WO2024136120A1 - Ferritic stainless steel with improved workability and ridging resistance and manufacturing method thereof - Google Patents

Ferritic stainless steel with improved workability and ridging resistance and manufacturing method thereof Download PDF

Info

Publication number
WO2024136120A1
WO2024136120A1 PCT/KR2023/017890 KR2023017890W WO2024136120A1 WO 2024136120 A1 WO2024136120 A1 WO 2024136120A1 KR 2023017890 W KR2023017890 W KR 2023017890W WO 2024136120 A1 WO2024136120 A1 WO 2024136120A1
Authority
WO
WIPO (PCT)
Prior art keywords
stainless steel
ferritic stainless
manufacturing
ridging
improved
Prior art date
Application number
PCT/KR2023/017890
Other languages
French (fr)
Korean (ko)
Inventor
최가영
김상석
김동훈
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Publication of WO2024136120A1 publication Critical patent/WO2024136120A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Definitions

  • the present invention relates to a ferritic stainless steel with improved processability and anti-scratch properties and a method of manufacturing the same.
  • Ferritic stainless steel has excellent corrosion resistance while adding a small amount of expensive alloy elements, making it more cost-competitive than austenitic stainless steel. Ferritic stainless steels are used in building materials, transportation equipment, home appliances, and kitchen appliances.
  • Ferritic stainless steel cold-rolled products have a problem in that stripe-shaped ridging defects occur during forming processing such as deep drawing. These ridging defects not only worsen the appearance of the product, but also increase the manufacturing cost because a polishing process is added after molding when severe ridging occurs.
  • the present invention aims to provide a ferritic stainless steel with improved processability and ridging and a manufacturing method thereof by controlling the crystal grain size of the final cold-rolled annealed material by optimizing the steel components and manufacturing process to improve the processability of cold-rolled products. .
  • the ferritic stainless steel with improved processability and resistance to scuffing according to an aspect of the present invention has, in weight percent, carbon (C): 0.0005 to 0.02%, nitrogen (N): 0.01 to 0.2%, and silicon (Si): 0.01 to 0.02%. 1.0%, manganese (Mn): 0.01 to 1.0%, phosphorus (P): 0.001 to 0.05%, chromium (Cr): 13.0 to 20.0%, titanium (Ti): 0.05 to 0.2%, remaining iron (Fe) and inevitable It contains impurities, satisfies the following equation (1), and has a crystal grain size of 20 to 25 ⁇ m.
  • Equation (1) 2*[Ti]/[N] ⁇ 2.3
  • the ridging height measured after being stretched by 15% may be 10 ⁇ m or less.
  • Ferritic stainless steel with improved processability and anti-stinging properties may have an elongation of 32% or more.
  • the method for manufacturing ferritic stainless steel with improved processability and resistance to scuffing includes, in weight percent: carbon (C): 0.0005 to 0.02%, nitrogen (N): 0.01 to 0.2%, silicon (Si): 0.01 to 1.0%, manganese (Mn): 0.01 to 1.0%, phosphorus (P): 0.001 to 0.05%, chromium (Cr): 13.0 to 20.0%, titanium (Ti): 0.05 to 0.2%, remainder iron (Fe) and manufacturing a slab containing unavoidable impurities and satisfying the following formula (1); reheating the slab; Hot rolling and then hot rolling annealing the reheated slab; And it may include the step of cold rolling the hot rolled material and then cold rolling and annealing it at 800 to 850°C.
  • Equation (1) 2*[Ti]/[N] ⁇ 2.3
  • the reheating step may be performed at 1,000 to 1,300°C.
  • the stainless steel may have a crystal grain size within the range of 20 to 25 ⁇ m.
  • the ridging height of the stainless steel measured after being stretched by 15% may be 10 ⁇ m or less.
  • the stainless steel may have an elongation of 32% or more.
  • the present invention can provide a ferritic stainless steel with improved processability and ridging and a manufacturing method thereof by controlling the crystal grain size of the final cold-rolled annealed material by optimizing the steel components and manufacturing process to improve the processability of cold-rolled products. there is.
  • Figure 1 is a graph showing the ridging height (solid line) and elongation (dotted line) according to annealing temperature when manufacturing stainless steel according to an embodiment.
  • Figure 2a is a photograph showing the crystal grain size of stainless steel manufactured at a cold rolling annealing temperature of 750°C.
  • Figure 2b is a photograph showing the crystal grain size of stainless steel manufactured at a cold rolling annealing temperature of 800°C.
  • Figure 2c is a photograph showing the crystal grain size of stainless steel manufactured at a cold rolling annealing temperature of 850°C.
  • Figure 2d is a photograph showing the crystal grain size of stainless steel manufactured at a cold rolling annealing temperature of 900°C.
  • Figure 2e is a photograph showing the crystal grain size of stainless steel manufactured at a cold rolling annealing temperature of 950°C.
  • the ferritic stainless steel with improved processability and scratch resistance includes, in weight percent, carbon (C): 0.0005 to 0.02%, nitrogen (N): 0.01 to 0.2%, silicon (Si): 0.01 to 1.0%, Manganese (Mn): 0.01 to 1.0%, phosphorus (P): 0.001 to 0.05%, chromium (Cr): 13.0 to 20.0%, titanium (Ti): 0.05 to 0.2%, including the remaining iron (Fe) and inevitable impurities. and satisfies the following equation (1), and the crystal grain size may satisfy the range of 20 to 25 ⁇ m.
  • Equation (1) 2*[Ti]/[N] ⁇ 2.3
  • the ferritic stainless steel with improved processability and resistance to scuffing according to an aspect of the present invention has, in weight percent, carbon (C): 0.0005 to 0.02%, nitrogen (N): 0.01 to 0.2%, and silicon (Si): 0.01 to 0.02%. 1.0%, manganese (Mn): 0.01 to 1.0%, phosphorus (P): 0.001 to 0.05%, chromium (Cr): 13.0 to 20.0%, titanium (Ti): 0.05 to 0.2%, remaining iron (Fe) and inevitable May contain impurities.
  • the carbon (C) content may be 0.0005 to 0.02 wt%, preferably 0.01 to 0.02 wt%.
  • C is an element that greatly affects the improvement of steel strength. If the amount of carbon (C) is less than 0.0005 wt%, the refining price to produce a high-purity product may be expensive. However, if the carbon content exceeds 0.02 wt%, corrosion resistance and formability may be reduced.
  • the nitrogen (N) content may be 0.01 to 0.2 wt%, preferably 0.04 to 0.2 wt%.
  • Nitrogen is an element that forms nitride, and it exists in an interstitial form, so if it is excessively contained, it can lead to a decrease in impact toughness and formability. Considering this, the upper limit of nitrogen content is limited to 0.2 wt% or less. However, if the nitrogen (N) content is too low, TiN crystallization may be lowered and the equiaxed crystal rate of the slab may be lowered.
  • the content of silicon (Si) may be 0.01 to 1.0 wt%, preferably 0.05 to 0.60 wt%.
  • Si can be added to deoxidize molten steel during steelmaking and is an effective element in stabilizing ferrite. If the amount of silicon (Si) is less than 0.01 wt%, the refining price becomes expensive. However, if the silicon content exceeds 1.0 wt%, there is a problem that the formability decreases due to increased impurities.
  • the content of manganese (Mn) may be 0.01 to 1.0 wt%, preferably 0.20 to 0.95 wt%.
  • Mn is an effective element in improving corrosion resistance. If the amount of manganese (Mn) is less than 0.01 wt%, the refining price becomes expensive, and if it exceeds 1.0 wt%, impurities increase and formability deteriorates.
  • the content of phosphorus (P) may be 0.001 to 0.05 wt%, preferably 0.001 to 0.020 wt%.
  • the amount of phosphorus (P) is less than 0.001 wt%, there is a problem that the refining price becomes expensive. However, if the phosphorus content exceeds 0.05 wt%, impurities increase and formability is reduced.
  • the content of chromium (Cr) may be 13.0 to 20.0 wt%, preferably 13.5 to 17.5 wt%.
  • Cr is an effective element in ensuring corrosion resistance of steel. If the amount of chromium (Cr) is less than 13.0 wt%, there is a problem that corrosion resistance deteriorates. However, if the chromium content exceeds 20.0wt%, there is a problem of poor formability.
  • the content of titanium (Ti) may be 0.05 to 0.2 wt%, preferably 0.05 to 0.17 wt%.
  • Ti is an element that can form precipitates by preferentially combining with interstitial elements such as C and N. If the amount of titanium (Ti) is less than 0.05 wt%, there may be difficulties in manufacturing forming Ti-based inclusions. If the titanium content is excessive, there may be a problem of surface defects occurring where the Ti component reacts with oxygen and turns yellow.
  • the remaining component of the ferritic stainless steel according to the present invention is iron (Fe).
  • Fe iron
  • ferritic stainless steel according to one embodiment may satisfy the following equation (1).
  • Equation (1) 2*[Ti]/[N] ⁇ 2.3
  • the value of 2*[Ti]/[N] may be specifically 0.5 to 2.3, more specifically 1.0 to 2.3, and more specifically 1.7 to 2.3.
  • the ferritic stainless steel according to an embodiment of the present invention has a further improved effect of controlling the microstructure, and can have better processability and resistance to scuffing.
  • the ferritic stainless steel according to one embodiment may have a ridging height of 10 ⁇ m or less measured after being stretched by 15% in a direction perpendicular to the rolling direction.
  • the ferritic stainless steel according to one embodiment may have an elongation of 32% or more, and preferably, the cold-rolled annealed material with a thickness of about 0.4 to 0.6 mm may have an elongation of 32% or more. The higher the elongation, the better the processability can be.
  • Ferritic stainless steel according to one embodiment may have a crystal grain size of 20 to 25 ⁇ m, preferably 20 to 23 ⁇ m.
  • the average grain size of stainless steel is limited to 20 to 25 ⁇ m, the desired elongation and ridging height can be simultaneously satisfied due to the refinement of the casting structure.
  • the method for manufacturing ferritic stainless steel with improved processability and resistance to scuffing includes, in weight percent: carbon (C): 0.0005 to 0.02%, nitrogen (N): 0.01 to 0.2%, silicon (Si): 0.01 to 1.0%, manganese (Mn): 0.01 to 1.0%, phosphorus (P): 0.001 to 0.05%, chromium (Cr): 13.0 to 20.0%, titanium (Ti): 0.05 to 0.2%, remaining iron (Fe) and manufacturing a slab containing unavoidable impurities and satisfying the following formula (1); reheating the slab; Hot rolling and then hot rolling annealing the reheated slab; and cold rolling the hot rolled material and then cold rolling annealing the hot rolled material.
  • Equation (1) 2*[Ti]/[N] ⁇ 2.3
  • the slab can be heated to a temperature of 1,000 to 1,300°C in a hot rolling furnace and then hot rolled to produce a hot rolled steel sheet.
  • the heating temperature may be 1,000°C or higher. However, if the heating temperature is too high, internal crystal grains may become too coarse, and surface oxidation may occur severely, causing surface defects. Considering this, the upper limit of the heating temperature may be limited to 1,300°C.
  • finish rolling may be performed at 700 to 900°C.
  • finish rolling temperature is less than 700°C, sticking may occur on the surface of the slab during hot rolling. However, if the finish rolling temperature exceeds 900°C, coarse ferrite crystal grains may be formed, which may result in poor anti-sting properties.
  • Hot rolled materials recrystallize the casting structure through hot rolling annealing.
  • hot rolling annealing can be performed at a temperature of 700 to 900°C.
  • the hot rolling annealing temperature is low, the stress formed during hot rolling may not be sufficiently removed and workability may be reduced. However, if the hot rolling annealing temperature is too high, the strength may decrease due to grain coarsening and the resistance to cracking may decrease.
  • the hot rolled annealed material can be cold rolled and then cold rolled and annealed to produce a cold rolled steel sheet.
  • cold rolling annealing can be performed at a temperature of 800 to 850°C.
  • the crystal grain size can be controlled to 20 to 25 ⁇ m.
  • the cold rolling annealing temperature exceeds 850°C, the crystal grain size becomes coarse, and as a result, a ⁇ 001 ⁇ /ND crystal orientation structure that reduces the resistance to cracking grows.
  • the ⁇ 001 ⁇ /ND crystal orientation structure grows, the plastic anisotropy with the matrix increases, which not only reduces the resistance to scratching but also reduces the surface roughness.
  • the cold rolling annealing temperature is less than 800°C, recrystallization does not occur, which may result in both elongation and anti-stiffness being inferior.
  • grain refinement within the casting structure can be realized to secure the anti-ringing properties and elongation of ferritic stainless steel.
  • Stainless steel manufactured according to one embodiment may have a crystal grain size in the range of 20 to 25 ⁇ m. By satisfying the above grain size range, stainless steel with excellent machinability and desired machinability and anti-ringing properties can be obtained.
  • Stainless steel manufactured according to one embodiment may have a ridging height of 10 ⁇ m or less measured after being stretched by 15% in a direction perpendicular to the rolling direction. By satisfying the above ridging height range, it is possible to obtain stainless steel with fewer streaks after processing and the desired glossiness.
  • Stainless steel manufactured according to one embodiment may have an elongation of 32% or more. By satisfying the above elongation range, the steel material is easily stretched during forming, and stainless steel with excellent formability can be obtained.
  • Slabs were manufactured in a vacuum induction melting furnace for various alloy composition ranges shown in Table 1 below.
  • the manufactured slab was reheated in a furnace at 1,100°C, then hot rolled to produce a hot rolled steel sheet, and then air cooled.
  • the air-cooled hot-rolled steel sheet was hot-rolled and annealed at 850°C, then cold-rolled to a thickness of 0.5 mm, and then cold-rolled and annealed to the temperature shown in Table 2 below to prepare a cold-rolled steel sheet specimen.
  • Equation (1) 2*[Ti]/[N]
  • Table 2 below shows the average grain size in the cast structure at each cold rolling annealing temperature for steels having the alloy composition of Table 1, and the ridging height and elongation measured after being stretched by 15%.
  • Figure 1 shows the correlation between the ridging height and elongation at each cold rolling annealing temperature for steel materials having an alloy composition of steel 3.
  • Crystal grain size was measured by photographing the cast structure using OM (optical microscopy).
  • Figures 2a to 2e are photographs of the crystal grain size of stainless steel obtained by processing a steel material with an alloy composition of Steel 3 at cold rolling annealing temperatures of 750°C, 800°C, 850°C, 900°C, and 950°C, respectively.
  • the ridging height is determined by measuring the size of the specimen. After tensing the specimen by 15% in the direction perpendicular to the rolling direction, the ridging bending height was measured using a surface roughness machine.
  • the elongation rate was calculated from the amount elongated until the moment of fracture when a cold-rolled stainless steel product was uniaxially stretched, divided by the initial length.
  • steels 3, 5, 6, and 9 satisfy the alloy composition, component range, and equation (1) presented in the present invention, and if they satisfy the cold rolling annealing temperature, the casting structure
  • the crystal grain size was refined to 20 to 25 ⁇ m (see FIGS. 2B and 2C), the ridging height was 10 ⁇ m or less, and the elongation was 32% or more.
  • the invention example that satisfies all of the alloy composition, component range, equation (1), and cold rolling annealing temperature is excellent in both workability and anti-ringing properties.
  • steels 1, 2, 4, 7, and 8 have a low content of N that can combine with Ti, even though the value of equation (1) exceeds 2.3 and the cold rolling annealing temperature satisfies 800 to 850°C, resulting in equiaxed crystal grain refinement. could not be implemented. Accordingly, it can be confirmed that the jing resistance is also poor.
  • ferritic stainless steel with improved processability and ridging is provided by optimizing the steel components and manufacturing process and controlling the crystal grain size of the final cold-rolled annealed material, and a manufacturing method thereof. As it is possible, industrial applicability is recognized.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

