WO2024148806A1 - 一种固定输出电压的直流供电系统 - Google Patents

一种固定输出电压的直流供电系统 Download PDF

Info

Publication number
WO2024148806A1
WO2024148806A1 PCT/CN2023/112128 CN2023112128W WO2024148806A1 WO 2024148806 A1 WO2024148806 A1 WO 2024148806A1 CN 2023112128 W CN2023112128 W CN 2023112128W WO 2024148806 A1 WO2024148806 A1 WO 2024148806A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery pack
unit
power supply
supply system
power
Prior art date
Application number
PCT/CN2023/112128
Other languages
English (en)
French (fr)
Inventor
郭兴宽
Original Assignee
上海安世博能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海安世博能源科技有限公司 filed Critical 上海安世博能源科技有限公司
Publication of WO2024148806A1 publication Critical patent/WO2024148806A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to the technical field of power supply equipment, and in particular to a direct current power supply system with a fixed output voltage.
  • FIG1 is a schematic diagram of the structure of a DC power supply system.
  • the DC power supply system includes multiple power modules, multiple battery packs and multiple load shunts.
  • the power modules convert the input AC power into DC power output.
  • Multiple battery packs are connected in parallel on the same DC bus. Since the voltage of the DC bus needs to match the voltage range of the battery pack, the power distribution switches, cables, server power supplies, etc. of the downstream power-consuming equipment need to meet the voltage range. As a result, the power distribution switches, cables, server power supplies, etc. need to be selected according to the lowest working voltage, the switch capacity is large, the cables are thick, and the cost of the downstream DC power distribution system is high.
  • an embodiment of the present invention provides a DC power supply system with a fixed output voltage, which can at least partially solve the problems in the prior art.
  • the present invention provides a DC power supply system with a fixed output voltage, comprising at least one battery pack and a power module corresponding to each battery pack, wherein:
  • each battery pack is connected to the corresponding power module, the second end of each battery pack is connected to the DC bus, and the output of each power module is on the DC bus; wherein the first end of each battery pack is a positive electrode, and the second end of each battery pack is a negative electrode; or, the first end of each battery pack is a negative electrode, and the second end of each battery pack is a positive electrode.
  • each battery pack is connected to the DC bus through a corresponding short-circuit protection module.
  • the short-circuit protection module adopts a diode or a thyristor.
  • an overcurrent protection module is respectively provided at the first end and the second end of each battery pack.
  • the overcurrent protection module adopts a fuse or a protection switch.
  • each battery pack corresponds to multiple power modules.
  • the power module includes an input filter unit, an AC-DC conversion unit, an output filter unit and a charging and discharging unit, the input filter unit, the AC-DC conversion unit and the output filter unit are connected in sequence, the charging and discharging unit is connected to the line between the AC-DC conversion unit and the output filter unit, and the first end of the battery pack corresponding to the power module is connected to the charging and discharging unit.
  • the power module further includes a backflow prevention unit, and the backflow prevention unit is connected to the output end of the output filter unit.
  • the power module also includes a boost unit, and accordingly, the charging and discharging unit is replaced by a charging unit; the boost unit is respectively connected to the AC-DC conversion unit and the output filter unit, and the charging unit is connected to the line between the AC-DC conversion unit and the boost unit.
  • the boost unit includes an inductor, a switch tube, a diode and a capacitor, wherein:
  • the first end of the inductor is connected to the first end of the AC-DC conversion unit, the second end of the inductor is respectively connected to the positive electrode of the diode and the first end of the switch tube, the cathode of the diode is connected to the first end of the capacitor, the cathode of the diode is connected to the first end of the output filter unit, the second end of the switch tube is respectively connected to the second end of the capacitor and the second end of the AC-DC conversion unit, and the second end of the capacitor is connected to the second end of the output filter unit.
  • the power module further comprises a voltage regulating unit, and the voltage regulating unit is connected to the line between the boost unit and the output filter unit.
  • a DC power supply system with a fixed output voltage comprises at least one battery pack and a power module corresponding to each battery pack, wherein the first end of each battery pack is connected to the corresponding power module, the second end of each battery pack is connected to a DC bus, and the output of each power module is on the DC bus; wherein the first end of each battery pack is a positive electrode, and the second end of each battery pack is a negative electrode; or, the first end of each battery pack is a negative electrode, and the second end of each battery pack is a positive electrode. Since the battery pack is connected to the power module and is not directly connected in parallel with the DC bus, the voltage of the DC bus is not restricted by the voltage of the battery pack and can be adjusted to a fixed value as needed. The distribution switches, cables, etc. downstream of the DC bus only need to meet the fixed voltage, thereby reducing the downstream DC distribution cost.
  • FIG. 1 is a schematic diagram of a DC power supply system in the prior art provided by a first embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a DC power supply system with a fixed output voltage provided by a second embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a DC power supply system with a fixed output voltage provided by a third embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a DC power supply system with a fixed output voltage provided by a fourth embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a DC power supply system with a fixed output voltage provided by a fifth embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a DC power supply system with a fixed output voltage provided by a sixth embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a DC power supply system with a fixed output voltage provided by a seventh embodiment of the present invention.
  • FIG8 is a schematic diagram of a DC power supply system with a fixed output voltage provided by an eighth embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a power module provided in a ninth embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a power module provided in accordance with a tenth embodiment of the present invention.
  • FIG. 11 is a schematic diagram of a power module provided in the eleventh embodiment of the present invention.
  • FIG. 12 is a schematic diagram of a power module provided in a twelfth embodiment of the present invention.
