WO2024135629A1 - Modified styrenic elastomer and method for producing modified styrenic elastomer - Google Patents

Modified styrenic elastomer and method for producing modified styrenic elastomer Download PDF

Info

Publication number
WO2024135629A1
WO2024135629A1 PCT/JP2023/045353 JP2023045353W WO2024135629A1 WO 2024135629 A1 WO2024135629 A1 WO 2024135629A1 JP 2023045353 W JP2023045353 W JP 2023045353W WO 2024135629 A1 WO2024135629 A1 WO 2024135629A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
based elastomer
maleic anhydride
styrene
modified styrene
Prior art date
Application number
PCT/JP2023/045353
Other languages
French (fr)
Japanese (ja)
Inventor
和彦 森
茂 栗本
高士 山本
Original Assignee
株式会社レゾナック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社レゾナック filed Critical 株式会社レゾナック
Publication of WO2024135629A1 publication Critical patent/WO2024135629A1/en

Links

Definitions

  • This disclosure relates to modified styrene-based elastomers and methods for producing modified styrene-based elastomers.
  • Styrene-based elastomers which are composed of copolymers of aromatic vinyl compounds and conjugated diene compounds, or hydrogenated products thereof, are used in a variety of applications. It is known that styrene-based elastomers can be acid-modified with maleic anhydride or the like to impart properties such as adhesiveness and affinity (see, for example, Patent Document 1, etc.).
  • Acid-modified styrene-based elastomers are generally produced by kneading a styrene-based elastomer with maleic anhydride.
  • Commercially available acid-modified styrene-based elastomers do not have sufficient compatibility with other components such as thermosetting resins, and there is a need to improve compatibility. Therefore, the present disclosure aims to provide a modified styrene-based elastomer that has excellent compatibility with other components and a method for producing the modified styrene-based elastomer.
  • One aspect of the present disclosure relates to the following modified styrenic elastomer and a method for producing the modified styrenic elastomer.
  • a method for producing a modified styrene-based elastomer comprising the steps of adding a radical generator to a mixed solution obtained by dissolving a styrene-based elastomer and maleic anhydride in a solvent under a nitrogen atmosphere, and reacting the styrene-based elastomer with the maleic anhydride, thereby obtaining a modified styrene-based elastomer having a graft ratio of the maleic anhydride of 1.5 mass% or more.
  • graft ratio is 1.5 to 10.0 mass%.
  • the present disclosure provides a modified styrene-based elastomer that has excellent compatibility with other components and a method for producing the modified styrene-based elastomer.
  • the term “process” includes not only independent processes, but also processes that cannot be clearly distinguished from other processes as long as the intended effect of the process is achieved.
  • the term “layer” includes structures with shapes formed over the entire surface as well as structures with shapes formed on only a portion of the surface when observed in a plan view.
  • a numerical range indicated using “ ⁇ ” indicates a range including the numerical values before and after " ⁇ " as the minimum and maximum values, respectively.
  • the upper or lower limit of a numerical range of a certain stage may be replaced with the upper or lower limit of a numerical range of another stage.
  • the upper or lower limit of the numerical range may be replaced with a value shown in the examples.
  • Solid content refers to the non-volatile content of the resin composition excluding volatile substances (water, solvent, etc.).
  • solid content refers to components other than the solvent that remain without volatilization during drying of the resin composition described later, and also includes components that are liquid, syrup-like, or waxy at room temperature (25°C).
  • domain refers to one of the phases that make up a phase-separated structure.
  • One method for evaluating the compatibility of polymer blends is to measure the domain size of microphase separation that exists when observing the cross section of a film molded product.
  • the cross section of a film molded product can be observed using an atomic force microscope (AFM), scanning electron microscope (SEM), transmission electron microscope (TEM), etc.
  • the modified styrene-based elastomer according to the present embodiment has a graft ratio of maleic anhydride of 1.5 mass % or more.
  • the modified styrene-based elastomer according to this embodiment can be produced by reacting a styrene-based elastomer with maleic anhydride, and has a succinic anhydride group based on maleic anhydride in the side chain.
  • the styrene-based elastomer may be a copolymer having a structural unit derived from a styrene-based compound and a structural unit derived from a conjugated diene compound.
  • styrene-based compounds include styrene, ⁇ -methylstyrene, p-methylstyrene, and p-tert-butylstyrene.
  • styrene, ⁇ -methylstyrene, and 4-methylstyrene are preferred, with styrene being more preferred.
  • conjugated diene compounds include 1,3-butadiene, 2-methyl-1,3-butadiene (isoprene), 1,3-pentadiene (piperylene), 1-phenyl-1,3-butadiene, 2,3-dimethyl-1,3-butadiene, 2-methyl-1,3-pentadiene, 3,4-dimethyl-1,3-hexadiene, and 4,5-diethyl-1,3-octadiene.
  • 1,3-butadiene and isoprene are preferred from the standpoint of availability and productivity.
  • the styrene-based elastomer may be a hydrogenated styrene-based elastomer in which at least a portion of the structural units derived from a conjugated diene compound are hydrogenated.
  • Examples of hydrogenated styrene-butadiene-styrene block copolymers (SEBS) and hydrogenated styrene-isoprene-styrene block copolymers are mentioned.
  • SEBS products include, for example, the Tuftec (registered trademark) H series manufactured by Asahi Kasei Corporation, the Septon (registered trademark) series manufactured by Kuraray Co., Ltd., and the Kraton (registered trademark) G Polymer series manufactured by Kraton Polymer Japan Co., Ltd.
  • the acid value of the modified styrene-based elastomer may be 20 to 120 mgKOH/g, 25 to 100 mgKOH/g, 30 to 90 mgKOH/g, or 35 to 80 mgKOH/g, in order to further increase compatibility.
  • the graft ratio of maleic anhydride in the modified styrene-based elastomer may be 1.5 mass% or more, 1.8 mass% or more, 2.0 mass% or more, 2.5 mass% or more, or 3.0 mass% or more from the viewpoint of further improving compatibility.
  • the graft ratio of maleic anhydride may be 10.0 mass% or less, 9.0 mass% or less, 8.0 mass% or less, or 7.0 mass% or less from the viewpoint of improving dielectric properties.
  • the graft ratio may be 1.5 to 10.0 mass%, 1.8 to 10.0 mass%, 2.0 to 9.0 mass%, 2.5 to 8.0 mass%, or 3.0 to 7.0 mass%.
  • the graft ratio can be calculated using the acid value of the modified styrene-based elastomer.
  • the acid value and graft ratio in this specification are values calculated by the method described in the Examples.
  • the method for producing a modified styrene-based elastomer includes a step of adding a radical generator to a mixture of a styrene-based elastomer and maleic anhydride dissolved in a solvent under a nitrogen atmosphere to react the styrene-based elastomer with the maleic anhydride.
  • the reaction temperature may be 60 to 100°C, 65 to 95°C, or 70 to 90°C. This makes it possible to obtain a modified styrene-based elastomer under milder conditions than in the conventional method of melt-kneading a styrene-based elastomer and maleic anhydride at a high temperature of 170°C or higher to react the styrene-based elastomer with maleic anhydride, and also makes it possible to increase the graft rate of maleic anhydride. After the reaction, unreacted maleic anhydride may be removed by extraction in order to suppress side reactions.
  • the amount of maleic anhydride per 100 parts by mass of styrene-based elastomer may be 5 parts by mass or more, 8 parts by mass or more, 10 parts by mass or more, or 15 parts by mass or more from the viewpoint of increasing the graft rate, and may be 50 parts by mass or less, 45 parts by mass or less, 40 parts by mass or less, or 35 parts by mass or less from the viewpoint of suppressing side reactions.
  • the amount of maleic anhydride may be 5 to 50 parts by mass, 8 to 45 parts by mass, 10 to 40 parts by mass, or 15 to 35 parts by mass.
  • Examples of the radical generator that can be used include organic peroxides and azo compounds.
  • Examples of the organic peroxides include dicumyl peroxide, benzoyl peroxide, 2-butanone peroxide, tert-butyl perbenzoate, di-tert-butyl peroxide, 2,5-dimethyl-2,5-di(t-butylperoxy)hexane, bis(tert-butylperoxyisopropyl)benzene, and tert-butyl hydroperoxide.
  • Examples of the azo compounds include 2,2'-azobis(2-methylpropanenitrile), 2,2'-azobis(2-methylbutanenitrile), and 1,1'-azobis(cyclohexanecarbonitrile).
  • Solvents include, for example, butyl cellosolve, ethylene glycol monomethyl ether, propylene glycol monomethyl ether, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, toluene, xylene, mesitylene, methoxyethyl acetate, ethoxyethyl acetate, butoxyethyl acetate, and ethyl acetate. These may be used alone or in combination of two or more. Among these, toluene, xylene, and propylene glycol monomethyl ether are preferred from the viewpoint of solubility.
  • a resin composition can be prepared by mixing the modified styrene-based elastomer according to this embodiment with other components (e.g., a thermosetting resin, a curing accelerator, a filler, a flame retardant, etc.)
  • the modified styrene-based elastomer according to this embodiment has reactivity with thermosetting resins, and the cured product of the resin composition has excellent heat resistance, strength, etc.
  • thermosetting resin examples include epoxy resins, cyanate ester resins, acrylic resins, silicone resins, phenolic resins, maleimide resins, thermosetting polyimide resins, polyurethane resins, melamine resins, and urea resins. These may be used alone or in combination of two or more.
  • epoxy resins include bisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol S type epoxy resins, alicyclic epoxy resins, aliphatic linear epoxy resins, phenol novolac type epoxy resins, cresol novolac type epoxy resins, bisphenol A novolac type epoxy resins, phenol aralkyl type epoxy resins, naphthol novolac type epoxy resins, naphthol aralkyl type epoxy resins, xylene novolac type epoxy resins, bifunctional biphenyl type epoxy resins, biphenyl aralkyl type epoxy resins, dicyclopentadiene type epoxy resins, and dihydroanthracene type epoxy resins.
  • the amount of the thermosetting resin in the resin composition is not particularly limited.
  • the amount of the thermosetting resin may be 10 parts by mass or more, 20 parts by mass or more, 30 parts by mass or more, or 40 parts by mass or more, or 95 parts by mass or less, 90 parts by mass or less, 85 parts by mass or less, or 80 parts by mass or less, per 100 parts by mass of the total amount of the modified styrene-based elastomer and the thermosetting resin.
  • the curing accelerator examples include various imidazole compounds, which are latent heat curing agents, BF3 amine complexes, phosphorus-based curing accelerators, etc. When a curing accelerator is added, imidazole compounds and phosphorus-based curing accelerators are preferred from the viewpoints of storage stability of the resin composition, handling of the semi-cured resin composition, and solder heat resistance of the cured product.
  • filler examples include silica, alumina, titanium oxide, mica, beryllia, barium titanate, potassium titanate, strontium titanate, calcium titanate, aluminum carbonate, magnesium hydroxide, aluminum hydroxide, aluminum silicate, calcium carbonate, calcium silicate, magnesium silicate, silicon nitride, boron nitride, calcined clay, talc, aluminum borate, and silicon carbide. These may be used alone or in combination of two or more.
