WO2024147248A1 - Temporal waveform measuring method and temporal waveform measuring device - Google Patents

Temporal waveform measuring method and temporal waveform measuring device Download PDF

Info

Publication number
WO2024147248A1
WO2024147248A1 PCT/JP2023/042686 JP2023042686W WO2024147248A1 WO 2024147248 A1 WO2024147248 A1 WO 2024147248A1 JP 2023042686 W JP2023042686 W JP 2023042686W WO 2024147248 A1 WO2024147248 A1 WO 2024147248A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
spectrum
varying
frequency
time waveform
Prior art date
Application number
PCT/JP2023/042686
Other languages
French (fr)
Japanese (ja)
Inventor
毅 小西
将之 牧野
知樹 辻
Original Assignee
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学 filed Critical 国立大学法人大阪大学
Publication of WO2024147248A1 publication Critical patent/WO2024147248A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J11/00Measuring the characteristics of individual optical pulses or of optical pulse trains

Definitions

  • This disclosure relates to a time waveform measurement method and a time waveform measurement device.
  • the present disclosure provides a time waveform measurement method or device that can measure the time waveform of a signal to be measured without using a wideband oscilloscope.
  • a time waveform measurement method discretizes the spectrum of chirped light, whose frequency increases or decreases over time, modulates the discretized time-varying light with a signal to be measured, and analyzes the spectrum of the modulated time-varying light.
  • a time waveform measuring device includes a filter that discretizes the spectrum of time-varying spectrum light whose frequency increases or decreases over time, and a modulator that modulates the time-varying spectrum light, the spectrum of which has been discretized by the filter, with a signal to be measured.
  • the time waveform measurement method or time waveform measurement device disclosed herein can measure the time waveform of the signal to be measured without using a wideband oscilloscope.
  • FIG. 1 is a block diagram showing a configuration of a time waveform measuring device according to an embodiment.
  • FIG. 2A is a diagram showing a time waveform of discretized time-varying spectrum light.
  • FIG. 2B is a diagram showing the spectrum of discretized time-varying spectrum light.
  • FIG. 3A is a diagram showing the time waveform of modulated time-varying spectrum light.
  • FIG. 3B is a diagram showing the spectrum of modulated time-varying spectrum light.
  • FIG. 4 is a flowchart showing a time waveform measuring method according to the embodiment.
  • FIG. 5 is a flowchart showing a part of a time waveform measuring method according to an embodiment.
  • each figure is a schematic diagram in which emphasis, omissions, or adjustments to the ratio have been made as appropriate to illustrate the present disclosure, and is not necessarily an exact illustration, and may differ from the actual shape, positional relationship, and ratio.
  • the same reference numerals are used for substantially the same configuration, and duplicate explanations may be omitted or simplified.
  • Fig. 1 is a block diagram showing the configuration of the time waveform measuring apparatus 100 according to the present embodiment.
  • halftones indicate the wavelength (frequency) of light, and the lower the density, the longer the wavelength.
  • the light source 200 is a broadband pulse light source, and can emit, for example, super continuum (SC) light as the broadband optical pulse 10.
  • SC super continuum
  • the frequency of the signal to be measured is about 500 GHz, for example, SC light having a bandwidth of about 1000 nm can be used as the broadband optical pulse 10.
  • the time waveform measuring device 100 can measure the time waveform of the measured signal 16 by using the broadband optical pulse 10 received from the light source 200 as a probe light. As shown in FIG. 1, the time waveform measuring device 100 includes a disperser 102, a filter 104, a modulator 106, an optical spectrum analyzer 108, and an information processor 110.
  • the disperser 102 can generate chirped light 12 by dispersing the broadband optical pulse 10.
  • the chirped light 12 is light whose frequency increases or decreases over time.
  • the chirped light 12 generated by the disperser 102 is propagated to the filter 104 via the optical transmission medium 112.
  • the disperser 102 can be, but is not limited to, a high-dispersion optical fiber, a chirped fiber bragg grating (FBG), an arrayed waveguide grating (AWG), or any combination thereof.
  • the time waveform measuring device 100 may receive the time-varying spectrum light 12 from an external source. In this case, the disperser 102 does not need to be included in the time waveform measuring device 100.
  • the filter 104 can discretize the time-varying spectrum light 12.
  • the filter 104 is an optical filter having multiple discrete passbands, and can selectively pass multiple discrete frequency components.
  • the time-varying spectrum light discretized by the filter 104 (hereinafter referred to as discretized time-varying spectrum light 14) is propagated to the modulator 106 via the optical transmission medium 114.
  • the filter 104 can be, but is not limited to, an AWG or the like.
  • the filter 104 may be integrated with the disperser 102.
  • the discretized time-varying spectrum light 14 will be described later with reference to Figures 2A and 2B.
  • the modulator 106 can modulate the discretized time-varying spectrum light 14 with the measured signal 16.
  • the modulator 106 is an intensity modulator, and the discretized time-varying spectrum light 14 modulated by the modulator 106 (hereinafter referred to as modulated time-varying spectrum light 18) is propagated to the optical spectrum analyzer 108 via the optical transmission medium 116.
  • the modulator 106 can be, but is not limited to, an EA (Electro-Absorption) modulator and/or an ER (Electro-Refractive) modulator.
  • EA Electro-Absorption
  • ER Electro-Refractive
  • the information processor 110 can reconstruct the time waveform of the measured signal by processing the spectral information of the modulated time-varying spectrum light 18. Specifically, the information processor 110 accumulates the spectrum of the modulated time-varying spectrum light 18 for each of a plurality of bands based on the spectral information of the modulated time-varying spectrum light 18. In other words, the information processor 110 adds up the intensity of light of each frequency for each band. The plurality of bands will be described later with reference to FIG. 3B. Based on the spectrum of the modulated time-varying spectrum light 18 accumulated for each band in this manner, the time waveform of the measured signal 16 can be reconstructed. The reconstructed time waveform of the measured signal 16 may be displayed on a display.
  • the information processor 110 can be realized by a computer having a processor and memory.
  • the information processor 110 may also be realized as one or more dedicated electronic circuits. In such a case, the information processor 110 may be included in the optical spectrum analyzer 108.
  • the optical transmission media 112, 114, and 116 respectively connect between the disperser 102 and the filter 104, between the filter 104 and the modulator 106, and between the modulator 106 and the optical spectrum analyzer 108.
  • the optical transmission media 112, 114, and 116 may be, for example, optical fiber or an optical waveguide device, but are not limited to these. Note that the optical transmission media 112, 114, and 116 do not have to be included in the time waveform measurement device 100.
  • FIG. 2A is a diagram showing the time waveform of the discretized time-varying spectrum light 14.
  • Fig. 2B is a diagram showing the spectrum of the discretized time-varying spectrum light 14.
  • the discretized time-varying spectrum light 14 includes seven frequency components 141 to 147 whose frequencies change discretely in time intervals Tint 1 to Tint 6.
  • the frequency components 141 to 147 have discrete frequencies fc 1 to fc 7 in periods centered around times t 1 to t 7 , respectively.
  • fm (Hz) indicates the frequency of the measured signal 16.
  • the time intervals Tint n are approximately the same, but may be different from each other.
  • the intensities of the frequency components 141 to 147 are approximately the same, but the intensities of some of the frequency components 141 to 147 may be different from the intensities of other parts of the frequency components 141 to 147.
  • the number of frequency components 141 to 147 in Figures 2A and 2B is an example and is not limited to seven. In other words, the number of frequency components contained in the discretized time-varying spectrum light 14 may be less than seven or more than seven.
  • Fig. 3A is a diagram showing the time waveform of the modulated time-varying spectrum light 18.
  • Fig. 3B is a diagram showing the spectrum of the modulated time-varying spectrum light 18.
  • the modulated time varying spectrum light 18 includes frequency components 181 to 187 whose frequencies change discretely in time intervals Tint 1 to Tint 6.
  • the frequency components 181 to 187 have discrete frequencies fc 1 to fc 7 in periods centered around times t 1 to t 7 , respectively, like the frequency components 141 to 147.
  • the frequency components 181 to 187 have intensities that change over time based on the signal 16 to be measured. Therefore, if the time waveform of the modulated time varying spectrum light 18 can be obtained, the time waveform of the signal 16 to be measured can also be obtained.
  • the spectrum of the modulated time varying spectrum light 18 corresponds to the time waveform of the modulated time varying spectrum light 18. Therefore, if the spectrum of the modulated time varying spectrum light 18 can be obtained, the time waveform of the signal 16 to be measured can be obtained.
  • the time interval Tint n during which the frequency of the discretized time-varying spectrum light 14 changes is preferably equal to or less than 1/2fm (s) based on the sampling theorem. This makes it possible to more accurately reconstruct the time waveform of the measured signal 16 of frequency fm.
  • each of the frequency components 181 to 187 includes, in addition to the original components of frequencies fc1 to fc7 (hereinafter referred to as main components), components shifted from frequencies fc1 to fc7 to the negative side and the positive side by the frequency fm of the signal to be measured 16 (hereinafter referred to as low-shift components and high-shift components, respectively).
  • the two shift components generated from the main component by such intensity modulation are components that should be included in the main component in terms of their correspondence with the time waveform. Therefore, in order to more accurately determine the time waveform of the signal to be measured 16, it is desirable to integrate the main component and the two shift components.
  • the frequency interval Fint n between adjacent frequency components in the frequency domain is 2fm (Hz) or more, which can suppress interference between the shifted components of the adjacent frequency components.
  • the graphs of light or signals shown in Figures 1 to 3B are examples and are not limited to these.
  • the amplitudes of the time-varying spectrum light 12 and the discretized time-varying spectrum light 14 do not have to be constant.
  • the time-varying spectrum light 12 and the discretized time-varying spectrum light 14 do not have to be rectangular.
  • the time waveform of the measured signal 16 can be measured based on the relative change in the spectrum of the modulated time-varying spectrum light 18 with respect to the discretized time-varying spectrum light 14.
  • the disperser 102 converts the broadband optical pulse 10 into time-varying spectrum light 12 (S100).
  • the time-varying spectrum light 12 which is the output of the disperser 102, is transmitted to the filter 104.
  • the modulator 106 modulates the discretized time-varying spectrum light 14 with the measured signal 16 (S120).
  • the output of the modulator 106, the modulated time-varying spectrum light 18, is transmitted to the optical spectrum analyzer 108.
  • the optical spectrum analyzer 108 analyzes the spectrum of the modulated time-varying spectrum light 18 (S130).
  • the output of the optical spectrum analyzer 108, that is, the spectral information, is sent to the information processor 110.
  • the information processor 110 reconstructs the time waveform of the measured signal 16 based on the spectral information of the modulated time-varying spectrum light 18 (S140). Note that step S140 does not have to be included in the time waveform measurement method. Details of this step S140 will be described with reference to FIG. 5.
  • the information processor 110 acquires the spectrum information of the modulated time-varying spectrum light 18 from the optical spectrum analyzer 108 (S142).
  • the information processor 110 integrates the spectrum for each band (S144). For example, in FIG. 3B, in the band Bw1 , the sum of the main component of frequency fc1 , the low-shift component of frequency fc1 -fm, and the high-shift component of frequency fc1 +fm is calculated.
  • the sum of the main component and the two shift components is calculated in the same manner as in the band Bw1 .
  • the information processor 110 reconstructs the time waveform of the measured signal 16 from the spectrum integration results for each band thus obtained (S146). Specifically, the information processor 110 reconstructs the time waveform of the measured signal 16 by mapping multiple bands into the time domain.
  • the time waveform measurement method discretizes the spectrum of the time-varying spectrum light 12, whose frequency increases or decreases over time (S110), modulates the discretized time-varying spectrum light 14 with the signal to be measured 16 (S120), and analyzes the spectrum of the modulated time-varying spectrum light 18 (S130).
  • the time waveform measuring device 100 also includes a filter 104 that discretizes the spectrum of the time-varying spectrum light 12 whose frequency increases or decreases over time, and a modulator 106 that modulates the discretized time-varying spectrum light 14 discretized by the filter 104 with the signal to be measured 16.
  • the time waveform measuring device 100 may further include an optical spectrum analyzer 108 that analyzes the spectrum of the modulated time-varying spectrum light 18 modulated by the modulator 106.
  • the time waveform of the measured signal 16 can be measured without using a wideband oscilloscope.
  • the spectrum of the modulated time-varying spectrum light 18 is discretized, it is possible to suppress interference between adjacent frequency components caused by the shift components generated by the modulation, and it is possible to measure the time waveform of the measured signal 16 more accurately.
  • the time interval T int n during which the frequency of the discretized time-varying spectrum light 14 changes discretely may be equal to or smaller than 1 ⁇ 2 f, where f may be the frequency of the signal 16 to be measured.
  • the time waveform measuring apparatus 100 may further include an information processor 110, which may accumulate the spectrum of the modulated time-varying spectrum light 18 analyzed by the optical spectrum analyzer 108 in each of a plurality of bands Bw n , each of which may include a plurality of discrete frequencies fc n of the discretized time-varying spectrum light 14 and may have a bandwidth based on the frequency fm of the signal to be measured 16, and may reconstruct the time waveform of the signal to be measured 16 based on the accumulated spectrum.
  • an information processor 110 may accumulate the spectrum of the modulated time-varying spectrum light 18 analyzed by the optical spectrum analyzer 108 in each of a plurality of bands Bw n , each of which may include a plurality of discrete frequencies fc n of the discretized time-varying spectrum light 14 and may have a bandwidth based on the frequency fm of the signal to be measured 16, and may reconstruct the time waveform of the signal to be measured 16 based on the accumulated spectrum.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

