SSB time window to the terminal device can enable the terminal device to perform SSB measurement according to the first reference SSB and the first SSB determined by the SSB time window within the first cycle of the SSB measurement.
  • the SSB time window is smaller than one SSB cycle, so that the first SSB determined by the terminal device according to the first reference SSB and the SSB time window is a partial SSB within one SSB cycle, which can save energy consumption overhead of the terminal device.
  • the network device may indicate the SSB index interval and the SSB index window to the terminal device, or indicate the SSB index interval and the SSB time window, or indicate the SSB index window and the SSB time window, or indicate the SSB index interval, the SSB index window, and the SSB time window. That is, the terminal device may receive the second information and the third information from the network device, or receive the second information and the fourth information, or receive the third information and the fourth information, or receive the second information, the third information, and the fourth information. When the terminal device receives different information, it may determine the first SSB to be measured based on the parameters indicated by the received information and the first reference SSB.
  • the network device may further determine fifth information and send the fifth information to the terminal device.
  • the fifth information is used to indicate the scanning order of the satellite for the SSB. Accordingly, the terminal device receives the fifth information from the network device.
  • the index of the first SSB is greater than the index of the first reference SSB; when the satellite scans SSB in descending order, the index of the first SSB is less than the index of the first reference SSB.
  • the terminal device When the terminal device receives different information, the first SSB determined by it is different.
  • the terminal device receives different information, which can be understood as the terminal device receiving information with different contents, or can be understood as the terminal device receiving different one or more of the second information, the third information and the fourth information. Therefore, the SSBs performed by the terminal device in the first cycle of the SSB measurement are different.
  • the embodiment of the present invention describes the method of performing SSB measurement on the first SSB according to the first reference SSB in the first cycle of SSB measurement based on the type of information received by the terminal device:
  • Case 1 The terminal device receives the second information from the network device.
  • the terminal device receives the second information from the network device, indicating that the terminal device obtains the SSB index interval, thereby determining the first SSB according to the first reference SSB and the SSB index interval, and performing SSB measurement on the determined first SSB within the first cycle of SSB measurement.
  • the index interval of the first SSB and the index of the first reference SSB are spaced by a positive integer multiple of the SSB index interval.
  • the terminal device performs SSB measurement on the first SSB whose index is spaced by a positive integer multiple of the SSB index interval between the first reference SSB and the index.
  • the orbital direction of the satellite is shown in FIG9
  • the first reference SSB autonomously determined by the terminal device is the SSB with an index of 2
  • the SSB index interval is 16.
  • the first SSB may be an SSB with an index that is a positive integer multiple of 16 spaced from 2 in ascending order, for example, the first SSB may be an SSB with an index of 18, 34, 50, and so on.
  • the terminal device may perform SSB measurement on SSBs with an index that is a positive integer multiple of 16 spaced from 2 within the first cycle of SSB measurement, so as to obtain an SSB with better signal quality through SSB measurement when the satellite moves.
  • the terminal device may perform cell reselection or cell switching according to the SSB with better signal quality.
  • the index arrangement of SSB is shown in FIG9 , the orbit direction of the satellite is horizontal to the right, and the first reference SSB autonomously determined by the terminal device is the SSB with an index of 34, and the SSB index interval is 16.
  • the first SSB may be an SSB with an index that is a positive integer multiple of 16 intervals from 34 in descending order.
  • the first SSB is an SSB with an index of 18 and 2, so that the terminal device can perform SSB measurement on the SSBs with an index of 2 and an index of 18 in the first cycle of SSB measurement.
  • the terminal device may also perform SSB measurement on one or more SSBs indexed before and after the index of the first SSB within the first cycle of the SSB measurement. That is, the terminal device may also perform SSB measurement on more SSBs based on the first SSB to improve the reliability of determining SSBs with better signal quality.
  • the first SSB determined by the terminal device based on the first reference SSB and the SSB index interval is an SSB with an index of 18, and the terminal device may also perform SSB measurement on one or more SSBs with indexes before and after index 18.
  • the terminal device may also perform SSB measurement on SSBs with indexes of 17 and 19.
  • the first SSB determined by the terminal device based on the first reference SSB and the SSB index interval is a partial SSB within an SSB cycle, rather than the entire SSB within an SSB cycle, thereby reducing the time for the terminal device to perform SSB measurement, that is, saving the energy consumption overhead of the terminal device.
  • Case 2 The terminal device receives the third information from the network device.
  • the terminal device receives the third information from the network device, indicating that the terminal device obtains the SSB index window, so that the terminal device determines the first SSB according to the first reference SSB and the SSB index window, and performs SSB measurement on the determined first SSB within the first cycle of SSB measurement.
  • the index of the first SSB is within the SSB index window with the index of the first reference SSB as the starting index. That is to say, within the first cycle of SSB measurement, the terminal device performs SSB measurement on the first SSB whose index is within the SSB index window with the index of the first reference SSB as the starting index.
  • the first SSB is an SSB with an index between x and [x+m], where x is an integer greater than or equal to 0, and m is a positive integer greater than 1.
  • the first SSB is the SSB indexed within the range of [x-m] to x, where x is an integer greater than or equal to 0 and less than x, and m is a positive integer greater than 1.
  • the orbital direction of the satellite is shown in FIG10
  • the first reference SSB autonomously determined by the terminal device is the SSB with an index of 16
  • the SSB index window is 16
  • the first SSB is the SSB with an index between 16 and 31.
  • the terminal device performs SSB measurement on the SSB with an index between 16 and 31 in the first cycle of the SSB measurement.
  • the index arrangement of SSB is shown in FIG10 , the orbit direction of the satellite is vertically downward, the first reference SSB autonomously determined by the terminal device is the SSB with an index of 47, and the SSB index window is 16. Then, the first SSB is the SSB with an index within the range of indexes 32 to 47.
  • the terminal device performs SSB measurement on the SSB with an index within the range of indexes 32 to 47 in the first cycle of SSB measurement.
  • the terminal device may further perform SSB measurement on some SSBs whose indexes are near the first SSB index during the first cycle of SSB measurement to increase the reliability of determining the SSB with better signal quality. For example, if the terminal device determines that the first SSB is an SSB with an index between indexes 32 and 47, the terminal device may further perform SSB measurement on some SSBs whose indexes are near indexes 32 and 47 during the first cycle of SSB measurement. Measurement, for example, SSB measurement can also be performed on SSBs with index 30 and index 31, and SSB measurement can also be performed on SSBs with index 48 and index 49.
  • the first SSB determined by the terminal device based on the first reference SSB and the SSB index window is also a partial SSB within an SSB cycle, thereby reducing the number of SSBs for SSB measurement by the terminal device and reducing the energy consumption overhead of the terminal device.
  • Case 3 The terminal device receives the fourth information from the network device.
  • the terminal device receives the fourth information from the network device, indicating that the terminal device obtains the SSB time window, so that the terminal device determines the first SSB according to the first reference SSB and the SSB time window, and performs SSB measurement on the first SSB in the first cycle of SSB measurement.
  • the time domain position of the first SSB is within the SSB time window starting at the time domain position of the first reference SSB. That is to say, in the first cycle of SSB measurement, the terminal device performs SSB measurement on the first SSB whose time domain position is within the SSB time window starting at the time domain position of the first reference SSB.
  • the time domain position of the first SSB is within the SSB time window that is shifted backwards from the time domain position of the first reference SSB as the starting position.
  • the time domain position of the first SSB is within the SSB time window that is shifted forwards from the time domain position of the first reference SSB as the starting position.
  • one SSB cycle includes 256 SSBs, one SSB cycle is 640ms, the SSB time window is 40ms, the SSB frame structure is shown in FIG7, the first reference SSB is the SSB with an index of 5, and the satellite scans the SSB in ascending order. Then, the first SSB is the SSB contained within 40ms shifted backward from the time domain position of the SSB with an index of 5, and it can be determined that the first SSB is the SSB with an index of 5 to 21.
  • the SSB time window is smaller than one SSB cycle, so that the first SSB determined by the terminal device based on the first reference SSB and the SSB time window is also a partial SSB within an SSB cycle, which can save energy consumption overhead of the terminal device.
  • Case 4 The terminal device receives the second information and the third information.
  • the terminal device receives the second information and the third information, indicating that the terminal device obtains the SSB index interval and the SSB index window.
  • the terminal device determines the first SSB according to the first reference SSB, the SSB index interval and the SSB index window, and then performs SSB measurement on the determined first SSB within the first cycle of the SSB measurement.
  • the terminal device determines the first SSB based on the first reference SSB, the SSB index interval and the SSB index window, it can determine the first SSB in combination with the scanning order of the SSB by the satellite.
  • FIG9 a schematic diagram of the satellite scanning of SSB is shown in FIG9 , where the first reference SSB is the SSB with an index of 2, the SSB index interval indicated by the second information is 16, and the SSB index window indicated by the third information is 2. Since the orbit direction of the satellite is horizontally to the left, the possible better SSB of the terminal device is the SSB with the SSB index moving to the right. Thus, the terminal device first determines the SSB based on the first reference SSB and the SSB index interval, and the determined SSB is the SSB with an index of 18, 34, etc.
  • the terminal device can combine the SSB index window to determine that the SSB measurement can be performed on the two SSBs before and after the SSB with an index of 18, 34, etc., that is, the SSB measurement can be performed on the SSBs with an index of 0, 1, 2, 3, 4, 16, 17, 18, 19, 20, 32, 33, 34, 35, 36, etc.
  • a scanning diagram of the satellite's SSB is shown in FIG10, where the first reference SSB is an SSB with an index of 16, the SSB index interval indicated by the second information is 1, and the SSB index window indicated by the third information is 16.
  • the orbital direction of the satellite is vertically upward, so the optimal SSB for the terminal device may be an SSB with an SSB index moving downward.
  • the terminal device first determines the SSB based on the first reference SSB and the SSB index window, and the determined SSB is an SSB with an index of 16 to 31.
  • the terminal device can also determine, in combination with the SSB index interval, that SSB measurements can be performed on SSBs with indexes of 16 to 31, SSBs with indexes of 32 to 47, and SSBs with indexes of 0 to 15.
  • the terminal device when the terminal device obtains the SSB index interval and the SSB index window, if the orbital direction of the satellite is perpendicular to the index arrangement direction of the SSB, the terminal device can first determine the SSB according to the first reference SSB and the SSB index interval, and then determine the first SSB according to the determined SSB and the SSB index window.
  • this method allows the terminal device to perform SSB measurement on more SSBs, which can increase the probability of determining the SSB with the best signal quality.
  • the terminal device may first determine the SSB based on the first reference SSB and the SSB index window, and then determine the first SSB based on the determined SSB and the SSB index interval.
  • this method can also enable the terminal device to perform SSB measurement on more SSBs, which can increase the probability of determining the SSB with the best signal quality.
  • this implementation method can still save the energy consumption of the terminal device.
  • the specific values of the SSB index interval and the SSB index window can be reasonably configured by the network device in combination with the scanning order of the satellite for SSB.
  • Case 5 The terminal device receives the second information and the fourth information from the network device.
  • the terminal device When the terminal device receives the second information and the fourth information, it indicates that the terminal device obtains the SSB index interval and the SSB time window. Thus, the terminal device can determine the first SSB based on the first reference SSB, the SSB index interval and the SSB time window. The terminal device determines the first SSB based on the first reference SSB, the SSB index interval and the SSB time window, and can also combine the relationship between the orbital direction of the satellite and the index arrangement direction of the SSB.
  • the terminal device determines the implementation method of the first SSB based on the first reference SSB, the SSB index interval, the SSB time window, and the relationship between the orbital direction of the satellite and the index arrangement direction of the SSB, which is similar to the terminal device determining the implementation method of the first SSB based on the first reference SSB, the SSB index interval, the SSB index window, and the relationship between the orbital direction of the satellite and the index arrangement direction of the SSB.
  • the terminal device determines the first SSB based on the first reference SSB, the SSB index interval and the SSB time window, which can be understood as: determining the SSB based on the first reference SSB and the SSB index interval, and then determining the first SSB based on the determined SSB and SSB time window;
  • the terminal device determines the first SSB based on the first reference SSB, the SSB index interval and the SSB time window, which can be understood as: determining the SSB based on the first reference SSB and the SSB time window, and then determining the first SSB based on the determined SSB and SSB index interval.
  • FIG9 a schematic diagram of the satellite scanning of SSB is shown in FIG9 , where the first reference SSB is an SSB with an index of 2, the SSB index interval indicated by the second information is 16, and the SSB time window indicated by the fourth information is 10 ms.
  • the terminal device first determines the SSB based on the first reference SSB and the SSB index interval, and the determined SSB is an SSB with an index of 18, 34, etc.
  • the terminal device then combines the SSB time window to determine that SSB measurement can be performed on SSBs with indexes of 18, 34, etc., and on SSBs included within 10 ms of the time domain position of SSBs with indexes of 18, 34, etc. moving forward and backward.
  • a schematic diagram of a satellite scanning SSB is shown in FIG10, where the first reference SSB is an SSB with an index of 5, the SSB index interval indicated by the second information is 1, and the SSB time window indicated by the fourth information is 40 ms.
  • the terminal device determines that the SSB is an SSB with an index of 5 to 21 based on the first reference SSB and the SSB time window.
  • the terminal device determines that SSB measurements can be performed on SSBs with indexes of 5 to 21, SSBs with indexes of 21 to 37, and SSBs with indexes of 0 to 5 in combination with the SSB index interval.
  • the specific values of the SSB index interval and the SSB time window may also be reasonably configured by the network device in combination with the scanning order of the SSB by the satellite.
  • This implementation also allows the terminal device to perform SSB measurements on more SSBs, which can improve the probability of determining the SSB with the signal quality, but compared with performing SSB measurements on all SSBs within an SSB cycle, it can still save the energy consumption overhead of the terminal device.
  • Case 6 The terminal device receives the third information and the fourth information from the network device.
  • the terminal device receives the third information and the fourth information, indicating that the terminal device obtains the SSB index window and the SSB time window.
  • the terminal device can determine the first SSB according to the first reference SSB, the SSB index window and the SSB time window. It can be understood that the terminal device determines a part of the SSB according to the first reference SSB and the SSB index window, and determines another part of the SSB according to the first reference SSB and the SSB time window.
  • the terminal device determines the first SSB from the two parts of the SSB, and the intersection of the two parts of the SSB can be determined as the first SSB.
  • the satellite scans the SSB as shown in FIG10 , the first reference SSB is the SSB with an index of 17, and the terminal device determines the SSB with an index of 17 to 32 based on the first reference SSB and the SSB index window.
  • the terminal device determines the SSB with an index of 17 to 25 based on the first reference SSB and the SSB time window, and then the terminal device determines that the first SSB is the SSB with an index of 17 to 25.
  • the terminal device receives the second information, the third information and the fourth information.
  • the terminal device receives the second information, the third information, and the fourth information, indicating that the terminal device obtains the SSB index interval, the SSB index window, and the SSB time window.
  • the terminal device determines the first SSB according to the first reference SSB, the SSB index interval, the SSB index window, and the SSB time window.
  • the terminal device performs SSB measurement on the determined first SSB within the first cycle of the SSB measurement.
  • the terminal device determines the first SSB according to the first reference SSB, the SSB index interval, the SSB index window and the SSB time window. It can be understood that: the SSB is determined according to the first reference SSB and the SSB index interval, and then the first SSB is determined according to the determined SSB, the SSB index window and the SSB time window.
  • the terminal device determines the first SSB according to the first reference SSB, the SSB index interval, the SSB index window and the SSB time window.
  • the SSB is determined according to the first reference SSB, the SSB index window and the SSB time window, and then the first SSB is determined according to the determined SSB and the SSB index interval.
  • the implementation method of the terminal device determining the first SSB according to the first reference SSB, the SSB index window and the SSB time window can be referred to the above situation 6, which will not be repeated.
  • the terminal device performs SSB measurement on a partial SSB within an SSB cycle, which can reduce the energy consumption of the terminal device.
  • one or more of the first information, the second information, the third information and the fifth information are carried in a radio resource control (RRC) signaling.
  • RRC radio resource control
  • the network device sends a signal to the idle state through the RRC common signaling.
  • the terminal device sends one or more of the first information, the second information, the third information and the fifth information.
  • the network device sends one or more of the first information, the second information, the third information and the fifth information to the terminal device in the idle state through the system information block (SIB) or other system messages (OSI); the network device sends one or more of the first information, the second information, the third information and the fifth information to the terminal device in the connected state through RRC dedicated signaling.
  • SIB system information block
  • OSI system messages
  • the terminal device may also perform SSB measurement on the second SSB according to a second reference SSB within the second cycle of the SSB measurement, where the second reference SSB is determined by the terminal device based on the measurement result of the SSB measurement within the first cycle.
  • the terminal device determines the second reference SSB based on multiple SSB measurement results, and the second reference SSB can be the SSB with the best signal quality among the multiple SSB measurement results.
  • the terminal device can determine the second SSB based on the first reference SSB and one or more of the received second information, third information, and fourth information.
  • the terminal device can perform SSB measurement on the determined second SSB in the second cycle of SSB measurement.
  • the terminal device can determine the reference SSB based on which the SSB measurement is performed in the SSB measurement cycle according to the measurement result of the SSB measurement performed in the previous SSB measurement cycle.
  • the terminal device can determine the SSB to be measured based on the determined reference SSB, and then perform SSB measurement on the determined SSB in the SSB measurement cycle.
  • the reference SSB based on which the terminal device performs SSB measurement can be determined autonomously by the terminal device, which can reduce the energy consumption overhead of the terminal device and save signaling overhead compared to the method in which the network device constantly indicates the reference SSB to the terminal device.
  • the terminal device after the terminal device receives the first indication information for instructing to perform SSB measurement, within the first cycle of SSB measurement, the terminal device performs SSB measurement on the first SSB according to the first reference SSB determined autonomously.
  • the network device For a terminal device in an idle state, the network device cannot obtain the location information of the terminal device, and thus cannot obtain the SSB with better signal quality of the terminal device. Therefore, if the network device instructs the terminal device on the reference SSB based on which to perform SSB measurement, the same reference SSB will be indicated to the terminal device in the idle state while taking into account the location information of all terminal devices in the idle state, which will result in a large number of SSBs required for each terminal device to perform SSB measurement, resulting in a large energy consumption overhead.
  • the terminal device in the idle state autonomously determines the first reference SSB based on which to perform SSB measurement, and can autonomously determine a suitable first reference SSB on the premise that the number of SSBs to be measured is as small as possible, thereby reducing the energy consumption overhead of the terminal device.
  • the network device For a terminal device in a connected state, when the satellite changes rapidly, the reference SSB of the terminal device is constantly changing. Therefore, if the network device indicates to the terminal device the reference SSB on which the SSB measurement is based, the network device needs to indicate to the terminal device the reference SSB on which the SSB measurement is based multiple times on different time domain resources according to the changes in the satellite, which will cause a large amount of signaling overhead. In addition, if the network device takes into account the continuous changes in the reference SSB caused by the rapid changes in the satellite, and indicates to the terminal device once the reference SSB on which the SSB measurement is based, the terminal device will determine the number of SSBs required to perform the SSB measurement based on the indicated reference SSB.
  • the terminal device in a connected state autonomously determines the first reference SSB on which the SSB measurement is based, and can autonomously determine the appropriate first reference SSB on the premise that the number of SSBs to be measured is as small as possible, which can reduce the energy consumption overhead of the terminal device.
  • this method does not require additional interaction between the terminal device and the network device, which can save signaling overhead.
  • FIG11 is an interactive schematic diagram of the synchronization signal block measurement method 200.
  • the synchronization signal block measurement method 200 is also described from the perspective of the interaction between the network device and the terminal device.
  • the synchronization signal block measurement method 200 includes but is not limited to the following steps:
  • the network device determines first information and second information, where the first information is used to instruct the terminal device to perform SSB measurement according to the SSB index interval, and the second information is used to indicate the SSB index interval, where the SSB index interval is an integer greater than 1.