  • the particle size of the filler may be, for example, 0.01 to 20 ⁇ m or 0.1 to 10 ⁇ m.
  • particle size refers to the average particle size, and is the particle size at the point corresponding to 50% volume when a cumulative frequency distribution curve is calculated based on particle size, with the total volume of the particles being 100%.
  • the average particle size can be measured using a particle size distribution measuring device that uses a laser diffraction scattering method.
  • a coupling agent can be used in combination to improve the dispersibility of the filler and its adhesion to the organic component.
  • the coupling agent there are no particular limitations on the coupling agent, and for example, various silane coupling agents, titanate coupling agents, etc. can be used. These may be used alone or in combination of two or more.
  • the amount of coupling agent used there are also no particular limitations on the amount of coupling agent used, and for example, it may be 0.1 to 5 parts by mass or 0.5 to 3 parts by mass per 100 parts by mass of the filler used. Within this range, there is little deterioration in various properties, and it becomes easier to effectively utilize the features of the filler.
  • the so-called integral blending method may be used, in which the coupling agent is added after the filler is blended into the resin composition, but it is preferable to use a filler that has been surface-treated in advance with a coupling agent by a dry or wet method. By using this method, the characteristics of the filler can be more effectively expressed.
  • the flame retardant is not particularly limited, but a bromine-based flame retardant, a phosphorus-based flame retardant, a metal hydroxide, etc. are preferably used.
  • the bromine-based flame retardant include brominated epoxy resins, brominated additive flame retardants, and brominated reaction flame retardants containing unsaturated double bond groups.
  • the phosphorus-based flame retardant include aromatic phosphate esters, phosphonate esters, phosphinate esters, and phosphazene compounds.
  • the metal hydroxide flame retardant include magnesium hydroxide and aluminum hydroxide.
  • the resin composition may be diluted with a solvent as necessary.
  • the solvent is not particularly limited, but can be selected taking into consideration the boiling point and volatility during film formation.
  • solvents include solvents with relatively low boiling points such as methanol, ethanol, 2-methoxyethanol, 2-ethoxyethanol, 2-butoxyethanol, methyl ethyl ketone, acetone, methyl isobutyl ketone, toluene, and xylene. Solvents can be used alone or in combination of two or more.
  • the resin composition of this embodiment can be obtained by uniformly dispersing and mixing the above-mentioned components, and the preparation means, conditions, etc. are not particularly limited.
  • a method can be used in which the various components in the specified amounts are thoroughly and uniformly stirred and mixed using a mixer or the like, then kneaded using a mixing roll, extruder, kneader, roll, extruder, etc., and the resulting kneaded product is cooled and pulverized.
  • the kneading method is also not particularly limited.
  • resin film The resin composition according to the present embodiment can be used to produce a resin film.
  • resin film refers to an uncured or semi-cured film-like resin composition.
  • the method for producing the resin film is not limited, but for example, the resin film can be obtained by applying the resin composition onto a supporting substrate and drying the formed resin layer.
  • the resin composition can be applied onto a supporting substrate using a kiss coater, roll coater, comma coater, or the like, and then dried in a heated drying oven or the like at a temperature of, for example, 70 to 250°C, preferably 70 to 200°C, for 1 to 30 minutes, preferably 3 to 15 minutes. This makes it possible to obtain a resin film in which the resin composition is in a semi-cured state.
  • the semi-cured resin film can be further heated in a heating furnace at a temperature of, for example, 170 to 250°C, preferably 185 to 230°C, for 60 to 150 minutes to thermally cure the resin film.
  • the thickness of the resin film according to this embodiment is not particularly limited, but is preferably 1 to 200 ⁇ m, more preferably 2 to 180 ⁇ m, and even more preferably 3 to 150 ⁇ m. By setting the thickness of the resin film within the above range, it is easy to achieve both a thin printed wiring board obtained using the resin film according to this embodiment and good high-frequency characteristics.
  • the supporting substrate is not particularly limited, but is preferably at least one selected from the group consisting of glass, metal foil, and PET film. Providing a supporting substrate for the resin film tends to improve storage properties and handling properties when used in the manufacture of printed wiring boards.
  • the resin film according to this embodiment can take the form of a support with a resin layer, which includes a resin layer containing the resin composition according to this embodiment and a supporting substrate, and may be peeled off from the supporting substrate when in use.
  • a prepreg can be produced using the resin composition according to this embodiment.
  • the resin composition according to this embodiment is applied to a fiber substrate, which is a reinforcing substrate, and the applied resin composition is dried to obtain a prepreg.
  • the prepreg may be obtained by impregnating the fiber substrate with the resin composition according to this embodiment and then drying the impregnated resin composition.
  • the fiber substrate to which the resin composition is attached is heated and dried in a drying oven at a temperature of 80 to 200 ° C. for 1 to 30 minutes to obtain a prepreg in which the resin composition is semi-cured. From the viewpoint of good moldability, it is preferable to coat or impregnate the fiber substrate with the resin composition so that the resin content in the prepreg after drying is 30 to 90 mass %.
  • the reinforcing substrate for the prepreg is not limited, but a sheet-like fiber substrate is preferred.
  • the sheet-like fiber substrate include inorganic fibers such as E glass, NE glass, S glass, and Q glass; and organic fibers such as polyimide, polyester, and tetrafluoroethylene.
  • the sheet-like fiber substrate those having shapes such as woven fabric, nonwoven fabric, and chopped strand mat can be used.
  • a laminate having a resin layer containing the cured product of the above-mentioned resin composition and a conductor layer can be provided.
  • a metal-clad laminate can be produced by using the above-mentioned resin film or the above-mentioned prepreg.
  • the method for producing the metal-clad laminate is not limited, but for example, one or more resin films or prepregs according to this embodiment are stacked, metal foil that will become a conductor layer is placed on at least one surface, and then, for example, heated and pressed at a temperature of 170 to 250°C, preferably 185 to 230°C, and a pressure of 0.5 to 5.0 MPa for 60 to 150 minutes, to obtain a metal-clad laminate having metal foil on at least one surface of the resin layer or prepreg that will become an insulating layer.
  • Heating and pressing can be performed, for example, under conditions of a vacuum degree of 10 kPa or less, preferably 5 kPa or less, and from the viewpoint of increasing efficiency, it is preferable to perform the heating and pressing in a vacuum. Heating and pressing are preferably performed for 30 minutes from the start to the end of molding.
  • Multilayer printed wiring board According to the present embodiment, it is possible to provide a multilayer printed wiring board including a resin layer containing the cured product of the above-mentioned resin composition and a circuit layer.
  • the upper limit of the number of circuit layers is not particularly limited, and may be 3 to 20 layers.
  • the multilayer printed wiring board can also be manufactured using, for example, the above-mentioned resin film, prepreg, or metal-clad laminate.
  • a multilayer printed wiring board can be produced by first placing a resin film on one or both sides of a core board on which a circuit has been formed, or by placing a resin film between multiple core boards, and then bonding each layer by pressure and heat lamination or pressure and heat press molding, and then performing circuit formation processing such as laser hole drilling, drilling, metal plating, metal etching, etc. If the resin film has a supporting substrate, the supporting substrate can be peeled off before the resin film is placed on or between the core boards, or it can be peeled off after the resin layer is attached to the core board.
  • Example 1 In a 2L flask equipped with a cooling tube, a nitrogen inlet tube, a thermocouple, and a stirrer, 950g of xylene, 100g of hydrogenated styrene-based thermoplastic elastomer (manufactured by Asahi Kasei Corporation, product name "Tuftec H1041"), and 12.5g of maleic anhydride (FUJIFILM Wako Pure Chemical Industries, Ltd.) were added, and the mixture was stirred at 80°C for 0.5 hours, followed by nitrogen bubbling at a flow rate of 0.5 cm 3 /L for 1.0 hour.
  • Example 2 The reaction was carried out in the same manner as in Example 1, except that the amount of maleic anhydride was changed to 17 g and the amount of benzoyl peroxide was changed to 6.5 g, to obtain a modified styrene-based elastomer (A2) having succinic anhydride groups.
  • A2 modified styrene-based elastomer having succinic anhydride groups.
  • Example 3 The reaction was carried out in the same manner as in Example 1, except that the amount of maleic anhydride was changed to 34 g and the amount of benzoyl peroxide was changed to 13 g, to obtain a modified styrene-based elastomer (A3) having succinic anhydride groups.
  • Example 4 The reaction was carried out in the same manner as in Example 1, except that the amount of maleic anhydride was changed to 8 g and the amount of benzoyl peroxide was changed to 3 g, to obtain a modified styrene-based elastomer (A4) having succinic anhydride groups.
  • Example 1 The reaction was carried out in the same manner as in Example 1, except that the amount of maleic anhydride was changed to 4 g and the amount of benzoyl peroxide was changed to 1.5 g, to obtain a modified styrene-based elastomer (A5) having succinic anhydride groups.
  • the acid value of the modified styrene-based elastomer is a value derived from two carboxyl groups generated by hydrolysis of the succinic anhydride group.
  • Graft ratio [acid value (mg KOH/g)/molecular weight of KOH (mg/mol)] ⁇ 0.5 ⁇ molecular weight of maleic anhydride (g/mol) ⁇ 100(%)
  • thermosetting resin As the thermosetting resin, a thermosetting resin (B1) (xylene-novolac type epoxy resin, manufactured by Mitsubishi Chemical Corporation, trade name "YX7700”) and a thermosetting resin (B2) (bismaleimide resin, manufactured by DIC Corporation, trade name "NE-X-9470S”) were prepared, and "Tuftec H1041" was prepared as an unmodified styrene-based elastomer.
  • the modified styrene-based elastomer or the unmodified styrene-based elastomer and the thermosetting resin were mixed in the mass ratio shown in Table 2 or Table 3 to prepare a resin composition. 0.05 mL of the resin composition was attached to a preparation to form a resin layer.
  • the resin layer was covered with a cover glass and left to stand at 25 ° C. for 24 hours.
  • the domain size of the resin layer after standing was measured using an optical microscope (magnification 20 times). Compatibility was evaluated as follows: domain size less than 10 ⁇ m was rated as "A”, domain size 10 ⁇ m or more but less than 20 ⁇ m was rated as "B”, domain size 20 ⁇ m or more but less than 50 ⁇ m was rated as "C”, domain size 50 ⁇ m or more but less than 100 ⁇ m was rated as "D”, and domain size 100 ⁇ m or more was rated as "E”. The smaller the domain size, the better the compatibility.