This temporal waveform measuring method includes: subjecting the spectrum of time variable spectrum light (12), the frequency of which increases or decreases over time, to discretization (S110); modulating the discretisized time variable spectrum light (14) using a measured signal (16); and analyzing the spectrum of the modulated time variable spectrum light (18).

Description

時間波形計測方法及び時間波形計測装置Time waveform measuring method and time waveform measuring device
 本開示は、時間波形計測方法及び時間波形計測装置に関する。 This disclosure relates to a time waveform measurement method and a time waveform measurement device.
 従来、オシロスコープだけでは計測することが難しい周波数帯の被計測信号(例えばテラヘルツ波、サブテラヘルツ波等)の時間波形を計測するための技術が提案されている。例えば、非特許文献1では、時間的に波長が変化するチャープ光キャリア(時変スペクトル光)が被計測信号で変調され、変調されたチャープ光キャリアが時間的に伸長され、時間的に伸長されたチャープ光キャリアの時間波形が広帯域オシロスコープで計測される。  Conventionally, techniques have been proposed for measuring the time waveform of a measured signal (e.g., terahertz waves, sub-terahertz waves, etc.) in a frequency band that is difficult to measure using only an oscilloscope. For example, in Non-Patent Document 1, a chirped optical carrier (time-varying spectrum light) whose wavelength changes over time is modulated by the measured signal, the modulated chirped optical carrier is stretched over time, and the time waveform of the time-stretched chirped optical carrier is measured using a wideband oscilloscope.
 しかしながら、上記従来の技術では、時間波形を計測するために高価な広帯域オシロスコープが必要となる。 However, the above conventional technology requires an expensive wideband oscilloscope to measure the time waveform.
 そこで、本開示は、被計測信号の時間波形を広帯域オシロスコープを用いずに計測することができる時間波形計測方法又は時間波形計測装置を提供する。 The present disclosure provides a time waveform measurement method or device that can measure the time waveform of a signal to be measured without using a wideband oscilloscope.
 本開示の一態様に係る時間波形計測方法は、時間とともに周波数が増加又は減少する時変スペクトル光(chirped light)のスペクトルを離散化し、前記スペクトルが離散化された前記時変スペクトル光を被計測信号で変調し、変調された前記時変スペクトル光のスペクトルを分析する。 A time waveform measurement method according to one aspect of the present disclosure discretizes the spectrum of chirped light, whose frequency increases or decreases over time, modulates the discretized time-varying light with a signal to be measured, and analyzes the spectrum of the modulated time-varying light.
 本開示の一態様に係る時間波形計測装置は、時間とともに周波数が増加又は減少する時変スペクトル光のスペクトルを離散化するフィルタと、前記フィルタによって前記スペクトルが離散化された前記時変スペクトル光を被計測信号で変調する変調器と、を備える。 A time waveform measuring device according to one aspect of the present disclosure includes a filter that discretizes the spectrum of time-varying spectrum light whose frequency increases or decreases over time, and a modulator that modulates the time-varying spectrum light, the spectrum of which has been discretized by the filter, with a signal to be measured.
 なお、これらの包括的又は具体的な態様は、システム又はプログラムとして実現されてもよく、装置、システム、方法及びプログラムの任意な組み合わせで実現されてもよい。 These comprehensive or specific aspects may be realized as a system or program, or may be realized as any combination of devices, systems, methods, and programs.
 本開示に係る時間波形計測方法又は時間波形計測装置によれば、被計測信号の時間波形を広帯域オシロスコープを用いずに計測することができる。 The time waveform measurement method or time waveform measurement device disclosed herein can measure the time waveform of the signal to be measured without using a wideband oscilloscope.
図1は、実施の形態に係る時間波形計測装置の構成を示すブロック図である。FIG. 1 is a block diagram showing a configuration of a time waveform measuring device according to an embodiment. 図2Aは、離散化時変スペクトル光の時間波形を示す図である。FIG. 2A is a diagram showing a time waveform of discretized time-varying spectrum light. 図2Bは、離散化時変スペクトル光のスペクトルを示す図である。FIG. 2B is a diagram showing the spectrum of discretized time-varying spectrum light. 図3Aは、変調時変スペクトル光の時間波形を示す図である。FIG. 3A is a diagram showing the time waveform of modulated time-varying spectrum light. 図3Bは、変調時変スペクトル光のスペクトルを示す図である。FIG. 3B is a diagram showing the spectrum of modulated time-varying spectrum light. 図4は、実施の形態に係る時間波形計測方法を示すフローチャートである。FIG. 4 is a flowchart showing a time waveform measuring method according to the embodiment. 図5は、実施の形態に係る時間波形計測方法の一部を示すフローチャートである。FIG. 5 is a flowchart showing a part of a time waveform measuring method according to an embodiment.
 以下、実施の形態について、図面を用いて詳細に説明する。なお、以下で説明する実施の形態は、いずれも包括的又は具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置及び接続形態などは、一例であり、本開示を限定する主旨ではない。 The following describes the embodiments in detail with reference to the drawings. Note that the embodiments described below are all comprehensive or specific examples. The numerical values, shapes, materials, components, arrangements and connection forms of the components shown in the following embodiments are merely examples and are not intended to limit the present disclosure.
 なお、各図は、本開示を示すために適宜強調、省略、又は比率の調整を行った模式図であり、必ずしも厳密に図示されたものではなく、実際の形状、位置関係、及び比率とは異なる場合がある。各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略又は簡素化される場合がある。 Note that each figure is a schematic diagram in which emphasis, omissions, or adjustments to the ratio have been made as appropriate to illustrate the present disclosure, and is not necessarily an exact illustration, and may differ from the actual shape, positional relationship, and ratio. In each figure, the same reference numerals are used for substantially the same configuration, and duplicate explanations may be omitted or simplified.
 また、以下の説明において、平行及び垂直などの要素間の関係性を示す用語、及び、矩形状などの要素の形状を示す用語、並びに、数値範囲は、厳格な意味のみを表すのではなく、実質的に同等な範囲、例えば数%程度の差異をも含むことを意味する。 In addition, in the following explanation, terms indicating the relationship between elements, such as parallel and perpendicular, terms indicating the shape of an element, such as rectangular, and numerical ranges do not only indicate the strict meaning, but also include a substantially equivalent range, for example, a difference of about a few percent.
 (実施の形態)
 [1.時間波形計測装置100の構成]
 まず、実施の形態に係る時間波形計測装置100の構成について図1を参照しながら説明する。図1は、本実施の形態に係る時間波形計測装置100の構成を示すブロック図である。図1において、ハーフトーンは、光の波長(周波数)を示し、濃度が低いほど波長が長いことを表す。
(Embodiment)
1. Configuration of the time waveform measuring device 100
First, a configuration of a time waveform measuring apparatus 100 according to an embodiment will be described with reference to Fig. 1. Fig. 1 is a block diagram showing the configuration of the time waveform measuring apparatus 100 according to the present embodiment. In Fig. 1, halftones indicate the wavelength (frequency) of light, and the lower the density, the longer the wavelength.
 光源200は、広帯域パルス光源であり、例えばスーパーコンティニューム(SC:Super Continuum)光を広帯域光パルス10として出射するができる。被計測信号の周波数が500GHz程度である場合には、広帯域光パルス10として、例えば1000nm程度の帯域幅を持つSC光を用いることができる。 The light source 200 is a broadband pulse light source, and can emit, for example, super continuum (SC) light as the broadband optical pulse 10. When the frequency of the signal to be measured is about 500 GHz, for example, SC light having a bandwidth of about 1000 nm can be used as the broadband optical pulse 10.