  • the SSB index interval refers to the interval between the index of one SSB and the index of another SSB.
  • the SSB includes SSB1 and SSB2, the index of SSB1 is 0, the index of SSB2 is 1, and the SSB index interval between SSB1 and SSB2 is 1.
  • the first information and the second information may be the same information or different information. If the first information and the second information are the same information, it can be understood that the first information and the second information are sent at the same time; if the first information and the second information are different information, it can be understood that the first information and the second information are sent at different times.
  • the implementation method of the network device determining the second information can be found in the above-mentioned synchronization signal block measurement method 100 and will not be repeated here.
  • the network device sends the first information and the second information to the terminal device.
  • the terminal device receives the first information and the second information from the network device.
  • the terminal device determines the first SSB based on the first reference SSB and the SSB index interval.
  • the first reference SSB is determined autonomously by the terminal device.
  • the terminal device performs SSB measurement on the first SSB within the first cycle of SSB measurement.
  • the implementation method of the terminal device determining the first reference SSB as well as the implementation method of determining the first SSB based on the first reference SSB and the SSB index interval, can be referred to as described in the above-mentioned synchronization signal block measurement method 100 and will not be repeated here.
  • the network device may further send fifth information to the terminal device, the fifth information being used to indicate the scanning order of the satellite for the SSB, the scanning order of the satellite for the SSB being in ascending order or in descending order. Accordingly, the terminal device may further receive the fifth information from the terminal device.
  • the terminal device can determine the first SSB according to the first reference SSB and the SSB index interval in combination with the scanning order of the satellite for the SSB.
  • the specific implementation method thereof can be referred to in the above-mentioned synchronization signal block measurement method 100, which will not be described in detail.
  • the network device instructs the terminal device to perform SSB measurement according to the SSB index interval through the first information, and indicates the SSB index interval to the terminal device through the second information.
  • the terminal device performs SSB measurement on the first SSB determined according to the SSB index interval and the autonomously determined first reference SSB within the first cycle of the SSB measurement.
  • the terminal device does not perform SSB measurement on all SSBs within an SSB cycle, but performs SSB measurement on part of the SSBs within an SSB cycle, which can reduce the energy consumption overhead of the terminal device.
  • FIG12 is an interactive schematic diagram of the synchronization signal block measurement method 300.
  • the synchronization signal block measurement method 300 is also described from the perspective of the interaction between the network device and the terminal device.
  • the synchronization signal block measurement method 300 includes but is not limited to the following steps:
  • the network device determines first information and third information, where the first information is used to instruct the terminal device to perform SSB measurement according to the SSB index interval, and the third information is used to indicate the SSB index window, where the number of SSBs in the SSB index window is less than the number of SSBs in an SSB cycle.
  • the first information and the third information may be the same information or different information. If the first information and the third information are the same information, it can be understood that the first information and the third information are sent at the same time; if the first information and the third information are different information, it can be understood that the first information and the third information are sent at different times.
  • the implementation method of the network device determining the third information can be found in the above-mentioned synchronization signal block measurement method 100 and will not be repeated here.
  • the network device sends the first information and the third information to the terminal device.
  • the terminal device receives the first information and the third information from the network device.
  • the terminal device determines the first SSB based on the first reference SSB and the SSB index window.
  • the first reference SSB is determined autonomously by the terminal device.
  • the terminal device performs SSB measurement on the first SSB within the first cycle of SSB measurement.
  • the implementation method of the terminal device determining the first reference SSB as well as the implementation method of determining the first SSB based on the first reference SSB and the SSB index window, can be referred to as described in the above-mentioned synchronization signal block measurement method 100 and will not be repeated here.
  • the network device may further send fifth information to the terminal device, the fifth information being used to indicate the scanning order of the satellite for the SSB, the scanning order of the satellite for the SSB being in ascending order or in descending order. Accordingly, the terminal device may further receive the fifth information from the terminal device.
  • the terminal device can determine the first SSB according to the first reference SSB and the SSB index window in combination with the scanning order of the satellite for the SSB.
  • the specific implementation method thereof can be referred to in the synchronization signal block measurement method 100 above, which will not be described in detail.
  • the network device instructs the terminal device to perform SSB measurement according to the SSB index interval through the first information, and indicates the SSB index window to the terminal device through the third information.
  • the terminal device performs SSB measurement on the first SSB determined according to the SSB index window and the autonomously determined first reference SSB within the first cycle of the SSB measurement.
  • the determined first SSB is a partial SSB within an SSB cycle, which can reduce the energy consumption overhead of the terminal device.
  • FIG13 is an interactive schematic diagram of the synchronization signal block measurement method 400.
  • the synchronization signal block measurement method 400 is also described from the perspective of the interaction between the network device and the terminal device.
  • the synchronization signal block measurement method 400 includes but is not limited to the following steps:
  • the network device determines first information and fourth information, the first information is used to instruct the terminal device to perform SSB measurement according to the SSB index interval, and the fourth information is used to indicate the SSB time window, and the SSB time window is less than one SSB cycle.
  • the first information and the fourth information may be the same or different information. If the first information and the fourth information are the same information, it can be understood that the first information and the fourth information are sent at the same time; if the first information and the fourth information are different information, it can be understood that the first information and the fourth information are sent at different times.
  • the implementation method of the network device determining the fourth information can be found in the above-mentioned synchronization signal block measurement method 100 and will not be repeated here.
  • the network device sends the first information and the fourth information to the terminal device.
  • the terminal device receives the first information and the fourth information from the network device.
  • the terminal device determines the first SSB based on the first reference SSB and the SSB time window.
  • the first reference SSB is determined autonomously by the terminal device. of.
  • the terminal device performs SSB measurement on the first SSB within the first cycle of SSB measurement.
  • the implementation method of the terminal device determining the first reference SSB as well as the implementation method of determining the first SSB based on the first reference SSB and the SSB index window, can be referred to as described in the above-mentioned synchronization signal block measurement method 100 and will not be repeated here.
  • the network device may further send fifth information to the terminal device, the fifth information being used to indicate the scanning order of the satellite for the SSB, the scanning order of the satellite for the SSB being in ascending order or in descending order. Accordingly, the terminal device may further receive the fifth information from the terminal device.
  • the terminal device can determine whether the first SSB is to be moved forward from the time domain position of the first reference SSB as the starting position, or to be moved backward within the SSB time window according to the scanning order of the satellite for the SSB.
  • the terminal device determines that the first SSB is to be moved backward within the SSB time window from the time domain position of the first reference SSB as the starting position; when the scanning order of the satellite for the SSB is in descending order, the terminal device determines that the first SSB is to be moved forward within the SSB time window from the time domain position of the first reference SSB as the starting position.
  • This implementation allows the terminal device to flexibly determine the first SSB to be measured within an SSB cycle according to the scanning order of the satellite for the SSB and the SSB time window, which can save energy consumption overhead of the terminal device.
  • the network device instructs the terminal device to perform SSB measurement according to the SSB index interval through the first information, and indicates the SSB time window to the terminal device through the fourth information.
  • the terminal device performs SSB measurement on the first SSB determined according to the SSB index window and the autonomously determined first reference SSB within the first cycle of the SSB measurement.
  • the determined first SSB is also a partial SSB within an SSB cycle, which can reduce the energy consumption overhead of the terminal device.
  • the synchronization signal block measurement method 200, the synchronization signal block measurement method 300 and the synchronization signal block measurement method 400 can be combined with each other to form embodiments of different implementations, which is not limited in the embodiments of the present application.
  • the synchronization signal block measurement method 200 can be combined with the synchronization signal block measurement method 300 to form a new synchronization signal block measurement method.
  • the network device and the terminal device may include a hardware structure and/or a software module, and implement the above functions in the form of a hardware structure, a software module, or a hardware structure plus a software module. Whether a function of the above functions is executed in the form of a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraints of the technical solution.
  • an embodiment of the present application provides a communication device 1400.
  • the communication device 1400 may be a component of a network device (e.g., an integrated circuit, a chip, etc.), or a component of a terminal device (e.g., an integrated circuit, a chip, etc.).
  • the communication device 1400 may also be other communication units for implementing the method in the method embodiment of the present application.
  • the communication device 1400 may include: a communication unit 1401 and a processing unit 1402.
  • a storage unit 1403 may also be included.
  • one or more units in FIG. 14 may be implemented by one or more processors, or by one or more processors and memories; or by one or more processors and transceivers; or by one or more processors, memories, and transceivers, which are not limited in the embodiments of the present application.
  • the processors, memories, and transceivers may be provided separately or integrated.
  • the communication device 1400 has the function of implementing the network device or terminal device described in the embodiment of the present application.
  • the communication device 1400 includes a module or unit or means corresponding to the steps involved in the network device described in the embodiment of the present application, and the function or unit or means can be implemented by software, or by hardware, or by hardware executing the corresponding software implementation, or by a combination of software and hardware.
  • the function or unit or means can be implemented by software, or by hardware, or by hardware executing the corresponding software implementation, or by a combination of software and hardware.
  • a communication device 1400 may include: a processing unit 1402 and a communication unit 1401;
  • the communication unit 1401 is configured to receive first information from a network device; the first information is used to instruct the terminal device to perform synchronization signal block SSB measurement;
  • the processing unit 1402 is used to perform the SSB measurement on the first SSB according to the first reference SSB within the first cycle of the SSB measurement; the first reference SSB is independently determined by the terminal device.
  • the first information is specifically used to instruct the terminal device to perform SSB measurement according to the SSB index interval.
  • the communication unit 1401 is also used to receive second information, where the second information is used to indicate an SSB index interval; the index of the first SSB and the index of the first reference SSB are spaced apart by a positive integer multiple of the SSB index interval; and the SSB index interval is an integer greater than 1.
  • the communication unit 1401 is also used to receive third information, where the third information is used to indicate an SSB index window; the index of the first SSB is within the SSB index window with the index of the first reference SSB as the starting index; the number of SSBs in the SSB index window is less than the number of SSBs in an SSB cycle.
  • the communication unit 1401 is also used to receive fourth information, where the fourth information is used to indicate an SSB time window; the time domain position of the first SSB is within the SSB time window with the time domain position of the first reference SSB as the starting position; and the SSB time window is less than one SSB cycle.
  • the communication unit 1401 is also used to receive fifth information, and the fifth information is used to indicate the satellite's scanning order for SSB; when the satellite's scanning order for SSB is in ascending order, the index of the first SSB is greater than the index of the first reference SSB; when the satellite's scanning order for SSB is in descending order, the index of the first SSB is less than the index of the first reference SSB.
  • the processing unit 1402 is also used to perform the SSB measurement on the second SSB according to the second reference SSB within the second period of the SSB measurement; the second reference SSB is determined by the terminal device based on the measurement result of the SSB measurement within the first period.
  • a communication device 1400 may include: a processing unit 1402 and a communication unit 1401;
  • the processing unit 1402 is configured to determine the first information and one or more of the second information, the third information and the fourth information;
  • the communication unit 1401 is configured to send the first information, and one or more of the second information, the third information, and the fourth information to a terminal device;
  • the first information is used to instruct the terminal device to perform SSB measurement according to the synchronization signal block SSB index interval
  • the second information is used to indicate the SSB index interval
  • the third information is used to indicate the SSB index window
  • the fourth information is used to indicate the SSB time window
  • the SSB index interval is an integer greater than 1; the number of SSBs in the SSB index window is less than the number of SSBs in an SSB cycle; and the SSB time window is less than an SSB cycle.
  • the communication unit 1401 is further used to send fifth information, where the fifth information is used to indicate the scanning order of the satellite for SSB.
  • the present application also provides a communication device 1500, and FIG15 is a schematic diagram of the structure of the communication device 1500.
  • the communication device 1500 may be a network device, or a chip, a chip system, or a processor that supports the network device to implement the above method; or, it may be a terminal device, or a chip, a chip system, or a processor that supports the terminal device to implement the above method.
  • the device may be used to implement the method described in the above method embodiment, and the details may refer to the description in the above method embodiment.
  • the communication device 1500 may include one or more processors 1501.
  • the processor 1501 may be a general-purpose processor or a dedicated processor, etc.
  • it may be a baseband processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component or a central processing unit (CPU).
  • the baseband processor may be used to process the communication protocol and communication data
  • the central processing unit may be used to control the communication device (such as a base station, a baseband chip, a terminal, a terminal chip, a distributed unit DU or a centralized unit CU, etc.), execute software programs, and process the data of the software programs.
  • the communication device 1500 may include one or more memories 1502, on which instructions 1504 may be stored, and the instructions may be executed on the processor 1501, so that the communication device 1500 performs the method described in the above method embodiment.
  • data may also be stored in the memory 1502.
  • the processor 1501 and the memory 1502 may be provided separately or integrated together.
  • Memory 1502 may include, but is not limited to, non-volatile memory such as a hard disk drive (HDD) or a solid-state drive (SSD), random access memory (RAM), erasable programmable ROM (EPROM), ROM or portable read-only memory (Compact Disc Read-Only Memory, CD-ROM), etc.
  • non-volatile memory such as a hard disk drive (HDD) or a solid-state drive (SSD), random access memory (RAM), erasable programmable ROM (EPROM), ROM or portable read-only memory (Compact Disc Read-Only Memory, CD-ROM), etc.
  • the communication device 1500 may further include a transceiver 1505 and an antenna 1506.
  • the transceiver 1505 may be referred to as a transceiver unit, a transceiver, or a transceiver circuit, etc., for implementing a transceiver function.
  • the transceiver 1505 may include a receiver and a transmitter, the receiver may be referred to as a receiver or a receiving circuit, etc., for implementing a receiving function; the transmitter may be referred to as a transmitter or a transmitting circuit, etc., for implementing a transmitting function.
  • the communication device 1500 is a network device: the processor 1501 is used to execute S101 in the above-mentioned synchronization signal block measurement method 100, to execute S201 in the above-mentioned synchronization signal block measurement method 200, to execute S301 in the above-mentioned synchronization signal block measurement method 300, and to execute S401 in the above-mentioned synchronization signal block measurement method 400; the transceiver 1505 is used to execute S102 in the above-mentioned synchronization signal block measurement method 100, to execute S202 in the above-mentioned synchronization signal block measurement method 200, to execute S302 in the above-mentioned synchronization signal block measurement method 300, and to execute S402 in the above-mentioned synchronization signal block measurement method 400.
  • the communication device 1500 is a terminal device: the processor 1501 is used to execute S103 in the synchronization signal block measurement method 100, Execute S203 and S204 in the above-mentioned synchronization signal block measurement method 200, and be used to execute S303 and S304 in the above-mentioned synchronization signal block measurement method 300, and be used to execute S403 and S404 in the above-mentioned synchronization signal block measurement method 400; the transceiver 1505 is used to execute S102 in the above-mentioned synchronization signal block measurement method 100, to execute S202 in the above-mentioned synchronization signal block measurement method 200, to execute S302 in the above-mentioned synchronization signal block measurement method 300, and to execute S402 in the above-mentioned synchronization signal block measurement method 400.
  • the processor 1501 may include a transceiver for implementing the receiving and sending functions.
  • the transceiver may be a transceiver circuit, or an interface, or an interface circuit.
  • the transceiver circuit, interface, or interface circuit for implementing the receiving and sending functions may be separate or integrated.
  • the above-mentioned transceiver circuit, interface, or interface circuit may be used for reading and writing code/data, or the above-mentioned transceiver circuit, interface, or interface circuit may be used for transmitting or delivering signals.
  • the processor 1501 may store an instruction 1503, and the instruction 1503 runs on the processor 1501, which can enable the communication device 1500 to perform the method described in the above method embodiment.
  • the instruction 1503 may be solidified in the processor 1501, in which case the processor 1501 may be implemented by hardware.
  • the communication device 1500 may include a circuit that can implement the functions of sending or receiving or communicating in the aforementioned method embodiments.
  • the processor and transceiver described in the embodiments of the present application can be implemented in an integrated circuit (IC), an analog IC, a radio frequency integrated circuit (RFIC), a mixed signal IC, an application specific integrated circuit (ASIC), a printed circuit board (PCB), an electronic device, etc.
  • IC integrated circuit
  • RFIC radio frequency integrated circuit
  • ASIC application specific integrated circuit
  • PCB printed circuit board
  • the processor and transceiver can also be manufactured using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), N-type metal oxide semiconductor (NMOS), P-type metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS N-type metal oxide semiconductor
  • PMOS P-type metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the scope of the communication device described in the embodiments of the present application is not limited thereto, and the structure of the communication device may not be limited by FIG. 15.
  • the communication device may be an independent device or may be part of a larger device.
  • the communication device may be:
  • the IC set may also include a storage component for storing data and instructions;
  • ASIC such as a modem
  • the communication device and chip in the embodiment of the present application can also execute the implementation method described in the above-mentioned communication device 1500.
  • Those skilled in the art can also understand that the various illustrative logical blocks and steps listed in the embodiment of the present application can be implemented by electronic hardware, computer software, or a combination of the two. Whether such functions are implemented by hardware or software depends on the specific application and the design requirements of the entire system. Those skilled in the art can use various methods to implement the described functions for each specific application, but such implementation should not be understood as exceeding the scope of protection of the embodiments of the present application.
  • the embodiment of the present application also provides a computer-readable storage medium for storing computer software instructions, which, when executed by a communication device, implements the functions of any of the above method embodiments.
  • the embodiment of the present application also provides a computer program product for storing computer software instructions, which, when executed by a communication device, implements the functions of any of the above method embodiments.
  • the embodiment of the present application also provides a computer program, which, when executed on a computer, implements the functions of any of the above method embodiments.
  • the embodiment of the present application also provides a communication system, which includes a network device and a satellite.
  • the system also includes a terminal device.
  • the system may also include other devices that interact with the terminal device, the network device, and the satellite.
  • words such as “exemplary” or “for example” are used to indicate examples, illustrations or descriptions. Any embodiment or design described as “exemplary” or “for example” in the embodiments of the present application should not be interpreted as being more preferred or more advantageous than other embodiments or designs. Specifically, the use of words such as “exemplary” or “for example” is intended to present related concepts in a concrete way for easy understanding.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions can be transmitted from a website site, computer, server or data center by wired (e.g., coaxial cable, optical fiber, digital subscriber line (digital subscriber line, DSL)) or wireless (e.g., infrared, wireless, microwave, etc.) mode to another website site, computer, server or data center.
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server or data center that includes one or more available media integrated.
  • the available medium may be a magnetic medium (e.g., a floppy disk, a hard disk, a magnetic tape), an optical medium (e.g., a high-density digital video disc (DVD)), or a semiconductor medium (e.g., an SSD), etc.
  • a magnetic medium e.g., a floppy disk, a hard disk, a magnetic tape
  • an optical medium e.g., a high-density digital video disc (DVD)
  • DVD high-density digital video disc
  • SSD semiconductor medium