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The present disclosure relates to a modified styrenic elastomer in which the graft rate of maleic anhydride is 1.5 mass% or more and to a method for producing a modified styrenic elastomer that obtains a modified styrenic elastomer in which the graft rate of maleic anhydride is 1.5 mass% or more, the method being provided with a step that adds a radical generator in a nitrogen atmosphere to a mixed solution obtained by dissolving a styrenic elastomer and maleic anhydride in a solvent and causes the maleic anhydride to react with the styrenic elastomer.

Description

変性スチレン系エラストマー及び変性スチレン系エラストマーの製造方法Modified styrene elastomer and method for producing modified styrene elastomer
 本開示は、変性スチレン系エラストマー及び変性スチレン系エラストマーの製造方法に関する。 This disclosure relates to modified styrene-based elastomers and methods for producing modified styrene-based elastomers.
 芳香族ビニル化合物と共役ジエン化合物との共重合体、その水素添加物等から構成されるスチレン系エラストマーは、様々な用途に用いられている。接着性、親和性等の特性を付与するために、スチレン系エラストマーを無水マレイン酸等で酸変性することが知られている(例えば、特許文献1等参照)。 Styrene-based elastomers, which are composed of copolymers of aromatic vinyl compounds and conjugated diene compounds, or hydrogenated products thereof, are used in a variety of applications. It is known that styrene-based elastomers can be acid-modified with maleic anhydride or the like to impart properties such as adhesiveness and affinity (see, for example, Patent Document 1, etc.).
特開2013-028761号公報JP 2013-028761 A
 酸変性スチレン系エラストマーは、一般にスチレン系エラストマーを無水マレイン酸と混練することで製造されている。市販されている酸変性スチレン系エラストマーは、熱硬化性樹脂等の他の成分との相溶性が十分ではないため、相溶性を改善することが求められている。そこで、本開示は、他の成分との相溶性に優れる変性スチレン系エラストマー及び変性スチレン系エラストマーの製造方法を提供することを目的とする。 Acid-modified styrene-based elastomers are generally produced by kneading a styrene-based elastomer with maleic anhydride. Commercially available acid-modified styrene-based elastomers do not have sufficient compatibility with other components such as thermosetting resins, and there is a need to improve compatibility. Therefore, the present disclosure aims to provide a modified styrene-based elastomer that has excellent compatibility with other components and a method for producing the modified styrene-based elastomer.
 本開示の一態様は、以下の変性スチレン系エラストマー及び変性スチレン系エラストマーの製造方法に関する。
[1]無水マレイン酸のグラフト率が1.5質量%以上である、変性スチレン系エラストマー。
[2]前記グラフト率が、1.5~10.0質量%である、上記[1]に記載の変性スチレン系エラストマー。
[3]前記グラフト率が、1.8~10.0質量%である、上記[1]に記載の変性スチレン系エラストマー。
[4]スチレン系エラストマー及び無水マレイン酸を溶剤に溶解した混合液に、窒素雰囲気下でラジカル発生剤を添加し、前記スチレン系エラストマーに前記無水マレイン酸を反応させる工程を備え、前記無水マレイン酸のグラフト率が1.5質量%以上である変性スチレン系エラストマーを得る、変性スチレン系エラストマーの製造方法。
[5]前記グラフト率が、1.5~10.0質量%である、上記[4]に記載の方法。
[6]前記グラフト率が、1.8~10.0質量%である、上記[4]に記載の方法。
[7]前記ラジカル発生剤が、有機過酸化物又はアゾ化合物である、上記[4]~[6]のいずれかに記載の方法。
[8]前記溶剤が、トルエン、キシレン、及びプロピレングリコールモノメチルエーテルからなる群より選ばれる少なくとも1種を含む、上記[4]~[7]のいずれかに記載の方法。
One aspect of the present disclosure relates to the following modified styrenic elastomer and a method for producing the modified styrenic elastomer.
[1] A modified styrene-based elastomer having a graft ratio of maleic anhydride of 1.5 mass% or more.
[2] The modified styrene-based elastomer according to the above [1], wherein the graft ratio is 1.5 to 10.0 mass%.
[3] The modified styrene-based elastomer according to the above [1], wherein the graft ratio is 1.8 to 10.0 mass%.
[4] A method for producing a modified styrene-based elastomer, comprising the steps of adding a radical generator to a mixed solution obtained by dissolving a styrene-based elastomer and maleic anhydride in a solvent under a nitrogen atmosphere, and reacting the styrene-based elastomer with the maleic anhydride, thereby obtaining a modified styrene-based elastomer having a graft ratio of the maleic anhydride of 1.5 mass% or more.
[5] The method according to the above [4], wherein the graft ratio is 1.5 to 10.0 mass%.
[6] The method according to the above [4], wherein the graft ratio is 1.8 to 10.0 mass%.
[7] The method according to any one of the above [4] to [6], wherein the radical generator is an organic peroxide or an azo compound.
[8] The method according to any one of the above [4] to [7], wherein the solvent comprises at least one selected from the group consisting of toluene, xylene, and propylene glycol monomethyl ether.
 本開示によれば、他の成分との相溶性に優れる変性スチレン系エラストマー及び変性スチレン系エラストマーの製造方法を提供することができる。 The present disclosure provides a modified styrene-based elastomer that has excellent compatibility with other components and a method for producing the modified styrene-based elastomer.
 以下、本開示の好適な実施形態について詳細に説明する。ただし、本開示は以下の実施形態に限定されない。本明細書において、「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の作用が達成されれば、本用語に含まれる。本明細書において、「層」との語は、平面図として観察したときに、全面に形成されている形状の構造に加え、一部に形成されている形状の構造も包含される。 Below, preferred embodiments of the present disclosure are described in detail. However, the present disclosure is not limited to the following embodiments. In this specification, the term "process" includes not only independent processes, but also processes that cannot be clearly distinguished from other processes as long as the intended effect of the process is achieved. In this specification, the term "layer" includes structures with shapes formed over the entire surface as well as structures with shapes formed on only a portion of the surface when observed in a plan view.
 本明細書において、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。本明細書中に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値又は下限値は、他の段階の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。本明細書において組成物中の各成分の量について言及する場合、組成物中に各成分に該当する物質が複数存在する場合には、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。「A又はB」とは、A及びBのどちらか一方を含んでいればよく、両方とも含んでいてもよい。「固形分」とは、樹脂組成物において、揮発する物質(水、溶剤等)を除いた不揮発分を指す。すなわち、「固形分」とは、後述する樹脂組成物の乾燥において揮発せずに残る溶剤以外の成分を指し、室温(25℃)で液状、水飴状又はワックス状の成分も含む。 In this specification, a numerical range indicated using "~" indicates a range including the numerical values before and after "~" as the minimum and maximum values, respectively. In the numerical ranges described in stages in this specification, the upper or lower limit of a numerical range of a certain stage may be replaced with the upper or lower limit of a numerical range of another stage. In addition, in the numerical ranges described in this specification, the upper or lower limit of the numerical range may be replaced with a value shown in the examples. When referring to the amount of each component in the composition in this specification, if there are multiple substances corresponding to each component in the composition, it means the total amount of the multiple substances present in the composition unless otherwise specified. "A or B" may contain either A or B, or both. "Solid content" refers to the non-volatile content of the resin composition excluding volatile substances (water, solvent, etc.). In other words, "solid content" refers to components other than the solvent that remain without volatilization during drying of the resin composition described later, and also includes components that are liquid, syrup-like, or waxy at room temperature (25°C).
 本明細書において、「化合物Aと化合物Bとが相溶である」とは、化合物A及び化合物Bをブレンドして成形して得られた成形体にて、化合物Aと化合物Bのどちらにも由来しない単一のガラス転移温度(Tg)が観測されることをいう。また、「化合物Aと化合物Bとが非相溶である」とは、化合物A及び化合物Bをブレンドした成形体にて、化合物A及び化合物Bにそれぞれ由来するTgのみが観測されることをいう。 In this specification, "compound A and compound B are compatible" means that in a molded product obtained by blending compound A and compound B and molding the mixture, a single glass transition temperature (Tg) that is not derived from either compound A or compound B is observed. In addition, "compound A and compound B are incompatible" means that in a molded product obtained by blending compound A and compound B, only Tg derived from compound A and compound B, respectively, is observed.
 本明細書において、「ドメイン」とは、相分離構造を構成する一つの相のことを指す。異種ポリマーをブレンドした成形体が相分離構造をとる場合、各ドメインに由来するTgが観測される。異なるドメインに由来するそれぞれのTgが近い場合、非相溶にも関わらずあたかも単一のTgを示すかのように観測されることがあるので、ブレンド比を変える等して検証する必要がある。 In this specification, "domain" refers to one of the phases that make up a phase-separated structure. When a molded product made by blending different polymers has a phase-separated structure, Tg originating from each domain is observed. When the Tgs originating from different domains are close to each other, it may be observed as if a single Tg is shown despite the incompatibility, so it is necessary to verify this by changing the blend ratio, etc.
 ポリマーブレンドの相溶性を評価する方法として、フィルム成形体の断面を観察した場合に存在するミクロ相分離のドメインサイズを計測する方法がある。フィルムの成形体断面は、原子間力顕微鏡(AFM)、走査型電子顕微鏡(SEM)、透過型電子顕微鏡(TEM)等を用いることにより観察することができる。 One method for evaluating the compatibility of polymer blends is to measure the domain size of microphase separation that exists when observing the cross section of a film molded product. The cross section of a film molded product can be observed using an atomic force microscope (AFM), scanning electron microscope (SEM), transmission electron microscope (TEM), etc.
[変性スチレン系エラストマー]
 本実施形態に係る変性スチレン系エラストマーは、無水マレイン酸のグラフト率が1.5質量%以上である。変性スチレン系エラストマーにおける無水マレイン酸のグラフト率を高めることで、他の成分(特に熱硬化性樹脂)との相溶性を向上することができる。
[Modified styrene-based elastomer]
The modified styrene-based elastomer according to the present embodiment has a graft ratio of maleic anhydride of 1.5 mass % or more. By increasing the graft ratio of maleic anhydride in the modified styrene-based elastomer, the compatibility with other components (particularly thermosetting resins) can be improved.
 本実施形態に係る変性スチレン系エラストマーは、スチレン系エラストマーに対して、無水マレイン酸を反応させることで作製することができ、無水マレイン酸に基づく無水コハク酸基を側鎖に有している。スチレン系エラストマーは、スチレン系化合物に由来する構造単位と、共役ジエン化合物に由来する構造単位とを有する共重合体であってよい。 The modified styrene-based elastomer according to this embodiment can be produced by reacting a styrene-based elastomer with maleic anhydride, and has a succinic anhydride group based on maleic anhydride in the side chain. The styrene-based elastomer may be a copolymer having a structural unit derived from a styrene-based compound and a structural unit derived from a conjugated diene compound.
 スチレン系化合物としては、例えば、スチレン、α-メチルスチレン、p-メチルスチレン、及びp-tert-ブチルスチレンが挙げられる。これらの中でも、入手性及び生産性の観点から、スチレン、α-メチルスチレン、及び4-メチルスチレンが好ましく、スチレンがより好ましい。 Examples of styrene-based compounds include styrene, α-methylstyrene, p-methylstyrene, and p-tert-butylstyrene. Among these, from the standpoint of availability and productivity, styrene, α-methylstyrene, and 4-methylstyrene are preferred, with styrene being more preferred.
