WO2024136319A1 - 치과용 임플란트 구조체 - Google Patents
치과용 임플란트 구조체 Download PDFInfo
- Publication number
- WO2024136319A1 WO2024136319A1 PCT/KR2023/020707 KR2023020707W WO2024136319A1 WO 2024136319 A1 WO2024136319 A1 WO 2024136319A1 KR 2023020707 W KR2023020707 W KR 2023020707W WO 2024136319 A1 WO2024136319 A1 WO 2024136319A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- screw
- abutment
- binding
- implant
- dental implant
- Prior art date
Links
- 239000004053 dental implant Substances 0.000 title claims abstract description 74
- 239000007943 implant Substances 0.000 claims abstract description 191
- 238000010168 coupling process Methods 0.000 claims description 58
- 230000008878 coupling Effects 0.000 claims description 56
- 238000005859 coupling reaction Methods 0.000 claims description 56
- 238000000034 method Methods 0.000 claims description 38
- 210000000988 bone and bone Anatomy 0.000 claims description 31
- 230000007423 decrease Effects 0.000 claims description 10
- 230000002093 peripheral effect Effects 0.000 claims description 10
- 238000002513 implantation Methods 0.000 claims description 4
- 210000004195 gingiva Anatomy 0.000 claims description 3
- 239000003708 ampul Substances 0.000 claims description 2
- 230000000149 penetrating effect Effects 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 15
- 230000008901 benefit Effects 0.000 description 11
- 230000006378 damage Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 241000894006 Bacteria Species 0.000 description 2
- 208000006386 Bone Resorption Diseases 0.000 description 2
- 230000024279 bone resorption Effects 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000018984 mastication Effects 0.000 description 1
- 238000010077 mastication Methods 0.000 description 1
- 230000036316 preload Effects 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61C—DENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
- A61C8/00—Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
Definitions
- the present invention relates to dental implant structures.
- An implant refers to a replacement that restores human tissue when it is lost, but in dentistry, it refers to an artificially created tooth.
- This implant treatment method is widely used as an alternative treatment method that can restore and reconstruct the original function of one's own teeth when teeth are lost or tooth function deteriorates.
- Dental implants can be roughly divided into external connection methods and internal connection methods depending on the form in which the implant and abutment installed in the alveolar bone are combined.
- the external connection method has the advantage that the implant inserted into the bone is relatively sturdy, but the gap between the implant platform and the abutment is large in the early stages after placement, so there is a high probability of bacteria colonizing, so bone resorption occurs at the border. There is a downside.
- the internal connection method forms a regular hexagonal groove (commonly called a hexagon) inside the implant, and forms the part where the abutment meets the implant in the shape of a truncated cone, thereby eliminating space for bacteria to inhabit, thereby preventing initial bone resorption. It can be minimized. Therefore, it has the advantage of having a high implantation success rate, and for this reason, the internal connection method has been mainly used recently.
- FIG. 1 is a diagram showing an example of an internal connection method among the connection methods between an implant and an abutment.
- the internal connection method is an abutment in a polygonal groove such as a regular hexagon or octagon inside an implant (10) installed in the alveolar bone.
- an implant 10
- the screw 20 With a portion of (30, Abutment) inserted, the screw 20 is inserted into the abutment 30 and screwed to the inner main surface of the implant 10, thereby attaching the abutment 30 to the implant 10. This is a way to fix it.
- reference numeral 40 indicates a prosthesis 40 coupled to the abutment 30.
- the screw preload is prone to decrease due to sink down caused by the load applied in complex from various directions to the abutment 30 during mastication movement.
- the screw loosens and the connection between the implant and the abutment becomes unstable, causing damage to the implant and internal fatigue destruction of the screw, or causing inconvenience to the user.
- the unique groove shape (hexa shape with six corners) formed on the implant to prevent the abutment from rotating relative to the implant and the threaded portion machined on the inner main surface of the implant for fastening with the screw are structurally different. Since it is weaker than its original size, durability issues have been pointed out, such as fatigue failure in that part over time.
- Patent Document 1 Korean Patent Publication No. 10-2009-0077982 (publication date 2009.07.16)
- Patent Document 2 Korean Patent No. 10-2304081 (registration date 2021.09.14)
- the technical problem to be solved by the present invention is to solve the shortcomings of the conventional screw fastening method, while having a higher static load strength and fatigue failure limit compared to the screw fastening method, and to apply a new bonding method suitable for short implants.
- the goal is to provide an implant structure.
- Another technical problem to be solved by the present invention is to provide an abutment for dental implants that can achieve a deep connection structure with the implant body (securing a sufficient height of the contact portion in direct contact with the implant body).
- Another technical problem that the present invention aims to solve is to provide an abutment for dental implants with a structure that can omit threads, which are considered the main cause of fatigue failure in the implant body.
- the abutment can be coupled to the implant body using an anchor bolt method to increase the height of the contact area where the abutment is in direct contact with the implant body, and is considered the main cause of fatigue failure of the implant.
- the aim is to provide a screw for dental implants with a structure that can omit the threads on the inner surface of the body.
- Another technical problem that the present invention aims to solve is an implant body for dental implants that can achieve solid bonding with an abutment without threads (threads for fastening screws and screws) on the inner side of the implant body, which are considered the main cause of fatigue failure. It is intended to provide.
- Another technical problem that the present invention aims to solve is to create an implant body for dental implants that can increase the height of the contact area in direct contact with the abutment as the internal threads (threads for fastening screws) are omitted. This is what we want to provide.
- an abutment having a binding pipe portion at the lower end is concentrically disposed on the inside of the abutment and screwed to the abutment, and the diameter gradually increases as it goes downward.
- the wedge portion expands the binding tube portion at the bottom of the abutment, or the binding pipe portion is strongly adhered to the surface of the binding portion of the implant body by the wedge portion.
- a strong bond can be achieved between the abutment and the implant body.
- the screw is concentrically disposed and screwed to the inside of the abutment so that a portion of the wedge portion protrudes downward from the binding pipe portion, and the binding pipe portion is inserted into the binding portion of the internal groove.
- the screw is rotated in one direction while inserted into the binding portion of the internal groove, the screw rises upward and the binding tube portion is opened radially outward by the wedge portion, thereby fixing the abutment to the implant body. It can be.
- the binding pipe portion formed at the lower end of the abutment includes a plurality of slit-shaped cut grooves formed in the lower pipe portion of the abutment, and a plurality of cut grooves formed one by one between adjacent cut grooves by the cut grooves. It may be composed of a binding piece.
- a locking protrusion may be formed to protrude on the bottom peripheral surface of the binding pipe portion, and a locking groove may be formed in an undercut structure at the bottom of the binding portion corresponding to the locking protrusion.
- the inner main surface of the binding pipe part may be formed in a tapered structure, that is, an inclined structure, corresponding to the shape of the wedge part, and in this case, the surface inclination angle ( ⁇ ) of the inner main surface of the binding pipe part and the wedge part is It may be 3 to 8 degrees.
- the surface of the binding pipe portion and the surface of the binding portion in contact with the surface of the binding pipe portion are formed to be rough, so that the binding pipe portion extending in the radial direction is in close contact with the binding portion. Slip can be reliably prevented or suppressed.
- a lower screw through hole and an upper tool entry hole may be formed inside the abutment, and a female thread for fastening the screw to the screw may be formed at a certain height between the lower screw through hole and the upper tool entry hole. can be formed.
- the tool entry hole may be formed with a larger diameter than the screw through hole and the female thread portion.
- a male thread portion may be formed corresponding to the female thread portion on a screw positioned at a predetermined height away from the wedge portion, and a polygonal head portion exposed to the tool entry hole may be formed at the top of the male thread portion.
- the internal groove of the implant body has an inverted truncated cone-shaped inclined groove portion that has an opening exposed to the upper surface of the implant body and whose inner diameter gradually decreases downward from the opening, and a predetermined height at the bottom of the inclined groove portion. It may be composed of the binding portion formed of.
- the abutment includes a prosthesis coupling portion coupled to the inside of the prosthesis, and a body formed in a lower portion of the prosthesis coupling portion, and an inverted truncated cone-shaped body whose outer diameter gradually decreases as a portion thereof goes downwards coupled to the implant body. It may include a coupling portion, and the binding pipe portion may be integrally formed at the bottom of the body coupling portion.
- the shape of the outer surface of the binding pipe portion is configured as a regular polygon or Torx shape
- the cross-sectional shape of the binding portion is a shape corresponding to the shape of the outer surface of the binding pipe portion.
- an abutment for a dental implant coupled to an implant body installed in the alveolar bone, an upper prosthesis coupling portion coupled to a prosthesis, and part or all of the abutment coupled to the implant body in an internal connection manner.
- An abutment for a dental implant can be provided including a lower body coupling portion and an ampulla formed between the upper prosthesis coupling portion and the lower body coupling portion so as to contact the gingiva without being coupled to the implant body.
- the lower body coupling portion may be provided with a binding pipe portion in its lower region.
- the abutment for dental implant may further include a hole penetrating the upper prosthesis coupling portion and the lower body coupling portion.
- the hole includes a tool entry hole formed inside the prosthesis coupling portion, a screw through hole formed inside the lower body coupling portion, and a tool entry hole formed inside the bulge and located between the tool entry hole and the screw through hole. It may consist of a screw hole.
- the diameter of the tool entry hole may be formed to be larger than the diameter of the screw through hole and the screw hole, and at least a portion of the portion of the screw through hole corresponding to the position of the binding pipe portion has an inner diameter as it goes downward. This may be a gradually increasing structure.
- a screw for dental implant including a tool fastening portion to which a tool is fastened can be provided.
- the lower wedge portion may include a first region whose diameter or cross-sectional area gradually increases downward.
- the cross-sectional shape of the first region may be circular or in a spline shape or a Torx shape with at least two grooves at equal or unequal intervals in the circumferential direction.
- an internal groove into which an abutment for supporting a prosthesis is coupled is formed on the inside of the implant body, and the alveolar bone is formed on the outer peripheral surface.
- An external thread for installation is formed, and the internal groove has an opening exposed to the upper surface of the implant body, has a circular cross-sectional shape, an inclined groove portion whose inner diameter gradually narrows downward from the opening, and a lower portion of the inclined groove portion. It is possible to provide an implant body for a dental implant that is formed higher than the inclined groove and includes a binding portion without threads.
- the cross-sectional shape of the unthreaded binding portion may be one of a circular shape, a polygonal shape, and a Torx shape, with respect to a line parallel to the longitudinal center line (CL) of the implant body.
- the main surface of the inclined groove may be inclined at 5 to 8 degrees (the main inclination angle ( ⁇ ) of the inclined groove is formed at 5 to 8 degrees), and the height (h2) of the internal groove is equal to the overall height (h1) of the implant body. It may be 1/2*h1 to 2/3*h1.
- the height (h3) of the binding portion from the height (h2) of the internal groove may be 1/2*h2 to 2/3*h2, and the remainder may be the height (h4) of the inclined groove portion.
- the binding portion may be formed in a truncated cone shape whose inner diameter gradually widens as the longitudinal cross-sectional shape goes downward.
- the screw expands the lower part of the abutment (tie pipe portion) to realize a strong bond between the implant body and the abutment, and the screw is directly fastened to the implant body to connect the abutment to the middle.
- the height of the contact area where the implant body and the abutment are in direct contact can be secured higher.
- the present invention can achieve a deeper connection structure between the implant body and the abutment compared to the same size, thereby realizing a more stable and robust bond, and the screw thread, which is considered the main cause of fatigue destruction of the implant body.
- the screw thread which is considered the main cause of fatigue destruction of the implant body.
- it is omitted from the implant body, it has the advantage of being much more advantageous than the conventional internal connection method in terms of durability.
- the stress which is an internal resistance force generated in response to external force, is not concentrated in a specific area but is evenly distributed to distribute the stress. It also has the advantage of being superior to the conventional internal connection method, and has the advantage of being structurally advantageous for short implants.
- Figure 1 is a diagram showing an example of an internal connection method among the connection methods between an implant and an abutment.
- Figure 2 is an exploded perspective view showing a dental implant structure according to an embodiment of the present invention.
- Figure 3 is a partially exploded perspective view showing the abutment and screw in Figure 2 being coupled to the implant body in a mutually coupled state.
- FIG. 4 is a longitudinal cross-sectional view showing a longitudinal (vertical or height) cross-section of the dental implant structure shown in FIG. 2 in a fully coupled state.
- Figure 5 is an enlarged view of the main portion of the present invention showing part 'A' in the combined cross-sectional view of Figure 4.
- Figure 6 is a front view of an abutment applied to a dental implant structure according to an embodiment of the present invention.
- Figure 7 is a cut-away perspective view of the abutment shown in Figure 6.
- Figure 8 is a front view of a screw applied to a dental implant structure according to an embodiment of the present invention.
- FIG. 9 is a diagram illustrating various embodiments of the head portion formed at the top of the screw of FIG. 8.
- Figure 10 is a diagram showing an embodiment in which the head portion of Figure 9 is deleted and a groove (a groove into which a dedicated tool is coupled) is formed directly at the top of the external thread of the screw.
- Figure 11 is a front view of an implant body applied to a dental implant structure according to an embodiment of the present invention.
- FIG. 12 is a cutaway perspective view of the implant body shown in FIG. 11.
- Figure 13 is a diagram illustrating various embodiments of the shape of the binding portion formed at the lower end of the abutment and the binding portion formed inside the implant body.
- Figure 14 is a diagram showing the fastening process of a dental implant structure according to an embodiment of the present invention.
- Figure 15 is a cross-sectional view comparing the present invention with a representative example of a conventional internal connection method among various methods of connecting an implant body and an abutment.
- Figure 16 is a perspective view of an abutment for dental implant according to an embodiment of the present invention.
- Figure 17 is a front view of the abutment shown in Figure 16.
- Figure 18 is a cutaway perspective view of the abutment shown in Figure 16.
- Figure 19 is an enlarged cross-sectional view showing the main part of the binding pipe part of Figure 18.
- Figure 20 is a cross-sectional view of the tie pipe showing various external shapes of the tie pipe.
- Figure 21 is a perspective view of a screw for dental implant according to an embodiment of the present invention.
- Figure 22 is a front view of the screw shown in Figure 21.
- FIG. 23 is an enlarged view of the lower wedge portion shown in FIG. 22.
- Figure 24 is a diagram showing a preferred modified example of the lower wedge portion.
- Figure 25 is a diagram showing a preferred modified example of the cross-sectional shape of the lower wedge portion.
- Figure 26 is a diagram showing another preferred modified example of the lower wedge portion.
- Figure 27 is a view showing various embodiments of the tool fastening part included in the screw.
- Figure 28 is a perspective view of an implant body for a dental implant according to an embodiment of the present invention.
- Figure 29 is a front view of the implant body shown in Figure 28.
- Figure 30 is a longitudinal cross-sectional view specifically showing the internal structure of the implant body according to an embodiment of the present invention.
- FIG. 31 is a plan view of the implant body showing various cross-sectional shapes of the binding portion shown in FIG. 30.
- Figure 32 is a diagram showing another preferred form of the longitudinal cross-sectional shape of the binding portion.
- ...unit a unit that processes at least one function or operation, which may be implemented by hardware or software or a combination of hardware and software. You can.
- the dental implant structure includes an abutment to which a prosthesis (not shown) is coupled and an implant body to be installed in the alveolar bone, where the abutment and the implant body It has something in common with the conventional configuration in that it adopts an internal connection method that is interconnected by screws.