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种同步信号块测量方法及装置。该方法可以应用于终端设备,方法包括:终端设备接收来自网络设备的第一信息,第一信息用于指示终端设备进行同步信号块SSB测量。终端设备在SSB测量的第一周期内,根据第一参考SSB对第一SSB执行SSB测量,第一参考SSB是终端设备自主确定的。终端设备在SSB测量的第一周期内,执行SSB测量所依据的第一参考SSB是终端设备自主确定的,可减少进行SSB测量的SSB个数,从而可减少终端设备的能耗开销。

Description

同步信号块测量方法及装置
本申请要求在2023年1月10日提交中国国家知识产权局、申请号为202310033294.7的中国专利申请的优先权,发明名称为“同步信号块测量方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种同步信号块测量方法及装置。
背景技术
目前,处于空闲态的终端设备在监听小区广播/寻呼时,需对服务小区的同步信号块(synchronization signal block,SSB)进行测量,以选择信号质量最优的SSB作为下个周期驻留的SSB,同时还需对邻小区的SSB进行测量,以支持小区重选;处于连接态的终端设备也需对邻小区的SSB进行测量,以支持小区切换。
地面通信系统(如第五代(5th generation,5G)移动通信系统)中,网络设备向各终端设备指示进行SSB测量的参考时间是0号子帧,并通过偏置配置指示偏置是SSB索引为0的时间位置。也就是说,终端设备进行SSB测量的参考SSB是根据网络设备的指示确定的索引为0的SSB,且终端设备会对每个SSB周期内的所有SSB进行测量。
然而,卫星通信系统中,卫星覆盖广、传输距离大,一个SSB周期内的SSB较多。若终端设备仍根据地面通信系统中的指示执行SSB测量,即对一个SSB周期内的所有SSB进行SSB测量,会造成较大的能耗开销。
发明内容
本申请实施例提供了一种同步信号块测量方法及装置,可减少终端设备的能耗开销。
第一方面,本申请实施例提供一种同步信号块测量方法,可应用于终端设备(例如终端设备的设备或芯片上)。该方法中,终端设备接收来自网络设备的第一信息,第一信息用于指示终端设备进行同步信号块SSB测量。终端设备在SSB测量的第一周期内,根据第一参考SSB对第一SSB执行SSB测量,第一参考SSB是终端设备自主确定的。
本申请实施例中,终端设备在SSB测量的第一周期内,执行SSB测量所依据的第一参考SSB是终端设备自主确定的。对处于空闲态的终端设备而言,网络设备无法获知该终端设备的位置信息,从而无法获知该终端设备的信号质量较好的SSB。因此,如果网络设备给终端设备指示执行SSB测量所依据的参考SSB,则会在兼顾所有处于空闲态的终端设备的位置信息条件下,给处于空闲态的终端设备指示相同的参考SSB,从而会使得终端设备所需执行SSB测量的SSB个数较多,会造成较大的能耗开销。然而,处于空闲态的终端设备自主确定执行SSB测量所依据的第一参考SSB,可在待测SSB的个数尽可能少的前提下,自主确定合适的第一参考SSB,从而可减少终端设备的能耗开销。
对处于连接态的终端设备而言,在卫星快速发生变化的情况下,终端设备的参考SSB是不断发生变化的。因此,如果网络设备给终端设备指示执行SSB测量所依据的参考SSB,则需根据卫星的变化,在不同时域资源上多次给终端设备指示执行SSB测量所依据的参考SSB,会造成大量的信令开销。另外,如果网络设备兼顾卫星的快速变化带来的参考SSB的不断变化,给终端设备指示一次执行SSB测量所依据的参考SSB,则终端设备根据该指示的参考SSB确定的所需执行SSB测量的SSB个数会较多,会造成较大的能耗开销。然而,处于连接态的终端设备自主确定执行SSB测量所依据的第一参考SSB,可在待测SSB的个数尽可能少的前提下,自主确定合适的第一参考SSB,可减少终端设备的能耗开销。另外,该方式无需终端设备与网络设备的额外交互,可节省信令开销。
一种可选的实施方式中,第一信息具体用于指示终端设备按照SSB索引间隔进行SSB测量,从而可使得终端设备在SSB测量的第一周期内,以自主确定的第一参考SSB为参考,按照SSB索引间隔进行SSB测量。该方式可减少终端设备所需测量的SSB个数,从而可减少终端设备的能耗开销。
一种可选的实施方式中,终端设备还可接收第二信息,第二信息用于指示SSB索引间隔,SSB索引间隔为大于1的整数。
该方式下,终端设备可对索引与第一参考SSB的索引之间间隔SSB索引间隔的正整数倍的第一SSB执行SSB测量。那么,第一SSB的索引与第一参考SSB的索引之间间隔SSB索引间隔的正整数倍。
SSB索引间隔为大于1的整数,从而终端设备根据第一参考SSB和SSB索引间隔确定的第一SSB的个数,小于一个SSB周期内的SSB个数,可减少终端设备的能耗开销。
一种可选的实施方式中,终端设备还可接收第三信息,第三信息用于指示SSB索引窗,SSB索引窗内的SSB个数小于一个SSB周期内的SSB个数。
该方式下,终端设备可对索引在以第一参考SSB的索引为起始索引的SSB索引窗内的第一SSB进行SSB测量。那么,第一SSB的索引在以第一参考SSB的索引为起始索引的SSB索引窗内。
SSB索引窗内的SSB个数小于一个SSB周期内的SSB个数,从而终端设备根据第一参考SSB和SSB索引窗确定的第一SSB的个数,小于一个SSB周期内的SSB个数,可减少终端设备的能耗开销。
一种可选的实施方式中,终端设备还可接收第四信息,第四信息用于指示SSB时间窗,SSB时间窗小于一个SSB周期。
该方式下,终端设备可对时域位置在以第一参考SSB的时域位置为起始位置的SSB时间窗内的第一SSB,进行SSB测量。也就是说,第一SSB的时域位置在以第一参考SSB的时域位置为起始位置的SSB时间窗内。
SSB时间窗小于一个SSB周期,从而终端设备根据第一参考SSB和SSB时间窗确定的第一SSB的个数,小于一个SSB周期内的SSB个数,可减少终端设备的能耗开销。
另一种可选的实施方式中,终端设备接收的信息还包括第二信息、第三信息和第四信息中的两项或三项。比如,终端设备还可接收第二信息和第三信息,或者,终端设备还可接收第二信息和第四信息,或者,终端设备还可接收第三信息和第四信息,或者,终端设备还可接收第二信息、第三信息和第四信息。
终端设备接收到的信息包括第二信息、第三信息和第四信息中的两项或三项时,终端设备根据接收到的信息指示的内容和第一参考SSB,确定第一SSB,并对确定的第一SSB执行SSB测量。
比如,终端设备接收到的信息包括第二信息和第三信息,终端设备通过第二信息和第三信息获得了SSB索引间隔和SSB索引窗。终端设备可根据第一参考SSB、SSB索引间隔和SSB索引窗,确定第一SSB。
该方式下,终端设备确定的第一SSB的个数也小于一个SSB周期内的SSB,从而可减少终端设备的能耗开销。
一种可选的实施方式中,终端设备接收的信息包括第二信息、第三信息和第四信息中的一项或多项时,还可接收第五信息,第五信息用于指示卫星对SSB的扫描顺序。也就是说,终端设备获得SSB索引间隔、SSB索引窗和SSB时间窗中的一项或多项时,还可通过第五信息,获知卫星对SSB的扫描顺序。进而,终端设备根据第一参考SSB、卫星对SSB的扫描顺序,以及SSB索引间隔、SSB索引窗和SSB时间窗中的一项或多项,确定第一SSB。
其中,卫星对SSB的扫描顺序为升序时,第一SSB的索引大于第一参考SSB的索引;卫星对SSB的扫描顺序为降序时,第一SSB的索引小于第一参考SSB的索引。
一种可选的实施方式中,终端设备还可在SSB测量的第二周期内,根据第二参考SSB对第二SSB执行SSB测量,第二参考SSB是终端设备根据SSB测量在第一周期内的测量结果确定的。
该方式可使得终端设备根据SSB测量的上个周期内的测量结果,确定在SSB测量的下一个周期执行SSB测量所依据的参考SSB,即终端设备在SSB测量的下个周期执行SSB测量所依据的参考SSB,仍是终端设备自主确定的,可减少终端设备在每个SSB测量的周期内执行SSB测量的SSB个数,可减少终端设备的能耗开销。
第二方面,本申请实施例还提供同步信号块测量方法,该方面的同步信号块测量方法与第一方面所述的同步信号块测量方法相对应,该方面的同步信号块测量方法是从网络设备侧进行阐述的(可应用于网络设备的设备或芯片上)。该方法中,网络设备确定第一信息,以及确定第二信息、第三信息和第四信息中的一项或多项。网络设备向终端设备发送第一信息,以及发送第二信息、第三信息和第四信息中的一项或多项。
其中,第一信息用于指示终端设备按照同步信号块SSB索引间隔进行SSB测量,第二信息用于指示SSB索引间隔,第三信息用于指示SSB索引窗,第四信息用于指示SSB时间窗。SSB索引间隔为大于1的整数,SSB索引窗内的SSB个数小于一个SSB周期内的SSB个数,SSB时间窗小于一个SSB周期。
本申请实施例中,网络设备通过第一信息指示终端设备按照同步信号块SSB索引间隔进行SSB测量,以及通过第二信息、第三信息和第四信息中的一项或多项向终端设备指示按照SSB索引间隔进行SSB测量时,确定待测SSB所依据的参数,从而有利于终端设备根据指示的参数,按照SSB索引间隔执行SSB测量。
SSB索引间隔为大于1的整数,SSB索引窗内的SSB个数小于一个SSB周期内的SSB个数,SSB时间窗小于一个SSB周期,有利于终端设备根据这些参数确定的待测SSB个数,小于一个SSB周期内的SSB个数,进而有利于减少终端设备的能耗开销。
一种可选的实施方式中,网络设备向终端设备发送了第二信息和/或第三信息时,网络设备还可发送第五信息,第五信息用于指示卫星对SSB的扫描顺序,以使终端设备进一步结合卫星对SSB的扫描顺序,确定待测SSB。
第三方面,本申请实施例还提供一种通信装置。该通信装置具有实现上述第一方面所述的终端设备的部分或全部功能,或者,实现上述第二方面所述的网络设备的部分或全部功能。比如,该通信装置的功能可具备本申请实施例中第一方面所述的终端设备的部分或全部实施例中的功能,也可以具备单独实施本申请实施例中的任一个实施例的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种可能的设计中,该通信装置的结构中可包括处理单元和通信单元,所述处理单元被配置为支持通信装置执行上述方法中相应的功能。所述通信单元用于支持该通信装置与其他通信装置之间的通信。所述通信装置还可以包括存储单元,所述存储单元用于与处理单元和通信单元耦合,其保存通信装置必要的程序指令和数据。
一种实施方式中,所述通信装置包括:处理单元和通信单元;
所述通信单元,用于接收来自网络设备的第一信息;所述第一信息用于指示终端设备进行同步信号块SSB测量;
所述处理单元,用于在所述SSB测量的第一周期内,根据第一参考SSB对第一SSB执行所述SSB测量;所述第一参考SSB是所述终端设备自主确定的。
另外,该方面中,通信装置其他可选的实施方式可参见上述第一方面的相关内容,此处不再详述。
另一种实施方式中,所述通信装置包括:处理单元和通信单元;所述通信单元用于进行信令/信号的收发;
所述处理单元,用于确定第一信息,以及确定第二信息、第三信息和第四信息中的一项或多项;
所述通信单元,用于向终端设备发送所述第一信息,以及发送所述第二信息、所述第三信息和所述第四信息中的一项或多项;
其中,所述第一信息用于指示所述终端设备按照同步信号块SSB索引间隔进行SSB测量,所述第二信息用于指示SSB索引间隔,所述第三信息用于指示SSB索引窗,所述第四信息用于指示SSB时间窗;所述SSB索引间隔为大于1的整数;所述SSB索引窗内的SSB个数小于一个SSB周期内的SSB个数;所述SSB时间窗小于一个SSB周期。
另外,该方面中,通信装置其他可选的实施方式可参见上述第二方面的相关内容,此处不再详述。
作为示例,通信单元可以为收发器或通信接口,存储单元可以为存储器,处理单元可以为处理器。
一种实施方式中,所述通信装置包括:处理器和收发器;
所述收发器,用于接收来自网络设备的第一信息;所述第一信息用于指示终端设备进行同步信号块SSB测量;
所述处理器,用于在所述SSB测量的第一周期内,根据第一参考SSB对第一SSB执行所述SSB测量;所述第一参考SSB是所述终端设备自主确定的。
另外,该方面中,通信装置其他可选的实施方式可参见上述第一方面的相关内容,此处不再详述。
另一种实施方式中,所述通信装置包括:处理器和收发器;
所述处理器,用于确定第一信息,以及确定第二信息、第三信息和第四信息中的一项或多项;
所述收发器,用于向终端设备发送所述第一信息,以及发送所述第二信息、所述第三信息和所述第四信息中的一项或多项;
其中,所述第一信息用于指示所述终端设备按照同步信号块SSB索引间隔进行SSB测量,所述第二信息用于指示SSB索引间隔,所述第三信息用于指示SSB索引窗,所述第四信息用于指示SSB时间窗;所述SSB索引间隔为大于1的整数;所述SSB索引窗内的SSB个数小于一个SSB周期内的SSB个数; 所述SSB时间窗小于一个SSB周期。
另外,该方面中,通信装置其他可选的实施方式可参见上述第二方面的相关内容,此处不再详述。
另一种实施方式中,该通信装置为芯片或芯片系统。所述处理单元也可以体现为处理电路或逻辑电路;所述通信单元可以是该芯片或芯片系统上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。
在实现过程中,处理器可用于进行,例如但不限于,基带相关处理,收发器可用于进行,例如但不限于,射频收发。上述器件可以分别设置在彼此独立的芯片上,也可以至少部分的或者全部的设置在同一块芯片上。例如,处理器可以进一步划分为模拟基带处理器和数字基带处理器。其中,模拟基带处理器可以与收发器集成在同一块芯片上,数字基带处理器可以设置在独立的芯片上。随着集成电路技术的不断发展,可以在同一块芯片上集成的器件越来越多。例如,数字基带处理器可以与多种应用处理器(例如但不限于图形处理器,多媒体处理器等)集成在同一块芯片之上。这样的芯片可以称为片上系统(system on a chip,SoC)。将各个器件独立设置在不同的芯片上,还是整合设置在一个或者多个芯片上,往往取决于产品设计的需要。本申请实施例对上述器件的实现形式不做限定。
第四方面,本申请实施例还提供一种处理器,用于执行上述各种方法。在执行这些方法的过程中,上述方法中有关发送上述信息和接收上述信息的过程,可以理解为由处理器输出上述信息的过程,以及处理器接收输入的上述信息的过程。在输出上述信息时,处理器将该上述信息输出给收发器,以便由收发器进行发射。该上述信息在由处理器输出之后,还可能需要进行其他的处理,然后才到达收发器。类似的,处理器接收输入的上述信息时,收发器接收该上述信息,并将其输入处理器。更进一步的,在收发器收到该上述信息之后,该上述信息可能需要进行其他的处理,然后才输入处理器。
对于处理器所涉及的发送和接收等操作,如果没有特殊说明,或者,如果未与其在相关描述中的实际作用或者内在逻辑相抵触,则均可以更加一般性的理解为处理器输出和接收、输入等操作,而不是直接由射频电路和天线所进行的发送和接收操作。
在实现过程中,上述处理器可以是专门用于执行这些方法的处理器,也可以是执行存储器中的计算机指令来执行这些方法的处理器,例如通用处理器。上述存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(read only memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
第五方面,本申请实施例还提供了一种通信系统,该系统包括网络设备和卫星。可选的,该系统还包括终端设备。在另一种可能的设计中,该系统还可以包括与终端设备、网络设备、卫星进行交互的其他设备。
第六方面,本申请实施例提供了一种计算机可读存储介质,用于储存指令,当所述指令被计算机运行时,实现上述第一方面或第二方面所述的方法。
第七方面,本申请实施例还提供了一种包括指令的计算机程序产品,当其在计算机上运行时,实现上述第一方面或第二方面所述的方法。
第八方面,本申请实施例提供了一种芯片系统,该芯片系统包括处理器和接口,所述接口用于获取程序或指令,所述处理器用于调用所述程序或指令以实现或者支持终端设备实现第一方面所涉及的功能,或者实现或者支持网络设备实现第二方面所涉及的功能。例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存终端必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第九方面,本申请实施例提供一种通信装置,包括处理器,用于执行存储器中存储的计算机程序或可执行指令,当计算机程序或可执行指令被执行时,使得该装置执行如第一方面或第二方面各个可能的实现中的方法。
在一种可能的实现中,处理器和存储器集成在一起;
在另一种可能的实现中,上述存储器位于该通信装置之外。
第三方面到第九方面的有益效果可以参考第一方面到第二方面的有益效果,此处不再赘述。
附图说明
图1是本申请实施例提供的一种基于NTN的RAN系统架构示意图;
图2是本申请实施例提供的另一种基于NTN的RAN系统架构示意图;
图3是本申请实施例提供的又一种基于NTN的RAN系统架构示意图;
图4是本申请实施例提供的又一种基于NTN的RAN系统架构示意图;
图5是本申请实施例提供的一种卫星移动场景下的波束覆盖示意图;
图6是本申请实施例提供的另一种卫星移动场景下的波束覆盖示意图;
图7是本申请实施例提供的一种SSB帧结构示意图;
图8是本申请实施例提供的一种同步信号块测量方法的交互示意图;
图9是本申请实施例提供的一种卫星对SSB的扫描示意图;
图10是本申请实施例提供的另一种卫星对SSB的扫描示意图;
图11是本申请实施例提供的另一种同步信号块测量方法的交互示意图;
图12是本申请实施例提供的又一种同步信号块测量方法的交互示意图;
图13是本申请实施例提供的又一种同步信号块测量方法的交互示意图;
图14是本申请实施例提供的一种通信装置的结构示意图;
图15是本申请实施例提供的另一种通信装置的结构示意图。
具体实施方式
下面结合本申请实施例中的附图对本申请实施例中的技术方案进行清楚、完整的描述。
为了更好的理解本申请实施例公开的同步信号块测量方法,对本申请实施例适用的系统进行描述。
本申请实施例可应用于基于非地面网络(non-terrestrial network,NTN)的无线接入网(wireless access network,RAN)的系统架构中。以下以第五代(5th generation,5G)移动通信系统为例,介绍几种常见的基于NTN的RAN系统架构:
图1为一种基于NTN的RAN系统架构示意图。如图1所示,该RAN系统架构携带透传(transparent)卫星(satellite),且该系统架构还包括终端设备、NTN网关(gateway)、5G基站(gNB)、5G核心网和数据网络(data network,DN)。其中,NTN网关和卫星之间的链路被称为馈电链路(feeder link),卫星与终端设备之间的链路被称为服务链路(service link),N6代表5G核心网的用户面功能(User Plane Function,UPF)与DN之间的接口,NG代表gNB与5G核心网之间的接口,新空口(New Radio,NR)-Uu接口代表终端设备与gNB之间的接口,卫星和NTN网关组成远距离无线单元(remote radio unit)。
图1所示的系统架构中,卫星的作用是实现频率转换和无线频率放大,它相当于一个模拟射频中继器。因此,从馈电链路到服务链路,卫星转发NR-Uu接口信号,NR-Uu接口信号是终端设备与gNB之间的信号。相反,从服务链路到馈电链路,卫星通过NTN网关将NR-Uu接口信号转发给gNB。也就是说,NTN网关用于卫星和5G基站之间的通信,是一个传输网络层节点,并且支持转发NR-Uu接口信号的所有必要功能。另外,不同的卫星可通过NTN网关连接到相同的地面5G基站上。
图2为另一种基于NTN的RAN系统架构示意图。如图2所示,该系统架构包括终端设备、卫星、NTN网关、5G核心网、数据网络DN。其中,5G基站部署在卫星上,从而卫星也可被称为卫星基站。终端设备与卫星之间的服务链路传输NR-Uu接口信号,NTN网关和卫星之间的馈电链路传输卫星无线接口(Satellite Radio Interface,SRI)信号,SRI信号是NTN网关和卫星之间的信号。NG接口信号从卫星基站传输到5G核心网,是卫星基站通过SRI传输给NTN网关,再通过NTN网关转发给地面的5G核心网。NG接口信号从5G核心网传输到卫星基站的过程类似,不再赘述。
图3为又一种基于NTN的RAN系统架构示意图。如图3所示,该系统架构与图2所示的系统架构相比,不同之处在于,图3的系统架构中存在卫星与卫星之间的卫星间链路(inter-satellite link,ISL)。由一个卫星基站服务的终端设备能够通过ISL接入5G核心网,不同卫星基站可以连接到相同的地面5G核心网。