  • FIG. 13 is a schematic diagram of a power module provided in the thirteenth embodiment of the present invention.
  • each battery pack is connected to a corresponding power module, and the charging and discharging process of each battery pack is controlled by the corresponding power module, so that the DC bus is not affected by the voltage of the battery pack and can maintain a fixed voltage output.
  • Each battery pack is not connected in parallel to the same DC bus, which facilitates the charging and discharging test of a single battery pack, and the battery pack does not have the problem of overcharging, overdischarging, and current sharing between groups.
  • FIG2 is a schematic diagram of a DC power supply system with a fixed output voltage provided by a second embodiment of the present invention.
  • the DC power supply system with a fixed output voltage provided by an embodiment of the present invention includes at least one battery pack 1 and a power module 2 corresponding to each battery pack 1, wherein:
  • each battery group 1 is connected to the corresponding power module 2, the second end of each battery group 1 is connected to the DC bus, and the output of each power module 2 is connected to the DC bus; wherein the first end of each battery group 1 is the positive electrode, and the second end of each battery group 1 is the negative electrode; or, the first end of each battery group 1 is the negative electrode, and the second end of each battery group 1 is the positive electrode.
  • the input end of the power module 2 is connected to three-phase AC power, such as the mains power, and the three-phase AC power is converted into DC power to supply the DC bus, and the DC bus supplies power to the load.
  • the power module 2 can charge the corresponding battery pack 1.
  • the battery pack 1 replaces the corresponding power module 2 to provide DC power to the DC bus.
  • the second end of the battery pack 1 When the first end of the battery pack 1 is the positive pole, the second end of the battery pack 1 is the negative pole, and the second end of the battery pack 1 is connected to the negative pole of the DC bus; when the first end of the battery pack 1 is the negative pole, the second end of the battery pack 1 is the positive pole, and the second end of the battery pack 1 is connected to the positive pole of the DC bus.
  • the power module 2 converts the external AC power into DC power and supplies it to the DC bus; when the external AC power stops supplying power due to abnormal conditions such as power outages and tripping, the battery pack 1 supplies power to the DC bus to ensure that the load connected to the DC bus is not disconnected.
  • the first end of the battery pack 1 is a positive electrode, and the first end of the battery pack 1 is connected to the corresponding power module 2; the second end of the battery pack 1 is a negative electrode, and the second end of the battery pack 1 is connected to the negative electrode of the DC bus.
  • the number of power modules 2 corresponding to the battery pack 1 can be m, where m is a positive integer, and the specific value of m is set according to actual needs, for example, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, etc., which is not limited in the embodiment of the present invention.
  • the DC bus can supply power to n loads (Load), and the specific value of n is set according to actual needs, which is not limited in the embodiment of the present invention.
  • the first end of the battery pack 1 is a negative electrode, and the first end of the battery pack 1 is connected to the corresponding power module 2; the second end of the battery pack 1 is a positive electrode, and the second end of the battery pack 1 is connected to the positive electrode of the DC bus.
  • the number of power modules 2 corresponding to the battery pack 1 can be n, where n is a positive integer.
  • the number of power modules 2 corresponding to the battery pack 1 is set according to actual needs, for example, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, etc., which is not limited in the embodiment of the present invention.
  • the DC bus can supply power to n loads (Load), and the specific value of n is set according to actual needs, which is not limited in the embodiment of the present invention.
  • the DC power supply system with fixed output voltage provided by the embodiment of the present invention includes at least one battery pack and a power module corresponding to each battery pack, wherein the first end of each battery pack is connected to the corresponding power module, the second end of each battery pack is connected to the DC bus, and the output of each power module is on the DC bus; wherein the first end of each battery pack is a positive electrode, and the second end of each battery pack is a negative electrode; or, the first end of each battery pack is a negative electrode, and the second end of each battery pack is a positive electrode. Since the battery pack is connected to the power module and is not directly connected in parallel with the DC bus, the voltage of the DC bus is not restricted by the voltage of the battery pack and can be adjusted to a fixed value as needed.
  • the distribution switches, cables, etc. downstream of the DC bus only need to meet the fixed voltage, thereby reducing the downstream DC distribution cost.
  • the power module corresponding to each battery pack can independently manage the charge and discharge of the battery pack.
  • the battery pack can also be used to adjust the power supply of the power grid, that is, to cut the peak and fill the valley of the power supply of the power grid, saving electricity costs.
  • FIG5 is a schematic diagram of a DC power supply system with a fixed output voltage provided by the fifth embodiment of the present invention.
  • the first end of each battery pack 1 is connected to the DC bus through a corresponding short-circuit protection module 3.
  • the short-circuit protection module 3 provided between the battery pack 1 and the DC bus can improve the short-circuit current capability of the system, and when the downstream load circuit is short-circuited, it can shorten the short-circuit protection action time and quickly isolate the short-circuit fault.
  • the short-circuit protection module 3 can adopt a diode or a thyristor, which is selected according to actual needs, and the embodiment of the present invention does not limit it.
  • the short-circuit protection module 3 uses a diode D1.
  • the first end of the battery pack 1 is a positive electrode
  • the first end of the battery pack 1 is connected to the positive electrode of the corresponding first diode D1
  • the negative electrode of the first diode D1 is connected to the negative electrode of the DC bus.
  • the first end of the battery pack 1 is a negative electrode
  • the first end of the battery pack 1 is connected to the negative electrode of the corresponding first diode D1
  • the positive electrode of the first diode D1 is connected to the positive electrode of the DC bus.
  • FIG8 is a schematic diagram of a DC power supply system with a fixed output voltage provided by the eighth embodiment of the present invention.