- the lower part of the abutment may be supported radially outward by the wedge portion of the lower end of the screw, The lower part of the butt is supported radially outwardly by the wedge portion, so that it can be fixed between the wedge portion and the inner peripheral surface of the inner groove of the implant body.
- the lower part of the abutment may be pressurized and supported radially outwardly by the wedge part of the screw and fixed in a state sandwiched between the wedge part and the internal groove of the implant body.
- the screw which functions as a connecting medium between the abutment and the implant body, is not screwed to the implant body, but is screwed to the abutment and rotates to expand the lower part of the abutment to form the implant body. It is different from the conventional internal connection method in that it adopts a new coupling method (internal expansion fastening type) that strongly binds to the.
- FIG. 2 is an exploded perspective view showing the dental implant structure according to an embodiment of the present invention
- Figure 3 is a partially exploded perspective view showing the abutment and screw in Figure 2 being coupled to the implant body in a mutually coupled state.
- FIG. 4 is a longitudinal cross-sectional view showing a longitudinal (vertical or height) cross-section of the dental implant structure shown in FIG. 2 in a fully coupled state.
- the abutment (300) may be provided with a binding pipe portion (330) at the lower end that can be elastically expanded outward in the radial direction, and a screw (200) may be connected to the abutment (300). ) is concentrically disposed on the inside and screwed with the abutment 300, and at the lower end of the screw 200 corresponding to the position of the binding pipe portion 330, there is a tapered wedge portion (Wedge portion) whose diameter increases downward. 230) can be formed.
- Wedge portion tapered wedge portion whose diameter increases downward. 230
- a dedicated tool such as a torque wrench is used to tighten the head portion (210) of the screw (200).
- the abutment 300 is rotated in one direction (the direction in which the screw is raised) while coupled to the abutment 300, the screw 200 rises and the wedge portion 230 is pushed into the binding pipe portion 330.
- 330 may extend radially outward.
- An internal groove 120 may be formed in the implant body 100 into which a portion of the abutment 300 is inserted and fixed. This internal groove 120 may be provided with a binding portion 124 at its lower end corresponding to the binding pipe portion 330 and the wedge portion 230.
- a screw thread 110 for alveolar bone implantation may be formed on the outer surface of the implant body 100. In this case, the screw thread 110 may be formed as a single or double screw structure with the same or different pitch in the height direction.
- the wedge portion 230 when the screw 200 disposed inside the abutment 300 is rotated in one direction using a dedicated tool, the wedge portion 230 is connected to the binding pipe portion ( By being pushed into the inside of 330, the binding pipe portion 330 may be expanded in the radial direction.
- the binding tube portion 330 extending in the radial direction is fixed in strong contact with the binding portion 124, so that a firm binding between the abutment 300 and the implant body 100 can be realized.
- the screw 200 is concentrically screwed to the inside of the abutment 300 so that a portion of the wedge portion 230 formed at the lower end of the screw 200 protrudes downward than the binding pipe portion 330. (see FIG. 3), and in this way, the implant body ( The abutment 300 may be coupled to 100).
- the screw 200 is rotated in only one direction (the direction of raising the screw relative to the abutment).
- the wedge portion 230 expands the binding tube portion 330 in the radial direction, so that the binding tube portion 330 is strongly adhered to the surface of the binding portion 124, and thus the implant body.
- the abutment 300 can be firmly fixed to (100).
- Figure 5 (a) is an enlarged view of the main part of the present invention, showing portion 'A' in the combined cross-sectional view of Figure 4, and Figure 5 (b) is another preferred embodiment of the binding pipe portion and binding portion shown in (a). This is a drawing showing an example.
- the inner main surface of the binding pipe portion 330 has a tapered structure, that is, an inclined structure, corresponding to the shape of the wedge portion 230 (a tapered shape whose diameter gradually increases downward). It can be formed into a structure.
- the inclination angle ( ⁇ ) of the corresponding inner main surface of the binding pipe portion 330 and the surface of the wedge portion 230 is preferably 3 to 8 degrees.
- the surface of the binding pipe portion 330 and the surface of the binding portion 124 in contact with the surface of the binding pipe portion 330 may be rough.
- the frictional force that suppresses the relative movement between them increases, thereby creating a gap between the implant body 100 and the A more robust bond between the abutments 300 can be realized, and rotational slip of the abutment 300 with respect to the implant body 100 can be prevented.
- a locking protrusion 336 may be formed to protrude along the lower peripheral surface of the binding pipe portion 330 formed on the abutment 300. And at the bottom of the binding portion 124 formed on the implant body 100, a locking groove 126 may be formed in an undercut structure corresponding to the locking protrusion 336 (see (b) of FIG. 5). In this case, when the binding tube portion 330 is expanded, the locking protrusion 336 engages with the locking groove 126, so that the bonding force between the implant body 100 and the abutment 300 can be strengthened.
- Figure 6 is a front view of an abutment applied to a dental implant structure according to an embodiment of the present invention
- Figure 7 is a cutaway perspective view of the abutment shown in Figure 6.
- the abutment 300 applied in the embodiment of the present invention includes a prosthesis coupling portion 310 coupled to the inside of a prosthesis, such as a crown (not shown), and a prosthesis coupling portion 310. It is formed at the bottom and includes a body coupling portion 320 of an inverted truncated cone shape whose outer diameter gradually decreases downward, a portion of which is coupled to the implant body 100, and the binding tube portion at the bottom of the body coupling portion 320 ( 330) may be configured to extend integrally.
- a lower screw through hole 340 and an upper tool entry hole 350 may be formed inside the abutment 300 along the longitudinal axis CL of the abutment 300, and the lower screw through hole 350 may be formed inside the abutment 300.
- a female screw portion 360 for fastening the screw 200 with the screw 200 may be formed at a certain height h1 between the 340 and the upper tool entry hole 350.
- the tool entry hole 350 may be formed with a larger diameter than the screw through hole 340 and the female thread portion 360.
- the binding pipe portion 330 that extends integrally from the bottom of the body coupling portion 320 preferably has a slender, long slit-shaped cut formed in plurality at regular intervals along the circumferential direction of the lower pipe portion of the abutment 300. It may be composed of a groove 332 and a plurality of binding pieces 334 formed one by one between adjacent cut grooves 332 by the cut groove 332.
- the above-mentioned locking protrusion 336 may be formed intermittently along the lower peripheral surface of the extension piece 334 (the locking protrusion is omitted in FIGS. 6 and 7).
- FIGS. 8 to 10 are views of a screw applied to a dental implant structure according to an embodiment of the present invention.
- FIG. 8 is a front view of the screw
- FIG. 9 shows various embodiments of the head portion formed at the top of the screw. It is a drawing.
- FIG. 10 is a diagram showing an embodiment in which the head portion of FIG. 9 is deleted and a groove (a groove into which a dedicated tool is coupled) is formed directly at the top of the external thread of the screw.
- the screw 200 may be provided with the aforementioned wedge portion 230 at the bottom.
- a male threaded portion 260 may be formed at a position at a predetermined height away from the wedge portion 230 to correspond to the female threaded portion 360 and be at least higher than the height h1 of the female threaded portion 360 (h2>h1).
- a head portion 210 exposed to the tool entry hole 350 may be formed at the top of the male thread portion 260 so that a dedicated tool can be coupled thereto.
- the head portion 210 may be formed in a triangular or more polygonal planar shape, for example, a polyhedral structure such as a square, hexagon, or octagon, as shown in the example of FIG. 9. In some cases, the head portion 210 may be formed as shown in FIG. 10. ) can be deleted and a groove 210 is made directly downward from the top of the male thread portion 260 so that a dedicated tool can be combined. At this time, the groove 210 may be, for example, a '-shaped' or '+'-shaped groove.
- the wedge portion 230 may also have a rough surface.
- the surface of the wedge portion 230 is formed to be rough, the friction between the surface of the wedge portion 230 and the inner peripheral surface of the binding pipe portion 330 increases, preventing slip in the rotational direction of the screw 200 even when sinking down. More specifically, since loosening of the screw 200 is suppressed, the connection between the implant body 100 and the abutment 300 can be stably maintained.
- Figure 11 is a front view of an implant body applied to a dental implant structure according to an embodiment of the present invention
- Figure 12 is a cutaway perspective view of the implant body shown in Figure 10.
- an internal groove 120 may be formed on the inside of the implant body 100.
- This internal groove 120 may be provided with the binding portion 124 at its lower end, and a portion of the abutment 300 (abutment The body coupling portion 320 and the binding pipe portion 330 formed at the bottom of the body coupling portion 320 may be inserted and fixed.
- a screw thread 110 for alveolar bone implantation may be formed on the outer surface of the implant body 100.
- the screw thread 110 may have a single or double screw structure with the same or different pitch in the height direction.
- the internal groove 120 formed on the inside of the implant body 100 has an opening exposed to the upper surface of the implant body 100 and is formed in an inverted truncated cone shape whose inner diameter gradually decreases downward from the opening. It may be composed of an inclined groove portion 122 with which the body coupling portion 320 is engaged, and the above-described binding portion 124, which is formed at a certain height at the bottom of the inclined groove portion 122 and where the binding pipe portion 330 is located. .
- Figure 13 is a diagram illustrating various embodiments of the shape of the binding portion formed at the lower end of the abutment and the binding portion formed inside the implant body.
- the outer surface shape of the binding pipe portion 330 may be configured as one of a circular shape, a regular polygon, and a Torx shape, and the binding portion 124
- the cross-sectional shape corresponds to the shape of the outer surface of the binding pipe portion 330, that is, the cross-sectional shape may be one of a circular shape, a regular polygon, and a Torx shape.
- the outer surface of the binding pipe portion 330 is configured in a regular polygon or Torx shape, and the cross-sectional shape of the binding portion 124 (cross-sectional shape when viewed in plan) is adjusted to the shape of the outer surface of the binding pipe portion 330. If configured to have a corresponding shape, that is, a regular polygonal cross-sectional shape or a torx shape, rotation of the abutment 300 with respect to the implant body 100 during the coupling process or in the coupled state can be prevented.
- Figure 14 is a diagram showing the fastening process of a dental implant structure according to an embodiment of the present invention.
- a portion of the wedge portion 230 formed at the lower end of the screw 200 is installed on the inside of the abutment 300 so that it protrudes downward than the binding pipe portion 330 at the lower end of the abutment 300.
- the screw 200 is concentrically coupled to ((a) of FIG. 14).
- the abutment 300 is inserted into the implant body 100 so that the binding tube portion 330 is located in the binding portion 124 of the implant body 100 (FIG. 14(b)).
- the screw 200 when the screw 200 is tightened using a dedicated tool (T), the screw 200 rises upward as shown by the arrow in (c) of FIG. 14 and the wedge portion 230 moves inside the binding pipe portion 330. As it is pushed in, the binding tube 330 opens.
- the open binding tube part 330 is strongly adhered to the surface of the binding part 124, and this causes strong friction between the binding tube part 330 and the binding part 124, causing the abutment (300) to be attached to the implant body 100. ) can be firmly fixed.
- Figure 15 is a cross-sectional view comparing a representative example of the conventional internal connection method (Figure 15(a)) and the present invention ( Figure 15(b)) among several methods for connecting the implant body and the abutment.
- the embodiment of the present invention is a method in which the screw expands the lower part (coupling tube) of the abutment to realize a strong bond between the implant body and the abutment, and the screw is directly fastened to the implant body.
- the height of the contact area where the implant body and abutment directly contact can be secured higher (D2 > D1).
- the present invention can achieve a deeper connection structure between the implant body and the abutment compared to the same size compared to the conventional internal connection method such as (a) in Figure 15, so that a more stable and robust bond can be realized, and the implant Since the screw thread, which is considered the main cause of fatigue destruction of the body, is omitted from the implant body, it has the advantage of being much more advantageous in terms of durability.
- Figure 16 is a perspective view of an abutment for a dental implant according to an embodiment of the present invention
- Figure 17 is a front view of the abutment shown in Figure 16
- Figure 18 is a cut-away perspective view of the abutment shown in Figure 16. .
- the abutment 300 for dental implant serves to support the prosthesis by combining with the implant body 100 installed in the alveolar bone. It may include an upper prosthesis coupling portion 310 that is coupled to the implant body, and a lower body coupling portion 320 that is partly or entirely coupled to the implant body in an internal connection manner.
- the prosthesis coupled to the upper prosthesis coupling portion 310 may be, for example, a crown, and is positioned between the upper prosthesis coupling portion 310 and the lower body coupling portion 320 so as to contact the gingiva without being coupled to the implant body 100.
- a bulge 315 may be formed that protrudes more convexly in the radial direction compared to other parts (upper prosthetic part coupling part and lower body coupling part).
- the combined length of the bulge 315 and the lower body coupling portion 320 may be formed to be longer than the length of the upper prosthesis coupling portion 310.
- the length of the lower body coupling portion 320 is made to be more than 1/2 of the total length of the abutment, the upper prosthesis coupling portion 310 can be formed after coupling with the implant body 100 (see FIG. 2 below). This ensures sufficient resistance to loads applied complexly from multiple directions.
- the Moss of the lower body coupling part 320 is installed to ensure strong resistance to lateral loads among the loads applied in complex from various directions through the upper prosthesis coupling part 310.
- the taper angle ( ⁇ ) is preferably set to 5 to 9 degrees.
- a binding pipe portion 330 capable of elastically deforming outwardly in the radial direction may be integrally formed in the lower region of the lower body coupling portion 320 and penetrates the upper prosthesis coupling portion 310 and the lower body coupling portion 320.
- a continuous hole 335 may be formed along the center of the abutment 300 in the longitudinal direction (height direction in the drawing) on the inside of the abutment 300 according to an embodiment of the present invention.
- the hole 335 may include a tool entry hole 350 formed inside the prosthesis coupling portion 310 and a screw through hole 340 formed inside the lower body coupling portion 320. And it is formed inside the bulge 315, and between the tool entry hole 350 and the screw through hole 340, a screw thread (female thread) is formed on the main surface while communicating with each other.
- a machined screw hole 360 may be provided.
- a step surface ( 345) may be formed (see FIG. 18).
- a dedicated tool can enter the inside of the abutment 300 through the tool entry hole 350, and the insertion depth of the tool is limited to a certain depth by touching the step surface 345. And the rotational operation of the tool can be performed stably.
- the bulge 315 which protrudes convexly outward compared to other parts, is located outside the section where the screw hole 360 is formed, the wall thickness around the screw hole 360 can be secured to be thicker than that around the other holes. Therefore, the effect of increasing the rigidity around the screw hole 360 can be exerted, and fatigue failure of the abutment 300 due to the screw thread formed in the screw hole 360 can be more reliably prevented.
- the binding pipe portion 330 may include a plurality of slit-shaped cut grooves 332 and a plurality of binding pieces 334 formed between the cut grooves 332.
- a plurality of cutting grooves 332 may be formed at equal or unequal intervals along the circumferential direction of the tube at the bottom of the lower body coupling portion 320, and adjacent cutting grooves 332 may be formed by these cutting grooves 332.
- the binding pieces 334 may be formed one by one.
