WO2024148593A1 - 单面双极的电化学膜及其制备方法和应用 - Google Patents
单面双极的电化学膜及其制备方法和应用 Download PDFInfo
- Publication number
- WO2024148593A1 WO2024148593A1 PCT/CN2023/072027 CN2023072027W WO2024148593A1 WO 2024148593 A1 WO2024148593 A1 WO 2024148593A1 CN 2023072027 W CN2023072027 W CN 2023072027W WO 2024148593 A1 WO2024148593 A1 WO 2024148593A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- membrane
- anode
- cathode
- electrochemical
- preparation
- Prior art date
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 290
- 238000002360 preparation method Methods 0.000 title claims abstract description 18
- 230000000295 complement effect Effects 0.000 claims abstract description 15
- 239000010405 anode material Substances 0.000 claims abstract description 12
- 239000010406 cathode material Substances 0.000 claims abstract description 12
- 238000000746 purification Methods 0.000 claims abstract description 8
- 238000011068 loading method Methods 0.000 claims abstract description 3
- 210000004379 membrane Anatomy 0.000 claims description 236
- 239000000919 ceramic Substances 0.000 claims description 62
- 239000000758 substrate Substances 0.000 claims description 52
- 238000004544 sputter deposition Methods 0.000 claims description 43
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 31
- 239000002041 carbon nanotube Substances 0.000 claims description 30
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 30
- 238000000034 method Methods 0.000 claims description 29
- 238000001755 magnetron sputter deposition Methods 0.000 claims description 22
- 239000000725 suspension Substances 0.000 claims description 18
- -1 polytetrafluoroethylene Polymers 0.000 claims description 14
- 238000003828 vacuum filtration Methods 0.000 claims description 13
- 210000002469 basement membrane Anatomy 0.000 claims description 12
- 238000000151 deposition Methods 0.000 claims description 12
- 230000008021 deposition Effects 0.000 claims description 12
- 229920002492 poly(sulfone) Polymers 0.000 claims description 9
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 9
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 9
- 238000005240 physical vapour deposition Methods 0.000 claims description 7
- 239000002904 solvent Substances 0.000 claims description 7
- 229910052782 aluminium Inorganic materials 0.000 claims description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 5
- 239000004952 Polyamide Substances 0.000 claims description 4
- 239000003651 drinking water Substances 0.000 claims description 4
- 235000020188 drinking water Nutrition 0.000 claims description 4
- 229910052755 nonmetal Inorganic materials 0.000 claims description 4
- 229920002647 polyamide Polymers 0.000 claims description 4
- 238000009210 therapy by ultrasound Methods 0.000 claims description 4
- 229910052723 transition metal Inorganic materials 0.000 claims description 4
- 150000003624 transition metals Chemical class 0.000 claims description 4
- 238000013329 compounding Methods 0.000 claims description 3
- 238000001035 drying Methods 0.000 claims description 3
- 238000004065 wastewater treatment Methods 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 40
- 238000006243 chemical reaction Methods 0.000 abstract description 16
- 238000005265 energy consumption Methods 0.000 abstract description 13
- 230000000694 effects Effects 0.000 abstract description 10
- 238000001914 filtration Methods 0.000 abstract description 8
- 238000005374 membrane filtration Methods 0.000 abstract description 3
- 239000008367 deionised water Substances 0.000 description 22
- 229910021641 deionized water Inorganic materials 0.000 description 22
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 20
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 19
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 18
- 229910052751 metal Inorganic materials 0.000 description 16
- 239000002184 metal Substances 0.000 description 16
- 238000000576 coating method Methods 0.000 description 15
- 238000000108 ultra-filtration Methods 0.000 description 14
- 239000000463 material Substances 0.000 description 13
- 229910052697 platinum Inorganic materials 0.000 description 12
- 238000010586 diagram Methods 0.000 description 11
- 239000002351 wastewater Substances 0.000 description 11
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 10
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 10
- XKMRRTOUMJRJIA-UHFFFAOYSA-N ammonia nh3 Chemical compound N.N XKMRRTOUMJRJIA-UHFFFAOYSA-N 0.000 description 10
- 229910052763 palladium Inorganic materials 0.000 description 10
- 239000010935 stainless steel Substances 0.000 description 10
- 229910001220 stainless steel Inorganic materials 0.000 description 10
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 9
- 229910052786 argon Inorganic materials 0.000 description 9
- 239000010453 quartz Substances 0.000 description 9
- 229910052710 silicon Inorganic materials 0.000 description 9
- 239000010703 silicon Substances 0.000 description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 9
- 238000005477 sputtering target Methods 0.000 description 9
- 229960005404 sulfamethoxazole Drugs 0.000 description 9
- JLKIGFTWXXRPMT-UHFFFAOYSA-N sulphamethoxazole Chemical compound O1C(C)=CC(NS(=O)(=O)C=2C=CC(N)=CC=2)=N1 JLKIGFTWXXRPMT-UHFFFAOYSA-N 0.000 description 9
- 238000011043 electrofiltration Methods 0.000 description 8
- 239000007789 gas Substances 0.000 description 8
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 7
- 230000008901 benefit Effects 0.000 description 7
- 239000011248 coating agent Substances 0.000 description 6
- 239000007772 electrode material Substances 0.000 description 6
- 239000011148 porous material Substances 0.000 description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 5
- 239000003344 environmental pollutant Substances 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 231100000719 pollutant Toxicity 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 230000015556 catabolic process Effects 0.000 description 4
- 238000006555 catalytic reaction Methods 0.000 description 4
- 238000006731 degradation reaction Methods 0.000 description 4
- 238000003487 electrochemical reaction Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 230000004907 flux Effects 0.000 description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 4
- 229910052737 gold Inorganic materials 0.000 description 4
- 239000010931 gold Substances 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 238000001000 micrograph Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 239000010970 precious metal Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 3
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 238000005202 decontamination Methods 0.000 description 3
- 230000003588 decontaminative effect Effects 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 238000007738 vacuum evaporation Methods 0.000 description 3
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229910002651 NO3 Inorganic materials 0.000 description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- MYSWGUAQZAJSOK-UHFFFAOYSA-N ciprofloxacin Chemical compound C12=CC(N3CCNCC3)=C(F)C=C2C(=O)C(C(=O)O)=CN1C1CC1 MYSWGUAQZAJSOK-UHFFFAOYSA-N 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000006479 redox reaction Methods 0.000 description 2
- 238000006722 reduction reaction Methods 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- WXNZTHHGJRFXKQ-UHFFFAOYSA-N 4-chlorophenol Chemical compound OC1=CC=C(Cl)C=C1 WXNZTHHGJRFXKQ-UHFFFAOYSA-N 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- MMDJDBSEMBIJBB-UHFFFAOYSA-N [O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[NH6+3] Chemical compound [O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[NH6+3] MMDJDBSEMBIJBB-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 230000003373 anti-fouling effect Effects 0.000 description 1
- 230000003064 anti-oxidating effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 229960003405 ciprofloxacin Drugs 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- IQFVPQOLBLOTPF-HKXUKFGYSA-L congo red Chemical compound [Na+].[Na+].C1=CC=CC2=C(N)C(/N=N/C3=CC=C(C=C3)C3=CC=C(C=C3)/N=N/C3=C(C4=CC=CC=C4C(=C3)S([O-])(=O)=O)N)=CC(S([O-])(=O)=O)=C21 IQFVPQOLBLOTPF-HKXUKFGYSA-L 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000005518 electrochemistry Effects 0.000 description 1
- 238000006056 electrooxidation reaction Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000012510 hollow fiber Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000010842 industrial wastewater Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000001471 micro-filtration Methods 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 239000010413 mother solution Substances 0.000 description 1
- 238000001728 nano-filtration Methods 0.000 description 1
- 229910021392 nanocarbon Inorganic materials 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 239000002071 nanotube Substances 0.000 description 1
- 150000002843 nonmetals Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229940090668 parachlorophenol Drugs 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 239000002957 persistent organic pollutant Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000001223 reverse osmosis Methods 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910021642 ultra pure water Inorganic materials 0.000 description 1
- 239000012498 ultrapure water Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/24—Dialysis ; Membrane extraction
- B01D61/28—Apparatus therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/15—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/96—Carbon-based electrodes
Definitions
- the present application relates to the field of membrane technology, and in particular to a single-sided bipolar electrochemical membrane and a preparation method and application thereof.
- the coupling technology of electrochemistry and membrane separation enhances the mass transfer efficiency and membrane separation efficiency of heterogeneous electrochemical reactions, and greatly improves the electrochemical reaction rate and membrane separation performance.
- the emerging electrochemical membrane can be used as a flow-through electrode membrane to trigger an electrochemical redox reaction in situ on the membrane surface during the filtration process.
- the electrochemical membrane also has the functions of resisting organic and biological pollution and self-purification and decontamination. Under the condition of power supply, the electrochemical membrane can repel ions, molecules and particles with the same charge in the water; it can generate oxidative free radicals to remove organic pollutants and microbial films deposited on the membrane surface; it can electrolyze water to produce microbubbles for membrane cleaning and self-purification, effectively extending the service life of the membrane.
- electrochemical membranes include two types: single-sided unipolar and bipolar double-sided.
- Single-sided unipolar electrochemical membranes require additional counter electrodes, which increases the difficulty of membrane component design, does not fully utilize the function of the counter electrode, and reduces the practicality of the electrochemical membrane.
- Bipolar double-sided electrochemical membranes can perform oxidation and reduction reactions on both sides of the membrane, and the synergistic effect of the cathode and anode can improve the efficiency of electrochemical oxidation-reduction reactions and even improve the selectivity of electrochemical reaction products.
- there is a certain thickness of base membrane material between the two poles of the double-sided bipolar electrochemical membrane This layer of material often has poor conductivity, which increases the transmission distance of electrons between the cathode and anode sides of the membrane, reduces the current conduction efficiency, and causes high energy consumption.
- the purpose of the present application is to provide a single-sided bipolar electrochemical membrane and a preparation method and application thereof, so as to solve the technical problem of high energy consumption cost of electrochemical membrane water treatment.
- the present application embodiment provides a method for preparing a single-sided bipolar electrochemical membrane.
- the method for preparing a single-sided bipolar electrochemical membrane comprises the following steps:
- anode material and the cathode material are respectively loaded on the same side surface of the substrate film through a mold to obtain an electrode layer formed by the anode and the cathode.
- the substrate membrane is a ceramic membrane, an anodized aluminum membrane, a polytetrafluoroethylene membrane, a polyamide membrane or a polysulfone membrane.
- the anode material and the cathode material respectively include one or both of a transition metal and a non-metal.