The present invention pertains to a ferritic stainless steel with improved workability and ridging resistance, and a manufacturing method thereof. A ferritic stainless steel with improved workability and ridging resistance according to an embodiment of the present invention contains, in wt%, 0.0005-0.02% of carbon (C), 0.01-0.2% of nitrogen (N), 0.01-1.0% of silicon (Si), 0.01-1.0% of manganese (Mn), 0.001-0.05% of phosphorus (P), 13.0-20.0% of chromium (Cr), and 0.05-0.2% of titanium (Ti), with the remainder comprising iron (Fe) and inevitable impurities, satisfies expression (1), and may have a grain size of 20 to 25 µm. Expression (1): 2*[Ti]/[N] ≤ 2.3 In expression (1), [Ti] and [N] refer to the content (in wt%) of the respective elements.

Description

가공성 및 내리징성이 향상된 페라이트계 스테인리스강 및 이의 제조방법Ferritic stainless steel with improved machinability and anti-scratch properties and manufacturing method thereof
본 발명은 가공성 및 내리징성이 향상된 페라이트계 스테인리스강 및 이의 제조방법에 관한 것이다.The present invention relates to a ferritic stainless steel with improved processability and anti-scratch properties and a method of manufacturing the same.
페라이트계 스테인리스 강재는 고가의 합금원소가 적게 첨가되면서도 내식성이 뛰어나 오스테나이트계 스테인리스 강재에 비하여 가격 경쟁력이 높은 강재이다. 페라이트계 스테인리스 강재는 건축재료, 수송기기, 가전, 주방기기 등의 용도에 사용되고 있다. Ferritic stainless steel has excellent corrosion resistance while adding a small amount of expensive alloy elements, making it more cost-competitive than austenitic stainless steel. Ferritic stainless steels are used in building materials, transportation equipment, home appliances, and kitchen appliances.
페라이트계 스테인리스 냉연제품은 딥드로잉(Deep Drawing)과 같은 성형가공 시 줄무늬 모양의 리징(Ridging) 결함이 발생하는 문제점을 가지고 있다. 이러한 리징 결함은 제품의 외관을 나쁘게 할 뿐만 아니라 리징이 심하게 발생할 경우 성형 후에 연마공정이 추가되기 때문에 제조단가가 높아지는 문제점이 있다.Ferritic stainless steel cold-rolled products have a problem in that stripe-shaped ridging defects occur during forming processing such as deep drawing. These ridging defects not only worsen the appearance of the product, but also increase the manufacturing cost because a polishing process is added after molding when severe ridging occurs.
리징 결함을 해결하기 위해, 종래에는 극한 저온에서의 열간압연, 이속 압연 및 냉연 재압 등 다양한 제조방법이 제안되었다. 그러나, 종래 제안된 제조방법은 현장 적용이 어렵고 제조원가를 상승시켜 제품의 생산성을 저하시키는 문제가 있다.To solve ridging defects, various manufacturing methods have been proposed in the past, such as hot rolling at extremely low temperatures, two-speed rolling, and cold rolling re-pressing. However, the conventionally proposed manufacturing method has the problem of being difficult to apply in the field and increasing manufacturing costs, thereby reducing product productivity.
본 발명은 냉연제품의 가공성 향상을 위해, 강의 성분과 제조공정을 최적화하여 최종 냉연소둔재의 결정입도를 제어함으로써 가공성 및 리징(Ridging)이 개선된 페라이트계 스테인리스강 및 이의 제조방법을 제공하고자 한다.The present invention aims to provide a ferritic stainless steel with improved processability and ridging and a manufacturing method thereof by controlling the crystal grain size of the final cold-rolled annealed material by optimizing the steel components and manufacturing process to improve the processability of cold-rolled products. .
그러나, 본원이 해결하고자 하는 과제는 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.However, the problem to be solved by the present application is not limited to the problems mentioned above, and other problems not mentioned will be clearly understood by those skilled in the art from the description below.
본 발명의 일 측면에 따른 가공성 및 내리징성이 향상된 페라이트계 스테인리스강은, 중량%로, 탄소(C): 0.0005 내지 0.02%, 질소(N): 0.01 내지 0.2%, 실리콘(Si): 0.01 내지 1.0%, 망간(Mn): 0.01 내지 1.0%, 인(P): 0.001 내지 0.05%, 크롬(Cr): 13.0 내지 20.0%, 티타늄(Ti): 0.05 내지 0.2%, 나머지 철(Fe) 및 불가피한 불순물을 포함하고, 하기 식 (1)을 만족하며, 결정입도가 20 내지 25 ㎛의 범위를 만족할 수 있다.The ferritic stainless steel with improved processability and resistance to scuffing according to an aspect of the present invention has, in weight percent, carbon (C): 0.0005 to 0.02%, nitrogen (N): 0.01 to 0.2%, and silicon (Si): 0.01 to 0.02%. 1.0%, manganese (Mn): 0.01 to 1.0%, phosphorus (P): 0.001 to 0.05%, chromium (Cr): 13.0 to 20.0%, titanium (Ti): 0.05 to 0.2%, remaining iron (Fe) and inevitable It contains impurities, satisfies the following equation (1), and has a crystal grain size of 20 to 25 ㎛.
식 (1): 2*[Ti]/[N] ≤ 2.3Equation (1): 2*[Ti]/[N] ≤ 2.3
상기 식 (1)에서, [Ti] 및 [N]는 각 원소의 중량% 함량을 의미한다.In formula (1), [Ti] and [N] mean the weight percent content of each element.
일 실시예에 따른 가공성 및 내리징성이 향상된 페라이트계 스테인리스강은, 15% 인장한 후 측정한 리징 높이가 10 ㎛ 이하일 수 있다.In the ferritic stainless steel with improved processability and anti-ringing properties according to one embodiment, the ridging height measured after being stretched by 15% may be 10 ㎛ or less.
일 실시예에 따른 가공성 및 내리징성이 향상된 페라이트계 스테인리스강은, 연신율이 32% 이상일 수 있다.Ferritic stainless steel with improved processability and anti-stinging properties according to one embodiment may have an elongation of 32% or more.
본 발명의 일 측면에 따른 가공성 및 내리징성이 향상된 페라이트계 스테인리스강의 제조방법은, 중량%로, 탄소(C): 0.0005 내지 0.02%, 질소(N): 0.01 내지 0.2%, 실리콘(Si): 0.01 내지 1.0%, 망간(Mn): 0.01 내지 1.0%, 인(P): 0.001 내지 0.05%, 크롬(Cr): 13.0 내지 20.0%, 티타늄(Ti): 0.05 내지 0.2%, 나머지 철(Fe) 및 불가피한 불순물을 포함하고, 하기 식 (1)을 만족하는 슬라브를 제조하는 단계; 상기 슬라브를 재가열하는 단계; 상기 재가열된 슬라브를 열간압연 후 열연소둔하는 단계; 및 상기 열간압연재를 냉간압연한 후 800 내지 850℃에서 냉연소둔하는 단계;를 포함할 수 있다.The method for manufacturing ferritic stainless steel with improved processability and resistance to scuffing according to an aspect of the present invention includes, in weight percent: carbon (C): 0.0005 to 0.02%, nitrogen (N): 0.01 to 0.2%, silicon (Si): 0.01 to 1.0%, manganese (Mn): 0.01 to 1.0%, phosphorus (P): 0.001 to 0.05%, chromium (Cr): 13.0 to 20.0%, titanium (Ti): 0.05 to 0.2%, remainder iron (Fe) and manufacturing a slab containing unavoidable impurities and satisfying the following formula (1); reheating the slab; Hot rolling and then hot rolling annealing the reheated slab; And it may include the step of cold rolling the hot rolled material and then cold rolling and annealing it at 800 to 850°C.
식 (1): 2*[Ti]/[N] ≤ 2.3Equation (1): 2*[Ti]/[N] ≤ 2.3
상기 식 (1)에서, [Ti] 및 [N]는 각 원소의 중량% 함량을 의미한다.In formula (1), [Ti] and [N] mean the weight percent content of each element.
일 실시예에 따른 가공성 및 내리징성이 향상된 페라이트계 스테인리스강의 제조방법에서, 상기 재가열 단계는, 1,000 내지 1,300℃에서 수행될 수 있다.In the method for manufacturing ferritic stainless steel with improved processability and anti-scorching properties according to an embodiment, the reheating step may be performed at 1,000 to 1,300°C.
일 실시예에 따른 가공성 및 내리징성이 향상된 페라이트계 스테인리스강의 제조방법에서, 상기 스테인리스강은 결정입도가 20 내지 25 ㎛의 범위를 만족할 수 있다.In a method of manufacturing ferritic stainless steel with improved processability and anti-scratch properties according to an embodiment, the stainless steel may have a crystal grain size within the range of 20 to 25 ㎛.
일 실시예에 따른 가공성 및 내리징성이 향상된 페라이트계 스테인리스강의 제조방법에서, 상기 스테인리스강은 15% 인장한 후 측정한 리징 높이가 10 ㎛ 이하일 수 있다.In a method of manufacturing a ferritic stainless steel with improved processability and resistance to ridging according to an embodiment, the ridging height of the stainless steel measured after being stretched by 15% may be 10 ㎛ or less.
일 실시예에 따른 가공성 및 내리징성이 향상된 페라이트계 스테인리스강의 제조방법에서, 상기 스테인리스강은 연신율이 32% 이상일 수 있다.In a method of manufacturing ferritic stainless steel with improved processability and resistance to scuffing according to an embodiment, the stainless steel may have an elongation of 32% or more.
본 발명은 냉연제품의 가공성 향상을 위해, 강의 성분과 제조공정을 최적화하여 최종 냉연소둔재의 결정입도를 제어함으로써 가공성 및 리징(Ridging)이 개선된 페라이트계 스테인리스강 및 이의 제조방법을 제공할 수 있다.The present invention can provide a ferritic stainless steel with improved processability and ridging and a manufacturing method thereof by controlling the crystal grain size of the final cold-rolled annealed material by optimizing the steel components and manufacturing process to improve the processability of cold-rolled products. there is.