- Figure 19 is an enlarged view of the main part of the present invention showing the binding pipe part shown in Figure 18, showing a screw through hole 340' formed at a position corresponding to the binding pipe part 330 among the screw through holes 340,
- the screw through hole 340' formed inside the binding pipe portion 330 may have an inner diameter that gradually increases as at least a portion goes downward, and for this purpose, the inner main surface of the binding pipe portion 330 is at least partially formed. may be formed in a tapered structure.
- the main surface (tapered inner main surface) of the screw through hole 340' inside the binding pipe part 330 may be surface treated to have a rough surface to increase friction with the dedicated screw, and the The surface (outer surface of the binding pipe) can also be surface treated to have a rough surface so that sufficient friction can be generated between the surfaces in contact when binding through surface contact with the binding object.
- Figure 20 is a cross-section of the binding pipe showing various external shapes of the binding pipe, and the cross-sectional shape of the binding pipe may be formed in a circular shape, a regular polygon, for example, a regular hexagon as shown in the drawing, or a Torx shape.
- the regular polygon or Torx shape has the advantage of being a shape that can prevent rotation with respect to the implant body when or in a combined state.
- the abutment for a dental implant according to an embodiment of the present invention having such a configuration has a binding tube portion that extends outwardly in the lower region to realize a strong bond with the implant body, thereby increasing the height of the contact portion in direct contact with the implant body. It is a structure that can sufficiently secure , and therefore has the advantage of being a structure that can realize a more stable and solid bond with the implant body.
- Figure 21 is a perspective view of a screw for dental implant according to an embodiment of the present invention
- Figure 22 is a front view of the screw shown in Figure 21
- FIG. 23 is an enlarged view of the wedge portion of FIG. 22.
- the screw 200 for dental implant is a medium for fixing the abutment to the implant body installed in the alveolar bone, and has a lower wedge part (230) Includes.
- the lower wedge portion 230 may have a structure in which the diameter or cross-sectional area of the lower wedge portion 230 increases as at least a portion goes downward, as shown in the example in the drawing, and the body portion 220 of a round bar structure with a circular cross-section is positioned at the upper end of the lower wedge portion 230. can be formed integrally.
- the body portion 220 may extend at an arbitrary or certain height from the top of the lower wedge portion 230, which has a structure in which the diameter or cross-sectional area increases as the diameter or cross-sectional area increases downward, and has a screw portion having male threads machined on the outer surface ( 260) may be formed to extend from the top of the body portion 220 of the round bar structure at a random or certain height.
- the body portion 220 has the same diameter as the minimum diameter (D1, the top diameter of the lower wedge portion) of the lower wedge portion 230 and may be formed at an arbitrary or certain height from the top of the lower wedge portion 230.
- the lower wedge portion 230 includes a first region 232 whose diameter or cross-sectional area gradually increases downward, and a second region 232 formed at a predetermined height below the first region 232. It may be a configuration including a region 234. Of course, if necessary, the second region 234 may be deleted and the lower wedge portion 230 may be formed solely of the first region 232 whose diameter or cross-sectional area gradually increases downward.
- the Area 2 234 has a diameter equal to the maximum diameter (D2, the lowest diameter of the first area) of the first area 232 and extends downward from the bottom of the first area 232 for a predetermined length. It may be a configuration.
- the upper end of the second region 234 has the maximum diameter (D2, first region) of the first region 232. It may be formed to have the same diameter as the lowermost diameter of , and the diameter (diameter of the second region) gradually decreases as it goes downward.
- the inclination angle (surface inclination angle of the first area) of the first area 232 is preferably 3 to 8 degrees, but depending on the product specifications, material, or shape of the first area, the angle (surface inclination angle of the first area) may vary. Since it is changeable, it should be noted that it is not limited to 3 to 8 degrees.
- the first region 232 of the lower wedge portion 230 may have a truncated cone shape with a circular cross-sectional shape.
- the second region 234 may be a cylinder with a circular cross-sectional shape or an inverted truncated cone shape (if the diameter of the second region gradually decreases downward).
- the cross-sectional shape of the first area 232 is not limited to circular.
- the cross-sectional shape of the first area 232 has at least two grooves at equal or unequal intervals in the circumferential direction. It can be changed into various shapes, such as a spline shape or a Torx shape, and the cross-sectional shape does not matter much as long as the diameter or cross-sectional area gradually increases downward.
- FIG. 26 is a side view showing another preferred modified example of the lower wedge portion.
- the lower wedge portion 230' is a structure similar to the example in the drawing (FIG. 26) that satisfies the condition that the diameter or cross-sectional area gradually increases as at least a portion goes downward. It may be formed into a (Sphere) shape.
- This lower wedge portion 230 may be surface treated to have a rough surface to increase contact friction when in contact with the inner main surface of the binding pipe portion of the abutment, which will be described later, and the screw portion with male threads formed on the outer surface.
- the height (h1) of (260) is preferably 1/2 to 4/5 of the height (h2) of the body portion 220, and the male thread has a single or double thread structure with the same pitch based on the screw height direction in the drawing. It can be.
- the head part or the tool fastening part 210 may be formed integrally with the upper part of the screw part 260 or the upper area of the screw part.
- the tool fastening part provides a fastening surface to which a dedicated tool for implant surgery, such as a driver or torque wrench, is fastened.
- This tool fastening portion 210 may be formed in the form of a polygonal bolt head protruding upward from the top of the threaded portion 260, or may be formed in the form of a socket or groove engraved in the direction of the threaded portion 260.
- FIGS. 9 and 27 are diagrams showing various embodiments of the tool fastener.
- the tool fastener 210 When the tool fastener is formed in the form of a polygonal bolt head, the tool fastener 210 has a rectangular or square planar shape, as shown in FIG. 9. , hexagonal, or octagonal bolt head shape, and when engraved in the direction of the threaded part 260, the tool fastening part 210' has any of -, +, and polygonal grooves as shown in FIG. 27. It can be configured in one form.
- the screw for dental implant has an anchor bolt structure with a wedge portion at the bottom and a thread formed in the middle, and is coupled to the implant body using an anchor bolt method so that the abutment directly contacts the implant body. It is a structure that can increase the height of the contact area, and has the advantage of being able to omit the threads on the inside of the implant body, which are considered the main cause of fatigue failure.
- Figure 28 is a perspective view of an implant body for a dental implant according to an embodiment of the present invention
- Figure 29 is a front view of the implant body shown in Figure 28
- Figure 30 is a longitudinal cross-sectional view specifically showing the internal structure of the implant body according to an embodiment of the present invention.
- the implant body 100 for a dental implant is a structure that is installed in the alveolar bone to form an artificial tooth root, and has an external thread 110 formed on the outer peripheral surface for alveolar bone installation.
- the external thread 110 may be composed of two thread sections 112 and 114 having the same pitch and different groove depths in the height direction in the drawing.
- the two thread sections constituting the external thread 110 are specifically, an external lower thread section 112 formed to a first depth d1 over a certain height upward from the bottom of the outer peripheral surface of the implant body, and the external thread section 112 Above the bottom thread section 112, it may be divided into an external top thread section 114 formed at a second depth d2 that is lower than the first depth.
- the two thread sections 112 and 114 which have the same pitch (P) and different bone depths, have different processing surface shapes on the processing target surface of the implant body base material in the state before the screw threads are processed. It can be formed through a processing operation of sequentially entering two cutting bites and then rotating the implant body and moving the bites from the bottom to the top.
- the implant body can be more firmly fixed to the region, and the rigidity of the region can be increased by increasing the wall thickness of the upper region of the implant body, thereby preventing vertical fractures that occur at the upper part of the implant body 100.
- the external upper thread section 114 in which the bone depth of the thread d2 is formed to be relatively low, may be formed to descend by 2 to 4 threads from the upper edge of the implant body 100 to the lower section.
- each corner of the binding portion 124 which may be the starting point of fatigue failure, can be indirectly reinforced.
- a non-threaded section H in which threads are not machined may be formed over a certain section downward from the top of the implant body 100.
- This non-threaded section (H) is a section prepared to secure the robustness of the upper part of the implant body 100, which may cause vertical fracture.
- the non-threaded section (H) may not be inserted into the alveolar bone but may be partially exposed outside the upper surface of the alveolar bone.
- non-threaded section (H) is a section formed with a very small length (0.2 to 0.3 mm) compared to the total length of the implant body, if the non-threaded section (H) is not implanted into the alveolar bone, The effect on the support stiffness of the implant body is extremely minimal.
- the support force of the implant body 100 within the alveolar bone is greatly increased when the implant body 100 is installed in the alveolar bone. Since it is possible to secure a certain level of wall thickness (thickness between the inner groove 120 and the outer peripheral surface, which will be described later) for the upper part of the implant body 100 without reducing it, the structural rigidity of the upper part of the implant body can be increased.
- an internal groove 120 will be formed at a certain depth from the upper surface of the implant body 100 so that an abutment supporting the prosthesis can be coupled. You can.
- the internal groove 120 may be composed of an inclined groove portion 122 and a binding portion 124, and the inclined groove portion 122 and the binding portion 124 are sequentially formed from the upper opening 121 of the implant body 100. It can be placed as .
- the inclined groove portion 122 may have an opening 121 exposed to the upper surface of the implant body 100, have a circular cross-sectional shape, and have an inner diameter that gradually narrows downward from the opening 121,
- the binding portion 124 is formed at a lower portion of the inclined groove portion 122 and is higher than the inclined groove portion 122, and as shown in the example of FIG. 31, the cross-sectional shape may be circular, polygonal, or torx-shaped. .
- the main surface (inner main surface) of the inclined groove 122 is inclined at 5 to 8 degrees with respect to a line parallel to the longitudinal center line (CL) of the implant body 100 (the main surface inclination angle ⁇ of the inclined groove 122 is 5 ⁇ 8 degrees) can be formed. If the inclination angle ( ⁇ ) of the main surface is less than 5 degrees, the contact area with the abutment is reduced, and if the inclination angle ( ⁇ ) exceeds 8 degrees, the lateral load increases among the loads applied complexly from various directions to the combined abutment. resistance may decrease.
- the height (h2, or depth) of the internal groove 120 is 1/ with respect to the overall height (h1) of the implant body 100. It is preferable to form it to a height of 2*h1 to 2/3*h1, and in this case, the height (h3) of the binding portion 124 in the entire section (h2 section) of the internal groove is 1/2*h2 to 2/3* It is desirable to configure it to be h2 and the remainder to be the height (h4) of the inclined groove portion 122.
- Figure 32 is a diagram showing another preferred form of the longitudinal cross-sectional shape of the binding unit.
- the binding unit 124 may be formed to have a truncated cone shape whose inner diameter gradually widens as the vertical cross-sectional shape goes downward, as shown in (a) of Figure 32.
- a groove for increasing the binding force with the abutment may be formed in an undercut structure along the lower edge where the main surface and the bottom surface of the binding portion 124 meet.
- the main surface (wall surface) of the binding portion 124 may be surface treated to have a rough surface. In this way, if the main surface of the binding portion 124 is surface treated to have a rough surface, the friction between it and the abutment is increased, and a more solid binding can be realized between the implant body 110 and the abutment. And, rotational slip of the abutment with respect to the implant body can be prevented.
- the bottom surface of the binding unit 124 is horizontal as a preferred example, but this is not limited to the bottom surface of the binding unit 124 being formed in the form of a horizontal plane.
- the bottom surface of the binding portion may be formed in a downwardly convex hemisphere or cone shape.
- the implant body for a dental implant can achieve a firm bond with the abutment even without threads (threads for fastening screws and screws) on the inner surface of the implant body, which are considered the main cause of fatigue failure. It has the advantage of being a structure, and as the thread connecting the internal screw is omitted, the height or area of the contact area in direct contact with the abutment can be secured, greatly improving the overall rigidity of the implant structure.
- Screw thread thread for installing the implant body into the alveolar bone
Landscapes
- Health & Medical Sciences (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Dentistry (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Dental Prosthetics (AREA)
Abstract
스크류(Screw)가 어버트먼트(Abutment)의 하부를 확장시켜 임플란트 바디(Implant body)에 강하게 결속시켜 고정시키는 새로운 결합 방식의 치과용 임플란트 구조체가 개시된다. 본 발명에 따른 치과용 임플란트 구조체는, 하단부에 반경 방향 외측으로 탄성 확장되는 결속관부를 갖는 어버트먼트와, 어버트먼트의 내측에 동심 배치되어 어버트먼트와 나사 결합되고 아래로 갈수록 직경이 점진적으로 증대되는 테이퍼 구조의 웨지(Wedge)부를 하단부에 구비한 스크류 및 어버트먼트가 결합되는 내부 홈의 하부 영역에 결속관부 및 웨지부에 대응하여 결속부가 형성된 임플란트 바디를 포함하며, 웨지부의 일부가 결속관부보다 아래쪽으로 돌출되도록 어버트먼트의 내측에 스크류가 동심 배치되어 나사 결합된 상태로 결속관부가 내부 홈의 상기 결속부에 삽입되고, 결속관부가 내부 홈의 결속부에 삽입된 상태에서 스크류를 일 방향(조이는 방향)으로 회전시키면, 스크류가 위쪽으로 상승하고 웨지부에 의해 결속관부가 반경 방향 외측으로 벌어지면서 결속부의 면에 강하게 밀착되어 임플란트 바디에 어버트먼트가 고정되는 것을 요지로 한다.
Description
본 발명은 치과용 임플란트 구조체에 관한 것이다.
임플란트는 원래 인체조직이 상실되었을 때 인체조직을 회복시켜 주는 대체물을 의미하지만 치과에서는 인공으로 만든 치아를 말한다. 이러한 임플란트 시술법은 치아가 상실되거나 치아 기능이 저하되는 경우 원래 자기 치아의 기능으로 복원, 재건할 수 있는 대체 시술 방법으로 널리 이용되고 있다.
치과용 임플란트는 치조골에 식립되는 임플란트(Implant)와 어버트먼트(Abutment)가 결합되는 형태에 따라 외부연결방식과 내부연결방식으로 대별될 수 있다.
그 중 외부연결방식은 골내에 삽입된 임플란트가 상대적으로 견고하다는 장점은 있으나, 식립 후 초기 단계에서 임플란트 플랫폼과 어버트먼트 사이의 간극이 커서 세균이 서식할 확률이 높아 경계부의 골흡수가 일어난다는 단점이 있다.
반면, 내부연결방식은 정육각형의 홈(일반적으로 헥사부라 칭함)을 임플란트의 내부에 형성하고, 어버트먼트가 임플란트와 만나는 부분을 원뿔대 형상으로 형성하여 세균이 서식할 공간을 배제함으로써 초기 골흡수를 최소화시킬 수 있다. 따라서 식립 성공률이 높다는 장점이 있으며, 때문에 최근에는 내부연결방식이 주로 이용되고 있다.
도 1 은 임플란트와 어버트먼트 간 연결방식 중 내부연결방식의 일 예를 나타낸 도면으로서, 내부연결방식은 치조골에 식립되는 임플란트(10,Implant) 내측의 정육각형 또는 팔각형 등의 다각형 홈에 어버트먼트(30, Abutment)의 일부가 삽입된 상태에서 스크류(20)가 상기 어버트먼트(30) 내부로 끼워져 임플란트(10)의 내측 주면과 나사 결합됨으로써 임플란트(10)에 어버트먼트(30)를 고정시키는 방식이다.
도 1에서 도면부호 40은 어버트먼트(30)에 결합되는 보철물(40, Prosthesis)을 가리킨다.