  • an overcurrent protection module 4 is respectively provided at the first end and the second end of each battery pack 1, that is, an overcurrent protection module 4 is provided between the first end of each battery pack and the corresponding power module 2, and an overcurrent protection module 4 is provided between the first end of each battery pack and the corresponding DC bus.
  • the short-circuit current or overload current in the circuit is suppressed by the overcurrent protection module 4.
  • the overcurrent protection module 4 can adopt a fuse or a protection switch, which is selected according to actual needs, and the embodiment of the present invention does not limit it.
  • each battery pack 1 corresponds to one or more power modules 2.
  • the specific number of power modules 2 corresponding to each battery pack 1 is set according to actual needs, and the embodiment of the present invention does not limit it.
  • FIG 9 is a schematic diagram of a power module provided by the ninth embodiment of the present invention.
  • the power module 2 further includes an input filter unit 21, an AC-DC conversion unit 22, an output filter unit 23 and a charging and discharging unit 24.
  • the input filter unit 21, the AC-DC conversion unit 22 and the output filter unit 23 are connected in sequence, the charging and discharging unit 24 is connected to the line between the AC-DC conversion unit 22 and the output filter unit 23, and the first end of the battery pack 1 corresponding to the power module 2 is connected to the charging and discharging unit 24.
  • the input end of the input filter unit 21 is connected to three-phase AC power, which is used to filter out electromagnetic interference in the AC power.
  • the AC-DC conversion unit 22 is used to convert the input AC power into DC power output.
  • the output filter unit 23 is used to eliminate electromagnetic interference in the input DC power.
  • the positive output end of the output filter unit 23 is connected to the positive pole of the DC bus, and the negative output end of the output filter unit 23 is connected to the negative pole of the DC bus.
  • the positive output terminal X of the AC-DC conversion unit 22 is connected to the first end of the battery pack 1 through the charging and discharging unit 24, and the negative output terminal Y of the AC-DC conversion unit 22 is connected to the second end of the battery pack 1 through the charging and discharging unit 24 and the negative pole of the DC bus, and the second end of the battery pack 1 is connected to the negative pole of the DC bus;
  • the negative output terminal Y of the AC-DC conversion unit 22 is connected to the first end of the battery pack 1 through the charging and discharging unit 24, and the negative output terminal Y of the AC-DC conversion unit 22 is connected to the second end of the battery pack 1 through the charging and discharging unit 24 and the negative pole of the DC bus, and the second end of the battery pack 1 is connected to the positive pole of the DC bus.
  • FIG 10 is a schematic diagram of a power module provided in the tenth embodiment of the present invention.
  • the power module 2 further includes an anti-backflow unit 25, and the anti-backflow unit 25 is connected to the output end of the output filter unit 23.
  • the anti-backflow unit 25 is used to prevent the current at the output end of the output filter unit 23 from being backflowed into the power module 2, thereby improving the safety of the power module.
  • the anti-backflow unit 25 can be a diode, the anode of the diode is connected to the positive output end of the output filter unit 23, and the cathode of the diode is connected to the positive electrode of the DC bus.
  • FIG 11 is a schematic diagram of a power module provided by the eleventh embodiment of the present invention.
  • the power module 2 includes an input filter unit 21, an AC-DC conversion unit 22, an output filter unit 23, a charging unit 27 and a boost unit 26.
  • the input filter unit 21, the AC-DC conversion unit 22, the boost unit 26 and the output filter unit 23 are connected in sequence.
  • the boost unit 26 is respectively connected to the AC-DC conversion unit 22 and the output filter unit 23.
  • the charging unit 27 is connected to the line between the AC-DC conversion unit 22 and the boost unit 26.
  • the first end of the battery pack 1 corresponding to the power module 2 is connected to the charging unit 27.
  • the boost unit 26 is used to convert the input voltage of the boost unit 26 into a target voltage output, and can act as a discharge unit when the battery pack 1 is discharged.
  • the boost unit 26 converts the voltage output by the AC-DC conversion unit 22 into a target voltage output; when powered by the battery pack 1, the boost unit 26 converts the voltage output by the battery pack 1 into a target voltage output.
  • the positive output terminal X of the AC-DC conversion unit 22 is connected to the first end of the battery pack 1 through the charging unit 27, and the negative output terminal Y of the AC-DC conversion unit 22 is connected to the second end of the battery pack 1 through the charging unit 27 and the negative pole of the DC bus, and the second end of the battery pack 1 is connected to the negative pole of the DC bus;
  • the negative output terminal Y of the AC-DC conversion unit 22 is connected to the first end of the battery pack 1 through the charging unit 27, and the negative output terminal Y of the AC-DC conversion unit 22 is connected to the second end of the battery pack 1 through the charging unit 27 and the negative pole of the DC bus, and the second end of the battery pack 1 is connected to the positive pole of the DC bus.
  • FIG. 12 is a schematic diagram of a power module provided in the twelfth embodiment of the present invention.
  • the boost unit 26 includes an inductor L1, a switch tube Q1, a diode D2 and a capacitor C1, wherein:
  • the first end of the inductor L1 is connected to the first end of the AC-DC conversion unit 22, the second end of the inductor L1 is respectively connected to the positive electrode of the diode D2 and the first end of the switch tube Q1, the cathode of the diode D2 is connected to the first end of the capacitor C1, the cathode of the diode D2 is connected to the first end of the output filter unit 23, the second end of the switch tube Q1 is respectively connected to the second end of the capacitor C1 and the second end of the AC-DC conversion unit 22, and the second end of the capacitor C1 is connected to the second end of the output filter unit 23.
  • the output filter unit 23 outputs the target voltage.
  • the specific models and parameters of the inductor L1, the switch tube Q1, the diode D2, and the capacitor C1 are selected according to actual needs, and are not limited in the embodiment of the present invention.
  • FIG13 is a schematic diagram of a power module provided by the thirteenth embodiment of the present invention.
  • the power module 2 further includes a voltage regulating unit 28, and the voltage regulating unit 28 is connected to the line between the boosting unit 26 and the output filter unit 23.
  • the voltage regulating unit 28 is set to adjust the voltage boosted by the boosting unit 26 to the target voltage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Direct Current Feeding And Distribution (AREA)

