WO2024138380A1 - 一种解旋酶及其制备方法和在高通量测序中的应用 - Google Patents

一种解旋酶及其制备方法和在高通量测序中的应用 Download PDF

Info

Publication number
WO2024138380A1
WO2024138380A1 PCT/CN2022/142476 CN2022142476W WO2024138380A1 WO 2024138380 A1 WO2024138380 A1 WO 2024138380A1 CN 2022142476 W CN2022142476 W CN 2022142476W WO 2024138380 A1 WO2024138380 A1 WO 2024138380A1
Authority
WO
WIPO (PCT)
Prior art keywords
helicase
phenylalanine
amino
mutation
amino acid
Prior art date
Application number
PCT/CN2022/142476
Other languages
English (en)
French (fr)
Inventor
李登辉
刘姗姗
孟亮
蔡重阳
姬倩悦
王乐乐
郭斐
曾涛
黎宇翔
董宇亮
章文蔚
徐讯
Original Assignee
青岛华大基因研究院
深圳华大生命科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛华大基因研究院, 深圳华大生命科学研究院 filed Critical 青岛华大基因研究院
Priority to PCT/CN2022/142476 priority Critical patent/WO2024138380A1/zh
Publication of WO2024138380A1 publication Critical patent/WO2024138380A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing

Definitions

  • the principle of nanopore sequencing technology is based on changes in electrical signals.
  • Two electrolyte chambers filled with electrolyte are separated by a nanopore inserted into a membrane (protein or solid) as a signal sensor.
  • a stable current will be generated through the nanopore.
  • the nucleic acid molecule to be tested enters the nanopore, the flow of ions will be hindered, resulting in current signal fluctuations. Since different nucleotides have different effects on the current, the sequence information of the nucleic acid molecule to be tested can be identified by detecting the current fluctuation signal of the nanopore in real time and analyzing and decoding the current signal with the help of machine learning.
  • the helicase In addition to the highly conserved regions (mainly II and VI regions) that bind to ATP, play ATP hydrolase activity, and provide power for unwinding, the helicase also has two key domains: Pin (pin structure) and Tower (tower structure).
  • Pin also plays a role in unwinding double-stranded DNA into single-stranded DNA and assisting in promoting the directional movement of nucleic acid single strands.
  • the helicase in the currently commercialized nanopore sequencer is the DDA helicase derived from the bacteriophage T4, which has its own limitations, such as its stability, salt tolerance and unwinding speed.
  • high salt will inhibit the unwinding activity of the DDA helicase, causing its unwinding speed to decrease, and it cannot fully exert its unwinding ability, thereby weakening its sequencing speed in nanopore sequencing applications and reducing sequencing efficiency. Therefore, more new helicases with better performance are needed on the market.
  • the helicase shows better unwinding activity in a high-salt environment than in a low-salt environment, and can bind well to single-stranded DNA and unwind double-stranded DNA.
  • the helicase can be used for the control and characterization of nucleic acids, and is applied to single-molecule nanopore sequencing to output a stable sequencing current signal.
  • the mutated sites include at least one of C21, C50, C56, C91, C156, C279, C367 and C379.
  • the unnatural amino acids include, but are not limited to, 4-azido-L-phenylalanine (PAZF), 4-azido-L-phenylalanine (PAZF-Hcl), 4-acetyl-L-phenylalanine, 3-acetyl-L-phenylalanine, 4-acetoacetyl-L-phenylalanine, O-allyl-L-tyrosine, 3-(phenylselenoyl)-L-alanine, O-2-propyn-1-yl-L-tyrosine, 4-(dihydroxyboryl)-L-phenylalanine, 4-[(ethylsulfanyl)carbonyl]-L-phenylalanine, (2S)-2 -amino-3- ⁇ 4-[(propan-2-ylsulfanyl)carbonyl]phenyl ⁇ propanoic acid, (2S)-2-amino-3- ⁇ 4-[(2-amino-3-s
  • the mutation site in the DNA binding region is at least one of 63, 73, 79, 80, 81, 82, 83, 84, 85, 86, 87, 95 and 96; and/or the mutation site near the ATP catalytic active center is at least one of 154, 155, 156, 158, 159, 160, 161, 174, 175, 177, 178, 179 and 181.
  • the helicase has at least one mutation in the DNA binding region and the nanopore binding region, and the mutation includes replacing the original amino acid with an amino acid with a non-positive surface charge and/or an amino acid with a side chain length shorter than the original amino acid, thereby reducing the repulsion between the motor protein and the pore, etc.
  • the mutation occurs in at least one of positions 1, 2, 3, 5, 7, 8, 9, 10, 36, 42, 45, 67, 74, 97, 207, 208, 209, 220, 221, 222, 374, 408 and 411 of the DNA binding region and the nanopore binding region.
  • the host cell is Escherichia coli, more preferably BL21(DE3), BL21Star(DE3)pLyss, Rossata(DE3) or Lemo21(DE3).
  • a helicase-sequencing adapter complex comprising the helicase as described in a) and a sequencing adapter.
  • the anchoring molecule is a hydrophobic molecule, preferably selected from any one or more of the following: lipids, fatty acids, sterols, carbon nanotubes, polypeptides, proteins and/or amino acids, such as cholesterol, palmitate or tocopherol.
  • the nanopore is a transmembrane protein pore or a solid-state pore; preferably, the transmembrane protein pore is selected from hemolysin, MspA, MspB, MspC, MspD, FraC, ClyA, PA63, CsgG, CsgD, XcpQ, SP1, phi29 connector protein (phi29connector), InvG, GspD or any combination thereof.
  • the membrane is an amphiphilic membrane (such as a phospholipid bilayer), a high molecular polymer membrane (such as a di-block copolymer, a tri-block copolymer) or any combination thereof.
  • amphiphilic membrane such as a phospholipid bilayer
  • high molecular polymer membrane such as a di-block copolymer, a tri-block copolymer
  • the high-throughput sequencing is nanopore sequencing.
  • a method for unwinding a DNA strand comprising unwinding a double-stranded DNA using the helicase described in a), the helicase-sequencing adapter complex described in f), or the kit described in g).
  • the DNA is unwound using the DNA unwinding method described in i), and the obtained single-stranded DNA is sequenced simultaneously.
  • the present invention provides a new type of helicase, named BCH666, whose gene is derived from the deep-sea metagenome.
  • BCH666 a new type of helicase, named BCH666, whose gene is derived from the deep-sea metagenome.
  • the protein itself has good salt tolerance and stability, as well as DNA unwinding activity. It can have high unwinding activity in a high-salt environment, and can be used for the control and characterization of nucleic acids and applied to nanopore sequencing.
  • Figure 1 shows the results of molecular sieve Superdex 200 purification of BCH666 protein
  • Figure 1A shows the elution diagram of molecular sieve Superdex 200 purification of BCH666
  • Figure 1B shows the SDS-PAGE electrophoresis results after molecular sieve elution of BCH666.
  • Figure 2 is the structural diagram of the BCH666 protein predicted using Alphafold 2 software.
  • FIG3 shows the ATPase activity detection result of BCH666 protein.
  • FIG. 4 shows the dsDNA melting activity detection results of BCH666 protein (low salt reaction buffer 1).
  • FIG5 shows the dsDNA melting activity detection result of BCH666 protein (high salt reaction buffer 2).
  • FIG. 7 shows the detection result of the restriction sequence blocking the BCH666 protein depolymerization activity (high salt reaction buffer).
  • FIG8 is a schematic diagram of the connector structure (a: upper chain; b: lower chain).
  • FIG9 is a schematic diagram of the structure of a sequencing library containing a helicase (a: upper chain; b: lower chain; c: double-stranded target fragment; d: helicase; e: cholesterol-labeled double-stranded DNA).
  • a upper chain
  • b lower chain
  • c double-stranded target fragment
  • d helicase
  • e cholesterol-labeled double-stranded DNA
  • the buffer formulation used is as follows:
  • Buffer A 20 mM Tris-HCl pH 7.5, 250 mM NaCl, 20 mM imidazole;
  • Buffer C 20 mM Tris-HCl pH 7.5, 80 mM NaCl;
  • Buffer D 20 mM Tris-HCl pH 7.5, 1000 mM NaCl;
  • Collect BCH666 bacteria resuspend the bacteria in buffer A, break the bacteria with a cell disruptor, and then centrifuge to obtain the supernatant. Mix the supernatant with the Ni-NTA filler that has been equilibrated with buffer A in advance and bind for 1 hour. Collect the filler and wash the filler with buffer A in large quantities until no impurities are washed out. Next, add buffer B to the filler to elute the protein. The eluted protein is passed through a HiTrap desalting column (Sephadex G-25, product number 29048684, Cytiva) equilibrated with buffer C.
  • HiTrap desalting column Sephadex G-25, product number 29048684, Cytiva
  • the ATP detection kit (Biyuntian, S0026B) was used to determine the residual ATP concentration in the reaction according to the manufacturer's instructions.
  • Positive control solution add 1 ⁇ L 10 ⁇ M SEQ ID NO:6, 2 ⁇ L 100 ⁇ M SEQ ID NO:7 (20x competitive DNA) and 2 ⁇ L 100mM ATP to 195 ⁇ L low salt reaction buffer.
  • Experimental reaction solution Take 3 ⁇ L 10 ⁇ M ovDNA-3 (containing the restriction sequence), 6 ⁇ L 100 ⁇ M SEQ ID NO:7 (20-fold competitive DNA) and 6 ⁇ L 100mM ATP and add them to 582 ⁇ L low salt reaction buffer. Take 3 ⁇ L 10 ⁇ M ovDNA-3, 6 ⁇ L 100 ⁇ M SEQ ID NO:78 (20-fold competitive DNA) and 6 ⁇ L 100mM ATP and add them to 585 ⁇ L high salt reaction buffer.
  • connection steps are as follows: Take out the fast T4 DNA ligase from the -20°C refrigerator, flick the tube wall to mix, centrifuge instantly, and place on ice. Thaw the fast connection reaction buffer, mix by pipetting, centrifuge instantly, and then place on ice. Prepare the reaction mixture (120 ⁇ L fast connection reaction buffer, 60 ⁇ L T4 DNA ligase, 30 ⁇ L 10 ⁇ M adapter). Then, add 390 ⁇ L of the purified end-repaired, "A"-added and purified products of the double-stranded target fragment to the connection reaction mixture.
  • iSp18 is shown in the following formula I:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