 時間波形計測装置100は、光源200から受けた広帯域光パルス10をプローブ光として用いて被計測信号16の時間波形を計測することができる。図1に示すように、時間波形計測装置100は、分散器102と、フィルタ104と、変調器106と、光スペクトル分析器108と、情報処理器110と、を備える。 The time waveform measuring device 100 can measure the time waveform of the measured signal 16 by using the broadband optical pulse 10 received from the light source 200 as a probe light. As shown in FIG. 1, the time waveform measuring device 100 includes a disperser 102, a filter 104, a modulator 106, an optical spectrum analyzer 108, and an information processor 110.
 分散器102は、広帯域光パルス10を分散することにより時変スペクトル光(chirped light)12を生成することができる。時変スペクトル光12とは、時間とともに周波数が増加又は減少する光である。分散器102によって生成された時変スペクトル光12は、光伝送媒体112を介してフィルタ104に伝搬される。分散器102には、高分散光ファイバ、チャープFBG(Chirped Fiber Bragg Grating)、アレイ導波路回折格子(AWG:Arrayed Waveguide Grating)、又は、それらの任意の組み合わせを用いることができるが、これらに限定されない。 The disperser 102 can generate chirped light 12 by dispersing the broadband optical pulse 10. The chirped light 12 is light whose frequency increases or decreases over time. The chirped light 12 generated by the disperser 102 is propagated to the filter 104 via the optical transmission medium 112. The disperser 102 can be, but is not limited to, a high-dispersion optical fiber, a chirped fiber bragg grating (FBG), an arrayed waveguide grating (AWG), or any combination thereof.
 なお、時間波形計測装置100は、外部から時変スペクトル光12を受けてもよい。この場合、分散器102は、時間波形計測装置100に含まれなくてもよい。 The time waveform measuring device 100 may receive the time-varying spectrum light 12 from an external source. In this case, the disperser 102 does not need to be included in the time waveform measuring device 100.
 フィルタ104は、時変スペクトル光12を離散化することができる。つまり、フィルタ104は、複数の離散的な通過帯域を有する光学フィルタであり、複数の離散的な周波数成分を選択的に通過させることができる。フィルタ104によって離散化された時変スペクトル光(以下、離散化時変スペクトル光14と呼ぶ)は、光伝送媒体114を介して変調器106に伝搬される。フィルタ104としては、AWGなどを用いることができるが、これに限定されない。なお、フィルタ104は、分散器102と一体化されてもよい。離散化時変スペクトル光14については、図2A及び図2Bを用いて後述する。 The filter 104 can discretize the time-varying spectrum light 12. In other words, the filter 104 is an optical filter having multiple discrete passbands, and can selectively pass multiple discrete frequency components. The time-varying spectrum light discretized by the filter 104 (hereinafter referred to as discretized time-varying spectrum light 14) is propagated to the modulator 106 via the optical transmission medium 114. The filter 104 can be, but is not limited to, an AWG or the like. The filter 104 may be integrated with the disperser 102. The discretized time-varying spectrum light 14 will be described later with reference to Figures 2A and 2B.
 変調器106は、被計測信号16で離散化時変スペクトル光14を変調することができる。具体的には、変調器106は、強度変調器であり、変調器106によって変調された離散化時変スペクトル光14(以下、変調時変スペクトル光18と呼ぶ)は、光伝送媒体116を介して光スペクトル分析器108に伝搬される。変調器106としては、EA(Electro-Absorption)変調器、及び/又は、ER(Electro-Refractive)変調器を用いることができるが、これらに限定されない。なお、変調時変スペクトル光18については、図3A及び図3Bを用いて後述する。 The modulator 106 can modulate the discretized time-varying spectrum light 14 with the measured signal 16. Specifically, the modulator 106 is an intensity modulator, and the discretized time-varying spectrum light 14 modulated by the modulator 106 (hereinafter referred to as modulated time-varying spectrum light 18) is propagated to the optical spectrum analyzer 108 via the optical transmission medium 116. The modulator 106 can be, but is not limited to, an EA (Electro-Absorption) modulator and/or an ER (Electro-Refractive) modulator. The modulated time-varying spectrum light 18 will be described later with reference to Figures 3A and 3B.
 光スペクトル分析器108は、分光器であり、変調時変スペクトル光18のスペクトルを分析することができる。具体的には、光スペクトル分析器108は、変調時変スペクトル光18をその周波数(波長)で分離し、分離された各周波数の光の強度を測定することができる。光スペクトル分析器108によって測定された各周波数の光の強度を示す情報(つまり、変調時変スペクトル光18のスペクトル情報)は、情報処理器110に伝送される。 The optical spectrum analyzer 108 is a spectroscope and can analyze the spectrum of the modulated time-varying spectrum light 18. Specifically, the optical spectrum analyzer 108 can separate the modulated time-varying spectrum light 18 by its frequency (wavelength) and measure the intensity of light at each separated frequency. Information indicating the intensity of light at each frequency measured by the optical spectrum analyzer 108 (i.e., the spectrum information of the modulated time-varying spectrum light 18) is transmitted to the information processor 110.
 情報処理器110は、変調時変スペクトル光18のスペクトル情報を処理することで被計測信号の時間波形を再構成することができる。具体的には、情報処理器110は、変調時変スペクトル光18のスペクトル情報に基づいて、変調時変スペクトル光18のスペクトルを複数の帯域の各々で積算する。言い換えると、情報処理器110は、各周波数の光の強度を帯域ごとに加算する。複数の帯域については図3Bを用いて後述する。このように帯域ごとに積算された変調時変スペクトル光18のスペクトルに基づいて、被計測信号16の時間波形を再構成することができる。再構成された被計測信号16の時間波形は、ディスプレイに表示されてもよい。 The information processor 110 can reconstruct the time waveform of the measured signal by processing the spectral information of the modulated time-varying spectrum light 18. Specifically, the information processor 110 accumulates the spectrum of the modulated time-varying spectrum light 18 for each of a plurality of bands based on the spectral information of the modulated time-varying spectrum light 18. In other words, the information processor 110 adds up the intensity of light of each frequency for each band. The plurality of bands will be described later with reference to FIG. 3B. Based on the spectrum of the modulated time-varying spectrum light 18 accumulated for each band in this manner, the time waveform of the measured signal 16 can be reconstructed. The reconstructed time waveform of the measured signal 16 may be displayed on a display.
 情報処理器110は、プロセッサ及びメモリを有するコンピュータで実現することができる。なお、情報処理器110は、専用の1以上の電子回路として実現されてもよい。このような場合には、情報処理器110は、光スペクトル分析器108に包含されてもよい。 The information processor 110 can be realized by a computer having a processor and memory. The information processor 110 may also be realized as one or more dedicated electronic circuits. In such a case, the information processor 110 may be included in the optical spectrum analyzer 108.
 光伝送媒体112、114及び116は、分散器102及びフィルタ104の間、フィルタ104及び変調器106の間、並びに、変調器106及び光スペクトル分析器108の間をそれぞれ接続する。光伝送媒体112、114及び116としては、例えば光ファイバ又は光導波路デバイスを用いることができるが、これらに限定されない。なお、光伝送媒体112、114及び116は、時間波形計測装置100に含まれなくてもよい。 The optical transmission media 112, 114, and 116 respectively connect between the disperser 102 and the filter 104, between the filter 104 and the modulator 106, and between the modulator 106 and the optical spectrum analyzer 108. The optical transmission media 112, 114, and 116 may be, for example, optical fiber or an optical waveguide device, but are not limited to these. Note that the optical transmission media 112, 114, and 116 do not have to be included in the time waveform measurement device 100.