Abstract

一种固定输出电压的直流供电系统,系统包括至少一个电池组(1)和每个电池组(1)对应的电源模块(2),其中:每个电池组(1)的第一端与对应的电源模块(2)相连,每个电池组(1)的第二端与直流母线相连,每个电源模块(2)的输出并在直流母线上;其中,每个电池组(1)的第一端为正极,每个电池组(1)的第二端为负极;或者,每个电池组(1)的第一端为负极,每个电池组(1)的第二端为正极。该固定输出电压的直流供电系统,减少了下游的直流配电成本。

Description

一种固定输出电压的直流供电系统 技术领域
本发明涉及供电设备技术领域,具体涉及一种固定输出电压的直流供电系统。
背景技术
在数据机房供电中,要求24小时不间断供电,为了提高供电系统可靠性,通常会采用电池作为后备电源。
图1为一种直流供电系统的结构示意图,如图1所示,直流供电系统包括多组电源模块,多个电池组和多组负载分路,电源模块将输入的交流电转换为直流电输出,多个电池组并联在同一直流母线上,由于直流母线的电压需要与电池组的电压范围相匹配,导致下游用电设备的配电开关、线缆、服务器电源等都需要满足该电压范围。造成配电开关、线缆、服务器电源等需要按照最低的工作电压选取,开关容量大,线缆粗,下游的直流配电系统成本高。
发明内容
针对现有技术中的问题,本发明实施例提供一种固定输出电压的直流供电系统,能够至少部分地解决现有技术中存在的问题。
本发明提出一种固定输出电压的直流供电系统,包括至少一个电池组和每个电池组对应的电源模块,其中:
每个电池组的第一端与对应的电源模块相连,每个电池组的第二端与直流母线相连,每个电源模块的输出并在所述直流母线上;其中,每个电池组的第一端为正极,每个电池组的第二端为负极;或者,每个电池组的第一端为负极,每个电池组的第二端为正极。
进一步地,每个电池组的第一端通过对应的短路保护模块与所述直流母线相连。
进一步地,所述短路保护模块采用二极管或者可控硅。
进一步地,每个电池组的第一端和第二端分别设置过流保护模块。
进一步地,所述过流保护模块采用熔丝或者保护开关。
进一步地,每个电池组对应多个电源模块。
进一步地,所述电源模块包括输入滤波单元、交流直流转换单元、输出滤波单元和充电放电单元,所述输入滤波单元、所述交流直流转换单元和所述输出滤波单元依次相连,所述充电放电单元接于所述交流直流转换单元和所述输出滤波单元之间的线路上,所述电源模块对应的电池组的第一端与所述充电放电单元相连。
进一步地,所述电源模块还包括防倒灌单元,所述防倒灌单元接于所述输出滤波单元的输出端。
进一步地,所述电源模块还包括升压单元,相应地,所述充电放电单元替换为充电单元;所述升压单元分别与所述交流直流转换单元和所述输出滤波单元相连,所述充电单元接于所述交流直流转换单元和所述升压单元之间的线路上。
进一步地,所述升压单元包括电感、开关管、二极管和电容,其中:
所述电感的第一端与所述交流直流转换单元的第一端相连,所述电感的第二端分别与所述二极管的正极和所述开关管的第一端相连,所述二极管的负极和所述电容的第一端相连,所述二极管的负极与所述输出滤波单元的第一端相连,所述开关管的第二端分别与所述电容的第二端和所述交流直流转换单元的第二端相连,所述电容的第二端与所述输出滤波单元的第二端相连。
进一步地,所述电源模块还包括调压单元,所述调压单元接于所述升压单元和所述输出滤波单元之间的线路上。
本发明实施例提供的固定输出电压的直流供电系统,包括至少一个电池组和每个电池组对应的电源模块,每个电池组的第一端与对应的电源模块相连,每个电池组的第二端与直流母线相连,每个电源模块的输出并在所述直流母线上;其中,每个电池组的第一端为正极,每个电池组的第二端为负极;或者,每个电池组的第一端为负极,每个电池组的第二端为正极,由于电池组接入到电源模块,并不直接与直流母线并联,所以直流母线的电压不受电池组的电压制约,可以根据需要调整为固定值,直流母线下游的配电开关,线缆等只需要满足该固定电压即可,从而减少了下游的直流配电成本。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明第一实施例提供的现有技术中的直流供电系统的示意图。
图2是本发明第二实施例提供的固定输出电压的直流供电系统的示意图。
图3是本发明第三实施例提供的固定输出电压的直流供电系统的示意图。
图4是本发明第四实施例提供的固定输出电压的直流供电系统的示意图。
图5是本发明第五实施例提供的固定输出电压的直流供电系统的示意图。
图6是本发明第六实施例提供的固定输出电压的直流供电系统的示意图。
图7是本发明第七实施例提供的固定输出电压的直流供电系统的示意图。
图8是本发明第八实施例提供的固定输出电压的直流供电系统的示意图。
图9是本发明第九实施例提供的电源模块的示意图。
图10是本发明第十实施例提供的电源模块的示意图。
图11是本发明第十一实施例提供的电源模块的示意图。
图12是本发明第十二实施例提供的电源模块的示意图。