本发明提供了一种解旋酶及其制备方法和在高通量测序中的应用。所述解旋酶的氨基酸序列如SEQ ID NO:1所示或与SEQ ID NO:1所示氨基酸序列具有至少70%、至少80%、至少85%、至少90%、至少95%、至少96%、至少97%、至少98%或至少99%的同一性。所述解旋酶在高盐环境下仍具有高解旋活性,可以用于核酸的控制和表征,应用于纳米孔测序。

Description

一种解旋酶及其制备方法和在高通量测序中的应用 技术领域
本发明属于生物技术领域或测序领域,具体涉及一种解旋酶及其应用。
背景技术
纳米孔测序技术作为新兴起的单分子测序技术,其凭借着高通量,长读长,速度快,原位检测和无标记操作等独特优势,为基因测序行业带来了颠覆性的改变。基于该技术的设备轻便便携,可满足不同测序场景。并且由于其非扩增直接测序的性质,因此对可测序的DNA没有长度限制。此外,进行实时碱基调用,也可以实现对RNA、甲基化等修饰分子以及其它单分子的直接测序。纳米孔测序技术在分子生物学、医学、流行病学和生态学等许多领域都有着广泛应用价值,比如基因组图谱绘制,疫情等传染病的监制,稀有物种的检测以及快速且经济的蛋白测序等。
纳米孔测序技术的原理是基于电信号变化。由一个插在膜(蛋白或固态)上作为信号传感器的纳米孔将两个装有电解液的电解室分开。当施加电压给两个电解室时,会产生稳定的穿过纳米孔的电流,而当待测核酸分子进入纳米孔时会对离子的流动造成阻碍从而等导致电流信号波动。由于不同的核苷酸对电流的影响时不同,因此,通过实时检测纳米孔的电流波动信号,并借助机器学习分析并解码电流信号,从而识别待测核酸分子的序列信息。
在该测序过程中,由于核酸分子穿过纳米孔通道时速度极快,无法精确获得核酸分子的序列信息。因此有效地降低并控制核酸分子的穿孔运动是实现纳米孔测序的关键技术问题。目前,最常见的有效方法是利用解旋酶解旋来控制核酸分子的穿孔运动,提高检测精度,并维持测序速度和测序均一性。解旋酶中除了具有与ATP结合、发挥ATP水解酶活、为解旋提供动力的高度保守区域(主要为II和VI区)之外,还有两个关键的结构域:Pin(销结构)和Tower(塔结构)。这两个结构相互作用形成一个“拱形”结构使得单链DNA可以从中穿过。另外,Pin在其中还发挥将双链DNA解旋为单链DNA,并辅助推动核酸单链定向移动的作用。
当前商品化的纳米孔测序仪中的解旋酶为来源于细菌噬菌体T4的DDA解旋酶,其有自身的局限性,例如其稳定性,盐耐受性和解旋速度。特别在盐耐受能力上,高盐会抑制DDA解旋酶的解旋活性,使其解旋速度下降,不能充分发挥其解旋能力,从而削弱了其在纳米孔测序应用中的测序速度,降低测序效率。因此,市场上需要更多新型的、性能 更佳的解旋酶。
发明内容
为解决现有技术中缺乏性能更佳的解旋酶的问题,本发明提供了一种新型的具有高盐耐受性及稳定性的解旋酶及其制备方法和在高通量测序中的应用。具体而言,本发明提供了:
a)一种解旋酶,其氨基酸序列如SEQ ID NO:1所示或与SEQ ID NO:1所示氨基酸序列具有至少70%、至少80%、至少85%、至少90%、至少95%、至少96%、至少97%、至少98%或至少99%的同一性。所述解旋酶在大肠杆菌重组蛋白表达系统中能成功表达,蛋白自身均一性和纯度均高,且具有良好的ATP水解活性和dsDNA解旋活性。由于其基因来源于深海宏基因组,该基因组来源的蛋白均具有极高的热稳定性和盐耐受性,因此所述解旋酶在高盐环境下展示出比低盐环境下更优越的解旋活性,能够良好的与单链DNA结合,并解旋双链DNA。所述解旋酶可用于核酸的控制和表征,并应用于单分子纳米孔测序,输出稳定的测序电流信号。
所述解旋酶的三维结构表面的至少一个的半胱氨酸发生突变,所述突变为半胱氨酸被丙氨酸、谷氨酰胺、甘氨酸、组氨酸、异亮氨酸、亮氨酸、缬氨酸、丝氨酸、苏氨酸或甲硫氨酸取代,用以提高蛋白的均一性,从而提高测序的均一性等指标。
优选地,所述突变的位点包括C21、C50、C56、C91、C156、C279、C367和C379中的至少一个。
所述解旋酶在销结构域和/或塔结构域中具有至少一个氨基酸突变,所述氨基酸突变为原氨基酸被半胱氨酸或非天然氨基酸取代。
优选地,所述销结构域的突变位点为85、86、87、88、89、90、91、92、93、94、95、96、97、98、99、100、101、102和103中的至少一个;和/或所述塔结构域的突变位点为337、338、339、340、341、342、343、344、345、346、347、348、347、348、349、350、351、352、353、354、355、356、357、358、359、360、361、362、363、364、365、366、367和368中的至少一个。
更优选地,所述销结构域的突变位点为G85、I86、S87、P88、T89、V90、D91、K92、K93、E94、L95、E96、F97、E98、H99、V97、N98、I99、P100、S101、L102和W103中的至少一个;和/或所述塔结构域的突变位点为L337、Y338、E339、V340、A341、N342、Y343、Y344、D345、Y346、Q347、Q348、I347、A348、D349、Y350、Y351、E352、H353、I354、A355、W356、N357、M358、K359、T360、P361、Q362、A363、K364、 A365、K366、A367和Y368中的至少一个。
所述非天然氨基酸包括但不限于4-叠氮基-L-苯丙氨酸(PAZF)、4-叠氮基-L-苯丙氨酸(PAZF-Hcl)、4-乙酰基-L-苯丙氨酸、3-乙酰基-L-苯丙氨酸、4-乙酰乙酰基-L苯丙氨酸、O-烯丙基-L-酪氨酸、3-(苯基硒烷基)-L-丙氨酸、O-2-丙炔-1-基-L-酪氨酸、4(二羟基硼基)-L-苯丙氨酸、4-[(乙基硫烷基)羰基]-L-苯丙氨酸、(2S)-2-氨基-3-{4-[(丙烷-2-基硫烷基)羰基]苯基}丙酸、(2S)-2-氨基-3-{4-[(2-氨基-3-硫烷基丙酰基)氨基]苯基}丙酸、O-甲基-L-酪氨酸、4-氨基-L-苯丙氨酸、4-氰基-L-苯丙氨酸、3-氰基-L-苯丙氨酸,4-氟-L-苯丙氨酸、4-碘-L-苯丙氨酸、4-溴-L-苯丙氨酸、O-(三氟甲基)酪氨酸、4-硝基L-苯丙氨酸、3-羟基-L-酪氨酸、3-氨基-L-酪氨酸、3-碘-L-酪氨酸、4-异丙基-L-苯丙氨酸、3-(2-萘基)-L-丙氨酸、4-苯基-L-苯丙氨酸、(2S)-2-氨基-3-(萘-2-基氨基)丙酸、6-(甲基硫烷基)正亮氨酸、6-氧-L-赖氨酸、D-酪氨酸、(2R)-2-羟基-3-(4-羟基苯基)丙酸、(2R)-2氨基辛酸酯3-(2、2′-二吡啶-5-基)-D-丙氨酸、2-氨基-3-(8-羟基-3-喹啉基)丙酸、4-苯甲酰-L-苯丙氨酸、S-(2-硝基苄基)半胱氨酸、(2R)-2-氨基-3-[(2-硝基苄基)硫烷基]丙酸、(2S)-2-氨基-3-[(2-硝基苄基)氧基]丙酸、O-(4,5-二甲氧基-2-硝基苄基)-L-丝氨酸、(2S)-2-氨基-6-({[(2-硝基苄基)氧基]羰基}氨基)己酸、O-(2-硝基苄基)-L-酪氨酸和2-硝基苯丙氨酸中的至少一个。