 共役ジエン化合物としては、例えば、1,3-ブタジエン、2-メチル-1,3-ブタジエン(イソプレン)、1,3-ペンタジエン(ピペリレン)、1-フェニル-1,3-ブタジエン、2,3-ジメチル-1,3-ブタジエン、2-メチル-1,3-ペンタジエン、3,4-ジメチル-1,3-ヘキサジエン、及び4,5-ジエチル-1,3-オクタジエンが挙げられる。これらの中でも、入手性及び生産性の観点から、1,3-ブタジエン及びイソプレンが好ましい。 Examples of conjugated diene compounds include 1,3-butadiene, 2-methyl-1,3-butadiene (isoprene), 1,3-pentadiene (piperylene), 1-phenyl-1,3-butadiene, 2,3-dimethyl-1,3-butadiene, 2-methyl-1,3-pentadiene, 3,4-dimethyl-1,3-hexadiene, and 4,5-diethyl-1,3-octadiene. Among these, 1,3-butadiene and isoprene are preferred from the standpoint of availability and productivity.
 スチレン系エラストマーは、共役ジエン化合物に由来する構造単位の少なくとも一部が水添された水添スチレン系エラストマーであってもよい。水添スチレン系エラストマーとしては、例えば、スチレン-ブタジエン-スチレンブロック共重合体の水素添加物(SEBS)及びスチレン-イソプレン-スチレンブロック共重合体の水素添加物が挙げられる。SEBSの市販品としては、例えば、旭化成株式会社製のタフテック(登録商標)Hシリーズ、株式会社クラレ製のセプトン(登録商標)シリーズ、クレイトンポリマージャパン株式会社製のクレイトン(登録商標)Gポリマーシリーズ等が挙げられる。 The styrene-based elastomer may be a hydrogenated styrene-based elastomer in which at least a portion of the structural units derived from a conjugated diene compound are hydrogenated. Examples of hydrogenated styrene-butadiene-styrene block copolymers (SEBS) and hydrogenated styrene-isoprene-styrene block copolymers are mentioned. Commercially available SEBS products include, for example, the Tuftec (registered trademark) H series manufactured by Asahi Kasei Corporation, the Septon (registered trademark) series manufactured by Kuraray Co., Ltd., and the Kraton (registered trademark) G Polymer series manufactured by Kraton Polymer Japan Co., Ltd.
 変性スチレン系エラストマーの酸価は、相溶性をより高める観点から、20~120mgKOH/g、25~100mgKOH/g、30~90mgKOH/g、又は35~80mgKOH/gであってもよい。 The acid value of the modified styrene-based elastomer may be 20 to 120 mgKOH/g, 25 to 100 mgKOH/g, 30 to 90 mgKOH/g, or 35 to 80 mgKOH/g, in order to further increase compatibility.
 変性スチレン系エラストマーにおける無水マレイン酸のグラフト率は、相溶性をより高める観点から1.5質量%以上、1.8質量%以上、2.0質量%以上、2.5質量%以上、又は3.0質量%以上であってもよい。無水マレイン酸のグラフト率は、誘電特性を向上する観点から、10.0質量%以下、9.0質量%以下、8.0質量%以下、又は7.0質量%以下であってもよい。上記グラフト率は、1.5~10.0質量%、1.8~10.0質量%、2.0~9.0質量%、2.5~8.0質量%、又は3.0~7.0質量%であってもよい。グラフト率は、変性スチレン系エラストマーの酸価を用いて算出することができる。なお、本明細書における酸価及びグラフト率は、実施例に記載の方法により算出される値である。 The graft ratio of maleic anhydride in the modified styrene-based elastomer may be 1.5 mass% or more, 1.8 mass% or more, 2.0 mass% or more, 2.5 mass% or more, or 3.0 mass% or more from the viewpoint of further improving compatibility. The graft ratio of maleic anhydride may be 10.0 mass% or less, 9.0 mass% or less, 8.0 mass% or less, or 7.0 mass% or less from the viewpoint of improving dielectric properties. The graft ratio may be 1.5 to 10.0 mass%, 1.8 to 10.0 mass%, 2.0 to 9.0 mass%, 2.5 to 8.0 mass%, or 3.0 to 7.0 mass%. The graft ratio can be calculated using the acid value of the modified styrene-based elastomer. The acid value and graft ratio in this specification are values calculated by the method described in the Examples.
 本実施形態に係る変性スチレン系エラストマーの製造方法は、スチレン系エラストマー及び無水マレイン酸を溶剤に溶解した混合液に、窒素雰囲気下でラジカル発生剤を添加して、スチレン系エラストマーに無水マレイン酸を反応させる工程を備える。 The method for producing a modified styrene-based elastomer according to this embodiment includes a step of adding a radical generator to a mixture of a styrene-based elastomer and maleic anhydride dissolved in a solvent under a nitrogen atmosphere to react the styrene-based elastomer with the maleic anhydride.
 反応温度は、60~100℃、65~95℃、又は70~90℃であってよい。これにより、スチレン系エラストマー及び無水マレイン酸を170℃以上の高温で溶融混練して、スチレン系エラストマーに無水マレイン酸を反応させる従来の方法に比べて、温和な条件で変性スチレン系エラストマーを得ることができ、かつ、無水マレイン酸のグラフト率を高めることができる。反応後は、副反応を抑制する観点から、未反応の無水マレイン酸を抽出により除去してもよい。 The reaction temperature may be 60 to 100°C, 65 to 95°C, or 70 to 90°C. This makes it possible to obtain a modified styrene-based elastomer under milder conditions than in the conventional method of melt-kneading a styrene-based elastomer and maleic anhydride at a high temperature of 170°C or higher to react the styrene-based elastomer with maleic anhydride, and also makes it possible to increase the graft rate of maleic anhydride. After the reaction, unreacted maleic anhydride may be removed by extraction in order to suppress side reactions.
 無水マレイン酸の配合量は、スチレン系エラストマー100質量部に対して、グラフト率をより高める観点から、5質量部以上、8質量部以上、10質量部以上、又は15質量部以上であってもよく、副反応を抑制する観点から、50質量部以下、45質量部以下、40質量部以下、又は35質量部以下であってもよい。無水マレイン酸の配合量は、5~50質量部、8~45質量部、10~40質量部、又は15~35質量部であってもよい。 The amount of maleic anhydride per 100 parts by mass of styrene-based elastomer may be 5 parts by mass or more, 8 parts by mass or more, 10 parts by mass or more, or 15 parts by mass or more from the viewpoint of increasing the graft rate, and may be 50 parts by mass or less, 45 parts by mass or less, 40 parts by mass or less, or 35 parts by mass or less from the viewpoint of suppressing side reactions. The amount of maleic anhydride may be 5 to 50 parts by mass, 8 to 45 parts by mass, 10 to 40 parts by mass, or 15 to 35 parts by mass.
 ラジカル発生剤としては、例えば、有機過酸化物、アゾ化合物等を用いることができる。有機過酸化物としては、例えば、ジクミルパーオキサイド、ベンゾイルパーオキサイド、2-ブタノンパーオキサイド、tert-ブチルパーベンゾエイト、ジ-tert-ブチルパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、ビス(tert-ブチルパーオキシイソプロピル)ベンゼン、及びtert-ブチルヒドロパーオキシドが挙げられる。アゾ化合物としては、例えば、2,2’-アゾビス(2-メチルプロパンニトリル)、2,2’-アゾビス(2-メチルブタンニトリル)、及び1,1’-アゾビス(シクロヘキサンカルボニトリル)が挙げられる。 Examples of the radical generator that can be used include organic peroxides and azo compounds. Examples of the organic peroxides include dicumyl peroxide, benzoyl peroxide, 2-butanone peroxide, tert-butyl perbenzoate, di-tert-butyl peroxide, 2,5-dimethyl-2,5-di(t-butylperoxy)hexane, bis(tert-butylperoxyisopropyl)benzene, and tert-butyl hydroperoxide. Examples of the azo compounds include 2,2'-azobis(2-methylpropanenitrile), 2,2'-azobis(2-methylbutanenitrile), and 1,1'-azobis(cyclohexanecarbonitrile).
 溶剤としては、例えば、ブチルセロソルブ、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、トルエン、キシレン、メシチレン、メトキシエチルアセテート、エトキシエチルアセテート、ブトキシエチルアセテート、及び酢酸エチルが挙げられる。これらは1種を単独で用いてもよく、2種以上を混合して用いてもよい。これらの中でも、溶解性の観点から、トルエン、キシレン、及びプロピレングリコールモノメチルエーテルが好ましい。 Solvents include, for example, butyl cellosolve, ethylene glycol monomethyl ether, propylene glycol monomethyl ether, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, toluene, xylene, mesitylene, methoxyethyl acetate, ethoxyethyl acetate, butoxyethyl acetate, and ethyl acetate. These may be used alone or in combination of two or more. Among these, toluene, xylene, and propylene glycol monomethyl ether are preferred from the viewpoint of solubility.
[樹脂組成物]
 本実施形態に係る変性スチレン系エラストマーと、他の成分(例えば、熱硬化性樹脂、硬化促進剤、フィラー、難燃剤等)とを混合して、樹脂組成物を作製することができる。本実施形態に係る変性スチレン系エラストマーは、熱硬化性樹脂に対する反応性を有しており、該樹脂組成物の硬化物は、耐熱性、強度等に優れている。
[Resin composition]
A resin composition can be prepared by mixing the modified styrene-based elastomer according to this embodiment with other components (e.g., a thermosetting resin, a curing accelerator, a filler, a flame retardant, etc.) The modified styrene-based elastomer according to this embodiment has reactivity with thermosetting resins, and the cured product of the resin composition has excellent heat resistance, strength, etc.
(熱硬化性樹脂)
 熱硬化性樹脂としては、例えば、エポキシ樹脂、シアネートエステル樹脂、アクリル樹脂、シリコーン樹脂、フェノール樹脂、マレイミド樹脂、熱硬化型ポリイミド樹脂、ポリウレタン樹脂、メラミン樹脂、及びユリア樹脂が挙げられる。これらは1種を単独で又は2種以上を組み合わせて用いることができる。
(Thermosetting resin)
Examples of the thermosetting resin include epoxy resins, cyanate ester resins, acrylic resins, silicone resins, phenolic resins, maleimide resins, thermosetting polyimide resins, polyurethane resins, melamine resins, and urea resins. These may be used alone or in combination of two or more.
 エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、脂環式エポキシ樹脂、脂肪族鎖状エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、キシレン-ノボラック型エポキシ樹脂、2官能ビフェニル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、及びジヒドロアントラセン型エポキシ樹脂が挙げられる。 Examples of epoxy resins include bisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol S type epoxy resins, alicyclic epoxy resins, aliphatic linear epoxy resins, phenol novolac type epoxy resins, cresol novolac type epoxy resins, bisphenol A novolac type epoxy resins, phenol aralkyl type epoxy resins, naphthol novolac type epoxy resins, naphthol aralkyl type epoxy resins, xylene novolac type epoxy resins, bifunctional biphenyl type epoxy resins, biphenyl aralkyl type epoxy resins, dicyclopentadiene type epoxy resins, and dihydroanthracene type epoxy resins.
 樹脂組成物における熱硬化性樹脂の含有量は、特に限定されない。熱硬化性樹脂の含有量は、例えば、変性スチレン系エラストマー及び熱硬化性樹脂の合計量100質量部に対して、10質量部以上、20質量部以上、30質量部以上、又は40質量部以上であってもよく、95質量部以下、90質量部以下、85質量部以下、又は80質量部以下であってもよい。 The amount of the thermosetting resin in the resin composition is not particularly limited. For example, the amount of the thermosetting resin may be 10 parts by mass or more, 20 parts by mass or more, 30 parts by mass or more, or 40 parts by mass or more, or 95 parts by mass or less, 90 parts by mass or less, 85 parts by mass or less, or 80 parts by mass or less, per 100 parts by mass of the total amount of the modified styrene-based elastomer and the thermosetting resin.
(硬化促進剤)
 硬化促進剤としては、例えば、潜在性の熱硬化剤である各種イミダゾール化合物、BFアミン錯体、リン系硬化促進剤等が挙げられる。硬化促進剤を配合する場合、樹脂組成物の保存安定性、半硬化の樹脂組成物の取扱性、及び硬化物のはんだ耐熱性の観点から、イミダゾール化合物及びリン系硬化促進剤が好ましい。
(Cure Accelerator)
Examples of the curing accelerator include various imidazole compounds, which are latent heat curing agents, BF3 amine complexes, phosphorus-based curing accelerators, etc. When a curing accelerator is added, imidazole compounds and phosphorus-based curing accelerators are preferred from the viewpoints of storage stability of the resin composition, handling of the semi-cured resin composition, and solder heat resistance of the cured product.
(フィラー)
 フィラーとしては、例えば、シリカ、アルミナ、酸化チタン、マイカ、ベリリア、チタン酸バリウム、チタン酸カリウム、チタン酸ストロンチウム、チタン酸カルシウム、炭酸アルミニウム、水酸化マグネシウム、水酸化アルミニウム、ケイ酸アルミニウム、炭酸カルシウム、ケイ酸カルシウム、ケイ酸マグネシウム、窒化ケイ素、窒化ホウ素、焼成クレー、タルク、ホウ酸アルミニウム、及び炭化ケイ素が挙げられる。これらは1種を単独で用いても、2種以上を併用してもよい。
(Filler)