图13是本发明第十三实施例提供的电源模块的示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚明白,下面结合附图对本发明实施例做进一步详细说明。在此,本发明的示意性实施例及其说明用于解释本发明,但并不作为对本发明的限定。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
本发明实施例提供的一种固定输出电压的直流供电系统,每个电池组接入到对应的电源模块,每个电池组的充放电过程受对应的电源模块控制,从而使直流母线不受电池组的电压影响,可保持固定电压输出。每个电池组不并联在同一直流母线,便于对单个电池组分别进行充放电测试,并且电池组不存在过充过放,以及组间均流的问题。
图2是本发明第二实施例提供的固定输出电压的直流供电系统的示意图,如图2所示,本发明实施例提供的固定输出电压的直流供电系统,包括至少一个电池组1和每个电池组1对应的电源模块2,其中:
每个电池组1的第一端与对应的电源模块2相连,每个电池组1的第二端与直流母线相连,每个电源模块2的输出并在所述直流母线上;其中,每个电池组1的第一端为正极,每个电池组1的第二端为负极;或者,每个电池组1的第一端为负极,每个电池组1的第二端为正极。
具体地,电源模块2的输入端接三相交流电,比如接入市电,将三相交流电转换为直流电供给直流母线,直流母线给负载供电。电源模块2可以给对应的电池组1充电。当电源模块2外接的三相交流电断开时,电池组1替代对应的电源模块2,为直流母线提供直流电。当电池组1的第一端为正极时,电池组1的第二端为负极,电池组1的第二端与直流母线的负极相连;当电池组1的第一端为负极时,电池组1的第二端为正极,电池组1的第二端与直流母线的正极相连。
所述固定输出电压的直流供电系统正常工作时,由电源模块2将外接交流电转换为直流电供给直流母线;当外接交流电由于停电、跳闸等异常情况停止供电时,由电池组1对直流母线进行供电,保证与直流母线相连的负载不断电。
例如,如图3所示,电池组1的第一端为正极,电池组1的第一端与对应的电源模块2相连;电池组1的第二端为负极,电池组1的第二端与直流母线的负极相连。电池组1对应的电源模块2可以为m个,m为正整数,m的具体取值根据实际需要进行设置,例如,1、2、3、4、5、6、7、8、9、10等正整数,本发明实施例不做限定。直流母线可以为n个负载(Load)供电,n的具体取值根据实际需要进行设置,本发明实施例不做限定。
例如,如图4所示,电池组1的第一端为负极,电池组1的第一端与对应的电源模块2相连;电池组1的第二端为正极,电池组1的第二端与直流母线的正极相连。电池组1对应的电源模块2可以为n个,n为正整数,电池组1对应的电源模块2的数量根据实际需要进行设置,例如,1、2、3、4、5、6、7、8、9、10等正整数,本发明实施例不做限定。直流母线可以为n个负载(Load)供电,n的具体取值根据实际需要进行设置,本发明实施例不做限定。
本发明实施例提供的固定输出电压的直流供电系统,包括至少一个电池组和每个电池组对应的电源模块,每个电池组的第一端与对应的电源模块相连,每个电池组的第二端与直流母线相连,每个电源模块的输出并在所述直流母线上;其中,每个电池组的第一端为正极,每个电池组的第二端为负极;或者,每个电池组的第一端为负极,每个电池组的第二端为正极,由于电池组接入到电源模块,并不直接与直流母线并联,所以直流母线的电压不受电池组的电压制约,可以根据需要调整为固定值,直流母线下游的配电开关,线缆等只需要满足该固定电压即可,从而减少了下游的直流配电成本。此外,每个电池组对应的电源模块可以对该电池组进行独立的充放电管理。还可以利用电池组进行电网的供电调节,即对电网供电的削峰填谷,节省电费。
图5是本发明第五实施例提供的固定输出电压的直流供电系统的示意图,如图5所示,在上述各实施例的基础上,进一步地,每个电池组1的第一端通过对应的短路保护模块3与所述直流母线相连。电池组1与直流母线之间设置的短路保护模块3,可以提高系统的短路电流能力,在下游负载电路短路时,能够缩短短路保护动作时间,快速隔离短路故障。其中,短路保护模块3可以采用二极管或者可控硅,根据实际需要进行选择,本发明实施例不做限定。
例如,短路保护模块3采用二极管D1。如图6所示,电池组1的第一端为正极,电池组1的第一端与对应的第一二极管D1的正极相连,第一二极管D1的负极与直流母线的负极相连。如图7所示,电池组1的第一端为负极,电池组1的第一端与对应的第一二极管D1的负极相连,第一二极管D1的正极与直流母线的正极相连。
图8是本发明第八实施例提供的固定输出电压的直流供电系统的示意图,如图8所示,在上述各实施例的基础上,进一步地,每个电池组1的第一端和第二端分别设置过流保护模块4,即每个电池组的第一端与对应的电源模块2之间设置一个过流保护模块4,每个电池组的第一端与对应的直流母线之间设置一个过流保护模块4。通过过流保护模块4抑制电路中的短路电流或者过载电流。过流保护模块4可以采用熔丝或者保护开关,根据实际需要进行选择,本发明实施例不做限定。