 [2.離散化時変スペクトル光14]
 ここで、離散化時変スペクトル光14について図2A及び図2Bを参照しながら説明する。図2Aは、離散化時変スペクトル光14の時間波形を示す図である。図2Bは、離散化時変スペクトル光14のスペクトルを示す図である。
[2. Discretized time-varying spectrum light 14]
2A and 2B, the discretized time-varying spectrum light 14 will be described. Fig. 2A is a diagram showing the time waveform of the discretized time-varying spectrum light 14. Fig. 2B is a diagram showing the spectrum of the discretized time-varying spectrum light 14.
 離散化時変スペクトル光14は、時間間隔Tint~Tintで周波数が離散的に変化する7つの周波数成分141~147を含む。周波数成分141~147は、時刻t~tをそれぞれ中心とする期間に、離散的な周波数fc~fcをそれぞれ有する。このとき、時刻tと時刻tn+1の間の時間間隔Tint(n=1~6)は、1/2fm(s)以下であることが望ましく、周波数fcと周波数fcn+1との間の周波数間隔Fint(n=1~6)は、2fm(Hz)以上であることが望ましい。ここで、fm(Hz)は、被計測信号16の周波数を示す。 The discretized time-varying spectrum light 14 includes seven frequency components 141 to 147 whose frequencies change discretely in time intervals Tint 1 to Tint 6. The frequency components 141 to 147 have discrete frequencies fc 1 to fc 7 in periods centered around times t 1 to t 7 , respectively. In this case, the time interval Tint n (n=1 to 6) between times t n and t n+1 is preferably 1/2 fm (s) or less, and the frequency interval Fint n (n=1 to 6) between frequencies fc n and fc n+1 is preferably 2 fm (Hz) or more. Here, fm (Hz) indicates the frequency of the measured signal 16.
 なお、図2Aにおいて、時間間隔Tintは、ほぼ同一であるが、互いに異なってもよい。また、図2Bにおいて、周波数成分141~147の強度は、ほぼ同一であるが、周波数成分141~147の一部の強度が周波数成分141~147の他部の強度と異なってもよい。 In Fig. 2A, the time intervals Tint n are approximately the same, but may be different from each other. Also, in Fig. 2B, the intensities of the frequency components 141 to 147 are approximately the same, but the intensities of some of the frequency components 141 to 147 may be different from the intensities of other parts of the frequency components 141 to 147.
 なお、図2A及び図2Bにおける周波数成分141~147の数は、例示であり、7つに限定されない。つまり、離散化時変スペクトル光14に含まれる周波数成分の数は、7つより少なくてもよく、7つより多くてもよい。 Note that the number of frequency components 141 to 147 in Figures 2A and 2B is an example and is not limited to seven. In other words, the number of frequency components contained in the discretized time-varying spectrum light 14 may be less than seven or more than seven.
 [3.変調時変スペクトル光18]
 次に、変調時変スペクトル光18について図3A及び図3Bを参照しながら説明する。図3Aは、変調時変スペクトル光18の時間波形を示す図である。図3Bは、変調時変スペクトル光18のスペクトルを示す図である。
[3. Modulated time-varying spectrum light 18]
3A and 3B, the modulated time-varying spectrum light 18 will be described. Fig. 3A is a diagram showing the time waveform of the modulated time-varying spectrum light 18. Fig. 3B is a diagram showing the spectrum of the modulated time-varying spectrum light 18.
 変調時変スペクトル光18は、時間間隔Tint~Tintで周波数が離散的に変化する周波数成分181~187を含む。周波数成分181~187は、周波数成分141~147と同様に、時刻t~tをそれぞれ中心とする期間に離散的な周波数fc~fcをそれぞれ有する。ただし、周波数成分181~187は、周波数成分141~147と異なり、その強度が被計測信号16に基づいて時間的に変化する。したがって、変調時変スペクトル光18の時間波形を求めることができれば、被計測信号16の時間波形も求めることができる。変調時変スペクトル光18は、時間とともに周波数が離散的に変化するので、変調時変スペクトル光18のスペクトルは、変調時変スペクトル光18の時間波形に対応する。したがって、変調時変スペクトル光18のスペクトルを求めることができれば、被計測信号16の時間波形を求めることができる。 The modulated time varying spectrum light 18 includes frequency components 181 to 187 whose frequencies change discretely in time intervals Tint 1 to Tint 6. The frequency components 181 to 187 have discrete frequencies fc 1 to fc 7 in periods centered around times t 1 to t 7 , respectively, like the frequency components 141 to 147. However, unlike the frequency components 141 to 147, the frequency components 181 to 187 have intensities that change over time based on the signal 16 to be measured. Therefore, if the time waveform of the modulated time varying spectrum light 18 can be obtained, the time waveform of the signal 16 to be measured can also be obtained. Since the frequency of the modulated time varying spectrum light 18 changes discretely over time, the spectrum of the modulated time varying spectrum light 18 corresponds to the time waveform of the modulated time varying spectrum light 18. Therefore, if the spectrum of the modulated time varying spectrum light 18 can be obtained, the time waveform of the signal 16 to be measured can be obtained.
 そこで、図2Aで説明したように、離散化時変スペクトル光14の周波数が変化する時間間隔Tintは、標本化定理に基づいて、1/2fm(s)以下であることが望ましい。これにより、周波数fmの被計測信号16を時間波形をより正確に再構成することができる。 2A, the time interval Tint n during which the frequency of the discretized time-varying spectrum light 14 changes is preferably equal to or less than 1/2fm (s) based on the sampling theorem. This makes it possible to more accurately reconstruct the time waveform of the measured signal 16 of frequency fm.
 ただし、周波数成分181~187の各々には、元の周波数fc~fcの成分(以下、主成分という)に加えて、周波数fc~fcから被計測信号16の周波数fmだけ負側及び正側にシフトした成分(以下、低シフト成分及び高シフト成分とそれぞれいう)が含まれる。このような強度変調によって主成分から生じた2つのシフト成分は、時間波形との対応関係において主成分に含まれるべき成分である。したがって、被計測信号16の時間波形をより正確に求めるためには、主成分と2つのシフト成分とが積算されることが望ましい。 However, each of the frequency components 181 to 187 includes, in addition to the original components of frequencies fc1 to fc7 (hereinafter referred to as main components), components shifted from frequencies fc1 to fc7 to the negative side and the positive side by the frequency fm of the signal to be measured 16 (hereinafter referred to as low-shift components and high-shift components, respectively). The two shift components generated from the main component by such intensity modulation are components that should be included in the main component in terms of their correspondence with the time waveform. Therefore, in order to more accurately determine the time waveform of the signal to be measured 16, it is desirable to integrate the main component and the two shift components.
 そこで、図2Bで説明したように、周波数領域において隣り合う周波数成分の周波数間隔Fintは2fm(Hz)以上であることが望ましい。これにより、シフト成分が隣接する周波数成分のシフト成分と干渉することを抑制することができる。 Therefore, as described in Fig. 2B, it is desirable that the frequency interval Fint n between adjacent frequency components in the frequency domain is 2fm (Hz) or more, which can suppress interference between the shifted components of the adjacent frequency components.
 なお、図3Bには、情報処理器110によって光の強度を積算するための帯域Bw~Bwが図示されている。ここでは、帯域Bw(n=1~7)は、複数の離散的な周波数fc~fcをそれぞれ含むように設定される。さらに、帯域Bwは、被計測信号16の周波数fmに基づく帯域幅を有するように設定される。より具体的には、帯域Bwの帯域幅は、2fmよりも大きいことが望ましい。これにより、主成分に加えて2つのシフト成分を1つの帯域に含めることができ、主成分及び2つのシフト成分の積算が可能となる。 3B shows bands Bw 1 to Bw 7 for integrating the light intensity by the information processor 110. Here, the bands Bw n (n=1 to 7) are set to include a plurality of discrete frequencies fc 1 to fc 7 , respectively. Furthermore, the band Bw n is set to have a bandwidth based on the frequency fm of the measured signal 16. More specifically, it is desirable that the bandwidth of the band Bw n is larger than 2fm. This allows the two shift components in addition to the main component to be included in one band, making it possible to integrate the main component and the two shift components.