- the thickness of the electrode layer is 50 to 200 nm.
- the anode material and the cathode material are loaded on the base film by physical vapor deposition and vacuum filtration, respectively.
- the physical vapor deposition method adopts magnetron sputtering, and the magnetron sputtering satisfies one or more of the following (1) to (4):
- the angle between the target and the substrate film of magnetron sputtering is 30 to 60 degrees, and the distance is 5 to 20 cm;
- the sputtering chamber pressure of magnetron sputtering is ⁇ 10 -7 Pa;
- the applied bias voltage of magnetron sputtering is 40W to 70W;
- the deposition rate of magnetron sputtering is 1 to 10 nm/min.
- step c) includes:
- Drying yields an anode or cathode.
- the carbon nanotube suspension satisfies one or more of the following (1) to (3):
- the outer diameter of the carbon nanotubes is 13 to 18 cm and the length is 1 to 12 ⁇ m;
- the concentration of the carbon nanotube suspension is 0.4-1 mg/mL
- the carbon nanotube suspension is obtained by ultrasonic treatment for 10 to 20 minutes.
- the present application also provides an electrochemical membrane.
- the electrochemical membrane includes a substrate membrane and an electrode layer, wherein the substrate membrane includes a first surface and a second surface disposed opposite to each other; and the electrode layer includes The anode and cathode are formed at intervals, and both the anode and the cathode are arranged on the first surface of the base film.
- a third aspect of an embodiment of the present application provides an application of an electrochemical membrane in wastewater treatment or drinking water purification, wherein the electrochemical membrane is an electrochemical membrane obtained by any of the aforementioned preparation methods or the aforementioned electrochemical membrane.
- the present application provides a single-sided bipolar electrochemical membrane and a preparation method and application thereof, wherein a mold prepared according to the complementary patterns of the anode and cathode is attached to one side surface of a substrate membrane, and the anode material and the cathode material are respectively loaded on the same side surface of the substrate membrane using the mold, thereby preparing a single-sided bipolar electrochemical membrane.
- the single-sided bipolar electrochemical membrane does not require the addition of a counter electrode, and the finished membrane is easy to replace.
- the distance between the cathode and the anode is close, and a higher current density can be obtained at the same voltage than a conventional double-sided bipolar electrochemical membrane, thereby reducing the energy consumption required for the reaction and accelerating the reaction rate.
- FIG1 is a schematic diagram of the arrangement of cathode and anode coatings on the surface of an electrochemical membrane provided in Example 1 of the present application;
- FIG2 is a scanning electron microscope image of an unsprayed area (the gap between the anode and the cathode) of the electrochemical membrane provided in Example 1 of the present application;
- FIG3 is a scanning electron microscope image of the electrochemical film spraying area (cathode and anode) provided in Example 1 of the present application;
- FIG4 is a resistivity test diagram of different partitions of the electrochemical membrane provided in Example 1 of the present application.
- FIG5 is a graph showing the degradation efficiency of micropollutants under electrochemical membrane electrofiltration provided in Example 1 of the present application.
- FIG6 is a schematic diagram of the arrangement of cathode and anode coatings on the surface of an electrochemical membrane provided in Example 2 of the present application;
- FIG7 is a schematic diagram of the arrangement of cathode and anode coatings on the surface of an electrochemical membrane provided in Example 3 of the present application;
- FIG8 is a diagram showing the arrangement of cathode and anode coatings on the surface of the electrochemical membrane provided in Example 4 of the present application. Schematic diagram;
- FIG9 is a schematic diagram of the arrangement of cathode and anode coatings on the surface of an electrochemical membrane provided in Example 5 of the present application;
- FIG10 is a schematic diagram of the arrangement of cathode and anode coatings on the surface of an electrochemical membrane provided in Example 6 of the present application;
- FIG11 is a schematic diagram of the arrangement of cathode and anode coatings on the surface of an electrochemical membrane provided in Example 7 of the present application;
- FIG12 is a schematic diagram of the arrangement of cathode and anode coatings on the surface of an electrochemical membrane provided in Example 8 of the present application;
- FIG13 is a schematic diagram of the arrangement of the cathode and anode coatings on the surface of the electrochemical membrane provided in Example 9 of the present application.
- the first aspect of the present application provides a method for preparing a single-sided bipolar electrochemical membrane, comprising the following steps:
- the embodiment of the present application prepares the anode and cathode on the same side surface of the substrate membrane to obtain a single-sided bipolar electrochemical membrane, which can be used for water purification and membrane pollution control.
- a single-sided bipolar electrochemical membrane which can be used for water purification and membrane pollution control.
- the single-sided bipolar electrochemical membrane does not need to set a counter electrode, the finished membrane is easy to replace, and the practicality is high.
- the distance between the cathode and anode is close, and a higher current density can be generated under the same applied voltage conditions, which does not affect the basic function of membrane filtration, reduces the energy consumption required for the reaction and speeds up the reaction rate, and improves the electrochemical filtration water purification and anti-pollution effect.
- the electrochemical membrane of the embodiment of the present application is not limited to treating industrial wastewater, but can also be used to purify drinking water with high water quality requirements.
- the basement membrane can be designed as a microfiltration, ultrafiltration, nanofiltration or reverse osmosis membrane.
- the basement membrane can be pretreated, including the following steps: washing the basement membrane with deionized water for more than 1 to 10 times, and then soaking it in deionized water for more than 2 to 24 hours.
- the basement membrane is taken out and dried; for organic basement membranes, the basement membrane is continuously soaked in deionized water and stored at 1 to 4°C.
- the pretreatment of the basement membrane removes impurities on the surface of the basement membrane to avoid affecting the performance of the electrochemical membrane.
- the distribution of cathode and anode on the membrane surface is designed according to the electrochemical reaction principle. For example, if an electrochemical oxidation reaction is performed, the proportion of the anode of the prepared electrochemical membrane should be higher than that of the cathode. If a cathode and anode are used for a coordinated electrochemical catalytic reaction, the cathode and anode of the prepared electrochemical membrane each account for half of the total electrode area.
- a mold is prepared according to the complementary patterns of the cathode and anode. The mold can be made of stainless steel and is tightly attached to one side of the substrate membrane.
- the base membrane is a ceramic membrane or an anodized aluminum membrane.
- the ceramic membrane and the anodized aluminum membrane are inorganic membranes with certain mechanical strength and insulation properties, which can improve the impact resistance of the electrochemical membrane and effectively prevent the positive and negative electrodes from being short-circuited.
- a ceramic membrane or an anodized aluminum membrane with an asymmetric porous structure can effectively improve the mass transfer efficiency and thus increase the reaction rate.
- the thickness of the base membrane can be set to 100um to 10.0mm.
- the base membrane is made of polytetrafluoroethylene membrane, polyamide membrane or polysulfone membrane.
- Polytetrafluoroethylene membrane, polyamide membrane or polysulfone membrane is an organic membrane with insulating properties and bendable toughness, and can be used to design hollow fibers or rolled conductive membranes.
- the anode material and cathode material include one or two of transition metal and non-metal, for example Such as gold, silver, platinum, palladium, iridium, copper, iron, etc. and some of their alloys. Transition metals are good conductors of electricity and have one or more characteristics such as anti-oxidation, anti-corrosion, low overvoltage, and non-passivation. Non-metals can use carbon materials as electrode materials, such as carbon nanotubes, graphite, etc.
- the thickness of the electrode layer can be 50-200 nm, which can ensure the electrode redox or catalytic performance and reduce the thickness of the electrochemical membrane.
- the specific thickness of the electrode layer can be selected according to the different pollutants to be degraded.
- the anode material and cathode material are loaded on the substrate film by physical vapor deposition and vacuum filtration, respectively.
- Physical vapor deposition may include vacuum evaporation, magnetron sputtering and other methods. It is a mature surface coating technology that can form a uniform catalytic surface.
- Vacuum evaporation refers to a process method in which a coating material (or film material) is evaporated and gasified by a certain heating evaporation method under vacuum conditions, and the particles fly to the surface of the substrate to condense into a film. Vacuum evaporation has the advantages of simple film forming method, high film purity and density, unique film structure and performance.
- Magnetron sputtering has the advantages of simple equipment, easy control, large coating area and strong adhesion.
- the vacuum filtration method can compound the anode or cathode material on the substrate film, and the method of vacuum filtration to composite nano-carbon tubes on the membrane surface is simple to operate, does not require a large physical sputtering instrument, and is easy to operate. It is understandable that those skilled in the art can select the corresponding electrode material and the preparation method of the electrode layer according to the degradation efficiency requirements of different pollutants.
- the physical vapor deposition method uses magnetron sputtering, and the magnetron sputtering satisfies one or more of the following (1) to (4):
- the angle between the target and the substrate film of magnetron sputtering is 30 to 60 degrees, and the distance is 5 to 20 cm;
- the sputtering chamber pressure of magnetron sputtering is ⁇ 10 -7 Pa;
- the applied bias voltage of magnetron sputtering is 40W to 70W;
- the deposition rate of magnetron sputtering is 1 to 10 nm/min.
- Precious metals such as palladium, platinum, and gold can be loaded on the substrate membrane by magnetron sputtering.
- Precious metals such as palladium, platinum, and gold show high activity in catalysis.
- These precious metal nanoparticles with high conductivity can also effectively ensure the efficiency, stability, and sustainability of the electrochemical filtration process.
- the precious metal particles can penetrate into the membrane pores. The deeper internal pore sputtering ensures that the catalytic reaction occurs not only on the membrane surface, but also in the internal porous membrane structure. The catalytic reaction under the micro-nano space confinement within the pores is expected to change the reaction path and improve product selectivity.
- step c) includes: dispersing carbon nanotubes in a solvent to prepare a carbon nanotube suspension; compounding the carbon nanotube suspension to the anode region or cathode region of the substrate membrane by vacuum filtration; washing the solvent on the membrane surface by vacuum filtration; and drying to obtain the anode or cathode.
- Carbon nanotubes can be compounded on the substrate membrane by vacuum filtration. Carbon nanotubes have high hydrophilicity and conductivity, which prevents hydrophobic membrane pollution caused by hydrophobic carbon nanotubes.
- the carbon nanotube membrane anode can in-situ oxidize chloride ions in water into a variety of chlorine-containing active species including chlorine free radicals, which can selectively oxidize ammonia nitrogen into nitrogen gas on the one hand, and achieve self-cleaning of the membrane surface on the other hand.
- the carbon nanotube suspension satisfies one or more of the following (1) to (3):
- the outer diameter of the carbon nanotubes is 13 to 18 cm and the length is 1 to 12 ⁇ m;
- the concentration of the carbon nanotube suspension is 0.4-1 mg/mL
- the carbon nanotube suspension is obtained by ultrasonic treatment for 10 to 20 minutes.