도 1은 일 실시예에 따른 스테인리스강 제조 시 소둔온도에 따른 리징 높이(실선) 및 연신율(점선)을 나타낸 그래프이다.Figure 1 is a graph showing the ridging height (solid line) and elongation (dotted line) according to annealing temperature when manufacturing stainless steel according to an embodiment.
도 2a는 냉연소둔 온도 750℃로 제조된 스테인리스강의 결정입도를 나타낸 사진이다.Figure 2a is a photograph showing the crystal grain size of stainless steel manufactured at a cold rolling annealing temperature of 750°C.
도 2b는 냉연소둔 온도 800℃로 제조된 스테인리스강의 결정입도를 나타낸 사진이다.Figure 2b is a photograph showing the crystal grain size of stainless steel manufactured at a cold rolling annealing temperature of 800°C.
도 2c는 냉연소둔 온도 850℃로 제조된 스테인리스강의 결정입도를 나타낸 사진이다.Figure 2c is a photograph showing the crystal grain size of stainless steel manufactured at a cold rolling annealing temperature of 850°C.
도 2d는 냉연소둔 온도 900℃로 제조된 스테인리스강의 결정입도를 나타낸 사진이다.Figure 2d is a photograph showing the crystal grain size of stainless steel manufactured at a cold rolling annealing temperature of 900°C.
도 2e는 냉연소둔 온도 950℃로 제조된 스테인리스강의 결정입도를 나타낸 사진이다.Figure 2e is a photograph showing the crystal grain size of stainless steel manufactured at a cold rolling annealing temperature of 950°C.
일 실시예에 따른 가공성 및 내리징성이 향상된 페라이트계 스테인리스강은 중량%로, 탄소(C): 0.0005 내지 0.02%, 질소(N): 0.01 내지 0.2%, 실리콘(Si): 0.01 내지 1.0%, 망간(Mn): 0.01 내지 1.0%, 인(P): 0.001 내지 0.05%, 크롬(Cr): 13.0 내지 20.0%, 티타늄(Ti): 0.05 내지 0.2%, 나머지 철(Fe) 및 불가피한 불순물을 포함하고, 하기 식 (1)을 만족하며, 결정입도가 20 내지 25 ㎛의 범위를 만족할 수 있다.The ferritic stainless steel with improved processability and scratch resistance according to an embodiment includes, in weight percent, carbon (C): 0.0005 to 0.02%, nitrogen (N): 0.01 to 0.2%, silicon (Si): 0.01 to 1.0%, Manganese (Mn): 0.01 to 1.0%, phosphorus (P): 0.001 to 0.05%, chromium (Cr): 13.0 to 20.0%, titanium (Ti): 0.05 to 0.2%, including the remaining iron (Fe) and inevitable impurities. and satisfies the following equation (1), and the crystal grain size may satisfy the range of 20 to 25 ㎛.
식 (1): 2*[Ti]/[N] ≤ 2.3Equation (1): 2*[Ti]/[N] ≤ 2.3
상기 식 (1)에서, [Ti] 및 [N]는 각 원소의 중량% 함량을 의미한다.In formula (1), [Ti] and [N] mean the weight percent content of each element.
이하에서는 본 발명의 바람직한 실시형태들을 설명한다. 그러나, 본 발명의 실시형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 기술사상이 이하에서 설명하는 실시형태로 한정되는 것은 아니다. 또한, 본 발명의 실시형태는 당해 기술분야에서 평균적인 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위해서 제공되는 것이다.Hereinafter, preferred embodiments of the present invention will be described. However, the embodiments of the present invention may be modified into various other forms, and the technical idea of the present invention is not limited to the embodiments described below. Additionally, the embodiments of the present invention are provided to more completely explain the present invention to those with average knowledge in the relevant technical field.
본 출원에서 사용하는 용어는 단지 특정한 예시를 설명하기 위하여 사용되는 것이다. 때문에 가령 단수의 표현은 문맥상 명백하게 단수여야만 하는 것이 아닌 한, 복수의 표현을 포함한다. 덧붙여, 본 출원에서 사용되는 "포함하다" 또는 "구비하다" 등의 용어는 명세서 상에 기재된 특징, 단계, 기능, 구성요소 또는 이들을 조합한 것이 존재함을 명확히 지칭하기 위하여 사용되는 것이지, 다른 특징들이나 단계, 기능, 구성요소 또는 이들을 조합한 것의 존재를 예비적으로 배제하고자 사용되는 것이 아님에 유의해야 한다.The terms used in this application are only used to describe specific examples. Therefore, for example, a singular expression includes a plural expression, unless the context clearly requires it to be singular. In addition, terms such as “comprise” or “comprise” used in the present application are used to clearly indicate the presence of features, steps, functions, components, or combinations thereof described in the specification, and are not used to indicate other features. It should be noted that it is not used to preliminarily rule out the existence of any elements, steps, functions, components, or combinations thereof.
한편, 다르게 정의되지 않는 한, 본 명세서에서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가진 것으로 보아야 한다. 따라서, 본 명세서에서 명확하게 정의하지 않는 한, 특정 용어가 과도하게 이상적이거나 형식적인 의미로 해석되어서는 안 된다. 가령, 본 명세서에서 단수의 표현은 문맥상 명백하게 예외가 있지 않는 한, 복수의 표현을 포함한다.Meanwhile, unless otherwise defined, all terms used in this specification should be viewed as having the same meaning as generally understood by those skilled in the art to which the present invention pertains. Therefore, unless clearly defined in this specification, specific terms should not be interpreted in an overly idealistic or formal sense. For example, in this specification, singular expressions include plural expressions unless the context clearly dictates otherwise.
또한, 본 명세서의 "약", "실질적으로" 등은 언급한 의미에 고유한 제조 및 물질 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되고, 본 발명의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다.In addition, in this specification, "about", "substantially", etc. are used in the meaning of or close to that value when manufacturing and material tolerances inherent in the stated meaning are presented, and are used accurately to aid understanding of the present invention. It is used to prevent unscrupulous infringers from unfairly exploiting disclosures where absolute figures are mentioned.
본 발명의 일 측면에 따른 가공성 및 내리징성이 향상된 페라이트계 스테인리스강은, 중량%로, 탄소(C): 0.0005 내지 0.02%, 질소(N): 0.01 내지 0.2%, 실리콘(Si): 0.01 내지 1.0%, 망간(Mn): 0.01 내지 1.0%, 인(P): 0.001 내지 0.05%, 크롬(Cr): 13.0 내지 20.0%, 티타늄(Ti): 0.05 내지 0.2%, 나머지 철(Fe) 및 불가피한 불순물을 포함할 수 있다.The ferritic stainless steel with improved processability and resistance to scuffing according to an aspect of the present invention has, in weight percent, carbon (C): 0.0005 to 0.02%, nitrogen (N): 0.01 to 0.2%, and silicon (Si): 0.01 to 0.02%. 1.0%, manganese (Mn): 0.01 to 1.0%, phosphorus (P): 0.001 to 0.05%, chromium (Cr): 13.0 to 20.0%, titanium (Ti): 0.05 to 0.2%, remaining iron (Fe) and inevitable May contain impurities.
이하, 각 합금원소의 성분범위를 한정한 이유에 대하여 설명한다. 이하에서는 특별한 기재가 없는 한 단위는 중량%이다.Hereinafter, the reason for limiting the composition range of each alloy element will be explained. Hereinafter, unless otherwise specified, the unit is weight%.
탄소(C)의 함량은 0.0005 내지 0.02 wt%, 바람직하게는 0.01 내지 0.02 wt%일 수 있다.The carbon (C) content may be 0.0005 to 0.02 wt%, preferably 0.01 to 0.02 wt%.
C는 강의 강도 향상에 크게 영향을 미치는 원소이다. 탄소(C)의 양이 0.0005 wt% 미만이면, 고순도 제품을 만들기 위한 정련 가격이 비싸질 수 있다. 그러나, 탄소 함량이 0.02 wt%를 초과하면, 내식성과 성형성이 저하될 수 있다.C is an element that greatly affects the improvement of steel strength. If the amount of carbon (C) is less than 0.0005 wt%, the refining price to produce a high-purity product may be expensive. However, if the carbon content exceeds 0.02 wt%, corrosion resistance and formability may be reduced.
질소(N)의 함량은 0.01 내지 0.2 wt%, 바람직하게는 0.04 내지 0.2 wt%일 수 있다.The nitrogen (N) content may be 0.01 to 0.2 wt%, preferably 0.04 to 0.2 wt%.
질소는 질화물을 형성시키는 원소로서, 침입형으로 존재하게 되므로 과도하게 함유되면 충격인성 및 성형성의 저하를 초래할 수 있다. 이를 고려하여 질소 함량의 상한은 0.2 wt% 이하로 한정한다. 그러나, 질소(N)의 함량이 너무 낮으면 TiN 정출이 낮아져 슬라브의 등축정율이 낮아질 수 있다.Nitrogen is an element that forms nitride, and it exists in an interstitial form, so if it is excessively contained, it can lead to a decrease in impact toughness and formability. Considering this, the upper limit of nitrogen content is limited to 0.2 wt% or less. However, if the nitrogen (N) content is too low, TiN crystallization may be lowered and the equiaxed crystal rate of the slab may be lowered.
실리콘(Si)의 함량은 0.01 내지 1.0 wt%, 바람직하게는 0.05 내지 0.60 wt%일 수 있다.The content of silicon (Si) may be 0.01 to 1.0 wt%, preferably 0.05 to 0.60 wt%.