所述解旋酶在DNA结合区和/或ATP催化活性中心附近发生至少一个突变,所述突变包括原氨基酸被侧链较大的氨基酸取代,例如增加碳原子数目、增加长度和/或增加分子体积,从而增加了至少一个氨基酸与ssDNA中一个或多个核苷酸之间的(i)静电相互作用;(ii)氢键和/或(iii)阳离子-pi(阳离子-π)相互作用。
优选地,所述DNA结合区的突变位点为63、73、79、80、81、82、83、84、85、86、87、95和96中的至少一个;和/或所述ATP催化活性中心附近的突变位点为154、155、156、158、159、160、161、174、175、177、178、179和181中的至少一个。
更优选地,所述DNA结合区的突变位点为H63、E73、T79、V80、H81、S82、A83、L84、G85、I86、S87、L95和E96中的至少一个;和/或所述ATP催化活性中心附近的突变位点为D154、D155、P156、I158、S159、P160、V161、P174、M175、N177、T178、G179和L181中的至少一个。
所述解旋酶在DNA结合区和纳米孔结合区中发生至少一个突变,所述突变包括原氨基酸被表面非正电荷的氨基酸和/或侧链长度相比原氨基酸短的氨基酸取代,从而减少马达蛋白与孔之间的排斥等。
优选地,所述突变发生在DNA结合区和纳米孔结合区的第1、2、3、5、7、8、9、10、36、42、45、67、74、97、207、208、209、220、221、222、374、408和411位中 的至少一个。
更优选地,所述突变发生在DNA结合区和纳米孔结合区的M1、N2、S3、N5、D7、Q8、Q9、K10、K36、K42、K45、D67、K74、F97、R207、K208、D209、K220、K221、D222、H374、D408和K411中的至少一个。
b)一种分离的核酸,其编码如a)中所述的解旋酶。
优选地,所述解旋酶的核苷酸序列如SEQ ID NO:2所示或与SEQ ID NO:2所示核苷酸序列具有至少70%、至少80%、至少85%、至少90%、至少95%、至少96%、至少97%、至少98%或至少99%的同一性。
c)一种重组表达载体,其包含启动子和如b)中所述的核酸。
优选地,所述启动子为T7;和/或,所述重组表达载体的骨架质粒为PET.28a(+)、PET.21a(+)或PET.32a(+)。
d)一种转化体,其包含宿主细胞和如b)中所述的核酸。
优选地,所述宿主细胞为大肠杆菌,更优选为BL21(DE3)、BL21Star(DE3)pLyss、Rossata(DE3)或Lemo21(DE3)。
e)一种制备如a)中所述的解旋酶的方法,在培养基中培养如d)中所述的转化体,使其发酵生产所述解旋酶。
f)一种解旋酶-测序接头复合物,其包括如a)中所述的解旋酶以及测序接头。
g)一种试剂盒,其包括如a)中所述的解旋酶和/或如f)中所述的解旋酶-测序接头复合物;优选还包括5’端含有锚定分子的单链DNA、纳米孔、纳米孔蛋白、电信号检测器、膜和/或缓冲液。
较佳地,所述锚定分子为疏水性分子,优选为选自以下任意一种或多种:脂质、脂肪酸、甾醇、碳纳米管、多肽、蛋白质和/或氨基酸,如胆固醇、棕榈酸酯或生育酚。
所述纳米孔为跨膜蛋白孔或固态孔;优选地,所述跨膜蛋白孔选自溶血素、MspA、MspB、MspC、MspD、FraC、ClyA、PA63、CsgG、CsgD、XcpQ、SP1、phi29连接器蛋白(phi29connector)、InvG、GspD或其任意组合。
所述膜是两亲性膜(例如磷脂双分子层)、高分子聚合物膜(例如两嵌段共聚物di-block、三嵌段共聚物tri-block)或其任意组合。
所述缓冲液为磷酸二氢根-磷酸氢根缓冲体系、碳酸-碳酸氢钠缓冲体系、Tris-HCl缓冲体系、HEPES缓冲体系、MOPS缓冲体系或其任意组合。
h)如a)中所述的解旋酶、如f)中所述的解旋酶-测序接头复合物或如g)中所述的试剂盒在高通量测序中的应用。
优选地,所述高通量测序为纳米孔测序。
i)一种DNA解链方法,其包括使用如a)中所述的解旋酶、如f)中所述的解旋酶-测序接头复合物或如g)中所述的试剂盒对双链DNA进行解旋。
j)一种测序方法,其包括以下步骤:
利用i)中所述的DNA解链方法进行解旋,并同时对获得的单链DNA进行测序。
本发明技术方案带来的有益效果:
本发明提供了一种新型解旋酶,命名为BCH666,其基因来源于深海宏基因组,该蛋白自身良好的盐耐受性及稳定性,以及DNA解旋活性,能够在高盐环境下具有高解旋活性,可以用于核酸的控制和表征,应用于纳米孔测序。
附图说明
图1为BCH666蛋白的分子筛Superdex 200纯化结果;图1A为BCH666的分子筛Superdex 200纯化洗脱图;图1B为BCH666的分子筛洗脱后得到的SDS-PAGE电泳结果图。
图2为使用Alphafold 2软件预测获得的BCH666蛋白的结构图。
图3为BCH666蛋白的ATPase活性检测结果。
图4为BCH666蛋白的dsDNA解链活性检测结果(低盐反应缓冲液1)。
图5为BCH666蛋白的dsDNA解链活性检测结果(高盐反应缓冲液2)。
图6为限位序列阻滞BCH666蛋白解链活性的检测结果(低盐反应缓冲液)。
图7为限位序列阻滞BCH666蛋白解链活性的检测结果(高盐反应缓冲液)。
图8为接头结构示意图(a:上链;b:下链)。
图9为含有解旋酶的测序文库结构示意图(a:上链;b:下链;c:双链目的片段;d:解旋酶;e:胆固醇标记双链DNA)。
图10为电信号放大器示意图。