그러나 도 1과 같은 내부연결방식은 저작 운동 시 어버트먼트(30)에 여러 방향에서 복합적으로 가해지는 하중에 의해 발생하는 싱크다운(Sink down)에 의하여 스크류 예압(Screw Preload)이 감소하기 쉽고, 이로 인해 스크류가 풀리고 임플란트와 어버트먼트 간 연결이 불안정해져 임플란트와 풀림현상 및 스크류 내부 피로파괴로 인한 손상이 발생하거나 그로 인해 사용자가 불편을 겪는 문제가 있다.
또한, 임플란트에 대해 어버트먼트가 회전되지 못하도록 상기 임플란트에 형성되는 특유의 홈 형상(여섯 개의 모서리를 갖는 헥사 형상) 및 스크류와의 체결을 위해 임플란트의 내측 주면에 가공되는 나사산 부분이 구조적으로 다른 부분에 비해 취약하여 시간이 경과함에 따라 해당 부분에 피로 파괴가 발생하는 등 내구성 문제가 지적되고 있다.
[선행기술문헌]
(특허문헌 1) 한국공개특허 제10-2009-0077982호(공개일 2009.07.16)
(특허문헌 2) 한국등록특허 제10-2304081호(등록일 2021.09.14)
본 발명이 해결하고자 하는 기술적 과제는, 종래 스크류 체결 방식의 단점을 해소하면서도 스크류 체결 방식에 비해 보다 높은 정하중 강도 및 피로 파괴 한계를 가지며, 숏 임플란트(Short Implant)에도 적합한 새로운 결합 방식이 적용된 치과용 임플란트 구조체를 제공하고자 하는 것이다.
본 발명이 해결하고자 하는 다른 기술적 과제는, 임플란트 바디와의 깊은 연결구조를 달성(임플란트 바디와 직접 접촉하는 접촉부의 높이를 충분히 확보)할 수 있는 치과 임플란트용 어버트먼트를 제공하고자 하는 것이다.
본 발명이 해결하고자 하는 또 다른 기술적 과제는, 임플란트 바디에서 피로파괴의 주된 원인으로 꼽히는 나사산을 생략시킬 수 있는 구조의 치과 임플란트용 어버트먼트를 제공하고자 하는 것이다.
본 발명이 해결하고자 하는 또 다른 기술적 과제는, 임플란트 바디에 앵커 볼트 방식으로 결합되어 어버트먼트가 상기 임플란트 바디와 직접적으로 접촉하는 접촉부의 높이를 증대시킬 수 있고, 피로파괴의 주된 원인으로 꼽히는 임플란트 바디 내면의 나사산을 생략시킬 수 있는 구조의 치과 임플란트용 스크류를 제공하고자 하는 것이다.
본 발명이 해결하고자 하는 다른 기술적 과제는, 피로파괴의 주된 원인으로 꼽히는 임플란트 바디 내면의 나사산(스크류와 나사 체결을 위한 나사산) 없이도 어버트먼트와의 견고한 결속을 달성할 수 있는 치과 임플란트용 임플란트 바디를 제공하고자 하는 것이다.
본 발명이 해결하고자 하는 또 다른 기술적 과제는, 내부에 나사산(스크류와 나사 체결을 위한 나사산)이 생략된 만큼 어버트먼트와 직접적으로 접촉하는 접촉부의 높이를 증대시킬 수 있는 치과 임플란트용 임플란트 바디를 제공하고자 하는 것이다.
과제의 해결 수단으로서 일 실시 예에 따르면, 하단부에 결속관부를 갖는 어버트먼트(Abutment)와, 상기 어버트먼트의 내측에 동심 배치되어 어버트먼트와 나사 결합되고 아래로 갈수록 직경이 점진적으로 증대되는 테이퍼 구조의 웨지(Wedge)부를 하단부에 구비한 스크류(Screw)와, 상기 어버트먼트가 결합되는 내부 홈의 하부 영역에 상기 결속관부 및 웨지부에 대응하여 결속부가 형성된 임플란트 바디(Implant body)를 포함하며, 상기 스크류의 회전에 따라 상기 결속관부가 사이 결속부를 향해 지지되는 치과용 임플란트 구조체를 제공할 수 있다.
이와 같은 구성의 일 실시 예는, 스크류가 상승하면서 상기 웨지부가 어버트먼트(Abutment)의 하부의 결속관부를 확장시키거나 상기 웨지부에 의해 결속관부가 임플란트 바디의 상기 결속부의 면에 강하게 밀착됨으로써 어버트먼트와 임플란트 바디 간 강한 결속을 구현시킬 수 있다.
구체적으로는, 상기 웨지부의 일부가 상기 결속관부보다 아래쪽으로 돌출되도록 어버트먼트의 내측에 상기 스크류가 동심 배치되어 나사 결합된 상태로 상기 결속관부가 내부 홈의 상기 결속부에 삽입되고, 결속관부가 내부 홈의 상기 결속부에 삽입된 상태에서 상기 스크류를 일 방향으로 회전시키면, 스크류가 위쪽으로 상승하고 상기 웨지부에 의해 결속관부가 반경 방향 외측으로 벌어짐으로써 상기 임플란트 바디에 어버트먼트가 고정될 수 있다.
일 실시 예에서 어버트먼트의 하단부에 형성되는 상기 결속관부는, 어버트먼트의 하측 관부에 복수로 형성되는 슬릿 형상의 절개홈과, 상기 절개홈에 의해 이웃하는 절개홈 사이로 하나씩 형성되는 복수의 결속편으로 구성될 수 있다.
일 실시 예에서 상기 결속관부의 하단 둘레면에 걸림턱이 돌출 형성될 수 있으며, 상기 결속부의 하단에 상기 걸림턱에 대응하여 걸림홈이 언더컷 구조로 형성될 수 있다.
일 실시 예에서 상기 결속관부의 내측 주면은 상기 웨지부 형상에 대응하여 테이퍼(Taper) 구조, 즉 경사진 구조로 형성될 수 있으며, 이때 상기 결속관부의 내측 주면 및 웨지부의 표면 경사각(β)은 3 ~ 8도일 수 있다.
일 실시 예에서는 또한, 상기 결속관부의 표면 및 상기 결속관부의 표면과 접촉되는 상기 결속부의 면이 거칠게 형성됨으로써, 반경 방향으로 확장된 결속관부가 결속부에 밀착된 상태에서의 상기 결속부에 대한 슬립이 확실하게 방지 또는 억제될 수 있다.
일 실시 예에서 상기 어버트먼트의 내측에는 하부 스크류 관통홀과 상부 공구 진입홀이 형성될 수 있으며, 상기 하부 스크류 관통홀과 상부 공구 진입홀 사이에 상기 스크류와 나사 체결을 위한 암나사부가 일정 높이로 형성될 수 있다. 여기서 상기 공구 진입홀이 스크류 관통홀 및 암나사부에 비해 큰 직경으로 형성될 수 있다.
일 실시 예에서 상기 웨지부로부터 소정 높이 떨어진 위치의 스크류에 상기 암나사부에 대응하여 수나사부가 형성될 수 있으며, 상기 수나사부의 상단에 상기 공구 진입홀로 노출되는 다각형의 헤드부가 형성될 수 있다.
여기서, 상기 웨지부의 표면을 거칠게 형성하면, 웨지부와 결속관부 간 회전 방향 슬립이 억제 또는 방지될 수 있다.
일 실시 예에서 상기 임플란트 바디의 내부 홈은, 상기 임플란트 바디의 상면으로 노출되는 개구를 가지며 상기 개구에서 아래로 갈수록 내경이 점진적으로 줄어드는 역 원뿔대 형상의 경사홈부와, 상기 경사홈부의 하단에 일정 높이로 형성되는 상기 결속부로 구성될 수 있다.
일 실시 예에서 상기 어버트먼트는, 보철물 내부에 결합되는 보철물 결합부와, 상기 보철물 결합부 하부에 형성되며, 일부가 상기 임플란트 바디와 결합되는 아래로 갈수록 외경이 점진적으로 줄어드는 역 원뿔대 형상의 바디 결합부를 포함하며, 상기 바디 결합부의 하단에 상기 결속관부가 일체로 형성된 구성일 수 있다.
바람직하게는, 상기 결속관부의 외면부 형상은 정다각형 또는 토륵스(Torx) 형상으로 구성하고, 상기 결속부의 단면 형상(평면에서 봤을 때 단면 형상)은 상기 결속관부의 외면부 형상에 대응되는 형상으로 구성하면, 웨지부를 통해 상기 결속관부가 결속부에 고정된 상태에서 임플란트 바디에 대한 어버트먼트의 회전이 확실하게 방지 또는 억제될 수 있다.
본 발명의 또 다른 실시 예에 따르면 치조골에 식립되는 임플란트 바디와 결합하는 치과 임플란트용 어버트먼트에 있어서, 보철물과 결합하는 상부 보철물 결합부와, 일부 또는 전부가 상기 임플란트 바디에 내부연결방식으로 결합되는 하부 바디 결합부 및 상기 임플란트 바디에 결합되지 않고 치은과 접촉하도록 상부 보철물 결합부와 하부 바디 결합부 사이로 형성되는 팽대부를 포함하는 치과 임플란트용 어버트먼트를 제공할 수 있다.
여기서, 상기 하부 바디 결합부는 그 하부 영역에 결속관부를 구비할 수 있다.
일 실시 예에 따른 치과 임플란트용 어버트먼트는 또한, 상기 상부 보철물 결합부와 하부 바디 결합부를 관통하는 홀을 더 포함할 수 있다.
이때 상기 홀은, 상기 보철물 결합부의 내측에 형성되는 공구 진입홀과, 상기 하부 바디 결합부의 내측에 형성되는 스크류 관통홀과, 상기 팽대부 내측에 형성되며 상기 공구 진입홀과 스크류 관통홀 사이에 위치하는 나사홀로 구성될 수 있다.
일 실시 예에서 상기 공구 진입홀의 직경이 상기 스크류 관통홀 및 나사홀의 직경에 비해 큰 직경으로 형성될 수 있으며, 상기 스크류 관통홀 중 상기 결속관부의 위치와 대응되는 부분의 적어도 일부가 아래로 갈수록 내경이 점진적으로 증대되는 구조일 수 있다.
본 발명의 또 다른 실시 예에 따르면 치조골에 식립되는 임플란트 바디에 어버트먼트를 고정시켜주는 치과 임플란트용 스크류에 있어서, 적어도 일부가 아래로 갈수록 직경 또는 단면적이 증대되는 구성의 하단 웨지부와, 상기 하단 웨지부의 상단에서 일정 높이로 연장되는 환봉구조의 바디부와, 상기 환봉구조의 바디부 상단에서 일정 높이로 연장되며 외면에 수나사산이 형성된 나사부 및 상기 나사부의 상단 또는 나사부 상부 영역에 형성되며 전용공구가 체결되는 공구체결부를 포함하는 치과 임플란트용 스크류를 제공할 수 있다.
일 실시 예에서 상기 하단 웨지부는, 아래로 갈수록 직경 또는 단면적이 점진적으로 증대되는 제1 영역을 포함할 수 있다.
그리고 상기 제1 영역의 횡단면 모양은 원형 또는 원주 방향으로 등간격 또는 부등간격에 걸쳐 적어도 둘 이상의 그루브(Groove)를 갖는 스플라인 모양이나 토륵스(Torx) 형상으로 형성될 수 있다.
본 발명의 또 다른 실시 예에 따르면 치조골에 식립되어 인공치근을 형성하는 치과 임플란트용 임플란트 바디에 있어서, 상기 임플란트 바디의 내측에는 보철물 지지를 위한 어버트먼트가 결합되는 내부 홈이 형성되고 외주면에서 치조골 식립을 위한 외부 나사산이 형성되며, 상기 내부 홈은 상기 임플란트 바디의 상면으로 노출되는 개구를 가지면서 횡단면 형상이 원형이며 상기 개구에서부터 아래로 갈수록 내경이 점차 좁아지는 경사홈부와, 상기 경사홈부의 하부에 상기 경사홈부보다 높게 형성되며 나사산이 형성되지 않은 결속부를 포함하는 치과 임플란트용 임플란트 바디를 제공할 수 있다.
일 실시 예에서 나사산이 형성되지 않은 상기 결속부의 횡단면 형상은 원형, 다각형, 토륵스(Torx) 형상 중 하나의 형상일 수 있으며, 상기 임플란트 바디의 세로 방향 중심선(CL)과 평행한 선에 대해 상기 경사홈부의 주면이 5 ~ 8도로 경사지게 형성(경사홈부의 주면 경사각(α)이 5 ~ 8도로 형성)될 수 있으며, 상기 내부 홈의 높이(h2)는 상기 임플란트 바디의 전체 높이(h1)에 대해 1/2*h1 ~ 2/3*h1일 수 있다. 이때 내부홈의 높이(h2)에서 상기 결속부의 높이(h3)는 1/2*h2 ~ 2/3*h2이고 나머지가 상기 경사홈부의 높이(h4)일 수 있다.
일 실시 예에서 상기 결속부는 종 단면 형상이 아래로 갈수록 내경이 점차 넓어지는 원뿔대 형상으로 형성될 수 있다.
본 발명의 실시 예에 의하면, 스크류가 어버트먼트의 하부(결속관부)를 확장시켜 임플란트 바디와 어버트먼트 간 강한 결속을 구현하는 방식으로, 스크류가 임플란트 바디에 직접 체결되어 어버트먼트를 중간에 고정시키는 종래 내부연결방식에 비해 임플란트 바디와 어버트먼트가 직접적으로 접촉하는 접촉부의 높이를 보다 높게 확보할 수 있다.
다시 말해, 본 발명은 종래 내부연결방식에 비해 동일 사이즈 대비 임플란트 바디와 어버트먼트 간 깊은 연결구조를 달성할 수 있어 보다 안정적이면서 견고한 결속을 구현할 수 있으며, 임플란트 바디의 주된 피로파괴원인으로 꼽히는 나사산이 임플란트 바디에서 생략된 구성임에 따라 내구성 측면에서도 종래 내부연결방식에 비해 훨씬 유리하다는 장점이 있다.
또한, 스크류가 어버트먼트의 하부(결속관부)를 확장시켜 임플란트 바디와 어버트먼트 간 강한 결속을 구현하는 방식이기 때문에, 싱크다운(Sink down)에도 스크류가 풀릴 염려가 없으며, 따라서 스크류 풀림으로 인해 임플란트 바디와 어버트먼트 간 연결 상태가 불안정해지는 종래의 문제를 분명하고 명확하게 해소할 수 있다.
더욱이, 임플란트 바디와 어버트먼트 간 깊은 연결구조로 인하여 어버트먼트에 여러 방향에서 복합적으로 가해지는 하중 중에서도 측방향 하중에 대한 보다 강한 저항성을 확보할 수 있으며, 깊은 연결구조에 따른 임플란트 바디와 어버트먼트 간 접촉 면적의 증대로 종래 내부연결방식에 비해 강성 또한 크게 향상될 수 있다.
또한, 본 발명의 실시 예 따른 치과용 임플란트 구조체에 의하면, 임플란트 바디와 어버트먼트 간 접촉 면적이 증대된 만큼 외력에 대응하여 내부에 생기는 저항력인 응력이 특정 부위에 집중되지 않고 고르게 분산되어 응력분산효과 또한 종래 내부연결방식에 비해 뛰어나다는 장점이 있으며, 구조적으로는 숏 임플란트(Short Implant)에도 유리한 구조라는 장점이 있다.