Si은 제강 시 용강의 탈산을 위해 첨가될 수 있고, 페라이트 안정화에 효과적인 원소이다. 실리콘(Si)의 양이 0.01 wt% 미만이면 정련 가격이 비싸지는 문제가 있다. 그러나, 실리콘 함량이 1.0 wt%를 초과하면, 불순물이 증가하여 성형성이 하락하는 문제가 있다.Si can be added to deoxidize molten steel during steelmaking and is an effective element in stabilizing ferrite. If the amount of silicon (Si) is less than 0.01 wt%, the refining price becomes expensive. However, if the silicon content exceeds 1.0 wt%, there is a problem that the formability decreases due to increased impurities.
망간(Mn)의 함량은 0.01 내지 1.0 wt%, 바람직하게는 0.20 내지 0.95 wt%일 수 있다.The content of manganese (Mn) may be 0.01 to 1.0 wt%, preferably 0.20 to 0.95 wt%.
Mn은 내식성 개선에 효과적인 원소이다. 망간(Mn)의 양이 0.01wt% 미만이면 정련 가격이 비싸지는 문제가 있고, 1.0wt%를 초과하면 불순물이 증가하여 성형성이 떨어지는 문제가 있다.Mn is an effective element in improving corrosion resistance. If the amount of manganese (Mn) is less than 0.01 wt%, the refining price becomes expensive, and if it exceeds 1.0 wt%, impurities increase and formability deteriorates.
인(P)의 함량은 0.001 내지 0.05 wt%, 바람직하게는 0.001 내지 0.020 wt%일 수 있다.The content of phosphorus (P) may be 0.001 to 0.05 wt%, preferably 0.001 to 0.020 wt%.
인(P)의 양이 0.001wt% 미만이면, 정련 가격이 비싸지는 문제가 있다. 그러나, 인의 함량이 0.05wt%를 초과하면, 불순물이 증가하여 성형성이 떨어지는 문제가 있다. If the amount of phosphorus (P) is less than 0.001 wt%, there is a problem that the refining price becomes expensive. However, if the phosphorus content exceeds 0.05 wt%, impurities increase and formability is reduced.
크롬(Cr)의 함량은 13.0 내지 20.0 wt%, 바람직하게는 13.5 내지 17.5 wt%일 수 있다. The content of chromium (Cr) may be 13.0 to 20.0 wt%, preferably 13.5 to 17.5 wt%.
Cr은 강의 내식성을 확보하는데 효과적인 원소이다. 크롬(Cr)의 양이 13.0wt% 미만이면, 내식성 나빠지는 문제가 있다. 그러나, 크롬 함량이 20.0wt%를 초과하면, 성형성이 떨어지는 문제가 있다.Cr is an effective element in ensuring corrosion resistance of steel. If the amount of chromium (Cr) is less than 13.0 wt%, there is a problem that corrosion resistance deteriorates. However, if the chromium content exceeds 20.0wt%, there is a problem of poor formability.
타이타늄(Ti)의 함량은 0.05 내지 0.2 wt%, 바람직하게는, 0.05 내지 0.17 wt%일 수 있다.The content of titanium (Ti) may be 0.05 to 0.2 wt%, preferably 0.05 to 0.17 wt%.
Ti은 C 및 N와 같은 침입형 원소와 우선적으로 결합하여 석출물을 형성할 수 있는 원소이다. 타이타늄(Ti)의 양이 0.05 wt% 미만이면, Ti계 개재물을 형성하는 제조 시 어려움이 있을 수 있다. 타이타늄 함량이 과도하면, Ti 성분이 산소와 반응하여 노랗게 변색되는 표면결함이 발생하는 문제가 있을 수 있다.Ti is an element that can form precipitates by preferentially combining with interstitial elements such as C and N. If the amount of titanium (Ti) is less than 0.05 wt%, there may be difficulties in manufacturing forming Ti-based inclusions. If the titanium content is excessive, there may be a problem of surface defects occurring where the Ti component reacts with oxygen and turns yellow.
본 발명에 따른 페라이트계 스테인리스강의 나머지 성분은 철(Fe)이다. 다만, 통상의 제조과정에서는 원료 또는 주위 환경으로부터 의도되지 않는 불순물들이 불가피하게 혼입될 수 있으므로, 이를 배제할 수는 없다. 이들 불순물들은 통상의 제조과정의 기술자라면 누구라도 알 수 있는 것이기 때문에 그 모든 내용을 특별히 본 명세서에서 언급하지는 않는다.The remaining component of the ferritic stainless steel according to the present invention is iron (Fe). However, in the normal manufacturing process, unintended impurities from raw materials or the surrounding environment may inevitably be mixed, so this cannot be ruled out. Since these impurities are known to anyone skilled in the ordinary manufacturing process, all of them are not specifically mentioned in this specification.
또한, 일 실시예에 따른 페라이트계 스테인리스강은, 하기 식 (1)의 만족할 수 있다. Additionally, the ferritic stainless steel according to one embodiment may satisfy the following equation (1).
식 (1): 2*[Ti]/[N] ≤ 2.3Equation (1): 2*[Ti]/[N] ≤ 2.3
상기 식 (1)에서, [Ti] 및 [N]는 각 원소의 중량% 함량을 의미한다.In formula (1), [Ti] and [N] mean the weight percent content of each element.
본 발명에서는 스테인리스강의 내리징성을 개선하기 위해, Ti와 N의 함량을 조절하여 TiN 석출물을 형성시켜 미세한 주조조직을 얻고자 하였다. 합금성분에 의해 계산되는 식 (1)에서 2*[Ti]/[N]의 값이 2.3을 초과하면, Ti와 결합할 수 있는 충분한 N이 없어, 주조조직 미세화 효과를 얻을 수 없다. In the present invention, in order to improve the anti-ringing properties of stainless steel, an attempt was made to obtain a fine casting structure by controlling the contents of Ti and N to form TiN precipitates. If the value of 2*[Ti]/[N] in equation (1) calculated based on the alloy composition exceeds 2.3, there is not enough N to combine with Ti, and the effect of refining the cast structure cannot be obtained.
상기 식 (1)에서 2*[Ti]/[N]의 값은, 구체적으로 0.5 내지 2.3, 보다 구체적으로 1.0 내지 2.3, 보다 구체적으로, 1.7 내지 2.3 일 수 있다. 상기 범위 내에서, 본 발명 일 실시예에 따른 페라이트계 스테인리스강은, 미세조직을 제어하는 효과가 더욱 향상되어, 더욱 우수한 가공성 및 내리징성을 가질 수 있다. In the formula (1), the value of 2*[Ti]/[N] may be specifically 0.5 to 2.3, more specifically 1.0 to 2.3, and more specifically 1.7 to 2.3. Within the above range, the ferritic stainless steel according to an embodiment of the present invention has a further improved effect of controlling the microstructure, and can have better processability and resistance to scuffing.
일 실시예에 따른 페라이트계 스테인리스강은, 압연 방향과 수직한 방향으로 15% 인장한 후 측정한 리징 높이가 10 ㎛ 이하일 수 있다. 또한, 일 실시예에 따른 페라이트계 스테인리스강은, 연신율이 32% 이상일 수 있고, 바람직하게는 약 0.4 내지 0.6 mm 두께의 냉연소둔재의 연신율이 32% 이상일 수 있다. 연신율이 높을수록 가공성이 향상될 수 있다.The ferritic stainless steel according to one embodiment may have a ridging height of 10 ㎛ or less measured after being stretched by 15% in a direction perpendicular to the rolling direction. In addition, the ferritic stainless steel according to one embodiment may have an elongation of 32% or more, and preferably, the cold-rolled annealed material with a thickness of about 0.4 to 0.6 mm may have an elongation of 32% or more. The higher the elongation, the better the processability can be.
가전용으로 사용되는 스테인리스 냉연제품의 가공성을 위해, 내리징성과 연신율을 동시에 만족하여야 한다. 성형 시 강재가 잘 늘어나야 하므로 32% 이상의 연신율을 만족하면서, 가공 후 줄무늬 발생이 적고 원하는 광택도를 가지기 위해 리징 높이를 약 10 ㎛ 이하, 바람직하게는 8.5 ㎛ 이하로 제한하는 것이 바람직하다.For the processability of cold-rolled stainless steel products used for home appliances, both cracking resistance and elongation must be satisfied. Since the steel must be well stretched during molding, it is desirable to limit the ridging height to about 10 ㎛ or less, preferably 8.5 ㎛ or less, in order to satisfy an elongation of 32% or more, reduce streaks after processing, and have the desired gloss.
일 실시예에 따른 페라이트계 스테인리스강은, 결정입도가 20 내지 25 ㎛, 바람직하게는 20 내지 23 ㎛의 범위를 만족할 수 있다. Ferritic stainless steel according to one embodiment may have a crystal grain size of 20 to 25 ㎛, preferably 20 to 23 ㎛.
스테인리스강의 평균 결정입도를 20 내지 25 ㎛로 제한하게 되면, 주조조직 미세화로 인해 목적하는 연신율과 리징 높이를 동시에 만족시킬 수 있다.If the average grain size of stainless steel is limited to 20 to 25 ㎛, the desired elongation and ridging height can be simultaneously satisfied due to the refinement of the casting structure.
다음으로, 본 발명의 다른 일 측면에 따른 내리징성이 향상된 페라이트계 스테인리스강 제조방법에 대하여 설명한다.Next, a method for manufacturing ferritic stainless steel with improved anti-sting properties according to another aspect of the present invention will be described.
본 발명의 일 측면에 따른 가공성 및 내리징성이 향상된 페라이트계 스테인리스강의 제조방법은, 중량%로, 탄소(C): 0.0005 내지 0.02%, 질소(N): 0.01 내지 0.2%, 실리콘(Si): 0.01 내지 1.0%, 망간(Mn): 0.01 내지 1.0%, 인(P): 0.001 내지 0.05%, 크롬(Cr): 13.0 내지 20.0%, 티타늄(Ti): 0.05 내지 0.2%, 나머지 철(Fe) 및 불가피한 불순물을 포함하고, 하기 식 (1)을 만족하는 슬라브를 제조하는 단계; 상기 슬라브를 재가열하는 단계; 상기 재가열된 슬라브를 열간압연 후 열연소둔하는 단계; 및 상기 열간압연재를 냉간압연한 후 냉연소둔하는 단계;를 포함할 수 있다.The method for manufacturing ferritic stainless steel with improved processability and resistance to scuffing according to an aspect of the present invention includes, in weight percent: carbon (C): 0.0005 to 0.02%, nitrogen (N): 0.01 to 0.2%, silicon (Si): 0.01 to 1.0%, manganese (Mn): 0.01 to 1.0%, phosphorus (P): 0.001 to 0.05%, chromium (Cr): 13.0 to 20.0%, titanium (Ti): 0.05 to 0.2%, remaining iron (Fe) and manufacturing a slab containing unavoidable impurities and satisfying the following formula (1); reheating the slab; Hot rolling and then hot rolling annealing the reheated slab; and cold rolling the hot rolled material and then cold rolling annealing the hot rolled material.