图4为又一种基于NTN的RAN系统架构示意图。如图4所示,该系统架构中,gNB的集中式单元(Centralized Unit,CU)和分布式单元(Distributed Unit,DU)分离,且5G基站的分布式单元DU(gNB-DU)部署在卫星上,部署在不同卫星上的DU可以连接到相同的地面CU。终端设备和卫星之间的服务链路传输NR-Uu接口信号,NTN网关和卫星之间的馈电链路传输SRI信号。
本申请实施例适用的基于NTN的RAN系统架构,包括但不限于图1至图4所示的系统架构。
本申请实施例中的NTN应用到演进的第六代(6th generation,6G)移动通信系统中时,基于NTN的RAN系统架构与上述图1至图4所示的系统架构类似。不同之处在于,NTN应用于演进的6G移动通信系统时,在基于NTN的RAN系统架构中,与终端设备进行通信的基站为6G基站,与基站进行通信的CN为6G CN,系统中的接口为6G接口。
可理解的,本申请实施例适用的通信系统包括网络设备和卫星。其中,网络设备可部署在卫星上。可选的,该系统还可包括终端设备。在另一种可能的设计中,该系统还可以包括与终端设备、网络设备和卫星进行交互的其他设备。
可理解的,本申请实施例适用的NTN通信系统包括但不限于:窄带物联网(narrow band-internet of things,NB-IoT)系统、长期演进(long term evolution,LTE)系统,5G/6G移动通信系统,无线保真(wireless fidelity,WiFi)系统等。
本申请实施例还可适用于以下应用场景:增强移动宽带(enhanced mobile broadband,eMBB)、超可靠低时延通信(ultra reliable low latency communication,URLLC)和海量机器类通信(massive machine type of communication,mMTC)。
本申请实施例中,网络设备是具有无线收发功能的设备,用于与终端设备进行通信,可以是LTE中的演进型基站(evolved Node B,eNB或eNodeB),或者是5G/6G网络中的基站或者未来演进的公共陆地移动网络(public land mobile network,PLMN)中的基站、宽带网络业务网关(broadband network gateway,BNG)、汇聚交换机或者非第三代合作伙伴项目(3rd generation partnership project,3GPP)接入设备等。可选的,本申请实施例中的网络设备可以包括各种形式的基站,例如:宏基站、微基站(也称为小站)、中继站、接入点、未来实现基站功能的设备、WiFi系统中的接入点(access point,AP)、传输接收点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、移动交换中心以及设备到设备(device-to-device,D2D)、车辆外联(vehicle-to-everything,V2X)、机器到机器(machine-to-machine,M2M)通信中承担基站功能的设备、5G之后演进的通信系统中实现基站功能的设备、接入回传一体化(integrated access and backhaul,IAB),还可以包括云接入网(cloud radio access network,C-RAN)系统中的集中式单元CU和分布式单元DU、NTN通信系统中的网络设备,即可以部署于高空平台或者卫星,还可以是构成接入节点的各类设备,如有源天线处理单元(active antenna unit,AAU)、基带单元(baseband unit,BBU)等,本申请实施例对此不作具体限定。
网络设备可以和核心网设备进行通信交互,向终端设备提供通信服务。核心网设备例如为5G网络核心网中的设备。核心网作为承载网络提供到数据网络的接口,为终端提供通信连接、认证、管理、策略控制以及对数据业务完成承载等。
本申请实施例所涉及到的终端设备可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备。终端设备也可称为终端。终端设备也可以指用户设备(user equipment,UE)、接入终端、用户单元(subscriber unit)、用户代理、蜂窝电话(cellular phone)、智能手机(smart phone)、无线数据卡、个人数字助理(personal digital assistant,PDA)电脑、平板型电脑、无线调制解调器(modem)、手持设备(handset)、膝上型电脑(laptop computer)、智能销售点(point of sale,POS)机、客户终端设备(customer-premises equipment,CPE)、机器类型通信(machine type communication,MTC)终端、高空飞机上搭载的通信设备、可穿戴设备、无人机、机器人、D2D中的终端、车到一切(vehicle to everything,V2X)中的终端、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端或者未来通信网络中的终端设备等,本申请不作限制。
本申请公开的实施例将围绕包括多个设备、组件、模块等的系统来呈现本申请的各个方面、实施例或特征。应当理解和明白的是,各个系统可以包括另外的设备、组件、模块等,并且/或者可以并不包括结合附图讨论的所有设备、组件、模块等。此外,还可以使用这些方案的组合。
卫星通信场景中,在卫星的高速移动下,终端设备测量到的承载最优同步信号块(synchronization signal block,SSB)的波束会实时发生变化。其中,最优SSB是指多个SSB中,信号质量大于预设阈值的SSB。
示例性的,图5为一种卫星移动场景下的波束覆盖示意图。如图5所示,卫星在移动前覆盖的波束包括索引为1至64的波束,卫星高速移动后所覆盖的波束仍为索引为1至64的波束。也就是说,卫星移动前后,其波束覆盖范围未发生变化。然而,对于地面终端设备而言,终端设备所处的卫星覆盖范围发生了变化,从而会使得终端设备所处的波束范围发生变化,进而终端设备的最优波束会发生变化。比如,终端设备在卫星发生移动后,从图5的左边阴影部分索引(即索引为1至8)的波束中切出,切入右边阴影部分索引(即索引为61至64)的波束。
示例性的,图6为另一种卫星移动场景下的波束覆盖示意图。如图6所示,卫星在移动前的波束覆盖 范围为波束覆盖范围1;卫星移动到M点位置时,其波束覆盖范围为波束覆盖范围2;卫星移动到N点位置时,其波束覆盖范围为波束覆盖范围3。在不同的波束覆盖范围内,卫星覆盖的波束不相同,从而终端设备的最优波束也会发生变化。
可见,在卫星通信场景中,随着卫星的位置发生变化,终端设备的最优波束会发生变化,那么终端设备的最优SSB也会发生变化,终端设备需实时执行SSB测量。
地面通信系统中,网络设备向各终端设备指示执行SSB测量的参考时间是0号子帧,并通过偏置配置指示偏置是SSB索引为0的时间位置。也就是说,终端设备进行SSB测量的参考SSB是通过网络设备的指示确定的索引为0的SSB,且终端设备会对每个SSB周期内的所有SSB进行测量。然而,卫星通信系统中,卫星覆盖广、传输距离大,一个SSB周期内的SSB较多,从而一个SSB周期较长。例如,以NR通信系统为例,每20ms测量8个SSB,假如低轨卫星场景下的SSB为256个,则一个SSB周期内的SSB的帧结构可如图7所示,根据图7所示的帧结构,可计算获得一个SSB周期为640ms。若终端设备仍根据地面通信系统中的指示,对每个SSB周期内的所有SSB进行SSB测量,则会造成较大的能耗开销。
例如,处于空闲态的终端设备实时对各SSB周期内的所有SSB进行SSB测量,以选择最优SSB作为下个周期驻留的SSB时,会导致终端设备的睡眠时间短,能耗开销大。另外,处于空闲态的终端设备,还对邻小区的各SSB周期内的所有SSB进行测量,以支持小区重选时,也会导致终端设备的测量周期长,能耗开销大。
再例如,处于连接态的终端设备,对邻小区的各SSB周期内的所有SSB进行测量,以选择待切换的小区时,会造成较大的能耗开销。另外,不同小区的频率差异大,处于连接态的终端设备进行邻区测量时,无法在服务小区进行业务。从而处于连接态的终端设备在较长时间内进行SSB测量,会影响本小区的通信业务。
本申请实施例提供一种同步信号块测量方法100。该同步信号块测量方法100中,网络设备确定第一信息,第一信息用于指示终端设备进行同步信号块SSB测量。网络设备向终端设备发送第一信息。终端设备在SSB测量的第一周期内,根据第一参考SSB对第一SSB执行SSB测量,第一SSB是终端设备自主确定的。
对处于空闲态的终端设备而言,网络设备无法获知该终端设备的位置信息,从而无法获知该终端设备的信号质量较好的SSB。因此,如果网络设备给终端设备指示执行SSB测量所依据的参考SSB,则会在兼顾所有处于空闲态的终端设备的位置信息条件下,给处于空闲态的终端设备指示相同的参考SSB,从而会使得各终端设备所需执行SSB测量的SSB个数较多,会造成较大的能耗开销。然而,处于空闲态的终端设备自主确定执行SSB测量所依据的第一参考SSB,可在待测SSB的个数尽可能少的前提下,自主确定合适的第一参考SSB,从而可减少终端设备的能耗开销。
对处于连接态的终端设备而言,在卫星快速发生变化的情况下,终端设备的参考SSB是不断发生变化的。因此,如果网络设备给终端设备指示执行SSB测量所依据的参考SSB,则网络设备需根据卫星的变化,在不同时域资源上多次给终端设备指示执行SSB测量所依据的参考SSB,会造成大量的信令开销。另外,如果网络设备兼顾卫星的快速变化带来的参考SSB的不断变化,给终端设备指示一次执行SSB测量所依据的参考SSB,则终端设备根据该指示的参考SSB确定的所需执行SSB测量的SSB个数会较多,会造成较大的能耗开销。然而,处于连接态的终端设备自主确定执行SSB测量所依据的第一参考SSB,可在待测SSB的个数尽可能少的前提下,自主确定合适的第一参考SSB,可减少终端设备的能耗开销。另外,该方式不需要终端设备与网络设备的额外交互,可节省信令开销。
本申请实施例还提供一种同步信号块测量方法200。该同步信号块测量方法200中,网络设备确定第一信息和第二信息,第一信息用于指示终端设备按照SSB索引间隔进行SSB测量,第二信息用于指示SSB索引间隔,SSB索引间隔为大于1的整数。网络设备向终端设备发送第一信息和第二信息。终端设备根据SSB索引间隔和自主确定的第一参考SSB确定第一SSB。终端设备在SSB测量的第一周期内,对第一SSB执行SSB测量。该方式中,终端设备确定的第一SSB是一个SSB周期内的部分SSB,可减少终端设备的能耗开销。
本申请实施例还提供一种同步信号块测量方法300。该同步信号块测量方法300中,网络设备确定第一信息和第三信息,第一信息用于指示终端设备按照SSB索引间隔进行SSB测量,第三信息用于指示SSB索引窗,SSB索引窗内的SSB个数小于一个SSB周期内的SSB个数。网络设备向终端设备发送第一信息和第三信息。终端设备根据SSB索引窗和自主确定的第一参考SSB确定第一SSB。终端设备在SSB测量的第一周期内,对第一SSB执行SSB测量。该方式中,终端设备确定的第一SSB也是一个SSB周期内的 部分SSB,可减少终端设备的能耗开销。
本申请实施例还提供一种同步信号块测量方法400。该同步信号块测量方法400中,网络设备确定第一信息和第四信息,第一信息用于指示终端设备按照SSB索引间隔进行SSB测量,第四信息用于指示SSB时间窗,SSB时间窗小于一个SSB周期。网络设备向终端设备发送第一信息和第四信息。终端设备根据SSB时间窗和自主确定的第一参考SSB确定第一SSB。终端设备在SSB测量的第一周期内,对第一SSB执行SSB测量。该方式中,确定的第一SSB也是一个SSB周期内的部分SSB,可减少终端设备的能耗开销。
本申请实施例提出一种同步信号块测量方法100,图8是该同步信号块测量方法100的交互示意图。该同步信号块测量方法100从网络设备与终端设备的交互角度进行阐述。该同步信号块测量方法100包括但不限于以下步骤:
S101.网络设备确定第一信息,第一信息用于指示终端设备进行同步信号块SSB测量。
可理解的,网络设备通过第一信息,指示终端设备进行SSB测量,以使终端设备在卫星发生移动的情况下,实时执行SSB测量。
S102.网络设备向终端设备发送第一信息。相应的,终端设备接收来自网络设备的第一信息。
S103.终端设备在SSB测量的第一周期内,根据第一参考SSB对第一SBB执行SSB测量,第一参考SSB是终端设备自主确定的。
其中,SSB测量的第一周期可以是网络设备给终端设备配置的。例如,SSB测量的第一周期是网络设备通过第一信息给终端设备配置的。SSB测量的第一周期,也可理解为是终端设备执行SSB测量的第一个测量周期。
可理解的,对处于空闲态的终端设备而言,终端设备对服务小区的SSB执行SSB测量时,可将用于与服务小区进行初始同步的SSB确定为第一参考SSB,或者,将已测量的多个SSB中信号质量大于预设阈值的SSB确定为第一参考SSB,其中,终端设备与服务小区进行初始同步,是指:终端设备首次接入网络时,与服务小区的网络设备进行时间、频率等信息的同步,以获取系统消息;终端设备对邻小区的SSB执行SSB测量时,可将用于与邻小区进行初始同步的SSB确定为第一参考SSB,或者,网络设备向终端设备指示对服务小区的SSB执行SSB测量所依据的第一参考SSB,与对邻小区的SSB执行SSB测量所依据的第一参考SSB之间的偏差值,终端设备根据对服务小区的SSB执行SSB测量所依据的第一参考SSB和该偏差值,确定对邻小区的SSB执行SSB测量所依据的第一参考SSB。
对处于连接态的终端设备而言,终端设备自主确定对服务小区的SSB执行SSB测量所依据的第一参考SSB,以及确定对邻小区的SSB执行SSB测量所依据的第一参考SSB的实施方式,可参见上述处于空闲态的终端设备确定第一参考SSB的实施方式,不再赘述。
另外,处于连接态的终端设备对邻小区的SSB执行SSB测量所依据的第一参考SSB,也可是网络设备指示给终端设备的。例如,终端设备的邻基站将终端设备的SSB覆盖范围发送给服务小区的源基站,源基站根据终端设备所处于的邻基站的SSB覆盖范围,确定终端设备对邻小区的SSB执行SSB测量所依据的第一参考SSB,并下发给终端设备。
再例如,源基站可将终端设备的位置信息发送邻基站,邻基站根据终端设备所处的位置和邻基站的SSB覆盖范围,确定终端设备对邻小区的SSB执行SSB测量所依据的第一参考SSB。邻基站再将确定的第一参考SSB发送给源基站,源基站将第一参考SSB转发给终端设备,从而终端设备获得对邻小区的SSB执行SSB测量所依据的第一参考SSB。
可见,无论是对处于空闲态的终端设备而言,还是对处于连接态的终端设备而言,终端设备均可自主确定对服务小区的SSB执行SSB测量所依据的第一SSB,以及对邻小区的SSB执行SSB测量所依据的第一参考SSB。终端设备自主确定第一参考SSB的实施方式包括但不限于上述所阐述的实施方式。
可理解的,终端设备接收用于指示进行SSB测量的第一指示信息,并在SSB测量的第一周期内,根据自主确定的第一参考SSB,对第一SSB执行SSB测量。
对处于空闲态的终端设备而言,网络设备无法获知该终端设备的位置信息,从而无法获知该终端设备的信号质量较好的SSB。因此,如果网络设备给终端设备指示执行SSB测量所依据的参考SSB,则会在兼顾所有处于空闲态的终端设备的位置信息条件下,给处于空闲态的终端设备指示相同的参考SSB,从而会使得各终端设备所需执行SSB测量的SSB个数较多,会造成较大的能耗开销。例如,网络设备给处于空闲态的终端设备指示执行SSB测量所依据的参考SSB是索引为0的SSB。参考SSB是索引为0的SSB时,可兼顾所有处于空闲态的终端设备的位置信息,从而每个处于空闲态的终端设备均需从索引为0的SSB开 始执行SSB测量。那么,对于NTN网络中的终端设备而言,终端设备需在较长时间内执行SSB测量,即会造成终端设备较大的能耗开销。
然而,处于空闲态的终端设备自主确定执行SSB测量所依据的第一参考SSB,可在待测SSB的个数尽可能少的前提下,自主确定合适的第一参考SSB,从而可减少终端设备的能耗开销。例如,处于空闲态的终端设备,将在邻小区中用于初始同步的SSB,确定为第一参考SSB,终端设备从在邻小区用于初始同步的SSB开始执行SSB测量。那么,即使一个SSB周期内的SSB个数较多,终端设备是对一个SSB周期内的部分SSB执行SSB测量,可减少终端设备的能耗开销。例如,一个SSB周期包括256个SSB,终端设备在邻小区用于初始同步的SSB是索引为100的SSB,那么终端设备在SSB测量的第一周期内,可从索引为100的SSB开始执行SSB测量,与终端设备对一个SSB周期内的256个SSB执行SSB测量相比,可减少终端设备的能耗开销。
对处于连接态的终端设备而言,在卫星快速发生变化的情况下,终端设备的参考SSB是不断发生变化的。因此,如果网络设备给终端设备指示执行SSB测量所依据的参考SSB,则网络设备需根据卫星的变化,在不同时域资源上多次给终端设备指示执行SSB测量所依据的参考SSB,会造成大量的信令开销。例如,卫星处于位置1时,网络设备根据终端设备在卫星的波束覆盖范围,确定终端设备执行SSB测量所依据的参考SSB-1,并在时隙1上将参考SSB-1发送给终端设备;卫星经快速移动后处于位置2时,网络设备再根据终端设备在卫星的最新波束覆盖范围,确定终端设备执行SSB测量所依据的参考SSB-2,并在时隙2上将参考SSB-2发送给终端设备。
另外,如果网络设备兼顾卫星的快速变化带来的参考SSB的不断变化,给终端设备指示一次执行SSB测量所依据的参考SSB,则终端设备根据该指示的参考SSB确定的所需执行SSB测量的SSB个数会较多,会造成较大的能耗开销。
然而,处于连接态的终端设备自主确定执行SSB测量所依据的第一参考SSB,可在待测SSB的个数尽可能少的前提下,自主确定合适的第一参考SSB,可减少终端设备的能耗开销。另外,该方式不需要网络设备通过信令向终端设备指示参考SSB,即终端设备与网络设备之间无需额外的交互,可节省信令开销。
一种可选的实施方式中,第一信息具体用于指示终端设备按照SSB索引间隔进行SSB测量。该方式有利于终端设备不对每个时隙资源上的SSB执行SSB测量,而是按照SSB索引间隔进行SSB测量,进而有利于减少终端设备进行SSB测量的SSB个数,有利于减少终端设备的能耗开销。
一种可选的实施方式中,第一信息具体用于指示终端设备按照SSB索引间隔进行SSB测量时,网络设备还可确定第二信息,并向终端设备发送第二信息。第二信息用于指示SSB索引间隔,SSB索引间隔为大于1的整数。相应的,终端设备还可接收来自网络设备的第二信息。
一种可选的实施方式中,终端设备根据卫星的轨道方向与SSB的索引排列方向,确定第二信息。其中,卫星的轨道方向是指卫星的移动方向,SSB的索引排列方向是指SSB的索引按照从小到大的顺序依次排列的方向。一个SSB周期内的SSB个数,以及一个SSB周期内的SSB索引排列方向可以是预定义的。
可理解的,网络设备在卫星的轨道方向与SSB的索引排列方向垂直时,确定第二信息,即确定SSB索引间隔。SSB索引间隔的具体数值,可以是网络设备根据SSB的索引排列规则确定的。
示例性的,图9为一种卫星对SSB的扫描示意图。如图9所示,一个SSB周期包括256个SSB,卫星的轨道方向水平向左,SSB的索引按照从小到大的顺序依次排列时,其排列方向垂直向下,即卫星的轨道方向与SSB的索引排列方向垂直。从图9可以看出,卫星的轨道方向与SSB的索引方向垂直时,终端设备在卫星下的SSB覆盖范围是水平向右移动的,若终端设备当前信号质量较好的SSB是索引为2的SSB,那么卫星移动后,终端设备的信号质量较好的SSB可能是索引为18、34、50等等的SSB。从而,网络设备可通过SSB索引间隔,指示终端设备对与当前信号质量较好的SSB间隔多个SSB的SSB执行SSB测量。也就是说,网络设备可向终端设备指示SSB索引间隔,以使终端设备对索引与当前信号质量较好的SSB的索引之间间隔SSB索引间隔正整数倍的SSB执行SSB测量。在图9所示的SSB的索引排列规则下,网络设备可确定SSB索引间隔为16。
网络设备向终端设备指示SSB索引间隔的方式,可使得终端设备在SSB测量的第一周期内,对根据第一参考SSB和SSB索引间隔确定的第一SSB执行SSB测量。SSB索引间隔为大于1的整数,从而终端设备根据第一参考SSB和SSB索引间隔,确定的第一SSB不是一个SSB周期内的所有SSB,而是一个SSB周期内的部分SSB,进而可减少终端设备进行SSB测量的SSB个数,可节省终端设备的能耗开销。