 なお、図1~図3Bに示した光又は信号の各グラフは、例示であり、これに限定されない。例えば、時変スペクトル光12及び離散化時変スペクトル光14の振幅は一定でなくてもよい。つまり、図1等に示すグラフにおいて、時変スペクトル光12及び離散化時変スペクトル光14は矩形状でなくてもよい。このような場合であっても、被計測信号16の時間波形は、離散化時変スペクトル光14に対する変調時変スペクトル光18のスペクトルの相対的な変化に基づいて計測され得る。 Note that the graphs of light or signals shown in Figures 1 to 3B are examples and are not limited to these. For example, the amplitudes of the time-varying spectrum light 12 and the discretized time-varying spectrum light 14 do not have to be constant. In other words, in the graphs shown in Figure 1 and elsewhere, the time-varying spectrum light 12 and the discretized time-varying spectrum light 14 do not have to be rectangular. Even in such cases, the time waveform of the measured signal 16 can be measured based on the relative change in the spectrum of the modulated time-varying spectrum light 18 with respect to the discretized time-varying spectrum light 14.
 [4.時間波形計測方法]
 次に、以上のように構成された時間波形計測装置100による時間波形計測方法について図4及び図5を参照しながら説明する。図4は、本実施の形態に係る時間波形計測方法を示すフローチャートである。図5は、本実施の形態に係る時間波形計測方法の一部を示すフローチャートであり、図4のステップS140の詳細を示す。
[4. Time waveform measurement method]
Next, a time waveform measuring method using the time waveform measuring apparatus 100 configured as above will be described with reference to Fig. 4 and Fig. 5. Fig. 4 is a flowchart showing the time waveform measuring method according to the present embodiment. Fig. 5 is a flowchart showing a part of the time waveform measuring method according to the present embodiment, and shows details of step S140 in Fig. 4.
 まず、図4を参照しながら、時間波形計測方法について説明する。 First, we will explain the time waveform measurement method with reference to Figure 4.
 分散器102は、広帯域光パルス10を時変スペクトル光12に変換する(S100)。分散器102の出力である時変スペクトル光12は、フィルタ104に伝送される。 The disperser 102 converts the broadband optical pulse 10 into time-varying spectrum light 12 (S100). The time-varying spectrum light 12, which is the output of the disperser 102, is transmitted to the filter 104.
 フィルタ104は、時変スペクトル光12を離散化する(S110)。フィルタ104の出力である離散化時変スペクトル光14は、変調器106に伝送される。なお、ステップS110は、時間波形計測方法に含まれなくてもよい。 The filter 104 discretizes the time-varying spectral light 12 (S110). The output of the filter 104, the discretized time-varying spectral light 14, is transmitted to the modulator 106. Note that step S110 does not have to be included in the time waveform measurement method.
 変調器106は、被計測信号16で離散化時変スペクトル光14を変調する(S120)。変調器106の出力である変調時変スペクトル光18は、光スペクトル分析器108に伝送される。 The modulator 106 modulates the discretized time-varying spectrum light 14 with the measured signal 16 (S120). The output of the modulator 106, the modulated time-varying spectrum light 18, is transmitted to the optical spectrum analyzer 108.
 光スペクトル分析器108は、変調時変スペクトル光18のスペクトルを分析する(S130)。光スペクトル分析器108の出力であるスペクトル情報は、情報処理器110に送信される。 The optical spectrum analyzer 108 analyzes the spectrum of the modulated time-varying spectrum light 18 (S130). The output of the optical spectrum analyzer 108, that is, the spectral information, is sent to the information processor 110.
 情報処理器110は、変調時変スペクトル光18のスペクトル情報に基づいて、被計測信号16の時間波形を再構成する(S140)。なお、ステップS140は、時間波形計測方法に含まれなくてもよい。このステップS140の詳細について、図5を参照しながら説明する。 The information processor 110 reconstructs the time waveform of the measured signal 16 based on the spectral information of the modulated time-varying spectrum light 18 (S140). Note that step S140 does not have to be included in the time waveform measurement method. Details of this step S140 will be described with reference to FIG. 5.
 まず、情報処理器110は、変調時変スペクトル光18のスペクトル情報を光スペクトル分析器108から取得する(S142)。次に、情報処理器110は、帯域ごとにスペクトルを積算する(S144)。例えば、図3Bにおいて、帯域Bwでは、周波数fcの主成分と、周波数fc-fmの低シフト成分と、周波数fc+fmの高シフト成分との総和が算出される。帯域Bw~Bwの各々についても、帯域Bwと同様に、主成分及び2つのシフト成分の総和が算出される。 First, the information processor 110 acquires the spectrum information of the modulated time-varying spectrum light 18 from the optical spectrum analyzer 108 (S142). Next, the information processor 110 integrates the spectrum for each band (S144). For example, in FIG. 3B, in the band Bw1 , the sum of the main component of frequency fc1 , the low-shift component of frequency fc1 -fm, and the high-shift component of frequency fc1 +fm is calculated. For each of the bands Bw2 to Bw7 , the sum of the main component and the two shift components is calculated in the same manner as in the band Bw1 .
 最後に、情報処理器110は、このように求められた帯域ごとのスペクトルの積算結果から、被計測信号16の時間波形を再構成する(S146)。具体的には、情報処理器110は、複数の帯域を時間領域にマッピングすることで被計測信号16の時間波形を再構成する。 Finally, the information processor 110 reconstructs the time waveform of the measured signal 16 from the spectrum integration results for each band thus obtained (S146). Specifically, the information processor 110 reconstructs the time waveform of the measured signal 16 by mapping multiple bands into the time domain.
 [5.効果など]
 以上のように、本実施の形態に係る時間波形計測方法は、時間とともに周波数が増加又は減少する時変スペクトル光12のスペクトルを離散化し(S110)、離散化時変スペクトル光14を被計測信号16で変調し(S120)、変調時変スペクトル光18のスペクトルを分析する(S130)。
[5. Effects, etc.]
As described above, the time waveform measurement method according to the present embodiment discretizes the spectrum of the time-varying spectrum light 12, whose frequency increases or decreases over time (S110), modulates the discretized time-varying spectrum light 14 with the signal to be measured 16 (S120), and analyzes the spectrum of the modulated time-varying spectrum light 18 (S130).
 また、本実施の形態に係る時間波形計測装置100は、時間とともに周波数が増加又は減少する時変スペクトル光12のスペクトルを離散化するフィルタ104と、フィルタ104によって離散化された離散化時変スペクトル光14を被計測信号16で変調する変調器106と、を備える。このとき、時間波形計測装置100は、さらに、変調器106で変調された変調時変スペクトル光18のスペクトルを分析する光スペクトル分析器108を備えてもよい。 The time waveform measuring device 100 according to this embodiment also includes a filter 104 that discretizes the spectrum of the time-varying spectrum light 12 whose frequency increases or decreases over time, and a modulator 106 that modulates the discretized time-varying spectrum light 14 discretized by the filter 104 with the signal to be measured 16. In this case, the time waveform measuring device 100 may further include an optical spectrum analyzer 108 that analyzes the spectrum of the modulated time-varying spectrum light 18 modulated by the modulator 106.
 これらによれば、変調時変スペクトル光18のスペクトルを分析すればよいので、被計測信号16の時間波形を広帯域オシロスコープを用いずに計測することができる。特に、変調時変スペクトル光18では、スペクトルが離散化されているので、変調によって生じるシフト成分が隣り合う周波数成分の間で干渉することを抑制することができ、被計測信号16の時間波形をより正確に計測することができる。 According to these, it is only necessary to analyze the spectrum of the modulated time-varying spectrum light 18, so the time waveform of the measured signal 16 can be measured without using a wideband oscilloscope. In particular, since the spectrum of the modulated time-varying spectrum light 18 is discretized, it is possible to suppress interference between adjacent frequency components caused by the shift components generated by the modulation, and it is possible to measure the time waveform of the measured signal 16 more accurately.