식 (1): 2*[Ti]/[N] ≤ 2.3Equation (1): 2*[Ti]/[N] ≤ 2.3
상기 식 (1)에서, [Ti] 및 [N]는 각 원소의 중량% 함량을 의미한다.In formula (1), [Ti] and [N] mean the weight percent content of each element.
상기 각 합금조성의 성분범위 수치 및 식 (1)의 한정 이유는 상술한 바와 같으며, 이하 각 제조단계에 대하여 보다 상세히 설명한다.The reasons for limiting the component range values and equation (1) of each alloy composition are as described above, and each manufacturing step will be described in more detail below.
먼저, 상기 합금조성을 만족하는 슬라브를 제조한 후, 일련의 재가열, 열간압연, 열연소둔, 냉간압연 및 냉연소둔하는 공정을 거칠 수 있다.First, after manufacturing a slab that satisfies the alloy composition, it can be subjected to a series of reheating, hot rolling, hot rolling annealing, cold rolling, and cold rolling annealing processes.
먼저, 상기 슬라브를 열연 가열로에서 1,000 내지 1,300℃의 온도로 가열한 후, 열간 압연하여 열연 강판을 제조할 수 있다.First, the slab can be heated to a temperature of 1,000 to 1,300°C in a hot rolling furnace and then hot rolled to produce a hot rolled steel sheet.
상기 가열 온도가 낮을 경우에는, 슬라브 제조 중 생성된 조대한 석출물들을 재분해하기 어려울 수 있다. 이를 고려하여, 가열 온도는 1,000℃ 이상일 수 있다. 그러나, 가열 온도가 지나치게 높을 경우에는, 내부 결정립이 너무 조대해질 수 있고, 표면 산화가 심하게 발생하여 표면결함을 유발할 수 있다. 이를 고려하여, 가열 온도의 상한은 1,300℃로 제한될 수 있다.If the heating temperature is low, it may be difficult to re-decompose the coarse precipitates generated during slab manufacturing. Considering this, the heating temperature may be 1,000°C or higher. However, if the heating temperature is too high, internal crystal grains may become too coarse, and surface oxidation may occur severely, causing surface defects. Considering this, the upper limit of the heating temperature may be limited to 1,300°C.
상기 열간압연에서, 마무리 압연은 700 내지 900℃에서 수행될 수 있다.In the hot rolling, finish rolling may be performed at 700 to 900°C.
마무리 압연 온도가 700℃ 미만인 경우에는, 열연 도중 슬라브의 판 표면에 스티킹(Sticking) 결합이 발생할 수 있다. 그러나, 마무리 압연 온도가 900℃를 초과하는 경우에는, 조대한 페라이트 결정립이 형성되어 내리징성이 떨어질 수 있다.If the finish rolling temperature is less than 700°C, sticking may occur on the surface of the slab during hot rolling. However, if the finish rolling temperature exceeds 900°C, coarse ferrite crystal grains may be formed, which may result in poor anti-sting properties.
열간압연재는 열연소둔을 통해 주조조직을 재결정화시킨다. 이때, 열연소둔은 700 내지 900℃의 온도에서 수행할 수 있다.Hot rolled materials recrystallize the casting structure through hot rolling annealing. At this time, hot rolling annealing can be performed at a temperature of 700 to 900°C.
상기 열연소둔 온도가 낮은 경우에는, 열간압연 시 형성된 응력이 충분히 제거되지 않아서 가공성이 떨어질 수 있다. 그러나, 열연소둔 온도가 너무 높은 경우에는, 결정립 조대화로 인한 강도가 저하되고 내리징성이 떨어질 수 있다.If the hot rolling annealing temperature is low, the stress formed during hot rolling may not be sufficiently removed and workability may be reduced. However, if the hot rolling annealing temperature is too high, the strength may decrease due to grain coarsening and the resistance to cracking may decrease.
열연소둔된 열간압연재는 냉간압연한 후 냉연소둔하여 냉연 강판을 제조할 수 있다. 이때, 냉연소둔은 800 내지 850℃의 온도에서 수행할 수 있다.The hot rolled annealed material can be cold rolled and then cold rolled and annealed to produce a cold rolled steel sheet. At this time, cold rolling annealing can be performed at a temperature of 800 to 850°C.
냉연소둔 온도를 만족함으로써 결정입도를 20 내지 25 ㎛로 제어할 수 있다. 냉연소둔 온도가 850℃ 초과인 경우, 결정립 사이즈가 조대해지고, 이로 인해 내리징성을 저하시키는 {001}/ND 결정방위의 조직이 성장하게 된다. {001}/ND 결정방위의 조직이 성장하면, 매트릭스와의 소성이방성이 증가하여 내리징성이 저하될 뿐만 아니라 표면조도 또한 열위해질 수 있다. 그러나, 냉연소둔 온도가 800℃ 미만인 경우, 재결정이 일어나지 않아 연신율과 내리징성 모두 열위해질 수 있다.By satisfying the cold rolling annealing temperature, the crystal grain size can be controlled to 20 to 25 ㎛. When the cold rolling annealing temperature exceeds 850°C, the crystal grain size becomes coarse, and as a result, a {001}/ND crystal orientation structure that reduces the resistance to cracking grows. When the {001}/ND crystal orientation structure grows, the plastic anisotropy with the matrix increases, which not only reduces the resistance to scratching but also reduces the surface roughness. However, when the cold rolling annealing temperature is less than 800°C, recrystallization does not occur, which may result in both elongation and anti-stiffness being inferior.
상술한 바와 같이, 합금성분 및 성분 관계식뿐만 아니라 재가열, 열연소둔, 및 냉연소둔 공정을 최적화함으로써 주조조직 내 결정립 미세화를 구현하여 페라이트계 스테인리스강의 내리징성 및 연신율을 확보할 수 있다.As described above, by optimizing the reheating, hot rolling annealing, and cold rolling annealing processes as well as the alloy components and component relations, grain refinement within the casting structure can be realized to secure the anti-ringing properties and elongation of ferritic stainless steel.
일 실시예에 따라 제조된 스테인리스강은 결정입도가 20 내지 25 ㎛의 범위를 만족할 수 있다. 상기 결정입도 범위를 만족함으로써, 목적하는 가공성 및 내리징성을 갖는 가공성이 우수한 스테인리스강을 얻을 수 있다.Stainless steel manufactured according to one embodiment may have a crystal grain size in the range of 20 to 25 ㎛. By satisfying the above grain size range, stainless steel with excellent machinability and desired machinability and anti-ringing properties can be obtained.
일 실시예에 따라 제조된 스테인리스강은 압연 방향과 수직한 방향으로 15% 인장한 후 측정한 리징 높이가 10 ㎛ 이하일 수 있다. 상기 리징 높이 범위를 만족함으로써, 가공 후 줄무늬 발생이 적고 원하는 광택도를 가지는 스테인리스강을 얻을 수 있다.Stainless steel manufactured according to one embodiment may have a ridging height of 10 ㎛ or less measured after being stretched by 15% in a direction perpendicular to the rolling direction. By satisfying the above ridging height range, it is possible to obtain stainless steel with fewer streaks after processing and the desired glossiness.
일 실시예에 따라 제조된 스테인리스강은 연신율이 32% 이상일 수 있다. 상기 연신율 범위를 만족함으로써, 성형 시 강재가 잘 늘어나 성형성이 우수한 스테인리스강을 얻을 수 있다.Stainless steel manufactured according to one embodiment may have an elongation of 32% or more. By satisfying the above elongation range, the steel material is easily stretched during forming, and stainless steel with excellent formability can be obtained.
이하, 실시예를 통하여 본 발명을 보다 상세히 설명한다. 그러나 하기의 실시예는 본 발명을 더욱 구체적으로 설명하기 위한 것으로서, 본 발명의 범위가 하기의 실시예에 의하여 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail through examples. However, the following examples are intended to illustrate the present invention in more detail, and the scope of the present invention is not limited by the following examples.
[실시예][Example]
하기 표 1에 나타낸 다양한 합금 성분범위에 대하여, 진공유도 용해로에서 슬라브를 제조했다. 제조된 슬라브는 1,100℃의 가열로에서 재가열한 후, 열간압연하여 열연 강판을 제조하고 공냉하였다. 공냉된 열연 강판에 대해 850℃에서 열연소둔을 수행한 다음, 0.5 mm의 두께까지 냉간압연한 후, 하기 표 2의 온도로 냉연소둔하여 냉연 강판 시편을 제조하였다.Slabs were manufactured in a vacuum induction melting furnace for various alloy composition ranges shown in Table 1 below. The manufactured slab was reheated in a furnace at 1,100°C, then hot rolled to produce a hot rolled steel sheet, and then air cooled. The air-cooled hot-rolled steel sheet was hot-rolled and annealed at 850°C, then cold-rolled to a thickness of 0.5 mm, and then cold-rolled and annealed to the temperature shown in Table 2 below to prepare a cold-rolled steel sheet specimen.
또한, 하기 표 1에 하기 식 (1)을 계산하여 식(1)의 값을 나타냈다.In addition, the following equation (1) was calculated and the value of equation (1) was shown in Table 1 below.
식 (1): 2*[Ti]/[N]Equation (1): 2*[Ti]/[N]
상기 식 (1)에서, [Ti] 및 [N]는 각 원소의 중량% 함량을 의미한다.In formula (1), [Ti] and [N] mean the weight percent content of each element.
구분division 합금성분 (중량%)Alloy composition (% by weight) 식(1)Equation (1) 비고note
CC SiSi MnMn PP CrCr TiTi NN
강1River 1 0.0200.020 0.110.11 0.500.50 0.0010.001 14.014.0 0.200.20 0.0620.062 6.456.45 비교예Comparative example
강2River 2 0.0100.010 0.200.20 0.280.28 0.0010.001 16.816.8 0.190.19 0.0660.066 5.765.76
강3River 3 0.0200.020 0.240.24 0.810.81 0.0060.006 16.216.2 0.170.17 0.1960.196 1.731.73 발명예invention example