Examples of the filler include silica, alumina, titanium oxide, mica, beryllia, barium titanate, potassium titanate, strontium titanate, calcium titanate, aluminum carbonate, magnesium hydroxide, aluminum hydroxide, aluminum silicate, calcium carbonate, calcium silicate, magnesium silicate, silicon nitride, boron nitride, calcined clay, talc, aluminum borate, and silicon carbide. These may be used alone or in combination of two or more.
 フィラーの形状及び粒径についても特に制限はない。フィラーの粒径は、例えば、0.01~20μmであっても、0.1~10μmであってもよい。ここで、粒径とは、平均粒子径を指し、粒子の全体積を100%として粒子径による累積度数分布曲線を求めた時、体積50%に相当する点の粒子径のことである。平均粒径はレーザー回折散乱法を用いた粒度分布測定装置等で測定することができる。 There are no particular limitations on the shape and particle size of the filler. The particle size of the filler may be, for example, 0.01 to 20 μm or 0.1 to 10 μm. Here, particle size refers to the average particle size, and is the particle size at the point corresponding to 50% volume when a cumulative frequency distribution curve is calculated based on particle size, with the total volume of the particles being 100%. The average particle size can be measured using a particle size distribution measuring device that uses a laser diffraction scattering method.
 フィラーの分散性、有機成分との密着性を向上させる等の目的で、必要に応じ、カップリング剤を併用できる。カップリング剤としては特に限定されず、例えば、各種のシランカップリング剤、チタネートカップリング剤等を用いることができる。これらは1種を単独で用いても、2種以上を併用してもよい。また、カップリング剤の使用量も特に限定されず、例えば、使用するフィラー100質量部に対して0.1~5質量部としてもよいし、0.5~3質量部としてもよい。この範囲であれば、諸特性の低下が少なく、フィラーの使用による特長を効果的に発揮し易くなる。 If necessary, a coupling agent can be used in combination to improve the dispersibility of the filler and its adhesion to the organic component. There are no particular limitations on the coupling agent, and for example, various silane coupling agents, titanate coupling agents, etc. can be used. These may be used alone or in combination of two or more. There are also no particular limitations on the amount of coupling agent used, and for example, it may be 0.1 to 5 parts by mass or 0.5 to 3 parts by mass per 100 parts by mass of the filler used. Within this range, there is little deterioration in various properties, and it becomes easier to effectively utilize the features of the filler.
 カップリング剤を用いる場合、樹脂組成物中にフィラーを配合した後、カップリング剤を添加する、いわゆるインテグラルブレンド処理方式であってもよいが、予めフィラーにカップリング剤を、乾式又は湿式で表面処理したフィラーを使用する方式が好ましい。この方法を用いることで、より効果的に上記フィラーの特長を発現できる。 When using a coupling agent, the so-called integral blending method may be used, in which the coupling agent is added after the filler is blended into the resin composition, but it is preferable to use a filler that has been surface-treated in advance with a coupling agent by a dry or wet method. By using this method, the characteristics of the filler can be more effectively expressed.
(難燃剤)
 難燃剤としては特に限定されないが、臭素系難燃剤、リン系難燃剤、金属水酸化物等が好適に用いられる。臭素系難燃剤としては、例えば、臭素化エポキシ樹脂、臭素化添加型難燃剤、不飽和二重結合基含有の臭素化反応型難燃剤等が挙げられる。リン系難燃剤としては、例えば、芳香族系リン酸エステル、ホスホン酸エステル、ホスフィン酸エステル、ホスファゼン化合物等が挙げられる。金属水酸化物難燃剤としては、例えば、水酸化マグネシウム、水酸化アルミニウム等が挙げられる。
(Flame retardants)
The flame retardant is not particularly limited, but a bromine-based flame retardant, a phosphorus-based flame retardant, a metal hydroxide, etc. are preferably used. Examples of the bromine-based flame retardant include brominated epoxy resins, brominated additive flame retardants, and brominated reaction flame retardants containing unsaturated double bond groups. Examples of the phosphorus-based flame retardant include aromatic phosphate esters, phosphonate esters, phosphinate esters, and phosphazene compounds. Examples of the metal hydroxide flame retardant include magnesium hydroxide and aluminum hydroxide.
 樹脂組成物は、必要に応じて、溶剤を用いて希釈してもよい。溶剤は特に限定されないが、製膜時の揮発性等を沸点から考慮して決めることができる。溶剤としては、例えば、メタノール、エタノール、2-メトキシエタノール、2-エトキシエタノール、2-ブトキシエタノール、メチルエチルケトン、アセトン、メチルイソブチルケトン、トルエン、キシレン等の比較的低沸点の溶剤が挙げられる。溶剤は、1種を単独で又は2種以上を組み合わせて用いることができる。 The resin composition may be diluted with a solvent as necessary. The solvent is not particularly limited, but can be selected taking into consideration the boiling point and volatility during film formation. Examples of solvents include solvents with relatively low boiling points such as methanol, ethanol, 2-methoxyethanol, 2-ethoxyethanol, 2-butoxyethanol, methyl ethyl ketone, acetone, methyl isobutyl ketone, toluene, and xylene. Solvents can be used alone or in combination of two or more.
 本実施形態の樹脂組成物は、上記した各成分を均一に分散及び混合することによって得ることができ、その調製手段、条件等は特に限定されない。例えば、所定配合量の各種成分をミキサー等によって十分に均一に撹拌及び混合した後、ミキシングロール、押出機、ニーダー、ロール、エクストルーダー等を用いて混練し、更に得られた混練物を冷却及び粉砕する方法が挙げられる。なお、混練形式についても特に限定されない。 The resin composition of this embodiment can be obtained by uniformly dispersing and mixing the above-mentioned components, and the preparation means, conditions, etc. are not particularly limited. For example, a method can be used in which the various components in the specified amounts are thoroughly and uniformly stirred and mixed using a mixer or the like, then kneaded using a mixing roll, extruder, kneader, roll, extruder, etc., and the resulting kneaded product is cooled and pulverized. The kneading method is also not particularly limited.
[樹脂フィルム]
 本実施形態に係る樹脂組成物を用いて、樹脂フィルムを作製することができる。なお、樹脂フィルムとは未硬化又は半硬化のフィルム状の樹脂組成物を指す。
[Resin film]
The resin composition according to the present embodiment can be used to produce a resin film. The term "resin film" refers to an uncured or semi-cured film-like resin composition.
 樹脂フィルムの作製方法は限定されないが、例えば、樹脂組成物を支持基材上に塗布して形成された樹脂層を乾燥することで得られる。具体的には、上記樹脂組成物をキスコーター、ロールコーター、コンマコーター等を用いて支持基材上に塗布した後、加熱乾燥炉中等で、例えば70~250℃、好ましくは70~200℃の温度で、1~30分間、好ましくは3~15分間乾燥してもよい。これにより、樹脂組成物が半硬化した状態の樹脂フィルムを得ることができる。 The method for producing the resin film is not limited, but for example, the resin film can be obtained by applying the resin composition onto a supporting substrate and drying the formed resin layer. Specifically, the resin composition can be applied onto a supporting substrate using a kiss coater, roll coater, comma coater, or the like, and then dried in a heated drying oven or the like at a temperature of, for example, 70 to 250°C, preferably 70 to 200°C, for 1 to 30 minutes, preferably 3 to 15 minutes. This makes it possible to obtain a resin film in which the resin composition is in a semi-cured state.
 半硬化した状態の樹脂フィルムを、加熱炉で更に、例えば、170~250℃、好ましくは185~230℃の温度で、60~150分間加熱させることによって樹脂フィルムを熱硬化させることができる。 The semi-cured resin film can be further heated in a heating furnace at a temperature of, for example, 170 to 250°C, preferably 185 to 230°C, for 60 to 150 minutes to thermally cure the resin film.
 本実施形態に係る樹脂フィルムの厚さは特に限定されないが、1~200μmであることが好ましく、2~180μmであることがより好ましく、3~150μmであることが更に好ましい。樹脂フィルムの厚さを上記の範囲とすることにより、本実施形態に係る樹脂フィルムを用いて得られるプリント配線板の薄型化と良好な高周波特性を両立し易い。 The thickness of the resin film according to this embodiment is not particularly limited, but is preferably 1 to 200 μm, more preferably 2 to 180 μm, and even more preferably 3 to 150 μm. By setting the thickness of the resin film within the above range, it is easy to achieve both a thin printed wiring board obtained using the resin film according to this embodiment and good high-frequency characteristics.
 支持基材は特に限定されないが、ガラス、金属箔及びPETフィルムからなる群より選ばれる少なくとも一種であることが好ましい。樹脂フィルムが支持基材を備えることにより、保管性及びプリント配線板の製造に用いる際の取扱性が良好となる傾向にある。すなわち、本実施形態に係る樹脂フィルムは、本実施形態に係る樹脂組成物を含む樹脂層及び支持基材を備える、樹脂層付き支持体の形態をとることができ、使用される際には支持基材から剥離してもよい。 The supporting substrate is not particularly limited, but is preferably at least one selected from the group consisting of glass, metal foil, and PET film. Providing a supporting substrate for the resin film tends to improve storage properties and handling properties when used in the manufacture of printed wiring boards. In other words, the resin film according to this embodiment can take the form of a support with a resin layer, which includes a resin layer containing the resin composition according to this embodiment and a supporting substrate, and may be peeled off from the supporting substrate when in use.
[プリプレグ]
 本実施形態に係る樹脂組成物を用いてプリプレグを作製することができる。本実施形態に係る樹脂組成物を補強基材である繊維基材に塗工し、塗工された樹脂組成物を乾燥させてプリプレグを得ることができる。また、プリプレグは、繊維基材を本実施形態に係る樹脂組成物に含浸した後、含浸された樹脂組成物を乾燥させて得てもよい。具体的には、樹脂組成物が付着した繊維基材を、乾燥炉中で通常、80~200℃の温度で、1~30分間加熱乾燥することで、樹脂組成物が半硬化したプリプレグを得られる。良好な成形性の観点からは、繊維基材に対する樹脂組成物の付着量は、乾燥後のプリプレグ中の樹脂含有率として30~90質量%となるように塗工又は含浸することが好ましい。
[Prepreg]
A prepreg can be produced using the resin composition according to this embodiment. The resin composition according to this embodiment is applied to a fiber substrate, which is a reinforcing substrate, and the applied resin composition is dried to obtain a prepreg. The prepreg may be obtained by impregnating the fiber substrate with the resin composition according to this embodiment and then drying the impregnated resin composition. Specifically, the fiber substrate to which the resin composition is attached is heated and dried in a drying oven at a temperature of 80 to 200 ° C. for 1 to 30 minutes to obtain a prepreg in which the resin composition is semi-cured. From the viewpoint of good moldability, it is preferable to coat or impregnate the fiber substrate with the resin composition so that the resin content in the prepreg after drying is 30 to 90 mass %.
 プリプレグの補強基材としては限定されないが、シート状繊維基材が好ましい。シート状繊維基材としては、例えば、Eガラス、NEガラス、Sガラス、Qガラス等の無機繊維;ポリイミド、ポリエステル、テトラフルオロエチレン等の有機繊維が挙げられる。シート状繊維基材として、織布、不織布、チョップドストランドマット等の形状を有するものが使用できる。 The reinforcing substrate for the prepreg is not limited, but a sheet-like fiber substrate is preferred. Examples of the sheet-like fiber substrate include inorganic fibers such as E glass, NE glass, S glass, and Q glass; and organic fibers such as polyimide, polyester, and tetrafluoroethylene. As the sheet-like fiber substrate, those having shapes such as woven fabric, nonwoven fabric, and chopped strand mat can be used.
[積層板]
 本実施形態によれば、上述の樹脂組成物の硬化物を含む樹脂層と、導体層とを有する積層板を提供することができる。例えば、上記樹脂フィルム又は上記プリプレグを用い、金属張積層板を製造することができる。
[Laminate]
According to the present embodiment, a laminate having a resin layer containing the cured product of the above-mentioned resin composition and a conductor layer can be provided. For example, a metal-clad laminate can be produced by using the above-mentioned resin film or the above-mentioned prepreg.