图11为BCH666蛋白用于测序获得的电流信号图。
具体实施方式
实施例1BCH666蛋白的克隆、表达和纯化
1.BCH666蛋白的克隆和表达
BCH666蛋白的氨基酸序列如SEQ ID NO:1所示,其全长DNA序列如SEQ ID NO:2所示。合成该全长DNA序列(六合华大),并将其连接入PET.28a(+)质粒中,使用的双 酶切位点为Nde1和Xho1,获得的质粒标记为PET.28a(+)-BCH666。该质粒表达出来的BCH666蛋白具有凝血酶(thrombin)酶切位点,以及其N端具有6×His标签。
将PET.28a(+)-BCH666质粒转化入大肠杆菌表达菌BL21(DE3)或其衍生菌中。挑取单菌落,接入20mL含有卡纳霉素抗性的LB培养基中,37℃震荡培养过夜。然后转接入2L含有卡纳霉素抗性的LB中,37℃震荡培养至OD600=0.6-0.8,降温至16℃,加入终浓度500μM的IPTG诱导表达过夜,获得BCH666菌体。
2.BCH666蛋白的纯化
使用的缓冲液配方如下:
(1)Buffer A:20mM Tris-HCl pH 7.5,250mM NaCl,20mM咪唑;
(2)Buffer B:20mM Tris-HCl pH 7.5,250mM NaCl,300mM咪唑;
(3)Buffer C:20mM Tris-HCl pH 7.5,80mM NaCl;
(4)Buffer D:20mM Tris-HCl pH 7.5,1000mM NaCl;
(5)Buffer E:20mM Tris-HCl pH 7.5,200mM NaCl。
收集BCH666菌体,使用buffer A重悬菌体,用细胞破碎仪破碎菌体,然后离心取上清。将上清与提前用buffer A平衡好的Ni-NTA填料混合,结合1h。收集填料,用buffer A大量清洗填料,直至没有杂蛋白被洗出。接着,在填料中加入Buffer B,用于洗脱蛋白。将洗脱得到的蛋白过Buffer C平衡好的HiTrap脱盐柱(Sephadex G-25,产品货号29048684,Cytiva)。然后,将通过脱盐柱的蛋白溶液加入到Buffer C平衡好的ssDNA cellulose填料中,并加入适量的凝血蛋白酶(thrombin),4℃酶切和结合过夜,该酶可以特异性识别载体序列PET28(a)+中的凝血酶切割位点氨基酸序列LVPRGS,从而切除蛋白所带有的亲和His标签。收集ssDNA cellulose填料,此时目标蛋白与ssDNA填料特异性吸附。用Buffer C清洗ssDNA cellulose填料3-4次,除去未吸附ssDNA cellulose填料的杂蛋白,然后用buffer D洗脱,破坏目标蛋白与ssDNA填料特异性吸附,将目标蛋白洗脱到溶液中。将ssDNA cellulose纯化后的蛋白通过30K的超滤浓缩管(Merck millipore)在4℃预冷的离心机中浓缩,参数设置为转速3000g,每次离心时间10min,反复多次,将最终蛋白体积浓缩至2mL。随后上分子筛Superdex 200,所用分子筛buffer为Buffer E。收集目的蛋白峰、浓缩并冻存。
图1为BCH666蛋白的分子筛Superdex 200纯化结果。由图1可见,经过纯化,最终可得到较大量的纯度良好的BCH666蛋白,该蛋白的峰形均一,且纯度较高。
3.使用AlphaFold 2对BCH666蛋白进行结构预测
借助AlphaFold 2软件,对BCH666蛋白进行结构预测,结果如图2所示。蛋白骨架 结构的预测值与真实值之间的均方根误差(RMSD)是
Figure PCTCN2022142476-appb-000001
该蛋白包括螺旋结构(helix)、片状结构(sheet)和环形结构(loop)。BCH666蛋白的结构与常规的5’-3’方向的解旋酶的结构类似,有一段较长且结构灵活的销结构域。
实施例2BCH666蛋白的ATPase活性检测
合成SEQ ID NO:3-8(六合华大)。
1.制备双链DNA(ovDNA-1)和单链DNA(ssDNA)
使用TE缓冲液(pH=8)将SEQ ID NO:3和SEQ ID NO:4分别溶解为终浓度为100μM的母液。将SEQ ID NO:3和SEQ ID NO:4退火为5’端悬挂20个T的ovDNA-1,浓度为10μM。退火流程为95℃孵育5分钟,0.1℃/s的降温速度降至25℃,继续孵育30分钟,退火配方见表1。将100μM的SEQ ID NO:4用TE缓冲液(pH=8)稀释到10μM,作为ssDNA。
表1ovDNA-1退火配方
溶液 体积
100μM SEQ ID NO:3 5μL
100μM SEQ ID NO:4 5μL
TE缓冲液(pH=8) 40μL
2.配制高盐反应缓冲液
高盐反应缓冲液(2×):20mM HEPES(pH8.0)、4mM ATP、4mM MgCl 2、1.0M KCl。
3.稀释蛋白
用1×PBS将BCH666蛋白稀释到10μM。
4.ATP水解反应
按表2的反应体系加入相应试剂,30℃孵育30min进行ATP水解反应测试,80℃灭活5min。其中①②为实验组,③④⑤⑥为相应的对照组,每组3个重复。
表2ATP水解反应体系
编号 反应缓冲液(2×) DNA BCH666蛋白 H 2O
10μL 1μL(ovDNA-1) 1μL 8μL
10μL 1μL(ssDNA) 1μL 8μL
10μL —— 1μL 9μL
10μL 1Μl(ovDNA-1) —— 9μL
10μL 1μL(ssDNA) —— 9μL
10μL —— —— 10μL
5.检测反应剩余ATP
使用ATP检测试剂盒(碧云天,S0026B),按照生产商说明测定反应剩余ATP浓度。
6.实验结果
结果如图3所示,在高盐条件下,BCH666蛋白具有水解ATP的活性。
实施例3BCH666蛋白的dsDNA解链活性检测
1.制备双链DNA(ovDNA-2)
使用TE缓冲液(pH=8)将SEQ ID NO:5、SEQ ID NO:6、SEQ ID NO:7分别溶解为终浓度为100μM的母液。将SEQ ID NO:5和SEQ ID NO:6退火为5’端悬挂20个T的ovDNA-2,浓度为10μM。退火流程为95℃孵育5分钟,0.1℃/s的降温速度降至25℃,孵育30分钟,退火配方见表3。
表3ovDNA-2退火配方
溶液 体积
100μM SEQ ID NO:5 5μL