도 1은 임플란트와 어버트먼트 간 연결방식 중 내부연결방식의 일 예를 나타내는 도면이다.
도 2는 본 발명의 실시 예에 따른 치과용 임플란트 구조체를 분해 도시한 분해 사시도이다.
도 3은 도 2에서 어버트먼트와 스크류가 상호 결합된 상태로 임플란트 바디에 결합되는 모습을 나타낸 부분 분해 사시도이다.
도 4는 도 2에 도시된 치과용 임플란트 구조체가 완전히 결합된 상태의 종방향(세로 또는 높이 방향) 단면을 보여주는 결합상태 종 단면도이다.
도 5는 도 4의 결합 단면도에서 'A'부분을 확대 도시한 본 발명의 요부 확대도이다.
도 6은 본 발명의 실시 예에 따른 치과용 임플란트 구조체에 적용되는 어버트먼트의 정면도이다.
도 7은 도 6에 도시된 어버트먼트의 절개 사시도이다.
도 8은 본 발명의 실시 예에 따른 치과용 임플란트 구조체에 적용되는 스크류의 정면도이다.
도 9는 도 8의 스크류 상단에 형성되는 헤드부의 다양한 실시 형태를 도시한 도면이다.
도 10은 도 9의 헤드부를 삭제하고 스크류의 수나사산 상단에 직접 홈(전용공구가 결합되는 홈)을 형성시킨 실시 예를 도시한 도면이다.
도 11은 본 발명의 실시 예에 따른 치과용 임플란트 구조체에 적용되는 임플란트 바디의 정면도이다.
도 12는 도 11에 도시된 임플란트 바디의 절개 사시도이다.
도 13은 어버트먼트 하단부에 형성되는 결속관부 및 임플란트 바디의 내측에 형성되는 결속부 형상의 다양한 실시 예를 도시한 도면이다.
도 14는 본 발명의 실시 예에 따른 치과용 임플란트 구조체의 체결 과정을 도시한 도면이다.
도 15는 임플란트 바디와 어버트먼트를 연결하는 여러 방식 중 종래 내부연결방식의 대표적인 일례와 본 발명을 비교 도시한 단면도이다.
도 16은 본 발명의 실시 예에 따른 치과 임플란트용 어버트먼트의 사시도이다.
도 17은 도 16에 도시된 어버트먼트의 정면도이다.
도 18은 도 16에 도시된 어버트먼트의 절개 사시도이다.
도 19는 도 18의 결속관부를 확대 도시한 요부 확대 단면도이다.
도 20은 결속관부 외형의 다양한 형태를 보여주는 결속관부의 횡단면도이다.
도 21은 본 발명의 실시 예에 따른 치과 임플란트용 스크류의 사시도이다.
도 22는 도 21에 도시된 스크류의 정면도이다.
도 23은 도 22에 도시된 하단 웨지부를 확대 도시한 도면이다.
도 24는 하단 웨지부의 바람직한 변형 예를 도시한 도면이다.
도 25는 하단 웨지부 횡단면 모양의 바람직한 변형 예를 도시한 도면이다.
도 26은 하단 웨지부의 바람직한 다른 변형 예를 도시한 도면이다.
도 27은 스크류에 포함된 공구체결부의 다양한 실시 예를 도시한 도면이다.
도 28은 본 발명의 실시 예에 따른 치과 임플란트용 임플란트 바디의 사시도이다.
도 29는 도 28에 도시된 임플란트 바디의 정면도이다.
도 30은 본 발명의 실시 예에 따른 임플란트 바디의 내부 구조를 구체적으로 보여주기 위한 종단면도이다.
도 31은 도 30에 나타난 결속부의 다양한 횡단면 형상을 보여주기 위한 임플란트 바디의 평면도이다.
도 32는 결속부 종단면 형상의 바람직한 다른 형태를 도시한 도면이다.
이하, 본 발명의 바람직한 실시 예의 구성에 대해 상세히 설명하기로 한다.
명세서에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
본 명세서에서 "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
또한, 제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.
더하여, 명세서에 기재된 "…부", "…유닛", "…모듈" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다.
첨부 도면을 참조하여 설명함에 있어, 동일한 구성 요소에 대해서는 동일도면 참조부호를 부여하기로 하며 이에 대한 중복되는 설명은 생략하기로 한다. 그리고 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.
본 발명의 실시 예에 따른 치과용 임플란트 구조체는, 보철물(도시 생략)이 결합되는 어버트먼트(Abutment)와 치조골에 식립되는 임플란트 바디(Implant body)를 포함하며, 상기 어버트먼트와 임플란트 바디가 스크류(Screw)에 의해 상호 연결되는 내부연결방식을 채택하고 있다는 점에서 종래 구성과 공통점은 있다.
그러나 본 발명의 실시 예는, 예시적인 실시 예에서, 스크류가 어버트먼트와 나사 결합되어 회전하면서, 어버트먼트의 하부가 스크류 하단부의 웨지부에 의해 반경 방향 외측을 향해 지지될 수 있으며, 어버트먼트의 하부는 웨지부에 의해 반경 방향 외측으로 지지됨으로써 웨지부와 임플란트 바디의 내부홈의 내주면 사이에 고정될 수 있다. 어버트먼트의 하부는 스크류의 웨지부에 반경 방향 외측으로 가압 지지되어 웨지부와 임플란트 바디의 내부홈에 사이에 끼워진 상태로 고정될 수 있다.
예시적인 실시 예에서, 어버트먼트와 임플란트 바디 간 연결 매체로서 기능하는 상기 스크류가 임플란트 바디에 나사 결합되는 방식이 아닌, 어버트먼트와 나사 결합되어 회전하면서 어버트먼트의 하부를 확장시켜 임플란트 바디에 강하게 결속시키는 새로운 결합 방식(내부 확장 체결식)을 채택하고 있다는 점에서 종래 내부연결방식과 차이가 있다.
이하, 첨부된 도면을 참조하여 본 발명의 실시 예에 따른 치과용 임플란트 구조체의 구성에 대해 자세히 살펴보기로 한다.
도 2는 본 발명의 실시 예에 따른 치과용 임플란트 구조체를 분해 도시한 분해 사시도이며, 도 3은 도 2에서 어버트먼트와 스크류가 상호 결합된 상태로 임플란트 바디에 결합되는 모습을 나타낸 부분 분해 사시도이다. 그리고 도 4는 도 2에 도시된 치과용 임플란트 구조체가 완전히 결합된 상태의 종방향(세로 또는 높이 방향) 단면을 보여주는 결합상태 종 단면도이다.
도 2 내지 도 4를 참조하면, 어버트먼트(Abutment, 300)는 하단부에 반경 방향 외측으로 탄성 확장 가능한 결속관부(330)를 구비할 수 있으며, 스크류(Screw, 200)가 어버트먼트(300)의 내측에 동심 배치되어 어버트먼트(300)와 나사 결합되고 상기 결속관부(330) 위치에 대응되는 스크류(200)의 하단부에는 아래로 갈수록 직경이 증대되는 테이퍼 구조의 웨지(Wedge)부(230)가 형성될 수 있다.
어버트먼트(300)의 내측에 스크류(Screw, 200)가 동심 배치된 상태에서 어버트먼트(300)와 나사 결합됨에 따라, 토크렌치와 같은 전용공구를 스크류(200)의 헤드부(210)에 결합시킨 상태에서 어버트먼트(300)에 대해 일 방향(스크류를 상승시키는 방향)으로 회전시키면, 스크류(200)가 상승하면서 웨지부(230)가 결속관부(330) 내측으로 밀려 들어가 결속관부(330)가 반경 방향 외측으로 확장될 수 있다.
임플란트 바디(Implant body, 100)에는 상기 어버트먼트(300)의 일부가 삽입되어 고정되는 내부 홈(120)이 형성될 수 있다. 이러한 내부 홈(120)은 그 하단부에 상기 결속관부(330) 및 웨지부(230)에 대응하여 결속부(124)를 구비할 수 있다. 임플란트 바디(100)의 외면부에는 치조골 식립을 위한 나사산(110)이 형성될 수 있으며, 이때 나사산(110)은 높이 방향에 걸쳐 피치가 동일하거나 상이한 단일 또는 이중 나사산 구조로 형성될 수 있다.
이와 같은 구성의 본 발명의 실시 예는, 어버트먼트(300) 내측에 배치된 스크류(200)를 전용공구를 이용하여 일 방향으로 회전시키면, 전술한 바와 같이 웨지부(230)가 결속관부(330)의 내측으로 밀려 들어가 결속관부(330)가 반경 방향으로 확장될 수 있다.
이에 따라 반경 방향으로 확장되는 결속관부(330)가 상기 결속부(124)에 강하게 밀착된 상태로 고정됨으로써, 어버트먼트(300)와 임플란트 바디(100) 간 견고한 결속이 구현될 수 있다.
스크류(200)의 하단부에 형성되는 상기 웨지부(230)의 일부가 상기 결속관부(330)보다 아래쪽으로 돌출되도록 어버트먼트(300)의 내측에 상기 스크류(200)가 동심 구조로 나사 결합될 수 있으며(도 3 참조), 이처럼 스크류(200)와 어버트먼트(300)가 상호 결합된 상태에서 상기 결속관부(330)가 임플란트 바디(100)의 상기 결속부(124) 위치하도록 임플란트 바디(100)에 어버트먼트(300)가 결합될 수 있다.
이에 따라, 결속관부(330)가 내부 홈(120)의 상기 결속부(124)에 위치하도록 결합된 상태에서 상기 스크류(200)만을 일 방향(어버트먼트에 대해 스크류를 상승시키는 방향)으로 회전시키면, 스크류(200)가 위쪽으로 상승하면서 웨지부(230)가 결속관부(330)를 반경 방향으로 확장시킴으로써 결속관부(330)가 결속부(124)의 면에 강하게 밀착되고, 이에 따라 임플란트 바디(100)에 어버트먼트(300)가 견고하게 고정될 수 있는 것이다.
도 5의 (a)는 도 4의 결합 단면도에서 'A'부분을 확대 도시한 본 발명의 요부 확대도이며, 도 5의 (b)는 (a)에 도시된 결속관부 및 결속부의 바람직한 다른 실시 예를 도시한 도면이다.
도 5에 도시된 바와 같이, 결속관부(330)의 내측 주면은 상기 웨지부(230)의 형상(아래로 갈수록 직경이 점진적으로 증대되는 테이퍼 형상)에 대응하여 테이퍼(Taper) 구조, 즉 경사진 구조로 형성될 수 있다. 이때 대응되는 상기 결속관부(330)의 내측 주면 및 상기 웨지부(230)의 표면의 경사각(β)은 3 ~ 8도가 바람직하다.
결속관부(330)의 표면 및 이러한 결속관부(330)의 표면과 접촉되는 결속부(124)의 면이 거칠게 구성될 수도 있다. 이 경우 웨지부(230)에 의해 반경 방향 외측으로 확장된 결속관부(330)가 상기 결속부(124)의 면에 밀착되었을 때 상호 간 상대적인 움직임을 억제하는 마찰력이 커져 임플란트 바디(100)와 어버트먼트(300) 간 보다 견고한 결속이 구현될 수 있으며, 임플란트 바디(100)에 대한 어버트먼트(300)의 회전 방향 슬립이 방지될 수 있다.
경우에 따라서는, 어버트먼트(300)에 형성되는 상기 결속관부(330)의 하단 둘레면을 따라 걸림턱(336)이 돌출 형성될 수도 있다. 그리고 임플란트 바디(100)에 형성되는 상기 결속부(124)의 하단에는 걸림턱(336)에 대응하여 걸림홈(126)이 언더컷 구조로 형성될 수 있다(도 5의 (b) 참조). 이 경우 결속관부(330) 확장 시 상기 걸림턱(336)이 걸림홈(126)에 맞물려 임플란트 바디(100)와 어버트먼트(300) 간 결속력이 보다 더 견고해질 수 있다.
도 6은 본 발명의 실시 예에 따른 치과용 임플란트 구조체에 적용되는 어버트먼트의 정면도이며, 도 7은 도 6에 도시된 어버트먼트의 절개 사시도이다.
도 6 및 도 7을 참조하면, 본 발명의 실시 예에 적용된 어버트먼트(300)는, 보철물, 예컨대 크라운(미도시) 내부에 결합되는 보철물 결합부(310)와, 보철물 결합부(310) 하부에 형성되며 일부가 상기 임플란트 바디(100)와 결합되는 아래로 갈수록 외경이 점진적으로 줄어드는 역 원뿔대 형상의 바디 결합부(320)를 포함하며, 바디 결합부(320)의 하단에서 상기 결속관부(330)가 일체로 연장 형성된 구성일 수 있다.
어버트먼트(300)의 내측에는 어버트먼트(300)의 종방향 축선(CL)을 따라 하부 스크류 관통홀(340)과 상부 공구 진입홀(350)이 형성될 수 있으며, 상기 하부 스크류 관통홀(340)과 상부 공구 진입홀(350) 사이에 상기 스크류(200)와 나사 체결을 위한 암나사부(360)가 일정 높이(h1)로 형성될 수 있다. 이때 공구 진입홀(350)은 스크류 관통홀(340) 및 암나사부(360)에 비해 큰 직경으로 형성될 수 있다.
바디 결합부(320)의 하단에서 일체로 연장 형성되는 결속관부(330)는 바람직하게, 어버트먼트(300)의 하측 관부 둘레 방향을 따라 일정 간격에 걸쳐 복수로 형성되는 가늘고 긴 슬릿 형상의 절개홈(332)과, 절개홈(332)에 의해 이웃하는 절개홈(332) 사이로 하나씩 형성되는 복수의 결속편(334)에 의해 구성될 수 있다.
여기서, 상기 확장편(334)의 하단 둘레면을 따라 전술한 걸림턱(336)이 단속적으로 형성될 수 있다(도 6 및 도 7에는 걸림턱 도시가 생략됨).
도 8 내지 도 10은 본 발명의 실시 예에 따른 치과용 임플란트 구조체에 적용되는 스크류에 관한 도면으로서, 도 8은 상기 스크류의 정면도이며, 도 9는 스크류 상단에 형성되는 헤드부의 다양한 실시 형태를 도시한 도면이다. 그리고 도 10은 도 9의 헤드부를 삭제하고 스크류의 수나사산 상단에 직접 홈(전용공구가 결합되는 홈)을 형성시킨 실시 예를 도시한 도면이다.
먼저 도 8을 참조하면, 스크류(200)는 하단에 전술한 웨지부(230)를 구비할 수 있다. 또한 웨지부(230)로부터 소정 높이 떨어진 위치에 상기 암나사부(360)에 대응하여 상기 암나사부(360)의 높이(h1)보다 적어도 높게(h2>h1) 수나사부(260)가 형성될 수 있으며, 수나사부(260)의 상단에는 전용공구가 결합될 수 있도록 상기 공구 진입홀(350)로 노출되는 헤드부(210)가 형성될 수 있다.
헤드부(210)는 평면 형상이 삼각 이상 다각형, 예를 들어 도 9의 예시와 같이, 사각, 육각, 팔각인 다면체 구조로 형성될 수 있으며, 경우에 따라서는, 도 10과 같이 헤드부(210)를 삭제하고 수나사부(260)의 상단에서 아래 방향으로 직접 홈(210)을 내어 전용공구가 결합될 수 있도록 할 수도 있다. 이때 홈(210)은 예를 들어, '-형 또는 '+'자형 홈일 수 있다.