 金属張積層板の製造方法は限定されないが、例えば、本実施形態に係る樹脂フィルム又はプリプレグを1枚又は複数枚重ね、少なくとも一つの面に導体層となる金属箔を配置し、例えば、170~250℃、好ましくは185~230℃の温度及び0.5~5.0MPaの圧力で60~150分間加熱及び加圧することにより、絶縁層となる樹脂層又はプリプレグの少なくとも一つの面に金属箔を備える金属張積層板が得られる。加熱及び加圧は、例えば、真空度は10kPa以下、好ましくは5kPa以下の条件で実施でき、効率を高める観点からは真空中で行うことが好ましい。加熱及び加圧は、開始から30分間~成形終了時間まで実施することが好ましい。 The method for producing the metal-clad laminate is not limited, but for example, one or more resin films or prepregs according to this embodiment are stacked, metal foil that will become a conductor layer is placed on at least one surface, and then, for example, heated and pressed at a temperature of 170 to 250°C, preferably 185 to 230°C, and a pressure of 0.5 to 5.0 MPa for 60 to 150 minutes, to obtain a metal-clad laminate having metal foil on at least one surface of the resin layer or prepreg that will become an insulating layer. Heating and pressing can be performed, for example, under conditions of a vacuum degree of 10 kPa or less, preferably 5 kPa or less, and from the viewpoint of increasing efficiency, it is preferable to perform the heating and pressing in a vacuum. Heating and pressing are preferably performed for 30 minutes from the start to the end of molding.
[多層プリント配線板]
 本実施形態によれば、上述の樹脂組成物の硬化物を含む樹脂層と、回路層とを備える多層プリント配線板を提供することができる。回路層の数の上限値は特に限定されず、3層~20層であってもよい。多層プリント配線板は、例えば、上記樹脂フィルム、プリプレグ又は金属張積層板を用いて製造することもできる。
[Multilayer printed wiring board]
According to the present embodiment, it is possible to provide a multilayer printed wiring board including a resin layer containing the cured product of the above-mentioned resin composition and a circuit layer. The upper limit of the number of circuit layers is not particularly limited, and may be 3 to 20 layers. The multilayer printed wiring board can also be manufactured using, for example, the above-mentioned resin film, prepreg, or metal-clad laminate.
 多層プリント配線板の製造方法としては特に限定されないが、例えば、まず、回路形成加工されたコア基板の片面又は両面に、樹脂フィルムを配置するか、あるいは複数枚のコア基板の間に樹脂フィルムを配置し、加圧及び加熱ラミネート成形、又は加圧及び加熱プレス成形を行って各層を接着した後、レーザー穴開け加工、ドリル穴開け加工、金属めっき加工、金属エッチング等による回路形成加工を行うことで、多層プリント配線板を製造することができる。樹脂フィルムが支持基材を有している場合、支持基材は、コア基板上又はコア基板間に樹脂フィルムを配置する前に剥離しておくか、あるいは、樹脂層をコア基板に張り付けた後に剥離することができる。 There are no particular limitations on the method for producing a multilayer printed wiring board, but for example, a multilayer printed wiring board can be produced by first placing a resin film on one or both sides of a core board on which a circuit has been formed, or by placing a resin film between multiple core boards, and then bonding each layer by pressure and heat lamination or pressure and heat press molding, and then performing circuit formation processing such as laser hole drilling, drilling, metal plating, metal etching, etc. If the resin film has a supporting substrate, the supporting substrate can be peeled off before the resin film is placed on or between the core boards, or it can be peeled off after the resin layer is attached to the core board.
 以上、本開示の好適な実施形態を説明したが、これらは本開示の説明のための例示であり、本発明の範囲をこれらの実施形態にのみ限定する趣旨ではない。本発明は、その要旨を逸脱しない範囲で、上記実施形態とは異なる種々の態様で実施することができる。 The above describes preferred embodiments of the present disclosure, but these are merely examples for the purpose of explaining the present disclosure, and are not intended to limit the scope of the present invention to these embodiments. The present invention can be implemented in various forms different from the above embodiments without departing from the spirit of the present invention.
 以下、本開示を実施例に基づいて更に詳細に説明する。ただし、本発明は以下の実施例に限定されない。 The present disclosure will be described in more detail below based on examples. However, the present invention is not limited to the following examples.
[変性スチレン系エラストマー]
(実施例1)
 冷却管、窒素導入管、熱電対、及び攪拌機を備えた2Lのフラスコに、キシレン950g、水添スチレン系熱可塑性エラストマー(旭化成株式会社製、商品名「タフテックH1041」)100g、及び無水マレイン酸(富士フイルム和光純薬株式会社)12.5gを投入し、80℃で0.5時間攪拌した後、0.5cm/Lの流量で窒素バブリングを1.0時間行った。次いで、過酸化ベンゾイル(富士フイルム和光純薬株式会社)4.8gを添加し、80℃で窒素バブリングをしながら6.0時間攪拌し、反応を行った。反応液から未反応の無水マレイン酸をイソプロピルアルコールにより3回抽出し、濃縮した。濃縮物を70℃で真空乾燥し、無水コハク酸基を有する変性スチレン系エラストマー(A1)を得た。
[Modified styrene-based elastomer]
Example 1
In a 2L flask equipped with a cooling tube, a nitrogen inlet tube, a thermocouple, and a stirrer, 950g of xylene, 100g of hydrogenated styrene-based thermoplastic elastomer (manufactured by Asahi Kasei Corporation, product name "Tuftec H1041"), and 12.5g of maleic anhydride (FUJIFILM Wako Pure Chemical Industries, Ltd.) were added, and the mixture was stirred at 80°C for 0.5 hours, followed by nitrogen bubbling at a flow rate of 0.5 cm 3 /L for 1.0 hour. Next, 4.8g of benzoyl peroxide (FUJIFILM Wako Pure Chemical Industries, Ltd.) was added, and the mixture was stirred at 80°C for 6.0 hours while bubbling with nitrogen to carry out a reaction. Unreacted maleic anhydride was extracted from the reaction solution three times with isopropyl alcohol and concentrated. The concentrate was vacuum dried at 70°C to obtain a modified styrene-based elastomer (A1) having a succinic anhydride group.
(実施例2)
 無水マレイン酸の量を17gに変更し、過酸化ベンゾイルの量を6.5gに変更した以外は実施例1と同様に反応を行い、無水コハク酸基を有する変性スチレン系エラストマー(A2)を得た。
Example 2
The reaction was carried out in the same manner as in Example 1, except that the amount of maleic anhydride was changed to 17 g and the amount of benzoyl peroxide was changed to 6.5 g, to obtain a modified styrene-based elastomer (A2) having succinic anhydride groups.
(実施例3)
 無水マレイン酸の量を34gに変更し、過酸化ベンゾイルの量を13gに変更した以外は実施例1と同様に反応を行い、無水コハク酸基を有する変性スチレン系エラストマー(A3)を得た。
Example 3
The reaction was carried out in the same manner as in Example 1, except that the amount of maleic anhydride was changed to 34 g and the amount of benzoyl peroxide was changed to 13 g, to obtain a modified styrene-based elastomer (A3) having succinic anhydride groups.
(実施例4)
 無水マレイン酸の量を8gに変更し、過酸化ベンゾイルの量を3gに変更した以外は実施例1と同様に反応を行い、無水コハク酸基を有する変性スチレン系エラストマー(A4)を得た。
Example 4
The reaction was carried out in the same manner as in Example 1, except that the amount of maleic anhydride was changed to 8 g and the amount of benzoyl peroxide was changed to 3 g, to obtain a modified styrene-based elastomer (A4) having succinic anhydride groups.
(比較例1)
 無水マレイン酸の量を4gに変更し、過酸化ベンゾイルの量を1.5gに変更した以外は実施例1と同様に反応を行い、無水コハク酸基を有する変性スチレン系エラストマー(A5)を得た。
(Comparative Example 1)
The reaction was carried out in the same manner as in Example 1, except that the amount of maleic anhydride was changed to 4 g and the amount of benzoyl peroxide was changed to 1.5 g, to obtain a modified styrene-based elastomer (A5) having succinic anhydride groups.
(比較例2)
 市販の無水コハク酸基を有する変性スチレン系エラストマー(A6)(旭化成株式会社、商品名「タフテックM1913」)を準備した。
(Comparative Example 2)
A commercially available modified styrene-based elastomer (A6) having a succinic anhydride group (manufactured by Asahi Kasei Corporation under the trade name "Tuftec M1913") was prepared.
[評価]
 実施例及び比較例の変性スチレン系エラストマーの酸価及び無水マレイン酸のグラフト率を以下の手順で測定した。結果を表1に示す。
[evaluation]
The acid value and the graft ratio of maleic anhydride of the modified styrene-based elastomers of the Examples and Comparative Examples were measured by the following procedure. The results are shown in Table 1.
(酸価)
 変性スチレン系エラストマー約1g及びキシレン200gを80℃で混合した液に、蒸留水0.5mLを加えた後、還流温度で1時間撹拌し、無水コハク酸基を加水分解した。混合液を80℃まで下げ、少量のフェノールフタレインを添加した後、0.1Mの水酸化可リム(KOH)含有エタノール溶液を30秒間色が消えなくなるまで滴下した。変性スチレン系エラストマーの量と滴下したKOHの量とから酸価(mgKOH/g)を測定した。変性スチレン系エラストマーの酸価は、無水コハク酸基が加水分解されて生成した2個のカルボキシ基に由来する値である。
(Acid value)
About 1 g of modified styrene-based elastomer and 200 g of xylene were mixed at 80°C, and 0.5 mL of distilled water was added, followed by stirring at reflux temperature for 1 hour to hydrolyze the succinic anhydride group. The mixture was cooled to 80°C, a small amount of phenolphthalein was added, and then a 0.1 M ethanol solution containing hydroxylamine (KOH) was dropped for 30 seconds until the color did not disappear. The acid value (mgKOH/g) was measured from the amount of modified styrene-based elastomer and the amount of KOH dropped. The acid value of the modified styrene-based elastomer is a value derived from two carboxyl groups generated by hydrolysis of the succinic anhydride group.
(グラフト率)
 変性スチレン系エラストマーの無水マレイン酸のグラフト率は、酸価、KOHの分子量、及び無水マレイン酸の分子量を下記式に導入して算出した。
グラフト率(質量%)=[酸価(mgKOH/g)/KOHの分子量(mg/mol)]×0.5×無水マレイン酸の分子量(g/mol)×100(%)
(Grafting rate)
The graft ratio of maleic anhydride in the modified styrene-based elastomer was calculated by inputting the acid value, the molecular weight of KOH, and the molecular weight of maleic anhydride into the following formula.
Graft ratio (mass%)=[acid value (mg KOH/g)/molecular weight of KOH (mg/mol)]×0.5×molecular weight of maleic anhydride (g/mol)×100(%)
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(相溶性)
 熱硬化性樹脂として、熱硬化性樹脂(B1)(キシレン-ノボラック型エポキシ樹脂、三菱ケミカル株式会社製、商品名「YX7700」)及び熱硬化性樹脂(B2)(ビスマレイミド樹脂、DIC株式会社製、商品名「NE-X-9470S」)を準備し、未変性スチレン系エラストマーとして、「タフテックH1041」を準備した。変性スチレン系エラストマー又は未変性スチレン系エレストマーと、熱硬化性樹脂とを表2又は表3に示す質量比で混合し、樹脂組成物を調製した。0.05mLの樹脂組成物をプレパラート上に付着させ、樹脂層を形成した。樹脂層上にカバーガラスを被せた状態で、25℃で24時間静置した。光学顕微鏡(倍率20倍)を用いて、静置後の樹脂層のドメインサイズを測定した。相溶性について、ドメインサイズが10μm未満の場合を「A」、10μm以上20μm未満の場合を「B」、20μm以上50μm未満の場合を「C」、50μm以上100μm未満の場合を「D」、100μm以上の場合を「E」と評価した。ドメインサイズが小さいほど、相溶性に優れることを意味する。
(Compatibility)
As the thermosetting resin, a thermosetting resin (B1) (xylene-novolac type epoxy resin, manufactured by Mitsubishi Chemical Corporation, trade name "YX7700") and a thermosetting resin (B2) (bismaleimide resin, manufactured by DIC Corporation, trade name "NE-X-9470S") were prepared, and "Tuftec H1041" was prepared as an unmodified styrene-based elastomer. The modified styrene-based elastomer or the unmodified styrene-based elastomer and the thermosetting resin were mixed in the mass ratio shown in Table 2 or Table 3 to prepare a resin composition. 0.05 mL of the resin composition was attached to a preparation to form a resin layer. The resin layer was covered with a cover glass and left to stand at 25 ° C. for 24 hours. The domain size of the resin layer after standing was measured using an optical microscope (magnification 20 times). Compatibility was evaluated as follows: domain size less than 10 μm was rated as "A", domain size 10 μm or more but less than 20 μm was rated as "B", domain size 20 μm or more but less than 50 μm was rated as "C", domain size 50 μm or more but less than 100 μm was rated as "D", and domain size 100 μm or more was rated as "E". The smaller the domain size, the better the compatibility.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003