- the carbon nanotubes can be ultrasonically dispersed in a DMSO (dimethyl sulfoxide) solvent to obtain a nanotube suspension.
- DMSO dimethyl sulfoxide
- the second aspect of the present application provides an electrochemical membrane.
- the electrochemical membrane is prepared by any of the above methods, and the electrochemical membrane includes a substrate membrane and an electrode layer, the substrate membrane includes a first surface and a second surface arranged opposite to each other; the electrode layer includes an anode and a cathode formed at intervals, and the anode and the cathode are both arranged on the first surface of the substrate membrane, that is, the anode and the cathode are located on the same surface of the substrate membrane, forming a single-sided bipolar electrochemical membrane, and the beneficial effects of the single-sided bipolar electrochemical membrane have been described above and will not be repeated here.
- a third aspect of the present application provides an application of an electrochemical membrane in wastewater treatment or drinking water purification, wherein the electrochemical membrane is an electrochemical membrane obtained by any of the aforementioned preparation methods or the aforementioned electrochemical membrane.
- the single-sided bipolar electrochemical membrane of Example 1 includes a ceramic ultrafiltration membrane with TiO2 and ZrO2 as main components and an electrode layer arranged on one side of the ceramic membrane.
- the molecular weight cutoff of the ceramic membrane is 300 ⁇ 20kDa, the diameter is 50 ⁇ 3mm, the thickness is 3 ⁇ 0.2mm, the effective area of the electrochemical membrane (the area on the membrane surface that can be sprayed) is 78.5cm2 , and the electrode layer is shown in Figure 1.
- the effective surface area of the electrochemical membrane is 44% of the membrane surface area for the cathode 2 layer, 44% for the anode 1 layer, and about 2% of the membrane surface area is not sprayed.
- the method for preparing the single-sided bipolar electrochemical membrane material of Example 1 comprises the following steps:
- Step 1 Clean the ceramic membrane substrate 6 times with deionized water, then immerse it in deionized water for 25 hours, take it out and dry it for later use;
- Step 2 Prepare a stainless steel mold according to the complementary patterns of the cathode and anode 1, and place the mold close to the surface of the base film (the mold must be closely attached to the ceramic film when the electrode material is deposited);
- Step 3 use a confocal magnetron co-sputtering device to sputter palladium and platinum metals to the cathode and anode of the ceramic membrane in sequence.
- the confocal magnetron co-sputtering device applies a bias voltage of 50W, a deposition rate of 5nm/min, and a quartz thickness gauge is used to control the sputtering thickness to 70nm, to obtain a single-sided bipolar electrochemical membrane arranged in the manner shown in Figure 1.
- the pore size of the single-sided bipolar ceramic membrane of Example 1 prepared by magnetron sputtering is 30 nm to 40 nm, and the pure water flux is 80 LMH at a transmembrane pressure difference of 0.5 bar, which meets the basic characteristics of an ultrafiltration membrane.
- FIG2 is a scanning electron microscope image of the unsprayed area (gap between anode and cathode) of the electrochemical film provided in Example 1 of the present application
- FIG3 is a scanning electron microscope image of the sprayed area (cathode and anode) of the electrochemical film provided in Example 1 of the present application.
- the difference in the morphology of the particles on the surface of the film before and after spraying can be observed by scanning electron microscopy.
- the conductivity of the unsprayed area is extremely poor. This is due to the fact that the TiO2 and ZrO2 substrates are not conductive, so they are relatively fuzzy under electron microscope observation, and the surface particle shape is mostly a block structure.
- the conductivity of the sprayed area is better, the image is clear and easy to observe, the surface coating is a spherical structure, and a certain pore structure can be observed.
- the cathode and anode in the prepared single-sided bipolar membrane should have good conductivity, but the coating between the positive and negative bipoles needs to be non-conductive to avoid the short circuit of the positive and negative bipoles during the power-on process.
- Example 1 a multimeter is used to determine the resistance values of different areas of the single-sided bipole, and the results are shown in Figure 4.
- the resistivity of the base ceramic film is infinite, which is caused by the non-conductivity of TiO2 and ZrO2 .
- the resistivity of a single level is 59.4 ⁇ /cm, and the resistivity between the cathode and the anode is 26.2M ⁇ /cm.
- the resistivity is extremely large, close to the original base ceramic film. Therefore, it can be proved that the non-conduction of the positive and negative poles of the single-sided bipolar membrane prepared in this way can be achieved. Similar tests were carried out in other embodiments, and the results obtained were consistent with
- the single-sided bipolar membrane of Example 1 is applied to the removal of micropollutants in a water environment, and the specific method is as follows: 200 mL of water is taken in a beaker and 2 mg of sulfamethoxazole (SMX) and 0.117 g of NaCl are added, and the mixture is stirred in a magnetic stirrer to dissolve and mix evenly to obtain a SMX mother solution.
- SMX sulfamethoxazole
- the obtained single-sided bipolar membrane is placed in ultrapure water and soaked for 1 hour to ensure that its pores are completely filled with water, and then placed in a cross-flow membrane filtration device, and the surface of the metal membrane is connected to the power supply wire with a titanium sheet, and a DC power supply constant voltage mode is used to apply a voltage of 1.6 V to the two poles of the electrochemical membrane of Example 1.
- the single-sided bipolar electrochemical membrane can generate a current density of 0.09 mA/ cm2 under the electrofiltration of the single-sided bipolar electrochemical membrane, and the removal efficiency of 10 ⁇ M sulfamethoxazole simulated wastewater is 89.7%, and the energy consumption is 10.4 Wh.
- the double-sided bipolar electrochemical membrane can generate a current density of 0.07mA/ cm2 , and the removal efficiency of 10 ⁇ M sulfamethoxazole simulated wastewater is 82.9%, and the energy consumption is 13.3Wh.
- the single-sided bipolar electrochemical membrane of Example 1 can generate a higher current density, and can reduce the energy consumption required for the reaction, thereby improving the decontamination effect.
- Example 1 an electrocatalytic degradation test of typical pollutants in environmental water bodies was carried out, and an electrofiltration test was carried out in 400mL of water containing 20mM parachlorophenol, Congo red, and ciprofloxacin, respectively.
- the transmembrane pressure difference was 0.5bar, the cross-flow flow rate was 0.4L/min, and the filtered water was fully refluxed.
- the concentration of pollutants in the reaction tank was tested at different times, and the degradation results were obtained as shown in Figure 5. That is, it can be generally proved that the series of single-sided bipolar membranes prepared by this embodiment can show good catalytic removal ability for a variety of pollutants.
- the single-sided bipolar electrochemical membrane of Example 2 comprises a ceramic ultrafiltration membrane with TiO 2 and ZrO 2 as main components and an electrode layer arranged on one side of the ceramic membrane.
- the molecular weight cutoff of the ceramic membrane is 300 ⁇ 20kDa, diameter is 50 ⁇ 3mm, thickness is 3 ⁇ 0.2mm, effective area of electrochemical membrane (area of membrane surface that can be sprayed) is 78.5cm2 , electrode layer is shown in Figure 6, effective surface area of electrochemical membrane cathode 2 layer area accounts for 44% of membrane surface area, anode 1 layer accounts for 47%, and about 9% of membrane surface area is not sprayed.
- the method for preparing the single-sided bipolar electrochemical membrane material of Example 2 comprises the following steps:
- Step 1 Clean the ceramic membrane substrate 6 times with deionized water, then immerse it in deionized water for 25 hours, take it out and dry it for later use;
- Step 2 Prepare a stainless steel mold according to the complementary patterns of the cathode and anode 1, and place the mold close to the surface of the base film (the mold must be closely attached to the ceramic film when the electrode material is deposited);
- Step 3 use a confocal magnetron co-sputtering device to sputter palladium and platinum metals to the cathode and anode 1 of the ceramic membrane in sequence.
- the confocal magnetron co-sputtering device applies a bias voltage of 50W, a deposition rate of 5nm/min, and a quartz thickness gauge is used to control the sputtering thickness to 70nm, and a single-sided bipolar electrochemical membrane with a layout as shown in Figure 6 is obtained.
- a 1.6V voltage was applied to the two poles of the electrochemical membrane of Example 1 by a DC power supply.
- the single-sided bipolar electrochemical membrane generated a current density of 0.09mA/ cm2 under the electrofiltration effect, and the removal efficiency of 10 ⁇ M sulfamethoxazole simulated wastewater reached 89.7%, and the energy consumption was 10.4Wh.
- the double-sided bipolar electrochemical membrane can generate a current density of 0.07mA/ cm2 , and the removal efficiency of 10 ⁇ M sulfamethoxazole simulated wastewater reached 82.9%, and the energy consumption was 13.3Wh.
- the single-sided bipolar electrochemical membrane of Example 1 can generate a higher current density, reduce the energy consumption required for the reaction, and improve the decontamination effect.
- the substrate membrane of the single-sided bipolar electrochemical membrane of Example 3 is similar to that of Example 1.
- the effective surface area of the electrochemical membrane is 78.5 cm 2 .
- the electrode layers are shown in FIG7 .
- the cathode 2 layer accounts for 78% of the membrane surface area
- the anode 1 layer accounts for 16%
- about 6% of the membrane surface area is not sprayed.
- the method for preparing the single-sided bipolar electrochemical membrane material of Example 3 comprises the following steps:
- Step 1 Clean the ceramic membrane substrate 6 times with deionized water, then immerse it in deionized water for 30 hours, take it out and dry it for later use;
- Step 2 Prepare a stainless steel mold according to the complementary patterns of the cathode and anode 1, and place the mold close to the surface of the base film.
- Step 3 use a confocal magnetron co-sputtering device to sputter copper and palladium metals to the cathode 2 of the ceramic film substrate in sequence, and then sputter platinum to the anode 1.
- a confocal magnetron co-sputtering device to sputter copper and palladium metals to the cathode 2 of the ceramic film substrate in sequence, and then sputter platinum to the anode 1.
- the confocal magnetron co-sputtering device applies a bias voltage of 60W, a deposition rate of 10nm/min, and uses a quartz thickness gauge to control the sputtering thickness of copper and palladium at the cathode 2 to be 100nm respectively, and the sputtering thickness of platinum at the anode 1 to be 200nm, to obtain a single-sided bipolar electrochemical film arranged in the manner shown in Figure 7.
- a constant current of 15 mA/cm2 was applied to the two electrodes of the electrochemical membrane of Example 2 by a DC power supply, and the removal efficiency of 50 mg/L nitrate nitrogen simulated wastewater reached 92.4% within 30 minutes.