另一种可选的实施方式中,第一信息具体用于指示终端设备按照SSB索引间隔进行SSB测量时,网络设备还可确定第三信息,并向终端设备发送第三信息。第三信息用于指示SSB索引窗,SSB索引窗内的SSB个数小于一个SSB周期内的SSB个数。相应的,终端设备还可接收来自网络设备的第三信息。
终端设备也可根据卫星的轨道方向与SSB的索引排列方向,确定第三信息。可理解的,网络设备在卫星的轨道方向与SSB的索引排列方向水平时,确定第三信息,即确定SSB索引窗。SSB索引窗的具体数值可以是网络设备根据SSB的索引排列规则确定的。
示例性的,图10为另一种卫星对SSB的扫描示意图。如图10所示,一个SSB周期包括256个SSB,卫星的轨道方向垂直向上,SSB的索引排列方向垂直向下,即卫星的轨道方向与SSB的索引排列方向水平。从图10可以看出,卫星的轨道方向与SSB的索引方向水平时,终端设备在卫星的SSB覆盖范围是垂直向下移动的。若终端设备当前信号质量较好的SSB是索引为16的SSB,那么卫星移动后,终端设备的信号质量较好的SSB可能是索引为17、18、19、20等等的SSB。从而,网络设备可通过SSB索引窗,指示终端设备对与当前信号质量较好的SSB连续的多个SSB执行SSB测量。也就是说,网络设备可向终端设备指示SSB索引窗,以使终端设备对索引在以当前信号质量较好的SSB的索引为起始索引的SSB索引窗内的SSB执行SSB测量。在图10所示的SSB的索引排列规则下,网络设备可确定SSB索引窗为16。
网络设备向终端设备指示SSB索引窗的方式,可使得终端设备在SSB测量的第一周期内,对根据第一参考SSB和SSB索引窗确定的第一SSB执行SSB测量。SSB索引窗内的SSB个数小于一个SSB周期内的SSB个数,从而终端设备根据第一参考SSB和SSB索引窗,确定的第一SSB是一个SSB周期内的部分SSB,可节省终端设备的能耗开销。
又一种可选的实施方式中,第一信息具体用于指示终端设备按照SSB索引间隔进行SSB测量时,网络设备还可确定第四信息,并向终端设备发送第四信息。第四信息用于指示SSB时间窗,SSB时间窗小于一个SSB周期。相应的,终端设备还可接收来自网络设备的第四信息。
终端设备也可根据卫星的轨道方向与SSB的索引排列方向,确定第四信息。可理解的,网络设备在卫星的轨道方向与SSB的索引排列方向水平时,确定第四信息,即确定SSB时间窗。网络设备可根据一个SSB周期,确定SSB时间窗的具体数值。
示例性的,卫星对SSB的扫描示意图如图10所示,卫星的轨道方向与SSB的索引排列方向水平。从图10可以看出,终端设备在卫星下的SSB覆盖范围是垂直向下移动的,若终端设备当前信号质量较好的SSB是索引为16的SSB,那么卫星移动后,终端设备的信号质量较好的SSB可能是索引为17、18、19、20等等的SSB,即可能是时域位置位于索引为16的SSB之后的SSB。从而网络设备可通过SSB时间窗,指示终端设备对时域位置位于索引为16的SSB时域位置之后的SSB执行SSB测量,以使终端设备在卫星移动时,获得信号质量较优的SSB。如果一个SSB周期包括256个SSB,一个SSB周期为640ms,网络设备可确定SSB时间窗为20ms,40ms,80ms,100ms,等等。
网络设备向终端设备指示SSB时间窗的方式,可使得终端设备在SSB测量的第一周期内,根据第一参考SSB和SSB时间窗确定的第一SSB执行SSB测量。SSB时间窗小于一个SSB周期,从而终端设备根据第一参考SSB和SSB时间窗确定的第一SSB,是一个SSB周期内的部分SSB,可节省终端设备的能耗开销。
可选的,网络设备可向终端设备指示SSB索引间隔和SSB索引窗,或者,指示SSB索引间隔和SSB时间窗,或者,指示SSB索引窗和SSB时间窗,或者,指示SSB索引间隔、SSB索引窗和SSB时间窗。也就是说,终端设备可接收来自网络设备的第二信息和第三信息,或者,接收第二信息和第四信息,或者,接收第三信息和第四信息,或者,接收第二信息、第三信息和第四信息。终端设备接收到不同信息时,可根据接收的信息所指示的参数和第一参考SSB确定待测量的第一SSB。
可选地,网络设备给终端设备配置SSB索引间隔、SSB索引窗和SSB时间窗中的一项或多项时,网络设备还可确定第五信息,并向终端设备发送第五信息。第五信息用于指示卫星对SSB的扫描顺序。相应的,终端设备接收来自网络设备的第五信息。
其中,卫星对SSB的扫描顺序为升序时,第一SSB的索引大于第一参考SSB的索引;卫星对SSB的扫描顺序为降序时,第一SSB的索引小于第一参考SSB的索引。
终端设备接收到不同的信息时,其确定的第一SSB不相同。终端设备接收到不同的信息,可理解为终端设备接收到不同内容的信息,也可理解为终端设备接收到第二信息、第三信息和第四信息中不同的一项或多项信息。从而,终端设备在SSB测量的第一周期内,执行SSB测量的SSB不相同。以下结合终端设 备接收到的信息类型情况,阐述终端设备在SSB测量的第一周期内,根据第一参考SSB对第一SSB执行SSB测量的实施方式:
情况1:终端设备接收到来自网络设备的第二信息。
终端设备接收到来自网络设备的第二信息,表明终端设备获得SSB索引间隔,从而根据第一参考SSB和SSB索引间隔,确定第一SSB,并在SSB测量的第一周期内对确定的第一SSB执行SSB测量。其中,第一SSB的索引间隔与第一参考SSB的索引之间间隔SSB索引间隔的正整数倍。也就是说,终端设备在SSB测量的第一周期内,是对索引与第一参考SSB的索引间隔SSB索引间隔的正整数倍的第一SSB执行SSB测量。
例如,卫星对SSB的扫描顺序为升序,第一参考SSB的索引为x,SSB的索引间隔为m,则第一SSB的索引=[x+m·n],x为大于或等于0的整数,m为大于1的整数,n为大于或等于1的整数。
再例如,卫星对SSB的扫描顺序为降序,第一参考SSB的索引为x,SSB的索引间隔为m,则第一SSB的索引=[x-m·n],x为大于0的整数,m为大于1的整数,n为大于或等于1的整数。
示例性的,卫星的轨道方向如图9所示,终端设备自主确定的第一参考SSB是索引为2的SSB,且SSB索引间隔为16。那么,第一SSB可以是按照升序顺序,索引与2间隔16的正整数倍的SSB,比如第一SSB可以是索引为18、34、50,等等的SSB。从而,终端设备可在SSB测量的第一周期内,对索引与2间隔16的正整数倍的SSB执行SSB测量,以在卫星发生移动时,通过SSB测量获得信号质量较好的SSB。进而,终端设备可根据信号质量较好的SSB进行小区重选或小区切换等。
示例性的,SSB的索引排列方式如图9所示,卫星的轨道方向水平向右,且终端设备自主确定的第一参考SSB是索引为34的SSB,SSB索引间隔为16。那么,第一SSB可以是按照降序顺序,索引与34间隔16的正整数倍的SSB。比如,第一SSB是索引为18和2的SSB,从而终端设备可在SSB测量的第一周期内,对索引为2和索引为18的SSB执行SSB测量。
可选的,终端设备还可在SSB测量的第一周期内,对索引在第一SSB的索引前后的一个或多个SSB执行SSB测量。也就是说,终端设备还可以在第一SSB的基础上,对更多的SSB执行SSB测量,以提高确定信号质量较好的SSB的可靠性。例如,终端设备根据第一参考SSB和SSB索引间隔确定的第一SSB,是索引为18的SSB,终端设备还可对索引位于索引18前后的一个或多个SSB执行SSB测量。例如,终端设备还可对索引为17和19的SSB执行SSB测量。
可见,终端设备根据第一参考SSB和SSB索引间隔确定的第一SSB,是一个SSB周期内的部分SSB,而不是一个SSB周期内的全部SSB,从而可减少终端设备进行SSB测量的时间,即节省终端设备的能耗开销。
情况2:终端设备接收到来自网络设备的第三信息。
终端设备接收到来自网络设备的第三信息,表明终端设备获得SSB索引窗,从而终端设备根据第一参考SSB和SSB索引窗,确定第一SSB,并在SSB测量的第一周期内对确定的第一SSB执行SSB测量。其中,第一SSB的索引在以第一参考SSB的索引为起始索引的SSB索引窗内。也就是说,终端设备在SSB测量的第一周期内,对索引在以第一参考SSB的索引为起始索引的SSB索引窗内的第一SSB执行SSB测量。
例如,卫星对SSB的扫描顺序为升序时,第一参考SSB的索引为x,SSB的索引窗为m,则第一SSB是索引在索引x至[x+m]内的SSB,x为大于或等于0的整数,m为大于1正整数。
再例如,卫星对SSB的扫描顺序为降序时,第一参考SSB的索引为x,SSB的索引窗为m,则第一SSB是索引在索引[x-m]至x内的SSB,x为大于或等于0整数,且小于x的整数,m为大于1的正整数。
示例性的,卫星的轨道方向如图10所示,终端设备自主确定的第一参考SSB是索引为16的SSB,SSB索引窗为16,则第一SSB是索引位于索引16至31内的SSB。那么,终端设备在SSB测量的第一周期内,对索引位于索引16至31的SSB执行SSB测量。
示例性的,SSB的索引排列方式如图10所示,卫星的轨道方向垂直向下,终端设备自主确定的第一参考SSB是索引为47的SSB,SSB索引窗为16。那么,第一SSB是索引在索引32至47内的SSB。从而,终端设备在SSB测量的第一周期内,对索引位于索引32至47内的SSB执行SSB测量。
可选的,终端设备在SSB测量的第一周期内,还可对索引在第一SSB索引附近的部分SSB执行SSB测量,以增加确定信号质量较好的SSB的可靠性。例如,终端设备确定第一SSB是索引在索引32至47内的SSB,终端设备还可在SSB测量的第一周期内,对索引位于索引32和索引47附近的SSB执行SSB 测量,比如还可对索引为30和索引为31的SSB执行SSB测量,以及还可对索引为48和索引为49的SSB执行SSB测量。
可见,终端设备根据第一参考SSB和SSB索引窗,确定的第一SSB,也是一个SSB周期内的部分SSB,从而可减少终端设备进行SSB测量的SSB个数,可减少终端设备的能耗开销。
情况3:终端设备接收到来自网络设备的第四信息。
终端设备接收到来自网络设备的第四信息,表明终端设备获得SSB时间窗,从而终端设备根据第一参考SSB和SSB时间窗,确定第一SSB,并在SSB测量的第一周期内对第一SSB执行SSB测量。其中,第一SSB的时域位置在以第一参考SSB的时域位置为起始位置的SSB时间窗内。也就是说,终端设备在SSB测量的第一周期内,对时域位置位于以第一参考SSB的时域位置为起始位置的SSB时间窗内的第一SSB执行SSB测量。
卫星对SSB的扫描顺序为升序时,第一SSB的时域位置在以第一参考SSB的时域位置为起始位置向后推移SSB时间窗内。卫星对SSB的扫描顺序为降序时,第一SSB的时域位置在以第一参考SSB的时域位置为起始位置向前推移SSB时间窗内。
示例性的,一个SSB周期包括256个SSB,一个SSB周期为640ms,SSB时间窗为40ms,SSB的帧结构如图7所示,第一参考SSB是索引为5的SSB,卫星对SSB的扫描顺序为升序。那么,第一SSB是以索引为5的SSB所在的时域位置为起始位置向后推移40ms内所包含的SSB,即可确定第一SSB是索引为5至21的SSB。
SSB时间窗小于一个SSB周期,从而终端设备根据第一参考SSB和SSB时间窗确定的第一SSB也是一个SSB周期内的部分SSB,可节省终端设备的能耗开销。
情况4.终端设备接收到第二信息和第三信息。
终端设备接收到第二信息和第三信息,表明终端设备获得SSB索引间隔和SSB索引窗。从而,终端设备根据第一参考SSB、SSB索引间隔和SSB索引窗,确定第一SSB,再在SSB测量的第一周期内,对确定的第一SSB执行SSB测量。
终端设备根据第一参考SSB、SSB索引间隔和SSB索引窗确定第一SSB时,可结合卫星对SSB的扫描顺序,确定第一SSB。
示例性的,卫星对SSB的扫描示意图如图9所示,第一参考SSB是索引为2的SSB,第二信息指示的SSB索引间隔为16,第三信息指示的SSB索引窗为2。由于卫星的轨道方向水平向左,那么终端设备的可能较优SSB是SSB索引向右移动的SSB。从而,终端设备先根据第一参考SSB和SSB索引间隔确定SSB,且确定的SSB是索引为18、34等的SSB。又由于SSB索引窗为2,则终端设备可再结合SSB索引窗,确定可对索引为18、34等的SSB附近前后2个SSB执行SSB测量,即可对索引为0、1、2、3、4、16、17、18、19、20、32、33、34、35、36等的SSB执行SSB测量。
示例性的,卫星的SSB的扫描示意图如图10所示,第一参考SSB是索引为16的SSB,第二信息指示的SSB索引间隔为1,第三信息指示的SSB索引窗为16。卫星的轨道方向垂直向上,那么终端设备的最优SSB可能是SSB索引向下移动的SSB。从而,终端设备先根据第一参考SSB和SSB索引窗确定SSB,且确定的SSB是索引为16至31的SSB。又由于SSB索引间隔为1,则终端设备还可结合SSB索引间隔,确定可对索引为16至31的SSB,对索引为32至47的SSB,以及对索引为0至15的SSB执行SSB测量。
可见,终端设备获得SSB索引间隔和SSB索引窗时,若卫星的轨道方向与SSB的索引排列方向垂直,终端设备可先根据第一参考SSB和SSB索引间隔确定SSB,再根据确定的SSB和SSB索引窗,确定第一SSB。该方式与终端设备对根据第一参考SSB和SSB索引间隔确定的SSB执行SSB测量相比,可使得终端设备对更多的SSB执行SSB测量,可提高确定信号质量最优的SSB的概率。
终端设备获得SSB索引间隔和SSB索引窗时,若卫星的轨道方向与SSB的索引排列方向平行,终端设备可先根据第一参考SSB和SSB索引窗确定SSB,再根据确定的SSB和SSB索引间隔,确定第一SSB。该方式与终端设备对根据第一参考SSB和SSB索引窗确定的SSB执行SSB测量相比,也可使得终端设备对更多的SSB执行SSB测量,可提高确定信号质量最优的SSB的概率。另外,该实施方式与对一个SSB周期内的所有SSB执行SSB测量相比,仍可节省终端设备的能耗开销。
该实施方式中,SSB索引间隔和SSB索引窗的具体数值,可以是网络设备结合卫星对SSB的扫描顺序,合理配置的。
情况5.终端设备接收到来自网络设备的第二信息和第四信息。
终端设备接收到第二信息和第四信息时,表明终端设备获得SSB索引间隔和SSB时间窗。从而,终端设备可根据第一参考SSB、SSB索引间隔和SSB时间窗,确定第一SSB。终端设备根据第一参考SSB、SSB索引间隔和SSB时间窗,确定第一SSB,也可结合卫星的轨道方向与SSB的索引排列方向之间的关系。
终端设备根据第一参考SSB、SSB索引间隔、SSB时间窗,以及卫星的轨道方向与SSB的索引排列方向之间的关系,确定第一SSB的实施方式,与终端设备根据第一参考SSB、SSB索引间隔、SSB索引窗,以及卫星的轨道方向与SSB的索引排列方向之间的关系,确定第一SSB的实施方式类似。
可理解的,卫星的轨道方向与SSB的索引排列方向垂直时,终端设备根据第一参考SSB、SSB索引间隔和SSB时间窗,确定第一SSB,可理解为:根据第一参考SSB和SSB索引间隔确定SSB,再根据确定的SSB和SSB时间窗,确定第一SSB;卫星的轨道方向与SSB的索引排列方向平行时,终端设备根据第一参考SSB、SSB索引间隔和SSB时间窗,确定第一SSB,可理解为:根据第一参考SSB和SSB时间窗确定SSB,再根据确定的SSB和SSB索引间隔,确定第一SSB。
示例性的,卫星对SSB的扫描示意图如图9所示,第一参考SSB是索引为2的SSB,第二信息指示的SSB索引间隔为16,第四信息指示的SSB时间窗为10ms。终端设备先根据第一参考SSB和SSB索引间隔确定SSB,且确定的SSB是索引为18、34等的SSB。终端设备再结合SSB时间窗,确定可对索引为18、34等的SSB,以及对索引为18、34等的SSB所在的时域位置向前推移和向后推移10ms内包括的SSB执行SSB测量。
示例性的,卫星对SSB的扫描示意图如图10所示,第一参考SSB是索引为5的SSB,第二信息指示的SSB索引间隔为1,第四信息指示的SSB时间窗为40ms。终端设备根据第一参考SSB和SSB时间窗,确定的SSB是索引为5至21的SSB。终端设备再结合SSB索引间隔,确定可对索引为5至21的SSB,索引为21至37的SSB,以及索引为0至5的SSB执行SSB测量。
该实施方式中,SSB索引间隔和SSB时间窗的具体数值,也可以是网络设备结合卫星对SSB的扫描顺序,合理配置的。
该实施方式也可使得终端设备对更多的SSB执行SSB测量,可提高确定信号质量左右的SSB的概率,但与对一个SSB周期内的所有SSB执行SSB测量相比,仍可节省终端设备的能耗开销。
情况6.终端设备接收到来自网络设备的第三信息和第四信息。
终端设备接收到第三信息和第四信息,表明终端设备获得SSB索引窗和SSB时间窗。从而,终端设备可根据第一参考SSB、SSB索引窗和SSB时间窗,确定第一SSB。可理解的,终端设备根据第一参考SSB和SSB索引窗,确定一部分SSB,根据第一参考SSB和SSB时间窗,确定另一部分SSB,终端设备再从两部分SSB中确定第一SSB,可将确定的两部分SSB中的交集确定为第一SSB。
示例性的,卫星对SSB的扫描如图10所示,第一参考SSB是索引为17的SSB,终端设备根据第一参考SSB和SSB索引窗,确定的SSB是索引为17至32的SSB。终端设备根据第一参考SSB和SSB时间窗,确定的SSB是索引为17至25的SSB,那么终端设备确定第一SSB是索引为17至25的SSB。
情况7.终端设备接收到第二信息、第三信息和第四信息。
终端设备接收到第二信息、第三信息和第四信息,表明终端设备获得SSB索引间隔、SSB索引窗和SSB时间窗。从而,终端设备根据第一参考SSB、SSB索引间隔、SSB索引窗和SSB时间窗,确定第一SSB。进而,终端设备在SSB测量的第一周期内,对确定的第一SSB执行SSB测量。
可理解的,终端设备在卫星的轨迹方向和SSB的索引排列方向垂直时,根据第一参考SSB、SSB索引间隔、SSB索引窗和SSB时间窗,确定第一SSB,可理解为:根据第一参考SSB和SSB索引间隔确定SSB,再根据确定的SSB、SSB索引窗和SSB时间窗,确定第一SSB。终端设备在卫星的轨迹方向和SSB的索引排列方向平行时,根据第一参考SSB、SSB索引间隔、SSB索引窗和SSB时间窗,确定第一SSB,可理解为:根据第一参考SSB、SSB索引窗和SSB时间窗确定SSB,再根据确定的SSB和SSB索引间隔,确定第一SSB。终端设备根据第一参考SSB、SSB索引窗和SSB时间窗,确定第一SSB的实施方式,可参见上述情况6中所述,不再赘述。
综上所述,不论终端设备接收到第二信息、第三信息和第四信息中的哪一种或哪几种信息,终端设备根据第一参考SSB和接收到的信息确定的第一SSB,均是一个SSB周期内的部分SSB。从而终端设备在SSB测量的第一周期内,是对一个SSB周期内的部分SSB执行SSB测量,可较少终端设备的能耗开销。
一种可选的实施方式中,第一信息、第二信息、第三信息和第五信息中的一项或多项携带于无线资源控制(Radio Resource Control,RRC)信令中。可理解的,网络设备通过RRC公共信令,向处于空闲态的 终端设备下发第一信息、第二信息、第三信息和第五信息中的一项或多项,例如,网络设备通过系统信息块(System Information Block,SIB)或其他系统消息(Other system messages,OSI)向处于空闲态的终端设备下发第一信息、第二信息、第三信息和第五信息中的一项或多项;网络设备通过RRC专用信令,向处于连接态的终端设备下发第一信息、第二信息、第三信息和第五信息中的一项或多项。
一种可选的实施方式中,终端设备还可在SSB测量的第二周期内,根据第二参考SSB对第二SSB执行SSB测量,第二参考SSB是终端设备根据SSB测量在第一周期内的测量结果确定的。
也就是说,终端设备在第一周期内完成对第一SSB的SSB测量后,根据多个SSB测量结果,确定第二参考SSB,第二参考SSB可以是多个SSB测量结果中的信号质量最好的SSB。终端设备可根据第一参考SSB,以及接收的第二信息、第三信息和第四信息中的一项或多项,确定第二SSB。从而,终端设备可在SSB测量的第二周期内,对确定的第二SSB执行SSB测量。
类似的,终端设备在后续每个SSB测量的周期内,可根据上个SSB测量的周期执行SSB测量的测量结果,确定在该SSB测量的周期内执行SSB测量所依据的参考SSB。从而,终端设备可根据确定的参考SSB,确定所需进行测量的SSB,进而可在该SSB测量的周期内,对确定的SSB执行SSB测量。
可见,终端设备在每个SSB测量的周期内,执行SSB测量所依据的参考SSB可是终端设备自主确定的,可减少终端设备的能耗开销,以及与网络设备不断给终端设备指示参考SSB的方式相比,可节省信令开销。