웨지부(230) 역시 그 표면이 거칠게 형성될 수도 있다. 웨지부(230)의 표면을 거칠게 형성하면, 웨지부(230)의 표면과 결속관부(330)의 내주면 사이의 마찰력이 증대되어 싱크다운(Sink down)에도 스크류(200)의 회전 방향 슬립, 좀 더 구체적으로는 스크류(200)의 풀림이 억제되므로, 임플란트 바디(100)와 어버트먼트(300) 간 연결상태가 안정적으로 유지될 수 있다.
도 11은 본 발명의 실시 예에 따른 치과용 임플란트 구조체에 적용되는 임플란트 바디의 정면도이며, 도 12은 도 10에 도시된 임플란트 바디의 절개 사시도이다.
도 11 및 도 12을 참조하면, 임플란트 바디(100)의 내측에는 내부 홈(120)이 형성될 수 있다. 이러한 내부 홈(120)은 그 하단부에 상기 결속부(124)를 구비할 수 있으며, 이처럼 결속부(124)를 구비하는 내부 홈(120)에 상기 어버트먼트(300)의 일부(어버트먼트의 바디 결합부(320) 및 바디 결합부(320) 하단에 형성되는 결속관부(330))가 삽입되어 고정될 수 있다.
이와 같은 임플란트 바디(100)의 외면부에는 치조골 식립을 위한 나사산(110)이 형성될 수 있는데, 이때 나사산(110)은 높이 방향에 걸쳐 피치가 동일하거나 상이한 단일 또는 이중 나사산 구조일 수 있다.
임플란트 바디(100)의 내측에 형성되는 내부 홈(120)은 구체적으로, 임플란트 바디(100)의 상면으로 노출되는 개구를 가지며 상기 개구에서 아래로 갈수록 내경이 점진적으로 줄어드는 역 원뿔대 형상으로 형성되어 상기 바디 결합부(320)가 맞물리게 결합되는 경사홈부(122) 및 경사홈부(122)의 하단에 일정 높이로 형성되며 상기 결속관부(330)가 위치하는 전술한 결속부(124)로 구성될 수 있다.
도 13은 어버트먼트 하단부에 형성되는 결속관부 및 임플란트 바디의 내측에 형성되는 결속부 형상의 다양한 실시 예를 도시한 도면이다.
도 13의 (a) 내지 (c)의 도시와 같이, 결속관부(330)의 외면부 형상은 원형, 정다각형, 토륵스(Torx) 형상 중 하나의 형상으로 구성될 수 있으며, 결속부(124)의 단면 형상(평면에서 봤을 때 단면 형상)은 상기 결속관부(330)의 외면부 형상에 대응되는 형상, 즉 단면 모양이 원형, 정다각형, 토륵스(Torx) 형상 중 하나의 형상으로 구성될 수 있다.
여기서, 결속관부(330)의 외면부를 정다각형 또는 토륵스(Torx) 형상으로 구성하고, 결속부(124)의 단면 형상(평면에서 봤을 때 단면 형상)을 상기 결속관부(330)의 외면부 형상에 대응되는 형상, 즉 단면 모양 정다각형 또는 토륵스 형상으로 구성하면, 결합 과정 또는 결합된 상태에서의 임플란트 바디(100)에 대한 어버트먼트(300)의 회전이 방지될 수 있다.
도 14는 본 발명의 실시 예에 따른 치과용 임플란트 구조체의 체결 과정을 도시한 도면이다.
도 14을 참조하면, 먼저 스크류(200)의 하단부에 형성되는 웨지부(230)의 일부가 어버트먼트(300) 하단부의 결속관부(330)보다 아래쪽으로 돌출되도록 어버트먼트(300)의 내측에 상기 스크류(200)를 동심 결합시킨다(도 14의 (a)). 그 상태에서 결속관부(330)가 임플란트 바디(100)의 상기 결속부(124)에 위치하도록 임플란트 바디(100)에 어버트먼트(300)를 끼운다(도 14의 (b)).
그런 다음, 전용공구(T)를 이용하여 스크류(200)를 조이면, 도 14의 (c)의 화살표와 같이 스크류(200)가 위쪽으로 상승하고 웨지부(230)가 결속관부(330) 내측으로 밀려 들어 가면서 결속관부(330)를 벌리게 된다. 벌어진 결속관부(330)는 결속부(124)의 면에 강하게 밀착되며, 이로 인해 결속관부(330)와 결속부(124) 사이에 강한 마찰이 발생해 임플란트 바디(100)에 어버트먼트(300)가 견고하게 고정될 수 있다.
도 15는 임플란트 바디와 어버트먼트를 연결하는 여러 방식 중 종래 내부연결방식의 대표적인 일례(도 15의 (a))와 본 발명(도 15의 (b))을 비교 도시한 단면도이다.
도 15를 참조하면, 본 발명의 실시 예는 스크류가 어버트먼트의 하부(결속관부)를 확장시켜 임플란트 바디와 어버트먼트 간 강한 결속을 구현하는 방식으로, 스크류가 임플란트 바디에 직접 체결되어 어버트먼트를 중간에 고정시키는 종래 내부연결방식에 비해 임플란트 바디와 어버트먼트가 직접적으로 접촉하는 접촉부의 높이를 보다 높게(D2 > D1) 확보할 수 있다.
다시 말해, 본 발명은 도 15의 (a)와 같은 종래 내부연결방식에 비해 동일 사이즈 대비 임플란트 바디와 어버트먼트 간 깊은 연결구조를 달성할 수 있어 보다 안정적이면서 견고한 결속이 구현될 수 있으며, 임플란트 바디의 피로파괴의 주된 원인으로 꼽히는 나사산이 상기 임플란트 바디에서 생략됨에 따라 내구성 측면에서도 훨씬 유리하다는 장점이 있다.
또한, 스크류가 어버트먼트의 하부(결속관부)를 확장시켜 임플란트 바디와 어버트먼트 간 강한 결속을 구현하는 방식이므로, 싱크다운(Sink down)에도 스크류가 풀릴 염려가 없으며, 따라서 스크류 풀림으로 인해 임플란트 바디와 어버트먼트 간 연결 상태가 불안정해지는 종래의 문제를 분명하고 명확하게 해소할 수 있다.
더욱이, 임플란트 바디와 어버트먼트 간 깊은 연결구조로 인하여 어버트먼트에 여러 방향에서 복합적으로 가해지는 하중 중에서도 측방향 하중에 대한 보다 강한 저항성을 확보할 수 있으며, 깊은 연결구조에 따른 임플란트 바디와 어버트먼트 간 접촉 면적의 증대로 도 15의 (a)와 같은 종래 내부연결방식에 비해 강성 또한 크게 향상될 수 있다.
다음으로 본 발명의 임플란트 구조체 중에서 어버트먼트에 대하여 도 16 내지 도 20을 참고하여 상세히 설명한다.
도 16은 본 발명의 실시 예에 따른 치과 임플란트용 어버트먼트의 사시도이며, 도 17은 도 16에 도시된 어버트먼트의 정면도이고, 도 18은 도 16에 도시된 어버트먼트의 절개 사시도이다.
도 16 내지 도 18을 참조하면, 본 발명의 실시 예에 따른 치과 임플란트용 어버트먼트(300)는 치조골에 식립되는 임플란트 바디(100)와 결합하여 보철물을 지지해 주는 역할을 하는 것으로, 보철물과 결합하는 상부 보철물 결합부(310)와, 일부 또는 전부가 상기 임플란트 바디에 내부연결방식으로 결합되는 하부 바디 결합부(320)를 포함할 수 있다.
상부 보철물 결합부(310)에 결합되는 보철물은 예컨대, 크라운일 수 있으며, 상기 임플란트 바디(100)에 결합되지 않고 치은과 접촉하도록 상기 상부 보철물 결합부(310)와 하부 바디 결합부(320) 사이에는 다른 부분(상부 보철부 결합부 및 하부 바디 결합부)에 비해 반경방향으로 더 볼록하게 돌출되는 팽대부(315)가 형성될 수 있다.
본 발명의 실시 예에서 상기 팽대부(315)와 하부 바디 결합부(320)를 합친 길이가 상기 상부 보철물 결합부(310)의 길이보다 더 길게 형성될 수 있다. 바람직하게는, 상기 하부 바디 결합부(320)의 길이를 어버트먼트 전체 길이의 1/2 이상이 되도록 하면, 임플란트 바디(100, 이후 도 2 참조)와의 결합 후 상부 보철물 결합부(310)를 통해 여러 방향에서 복합적으로 가해지는 하중에 대한 충분한 저항성을 확보할 수 있다.
또한, 임플란트 바디(100)와의 결합 후 상기 상부 보철물 결합부(310)를 통해 여러 방향에서 복합적으로 가해지는 하중 중에서도 측방향 하중에 대하여 강한 저항성을 확보할 수 있도록 하부 바디 결합부(320)의 모스 테이퍼 각도(α)는 5 ~ 9도로 형성하는 것이 바람직하다.
하부 바디 결합부(320)의 하부 영역에는 반경 방향 외측으로 탄성 변형이 가능한 결속관부(330)가 일체로 형성될 수 있으며, 상기 상부 보철물 결합부(310)와 하부 바디 결합부(320)를 관통하도록 본 발명의 실시 예에 따른 어버트먼트(300)의 내측에는 길이 방향(도면 상 높이 방향) 중심부를 따라 연속되는 홀(335)을 형성될 수 있다.
홀(335)은 상기 보철물 결합부(310)의 내측에 형성되는 공구 진입홀(350)과, 상기 하부 바디 결합부(320)의 내측에 형성되는 스크류 관통홀(340)을 포함할 수 있다. 그리고 상기 팽대부(315)의 내측에 형성되며 상기 공구 진입홀(350)과 스크류 관통홀(340) 사이에서 이들 홀(공구 진입홀과 스크류 관통홀)을 상호 연통시키면서 주면에 나사산(암사나산)이 가공된 나사홀(360)을 구비할 수 있다.
공구 진입홀(350)의 직경이 상기 스크류 관통홀(340) 및 나사홀(360)의 직경보다 큰 직경으로 형성됨으로써, 공구 진입홀(350)과 스크류 관통홀(340)의 경계에는 단차면(345)이 형성될 수 있다(도 18 참조). 전용 공구가 상기 공구 진입홀(350)을 통해 어버트먼트(300) 내부로 진입할 수 있고, 내부로 진입한 전용 공구가 상기 단차면(345)에 닿음으로써 공구의 삽입 깊이가 일정 깊이로 제한되고 공구의 회전 조작도 안정적으로 이루어질 수 있다.
나사홀(360)이 형성된 구간의 외측에 다른 부분에 비해 외측으로 볼록하게 돌출되는 상기 팽대부(315)가 위치하게 되면, 나사홀(360) 주변의 벽 두께를 다른 홀 주변부에 비해 두껍게 확보할 수 있어서 나사홀(360) 주변의 강성을 증대시키는 효과가 발휘될 수 있으며, 나사홀(360)에 형성되는 나사산에 의한 어버트먼트(300)의 피로파괴도 보다 확실하게 방지될 수 있다.
결속관부(330)는 슬릿 형태의 복수의 절개홈(332)과, 이러한 절개홈(332)에 의해 그 사이로 형성되는 복수의 결속편(334)을 포함할 수 있다. 절개홈(332)은 상기 하부 바디 결합부(320) 하단의 관부에 둘레 방향을 따라 등 간격 또는 부등 간격에 걸쳐 복수로 형성될 수 있으며, 이러한 절개홈(332)에 의해 이웃하는 절개홈(332) 사이로 상기 결속편(334)이 하나씩 형성될 수 있다.
도 19는 도 18에 도시된 결속관부를 확대 도시한 본 발명의 요부 확대도로서, 스크류 관통홀(340) 중 상기 결속관부(330)와 대응되는 위치에 형성되는 스크류 관통홀(340'), 다시 말해 결속관부(330)의 내측에 형성되는 스크류 관통홀(340')은 적어도 일부가 아래로 갈수록 내경이 점진적으로 증대되는 구성일 수 있으며, 이를 위해 결속관부(330)의 내측 주면은 적어도 일부가 테이퍼 구조로 형성될 수 있다.
여기서, 결속관부(330) 내측의 상기 스크류 관통홀(340')의 주면(테이퍼진 내측 주면)은 전용 스크류와의 마찰력 증대를 위해 거친 표면(Rough surface)을 가지도록 표면 처리될 수 있으며, 그 표면(결속관부 외측 표면)도 결속 대상과의 면접촉을 통한 결속 시 접촉되는 면 사이에 충분한 마찰력이 생길 수 있도록 거친 표면(Rough surface)을 가지도록 표면 처리될 수 있다.
도 20은 결속관부 외형의 다양한 형태를 보여주는 결속관부의 횡단면로서, 결속관부의 횡단면 형상은, 원형을 비롯해, 정다각형, 예를 들어 도면의 예시와 같은 정육각형, 토륵스(Torx) 모양 등으로 형성될 수 있으며, 그 중 정다각형 또는 토륵스(Torx) 형상은 임플란트 바디와의 결합 시 또는 결합된 상태에서 임플란트 바디에 대한 회전을 방지할 수 있는 형상이라는 장점이 있다.
이와 같은 구성의 본 발명의 실시 예에 따른 치과 임플란트용 어버트먼트는, 하부 영역에 외측으로 확장되어 임플란트 바디와의 강한 결속을 구현하는 결속관부가 형성됨으로써, 임플란트 바디와 직접 접촉하는 접촉부의 높이를 충분히 확보할 수 있는 구조이며, 따라서 임플란트 바디와의 보다 안정적이면서 견고한 결속을 구현 가능한 구조라는 장점이 있다.
또한, 반경 방향 외측으로 탄성 변경 가능한 결속관부에 의해 나사 체결 없이도 임플란트 바디와의 강한 결속을 구현할 수 있는 구조이어서, 임플란트 바디에서 피로파괴의 주된 원인으로 꼽히는 나사산을 생략시킬 수 있는 구조이며, 결과적으로 본 발명의 실시 예에 따른 어버트먼트 적용 시 내구성이 보다 향상된 임플란트 구조체를 제공할 수 있다는 장점도 있다.
다음으로 본 발명의 임플란트 구조체 중에서 스크류에 대하여 도 21 내지 도 27을 참고하여 상세히 설명한다.
도 21은 본 발명의 실시 예에 따른 치과 임플란트용 스크류의 사시도이며, 도 22는 도 21에 도시된 스크류의 정면도이다. 그리고 도 23은 도 22의 웨지부를 확대 도시한 도면이다.
도 21 내지 도 23을 참조하면, 본 발명의 실시 예에 따른 치과 임플란트용 스크류(200)는 어버트먼트를 치조골에 식립되는 임플란트 바디에 고정시키기 위한 매개로서, 하단 웨지부(Wedge part, 230)를 포함한다. 하단 웨지부(230)는 도면의 예시와 같이 적어도 일부가 아래로 갈수록 직경 또는 단면적이 증대되는 구조일 수 있으며, 단면이 원형인 환봉구조의 바디부(220)가 상기 하단 웨지부(230) 상단에 일체로 형성될 수 있다.