在上述各实施例的基础上,进一步地,每个电池组1对应一个或多个电源模块2。每个电池组1对应的电源模块2的具体数量根据实际需要进行设置,本发明实施例不做限定。
图9是本发明第九实施例提供的电源模块的示意图,如图9所示,在上述各实施例的基础上,进一步地,电源模块2包括输入滤波单元21、交流直流转换单元22、输出滤波单元23和充电放电单元24,输入滤波单元21、交流直流转换单元22和输出滤波单元23依次相连,充电放电单元24接于交流直流转换单元22和输出滤波单元23之间的线路上,电源模块2对应的电池组1的第一端与充电放电单元24相连。
具体地,输入滤波单元21的输入端接三相交流电,用于滤除交流电中的电磁干扰。交流直流转换单元22用于将输入的交流电转换为直流电输出。输出滤波单元23用于消除输入的直流电中的电磁干扰。输出滤波单元23的正极输出端接直流母线的正极,输出滤波单元23的负极输出端接直流母线的负极。在电源模块2对电池组1进行充电时,充电放电单元24将输入的直流电转换为对电池组1充电的电流;在电池组1为直流母线供电时,充电放电单元24将来自电池组1的直流电转换输出。
当电源模块2对应的电池组1的第一端为正极时,交流直流转换单元22的正极输出端X通过充电放电单元24与电池组1的第一端相连,交流直流转换单元22的负极输出端Y通过充电放电单元24以及直流母线的负极与电池组1的第二端相连,电池组1的第二端与直流母线的负极相连;当电源模块2对应的电池组1的第一端为负极时,交流直流转换单元22的负极输出端Y通过充电放电单元24与电池组1的第一端相连,交流直流转换单元22的负极输出端Y通过充电放电单元24以及直流母线的负极与电池组1的第二端相连,电池组1的第二端与直流母线的正极相连。
图10是本发明第十实施例提供的电源模块的示意图,如图10所示,在上述各实施例的基础上,进一步地,电源模块2还包括防倒灌单元25,防倒灌单元25接于输出滤波单元23的输出端。
具体地,防倒灌单元25用于防止输出滤波单元23的输出端的电流反灌回电源模块2,提高电源模块的安全性。防倒灌单元25可以采用二极管,二极管的正极与输出滤波单元23的正极输出端相连,二极管的负极与直流母线的正极相连。
图11是本发明第十一实施例提供的电源模块的示意图,如图11所示,在上述各实施例的基础上,进一步地,电源模块2包括输入滤波单元21、交流直流转换单元22、输出滤波单元23、充电单元27和升压单元26,输入滤波单元21、交流直流转换单元22、升压单元26和输出滤波单元23依次相连,升压单元26分别与交流直流转换单元22和输出滤波单元23相连,充电单元27接于交流直流转换单元22和升压单元26之间的线路上,电源模块2对应的电池组1的第一端与充电单元27相连。
具体地,升压单元26用于将升压单元26的输入电压转换为目标电压输出,同时在电池组1放电时,能够充当放电单元。当通过外接三相交流电供电时,升压单元26将交流直流转换单元22输出的电压转换为目标电压输出;当通过电池组1供电时,升压单元26将电池组1输出的电压转换为目标电压输出。当电源模块2对应的电池组1的第一端为正极时,交流直流转换单元22的正极输出端X通过充电单元27与电池组1的第一端相连,交流直流转换单元22的负极输出端Y通过充电单元27以及直流母线的负极与电池组1的第二端相连,电池组1的第二端与直流母线的负极相连;当电源模块2对应的电池组1的第一端为负极时,交流直流转换单元22的负极输出端Y通过充电单元27与电池组1的第一端相连,交流直流转换单元22的负极输出端Y通过充电单元27以及直流母线的负极与电池组1的第二端相连,电池组1的第二端与直流母线的正极相连。
图12是本发明第十二实施例提供的电源模块的示意图,如图12所示,在上述各实 施例的基础上,进一步地,升压单元26包括电感L1、开关管Q1、二极管D2和电容C1,其中:
电感L1的第一端与交流直流转换单元22的第一端相连,电感L1的第二端分别与二极管D2的正极和开关管Q1的第一端相连,二极管D2的负极和电容C1的第一端相连,二极管D2的负极与输出滤波单元23的第一端相连,开关管Q1的第二端分别与电容C1的第二端和交流直流转换单元22的第二端相连,电容C1的第二端与输出滤波单元23的第二端相连。
具体地,当开关管Q1导通时,电感L1内的电流上升,当功率开关管Q1截止时,储存在电感L1中的电流通过二极管D2对电容C1进行充电,当电容C1两端的电压达到目标电压时,使输出滤波单元23输出目标电压。其中,电感L1、开关管Q1、二极管D2和电容C1的具体型号和参数根据实际需要进选择,本发明实施例不做限定。
图13是本发明第十三实施例提供的电源模块的示意图,如图13所示,在上述各实施例的基础上,进一步地,电源模块2还包括调压单元28,调压单元28接于升压单元26和输出滤波单元23之间的线路上。为了防止升压单元26将电压升的过高,设置调压单元28将升压单元26升压后的电压调整到目标电压。
在本说明书的描述中,参考术语“一个实施例”、“一个具体实施例”、“一些实施例”、“例如”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (11)