本申请实施例中,终端设备接收到用于指示进行SSB测量的第一指示信息后,在SSB测量的第一周期内,根据自主确定的第一参考SSB对第一SSB执行SSB测量。
对处于空闲态的终端设备而言,网络设备无法获知该终端设备的位置信息,从而无法获知该终端设备的信号质量较好的SSB。因此,如果网络设备给终端设备指示执行SSB测量所依据的参考SSB,则会在兼顾所有处于空闲态的终端设备的位置信息条件下,给处于空闲态的终端设备指示相同的参考SSB,从而会使得各终端设备所需执行SSB测量的SSB个数较多,会造成较大的能耗开销。然而,处于空闲态的终端设备自主确定执行SSB测量所依据的第一参考SSB,可在待测SSB的个数尽可能少的前提下,自主确定合适的第一参考SSB,从而可减少终端设备的能耗开销。
对处于连接态的终端设备而言,在卫星快速发生变化的情况下,终端设备的参考SSB是不断发生变化的。因此,如果网络设备给终端设备指示执行SSB测量所依据的参考SSB,则网络设备需根据卫星的变化,在不同时域资源上多次给终端设备指示执行SSB测量所依据的参考SSB,会造成大量的信令开销。另外,如果网络设备兼顾卫星的快速变化带来的参考SSB的不断变化,给终端设备指示一次执行SSB测量所依据的参考SSB,则终端设备根据该指示的参考SSB确定的所需执行SSB测量的SSB个数会较多,会造成较大的能耗开销。然而,处于连接态的终端设备自主确定执行SSB测量所依据的第一参考SSB,可在待测SSB的个数尽可能少的前提下,自主确定合适的第一参考SSB,可减少终端设备的能耗开销。另外,该方式不需要终端设备与网络设备的额外交互,可节省信令开销。
本申请实施例还提出一种同步信号块测量方法200,图11是该同步信号块测量方法200的交互示意图。该同步信号块测量方法200也从网络设备与终端设备的交互角度进行阐述。该同步信号块测量方法200包括但不限于以下步骤:
S201.网络设备确定第一信息和第二信息,第一信息用于指示终端设备按照SSB索引间隔进行SSB测量,第二信息用于指示SSB索引间隔,SSB索引间隔为大于1的整数。
可理解的,SSB索引间隔是指一个SSB的索引与另一个SSB的索引之间的间隔。例如,SSB包括SSB1和SSB2,SSB1的索引(index)为0,SSB2的索引为1,SSB1与SSB2之间的SSB索引间隔为1。
其中,第一信息和第二信息可以是相同的信息,也可以是不同的信息。第一信息和第二信息是相同的信息,可理解为:第一信息和第二信息的发送时间相同;第一信息和第二信息是不同的信息,可理解为:第一信息和第二信息的发送时间不相同。
网络设备确定第二信息的实施方式,可参见上述同步信号块测量方法100中所述,不再赘述。
S202.网络设备向终端设备发送第一信息和第二信息。相应的,终端设备接收来自网络设备的第一信息和第二信息。
S203.终端设备根据第一参考SSB和SSB索引间隔,确定第一SSB,第一参考SSB是终端设备自主确定的。
S204.终端设备在SSB测量的第一周期内,对第一SSB执行SSB测量。
可理解的,终端设备确定第一参考SSB的实施方式,以及根据第一参考SSB和SSB索引间隔,确定第一SSB的实施方式,可参见上述同步信号块测量方法100中所述,不再赘述。
一种可选的实施方式中,网络设备还可向终端设备发送第五信息,第五信息用于指示卫星对SSB的扫描顺序,卫星对SSB的扫描顺序为升序或者为降序。相应的,终端设备还可接收来自终端设备的第五信息。
终端设备可结合卫星对SSB的扫描顺序,根据第一参考SSB和SSB索引间隔,确定第一SSB。其具体实施方式,可参见上述同步信号块测量方法100中所述,不再赘述。
本申请实施例中,网络设备通过第一信息指示终端设备按照SSB索引间隔进行SSB测量,以及通过第二信息向终端设备指示SSB索引间隔。从而终端设备在SSB测量的第一周期内,对根据SSB索引间隔和自主确定的第一参考SSB确定的第一SSB,执行SSB测量。进而,终端设备不是对一个SSB周期内的所有SSB执行SSB测量,而是对一个SSB周期内的部分SSB执行SSB测量,可减少终端设备的能耗开销。
本申请实施例还提出一种同步信号块测量方法300,图12是该同步信号块测量方法300的交互示意图。该同步信号块测量方法300也从网络设备与终端设备的交互角度进行阐述。该同步信号块测量方法300包括但不限于以下步骤:
S301.网络设备确定第一信息和第三信息,第一信息用于指示终端设备按照SSB索引间隔进行SSB测量,第三信息用于指示SSB索引窗,SSB索引窗内的SSB个数小于一个SSB周期内的SSB个数。
其中,第一信息和第三信息可以是相同的信息,也可以是不同的信息。第一信息和第三信息是相同的信息,可理解为:第一信息和第三信息的发送时间相同;第一信息和第三信息是不同的信息,可理解为:第一信息和第三信息的发送时间不相同。
网络设备确定第三信息的实施方式,可参见上述同步信号块测量方法100中所述,不再赘述。
S302.网络设备向终端设备发送第一信息和第三信息。相应的,终端设备接收来自网络设备的第一信息和第三信息。
S303.终端设备根据第一参考SSB和SSB索引窗,确定第一SSB,第一参考SSB是终端设备自主确定的。
S304.终端设备在SSB测量的第一周期内,对第一SSB执行SSB测量。
可理解的,终端设备确定第一参考SSB的实施方式,以及根据第一参考SSB和SSB索引窗,确定第一SSB的实施方式,可参见上述同步信号块测量方法100中所述,不再赘述。
一种可选的实施方式中,网络设备还可向终端设备发送第五信息,第五信息用于指示卫星对SSB的扫描顺序,卫星对SSB的扫描顺序为升序或者为降序。相应的,终端设备还可接收来自终端设备的第五信息。
终端设备可结合卫星对SSB的扫描顺序,根据第一参考SSB和SSB索引窗,确定第一SSB。其具体实施方式,可参见上述同步信号块测量方法100中所述,不再赘述。
本申请实施例中,网络设备通过第一信息指示终端设备按照SSB索引间隔进行SSB测量,以及通过第三信息向终端设备指示SSB索引窗。从而终端设备在SSB测量的第一周期内,对根据SSB索引窗和自主确定的第一参考SSB确定的第一SSB,执行SSB测量。该方式中,确定的第一SSB是一个SSB周期内的部分SSB,可减少终端设备的能耗开销。
本申请实施例还提出一种同步信号块测量方法400,图13是该同步信号块测量方法400的交互示意图。该同步信号块测量方法400也从网络设备与终端设备的交互角度进行阐述。该同步信号块测量方法400包括但不限于以下步骤:
S401.网络设备确定第一信息和第四信息,第一信息用于指示终端设备按照SSB索引间隔进行SSB测量,第四信息用于指示SSB时间窗,SSB时间窗小于一个SSB周期。
其中,第一信息和第四信息可以相同,也可以是不同的信息。第一信息和第四信息是相同的信息,可理解为:第一信息和第四信息的发送时间相同;第一信息和第四信息是不同的信息,可理解为:第一信息和第四信息的发送时间不相同。
网络设备确定第四信息的实施方式,可参见上述同步信号块测量方法100中所述,不再赘述。
S402.网络设备向终端设备发送第一信息和第四信息。相应的,终端设备接收来自网络设备的第一信息和第四信息。
S403.终端设备根据第一参考SSB和SSB时间窗,确定第一SSB,第一参考SSB是终端设备自主确定 的。
S404.终端设备在SSB测量的第一周期内,对第一SSB执行SSB测量。
可理解的,终端设备确定第一参考SSB的实施方式,以及根据第一参考SSB和SSB索引窗,确定第一SSB的实施方式,可参见上述同步信号块测量方法100中所述,不再赘述。
一种可选的实施方式中,网络设备还可向终端设备发送第五信息,第五信息用于指示卫星对SSB的扫描顺序,卫星对SSB的扫描顺序为升序或者为降序。相应的,终端设备还可接收来自终端设备的第五信息。
终端设备可根据卫星对SSB的扫描顺序,确定第一SSB是以第一参考SSB的时域位置为起始位置向前推移,还是向后推移SSB时间窗内的SSB。终端设备在卫星对SSB的扫描顺序为升序时,确定第一SSB是以第一参考SSB的时域位置为起始位置向后推移SSB时间窗内的SSB;在卫星对SSB的扫描顺序为降序时,确定第一SSB是以第一参考SSB的时域位置为起始位置向前推移SSB时间窗内的SSB。该实施方式可使得终端设备根据卫星对SSB的扫描顺序和SSB时间窗,灵活确定一个SSB周期内需测量的第一SSB,可节省终端设备的能耗开销。
本申请实施例中,网络设备通过第一信息指示终端设备按照SSB索引间隔进行SSB测量,以及通过第四信息向终端设备指示SSB时间窗。从而终端设备在SSB测量的第一周期内,对根据SSB索引窗和自主确定的第一参考SSB确定的第一SSB,执行SSB测量。该方式中,确定的第一SSB也是一个SSB周期内的部分SSB,可减少终端设备的能耗开销。
可理解的,同步信号块测量方法200、同步信号块测量方法300和同步信号块测量方法400可互相结合,组成不同实现方式的实施例,本申请实施例对此不做限定。例如。同步信号块测量方法200可和同步信号块测量方法300结合,组成新的同步信号块测量方法。
针对前文描述的技术方案,下文进一步描述相应的装置实现方案。
为了实现上述本申请实施例提供的方法中的各功能,网络设备和终端设备可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
如图14所示,本申请实施例提供了一种通信装置1400。该通信装置1400可以是网络设备的部件(例如,集成电路,芯片等等),也可以是终端设备的部件(例如,集成电路,芯片等等)。该通信装置1400也可以是其他通信单元,用于实现本申请方法实施例中的方法。该通信装置1400可以包括:通信单元1401和处理单元1402。可选的,还可以包括存储单元1403。
在一种可能的设计中,如图14中的一个或者多个单元可能由一个或者多个处理器来实现,或者由一个或者多个处理器和存储器来实现;或者由一个或多个处理器和收发器实现;或者由一个或者多个处理器、存储器和收发器实现,本申请实施例对此不作限定。所述处理器、存储器、收发器可以单独设置,也可以集成。
所述通信装置1400具备实现本申请实施例描述的网络设备或终端设备的功能。比如,所述通信装置1400包括网络设备执行本申请实施例描述的网络设备涉及步骤所对应的模块或单元或手段(means),所述功能或单元或手段(means)可以通过软件实现,或者通过硬件实现,也可以通过硬件执行相应的软件实现,还可以通过软件和硬件结合的方式实现。详细可进一步参考前述对应方法实施例中的相应描述。
在一种可能的设计中,一种通信装置1400可包括:处理单元1402和通信单元1401;
通信单元1401,用于接收来自网络设备的第一信息;所述第一信息用于指示终端设备进行同步信号块SSB测量;
处理单元1402,用于在所述SSB测量的第一周期内,根据第一参考SSB对第一SSB执行所述SSB测量;所述第一参考SSB是所述终端设备自主确定的。
一种可选的实现方式中,所述第一信息具体用于指示所述终端设备按照SSB索引间隔进行SSB测量。
一种可选的实现方式中,通信单元1401,还用于接收第二信息,所述第二信息用于指示SSB索引间隔;所述第一SSB的索引与所述第一参考SSB的索引之间间隔所述SSB索引间隔的正整数倍;所述SSB索引间隔为大于1的整数。
一种可选的实现方式中,通信单元1401,还用于接收第三信息,所述第三信息用于指示SSB索引窗;所述第一SSB的索引在以所述第一参考SSB的索引为起始索引的所述SSB索引窗内;所述SSB索引窗内的SSB个数小于一个SSB周期内的SSB个数。
一种可选的实现方式中,通信单元1401,还用于接收第四信息,所述第四信息用于指示SSB时间窗;所述第一SSB的时域位置在以所述第一参考SSB的时域位置为起始位置的所述SSB时间窗内;所述SSB时间窗小于一个SSB周期。
一种可选的实现方式中,通信单元1401,还用于接收第五信息,所述第五信息用于指示卫星对SSB的扫描顺序;所述卫星对SSB的扫描顺序为升序时,所述第一SSB的索引大于所述第一参考SSB的索引;所述卫星对SSB的扫描顺序为降序时,所述第一SSB的索引小于所述第一参考SSB的索引。
一种可选的实现方式中,处理单元1402,还用于在所述SSB测量的第二周期内,根据第二参考SSB对第二SSB执行所述SSB测量;所述第二参考SSB是所述终端设备根据所述SSB测量在所述第一周期内的测量结果确定的。
本申请实施例和上述所示方法实施例基于同一构思,其带来的技术效果也相同,具体原理请参照上述所示实施例的描述,不再赘述。
在另一种可能的设计中,一种通信装置1400可包括:处理单元1402和通信单元1401;
处理单元1402,用于确定第一信息,以及确定第二信息、第三信息和第四信息中的一项或多项;
通信单元1401,用于向终端设备发送所述第一信息,以及发送所述第二信息、所述第三信息和所述第四信息中的一项或多项;
其中,所述第一信息用于指示所述终端设备按照同步信号块SSB索引间隔进行SSB测量,所述第二信息用于指示SSB索引间隔,所述第三信息用于指示SSB索引窗,所述第四信息用于指示SSB时间窗;
所述SSB索引间隔为大于1的整数;所述SSB索引窗内的SSB个数小于一个SSB周期内的SSB个数;所述SSB时间窗小于一个SSB周期。
一种可选的实现方式中,通信单元1401,还用于发送第五信息,所述第五信息用于指示卫星对SSB的扫描顺序。
本申请实施例和上述所示方法实施例基于同一构思,其带来的技术效果也相同,具体原理请参照上述所示实施例的描述,不再赘述。
本申请实施例还提供一种通信装置1500,图15为通信装置1500的结构示意图。所述通信装置1500可以是网络设备,也可以是支持网络设备实现上述方法的芯片、芯片系统、或处理器等;或者,可以是终端设备,也可以是支持终端设备实现上述方法的芯片、芯片系统、或处理器等。该装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
所述通信装置1500可以包括一个或多个处理器1501。所述处理器1501可以是通用处理器或者专用处理器等。例如可以是基带处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件或中央处理器(central processing unit,CPU)。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,终端、终端芯片,分布式单元DU或集中单元CU等)进行控制,执行软件程序,处理软件程序的数据。
可选的,所述通信装置1500中可以包括一个或多个存储器1502,其上可以存有指令1504,所述指令可在所述处理器1501上被运行,使得所述通信装置1500执行上述方法实施例中描述的方法。可选的,所述存储器1502中还可以存储有数据。所述处理器1501和存储器1502可以单独设置,也可以集成在一起。
存储器1502可包括但不限于硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等非易失性存储器,随机存储记忆体(Random Access Memory,RAM)、可擦除可编程只读存储器(Erasable Programmable ROM,EPROM)、ROM或便携式只读存储器(Compact Disc Read-Only Memory,CD-ROM)等等。
可选的,所述通信装置1500还可以包括收发器1505、天线1506。所述收发器1505可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器1505可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
所述通信装置1500为网络设备:处理器1501用于执行上述同步信号块测量方法100中的S101,用于执行上述同步信号块测量方法200中的S201,用于执行上述同步信号块测量方法300中的S301,用于执行上述同步信号块测量方法400中的S401;收发器1505用于执行上述同步信号块测量方法100中的S102,用于执行上述同步信号块测量方法200中的S202,用于执行上述同步信号块测量方法300中的S302,用于执行上述同步信号块测量方法400中的S402。
所述通信装置1500为终端设备:处理器1501用于执行上述同步信号块测量方法100中的S103,用于 执行上述同步信号块测量方法200中的S203、S204,用于执行上述同步信号块测量方法300中的S303、S304,用于执行上述同步信号块测量方法400中的S403、S404;收发器1505用于执行上述同步信号块测量方法100中的S102,用于执行上述同步信号块测量方法200中的S202,用于执行上述同步信号块测量方法300中的S302,用于执行上述同步信号块测量方法400中的S402。
另一种可能的设计中,处理器1501中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
又一种可能的设计中,可选的,处理器1501可以存有指令1503,指令1503在处理器1501上运行,可使得所述通信装置1500执行上述方法实施例中描述的方法。指令1503可能固化在处理器1501中,该种情况下,处理器1501可能由硬件实现。
又一种可能的设计中,通信装置1500可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。本申请实施例中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路(radio frequency integrated circuit,RFIC)、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(Bipolar Junction Transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
本申请实施例中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图15的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,指令的存储部件;
(3)ASIC,例如调制解调器(modulator);
(4)可嵌入在其他设备内的模块;
本申请实施例中通信装置、芯片还可执行上述通信装置1500所述的实现方式。本领域技术人员还可以了解到本申请实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本申请实施例保护的范围。
本申请实施例和上述同步信号块测量方法100至同步信号块测量方法400所示方法实施例基于同一构思,其带来的技术效果也相同,具体原理请参照上述同步信号块测量方法100至同步信号块测量方法400所示实施例的描述,不再赘述。
本申请实施例还提供了一种计算机可读存储介质,用于储存计算机软件指令,当所述指令被通信装置执行时,实现上述任一方法实施例的功能。
本申请实施例还提供了一种计算机程序产品,用于储存计算机软件指令,当所述指令被通信装置执行时,实现上述任一方法实施例的功能。
本申请实施例还提供了一种计算机程序,当其在计算机上运行时,实现上述任一方法实施例的功能。
本申请实施例还提供了一种通信系统,该系统包括网络设备和卫星。可选的,该系统还包括终端设备。在另一种可能的设计中,该系统还可以包括与终端设备、网络设备、卫星进行交互的其他设备。
本申请的说明书、权利要求书及附图中的术语“第一”和“第二”等是用于区别不同对象,而不是用于描述特定顺序。“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”等的特征可以明示或者隐含地包括一个或者更多个该特征。在本实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
应当理解,在本申请实施例中,“多个”是指两个或两个以上。“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系。例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情 况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“…时”以及“如果”均指在某种客观情况下会做出相应的处理,并非是限定时间,且也不要求实现时要有判断的动作,也不意味着存在其它限定。
在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念,便于理解。
上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,SSD)等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (22)