- the traditional hybrid electrode takes 2.5 hours to reach nitrate reduction equilibrium, and the removal efficiency reaches 93.6%.
- the reaction rate constant of the single-sided bipolar electrochemical membrane is two orders of magnitude higher than that of the traditional hybrid electroreduction.
- the substrate membrane of the single-sided bipolar electrochemical membrane of Example 4 is similar to that of Example 1.
- the effective surface area of the electrochemical membrane is 78.5 cm 2 .
- the electrode layers are shown in FIG8 .
- the anode 1 layer accounts for 78% of the membrane surface area
- the cathode 2 layer accounts for 16%
- about 6% of the membrane surface area is not sprayed.
- the method for preparing the single-sided bipolar electrochemical membrane material of Example 4 comprises the following steps:
- Step 1 Clean the ceramic membrane substrate 6 times with deionized water, then immerse it in deionized water for 30 hours, take it out and dry it for later use;
- Step 2 Prepare a stainless steel mold according to the complementary patterns of the cathode and anode 1, and place the mold close to the surface of the base film.
- Step 3 Disperse high-purity carbon nanotubes (>99%) with an outer diameter of 15 nm and a length distribution of 6 ⁇ m in a dimethyl sulfoxide (DMSO) solution at a concentration of 0.5 mg/mL, and perform ultrasonic treatment for 15 minutes to prepare a carbon nanotube suspension.
- DMSO dimethyl sulfoxide
- Step 4 Use a confocal magnetron co-sputtering device to sputter platinum onto the cathode 2 of the ceramic film substrate.
- the confocal magnetron co-sputtering device applies a bias voltage of 60W, a deposition rate of 10nm/min, and uses a quartz thickness gauge to control the sputtering thickness to 200nm to obtain a cathode 2.
- Step 5 Compound the prepared carbon nanotube suspension in the anode 1 area by vacuum filtration, and filter 50 mL of anhydrous ethanol, 50 mL of 50% ethanol solution, and 50 mL of deionized water in sequence to wash away the DMSO on the membrane surface, and dry at 70°C for 45 minutes to form an anode 1, and obtain a single-sided bipolar electrochemical membrane arranged as shown in Figure 8.
- a voltage of 1.7V was applied to the two electrodes of the electrochemical membrane of Example 4 by a DC power supply. After 45 minutes, the ammonia nitrogen in the simulated wastewater containing 30 mg/L ammonia nitrogen and 100 mM chloride ions was completely removed, and the current density was 0.22 mA cm -2 . Under the same conditions, the single-sided monopolar conductive membrane took 90 minutes to completely remove ammonia nitrogen from the water, and the current density was 0.12 mA cm -2 , which can prove that the single-sided bipolar electrochemical membrane has a unique advantage in improving the reaction rate.
- the substrate membrane of the single-sided bipolar electrochemical membrane of Example 5 is similar to that of Example 1.
- the effective surface area of the electrochemical membrane is 78.5 cm 2 .
- the electrode layers are shown in FIG9 .
- the cathode 2 layer accounts for 53% of the membrane surface area
- the anode 1 layer accounts for 45%
- about 2% of the membrane surface area is not sprayed.
- the method for preparing the single-sided bipolar electrochemical membrane material of Example 5 comprises the following steps:
- Step 1 Clean the ceramic membrane substrate 6 times with deionized water, then immerse it in deionized water for 30 hours, take it out and dry it for later use;
- Step 2 Prepare a stainless steel mold according to the complementary patterns of the cathode and anode 1, and place the mold close to the surface of the base film.
- Step 3 Use a confocal magnetron co-sputtering device to sputter platinum and palladium to the cathode and anode 1 of the ceramic film substrate in sequence.
- Confocal magnetron co-sputtering The device applied a bias voltage of 70 W, the deposition rate was 1 nm/min, and the sputtering thickness was controlled to be 50 nm using a quartz thickness gauge, resulting in a single-sided bipolar electrochemical film arranged in the manner shown in FIG9 .
- a voltage of 1.5V was applied to the two electrodes of the electrochemical membrane of Example 5 by a DC power supply. After 45 minutes, the ammonia nitrogen in the simulated wastewater containing 30 mg/L ammonia nitrogen and 100 mM chloride ions was completely removed, and the current density was 0.08 mA cm -2 . Under the same conditions, the single-sided monopolar conductive membrane took 55 minutes to completely remove ammonia nitrogen from the water, and the current density was 0.08 mA cm -2 , which can prove that the single-sided bipolar electrochemical membrane has a unique advantage in improving the reaction rate.
- the substrate membrane of the single-sided bipolar electrochemical membrane of Example 6 is a polytetrafluoroethylene membrane, and the effective surface area of the electrochemical membrane is 78.5 cm 2 .
- the electrode layers are shown in FIG10 , where the cathode 2 layer accounts for 52% of the membrane surface area, the anode 1 layer accounts for 44%, and about 4% of the membrane surface area is not sprayed.
- the method for preparing the single-sided bipolar electrochemical membrane material of Example 6 comprises the following steps:
- Step 1 Use deionized water to clean the polytetrafluoroethylene film substrate 6 times, then immerse it in deionized water for 26 hours, take it out and dry it for later use;
- Step 2 Prepare a stainless steel mold according to the complementary patterns of the cathode and anode 1, and place the mold close to the surface of the base film.
- Step 3 Use a confocal magnetron co-sputtering device to sputter platinum and gold to the cathode and anode 1 of the polytetrafluoroethylene film substrate in sequence.
- the confocal magnetron co-sputtering device applies a bias voltage of 50W, a deposition rate of 7nm/min, and a quartz thickness gauge is used to control the sputtering thickness to 60nm, and a single-sided bipolar electrochemical film with a layout as shown in Figure 10 is obtained.
- a voltage of 1.5V was applied to the two electrodes of the electrochemical membrane of Example 5 by a DC power supply. After 45 minutes, the ammonia nitrogen in the simulated wastewater containing 30 mg/L ammonia nitrogen and 100 mM chloride ions was completely removed, and the current density was 0.11 mA cm -2 . Under the same conditions, the single-sided monopolar conductive membrane took 55 minutes to completely remove ammonia nitrogen from the water, and the current density was 0.08 mA cm -2 , which can prove that the single-sided bipolar electrochemical membrane has a unique advantage in improving the reaction rate.
- the substrate membrane of the single-sided bipolar electrochemical membrane of Example 7 is a polysulfone membrane, and the effective surface area of the electrochemical membrane is 78.5 cm 2 .
- the electrode layers are shown in FIG11 , where the cathode 2 layer accounts for 53% of the membrane surface area, the anode 1 layer accounts for 45%, and about 2% of the membrane surface area is not sprayed.
- the method for preparing the above-mentioned single-sided bipolar electrochemical membrane material comprises the following steps:
- the polysulfone membrane substrate is cleaned 6 times with deionized water, then immersed in the deionized water for 30 hours, taken out and dried for standby use;
- a stainless steel mold is prepared according to the complementary patterns of the cathode and anode 1, and the mold is placed close to the surface of the base film.
- the confocal magnetron co-sputtering device applies a bias voltage of 40 W, a deposition rate of 1 nm/min, and a quartz thickness gauge is used to control the sputtering thickness to obtain a single-sided bipolar electrochemical membrane with the arrangement style shown in Figure 11.
- a voltage of 3.0V was applied to the two electrodes of the electrochemical membrane of Example 7 by a DC power supply. After 45 minutes, the flux of wastewater containing 10 5 CFU/mL of Escherichia coli and 100mM chloride ions was reduced by 55%. Under the same conditions, the flux of the ceramic membrane without metal coating decreased by 72%, and the flux of the single-sided monopolar membrane decreased by 59%, which can prove that the single-sided bipolar electrochemical membrane has unique advantages in anti-fouling and antibacterial.
- the single-sided bipolar electrochemical membrane of Example 8 includes a ceramic ultrafiltration membrane with TiO2 and ZrO2 as main components and an electrode layer arranged on one side of the ceramic membrane.
- the molecular weight cutoff of the ceramic membrane is 300 ⁇ 20kDa, the diameter is 50 ⁇ 3mm, the thickness is 3 ⁇ 0.2mm, the effective area of the electrochemical membrane (the area on the membrane surface that can be sprayed) is 78.5cm2 , and the electrode layer is shown in Figure 12.
- the effective surface area of the electrochemical membrane is 42% of the cathode 2 layer area, the anode 1 layer area accounts for 42%, and about 6% of the membrane surface area is not sprayed.
- the method for preparing the single-sided bipolar electrochemical membrane material of Example 8 comprises the following steps:
- Step 1 Clean the ceramic membrane substrate 6 times with deionized water, then immerse it in deionized water for 25 hours, take it out and dry it for later use;
- Step 2 Prepare a stainless steel mold according to the complementary patterns of the cathode and anode 1, and place the mold close to the surface of the base film (the mold must be closely attached to the ceramic film when the electrode material is deposited);
- Step 3 use a confocal magnetron co-sputtering device to sputter palladium and platinum metals to the cathode and anode of the ceramic membrane in sequence.
- the confocal magnetron co-sputtering device applies a bias voltage of 50W, a deposition rate of 5nm/min, and a quartz thickness gauge is used to control the sputtering thickness to 70nm, and a single-sided bipolar electrochemical membrane with an arrangement style as shown in Figure 12 is obtained.
- a 1.6V voltage was applied to the two electrodes of the electrochemical membrane of Example 8 by a DC power supply.
- the single-sided bipolar electrochemical membrane generated a current density of 0.07 mA/ cm2 under the electrofiltration effect, and the removal efficiency of 10 ⁇ M sulfamethoxazole simulated wastewater reached 64.2%, and the energy consumption was 11.2Wh.
- the actual treatment effect was poorer than that of the single-sided bipolar membrane of Example 1.
- the single-sided bipolar electrochemical membrane of Example 8 includes a ceramic ultrafiltration membrane with TiO2 and ZrO2 as main components and an electrode layer arranged on one side of the ceramic membrane.
- the molecular weight cutoff of the ceramic membrane is 300 ⁇ 20kDa, the diameter is 50 ⁇ 3mm, the thickness is 3 ⁇ 0.2mm, the effective area of the electrochemical membrane (the area on the membrane surface that can be sprayed) is 78.5cm2 , and the electrode layer is shown in Figure 13.
- the effective surface area of the electrochemical membrane is 40% of the cathode 2 layer area, the anode 1 layer area accounts for 40%, and about 10% of the membrane surface area is not sprayed.