바디부(220)는 적어도 일루가 아래로 갈수록 직경 또는 단면적이 증대되는 구조를 갖는 상기 하단 웨지부(230)의 상단에서 임의 또는 일정 높이로 연장될 수 있으며, 외면에 수나사산이 가공된 나사부(260)가 상기 환봉구조의 바디부(220) 상단에서 임의 또는 일정 높이로 연장 형성될 수 있다.
여기서, 바디부(220)는 하단 웨지부(230) 최소 직경(D1, 하단 웨지부의 최상단 직경)과 동일한 직경으로 상기 하단 웨지부(230)의 상단에서 임의 또는 또는 일정 높이로 형성될 수 있다.
하단 웨지부(230)는 도면의 예시와 같이 아래로 갈수록 직경 또는 단면적이 점진적으로 증대되는 구조의 제1 영역(232)과, 제1 영역(232)의 하부에 소정의 높이로 형성되는 제2 영역(234)을 포함하는 구성일 수 있다. 물론, 필요에 따라서는 제2 영역(234)이 삭제되고 아래로 갈수록 직경 또는 단면적이 점진적으로 증대되는 구조의 상기 제1 영역(232)만으로 하단 웨지부(230)가 구성될 수도 있다.
아래로 갈수록 직경 또는 단면적이 점진적으로 증대되는 구조의 제1 영역(232) 및 제1 영역(232)의 하부에 형성되는 제2 영역(234)으로 하단 웨지부(230)가 구성되는 경우 상기 제2 영역(234)은, 상기 제1 영역(232)의 최대 직경(D2, 제1 영역의 최하단 직경)과 동일한 직경을 가지면서 소정의 길이로 상기 제1 영역(232)의 하단으로부터 하향 연장되는 구성일 수 있다.
경우에 따라서는, 하단 웨지부(230)의 바람직한 변형 예를 도시한 도 24와 같이, 상기 제2 영역(234)은 그 상단부가 상기 제1 영역(232)의 최대 직경(D2, 제1 영역의 최하단 직경)과 동일한 직경으로 형성되고 아래로 갈수록 그 직경(제2 영역의 직경)이 점진적으로 줄어드는 구조로 형성될 수도 있다.
이 경우 상기 제1 영역(232)의 경사각(제1 영역 표면 경사각)은 3 ~ 8도가 바람직하지만, 제품의 사양이나 재질 또는 제1 영역의 형상에 따라 그 각도(제1 영역의 표면 경사각)는 변경 가능한 것이므로 3 ~ 8도로 한정되는 것아 아님을 밝혀 둔다.
하단 웨지부(230)의 상기 제1 영역(232)은 횡단면 모양이 원형인 원뿔대 형상일 수 있다. 그리고 제2 영역(234)은 횡단면 모양이 원형인 원기둥 또는 역 원뿔대 형상(제2 영역이 아래로 갈수록 직경이 점차 줄어드는 구조인 경우)일 수 있다. 물론 제1 영역(232)의 횡단면 모양이 원형에 국한되는 것은 아니다.
제1 영역(232)의 횡단면 모양의 바람직한 변형 예를 도시한 도 25의 예시와 같이, 제1 영역(232)의 횡단면 모양은 원주 방향으로 등간격 또는 부등간격에 걸쳐 적어도 둘 이상의 그루브(Groove)를 갖는 스플라인 모양 또는 토륵스(Torx) 형상 등 다양한 모양으로 변경될 수 있으며, 아래로 갈수록 직경 또는 단면적이 점진적으로 증대되는 구성이기만 하면 횡단면 모양은 크게 상관 없다.
도 26은 하단 웨지부의 바람직한 다른 변형 예를 나타내는 측면도로서, 하단 웨지부(230')는 적어도 일부가 아래로 갈수록 직경 또는 단면적이 점차 증대되는 조건을 만족하는 도면(도 26)의 예시와 같은 구(Sphere) 형상으로 형성될 수도 있다.
이러한 하단 웨지부(230)는 후술하게 될 어버트먼트의 결속관부 내측 주면과 접촉 시 접촉 마찰력 증대를 위해 거친 표면(Rough surface)을 가지도록 표면 처리될 수 있으며, 외면에 수나사산이 형성된 상기 나사부(260)의 높이(h1)는 상기 바디부(220) 높이(h2)의 1/2 ~ 4/5가 바람직하고, 수나사산은 도면 상 스크류 높이 방향을 기준으로 피치가 동일한 단일 또는 이중 나사산 구조일 수 있다.
나사부(260)의 상단 또는 나사부 상부 영역에는 헤드부 또는 공구체결부(210)가 일체로 구성될 수 있다. 공구체결부는 드라이버나 토크렌치와 같은 임플란트 시술용 전용공구가 체결되는 체결면을 제공한다. 이러한 공구체결부(210)는 나사부(260) 상단에서 위로 돌출되는 다각의 볼트 머리 형태로 형성되거나, 상기 나사부(260) 방향으로 음각 성형된 소켓 또는 홈 형태로 형성될 수 있다.
도 9 및 도 27은 상기 공구체결부의 다양한 실시 예를 도시한 도면으로서, 공구체결부가 다각의 볼트 머리 형태로 형성되는 경우 상기 공구체결부(210)는 도 9와 같이, 평면 모양이 직사각, 정사각, 육각, 팔각 중 어느 하나의 볼트 머리 형태로 형성될 수 있으며, 나사부(260) 방향으로 음각 성형된 경우 공구체결부(210')는 도 27과 같이 -자, +자, 다각형의 홈 중 어느 하나의 형태로 구성될 수 있다.
이와 같은 본 발명의 실시 예에 따른 치과 임플란트용 스크류는, 하단에 웨지부를 갖고 중간에 나사산이 형성된 앵커 볼트 구조로서, 임플란트 바디에 앵커 볼트 방식으로 결합되어 어버트먼트가 상기 임플란트 바디와 직접적으로 접촉하는 접촉부의 높이를 증대시킬 수 있는 구조이며, 피로파괴의 주된 원인으로 꼽히는 임플란트 바디 내면의 나사산을 생략시킬 수 있는 구조라는 장점이 있다.
다음으로 본 발명의 임플란트 구조체 중에서 임플란트 바디에 대하여 도 28 내지 도 32를 참고하여 상세히 설명한다.
도 28은 본 발명의 실시 예에 따른 치과 임플란트용 임플란트 바디의 사시도이며, 도 29는 도 28에 도시된 임플란트 바디의 정면도이다. 그리고 도 30은 본 발명의 실시 예에 따른 임플란트 바디의 내부 구조를 구체적으로 보여주기 위한 종단면도다.
도 28 내지 도 30을 참조하면, 본 발명의 실시 예에 따른 치과 임플란트용 임플란트 바디(100)는 치조골에 식립되어 인공치근을 형성하는 구조물로서, 치조골 식립을 위해 외주면에 형성되는 외부 나사산(110)을 포함할 수 있다. 외부 나사산(110)은 도면 상 높이 방향에 대해 피치(Pitch)는 동일하고 골의 깊이가 서로 다른 2개의 나사산 구간(112, 114)으로 구성될 수 있다.
외부 나사산(110)을 구성하는 상기 2개의 나사산 구간은 구체적으로, 상기 임플란트 바디의 외주면 하단으로부터 위쪽으로 일정 높이에 걸쳐 제1 깊이(d1)로 형성되는 외부 하단 나사산 구간(112)과, 상기 외부 하단 나사산 구간(112) 위쪽으로 상기 제1 깊이보다 낮은 제2 깊이(d2)로 형성되는 외부 상단 나사산 구간(114)으로 구분될 수 있다.
여기서, 피치(P)는 동일하고 골의 깊이가 서로 다른 상기 2개의 나사산 구간(112, 114)은, 나사산이 가공되기 전 상태의 임플란트 바디 모재의 가공 대상면에 서로 다른 가공면 형상을 가지는 2개의 절삭용 바이트(Bite)를 순차적으로 진입시킨 후 임플란트 바디를 회전시킴과 함께 상기 바이트를 하단에서 상단으로 이동시키는 가공작업을 통해 형성될 수 있다.
이처럼 임플란트 바디(100)의 외부 상단 나사산 구간(114)에 형성되는 나사산의 골 깊이(d2)를 외부 하단 나사산 구간(112)에 형성되는 골 깊이(d1)에 비해 낮게 구성하면, 치조골 표면의 치밀골 영역에 임플란트 바디가 보다 견고하게 고정될 수 있고, 임플란트 바디의 상부 영역 벽 두께 증가로 해당 영역의 강성을 증대시킬 수 있어 임플란트 바디(100)의 상단 부분에서 발생하던 세로 파절도 방지될 수 있다.
나사산의 골 깊이(d2)가 상대적으로 낮게 형성된 외부 상단 나사산 구간(114)은 상기 임플란트 바디(100)의 상면 가장자리로부터 2 ~ 4개 나사산만큼 아래쪽 구간까지 내려오도록 형성될 수 있다.
이처럼 외부 상단 나사산 구간(114)이 상기 임플란트 바디의 상면 가장자리로부터 2 ~ 4개 나사산만큼 아래쪽 구간까지 내려오도록 구성하면, 임플란트 바디(100) 내측에 형성되는 후술하는 내부 홈(120)에 다각 또는 토륵스(Torx) 형상으로 결속부(124)를 형성시키기 위해 펀칭 가공을 수행하는 경우 상기 결속부(124)의 각 모서리 부분이 피로파괴의 시작점이 될 수 있는 것을 간접적으로 보강할 수 있다.
외부 나사산(110) 중 상기 외부 상단 나사산 구간(114)에는 상기 임플란트 바디(100)의 최상단으로부터 아래쪽으로 일정구간에 걸쳐 나사산이 가공되지 않은 나사산 비가공 구간(H)이 형성될 수도 있다. 이러한 나사산 비가공 구간(H)은 세로 파절이 유발될 수 있는 임플란트 바디(100) 상단 부분에 대한 강건성을 확보하기 위해 마련된 구간이다.
나사산 비가공 구간(H) 부분에는 나사산이 형성되지 않기 때문에, 임플란트 바디를 치조골에 식립하는 경우 나사산 비가공 구간(H) 부분은 치조골 안쪽에 삽입되지 않고 치조골 상부면 밖으로 일부 노출될 수 있다.
다만, 상기 나사산 비가공 구간(H)은 임플란트 바디의 전체 길이 대비 매우 작은 길이(0.2~0.3mm)로 형성되는 구간이기 때문에 나사산 비가공 구간(H)이 치조골 내부로 식립되지 않을 경우 치조골 내에서 임플란트 바디의 지지강성에 미치는 영향은 극히 미미하다.
이처럼 임플란트 바디(100)의 상단에 나사산이 가공되지 않은 나사산 비가공 구간(H)을 형성하게 되면, 치조골 내에 임플란트 바디(100)를 식립하는 경우에 치조골 내에서 임플란트 바디(100)의 지지력을 크게 감소시키지 않으면서도, 임플란트 바디(100)의 상단부에 대한 일정수준의 벽 두께(후술하는 내부 홈(120)과 외주면 사이의 두께) 확보가 가능하기 때문에 임플란트 바디 상단부의 구조적 강성을 증대시킬 수 있다.
본 발명의 실시 예에 따른 임플란트 바디(100)의 내측에는 보철물을 지지하는 어버트먼트(Abutment)가 결합될 수 있도록 상기 임플란트 바디(100)의 상면으로부터 일정 깊이로 내부 홈(120)이 형성될 수 있다. 이때 내부 홈(120)은 경사홈부(122)와 결속부(124)로 구성될 수 있으며, 상기 경사홈부(122)와 결속부(124)는 임플란트 바디(100)의 상단 개구(121)로부터 순차적으로 배치될 수 있다.
경사홈부(122)는 구체적으로, 임플란트 바디(100)의 상면으로 노출되는 개구(121)를 가지면서 횡단면 형상이 원형이며 상기 개구(121)에서부터 아래로 갈수록 내경이 점차 좁아지는 구성일 수 있으며, 결속부(124)는 상기 경사홈부(122)의 하부에 상기 경사홈부(122)보다 높게 형성되며 도 31의 예시와 같이 횡단면 형상이 원형이나, 다각형 또는 토륵스(Torx) 형상으로 형성될 수 있다.
경사홈부(122)의 주면(내측 주면)은 임플란트 바디(100)의 세로 방향 중심선(CL)과 평행한 선에 대해 5 ~ 8도로 경사지게 형성(경사홈부(122)의 주면 경사각(α)이 5 ~ 8도로 형성)될 수 있다. 주면의 경사각(α)이 5도 미만이면 어버트먼트와의 접촉 면적이 줄고, 경사각(α)이 8도를 초과하면 결합된 어버트먼트에 여러 방향에서 복합적으로 가해지는 하중 중에서도 측방향 하중에 대한 저항성이 떨어질 수 있다.
내부 홈(120)의 높이(h2, 또는 깊이)는 내부 홈(120)이 임플란트 바디(100)의 강성에 미치는 영향을 고려한다면, 상기 임플란트 바디(100)의 전체 높이(h1)에 대해 1/2*h1 ~ 2/3*h1 높이로 형성하는 것이 바람직하며, 이때 내부홈의 전체 구간(h2 구간)에서 상기 결속부(124)의 높이(h3)는 1/2*h2 ~ 2/3*h2이 되도록 하고 나머지가 상기 경사홈부(122)의 높이(h4)가 될 수 있도록 구성하는 것이 바람직하다.
도 32는 결속부 종단면 형상의 바람직한 다른 형태를 도시한 도면으로서, 결속부(124)는 도 32의 (a)와 같이 종단면 형상이 아래로 갈수록 내경이 점차 넓어지는 원뿔대 형상을 가지도록 형성될 수도 있으며, 도 32의 (b)와 같이 결속부(124)의 주면과 바닥면이 만나는 하단 모서리 부분을 따라 어버트먼트와의 결속력 증대를 위한 홈이 언더컷 구조로 형성된 구성일 수도 있다.
도시하지 않았으나 상기 결속부(124)의 주면(벽면)은 거친 표면(Rough surface)을 가지도록 표면 처리될 수 있다. 이처럼 결속부(124)의 주면을 거친 표면(Rough surface)을 가지도록 표면 처리하면, 어버트먼트와의 사이에 마찰력이 증대되어 임플란트 바디(110)와 어버트먼트 간에 보다 견고한 결속이 구현될 수 있고, 임플란트 바디에 대한 어버트먼트의 회전 방향 슬립이 방지될 수 있다.
도 30 및 도 32에는 바람직한 예로서 결속부(124)의 바닥면이 수평면인 구성을 예를 들어 도시하였으나, 상기 결속부(124)의 바닥면이 수평면 형태로 형성되는 것에 국한되는 것은 아니며, 도시하지는 않았으나 상기 결속부의 바닥면은 아래로 볼록한 반구 또는 원뿔 모양으로 형성될 수도 있다.
이와 같은 본 발명의 실시 예에 따른 치과 임플란트용 임플란트 바디는, 피로파괴의 주된 원인으로 꼽히는 임플란트 바디 내면의 나사산(스크류와 나사 체결을 위한 나사산) 없이도 어버트먼트와의 견고한 결속을 달성할 수 있는 구조라는 장점이 있으며, 내부에 스크류와 결합하는 나사산이 생략된 만큼 어버트먼트와 직접적으로 접촉하는 접촉부의 높이 또는 면적을 더 확보할 수 있어서 임플란트 구조체의 전체적인 강성을 크게 향상시킬 수 있다.