100μM SEQ ID NO:6 5μL
TE缓冲液(pH=8) 40μL
2.配制反应缓冲液
低盐反应缓冲液:100mM HEPES(pH=8.0)、1mg/mL BSA、10mM MgCl 2、150mM KCl;
高盐反应缓冲液:100mM HEPES(pH=8.0)、1mg/mL BSA、10mM MgCl 2、500mM KCl。
3.配制反应液
实验反应液:取3μL 10μM的ovDNA-2、6μL 100μM SEQ ID NO:7(20倍竞争DNA)和6μL 100mM ATP添加到582μL低盐反应缓冲液。取3μL 10μM ovDNA-2、6μL 100μM SEQ ID NO:7(20倍竞争DNA)和6μL 100mM ATP添加到582μL高盐反应缓冲液。SEQ ID NO:7的作用是作为过量捕获DNA,优先与互补DNA退火,以防止初始底物的重新退火和荧光的丧失。
阳性对照液:取1μL 10μM SEQ ID NO:6、2μL 100μM SEQ ID NO:7(20倍竞争DNA)和2μL 100mM ATP添加到195μL低盐反应缓冲液。取1μL 10μM SEQ ID NO:6、2μL 100μM SEQ ID NO:7(20倍竞争DNA)和2μL 100mM ATP添加到195μL高盐反 应缓冲液。
4.稀释蛋白
用1×PBS将BCH666蛋白稀释到4.8μM。
5.配制解链反应
按照表格4加入相应试剂,①②为实验组、③④为阴性对照组、⑤⑥为阳性对照组,使用酶标仪在30℃条件下检测反应30min内荧光强度的动力学变化,每组3个重复。
表4解链反应配方
编号 类别 溶液1 溶液2
实验组 58.5μL实验反应液(低盐) 1.5μL蛋白
实验组 58.5μL实验反应液(高盐) 1.5μL蛋白
阴性对照组 58.5μL实验反应液(低盐) 1.5μLPBS
阴性对照组 58.5μL实验反应液(高盐) 1.5μL PBS
阳性对照组 58.5μL阳性对照液(低盐) 1.5μL PBS
阳性对照组 58.5μL阳性反应液(高盐) 1.5μL PBS
6.数据分析
计算实验组、阴性对照组的荧光值相对于阳性对照组荧光值的百分比。
7.实验结果
在误差范围和仪器波动允许情况下,通过计算实验组的荧光值与阳性对照组的荧光值的比例、以及阴性对照组的荧光值与阳性对照组的荧光值的比例,绘制实验结果图(因仪器灵敏度的关系,阴性对照组有荧光吸收读取),结果如图4和图5所示。
从图4和图5的实验结果可以看出,每个实验中的阴性对照组在测定过程中一直保持不变,而实验组荧光值随反应时间的增加而逐渐增大,表明BCH666蛋白具有解旋双链DNA的活性,且其解旋方向为5’-3’。
并且,图4为低盐条件下的结果图,图5为高盐条件下的结果图。二者比较可知,随着盐浓度升高,BCH666蛋白解旋dsDNA的活性增强。
实施例4限位序列阻滞BCH666解链活性检测
1.制备含有限位序列的双链DNA(ovDNA-3)
将SEQ ID NO:5和SEQ ID NO:8退火为5’端悬挂20个T的ovDNA-3(含有限位序列),浓度10μM。退火流程为95℃孵育5分钟,0.1℃/s的降温速度降至25℃,孵育30分钟,退火配方见表5。
表5ovDNA-3(含有限位序列)退火配方
溶液 体积
100μM SEQ ID NO:5 5μL
100μM SEQ ID NO:8 5μL
TE缓冲液(pH=8) 40μL
2.配制反应缓冲液
低盐反应缓冲液为100mM HEPES(pH=8.0)、1mg/mL BSA、10mM MgCl 2、150mM KCl;
高盐反应缓冲液为100mM HEPES(pH=8.0)、1mg/mL BSA、10mM MgCl 2、500mM KCl。
3.配制反应液
实验反应液:取3μL 10μM ovDNA-3(含有限位序列)、6μL 100μM SEQ ID NO:7(20倍竞争DNA)和6μL 100mM ATP添加到582μL低盐反应缓冲液。取3μL 10μM ovDNA-3、6μL 100μM SEQ ID NO:78(20倍竞争DNA)和6μL 100mM ATP添加到585μL高盐反应缓冲液。
阳性对照液:取1μL 10μM SEQ ID NO:8、2μL 100μM SEQ ID NO:7(20倍竞争DNA)和2μL 100mM ATP添加到195μL低盐反应缓冲液。取1μL 10μM SEQ ID NO:8、2μL 100μM SEQ ID NO:7(20倍竞争DNA)和2μL 100mM ATP添加到195μL高盐反应缓冲液。
4.稀释蛋白
用1×PBS将BCH666蛋白稀释到4.8μM。
5.配制解链反应
按照表格6加入相应试剂,①②为实验组、③④为阴性对照组、⑤⑥为阳性对照组,使用酶标仪在30℃条件下检测反应30min内荧光强度的动力学变化,每组3个重复。
表6解链反应配方
编号 类别 溶液1 溶液2
实验组 58.5μL实验反应液(低盐) 1.5μL蛋白
实验组 58.5μL实验反应液(高盐) 1.5μL蛋白
阴性对照组 58.5μL实验反应液(低盐) 1.5μL 1×PBS
阴性对照组 58.5μL实验反应液(高盐) 1.5μL 1×PBS
阳性对照组 58.5μL阳性对照液(低盐) 1.5μL 1×PBS
阳性对照组 58.5μL阳性对照液(高盐) 1.5μL 1×PBS
6.数据分析
计算实验组、阴性对照组的荧光值相对于阳性对照组荧光值的百分比。
7.实验结果
同实施例3方法绘制实验结果图,如图6和图7所示。在低盐条件下,限位序列几乎完全阻滞BCH666蛋白解旋dsDNA。如图7所示,在高盐条件下,限位序列不可以阻滞BCH666蛋白解旋dsDNA。
实施例5BCH666蛋白的纳米孔测序应用
1.将两条部分区域互补的DNA链(上链,SEQ ID NO:9和下链,SEQ ID NO:10)退火形成接头(如图8所示),与待测双链目的片段利用快速T4DNA连接酶试剂盒(NEB,E6057AVIAL)进行连接并纯化,获得测序文库。
连接步骤如下:将快速T4DNA连接酶从-20℃冰箱中取出,轻弹管壁混匀后瞬时离心,置于冰上。将快速连接反应缓冲液解冻,吹打混匀后瞬时离心,之后放置于冰上。配置反应混合液(120μL快速连接反应缓冲液,60μL T4DNA连接酶,30μL 10μM接头)。之后,将装有把390μL待测双链目的片段经纯化后的末端修复、加“A”和纯化的产物中加入连接反应混合液中。用扩口吸头轻轻吹打混匀6次,瞬时离心将反应液收集在管底,之后置于25℃预热的金属浴,中进行连接反应,计时器计时30min。反应结束后,将反应管瞬时离心,将反应液收集至管底。