- the method for preparing the single-sided bipolar electrochemical membrane material of Example 9 comprises the following steps:
- Step 1 Clean the ceramic membrane substrate 6 times with deionized water, then immerse it in deionized water for 25 hours, take it out and dry it for later use;
- Step 2 Prepare a stainless steel mold according to the complementary patterns of the cathode and anode 1, and place the mold close to the surface of the base film (the mold must be closely attached to the ceramic film when the electrode material is deposited);
- Step 3 Use a confocal magnetron co-sputtering device to sputter palladium and platinum metals to the cathode and anode of the ceramic membrane in sequence.
- the confocal magnetron co-sputtering device applies a bias of 50W, the deposition rate is 5nm/min, and the sputtering thickness is controlled to be 70nm using a quartz thickness gauge to obtain a single-sided bipolar electrochemical membrane arranged in the pattern shown in Figure 13.
- a DC power supply is used to apply a voltage of 1.6V to the two poles of the electrochemical membrane of Example 9.
- the single-sided bipolar electrochemical membrane can generate a current density of 0.04mA/ cm2 under the electrofiltration effect, and the removal efficiency of 10 ⁇ M sulfamethoxazole simulated wastewater is 52.4%, and the energy consumption is 6.4Wh.
- the actual treatment effect is poorer than that of the single-sided bipolar membranes of Examples 1 and 8, indicating that the specific arrangement of the pattern will affect the actual performance of the electrocatalytic membrane.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Water Supply & Treatment (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Urology & Nephrology (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
本申请涉及一种单面双极的电化学膜及其制备方法和应用。电化学膜的制备方法包括以下步骤:a)提供基底膜;b)将依据阳极和阴极互补图案制备的模具贴合在基底膜的一侧表面;c)通过模具分别将阳极材料和阴极材料负载于基底膜的同一侧表面,得到由阳极和阴极形成的电极层。本申请电化学膜无需增设对电极,成品膜更换简单,且阴、阳两极间距近,可在相同电压下获得比常规的双面双极电化学膜更高的电流密度,不影响膜过滤基本功能,降低反应所需能耗并加快反应速率,提高电化学过滤净水和抗污染效果。
Description
本申请涉及膜技术领域,具体涉及一种单面双极的电化学膜及其制备方法和应用。
电化学与膜分离耦合技术增强了非均相电化学反应传质效率和膜分离效率,大幅提升了电化学反应速率和膜分离性能。新兴的电化学膜可作为一种穿流式电极膜,在过滤过程中的膜表面原位引发电化学氧化还原反应。电化学膜还具有抗有机和生物污染及自净除污功能。在通电条件下,电化学膜可排斥水中带同种电荷的离子、分子和颗粒;可生成氧化性自由基用于去除沉积在膜表面有机污染物和微生物膜;可电解水产微气泡用于膜清洗和自净,有效延长膜使用寿命。
目前,电化学膜包括单面单极和双极双面两类电化学膜:单面单极的电化学膜需要额外增设对电极,提高了膜组件设计难度,也没有充分发挥对电极的功能,降低了电化学膜的实用性;双极双面电化学膜可在膜两侧分别进行氧化和还原反应,阴阳极协同作用可提高电化学氧化还原反应效率,甚至提高电化学反应产物的选择性。但双面双极电化学膜两极间还存在一定厚度的基底膜材料,这层材料往往导电性差,增大了电子在膜阴、阳两面间传输距离,降低电流传导效率,造成高能耗。
发明内容
本申请的目的是提供一种单面双极的电化学膜及其制备方法和应用,以解决电化学膜水处理能耗成本高的技术问题。
一方面,本申请实施例提出了一种单面双极的电化学膜的制备方法。单面双极的电化学膜的制备方法包括以下步骤:
a)提供基底膜;
b)将依据阳极和阴极互补图案制备的模具贴合在基底膜的一侧表面;
c)通过模具分别将阳极材料和阴极材料负载于基底膜的同一侧表面,得到由阳极和阴极形成的电极层。
根据本申请实施例的一个方面,基底膜为陶瓷膜、阳极氧化铝膜、聚四氟乙烯膜、聚酰胺膜或聚砜膜。
根据本申请实施例的一个方面,阳极材料和阴极材料分别包括过渡金属和非金属中的一种或两种。
根据本申请实施例的一个方面,电极层的厚度为50~200nm。
根据本申请实施例的一个方面,阳极材料和阴极材料分别通过物理气相沉积法、真空抽滤法负载于基底膜上。
根据本申请实施例的一个方面,物理气相沉积法采用磁控溅射,磁控溅射满足如下(1)~(4)中的一个或几个:
(1)磁控溅射的靶体与基底膜的角度呈30~60度,距离为5~20cm;
(2)磁控溅射的溅射室压力≤10-7Pa;
(3)磁控溅射的施加偏压为40W~70W;
(4)磁控溅射的沉积速率为1~10nm/min。
根据本申请实施例的一个方面,步骤c)包括:
将碳纳米管分散于溶剂中,制备得到纳米碳管悬浮液;
将纳米碳管悬浮液通过真空过滤复合于基底膜的阳极区域或阴极区域;
通过真空过滤洗去膜表面的溶剂;
干燥得到阳极或阴极。
根据本申请实施例的一个方面,纳米碳管悬浮液满足如下(1)~(3)中的一个或几个:
(1)纳米碳管的外径为13~18cm,长度为1~12μm;
(2)纳米碳管悬浮液的浓度为0.4~1mg/mL;
(3)纳米碳管悬浮液经过10~20min超声处理得到。
另一方面,本申请实施例还提供了一种电化学膜。电化学膜包括基底膜和电极层,基底膜包括相背对设置的第一表面和第二表面;电极层包括
间隔形成的阳极和阴极,且阳极和阴极均设置于基底膜的第一表面。
本申请实施例第三方面提供一种电化学膜在废水处理或饮用水净化中的应用,电化学膜为如前述任一制备方法得到的电化学膜或前述电化学膜。
本申请实施例提供的一种单面双极的电化学膜及其制备方法和应用,通过将依据阳极和阴极互补图案制备的模具贴合在基底膜的一侧表面,采用该模具将阳极材料和阴极材料分别负载于基底膜的同一侧表面,制备得到单面双极电化学膜。单面双极电化学膜无需增设对电极,成品膜更换简单,且阴、阳两极间距近,可在相同电压下获得比常规的双面双极电化学膜更高的电流密度,降低反应所需能耗并加快反应速率。
从下面结合附图对本申请的具体实施方式的描述中可以更好地理解本申请,其中,通过阅读以下参照附图对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更明显,相同或相似的附图标记表示相同或相似的特征。
图1为本申请实施例1提供的电化学膜表面的阴、阳极涂层布置样式示意图;
图2为本申请实施例1提供的电化学膜未喷涂区域(阳极和阴极之间的间隙)的扫描电镜图;
图3为本申请实施例1提供的电化学膜喷涂区域(阴、阳极)的扫描电镜图;
图4为本申请实施例1提供的电化学膜不同分区的电阻率测试图;
图5为本申请实施例1提供的电化学膜电过滤下对微污染物的降解效率图;
图6为本申请实施例2提供的电化学膜表面的阴、阳极涂层布置样式示意图;
图7为本申请实施例3提供的电化学膜表面的阴、阳极涂层布置样式示意图;
图8为本申请实施例4提供的电化学膜表面的阴、阳极涂层布置样式
示意图;
图9为本申请实施例5提供的电化学膜表面的阴、阳极涂层布置样式示意图;
图10为本申请实施例6提供的电化学膜表面的阴、阳极涂层布置样式示意图;
图11为本申请实施例7提供的电化学膜表面的阴、阳极涂层布置样式示意图;
图12为本申请实施例8提供的电化学膜表面的阴、阳极涂层布置样式示意图;
图13为本申请实施例9提供的电化学膜表面的阴、阳极涂层布置样式示意图。
附图标记说明:阳极1,阴极2。
下面将详细描述本申请的各个方面的特征和示例性实施例。下面的详细描述中公开了许多具体细节,以便全面理解本申请。但是,对于本领域技术人员来说,很明显的是,本申请可以在不需要这些具体细节中的一些细节的情况下实施。下面对实施例的描述仅仅是为了通过示出本申请的示例来提供对本申请的更好的理解。本申请决不限于下面所提出的任何具体配置和算法,而是在不脱离本申请的精神的前提下覆盖了元素、部件和算法的任何修改、替换和改进。在附图和下面的描述中,没有示出公知的结构和技术,以便避免对本申请造成不必要的模糊。
为了更好地理解本申请,下面结合图1至图13对本申请实施例提供的单面双极的电化学膜及其制备方法和应用进行详细描述。
本申请第一方面的实施方式提供一种单面双极的电化学膜的制备方法,包括以下步骤:
a)提供基底膜;
b)将依据阳极和阴极互补图案制备的模具贴合在基底膜的一侧表面;
c)通过模具分别将阳极材料和阴极材料负载于基底膜的同一侧表面,
得到由阳极和阴极形成的电极层。
本申请实施例通过在基底膜的同一侧表面制备阳极和阴极,得到单面双极电化学膜,可用于水质净化和膜污染的控制。与常规的单面单极和双面双极电化学膜相比,单面双极电化学膜无需设置对电极,成品膜更换简单,实用性高,且相比双面双极电化学膜,阴、阳两极间距近,可在相同外加电压条件下产生更高的电流密度,不影响膜过滤基本功能,降低反应所需能耗并加快反应速率,提高电化学过滤净水和抗污染效果。本申请实施例的电化学膜不限于处理工企业污废水,还可用于净化对水质要求高的饮用水。