Claims (8)

  1.  無水マレイン酸のグラフト率が1.5質量%以上である、変性スチレン系エラストマー。 A modified styrene-based elastomer with a graft rate of maleic anhydride of 1.5% by mass or more.
  2.  前記グラフト率が、1.5~10.0質量%である、請求項1に記載の変性スチレン系エラストマー。 The modified styrene-based elastomer according to claim 1, wherein the graft ratio is 1.5 to 10.0 mass%.
  3.  前記グラフト率が、1.8~10.0質量%である、請求項1に記載の変性スチレン系エラストマー。 The modified styrene-based elastomer according to claim 1, wherein the graft ratio is 1.8 to 10.0 mass%.
  4.  スチレン系エラストマー及び無水マレイン酸を溶剤に溶解した混合液に、窒素雰囲気下でラジカル発生剤を添加し、前記スチレン系エラストマーに前記無水マレイン酸を反応させる工程を備え、
     前記無水マレイン酸のグラフト率が1.5質量%以上である変性スチレン系エラストマーを得る、変性スチレン系エラストマーの製造方法。
    The method includes a step of adding a radical generator to a mixture obtained by dissolving a styrene-based elastomer and maleic anhydride in a solvent under a nitrogen atmosphere, and reacting the styrene-based elastomer with the maleic anhydride,
    The modified styrene-based elastomer has a graft ratio of maleic anhydride of 1.5 mass % or more.
  5.  前記グラフト率が、1.5~10.0質量%である、請求項4に記載の方法。 The method according to claim 4, wherein the graft ratio is 1.5 to 10.0 mass%.
  6.  前記グラフト率が、1.8~10.0質量%である、請求項4に記載の方法。 The method according to claim 4, wherein the graft ratio is 1.8 to 10.0 mass%.
  7.  前記ラジカル発生剤が、有機過酸化物又はアゾ化合物である、請求項4に記載の方法。 The method according to claim 4, wherein the radical generator is an organic peroxide or an azo compound.
  8.  前記溶剤が、トルエン、キシレン、及びプロピレングリコールモノメチルエーテルからなる群より選ばれる少なくとも1種を含む、請求項4~7のいずれか一項に記載の方法。 The method according to any one of claims 4 to 7, wherein the solvent includes at least one selected from the group consisting of toluene, xylene, and propylene glycol monomethyl ether.
PCT/JP2023/045353 2022-12-22 2023-12-18 Modified styrenic elastomer and method for producing modified styrenic elastomer WO2024135629A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-205786 2022-12-22
JP2022205786 2022-12-22