 また例えば、本実施の形態に係る時間波形計測方法又は時間波形計測装置100において、離散化時変スペクトル光14の隣り合う周波数成分の周波数間隔Fintは、2fm以上であってもよく、fmは被計測信号16の周波数であってもよい。 Furthermore, for example, in the time waveform measuring method or time waveform measuring apparatus 100 according to the present embodiment, the frequency interval Fint n between adjacent frequency components of the discretized time-varying spectrum light 14 may be 2fm or more, and fm may be the frequency of the signal 16 to be measured.
 これによれば、主成分の周波数fcから被計測信号16の周波数fmだけ負側及び正側にシフトした周波数(fc-fm、fc+fm)に生じるシフト成分が隣りの周波数成分に干渉することを抑制することができ、被計測信号16の時間波形をより正確に計測することができる。 This makes it possible to suppress interference between the shift components occurring at frequencies (fc n -fm, fc n +fm) shifted from the main component frequency fc n to the negative and positive sides by the frequency fm of the signal to be measured 16 and the adjacent frequency components, and thus makes it possible to measure the time waveform of the signal to be measured 16 more accurately.
 また例えば、本実施の形態に係る時間波形計測方法又は時間波形計測装置100において、離散化時変スペクトル光14の周波数が離散的に変化する時間間隔Tintは、1/2fm以下であってもよく、fmは被計測信号16の周波数であってもよい。 Furthermore, for example, in the time waveform measuring method or time waveform measuring apparatus 100 according to the present embodiment, the time interval T int n during which the frequency of the discretized time-varying spectrum light 14 changes discretely may be equal to or smaller than ½ f, where f may be the frequency of the signal 16 to be measured.
 これによれば、離散化時変スペクトル光14のスペクトルを用いて被計測信号16の時間波形を再構成する際に標本化定理を満たすことができ、被計測信号16の時間波形をより正確に計測することができる。 This makes it possible to satisfy the sampling theorem when reconstructing the time waveform of the measured signal 16 using the spectrum of the discretized time-varying spectrum light 14, and thus makes it possible to measure the time waveform of the measured signal 16 more accurately.
 また例えば、本実施の形態に係る時間波形計測方法は、さらに、分析された変調時変スペクトル光18のスペクトルを複数の帯域Bwの各々で積算してもよく、複数の帯域Bwは、離散化時変スペクトル光14の複数の離散的な周波数fcをそれぞれ含んでもよく、かつ、被計測信号16の周波数fmに基づく帯域幅を有してもよく、積算されたスペクトルに基づいて、被計測信号16の時間波形を再構成してもよい。 Furthermore, for example, the time waveform measuring method according to the present embodiment may further accumulate the spectrum of the analyzed modulated time-varying spectrum light 18 in each of a plurality of bands Bw n , each of which may include a plurality of discrete frequencies fc n of the discretized time-varying spectrum light 14 and may have a bandwidth based on the frequency fm of the signal to be measured 16, and may reconstruct the time waveform of the signal to be measured 16 based on the accumulated spectrum.
 また例えば、本実施の形態に係る時間波形計測装置100は、さらに、情報処理器110を備えてもよく、情報処理器110は、光スペクトル分析器108で分析された変調時変スペクトル光18のスペクトルを複数の帯域Bwの各々で積算してもよく、複数の帯域Bwは、離散化時変スペクトル光14の複数の離散的な周波数fcをそれぞれ含んでもよく、かつ、被計測信号16の周波数fmに基づく帯域幅を有してもよく、積算されたスペクトルに基づいて、被計測信号16の時間波形を再構成してもよい。 For example, the time waveform measuring apparatus 100 according to the present embodiment may further include an information processor 110, which may accumulate the spectrum of the modulated time-varying spectrum light 18 analyzed by the optical spectrum analyzer 108 in each of a plurality of bands Bw n , each of which may include a plurality of discrete frequencies fc n of the discretized time-varying spectrum light 14 and may have a bandwidth based on the frequency fm of the signal to be measured 16, and may reconstruct the time waveform of the signal to be measured 16 based on the accumulated spectrum.
 これらによれば、変調によって生じるシフト成分を主成分と合算することができ、再構成される被計測信号16の時間波形の正確さがシフト成分によって低下することを抑制することができる。 This makes it possible to add the shift component caused by modulation to the main component, and to prevent the accuracy of the reconstructed time waveform of the measured signal 16 from being reduced by the shift component.
 また例えば、本実施の形態に係る時間波形計測装置100は、さらに、広帯域光パルス10を分散することにより時変スペクトル光12を生成する分散器102を備えてもよい。 Also, for example, the time waveform measuring device 100 according to this embodiment may further include a disperser 102 that generates time-varying spectrum light 12 by dispersing the broadband optical pulse 10.
 これによれば、時間波形計測装置100によって広帯域光パルス10から時変スペクトル光12を生成することができ、時間波形計測装置100の利用範囲を拡げることができる。 This allows the time waveform measuring device 100 to generate time-varying spectrum light 12 from a broadband optical pulse 10, thereby expanding the range of applications of the time waveform measuring device 100.
 (他の実施の形態及び変形例)
 以上、時間波形計測装置100及び時間波形計測方法について、実施の形態に基づいて説明したが、本開示に係る時間波形計測装置100及び時間波形計測方法は、上記実施の形態に限定されるものではない。上記実施の形態における任意の構成要素を組み合わせて実現される別の実施の形態や、上記実施の形態に対して本開示の主旨を逸脱しない範囲で当業者が思いつく各種変形を施して得られる変形例も本開示に含まれる。
(Other embodiments and modifications)
Although the time waveform measuring device 100 and the time waveform measuring method have been described above based on the embodiments, the time waveform measuring device 100 and the time waveform measuring method according to the present disclosure are not limited to the above-mentioned embodiments. This disclosure also includes other embodiments realized by combining any of the components in the above-mentioned embodiments, and modified examples obtained by applying various modifications to the above-mentioned embodiments that would come to mind by a person skilled in the art without departing from the spirit of this disclosure.
 例えば、上記実施の形態では、帯域ごとにスペクトルが積算されていたが、これに限定されない。例えば、主成分のみに基づいて被計測信号の時間波形が再構成されてもよい。この場合、帯域ごとにスペクトルが積算されなくてもよく、主成分のみが抽出されてもよい。 For example, in the above embodiment, the spectrum is accumulated for each band, but this is not limiting. For example, the time waveform of the measured signal may be reconstructed based only on the principal component. In this case, the spectrum does not need to be accumulated for each band, and only the principal component may be extracted.
 本開示は、テラヘルツ波及びサブテラヘルツ波等の時間波形を計測する時間波形計測装置に広く利用可能である。 This disclosure can be widely used in time waveform measurement devices that measure the time waveforms of terahertz waves, sub-terahertz waves, etc.
 10 広帯域光パルス
 12 時変スペクトル光
 14 離散化時変スペクトル光
 16 被計測信号
 18 変調時変スペクトル光
 100 時間波形計測装置
 102 分散器
 104 フィルタ
 106 変調器
 108 光スペクトル分析器
 110 情報処理器
 112、114、116 光伝送媒体
 200 光源
REFERENCE SIGNS LIST 10 Broadband optical pulse 12 Time-varying spectrum light 14 Discretized time-varying spectrum light 16 Signal to be measured 18 Modulated time-varying spectrum light 100 Time waveform measuring device 102 Disperser 104 Filter 106 Modulator 108 Optical spectrum analyzer 110 Information processor 112, 114, 116 Optical transmission medium 200 Light source