이상의 본 발명의 상세한 설명에서는 그에 따른 특별한 실시 예에 대해서만 기술하였다. 하지만 본 발명은 상세한 설명에서 언급되는 특별한 형태로 한정되는 것이 아닌 것으로 이해되어야 하며, 오히려 첨부된 청구범위에 의해 정의되는 본 발명의 정신과 범위 내에 있는 모든 변형물과 균등물 및 대체물을 포함하는 것으로 이해되어야 한다.
[부호의 설명]
100 : 임플란트 바디
110 : 나사산(임플란트 바디를 치조골에 식립하기 위한 나사산)
120 : 내부 홈
122 : 경사홈부
124 : 결속부
126 : 걸림홈
200 : 스크류
210 : 헤드부 또는 공구체결부
212 : 전용공구 결합홈
230 : 웨지부
300 : 어버트먼트
310 : 보철물 결합부
315 : 팽대부
320 : 바디 결합부
330 : 결속관부
332 : 절개홈
334 : 결속편
335 : 홀(어버트먼트 내측에 형성되는 홀)
336 : 걸림턱
340 : 스크류 관통홀
350 : 공구 진입홀
360 : 암나사부 또는 나사홀
Claims (27)
- 하단부에 결속관부를 갖는 어버트먼트;상기 어버트먼트의 내측에 동심 배치되어 어버트먼트와 나사 결합되고, 아래로 갈수록 직경이 점진적으로 증대되는 테이퍼 구조의 웨지(Wedge)부를 하단부에 구비한 스크류; 및상기 어버트먼트가 결합되는 내부 홈의 하부 영역에 상기 결속관부 및 웨지부에 대응하여 결속부가 형성된 임플란트 바디;를 포함하고,상기 스크류의 회전에 따라 상기 결속관부가 상기 결속부를 향해 지지되는 치과용 임플란트 구조체.
- 제 1 항에 있어서,결속관부가 내부 홈의 상기 결속부에 삽입된 상태에서 상기 스크류를 일 방향으로 회전시키면, 스크류가 위쪽으로 상승하고 상기 웨지부에 의해 결속관부가 반경 방향 외측으로 벌어짐으로써 상기 임플란트 바디에 어버트먼트가 고정되는 치과용 임플란트 구조체.
- 제 2 항에 있어서,상기 웨지부의 일부가 상기 결속관부보다 아래쪽으로 돌출되도록 어버트먼트의 내측에 상기 스크류가 동심 배치되어 나사 결합된 상태로 상기 결속관부가 내부 홈의 상기 결속부에 삽입되는 치과용 임플란트 구조체.
- 제 1 항에 있어서,상기 어버트먼트의 하측 관부에 둘레 방향을 따라 복수로 형성되는 슬릿 형상의 절개홈과, 상기 절개홈에 의해 이웃하는 절개홈 사이로 하나씩 형성되는 복수의 결속편에 의해 상기 결속관부가 구성되는 치과용 임플란트 구조체.
- 제 1 항 또는 제 4 항에 있어서,상기 결속관부의 하단 둘레면에 걸림턱이 돌출 형성되고,상기 결속부의 하단에 상기 걸림턱에 대응하여 걸림홈이 언더컷 구조로 형성되는 치과용 임플란트 구조체.
- 제 1 항 또는 제 4 항에 있어서,상기 결속관부의 내측 주면이 상기 웨지부 형상에 대응하여 테이퍼 구조로 형성되는 치과용 임플란트 구조체.
- 제 6 항에 있어서,상기 결속관부의 내측 주면 및 웨지부의 표면 경사각(β)이 3 ~ 8도인 치과용 임플란트 구조체.
- 제 1 항에 있어서,상기 결속관부의 표면 및 상기 결속관부의 표면과 접촉되는 상기 결속부의 면이 거친 치과용 임플란트 구조체.
- 제 1 항에 있어서,상기 어버트먼트의 내측에 하부 스크류 관통홀과 상부 공구 진입홀이 형성되고, 상기 하부 스크류 관통홀과 상부 공구 진입홀 사이에 상기 스크류와 나사 체결을 위한 암나사부가 일정 높이로 형성되는 치과용 임플란트 구조체.
- 제 9 항에 있어서,상기 공구 진입홀이 스크류 관통홀 및 암나사부에 비해 큰 직경으로 형성되는 치과용 임플란트 구조체.
- 제 9 항에 있어서,상기 웨지부로부터 소정 높이 떨어진 위치의 스크류에 상기 암나사부에 대응하여 수나사부가 형성되고, 상기 수나사부의 상단에 상기 공구 진입홀로 노출되는 다각형의 헤드부가 형성되는 치과용 임플란트 구조체.
- 제 1 항 또는 제 11 항에 있어서,상기 웨지부의 표면이 거친 치과용 임플란트 구조체.
- 제 1 항에 있어서,상기 임플란트 바디의 내부 홈은,상기 임플란트 바디의 상면으로 노출되는 개구를 가지며 상기 개구에서 아래로 갈수록 내경이 점진적으로 줄어드는 역 원뿔대 형상의 경사홈부와,상기 경사홈부의 하단에 일정 높이로 형성되는 상기 결속부로 구성되는 치과용 임플란트 구조체.
- 제 1 항에 있어서,상기 어버트먼트는,보철물 내부에 결합되는 보철물 결합부와,상기 보철물 결합부 하부에 형성되며, 일부가 상기 임플란트 바디와 결합되는 아래로 갈수록 외경이 점진적으로 줄어드는 역 원뿔대 형상의 바디 결합부를 포함하며,상기 바디 결합부의 하단에 상기 결속관부가 일체로 구성되는 치과용 임플란트 구조체.
- 제 1 항 또는 제 14 항에 있어서,상기 결속관부의 외면부 형상이 정다각형 또는 토륵스(Torx) 형상으로 구성되고,상기 결속부의 단면 형상이 상기 결속관부의 외면부 형상에 대응되는 치과용 임플란트 구조체.
- 치조골에 식립되는 임플란트 바디와 결합하는 치과 임플란트용 어버트먼트에 있어서,보철물과 결합하는 상부 보철물 결합부;일부 또는 전부가 상기 임플란트 바디에 내부연결방식으로 결합되는 하부 바디 결합부; 및상기 임플란트 바디에 결합되지 않고 치은과 접촉하도록 상부 보철물 결합부와 하부 바디 결합부 사이로 형성되는 팽대부;를 포함하며,상기 하부 바디 결합부는 그 하부 영역에 결속관부를 구비하는 것을 특징으로 하는 치과 임플란트용 어버트먼트.
- 제 16 항에서 있어서,상기 상부 보철물 결합부와 하부 바디 결합부를 관통하는 홀;을 더 포함하는 치과 임플란트용 어버트먼트.
- 제 17 항에 있어서,상기 홀은,상기 보철물 결합부의 내측에 형성되는 공구 진입홀과,상기 하부 바디 결합부의 내측에 형성되는 스크류 관통홀과,상기 팽대부 내측에 형성되며 상기 공구 진입홀과 스크류 관통홀 사이에 위치하는 나사홀을 포함하는 치과 임플란트용 어버트먼트.
- 제 18 항에 있어서,상기 스크류 관통홀 중 상기 결속관부의 위치와 대응되는 부분의 적어도 일부가 아래로 갈수록 내경이 점진적으로 증대되는 구조인 치과 임플란트용 어버트먼트.
- 치조골에 식립되는 임플란트 바디에 어버트먼트를 고정시켜주는 치과 임플란트용 스크류에 있어서,적어도 일부가 아래로 갈수록 직경 또는 단면적이 증대되는 구성의 하단 웨지부;상기 하단 웨지부의 상단에서 일정 높이로 연장되는 환봉구조의 바디부;상기 환봉구조의 바디부 상단에서 일정 높이로 연장되며 외면에 수나사산이 형성된 나사부; 및상기 나사부의 상단 또는 나사부 상부 영역에 형성되며 전용공구가 체결되는 공구체결부;를 포함하는 치과 임플란트용 스크류.
- 제 20 항에서 있어서,상기 하단 웨지부는,아래로 갈수록 직경 또는 단면적이 점진적으로 증대되는 제1 영역을 포함하는 치과 임플란트용 스크류.
- 제 21 항에 있어서,상기 제1 영역의 횡단면 모양이 원주 방향으로 등간격 또는 부등간격에 걸쳐 적어도 둘 이상의 그루브(Groove)를 갖는 스플라인 모양 또는 토륵스(Torx) 형상으로 이루어진 치과 임플란트용 스크류.
- 치조골에 식립되어 인공치근을 형성하는 치과 임플란트용 임플란트 바디에 있어서,상기 임플란트 바디의 내측에는 보철물 지지를 위한 어버트먼트가 결합되는 내부 홈이 형성되고 외주면에는 치조골 식립을 위한 외부 나사산이 형성되며,상기 내부 홈은 상기 임플란트 바디의 상면으로 노출되는 개구를 가지면서 횡단면 형상이 원형이며 상기 개구에서부터 아래로 갈수록 내경이 점차 좁아지는 경사홈부와, 상기 경사홈부의 하부에 상기 경사홈부의 높이보다 높게 형성되며 나사산이 형성되지 않은 결속부를 포함하는 치과 임플란트용 임플란트 바디.
- 제 23 항에서 있어서,나사산이 형성되지 않은 상기 결속부의 횡단면 형상이 원형, 다각형, 토륵스(Torx) 형상 중 하나인 치과 임플란트용 임플란트 바디.
- 제 23 항에서 있어서,상기 임플란트 바디의 세로 방향 중심선(CL)과 평행한 선에 대해 상기 경사홈부의 주면이 5 ~ 8도로 경사진 치과 임플란트용 임플란트 바디.
- 제 23 항에 있어서,상기 임플란트 바디의 전체 높이(h1)에 대해 상기 내부 홈의 높이(h2)가 1/2*h1 ~ 2/3*h1으로 형성되며,상기 내부 홈에서 상기 결속부의 높이(h3)가 1/2*h2 ~ 2/3*h2이고 나머지가 상기 경사홈부의 높이(h4)인 치과 임플란트용 임플란트 바디.
- 제 23 항에 있어서,상기 결속부는 종 단면 형상이 아래로 갈수록 내경이 점차 넓어지는 원뿔대 형상으로 형성되는 치과 임플란트용 임플란트 바디.
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020220183300A KR20240101044A (ko) | 2022-12-23 | 2022-12-23 | 치과 임플란트용 스크류 및 이를 포함하는 치과용 임플란트 구조체 |
KR1020220183299A KR20240101043A (ko) | 2022-12-23 | 2022-12-23 | 치과 임플란트용 어버트먼트 및 이를 포함하는 치과용 임플란트 구조체 |
KR10-2022-0183298 | 2022-12-23 | ||
KR10-2022-0183300 | 2022-12-23 | ||
KR10-2022-0183299 | 2022-12-23 | ||
KR10-2022-0183301 | 2022-12-23 | ||
KR1020220183298A KR20240101042A (ko) | 2022-12-23 | 2022-12-23 | 치과용 임플란트 구조체 |
KR1020220183301A KR20240101045A (ko) | 2022-12-23 | 2022-12-23 | 치과 임플란트용 임플란트 바디 및 이를 포함하는 치과용 임플란트 구조체 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024136319A1 true WO2024136319A1 (ko) | 2024-06-27 |
Family
ID=91589581
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2023/020707 WO2024136319A1 (ko) | 2022-12-23 | 2023-12-14 | 치과용 임플란트 구조체 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024136319A1 (ko) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080233538A1 (en) * | 2007-03-19 | 2008-09-25 | Straumann Holding Ag | Two-part screw for a dental implant |
US20190125498A1 (en) * | 2013-10-01 | 2019-05-02 | Nobel Biocare Services Ag | Dental kit-of-parts and method of assembling the same |
CN210204959U (zh) * | 2019-05-31 | 2020-03-31 | 东莞市安特医疗器械有限公司 | 牙科种植体组件 |
CN215079997U (zh) * | 2021-04-16 | 2021-12-10 | 杭州富阳久和医疗器械有限公司 | 一种牙种植体桥架基台组件 |
CN215688612U (zh) * | 2021-09-23 | 2022-02-01 | 斯泰博(上海)医疗器械有限公司 | 一种牙科短种植体组件 |
-
2023
- 2023-12-14 WO PCT/KR2023/020707 patent/WO2024136319A1/ko unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080233538A1 (en) * | 2007-03-19 | 2008-09-25 | Straumann Holding Ag | Two-part screw for a dental implant |
US20190125498A1 (en) * | 2013-10-01 | 2019-05-02 | Nobel Biocare Services Ag | Dental kit-of-parts and method of assembling the same |
CN210204959U (zh) * | 2019-05-31 | 2020-03-31 | 东莞市安特医疗器械有限公司 | 牙科种植体组件 |
CN215079997U (zh) * | 2021-04-16 | 2021-12-10 | 杭州富阳久和医疗器械有限公司 | 一种牙种植体桥架基台组件 |
CN215688612U (zh) * | 2021-09-23 | 2022-02-01 | 斯泰博(上海)医疗器械有限公司 | 一种牙科短种植体组件 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013157756A1 (ko) | 치아 임플란트 | |
WO2018044113A1 (ko) | 치아 임플란트 구조물 | |
WO2013008962A1 (ko) | 각진 마찰결합식 치과용 임플란트 | |
WO2014003484A1 (ko) | 치과용 임플란트 | |
WO2016024837A1 (ko) | 풀림 방지용 와셔 | |
WO2016144127A1 (ko) | 치아 임플란트 구조물 | |
AU601922B2 (en) | Apparatus for the fixation of a single-tooth restoration | |
WO2017146478A1 (ko) | 착탈이 가능한 임플란트 결합보철물 | |
US6358050B1 (en) | Dental implant systems | |
US5145371A (en) | Distance member | |
WO2017204479A1 (ko) | 나사풀림방지 구조를 갖춘 임플란트용 어버트먼트 | |
WO2024136319A1 (ko) | 치과용 임플란트 구조체 | |
WO2017034350A1 (ko) | 싱킹 및 착탈 가능한 탄성 결합 임플란트 시스템 | |
WO2022085865A1 (ko) | 교합력 완충기능을 갖는 치과 임플란트용 지대주 | |
WO2020179958A1 (ko) | 치과용 임플란트 | |
WO2020116711A1 (ko) | 맞춤형 어버트먼트 가공을 위한 지그 | |
US20070281277A1 (en) | Method and Arrangement for Orienting a Bridge in Position Relative to a Dental Implant | |
WO2013083045A1 (zh) | 一种围栏柱及围栏系统 | |
KR101965332B1 (ko) | 투피스 힐링어버트먼트용 하부체 및 이를 포함하는 힐링어버트먼트 | |
WO2024085669A1 (ko) | 치과용 임플란트 상부구조물 침하방지 및 어버트먼트 스크류 풀림방지를 위한 치아 임플란트 구조물 | |
KR20200010977A (ko) | 보철물이 부착되는 보철물 부착부에 단턱 구조를 구비한 치과용 임플란트 지대주 | |
EP0910319B1 (en) | Arrangement for leg prosthesis | |
WO2010150999A2 (ko) | 결속력이 강화된 척추고정장치 | |
WO2021251535A1 (ko) | 치과용 임플란트의 픽스쳐 | |
KR102048180B1 (ko) | 개선된 고정 구조 및 완충 구조를 갖는 인공치아용 임플란트 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23907605 Country of ref document: EP Kind code of ref document: A1 |