  1. 一种同步信号块测量方法,其特征在于,所述方法包括:
    接收来自网络设备的第一信息;所述第一信息用于指示终端设备进行同步信号块SSB测量;
    在所述SSB测量的第一周期内,根据第一参考SSB对第一SSB执行所述SSB测量;
    所述第一参考SSB是所述终端设备自主确定的。
  2. 根据权利要求1所述的方法,其特征在于,所述第一信息具体用于指示所述终端设备按照SSB索引间隔进行SSB测量。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    接收第二信息,所述第二信息用于指示SSB索引间隔;
    所述第一SSB的索引与所述第一参考SSB的索引之间间隔所述SSB索引间隔的正整数倍;
    所述SSB索引间隔为大于1的整数。
  4. 根据权利要求1至3任一项所述的方法,其特征在于,所述方法还包括:
    接收第三信息,所述第三信息用于指示SSB索引窗;
    所述第一SSB的索引在以所述第一参考SSB的索引为起始索引的所述SSB索引窗内;
    所述SSB索引窗内的SSB个数小于一个SSB周期内的SSB个数。
  5. 根据权利要求1至4任一项所述的方法,其特征在于,所述方法还包括:
    接收第四信息,所述第四信息用于指示SSB时间窗;
    所述第一SSB的时域位置在以所述第一参考SSB的时域位置为起始位置的所述SSB时间窗内;
    所述SSB时间窗小于一个SSB周期。
  6. 根据权利要求3或4所述的方法,其特征在于,所述方法还包括:
    接收第五信息,所述第五信息用于指示卫星对SSB的扫描顺序;
    所述卫星对SSB的扫描顺序为升序时,所述第一SSB的索引大于所述第一参考SSB的索引;
    所述卫星对SSB的扫描顺序为降序时,所述第一SSB的索引小于所述第一参考SSB的索引。
  7. 根据权利要求1至6任一项所述的方法,其特征在于,所述方法还包括:
    在所述SSB测量的第二周期内,根据第二参考SSB对第二SSB执行所述SSB测量;
    所述第二参考SSB是所述终端设备根据所述SSB测量在所述第一周期内的测量结果确定的。
  8. 一种同步信号块测量方法,其特征在于,所述方法包括:
    确定第一信息,以及确定第二信息、第三信息和第四信息中的一项或多项;
    向终端设备发送所述第一信息,以及发送所述第二信息、所述第三信息和所述第四信息中的一项或多项;
    其中,所述第一信息用于指示所述终端设备按照同步信号块SSB索引间隔进行SSB测量,所述第二信息用于指示SSB索引间隔,所述第三信息用于指示SSB索引窗,所述第四信息用于指示SSB时间窗;
    所述SSB索引间隔为大于1的整数;所述SSB索引窗内的SSB个数小于一个SSB周期内的SSB个数;所述SSB时间窗小于一个SSB周期。
  9. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    发送第五信息,所述第五信息用于指示卫星对SSB的扫描顺序。
  10. 一种通信装置,其特征在于,所述装置包括处理单元和通信单元;
    所述通信单元,用于接收来自网络设备的第一信息;所述第一信息用于指示所述装置进行同步信号块SSB测量;
    所述处理单元,用于在所述SSB测量的第一周期内,根据第一参考SSB对第一SSB执行所述SSB测量;
    所述第一参考SSB是所述装置自主确定的。
  11. 根据权利要求10所述装置,其特征在于,所述第一信息具体用于指示所述装置按照SSB索引间隔进行SSB测量。
  12. 根据权利要求10或11所述装置,其特征在于,
    所述通信单元还用于接收第二信息,所述第二信息用于指示SSB索引间隔;
    所述第一SSB的索引与所述第一参考SSB的索引之间间隔所述SSB索引间隔的正整数倍;
    所述SSB索引间隔为大于1的整数。
  13. 根据权利要求10至12任一项所述装置,其特征在于,
    所述通信单元还用于接收第三信息,所述第三信息用于指示SSB索引窗;
    所述第一SSB的索引在以所述第一参考SSB的索引为起始索引的所述SSB索引窗内;
    所述SSB索引窗内的SSB个数小于一个SSB周期内的SSB个数。
  14. 根据权利要求10至13任一项所述装置,其特征在于,
    所述通信单元还用于接收第四信息,所述第四信息用于指示SSB时间窗;
    所述第一SSB的时域位置在以所述第一参考SSB的时域位置为起始位置的所述SSB时间窗内;
    所述SSB时间窗小于一个SSB周期。
  15. 根据权利要求12或13所述的装置,其特征在于,
    所述通信单元还用于接收第五信息,所述第五信息用于指示卫星对SSB的扫描顺序;
    所述卫星对SSB的扫描顺序为升序时,所述第一SSB的索引大于所述第一参考SSB的索引;
    所述卫星对SSB的扫描顺序为降序时,所述第一SSB的索引小于所述第一参考SSB的索引。
  16. 根据权利要求10至15任一项所述的装置,其特征在于,
    所述处理单元还用于在所述SSB测量的第二周期内,根据第二参考SSB对第二SSB执行所述SSB测量;
    所述第二参考SSB是所述装置根据所述SSB测量在所述第一周期内的测量结果确定的。
  17. 一种通信装置,其特征在于,所述装置包括处理单元和通信单元;
    所述处理单元,用于确定第一信息,以及确定第二信息、第三信息和第四信息中的一项或多项;
    所述通信单元,用于向终端设备发送所述第一信息,以及发送所述第二信息、所述第三信息和所述第四信息中的一项或多项;
    其中,所述第一信息用于指示所述终端设备按照同步信号块SSB索引间隔进行SSB测量,所述第二信息用于指示SSB索引间隔,所述第三信息用于指示SSB索引窗,所述第四信息用于指示SSB时间窗;
    所述SSB索引间隔为大于1的整数;所述SSB索引窗内的SSB个数小于一个SSB周期内的SSB个数;所述SSB时间窗小于一个SSB周期。
  18. 根据权利要求17所述的装置,其特征在于,
    所述通信单元还用于发送第五信息,所述第五信息用于指示卫星对SSB的扫描顺序。
  19. 一种通信装置,其特征在于,包括处理器和收发器,所述收发器用于与其它通信装置进行通信;所述处理器用于运行程序,以使得所述通信装置实现权利要求1至7任一项所述的方法,或者实现权利要求8或9所述的方法。
  20. 一种通信系统,其特征在于,包括:用于执行权利要求1至7任一项所述的方法的装置,以及用于 执行权利要求8或9所述的方法的装置。
  21. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储有指令,当其在计算机上运行时,使得权利要求1至7任一项所述的方法被执行,或者使得权利要求8或9所述的方法被执行。
  22. 一种包含指令的计算机程序产品,其特征在于,当其在计算机上运行时,使得权利要求1至7任一项所述的方法被执行,或者使得权利要求8或9所述的方法被执行。
PCT/CN2024/070372 2023-01-10 2024-01-03 同步信号块测量方法及装置 WO2024149137A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202310033294.7A CN118338398A (zh) 2023-01-10 2023-01-10 同步信号块测量方法及装置
CN202310033294.7 2023-01-10