Claims (10)

  1.  時間とともに周波数が増加又は減少する時変スペクトル光(chirped light)のスペクトルを離散化し、
     前記スペクトルが離散化された前記時変スペクトル光を被計測信号で変調し、
     変調された前記時変スペクトル光のスペクトルを分析する、
     時間波形計測方法。
    Discretize the spectrum of chirped light, whose frequency increases or decreases over time;
    modulating the time-varying spectrum light having the discretized spectrum with a signal to be measured;
    analyzing a spectrum of the modulated time-varying spectrum light;
    Time waveform measurement method.
  2.  前記スペクトルが離散化された前記時変スペクトル光の隣り合う周波数成分の周波数間隔は、2fm以上であり、fmは前記被計測信号の周波数である、
     請求項1に記載の時間波形計測方法。
    a frequency interval between adjacent frequency components of the time-varying spectrum light, the spectrum of which is discretized, is 2 fm or more, where fm is a frequency of the signal to be measured.
    The time waveform measuring method according to claim 1 .
  3.  前記スペクトルが離散化された前記時変スペクトル光の周波数が離散的に変化する時間間隔は、1/2fm以下であり、fmは前記被計測信号の周波数である、
     請求項1又は2に記載の時間波形計測方法。
    a time interval during which the frequency of the time-varying spectrum light, the spectrum of which is discretized, changes discretely is equal to or smaller than ½ fm, where fm is a frequency of the signal to be measured;
    The method for measuring a time waveform according to claim 1 or 2.
  4.  前記時間波形計測方法は、さらに、
     分析された前記時変スペクトル光のスペクトルを複数の帯域の各々で積算し、前記複数の帯域は、離散化された前記時変スペクトル光の複数の離散的な周波数をそれぞれ含み、かつ、前記被計測信号の周波数に基づく帯域幅を有し、
     積算された前記スペクトルに基づいて、前記被計測信号の時間波形を再構成する、
     請求項1に記載の時間波形計測方法。
    The time waveform measuring method further includes:
    integrating the analyzed spectrum of the time-varying spectrum light in each of a plurality of bands, the plurality of bands including a plurality of discrete frequencies of the discretized time-varying spectrum light, and having a bandwidth based on the frequency of the measured signal;
    reconstructing a time waveform of the measured signal based on the integrated spectrum;
    The time waveform measuring method according to claim 1 .
  5.  時間とともに周波数が増加又は減少する時変スペクトル光のスペクトルを離散化するフィルタと、
     前記フィルタによって前記スペクトルが離散化された前記時変スペクトル光を被計測信号で変調する変調器と、を備える、
     時間波形計測装置。
    A filter for discretizing the spectrum of time-varying spectrum light whose frequency increases or decreases over time;
    a modulator that modulates the time-varying spectrum light, the spectrum of which has been discretized by the filter, with a signal to be measured.
    Time waveform measurement device.
  6.  前記フィルタによって前記スペクトルが離散化された前記時変スペクトル光の隣り合う周波数成分の周波数間隔は、2fm以上であり、fmは前記被計測信号の周波数である、
     請求項5に記載の時間波形計測装置。
    a frequency interval between adjacent frequency components of the time-varying spectrum light, the spectrum of which is discretized by the filter, is 2 fm or more, where fm is a frequency of the signal to be measured;
    The time waveform measuring device according to claim 5 .
  7.  前記フィルタによって前記スペクトルが離散化された前記時変スペクトル光の周波数が離散的に変化する時間間隔は、1/2fm以下であり、fmは前記被計測信号の周波数である、
     請求項5又は6に記載の時間波形計測装置。
    a time interval during which the frequency of the time-varying spectrum light, the spectrum of which is discretized by the filter, changes discretely is equal to or smaller than ½ fm, where fm is a frequency of the signal to be measured;
    7. The time waveform measuring device according to claim 5 or 6.
  8.  前記時間波形計測装置は、さらに、前記変調器によって変調された前記時変スペクトル光のスペクトルを分析する光スペクトル分析器を備える、
     請求項5に記載の時間波形計測装置。
    The time waveform measurement device further includes an optical spectrum analyzer that analyzes the spectrum of the time-varying spectrum light modulated by the modulator.
    The time waveform measuring device according to claim 5 .
  9.  前記時間波形計測装置は、さらに、情報処理器を備え、
     前記情報処理器は、
     前記光スペクトル分析器で分析された前記時変スペクトル光のスペクトルを複数の帯域の各々で積算し、前記複数の帯域は、離散化された前記時変スペクトル光の複数の離散的な周波数をそれぞれ含み、かつ、前記被計測信号の周波数に基づく帯域幅を有し、
     積算された前記スペクトルに基づいて、前記被計測信号の時間波形を再構成する、
     請求項8に記載の時間波形計測装置。
    The time waveform measuring device further includes an information processor,
    The information processor includes:
    a spectrum of the time-varying spectrum light analyzed by the optical spectrum analyzer is integrated in each of a plurality of bands, the plurality of bands including a plurality of discrete frequencies of the discretized time-varying spectrum light, and having a bandwidth based on a frequency of the measured signal;
    reconstructing a time waveform of the measured signal based on the integrated spectrum;
    The time waveform measuring device according to claim 8.
  10.  前記時間波形計測装置は、さらに、光パルスを分散することにより前記時変スペクトル光を生成する分散器を備える、
     請求項5に記載の時間波形計測装置。
    The time waveform measurement device further includes a disperser that generates the time-varying spectrum light by dispersing an optical pulse.
    The time waveform measuring device according to claim 5 .
PCT/JP2023/042686 2023-01-05 2023-11-29 Temporal waveform measuring method and temporal waveform measuring device WO2024147248A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023-000486 2023-01-05
JP2023000486 2023-01-05