纯化步骤如下:提前30min从4度冰箱中取出Ampure XP磁珠(Beckman Coulter,A63882)震荡混匀后置于室温,使用前再充分震荡混匀。吸取240μL磁珠加入到装有反应后的样品连接产物的DNA低吸附管(Eppendorf,0030108051)中,用手轻弹管壁混匀,或用扩口枪头轻柔吹打至少6次至完全混匀,最后一次应确保将吸头中所有液体及磁珠都打入管中。在旋转混匀仪上室温孵育5min。将DNA低吸附管(Eppendorf,0030108051)瞬时离心后置于磁力架,静置2~5min至液体澄清,用移液器小心吸取上清并丢弃。保持DNA低吸附管(Eppendorf,0030108051)置于磁力架上,加入900μL清洗缓冲液[20mM Tris(pH=7.5),2500mM NaCl,],将DNA低吸附管(Eppendorf,0030108051)从磁力架取下,轻弹管壁将磁珠混匀。混匀后重新放置回磁力架,静置2-5min,直至磁珠全部靠壁,小心吸取上清并丢弃。将离心管从磁力架取下后瞬时离心,在磁力架上分离后,用小量程的移液器将管底剩余液体吸干。将DNA低吸附管(Eppendorf,0030108051)从磁力架上取下,加入68μL洗脱缓冲液[20mM Tris(pH=7.5),50mM NaCl]进行DNA 洗脱,用手轻弹管壁混匀。瞬时离心3秒,将管内液体收集至管底。室温下孵育10min。将DNA低吸附管(Eppendorf,0030108051)瞬时离心后置于磁力架上,静置2~5min至液体澄清,将66μL上清液转移到新的1.5mL DNA低吸附管(Eppendorf,0030108051)中。剩余样品可用于进行浓度测定,推荐使用Qubit-dsDNA HS Assay Kit(Thermofisher,Q32854)测定浓度。
2.BCH666蛋白与测序文库在25℃孵育1h(摩尔浓度比1:8),形成含解旋酶BCH666的测序文库。
3.含解旋酶BCH666的测序文库与5’端含有胆固醇的单链DNA(ssDNA-chol,SEQ ID NO:11)在室温下孵育10min。ssDNA-chol序列与接头下链其中一部分区域互补,胆固醇结合磷脂膜后能够降低测序文库的上样量,提高文库捕获率(接头示意图如图9所示,星型表示胆固醇,三角形表示解旋酶BCH666)。
4.使用膜片钳放大器或其他电信号放大器采集电流信号(如图10所示)。按照文献(Ji Z,Guo P.Channel from bacterial virus T7DNA packaging motor for the differentiation of peptides composed of a mixture of acidic and basic amino acids.Biomaterials.2019May21;214:119222)所披露的方法搭建基于膜片钳和信号放大器的单通道纳米孔检测系统。中间微米级小孔的(直径50-200μm)Teflon膜将电解池分为两个腔室,顺式腔(cis腔室)和反式腔(trans腔室);在cis腔室和trans腔室各放置一对Ag/AgCl电极;在两个腔室的微孔处形成一层双分子磷脂膜后加入纳米孔蛋白CsgG-Eco-(Y51A/F56Q/R97W/R192D-StrepII(C));待单个纳米孔蛋白插入磷脂膜后获得了电测量;加入步骤3获得的测序文库,施加180mV,测序文库被纳米孔所捕获并在解旋酶BCH666的控制下核酸穿过纳米孔。该实验所用缓冲液为:0.47M KCl,25mM HEPES,1mM EDTA,5mM ATP,25mM MgCl 2,pH 7.6,测序温度28℃。
5.测序电信号如图11所示。从图中可知,随着解旋酶BCH666控制DNA单链进入纳米孔,部分电流被阻碍,电流变小。由于不同核苷酸大小不同,阻碍的电流大小也因此而不同,所以可以看到波动的电流信号。本实施例证明解旋酶BCH666可以用于纳米孔测序。
本发明使用的序列如下:
BCH666蛋白的氨基酸序列(SEQ ID NO:1)
Figure PCTCN2022142476-appb-000002
Figure PCTCN2022142476-appb-000003
BCH666蛋白对应的DNA序列(SEQ ID NO:2)
Figure PCTCN2022142476-appb-000004
SEQ ID NO:3:
5’-GCGTCGAAAAGCAGTACTTAGGCATT-3’
SEQ ID NO:4:
5’-TTTTTTTTTTTTTTTTTTTTTAATGCCTAAGTACTGCTTTTCGACGC-3’
SEQ ID NO:5:
5’-BHQ-1-GCGTCGAAAAGCAGTACTTAGGCATT-3’
SEQ ID NO:6:
5’-TTTTTTTTTTTTTTTTTTTTTAATGCCTAAGTACTGCTTTTCGACGC-FAM-3’
SEQ ID NO:7:
5’-AATGCCTAAGTACTGCTTTTCGACGCT-3’
SEQ ID NO:8:
5’-TTTTTTTTTTTTTTTTTTTTTYYYY-AATGCCTAAGTACTGCTTTTCGACGC-FAM-3’(Y=iSp18)
SEQ ID NO:9:
5’-TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTYYYY-GGTTGTTTCTGTTGGTGCTGATATTGCT-3’(Y=iSp18)
SEQ ID NO:10:
5’-GCAATATCAGCACCAACAGAAACAACCTTTGAGGCGAGCGGTCAA-3’
SEQ ID NO:11:
5’-cholesterol-TTGACCGCTCGCCTC-3’
其中,iSp18如以下式I所示:
Figure PCTCN2022142476-appb-000005
虽然以上描述了本发明的具体实施方式,但是本领域的技术人员应当理解,这些仅是举例说明,在不背离本发明的原理和实质的前提下,可以对这些实施方式做出多种变更或修改。因此,本发明的保护范围由所附权利要求书限定。