根据不同的功能需求,可将基底膜设计为微滤、超滤、纳滤或反渗透膜。在步骤a)中,可对基底膜进行预处理,包括以下步骤:采用去离子水对基底膜清洗1~10次以上,然后在去离子水中浸泡2~24小时以上,对于无机的基底膜,取出基底膜后经干燥处理;对于有机的基底膜,将基底膜持续浸泡在去离子水中并置于1~4℃下储存。基底膜的预处理去除了基底膜表面的杂质,避免影响电化学膜的性能。
在步骤b)中,依据电化学反应原理设计膜表面的阴、阳极分布,例如若进行电化学氧化反应,制备的电化学膜阳极占比应高于阴极,若进行阴、阳极协同的电化学催化反应,制备的电化学膜阴、阳极各占总电极面积的二分之一。依据阴、阳极互补图案制备模具,该模具可采用不锈钢材质模具,将制备的模具紧密贴合在基底膜的一侧表面。
在一些实施例中,基底膜采用陶瓷膜或阳极氧化铝膜,陶瓷膜和阳极氧化铝膜为无机膜,具有一定机械强度和绝缘特性,能够提高电化学膜的抗冲击能力,且有效防止阴阳两极连通短路。在一些实施例中,采用非对称多孔结构的陶瓷膜或阳极氧化铝膜,可有效提高传质效率进而提升反应速率。基底膜的厚度可设置为100um~10.0mm。
在另一些实施例中,基底膜采用聚四氟乙烯膜、聚酰胺膜或聚砜膜,聚四氟乙烯膜、聚酰胺膜或聚砜膜为有机膜,具有绝缘特性,且具有可弯折的韧性,可用于设计中空纤维或卷式导电膜。
阳极材料和阴极材料分别包括过渡金属和非金属中的一种或两种,例
如金、银、铂、钯、铱、铜、铁等及其一些合金,过渡金属是电的良导体,还具有抗氧化、抗腐蚀、超电压低、不钝化等一个或若干个特性。非金属可采用碳材料作为电极材料,例如碳纳米管、石墨等。
电极层的厚度可以为50~200nm,既能保证电极氧化还原或催化性能,又能减小电化学膜的厚度尺寸。可根据降解的不同污染物对象选择电极层的具体厚度。
阳极材料和阴极材料分别通过物理气相沉积法、真空抽滤法负载于基底膜上。物理气象沉积法可包括真空蒸镀、磁控溅射等方法,是一种成熟的表面镀膜技术,可形成均匀的催化表面。真空蒸镀,简称蒸镀,是指在真空条件下,采用一定的加热蒸发方式蒸发镀膜材料(或称膜料)并使之气化,粒子飞至基片表面凝聚成膜的工艺方法。真空蒸镀具有成膜方法简单、薄膜纯度和致密性高、膜结构和性能独特等优点。磁控溅射具有设备简单、易于控制、镀膜面积大和附着力强等优点。真空抽滤法可将阳极或阴极材料复合于基底膜上,真空抽滤向膜表面复合纳米碳管的方法操作简单,无需大型物理溅射仪器,操作简便。可以理解的是,本领域技术人员可根据不同污染物的降解效率需求选择相应的电极材料以及电极层的制备方法。
在一些实施例中,物理气象沉积法采用磁控溅射,磁控溅射满足如下(1)~(4)中的一个或几个:
(1)磁控溅射的靶体与基底膜的角度呈30~60度,距离为5~20cm;
(2)磁控溅射的溅射室压力≤10-7Pa;
(3)磁控溅射的施加偏压为40W~70W;
(4)磁控溅射的沉积速率为1~10nm/min。
钯、铂、金等贵金属可通过磁控溅射的方式负载于基底膜上,钯、铂、金等贵金属在催化方面表现出高活性,这些高导电率的贵金属纳米粒子还可以有效保证电化学过滤过程中的高效性、稳定性和持续性,溅射过程中贵金属颗粒可以渗入膜孔径内,较深的内部孔隙溅射保证了催化反应不仅在膜表面发生,同时也在内部多孔膜结构进行反应,孔隙内的微纳米空间限域下的催化反应有望改变反应路径并提高产物选择性。
在另一些实施例中,步骤c)包括:将碳纳米管分散于溶剂中,制备得到纳米碳管悬浮液;将纳米碳管悬浮液通过真空过滤复合于基底膜的阳极区域或阴极区域;通过真空过滤洗去膜表面的溶剂;干燥得到阳极或阴极。碳纳米管可通过真空抽滤法复合在基底膜上,碳纳米管具有高亲水性和导电性,防止疏水碳纳米管带来的疏水性膜污染。在电过滤过程中,纳米碳管膜阳极可将水中氯离子原位氧化为包括氯自由基在内的多种含氯活性物种,一方面起到选择性将氨氮氧化为氮气的作用,另一方面可实现膜表面自净。
在本申请第一方面的前述任一实施方式中,纳米碳管悬浮液满足如下(1)~(3)中的一个或几个:
(1)纳米碳管的外径为13~18cm,长度为1~12μm;
(2)纳米碳管悬浮液的浓度为0.4~1mg/mL;
(3)纳米碳管悬浮液经过10~20min超声处理得到。
具体可将碳纳米管超声分散在DMSO(二甲基亚砜)溶剂中得到纳米管悬浮液。
本申请第二方面提供一种电化学膜。电化学膜采用上述任意一种方法制备得到,电化学膜包括基底膜和电极层,基底膜包括相背对设置的第一表面和第二表面;电极层包括间隔形成的阳极和阴极,且阳极和阴极均设置于基底膜的第一表面,即阳极和阴极位于基底膜的同一表面,形成单面双极电化学膜,单面双极电化学膜的有益效果已在上文中描述,在此不再赘述。
本申请第三方面提供一种电化学膜在废水处理或饮用水净化的应用,电化学膜为如前述任一制备方法得到的电化学膜或前述电化学膜。
实施例
下述实施例更具体地描述了本申请公开的内容,这些实施例仅仅用于阐述性说明,因为在本申请公开内容的范围内进行各种修改和变化对本领域技术人员来说是明显的。实施例中使用的所有试剂都可商购获得或是按照常规方法进行合成获得,并且可直接使用而无需进一步处理,以及实施例中使用的仪器均可商购获得。
实施例1
实施例1的单面双极的电化学膜包括以TiO2和ZrO2为主要成分的陶瓷超滤膜以及设置在陶瓷膜一侧的电极层,陶瓷膜的截留分子量为300±20kDa,直径为50±3mm,厚度为3±0.2mm,电化学膜的有效面积(膜表面可以喷涂的面积)为78.5cm2,电极层如图1所示,电化学膜有效表面积阴极2图层面积占膜表面积的44%,阳极1图层占44%,另约有2%膜表面积不喷涂。
实施例1的单面双极电化学膜材料的制备方法,包括如下步骤:
步骤一、采用去离子水对陶瓷膜基板清洗6次,然后在去离子水中浸渍25小时,取出后干燥,备用;
步骤二、依据阴、阳极1互补图案制备不锈钢模具,将模具紧贴基底膜表面(电极材料沉积时须使模具紧密贴合陶瓷膜);
步骤三、采用共聚焦磁控共溅射装置向陶瓷膜的阴、阳极依次溅射钯、铂金属。先将陶瓷超滤膜置于硅支架上,陶瓷超滤膜基板的上表面(过滤时面向进料液的表面)面向金属溅射靶,设置靶体与陶瓷膜呈30°,距离15cm。保持溅射室压力低于10-7Pa,使用超纯氩气提供0.3Pa的工作压力,排出残余空气。共聚焦磁控共溅射装置施加偏压50W,沉积速率为5nm/min,利用石英测厚仪控制溅射厚度为70nm,得到如图1布置样式的单面双极电化学膜。
经测试,通过磁控溅射方式制备的实施例1的单面双极陶瓷膜的孔径为30nm~40nm,在0.5bar跨膜压差下纯水通量为80LMH,符合超滤膜的基本特征。
图2为本申请实施例1提供的电化学膜未喷涂区域(阳极和阴极之间的间隙)的扫描电镜图;图3为本申请实施例1提供的电化学膜喷涂区域(阴、阳极)的扫描电镜图。通过扫描电子显微镜可以观察喷涂前后的膜表面颗粒形貌差异,如图2所示,未喷涂区域导电性极差,这是由于TiO2、ZrO2基底不导电所致,因此在电镜观察下较为模糊,且表面颗粒形状多为块体结构。相对比下,如图3所示,喷涂区域导电性较好,图像清晰易于观察,表面镀层为球状结构,能观察到一定的孔隙结构。
为证明单面双极两级之间的分割成功及单极的良好导电性,即所制备的单面双极膜中阴极、阳极均应具备良好的导电性,但阴阳双极之间需要保证镀层不导通,以避免在通电过程中出现阴阳双极的短路现象。以实施例1为例,使用万用表对单面双极不同区域电阻值进行确定,得到结果如图4所示。基底陶瓷膜电阻率无限大,这是由于TiO2、ZrO2不导电所导致的,单独一级(阳极或阴极)的电阻率为59.4Ω/cm,而阴极和阳极之间的电阻率为26.2MΩ/cm,电阻率极大,接近原始的基底陶瓷膜。因此,可以证明通过此方式制得的单面双极膜的阴阳极不导通得以实现。其他实施例中进行类似的测试,得到的结果与
将实施例1的单面双极膜应用于水环境中微污染物的去除,具体方法如下:用烧杯取200mL水并加入2mg磺胺甲恶唑(SMX)、0.117g NaCl,在磁力搅拌器中搅拌使其溶解混合均匀得到SMX母液。在进行膜电过滤前,将得到的单面双极膜置于超纯水中浸泡1h保证其孔隙完全填充满水,将其置于错流膜过滤装置,用钛片连接金属膜表面与电源导线,使用直流电源恒压模式,向实施例1电化学膜的两极施加1.6V电压,38min内单面双极电化学膜电过滤作用下,可产生0.09mA/cm2的电流密度,对10μM的磺胺甲恶唑模拟废水去除效率达89.7%,能耗为10.4Wh。而相同条件下,双面双极电化学膜可产生0.07mA/cm2的电流密度,对10μM的磺胺甲恶唑模拟废水去除效率达82.9%,能耗为13.3Wh。实施例1的单面双极的电化学膜可产生更高的电流密度,且能降低反应所需能耗,提高去污效果。以实施例1为例对环境水体中典型污染物进行电催化降解测试,在实际400mL分别含有20mM对氯酚、刚果红、环丙沙星的水中进行电过滤测试,跨膜压差为0.5bar,错流流量为0.4L/min,过滤出水全回流,在不同时间下对反应池内污染物的浓度进行测试,得到降解结果情况如图5所示。即可以普遍证明通过该实施例制备的系列单面双极膜可以对多种污染物都表现出良好的催化去除能力。
实施例2
实施例2的单面双极的电化学膜包括以TiO2和ZrO2为主要成分的陶瓷超滤膜以及设置在陶瓷膜一侧的电极层,陶瓷膜的截留分子量为300±
20kDa,直径为50±3mm,厚度为3±0.2mm,电化学膜的有效面积(膜表面可以喷涂的面积)为78.5cm2,电极层如图6所示,电化学膜有效表面积阴极2图层面积占膜表面积的44%,阳极1图层占47%,另约有9%膜表面积不喷涂。
实施例2的单面双极电化学膜材料的制备方法,包括如下步骤:
步骤一、采用去离子水对陶瓷膜基板清洗6次,然后在去离子水中浸渍25小时,取出后干燥,备用;
步骤二、依据阴、阳极1互补图案制备不锈钢模具,将模具紧贴基底膜表面(电极材料沉积时须使模具紧密贴合陶瓷膜);
步骤三、采用共聚焦磁控共溅射装置向陶瓷膜的阴、阳极1依次溅射钯、铂金属。先将陶瓷超滤膜置于硅支架上,陶瓷超滤膜基板的上表面(过滤时面向进料液的表面)面向金属溅射靶,设置靶体与陶瓷膜呈30°,距离15cm。保持溅射室压力低于10-7Pa,使用超纯氩气提供0.3Pa的工作压力,排出残余空气。共聚焦磁控共溅射装置施加偏压50W,沉积速率为5nm/min,利用石英测厚仪控制溅射厚度为70nm,得到如图6布置样式的单面双极电化学膜。
利用直流电源向实施例1电化学膜的两极施加1.6V电压,38min内单面双极电化学膜电过滤作用下,可产生0.09mA/cm2的电流密度,对10μM的磺胺甲恶唑模拟废水去除效率达89.7%,能耗为10.4Wh。而相同条件下,双面双极电化学膜可产生0.07mA/cm2的电流密度,对10μM的磺胺甲恶唑模拟废水去除效率达82.9%,能耗为13.3Wh。实施例1的单面双极的电化学膜可产生更高的电流密度,且能降低反应所需能耗,提高去污效果。
实施例3
实施例3的单面双极电化学膜的基底膜与实施例1中类似,电化学膜有效表面积为78.5cm2,电极层如图7所示,阴极2图层面积占膜表面积的78%,阳极1图层占16%,另约有6%膜表面积不喷涂。
实施例3的单面双极电化学膜材料的制备方法包括如下步骤:
步骤一、采用去离子水对陶瓷膜基板清洗6次,然后在去离子水中浸渍30小时,取出后干燥,备用;
步骤二、依据阴、阳极1互补图案制备不锈钢模具,将模具紧贴基底膜表面。
步骤三、采用共聚焦磁控共溅射装置向陶瓷膜基板的阴极2依次溅射铜、钯金属,再向阳极1溅射铂。先将陶瓷膜置于硅支架上,陶瓷膜基本上表面面向金属溅射靶,设置靶体与陶瓷膜呈40°,距离17cm。保证溅射室压力低于10-7Pa,使用超纯氩气提供0.3Pa的工作压力,排出残余空气。共聚焦磁控共溅射装置施加偏压60W,沉积速率为10nm/min,利用石英测厚仪控制阴极2铜、钯溅射厚度分别为100nm,阳极1铂溅射厚度为200nm,得到如图7布置样式的单面双极电化学膜。