  1. 一种固定输出电压的直流供电系统,其特征在于,包括至少一个电池组和每个电池组对应的电源模块,其中:
    每个电池组的第一端与对应的电源模块相连,每个电池组的第二端与直流母线相连,每个电源模块的输出并在所述直流母线上;其中,每个电池组的第一端为正极,每个电池组的第二端为负极;或者,每个电池组的第一端为负极,每个电池组的第二端为正极。
  2. 根据权利要求1所述的固定输出电压的直流供电系统,其特征在于,每个电池组的第一端通过对应的短路保护模块与所述直流母线相连。
  3. 根据权利要求2所述的固定输出电压的直流供电系统,其特征在于,所述短路保护模块采用二极管或者可控硅。
  4. 根据权利要求1所述的固定输出电压的直流供电系统,其特征在于,每个电池组的第一端和第二端分别设置过流保护模块。
  5. 根据权利要求4所述的固定输出电压的直流供电系统,其特征在于,所述过流保护模块采用熔丝或者保护开关。
  6. 根据权利要求1所述的固定输出电压的直流供电系统,其特征在于,每个电池组对应多个电源模块。
  7. 根据权利要求1至6任一项所述的固定输出电压的直流供电系统,其特征在于,所述电源模块包括输入滤波单元、交流直流转换单元、输出滤波单元和充电放电单元,所述输入滤波单元、所述交流直流转换单元和所述输出滤波单元依次相连,所述充电放电单元接于所述交流直流转换单元和所述输出滤波单元之间的线路上,所述电源模块对应的电池组的第一端与所述充电放电单元相连。
  8. 根据权利要求7所述的固定输出电压的直流供电系统,其特征在于,所述电源模块还包括防倒灌单元,所述防倒灌单元接于所述输出滤波单元的输出端。
  9. 根据权利要求7所述的固定输出电压的直流供电系统,其特征在于,所述电源模块还包括升压单元,相应地,所述充电放电单元替换为充电单元;所述升压单元分别与所述交流直流转换单元和所述输出滤波单元相连,所述充电单元接于所述交流直流转换单元和所述升压单元之间的线路上。
  10. 根据权利要求9所述的固定输出电压的直流供电系统,其特征在于,所述升压单元包括电感、开关管、二极管和电容,其中:
    所述电感的第一端与所述交流直流转换单元的第一端相连,所述电感的第二端分别与所述二极管的正极和所述开关管的第一端相连,所述二极管的负极和所述电容的第一端相连,所述二极管的负极与所述输出滤波单元的第一端相连,所述开关管的第二端分别与所述电容的第二端和所述交流直流转换单元的第二端相连,所述电容的第二端与所述输出滤波单元的第二端相连。
  11. 根据权利要求9所述的固定输出电压的直流供电系统,其特征在于,还包括调压单元,所述调压单元接于所述升压单元和所述输出滤波单元之间的线路上。
PCT/CN2023/112128 2023-01-09 2023-08-10 一种固定输出电压的直流供电系统 WO2024148806A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202310029459.3 2023-01-09
CN202310029459.3A CN115940114A (zh) 2023-01-09 2023-01-09 一种固定输出电压的直流供电系统