Claims (15)

  1. 一种解旋酶,其特征在于,所述解旋酶的氨基酸序列如SEQ ID NO:1所示或与SEQ ID NO:1所示氨基酸序列具有至少70%、至少80%、至少85%、至少90%、至少95%、至少96%、至少97%、至少98%或至少99%的同一性。
  2. 如权利要求1所述的解旋酶,其特征在于,所述解旋酶的三维结构表面至少一个半胱氨酸发生突变,所述突变为半胱氨酸被丙氨酸、谷氨酰胺、甘氨酸、组氨酸、异亮氨酸、亮氨酸、缬氨酸、丝氨酸、苏氨酸或甲硫氨酸取代;
    优选地,所述突变的位点包括C21、C50、C56、C91、C156、C279、C367和C379中的至少一个。
  3. 如权利要求1所述的解旋酶,其特征在于,所述解旋酶在销结构域和/或塔结构域中具有至少一个氨基酸突变,所述氨基酸突变为原氨基酸被半胱氨酸或非天然氨基酸取代;
    优选地,所述销结构域的突变位点为85、86、87、88、89、90、91、92、93、94、95、96、97、98、99、100、101、102和103中的至少一个;和/或所述塔结构域的突变位点为337、338、339、340、341、342、343、344、345、346、347、348、347、348、349、350、351、352、353、354、355、356、357、358、359、360、361、362、363、364、365、366、367和368中的至少一个;
    更优选地,所述销结构域的突变位点为G85、I86、S87、P88、T89、V90、D91、K92、K93、E94、L95、E96、F97、E98、H99、V97、N98、I99、P100、S101、L102和W103中的至少一个;和/或所述塔结构域的突变位点为L337、Y338、E339、V340、A341、N342、Y343、Y344、D345、Y346、Q347、Q348、I347、A348、D349、Y350、Y351、E352、H353、I354、A355、W356、N357、M358、K359、T360、P361、Q362、A363、K364、A365、K366、A367和Y368中的至少一个。
  4. 如权利要求3所述的解旋酶,其特征在于,所述非天然氨基酸包括但不限于4-叠氮基-L-苯丙氨酸(PAZF)、4-叠氮基-L-苯丙氨酸(PAZF-Hcl)、4-乙酰基-L-苯丙氨酸、3-乙酰基-L-苯丙氨酸、4-乙酰乙酰基-L苯丙氨酸、O-烯丙基-L-酪氨酸、3-(苯基硒烷基)-L-丙氨酸、O-2-丙炔-1-基-L-酪氨酸、4(二羟基硼基)-L-苯丙氨酸、4-[(乙基硫烷基)羰基]-L-苯丙氨酸、(2S)-2-氨基-3-{4-[(丙烷-2-基硫烷基)羰基]苯基}丙酸、(2S)-2-氨基-3-{4-[(2-氨基-3-硫烷基丙酰基)氨基]苯基}丙酸、O-甲基-L-酪氨酸、4-氨基-L-苯丙氨酸、4-氰基-L-苯丙氨酸、3-氰基-L-苯丙氨酸,4-氟-L-苯丙氨酸、4-碘-L-苯丙氨酸、4-溴-L-苯丙氨酸、O-(三氟甲基)酪氨酸、4-硝基L-苯丙氨酸、3-羟基-L-酪氨酸、3-氨基-L-酪氨酸、3-碘-L-酪氨酸、 4-异丙基-L-苯丙氨酸、3-(2-萘基)-L-丙氨酸、4-苯基-L-苯丙氨酸、(2S)-2-氨基-3-(萘-2-基氨基)丙酸、6-(甲基硫烷基)正亮氨酸、6-氧-L-赖氨酸、D-酪氨酸、(2R)-2-羟基-3-(4-羟基苯基)丙酸、(2R)-2氨基辛酸酯3-(2、2′-二吡啶-5-基)-D-丙氨酸、2-氨基-3-(8-羟基-3-喹啉基)丙酸、4-苯甲酰-L-苯丙氨酸、S-(2-硝基苄基)半胱氨酸、(2R)-2-氨基-3-[(2-硝基苄基)硫烷基]丙酸、(2S)-2-氨基-3-[(2-硝基苄基)氧基]丙酸、O-(4,5-二甲氧基-2-硝基苄基)-L-丝氨酸、(2S)-2-氨基-6-({[(2-硝基苄基)氧基]羰基}氨基)己酸、O-(2-硝基苄基)-L-酪氨酸和2-硝基苯丙氨酸中的至少一个。
  5. 如权利要求1所述的解旋酶,其特征在于,所述解旋酶在DNA结合区和/或ATP催化活性中心附近发生至少一个突变,所述突变包括原氨基酸被侧链较大的氨基酸取代;
    优选地,所述DNA结合区的突变位点为63、73、79、80、81、82、83、84、85、86、87、95和96中的至少一个;和/或所述ATP催化活性中心附近的突变位点为154、155、156、158、159、160、161、174、175、177、178、179和181中的至少一个;
    更优选地,所述DNA结合区的突变位点为H63、E73、T79、V80、H81、S82、A83、L84、G85、I86、S87、L95和E96中的至少一个;和/或所述ATP催化活性中心附近的突变位点为D154、D155、P156、I158、S159、P160、V161、P174、M175、N177、T178、G179和L181中的至少一个。
  6. 如权利要求1所述的解旋酶,其特征在于,所述解旋酶在DNA结合区和纳米孔结合区中发生至少一个突变,所述突变包括原氨基酸被表面非正电荷的氨基酸和/或侧链长度相比原氨基酸短的氨基酸取代;
    优选地,所述突变发生在DNA结合区和纳米孔结合区的第1、2、3、5、7、8、9、10、36、42、45、67、74、97、207、208、209、220、221、222、374、408和411位中的至少一个;
    更优选地,所述突变发生在DNA结合区和纳米孔结合区的M1、N2、S3、N5、D7、Q8、Q9、K10、K36、K42、K45、D67、K74、F97、R207、K208、D209、K220、K221、D222、H374、D408和K411中的至少一个。
  7. 一种分离的核酸,其特征在于,所述分离的核酸编码如权利要求1~6任一项所述的解旋酶;
    优选地,所述解旋酶的核苷酸序列如SEQ ID NO:2所示或与SEQ ID NO:2所示核苷酸序列具有至少70%、至少80%、至少85%、至少90%、至少95%、至少96%、至少97%、至少98%或至少99%的同一性。
  8. 一种重组表达载体,其特征在于,所述重组表达载体包含启动子和如权利要求7 所述的核酸;
    优选地,所述启动子为T7;和/或,所述重组表达载体的骨架质粒为PET.28a(+)、PET.21a(+)、PET.32a(+)。
  9. 一种转化体,其特征在于,所述转化体包含宿主细胞和如权利要求7所述的核酸或如权利要求8所述的重组表达载体;
    优选地,所述宿主细胞为大肠杆菌,更优选为BL21(DE3)、BL21 Star(DE3)pLyss、Rossata(DE3)或Lemo21(DE3)。
  10. 一种制备如权利要求1~6任一项所述的解旋酶的方法,其特征在于,在培养基中培养如权利要求9所述的转化体,使其发酵生产所述解旋酶。
  11. 一种解旋酶-测序接头复合物,其特征在于,其包括如权利要求1~6任一项所述的解旋酶,以及测序接头。
  12. 一种试剂盒,其特征在于,所述试剂盒包括如权利要求1~6任一项所述的解旋酶和/或如权利要求11所述的解旋酶-测序接头复合物;优选还包括5’端含有锚定分子的单链DNA、纳米孔、纳米孔蛋白、电信号检测器、膜和/或缓冲液;
    较佳地,所述锚定分子为疏水性分子,优选为选自以下任意一种或多种:脂质、脂肪酸、甾醇、碳纳米管、多肽、蛋白质和/或氨基酸,如胆固醇、棕榈酸酯或生育酚;
    所述纳米孔为跨膜蛋白孔或固态孔;优选地,所述跨膜蛋白孔选自溶血素、MspA、MspB、MspC、MspD、FraC、ClyA、PA63、CsgG、CsgD、XcpQ、SP1、phi29连接器蛋白(phi29 connector)、InvG、GspD或其任意组合;
    所述膜是两亲性膜(例如磷脂双分子层)、高分子聚合物膜(例如两嵌段共聚物di-block、三嵌段共聚物tri-block)或其任意组合;
    所述缓冲液为磷酸二氢根-磷酸氢根缓冲体系、碳酸-碳酸氢钠缓冲体系、Tris-HCl缓冲体系、HEPES缓冲体系、MOPS缓冲体系或其任意组合。
  13. 权利要求1~6任一项所述的解旋酶、权利要求11所述的解旋酶-测序接头复合物或权利要求12所述的试剂盒在高通量测序中的应用;
    优选地,所述高通量测序为纳米孔测序。
  14. 一种DNA解链方法,其特征在于,其包括使用如权利要求1~6任一项所述的解旋酶、权利要求11所述的解旋酶-测序接头复合物或权利要求12所述的试剂盒对双链DNA进行解旋。
  15. 一种测序方法,其特征在于,其包括以下步骤:
    利用如权利要求14所述的DNA解链方法对DNA进行边解旋边测序。
PCT/CN2022/142476 2022-12-27 2022-12-27 一种解旋酶及其制备方法和在高通量测序中的应用 WO2024138380A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/142476 WO2024138380A1 (zh) 2022-12-27 2022-12-27 一种解旋酶及其制备方法和在高通量测序中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/142476 WO2024138380A1 (zh) 2022-12-27 2022-12-27 一种解旋酶及其制备方法和在高通量测序中的应用