강4River 4 0.0150.015 0.150.15 0.880.88 0.0070.007 15.815.8 0.300.30 0.0800.080 7.507.50 비교예Comparative example
강5strong 5 0.0200.020 0.200.20 0.640.64 0.0010.001 14.914.9 0.140.14 0.1460.146 1.921.92 발명예 invention example
강6River 6 0.0180.018 0.280.28 0.700.70 0.0030.003 16.516.5 0.160.16 0.1500.150 2.132.13
강7River 7 0.0080.008 0.090.09 0.940.94 0.0080.008 13.913.9 0.180.18 0.1490.149 2.422.42 비교예Comparative example
강8River 8 0.0140.014 0.170.17 0.730.73 0.0100.010 17.217.2 0.180.18 0.1380.138 2.612.61
강9River 9 0.0200.020 0.550.55 0.900.90 0.0150.015 16.016.0 0.050.05 0.0450.045 2.232.23 발명예invention example
하기 표 2에는, 상기 표 1의 합금조성을 갖는 강재의 냉연소둔 온도 별 주조조직 내 평균 결정입도, 15% 인장한 후 측정한 리징 높이 및 연신율을 측정하여 나타내었다. 또한, 도 1에는 강 3의 합금조성을 갖는 강재의 냉연소둔 온도별 리징 높이 및 연신율의 상관관계를 나타내었다. 결정입도는 OM(Optical microscopy, 광학현미경)으로 주조조직을 촬영하여 측정하였다. 도 2a 내지 2e는, 강3의 합금조성을 갖는 강재를 각각 냉연소둔 온도 750℃, 800℃, 850℃, 900℃, 및 950℃로 처리한 스테인리스강의 결정입도를 촬영한 사진이다.리징 높이는 시편의 압연 방향과 수직한 방향으로 시편을 15% 인장한 후, 표면조도기로 리징 굴곡 높이를 측정하였다.Table 2 below shows the average grain size in the cast structure at each cold rolling annealing temperature for steels having the alloy composition of Table 1, and the ridging height and elongation measured after being stretched by 15%. In addition, Figure 1 shows the correlation between the ridging height and elongation at each cold rolling annealing temperature for steel materials having an alloy composition of steel 3. Crystal grain size was measured by photographing the cast structure using OM (optical microscopy). Figures 2a to 2e are photographs of the crystal grain size of stainless steel obtained by processing a steel material with an alloy composition of Steel 3 at cold rolling annealing temperatures of 750°C, 800°C, 850°C, 900°C, and 950°C, respectively. The ridging height is determined by measuring the size of the specimen. After tensing the specimen by 15% in the direction perpendicular to the rolling direction, the ridging bending height was measured using a surface roughness machine.
연신율은, 스테인리스강 냉연제품을 1축 인장하였을 때 파단이 일어나는 순간까지 연신된 양을 초기 길이로 나눈 값으로부터 계산하였다.The elongation rate was calculated from the amount elongated until the moment of fracture when a cold-rolled stainless steel product was uniaxially stretched, divided by the initial length.
성분ingredient 냉연소둔
온도(℃)
Cold rolled annealing
Temperature (℃)
결정입도(㎛)Crystal grain size (㎛) 리징높이(㎛)Rising height (㎛) 연신율(%)Elongation (%) 비고note
강1River 1 800800 28.428.4 16.816.8 29.029.0 비교예Comparative example
820820 33.333.3 22.322.3 29.529.5
850850 41.941.9 29.229.2 32.632.6
강2River 2 800800 30.630.6 15.315.3 30.330.3 비교예Comparative example
820820 38.438.4 18.218.2 32.632.6
850850 45.545.5 18.918.9 33.533.5
강3River 3 750750 미재결정unredetermination 12.512.5 16.916.9 비교예Comparative example
800800 20.820.8 8.48.4 32.032.0 발명예invention example
820820 21.321.3 8.28.2 32.232.2
850850 22.122.1 7.97.9 32.632.6
880880 28.528.5 10.110.1 33.433.4 비교예Comparative example
900900 31.231.2 10.310.3 34.234.2
920920 40.440.4 12.312.3 34.334.3
950950 44.844.8 12.812.8 34.534.5
960960 49.249.2 13.913.9 35.035.0
강4River 4 800800 31.231.2 18.218.2 28.628.6 비교예Comparative example
820820 39.839.8 19.619.6 33.133.1
850850 48.748.7 20.320.3 34.034.0
강5strong 5 800800 20.920.9 8.68.6 32.332.3 발명예invention example
820820 21.521.5 8.98.9 33.533.5
850850 23.423.4 9.39.3 33.933.9
강6 River 6 800800 21.321.3 9.09.0 32.032.0 발명예invention example
820820 21.921.9 9.29.2 32.532.5
850850 22.522.5 9.69.6 33.033.0
강7River 7 800800 29.029.0 19.219.2 30.030.0 비교예Comparative example
820820 31.531.5 19.519.5 30.930.9
850850 36.036.0 22.822.8 32.432.4
강8River 8 800800 32.632.6 18.418.4 31.131.1 비교예Comparative example
820820 38.838.8 19.919.9 31.331.3
850850 44.144.1 22.622.6 32.532.5
강9River 9 800800 22.622.6 9.29.2 32.332.3 발명예invention example
820820 23.923.9 9.59.5 32.532.5
850850 24.024.0 9.79.7 33.033.0
상기 표 1 및 2를 참조하면, 강 3, 5, 6 및 9는 본 발명에서 제시하는 합금조성, 성분범위 및 식(1)을 만족하며, 또한, 이들이 냉연소둔온도를 만족하는 경우, 주조조직 내 결정입도가 20 내지 25 ㎛로 미세화되었고 (도 2b 및 도 2c 참조), 리징 높이가 10 ㎛ 이하이면서, 연신율이 32% 이상을 만족하였다. 즉, 합금조성, 성분범위, 식(1) 및 냉연소둔온도를 모두 만족하는 발명예는 가공성과 내리징성이 모두 우수한 것을 확인할 수 있다.그러나, 본 발명에서 제시하는 합금조성, 성분범위 및 식(1)를 만족하더라도, 냉연소둔온도를 만족하지 못하는 비교예의 경우, 결정입도, 리징 높이 또는 연신율 중 하나 이상의 물성을 만족하지 못하였다. Referring to Tables 1 and 2 above, steels 3, 5, 6, and 9 satisfy the alloy composition, component range, and equation (1) presented in the present invention, and if they satisfy the cold rolling annealing temperature, the casting structure The crystal grain size was refined to 20 to 25 ㎛ (see FIGS. 2B and 2C), the ridging height was 10 ㎛ or less, and the elongation was 32% or more. In other words, it can be confirmed that the invention example that satisfies all of the alloy composition, component range, equation (1), and cold rolling annealing temperature is excellent in both workability and anti-ringing properties. However, the alloy composition, component range, and equation ( Even if 1) was satisfied, in the case of the comparative example in which the cold rolling annealing temperature was not satisfied, one or more physical properties among crystal grain size, ridging height, or elongation were not satisfied.
구체적으로, 도 1 및 도 2a를 참조하면, 냉연소둔온도가 800℃ 미만인 경우, 재결정이 형성되지 않아 리징 높이가 10 ㎛를 초과하였고, 연신율이 현저히 저하되었다.Specifically, referring to Figures 1 and 2a, when the cold rolling annealing temperature was less than 800°C, recrystallization was not formed, so the ridging height exceeded 10 ㎛ and the elongation was significantly reduced.
한편, 도 1, 도 2d 및 도 2e를 참조하면, 냉연소둔온도가 850℃를 초과하는 경우, 연신율은 향상되었으나, 주조조직 내 결정립이 조대화되어 리징 높이가 10 ㎛를 초과하였다. 즉, 냉연소둔온도가 높아질수록, 연신율은 향상되나, 주조조직이 조대해지고, 이에 따라 리징 높이가 커지는 경향이 있음을 확인할 수 있다.Meanwhile, referring to FIGS. 1, 2D, and 2E, when the cold rolling annealing temperature exceeded 850°C, the elongation was improved, but the crystal grains in the cast structure were coarsened and the ridging height exceeded 10 ㎛. In other words, it can be seen that as the cold rolling annealing temperature increases, the elongation improves, but the casting structure becomes coarse, and the ridging height tends to increase accordingly.
또한, 강 1, 2, 4, 7 및 8은 식 (1)의 값이 2.3을 초과하여 냉연소둔온도가 800 내지 850℃를 만족하더라도 Ti와 결합할 수 있는 N의 함량이 낮아 등축정 결정립 미세화를 구현하지 못했다. 이에 따라, 내리징성 또한 열위한 것을 확인할 수 있다.In addition, steels 1, 2, 4, 7, and 8 have a low content of N that can combine with Ti, even though the value of equation (1) exceeds 2.3 and the cold rolling annealing temperature satisfies 800 to 850°C, resulting in equiaxed crystal grain refinement. could not be implemented. Accordingly, it can be confirmed that the jing resistance is also poor.
상술한 바에 있어서, 본 발명의 예시적인 실시예들을 설명하였지만, 본 발명은 이에 한정되지 않으며 해당 기술 분야에서 통상의 지식을 가진 자라면 다음에 기재하는 청구범위의 개념과 범위를 벗어나지 않는 범위 내에서 다양한 변경 및 변형이 가능함을 이해할 수 있을 것이다.In the foregoing, exemplary embodiments of the present invention have been described, but the present invention is not limited thereto, and a person skilled in the art will recognize the present invention within the scope and spirit of the following claims. You will understand that various changes and modifications are possible.
본 발명에 따르면, 냉연제품의 가공성 향상을 위해, 강의 성분과 제조공정을 최적화하여 최종 냉연소둔재의 결정입도를 제어함으로써 가공성 및 리징(Ridging)이 개선된 페라이트계 스테인리스강 및 이의 제조방법을 제공할 수 있는 바, 산업상 이용가능성이 인정된다.According to the present invention, in order to improve the processability of cold-rolled products, ferritic stainless steel with improved processability and ridging is provided by optimizing the steel components and manufacturing process and controlling the crystal grain size of the final cold-rolled annealed material, and a manufacturing method thereof. As it is possible, industrial applicability is recognized.