利用直流电源向实施例2电化学膜两极施加15mA/cm2的恒电流,30min内对50mg/L的硝酸盐氮模拟废水去除效率达92.4%。相同条件下,传统混合式电极需2.5h才能将达到硝酸盐还原平衡,去除效率达93.6%。在几乎相同的硝酸盐去除效率下,单面双极电化学膜反应速率常数高出传统混合式电还原两个数量级。
实施例4
实施例4的单面双极电化学膜的基底膜与实施例1中类似,电化学膜有效表面积为78.5cm2,电极层如图8所示,阳极1图层面积占膜表面积的78%,阴极2图层占16%,另约有6%膜表面积不喷涂。
实施例4的单面双极电化学膜材料的制备方法包括如下步骤:
步骤一、采用去离子水对陶瓷膜基板清洗6次,然后在去离子水中浸渍30小时,取出后干燥,备用;
步骤二、依据阴、阳极1互补图案制备不锈钢模具,将模具紧贴基底膜表面。
步骤三、将外径为15nm,长度分布为6μm的高纯度碳纳米管(>99%)以0.5mg/mL的浓度分散在二甲基亚砜(DMSO)溶液中,超声处理15min制备出纳米碳管悬浮液。
步骤四、采用共聚焦磁控共溅射装置向陶瓷膜基板的阴极2溅射铂。先将陶瓷膜置于硅支架上,陶瓷膜基本上表面面向金属溅射靶,设置靶体与陶瓷膜呈40°,距离17cm。保证溅射室压力低于10-7Pa,使用超纯氩气提供0.3Pa的工作压力,排出残余空气。共聚焦磁控共溅射装置施加偏压60W,沉积速率为10nm/min,利用石英测厚仪控制溅射厚度为200nm,得到阴极2。
步骤五、将制备好的碳纳米管悬浮液通过真空过滤的方式复合在阳极1区域,并依次过滤50mL的无水乙醇、50mL的50%乙醇溶液、50mL的去离子水洗去膜表面的DMSO,并在70℃下干燥45min,形成阳极1,得到如图8布置样式的单面双极电化学膜。
利用直流电源向实施例4的电化学膜两极施加1.7V的电压,45min后,含有30mg/L的氨氮和100mM氯离子的模拟废水的氨氮全部去除,电流密度为0.22mA cm-2。相同条件下,单面单极导电膜需90min才能将完全去除水中氨氮,电流密度为0.12mA cm-2,可以证明单面双极电化学膜在提高反应速率上具备独特优势。
实施例5
实施例5的单面双极电化学膜的基底膜与实施例1中类似,电化学膜有效表面积为78.5cm2,电极层如图9所示,阴极2图层面积占膜表面积的53%,阳极1图层占45%,另约有2%膜表面积不喷涂。
实施例5的单面双极电化学膜材料的制备方法包括如下步骤:
步骤一、采用去离子水对陶瓷膜基板清洗6次,然后在去离子水中浸渍30小时,取出后干燥,备用;
步骤二、依据阴、阳极1互补图案制备不锈钢模具,将模具紧贴基底膜表面。
步骤三、采用共聚焦磁控共溅射装置依次向陶瓷膜基板的阴、阳极1溅射铂、钯。先将陶瓷膜置于硅支架上,陶瓷膜基本上表面面向金属溅射靶,设置靶体与陶瓷膜呈30°,距离15cm。保证溅射室压力低于10-7Pa,使用超纯氩气提供0.3Pa的工作压力,排出残余空气。共聚焦磁控共溅射
装置施加偏压70W,沉积速率为1nm/min,利用石英测厚仪控制溅射厚度为50nm,得到如图9布置样式的单面双极电化学膜。
利用直流电源向实施例5的电化学膜两极施加1.5V的电压,45min后,含有30mg/L的氨氮和100mM氯离子的模拟废水的氨氮全部去除,电流密度为0.08mA cm-2。相同条件下,单面单极导电膜需55min才能将完全去除水中氨氮,电流密度为0.08mA cm-2,可以证明单面双极电化学膜在提高反应速率上具备独特优势。
实施例6
实施例6的单面双极电化学膜的基底膜采用聚四氟乙烯膜,电化学膜有效表面积为78.5cm2,电极层如图10所示,阴极2图层面积占膜表面积的52%,阳极1图层占44%,另约有4%膜表面积不喷涂。
实施例6的单面双极电化学膜材料的制备方法包括如下步骤:
步骤一、采用去离子水对聚四氟乙烯膜基板清洗6次,然后在去离子水中浸渍26小时,取出后干燥,备用;
步骤二、依据阴、阳极1互补图案制备不锈钢模具,将模具紧贴基底膜表面。
步骤三、采用共聚焦磁控共溅射装置依次向聚四氟乙烯膜基板的阴、阳极1溅射铂、金。先将聚四氟乙烯膜置于硅支架上,聚四氟乙烯膜基板的上表面面向金属溅射靶材,设置靶体与陶瓷膜呈40°,距离10cm。保证溅射室压力低于10-7Pa,使用超纯氩气提供0.3Pa的工作压力,排出残余空气。共聚焦磁控共溅射装置施加偏压50W,沉积速率为7nm/min,利用石英测厚仪控制溅射厚度60nm,得到如图10布置样式的单面双极电化学膜。
利用直流电源向实施例5的电化学膜两极施加1.5V的电压,45min后,含有30mg/L的氨氮和100mM氯离子的模拟废水的氨氮全部去除,电流密度为0.11mA cm-2。相同条件下,单面单极导电膜需55min才能将完全去除水中氨氮,电流密度为0.08mA cm-2,可以证明单面双极电化学膜在提高反应速率上具备独特优势。
实施例7
实施例7的单面双极电化学膜的基底膜采用聚砜膜,电化学膜有效表面积为78.5cm2,电极层如图11所示,阴极2图层面积占膜表面积的53%,阳极1图层占45%,另约有2%膜表面积不喷涂。
上述单面双极电化学膜材料的制备方法,包括如下步骤:
(1)采用去离子水对聚砜膜基板清洗6次,然后在去离子水中浸渍30小时,取出后干燥,备用;
(2)依据阴、阳极1互补图案制备不锈钢模具,将模具紧贴基底膜表面。
(3)采用共聚焦磁控共溅射装置依次向聚砜膜基板的阴、阳极1溅射银。先将聚砜膜置于硅支架上,聚砜膜基板的上表面面向金属溅射靶材,设置靶体与陶瓷膜呈60°,距离8cm。保证溅射室压力低于10-7Pa,使用超纯氩气提供0.3Pa的工作压力,排出残余空气。共聚焦磁控共溅射装置施加偏压40W,沉积速率为1nm/min,利用石英测厚仪控制溅射厚度,得到如图11布置样式的单面双极电化学膜。
利用直流电源向实施例7的电化学膜两极施加3.0V的电压,45min后,含有105CFU/mL的大肠杆菌和100mM氯离子的废水过滤下通量降低55%。相同条件下,未镀有金属的陶瓷膜通量下降72%,单面单极膜通量下降59%,可以证明单面双极电化学膜在抗污抑菌上具备独特优势。
实施例8
实施例8的单面双极的电化学膜包括以TiO2和ZrO2为主要成分的陶瓷超滤膜以及设置在陶瓷膜一侧的电极层,陶瓷膜的截留分子量为300±20kDa,直径为50±3mm,厚度为3±0.2mm,电化学膜的有效面积(膜表面可以喷涂的面积)为78.5cm2,电极层如图12所示,电化学膜有效表面积阴极2图层面积占膜表面积的42%,阳极1图层占42%,另约有6%膜表面积不喷涂。
实施例8的单面双极电化学膜材料的制备方法,包括如下步骤:
步骤一、采用去离子水对陶瓷膜基板清洗6次,然后在去离子水中浸渍25小时,取出后干燥,备用;
步骤二、依据阴、阳极1互补图案制备不锈钢模具,将模具紧贴基底膜表面(电极材料沉积时须使模具紧密贴合陶瓷膜);
步骤三、采用共聚焦磁控共溅射装置向陶瓷膜的阴、阳极依次溅射钯、铂金属。先将陶瓷超滤膜置于硅支架上,陶瓷超滤膜基板的上表面(过滤时面向进料液的表面)面向金属溅射靶,设置靶体与陶瓷膜呈30°,距离15cm。保持溅射室压力低于10-7Pa,使用超纯氩气提供0.3Pa的工作压力,排出残余空气。共聚焦磁控共溅射装置施加偏压50W,沉积速率为5nm/min,利用石英测厚仪控制溅射厚度为70nm,得到如图12布置样式的单面双极电化学膜。
利用直流电源向实施例8电化学膜的两极施加1.6V电压,38min内单面双极电化学膜电过滤作用下,可产生0.07mA/cm2的电流密度,对10μM的磺胺甲恶唑模拟废水去除效率达64.2%,能耗为11.2Wh。实际处理效果相较于实施例1的单面双极膜较差。
实施例9
实施例8的单面双极的电化学膜包括以TiO2和ZrO2为主要成分的陶瓷超滤膜以及设置在陶瓷膜一侧的电极层,陶瓷膜的截留分子量为300±20kDa,直径为50±3mm,厚度为3±0.2mm,电化学膜的有效面积(膜表面可以喷涂的面积)为78.5cm2,电极层如图13所示,电化学膜有效表面积阴极2图层面积占膜表面积的40%,阳极1图层占40%,另约有10%膜表面积不喷涂。
实施例9的单面双极电化学膜材料的制备方法,包括如下步骤:
步骤一、采用去离子水对陶瓷膜基板清洗6次,然后在去离子水中浸渍25小时,取出后干燥,备用;
步骤二、依据阴、阳极1互补图案制备不锈钢模具,将模具紧贴基底膜表面(电极材料沉积时须使模具紧密贴合陶瓷膜);
步骤三、采用共聚焦磁控共溅射装置向陶瓷膜的阴、阳极依次溅射钯、铂金属。先将陶瓷超滤膜置于硅支架上,陶瓷超滤膜基板的上表面(过滤时面向进料液的表面)面向金属溅射靶,设置靶体与陶瓷膜呈30°,距离15cm。保持溅射室压力低于10-7Pa,使用超纯氩气提供0.3Pa的工作压
力,排出残余空气。共聚焦磁控共溅射装置施加偏压50W,沉积速率为5nm/min,利用石英测厚仪控制溅射厚度为70nm,得到如图13布置样式的单面双极电化学膜。利用直流电源向实施例9电化学膜的两极施加1.6V电压,38min内单面双极电化学膜电过滤作用下,可产生0.04mA/cm2的电流密度,对10μM的磺胺甲恶唑模拟废水去除效率达52.4%,能耗为6.4Wh。实际处理效果相较于实施例1和实施例8的单面双极膜较差,说明图案的具体布置会影响电催化膜的实际性能。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。
Claims (10)
- 一种单面双极的电化学膜的制备方法,其中,包括以下步骤:a)提供基底膜;b)将依据阳极和阴极互补图案制备的模具贴合在所述基底膜的一侧表面;c)通过所述模具分别将阳极材料和阴极材料负载于所述基底膜的同一侧表面,得到由阳极和阴极形成的电极层。
- 根据权利要求1所述的制备方法,其中,所述基底膜为陶瓷膜、阳极氧化铝膜、聚四氟乙烯膜、聚酰胺膜或聚砜膜。
- 根据权利要求1所述的制备方法,其中,所述阳极材料和阴极材料分别包括过渡金属和非金属中的一种或两种。
- 根据权利要求1所述的制备方法,其中,所述电极层的厚度为50~200nm。
- 根据权利要求1所述的制备方法,其中,所述阳极材料和阴极材料分别通过物理气相沉积法、真空抽滤法负载于所述基底膜上。
- 根据权利要求5所述的制备方法,其中,所述物理气象沉积法采用磁控溅射,所述磁控溅射满足如下(1)~(4)中的一个或几个:(1)所述磁控溅射的靶体与所述基底膜的角度呈30~60度,距离为5~20cm;(2)所述磁控溅射的溅射室压力≤10-7Pa;(3)所述磁控溅射的施加偏压为40W~70W;(4)所述磁控溅射的沉积速率为1~10nm/min。
- 根据权利要求5所述的制备方法,其中,所述步骤c)包括:将碳纳米管分散于溶剂中,制备得到纳米碳管悬浮液;将纳米碳管悬浮液通过真空过滤复合于所述基底膜的阳极区域或阴极区域;通过真空过滤洗去膜表面的溶剂;干燥得到所述阳极或阴极。
- 根据权利要求7所述的制备方法,其中,所述纳米碳管悬浮液满足如下(1)~(3)中的一个或几个:(1)所述纳米碳管的外径为13~18cm,长度为1~12μm;(2)所述纳米碳管悬浮液的浓度为0.4~1mg/mL;(3)所述纳米碳管悬浮液经过10~20min超声处理得到。
- 一种单面双极的电化学膜,其中,包括:基底膜,包括相背对设置的第一表面和第二表面;电极层,包括间隔形成的阳极和阴极,且所述阳极和阴极均设置于所述基底膜的第一表面。