Publications (1)

Publication Number Publication Date
WO2024147248A1 true WO2024147248A1 (en) 2024-07-11

Family

ID=91803850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/042686 WO2024147248A1 (en) 2023-01-05 2023-11-29 Temporal waveform measuring method and temporal waveform measuring device

Country Status (1)

Country Link
WO (1) WO2024147248A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011069638A (en) * 2009-09-24 2011-04-07 Toyota Motor Corp Radar system
JP2012513014A (en) * 2008-10-07 2012-06-07 インヴィジトラック,インク. Method and system for multipath mitigation during object tracking using reduced attenuated RF technology
WO2014034085A1 (en) * 2012-08-26 2014-03-06 国立大学法人大阪大学 Fourier transform spectroscopy method, spectroscopic device, and spectroscopic measurement program that improve spectral resolution and spectral accuracy
JP2016142594A (en) * 2015-01-30 2016-08-08 国立大学法人横浜国立大学 Terahertz electric-field waveform detector
WO2021079710A1 (en) * 2019-10-23 2021-04-29 国立大学法人大阪大学 Arbitrary waveform generation device and arbitrary waveform generation method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012513014A (en) * 2008-10-07 2012-06-07 インヴィジトラック,インク. Method and system for multipath mitigation during object tracking using reduced attenuated RF technology
JP2011069638A (en) * 2009-09-24 2011-04-07 Toyota Motor Corp Radar system
WO2014034085A1 (en) * 2012-08-26 2014-03-06 国立大学法人大阪大学 Fourier transform spectroscopy method, spectroscopic device, and spectroscopic measurement program that improve spectral resolution and spectral accuracy
JP2016142594A (en) * 2015-01-30 2016-08-08 国立大学法人横浜国立大学 Terahertz electric-field waveform detector
WO2021079710A1 (en) * 2019-10-23 2021-04-29 国立大学法人大阪大学 Arbitrary waveform generation device and arbitrary waveform generation method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MAHJOUBFAR ATA, CHURKIN DMITRY V., BARLAND STéPHANE, BRODERICK NEIL, TURITSYN SERGEI K., JALALI BAHRAM: "Time stretch and its applications", NATURE PHOTONICS, NATURE PUBLISHING GROUP UK, LONDON, vol. 11, no. 6, 1 June 2017 (2017-06-01), London, pages 341 - 351, XP055851382, ISSN: 1749-4885, DOI: 10.1038/nphoton.2017.76 *
TOMOKI TSUJI , MASAYUKI MAKINO , TAKESHI KONISHI : "C-14-5: Discrete wavelength-time-wavelength mapping for high-frequency measurement", PROCEEDINGS OF THE IEICE CONFERENCE; MARCH 7-10, 2023, IEICE, JP, 9 March 2023 (2023-03-09) - 10 March 2023 (2023-03-10), JP, pages C-14-5, XP009556241 *

Similar Documents

Publication Publication Date Title
US6611336B1 (en) Pulse measurement using frequency shifting techniques
US8867042B2 (en) Method for evaluating characteristic of optical modulator having mach-zehnder interferometer
EP2461497A1 (en) Method and apparatus for synthesizing ultra-wide bandwidth waveforms
US7460785B2 (en) Performance monitoring in an optical communication system
US8290375B2 (en) Modulation based optical spectrum analyzer
EP1669730A2 (en) Heterodyne-based optical spectrum analysis using data clock sampling
Hammani et al. Applications of sinusoidal phase modulation in temporal optics to highlight some properties of the Fourier transform
WO2024147248A1 (en) Temporal waveform measuring method and temporal waveform measuring device
Zhou et al. A unified framework for photonic time‐stretch systems
Li et al. Low-latency short-time Fourier Transform of microwave photonics processing
KR19980025575A (en) Laser Linewidth Measurement Device Using Inductive Brillouin Scattering
Maltsev et al. A Simple Radiophotonic Device for Instantaneous Frequency Measurement of Multiple Microwave Signals Based on a Symmetrical Unequal Comb Generator
US8848176B2 (en) Dispersion measurement apparatus using a wavelet transform to determine a time difference based on indentified peaks
EP1368678A1 (en) Apparatus and method for measuring polarization dependent loss using repeated high speed polarization scrambling
US7023556B2 (en) Method and apparatus for measurement of group delay
US20040001194A1 (en) Electromagnetic and optical analyzer
KR910017179A (en) Interference sensor and measuring method of physical quantity using it
US7126739B2 (en) Method and apparatus for optical pulse characterization using simplified chronocyclic tomography
DE602004006468T2 (en) Optical wavelength monitor system
CA2358723C (en) Apparatus and method for measuring optical characteristics and recording medium
US20240175726A1 (en) Analyzer, measurement system, measurement method and program
Xie et al. Photonic Fractional Fourier Transformation Based on Discrete-Frequency Processing
CN115480100B (en) Spectrum analysis system based on lithium niobate electro-optic F-P cavity
JPH08278224A (en) Characteristic measuring method and control method of optical intensity modulator
CN118432720A (en) Dispersion regulating device, control method thereof and dispersion regulating equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23914736

Country of ref document: EP

Kind code of ref document: A1