Claims (8)

  1. 중량%로, 탄소(C): 0.0005 내지 0.02%, 질소(N): 0.01 내지 0.2%, 실리콘(Si): 0.01 내지 1.0%, 망간(Mn): 0.01 내지 1.0%, 인(P): 0.001 내지 0.05%, 크롬(Cr): 13.0 내지 20.0%, 티타늄(Ti): 0.05 내지 0.2%, 나머지 철(Fe) 및 불가피한 불순물을 포함하고, In weight percent: Carbon (C): 0.0005 to 0.02%, Nitrogen (N): 0.01 to 0.2%, Silicon (Si): 0.01 to 1.0%, Manganese (Mn): 0.01 to 1.0%, Phosphorus (P): 0.001 to 0.05%, chromium (Cr): 13.0 to 20.0%, titanium (Ti): 0.05 to 0.2%, including the remaining iron (Fe) and inevitable impurities,
    하기 식 (1)을 만족하며, It satisfies the following equation (1),
    결정입도가 20 내지 25 ㎛의 범위를 만족하는, 가공성 및 내리징성이 향상된 페라이트계 스테인리스강:Ferritic stainless steel with improved machinability and anti-ringing properties that satisfies the range of 20 to 25 ㎛ grain size:
    식 (1): 2*[Ti]/[N] ≤ 2.3Equation (1): 2*[Ti]/[N] ≤ 2.3
    상기 식 (1)에서, [Ti] 및 [N]는 각 원소의 중량% 함량을 의미한다.In formula (1), [Ti] and [N] mean the weight percent content of each element.
  2. 제1항에 있어서,According to paragraph 1,
    15% 인장한 후 측정한 리징 높이가 10 ㎛ 이하인, 가공성 및 내리징성이 향상된 페라이트계 스테인리스강.A ferritic stainless steel with improved processability and ridging resistance, with a ridging height of 10 ㎛ or less measured after being stretched by 15%.
  3. 제1항에 있어서,According to paragraph 1,
    연신율이 32% 이상인, 가공성 및 내리징성이 향상된 페라이트계 스테인리스강.A ferritic stainless steel with an elongation of 32% or more and improved machinability and resistance to scuffing.
  4. 중량%로, 탄소(C): 0.0005 내지 0.02%, 질소(N): 0.01 내지 0.2%, 실리콘(Si): 0.01 내지 1.0%, 망간(Mn): 0.01 내지 1.0%, 인(P): 0.001 내지 0.05%, 크롬(Cr): 13.0 내지 20.0%, 티타늄(Ti): 0.05 내지 0.2%, 나머지 철(Fe) 및 불가피한 불순물을 포함하고, 하기 식 (1)을 만족하는 슬라브를 제조하는 단계;In weight percent: Carbon (C): 0.0005 to 0.02%, Nitrogen (N): 0.01 to 0.2%, Silicon (Si): 0.01 to 1.0%, Manganese (Mn): 0.01 to 1.0%, Phosphorus (P): 0.001 to 0.05%, chromium (Cr): 13.0 to 20.0%, titanium (Ti): 0.05 to 0.2%, the remaining iron (Fe) and inevitable impurities, and manufacturing a slab that satisfies the following formula (1);
    상기 슬라브를 재가열하는 단계;reheating the slab;
    상기 재가열된 슬라브를 열간압연 후 열연소둔하는 단계; 및Hot rolling and then hot rolling annealing the reheated slab; and
    상기 열간압연재를 냉간압연한 후 800 내지 850℃에서 냉연소둔하는 단계;를 포함하는, 가공성 및 내리징성이 향상된 페라이트계 스테인리스강의 제조방법:A method of manufacturing ferritic stainless steel with improved workability and anti-stinging, comprising the step of cold rolling the hot rolled material and then cold rolling and annealing it at 800 to 850°C:
    식 (1): 2*[Ti]/[N] ≤ 2.3Equation (1): 2*[Ti]/[N] ≤ 2.3
    상기 식 (1)에서, [Ti] 및 [N]는 각 원소의 중량% 함량을 의미한다.In formula (1), [Ti] and [N] mean the weight percent content of each element.
  5. 제4항에 있어서,According to clause 4,
    상기 재가열 단계는, 1,000 내지 1,300℃에서 수행되는, 가공성 및 내리징성이 향상된 페라이트계 스테인리스강의 제조방법.The reheating step is performed at 1,000 to 1,300°C. A method of manufacturing ferritic stainless steel with improved processability and anti-singing properties.
  6. 제4항에 있어서, According to clause 4,
    상기 스테인리스강은 결정입도가 20 내지 25 ㎛의 범위를 만족하는, 가공성 및 내리징성이 향상된 페라이트계 스테인리스강의 제조방법.A method of manufacturing a ferritic stainless steel with improved processability and anti-ringing properties, wherein the stainless steel satisfies a crystal grain size of 20 to 25 ㎛.
  7. 제4항에 있어서, According to clause 4,
    상기 스테인리스강은 15% 인장한 후 측정한 리징 높이가 10 ㎛ 이하인, 가공성 및 내리징성이 향상된 페라이트계 스테인리스강의 제조방법.A method of manufacturing a ferritic stainless steel with improved processability and ridging resistance, wherein the stainless steel has a ridging height of 10 ㎛ or less measured after being stretched by 15%.
  8. 제4항에 있어서, According to clause 4,
    상기 스테인리스강은 연신율이 32% 이상인, 가공성 및 내리징성이 향상된 페라이트계 스테인리스강의 제조방법.The stainless steel is a method of manufacturing a ferritic stainless steel with improved machinability and anti-ringing properties, wherein the stainless steel has an elongation of 32% or more.
PCT/KR2023/017890 2022-12-20 2023-11-08 Ferritic stainless steel with improved workability and ridging resistance and manufacturing method thereof WO2024136120A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220178903A KR20240097125A (en) 2022-12-20 2022-12-20 Ferritic stainless steel with improved workability and ridging resistance and manufacturing method thereof
KR10-2022-0178903 2022-12-20