- 一种电化学膜在废水处理或饮用水净化中的应用,其中,所述电化学膜为如权利要求1~8中任一项所述的制备方法得到的电化学膜或如权利要求9所述的电化学膜。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2023/072027 WO2024148593A1 (zh) | 2023-01-13 | 2023-01-13 | 单面双极的电化学膜及其制备方法和应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2023/072027 WO2024148593A1 (zh) | 2023-01-13 | 2023-01-13 | 单面双极的电化学膜及其制备方法和应用 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024148593A1 true WO2024148593A1 (zh) | 2024-07-18 |
Family
ID=91897790
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/072027 WO2024148593A1 (zh) | 2023-01-13 | 2023-01-13 | 单面双极的电化学膜及其制备方法和应用 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024148593A1 (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040197638A1 (en) * | 2002-10-31 | 2004-10-07 | Mcelrath Kenneth O | Fuel cell electrode comprising carbon nanotubes |
US20100065490A1 (en) * | 2007-04-10 | 2010-03-18 | FuMa-Tech Gesellschaft fur funktionelle Membranen und Anlagentechnologie mbH | Ion-permeable membrane and the production thereof |
CN114504952A (zh) * | 2022-03-24 | 2022-05-17 | 清华大学 | 双面导电膜过滤组件及净水方法 |
CN216671638U (zh) * | 2021-12-28 | 2022-06-03 | 深圳市奥视微科技有限公司 | 发光器件 |
-
2023
- 2023-01-13 WO PCT/CN2023/072027 patent/WO2024148593A1/zh unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040197638A1 (en) * | 2002-10-31 | 2004-10-07 | Mcelrath Kenneth O | Fuel cell electrode comprising carbon nanotubes |
US20100065490A1 (en) * | 2007-04-10 | 2010-03-18 | FuMa-Tech Gesellschaft fur funktionelle Membranen und Anlagentechnologie mbH | Ion-permeable membrane and the production thereof |
CN216671638U (zh) * | 2021-12-28 | 2022-06-03 | 深圳市奥视微科技有限公司 | 发光器件 |
CN114504952A (zh) * | 2022-03-24 | 2022-05-17 | 清华大学 | 双面导电膜过滤组件及净水方法 |
Non-Patent Citations (1)
Title |
---|
KARL GRUBER ET AL.: "Development of a lateral PEM fuel cell", ELECTROCHEMISTRY COMMUNICATIONS, vol. 9, no. 6, 25 January 2007 (2007-01-25), XP022089814, ISSN: 1388-2481, DOI: 10.1016/j.elecom.2007.01.033 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Barbhuiya et al. | Synthesis, fabrication, and mechanism of action of electrically conductive membranes: a review | |
Yang et al. | One-dimensional structured IrO2 nanorods modified membrane for electrochemical anti-fouling in filtration of oily wastewater | |
Liu et al. | Aqueous tetracycline degradation by coal-based carbon electrocatalytic filtration membrane: effect of nano antimony-doped tin dioxide coating | |
Venkatesan et al. | Effect of cation transport of SPEEK–Rutile TiO2 electrolyte on microbial fuel cell performance | |
Geng et al. | Magnéli Ti4O7 modified ceramic membrane for electrically-assisted filtration with antifouling property | |
US20140217022A1 (en) | Novel in-situ membrane cleaning using periodic electrolysis | |
US9827517B2 (en) | Electrochemical carbon nanotube filter and method | |
Mohamed et al. | Bioelectricity generation using iron (II) molybdate nanocatalyst coated anode during treatment of sugar wastewater in microbial fuel cell | |
Jara et al. | Improving the stability of Sb doped Sn oxides electrode thermally synthesized by using an acid ionic liquid as solvent | |
US7258899B1 (en) | Process for preparing metal coatings from liquid solutions utilizing cold plasma | |
Katuri et al. | A microfiltration polymer-based hollow-fiber cathode as a promising advanced material for simultaneous recovery of energy and water | |
Zhou et al. | Defective MOFs-based electrocatalytic self-cleaning membrane for wastewater reclamation: Enhanced antibiotics removal, membrane fouling control and mechanisms | |
JP2012527354A (ja) | 汚染防止可能の電気触媒複合膜及び膜反応器 | |
CN113165916A (zh) | 用于净化流体特别是废水的装置 | |
Bell et al. | Metallized hollow fiber membranes for electrochemical fouling control | |
Mushtaq et al. | A novel method for the fabrication of silver nanowires-based highly electro-conductive membrane with antifouling property for efficient microalgae harvesting | |
CN114504952B (zh) | 双面导电膜过滤组件及净水方法 | |
Rashed et al. | Carbon nanofibre microfiltration membranes tailored by oxygen plasma for electrocatalytic wastewater treatment in cross-flow reactors | |
CN110199423B (zh) | 氧化还原液流电池用电极和氧化还原液流电池 | |
Zhu et al. | Improved dye and heavy metal ions removal in saline solutions by electric field-assisted gravity driven filtration using nanofiber membranes with asymmetric micro/nano channels | |
Kumar et al. | In-situ fabrication of titanium suboxide-laser induced graphene composites: Removal of organic pollutants and MS2 Bacteriophage | |
Qi et al. | Electrochemical filtration for drinking water purification: a review on membrane materials, mechanisms and roles | |
WO2024148593A1 (zh) | 单面双极的电化学膜及其制备方法和应用 | |
Martí-Calatayud et al. | Antimony-doped tin dioxide ceramics used as standalone membrane electrodes in electrofiltration reactors enhance the oxidation of organic micropollutants | |
JP2008516762A (ja) | 電気化学的酸化のために改善されたcod除去法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23915362 Country of ref document: EP Kind code of ref document: A1 |