Publications (1)

Publication Number Publication Date
WO2024138380A1 true WO2024138380A1 (zh) 2024-07-04

Family

ID=91716137

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/142476 WO2024138380A1 (zh) 2022-12-27 2022-12-27 一种解旋酶及其制备方法和在高通量测序中的应用

Country Status (1)

Country Link
WO (1) WO2024138380A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105899678A (zh) * 2013-10-18 2016-08-24 牛津纳米孔技术公司 经修饰的酶
CN109207454A (zh) * 2017-01-24 2019-01-15 四川大学 蛋白、跨膜核酸解旋纳米孔及其构建方法与应用
WO2021253410A1 (zh) * 2020-06-19 2021-12-23 北京齐碳科技有限公司 一种Pif1-like解旋酶及其应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105899678A (zh) * 2013-10-18 2016-08-24 牛津纳米孔技术公司 经修饰的酶
CN109207454A (zh) * 2017-01-24 2019-01-15 四川大学 蛋白、跨膜核酸解旋纳米孔及其构建方法与应用
WO2021253410A1 (zh) * 2020-06-19 2021-12-23 北京齐碳科技有限公司 一种Pif1-like解旋酶及其应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHEN ZHIJIE, WANG ZHENQIN, XU YANG, ZHANG XIAOCHUN, TIAN BOXUE, BAI JINGWEI: "Controlled movement of ssDNA conjugated peptide through Mycobacterium smegmatis porin A (MspA) nanopore by a helicase motor for peptide sequencing application", CHEMICAL SCIENCE, ROYAL SOCIETY OF CHEMISTRY, UNITED KINGDOM, vol. 12, no. 47, 8 December 2021 (2021-12-08), United Kingdom , pages 15750 - 15756, XP093185487, ISSN: 2041-6520, DOI: 10.1039/D1SC04342K *
MA, YIFEI; DU, CAIJUAN; WANG, LELE; LIU, DANDAN; XU, JINJUN: "Cloning and Prokaryotic Expression of Partial Sequence of SNF2 Gene in Eimeria Necatrix", XU MU YU SHOU YI = ANIMAL HUSBANDRY AND VETERINARY MEDICINE, NAN JING NONG YE DA XUE ZHU BAN. XU MU YU SHOU YI ZA ZHI SHE BIAN JI, CN, vol. 49, no. 8, 10 August 2017 (2017-08-10), CN , pages 72 - 75, XP009556040, ISSN: 0529-5130 *

Similar Documents

Publication Publication Date Title
JP6776366B2 (ja) 変異体ポア
AU2015310913B2 (en) Mutant CsgG pores
JP7027334B2 (ja) アルファ溶血素バリアントおよびその使用
JP7256280B2 (ja) 熱安定性が向上したPhi29 DNAポリメラーゼ突然変異体及びそのシーケンシングにおける応用
CN113583996B (zh) Bst DNA聚合酶重组突变体、其编码DNA及超快磁珠LAMP检测方法
WO2014189768A1 (en) Devices and methods for display of encoded peptides, polypeptides, and proteins on dna
WO2021101378A1 (en) Artificial nanopores and uses and methods relating thereto
CN112041331B (zh) α-溶血素变体及其用途
CN108350496A (zh) 聚合酶组合物和套组以及其使用与制造方法
CN114507690A (zh) 源自鲎属的重组蛋白及编码该重组蛋白的dna
US20230416708A1 (en) Novel Variants of Endonuclease V and Uses Thereof
WO2024138380A1 (zh) 一种解旋酶及其制备方法和在高通量测序中的应用
CN110923217A (zh) 可识别2’-o-甲基化修饰rna的核糖核酸酶r及其应用
WO2024138635A1 (zh) 一种解旋酶及其制备方法和在高通量测序中的应用
WO2024138422A1 (zh) 一种销结构域、含其的解旋酶及制备方法和应用
CN120344656A (zh) 一种解旋酶及其制备方法和在高通量测序中的应用
WO2024138632A1 (zh) 一种解旋酶、其制备方法及其在测序中的应用
WO2024138631A1 (zh) 一种解旋酶Dda的突变体、其制备方法及其在测序中的应用
WO2024138626A1 (zh) 一类解旋酶ToPif 1、其制备方法及其在高通量测序中的应用
WO2024138574A1 (zh) 解旋酶及其应用
CN103614347B (zh) 一种嗜热酮还原酶突变体、编码基因及其应用
WO2024138714A1 (zh) 核酸复合物的精纯方法、精纯试剂盒及应用
CN120344661A (zh) 一种销结构域、含其的解旋酶及制备方法和应用
CN116334030B (zh) 一种经修饰的CfM HL4解旋酶及其应用
WO2024138664A1 (zh) 一种核酸连接酶及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22969536

Country of ref document: EP

Kind code of ref document: A1