Publications (1)

Publication Number Publication Date
WO2024135629A1 true WO2024135629A1 (en) 2024-06-27

Family

ID=91588546

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2023/045353 WO2024135629A1 (en) 2022-12-22 2023-12-18 Modified styrenic elastomer and method for producing modified styrenic elastomer
PCT/JP2023/045354 WO2024135630A1 (en) 2022-12-22 2023-12-18 Resin composition

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/045354 WO2024135630A1 (en) 2022-12-22 2023-12-18 Resin composition

Country Status (1)

Country Link
WO (2) WO2024135629A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4578429A (en) * 1984-08-31 1986-03-25 Shell Oil Company Selectively hydrogenated block copolymers modified with acid compounds or derivatives
JPH06226924A (en) * 1993-02-03 1994-08-16 Mitsubishi Petrochem Co Ltd Laminate
JP2000017121A (en) * 1998-07-02 2000-01-18 Mitsubishi Chemicals Corp Resin composition
JP2012250356A (en) * 2011-05-31 2012-12-20 Kuraray Co Ltd Multilayer structure, and method for producing same
JP2017125176A (en) * 2016-08-31 2017-07-20 三井化学株式会社 Low-dielectric resin composition, cured product, dry film, film, prepreg, metal-clad laminate, printed wiring board and electronic apparatus
WO2018128111A1 (en) * 2017-01-05 2018-07-12 日本製紙株式会社 Modified polyolefin resin
JP2019104832A (en) * 2017-12-13 2019-06-27 ユニチカ株式会社 Aqueous dispersion

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08259849A (en) * 1995-03-24 1996-10-08 Daicel Chem Ind Ltd Primer composition and processing of slightly adherent plastic material
WO2017057708A1 (en) * 2015-09-30 2017-04-06 味の素株式会社 Resin composition for sealing
KR102479228B1 (en) * 2016-12-22 2022-12-21 도아고세이가부시키가이샤 Adhesive composition and coverlay film, bonding sheet, copper-clad laminate and electromagnetic shielding material using the same
WO2022071150A1 (en) * 2020-10-02 2022-04-07 昭和電工マテリアルズ株式会社 Film for temporary fixation, layered product for temporary fixation, and method for producing semiconductor device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4578429A (en) * 1984-08-31 1986-03-25 Shell Oil Company Selectively hydrogenated block copolymers modified with acid compounds or derivatives
JPH06226924A (en) * 1993-02-03 1994-08-16 Mitsubishi Petrochem Co Ltd Laminate
JP2000017121A (en) * 1998-07-02 2000-01-18 Mitsubishi Chemicals Corp Resin composition
JP2012250356A (en) * 2011-05-31 2012-12-20 Kuraray Co Ltd Multilayer structure, and method for producing same
JP2017125176A (en) * 2016-08-31 2017-07-20 三井化学株式会社 Low-dielectric resin composition, cured product, dry film, film, prepreg, metal-clad laminate, printed wiring board and electronic apparatus
WO2018128111A1 (en) * 2017-01-05 2018-07-12 日本製紙株式会社 Modified polyolefin resin
JP2019104832A (en) * 2017-12-13 2019-06-27 ユニチカ株式会社 Aqueous dispersion

Also Published As

Publication number Publication date
WO2024135630A1 (en) 2024-06-27

Similar Documents

Publication Publication Date Title
TWI814832B (en) Resin compositions, prepregs, metal foil-clad laminates, resin sheets, and printed wiring boards
JP7126493B2 (en) Soluble polyfunctional vinyl aromatic copolymer, production method thereof, curable resin composition and cured product thereof
KR101776560B1 (en) Resin composition, prepreg, metal-foil-clad laminated board, resin composite sheet, and printed circuit board
TWI615438B (en) Polyphenylene ether resin composition and application thereof in high frequency circuit substrate
TWI830741B (en) Resin compositions and their applications
TWI589686B (en) Low-dielectric phosphorus-containing flame retardant resin composition and its preparation method and application
TWI548520B (en) Low dielectric composite materials and laminated boards and circuit boards
CN111285980B (en) Halogen-free low dielectric resin composition, prepreg, metal foil laminate and printed wiring board using the same
CN111635626B (en) Resin composition, prepreg, laminated sheet, preparation method of prepreg, preparation method of laminated sheet and application of laminated sheet
WO2007094359A1 (en) Thermocurable resin composition comprising semi-ipn-type complex, and varnish, prepreg and metal-clad laminate sheet using the same
JP2018504511A (en) High-frequency thermosetting resin composition, prepreg, laminate sheet and printed circuit board using the same
TWI704185B (en) Resin composition, prepreg for printed circuit and metal-clad laminate
TWI771868B (en) A thermosetting resin composition and prepreg, laminate and high frequency circuit substrate containing the same
TW202108679A (en) Resin composition, prepreg, resin-attached film, resin-attached metal foil, metal-cladded laminate sheet, and wiring board
JP2014503029A (en) High performance thermosetting resins useful for electrical laminates, high density interconnects and interconnect substrate applications
JP2016538363A (en) Curable composition for forming interpenetrating polymer networks
WO2024135629A1 (en) Modified styrenic elastomer and method for producing modified styrenic elastomer
TW202325793A (en) Resin composition, prepreg, resin-equipped film, resin-equipped metal foil, metal-clad laminated sheet, and wiring board
WO2024038847A1 (en) Modified styrene-based elastomer
JP2024059184A (en) Method for producing modified styrene elastomer
TWI763402B (en) A kind of thermosetting resin composition and its application
WO2024038846A1 (en) Modified styrene elastomer
WO2024038845A1 (en) Resin composition
TW202417528A (en) Modified styrene elastomer
TW202417567A (en) Resin composition