Publications (1)

Publication Number Publication Date
WO2024149137A1 true WO2024149137A1 (zh) 2024-07-18

Family

ID=91777469

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2024/070372 WO2024149137A1 (zh) 2023-01-10 2024-01-03 同步信号块测量方法及装置

Country Status (2)

Country Link
CN (1) CN118338398A (zh)
WO (1) WO2024149137A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020248281A1 (zh) * 2019-06-14 2020-12-17 Oppo广东移动通信有限公司 无线通信的方法、终端设备和网络设备
CN113473549A (zh) * 2020-03-31 2021-10-01 荣耀终端有限公司 一种测量间隙的配置方法及装置
CN114586386A (zh) * 2019-10-26 2022-06-03 华为技术有限公司 通信方法和装置
WO2022157731A1 (en) * 2021-01-25 2022-07-28 Telefonaktiebolaget Lm Ericsson (Publ) Conditional synchronization signal block measurement time configuration in non-terrestrial networks
CN115515156A (zh) * 2021-06-23 2022-12-23 索尼集团公司 用于无线通信系统的电子设备、方法和存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020248281A1 (zh) * 2019-06-14 2020-12-17 Oppo广东移动通信有限公司 无线通信的方法、终端设备和网络设备
CN114586386A (zh) * 2019-10-26 2022-06-03 华为技术有限公司 通信方法和装置
CN113473549A (zh) * 2020-03-31 2021-10-01 荣耀终端有限公司 一种测量间隙的配置方法及装置
WO2022157731A1 (en) * 2021-01-25 2022-07-28 Telefonaktiebolaget Lm Ericsson (Publ) Conditional synchronization signal block measurement time configuration in non-terrestrial networks
CN115515156A (zh) * 2021-06-23 2022-12-23 索尼集团公司 用于无线通信系统的电子设备、方法和存储介质

Also Published As

Publication number Publication date
CN118338398A (zh) 2024-07-12

Similar Documents

Publication Publication Date Title
WO2022206891A1 (zh) 一种卫星通信方法、装置及系统
US20230107526A1 (en) Handover method, terminal device, and network device
US20230164685A1 (en) Access Control Method and Apparatus for Terminal Device
US20230132815A1 (en) Report transmission method, apparatus, and system
US11805440B2 (en) Communication method, apparatus, device, system, and storage medium for target service packet retransmission
US20230199709A1 (en) Information processing method, terminal device, and network device
US20220303961A1 (en) Physical channel monitoring method and terminal device
WO2022213925A1 (zh) 一种无线通信的方法及装置
US20160157182A1 (en) Base station, communication system, and communication control method
WO2022021131A1 (zh) 重选初始带宽部分bwp的方法、终端设备和网络设备
US20230189203A1 (en) Mobility measurement method and apparatus
WO2024149137A1 (zh) 同步信号块测量方法及装置
CN114828152B (zh) 系统信息更新方法与装置、中继设备、终端及存储介质
WO2021035730A1 (zh) 一种通信方法及装置
CN116347545A (zh) 无线通信方法与装置、终端和存储介质
WO2024087116A1 (zh) 一种通信方法及装置
WO2023097484A1 (zh) 移动性鲁棒性优化方法、装置及存储介质
US20230370922A1 (en) Method for entering connected mode, and terminal device
WO2023011292A1 (zh) 一种移动性限制通信方法、装置及系统
WO2024114794A1 (zh) 一种随机接入资源的确定方法及通信装置
WO2024146459A1 (zh) 通信方法与装置、终端设备、主节点和辅节点
WO2022198544A1 (zh) 无线通信方法、终端设备和网络设备
WO2023130221A1 (zh) 通信方法、终端设备以及网络设备
US20240334223A1 (en) Communication method and apparatus
EP4351193A1 (en) Method, apparatus and system for relay communication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24741136

Country of ref document: EP

Kind code of ref document: A1