Publications (1)

Publication Number Publication Date
WO2024136120A1 true WO2024136120A1 (en) 2024-06-27

Family

ID=91589138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/017890 WO2024136120A1 (en) 2022-12-20 2023-11-08 Ferritic stainless steel with improved workability and ridging resistance and manufacturing method thereof

Country Status (2)

Country Link
KR (1) KR20240097125A (en)
WO (1) WO2024136120A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100547536B1 (en) * 2002-03-27 2006-01-31 신닛뽄세이테쯔 카부시키카이샤 Cast member and steel plate of ferritic stainless steel and manufacturing method thereof
KR100821059B1 (en) * 2006-12-28 2008-04-16 주식회사 포스코 Ferritic stainless steel with high corrosion resistance and stretchability and the method of manufacturing the same
JP4590719B2 (en) * 1999-12-03 2010-12-01 Jfeスチール株式会社 Ferritic stainless steel sheet excellent in ridging resistance and formability and method for producing the same
KR101569589B1 (en) * 2013-12-24 2015-11-16 주식회사 포스코 Ferritic stainless steel having excellentridging resistance and menufacturing method there of
KR20170086100A (en) * 2014-12-11 2017-07-25 제이에프이 스틸 가부시키가이샤 Ferritic stainless steel and process for producing same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100706524B1 (en) 2005-12-22 2007-04-12 주식회사 포스코 A method of manufacturing ferritic stainless steel with improved ridging properties

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4590719B2 (en) * 1999-12-03 2010-12-01 Jfeスチール株式会社 Ferritic stainless steel sheet excellent in ridging resistance and formability and method for producing the same
KR100547536B1 (en) * 2002-03-27 2006-01-31 신닛뽄세이테쯔 카부시키카이샤 Cast member and steel plate of ferritic stainless steel and manufacturing method thereof
KR100821059B1 (en) * 2006-12-28 2008-04-16 주식회사 포스코 Ferritic stainless steel with high corrosion resistance and stretchability and the method of manufacturing the same
KR101569589B1 (en) * 2013-12-24 2015-11-16 주식회사 포스코 Ferritic stainless steel having excellentridging resistance and menufacturing method there of
KR20170086100A (en) * 2014-12-11 2017-07-25 제이에프이 스틸 가부시키가이샤 Ferritic stainless steel and process for producing same

Also Published As

Publication number Publication date
KR20240097125A (en) 2024-06-27

Similar Documents

Publication Publication Date Title
WO2013089297A1 (en) Method for manufacturing grain-oriented electrical steel sheets having excellent magnetic properties
WO2010018906A1 (en) Steel sheet for enamelling, and a production method therefor
WO2017111290A1 (en) Steel sheet having excellent pwht resistance for low-temperature pressure vessel and method for manufacturing same
WO2016105094A1 (en) Super duplex stainless steel having excellent yield strength and impact toughness and manufacturing method therefor
WO2023121200A1 (en) Non-oriented electrical steel sheet and method for manufacturing same
WO2021100995A1 (en) Steel sheet having high strength and high formability and method for manufacturing same
WO2019117430A1 (en) Ferritic stainless steel having excellent high-temperature oxidation resistance, and manufacturing method therefor
WO2019059660A1 (en) Low-alloy steel sheet having excellent strength and ductility and manufacturing method therefor
WO2017052005A1 (en) Ferritic stainless steel and manufacturing method therefor
WO2016105092A1 (en) Ferrite-based stainless steel and method for manufacturing same
WO2018110785A1 (en) Ferritic stainless steel with excellent ridging property and surface quality and manufacturing method therefor
WO2024136120A1 (en) Ferritic stainless steel with improved workability and ridging resistance and manufacturing method thereof
WO2013154254A1 (en) High carbon hot rolled steel sheet having excellent uniformity and method for manufacturing same
WO2021125564A1 (en) High-strength ferritic stainless steel for clamp, and manufacturing method therefor
WO2023121191A1 (en) Non-oriented electrical steel sheet and method for manufacturing same
WO2022139205A1 (en) Steel having excellent laser cutting properties and method of manufacturing same
WO2010074458A2 (en) High-strength cold rolled steel sheet having superior deep drawability and a high yield ratio, galvanized steel sheet using same, alloyed galvanized steel sheet, and method for manufacturing same
WO2015099214A1 (en) Quenched steel sheet having excellent strength and ductility and method for manufacturing same
WO2020085687A1 (en) High-strength ferritic stainless steel for clamp and method for manufacturing same
WO2024128560A1 (en) Ferritic stainless steel with improved formability and manufacturing method therefor
WO2024128565A1 (en) Ferritic stainless steel and manufacturing method therefor
WO2020130257A1 (en) High strength steel sheet having excellent ductility and workability, and method for manufacturing same
WO2020122320A1 (en) Low-cr ferritic stainless steel with excellent formability and high temperature properties, and manufacturing method therefor
WO2019039774A1 (en) Ferritic stainless steel having enhanced low-temperature impact toughness and method for producing same
WO2022131503A1 (en) Ferritic stainless steel having excellent heat resistance and method for manufacturing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23907406

Country of ref document: EP

Kind code of ref document: A1