Publications (1)

Publication Number Publication Date
WO2024148806A1 true WO2024148806A1 (zh) 2024-07-18

Family

ID=86698019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/112128 WO2024148806A1 (zh) 2023-01-09 2023-08-10 一种固定输出电压的直流供电系统

Country Status (2)

Country Link
CN (1) CN115940114A (zh)
WO (1) WO2024148806A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115940114A (zh) * 2023-01-09 2023-04-07 上海安世博能源科技有限公司 一种固定输出电压的直流供电系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107370201A (zh) * 2017-06-29 2017-11-21 杭州奥能电源设备有限公司 基于蓄电池串并联组合的直流电源系统
CN207426791U (zh) * 2017-09-20 2018-05-29 深圳市泰昂能源科技股份有限公司 直流电源装置及电源系统
CN213661215U (zh) * 2021-05-13 2021-07-09 潍坊五洲浩特电气有限公司 一种直流电源并联系统
CN114977168A (zh) * 2022-06-17 2022-08-30 上海安世博能源科技有限公司 供电系统及供电方法
JP7191497B1 (ja) * 2021-08-31 2022-12-19 西芝電機株式会社 船舶の電源系統システム、および、船舶の電源系統システムの使用方法
CN115528778A (zh) * 2022-10-18 2022-12-27 国网安徽省电力有限公司池州供电公司 一种并联结构的直流电源系统及其控制电路
CN115940114A (zh) * 2023-01-09 2023-04-07 上海安世博能源科技有限公司 一种固定输出电压的直流供电系统
CN219164234U (zh) * 2023-01-09 2023-06-09 上海安世博能源科技有限公司 一种固定输出电压的直流供电系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107370201A (zh) * 2017-06-29 2017-11-21 杭州奥能电源设备有限公司 基于蓄电池串并联组合的直流电源系统
CN207426791U (zh) * 2017-09-20 2018-05-29 深圳市泰昂能源科技股份有限公司 直流电源装置及电源系统
CN213661215U (zh) * 2021-05-13 2021-07-09 潍坊五洲浩特电气有限公司 一种直流电源并联系统
JP7191497B1 (ja) * 2021-08-31 2022-12-19 西芝電機株式会社 船舶の電源系統システム、および、船舶の電源系統システムの使用方法
CN114977168A (zh) * 2022-06-17 2022-08-30 上海安世博能源科技有限公司 供电系统及供电方法
CN115528778A (zh) * 2022-10-18 2022-12-27 国网安徽省电力有限公司池州供电公司 一种并联结构的直流电源系统及其控制电路
CN115940114A (zh) * 2023-01-09 2023-04-07 上海安世博能源科技有限公司 一种固定输出电压的直流供电系统
CN219164234U (zh) * 2023-01-09 2023-06-09 上海安世博能源科技有限公司 一种固定输出电压的直流供电系统

Also Published As

Publication number Publication date
CN115940114A (zh) 2023-04-07

Similar Documents

Publication Publication Date Title
CN104426157B (zh) 储能模块以及储能装置
JP5279147B2 (ja) 系統連系型電力保存システム及び電力保存システムの制御方法
US8552590B2 (en) Energy management system and grid-connected energy storage system including the energy management system
US10763682B2 (en) Energy storage system and controlling method thereof
CN102355042B (zh) 一种基于超级电容的电站直流电源装置及其供电方法
TWI470893B (zh) 電能供應系統
US10298006B2 (en) Energy storage system and method of driving the same
US20140361624A1 (en) Apparatus and methods for control of load power quality in uninterruptible power systems
US20120169124A1 (en) Output circuit for power supply system
US20140101462A1 (en) Energy-efficient uninterruptible electrical distribution systems and methods
CN116349106A (zh) 一种储能系统、储能系统的控制方法及光伏发电系统
KR20130099022A (ko) 에너지 저장 시스템용 전력 변환 시스템 및 이의 제어방법
CN111106750B (zh) 一种不间断电源及其电池组升降压电路
US20220140781A1 (en) Photovoltaic system
WO2024148806A1 (zh) 一种固定输出电压的直流供电系统
US20190267811A1 (en) Method and system for generation and distribution of high voltage direct current
CN117977501A (zh) 电池包
CN113098126B (zh) 电压补偿装置
CN219164234U (zh) 一种固定输出电压的直流供电系统
US11031808B2 (en) Power supply system
CN115955117A (zh) 一种用于桥接新能源发电、储能与微电网的直流电源变换装置
JP6722295B2 (ja) 電力変換システム、電力供給システムおよび電力変換装置
CN218526108U (zh) 储能电池集装箱的控制系统
TWI807405B (zh) 電能轉換系統
CN220306999U (zh) 一种电源管理装置及供电系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23915567

Country of ref document: EP

Kind code of ref document: A1