WO2024135571A1 - Multilayer sheet - Google Patents

Multilayer sheet Download PDF

Info

Publication number
WO2024135571A1
WO2024135571A1 PCT/JP2023/045113 JP2023045113W WO2024135571A1 WO 2024135571 A1 WO2024135571 A1 WO 2024135571A1 JP 2023045113 W JP2023045113 W JP 2023045113W WO 2024135571 A1 WO2024135571 A1 WO 2024135571A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
styrene
polyolefin
polyphenylene ether
acid
Prior art date
Application number
PCT/JP2023/045113
Other languages
French (fr)
Japanese (ja)
Inventor
圭悟 岩槻
雄希 宮澤
隆行 尾鍋
Original Assignee
東亞合成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東亞合成株式会社 filed Critical 東亞合成株式会社
Publication of WO2024135571A1 publication Critical patent/WO2024135571A1/en

Links

Definitions

  • the present invention relates to a multilayer sheet with excellent adhesiveness and heat resistance that can be used to bond or seal various parts and can be used as a sheet-like member by itself, and a base sheet that is a manufacturing material for the multilayer sheet.
  • hot melt adhesive compositions have come to be used as adhesive films or sheets (hereinafter collectively referred to as "adhesive members") in chemical batteries such as lithium ion batteries and fuel cells that are incorporated into notebook computers, smartphones, tablets, automobiles, etc., as well as physical batteries such as solar cells and capacitors. It is known that relatively good adhesive strength can be obtained by using hot melt adhesive compositions whose main component is an acid-modified olefin thermoplastic resin (hereinafter also referred to as “acid-modified polyolefin”) to bond metal substrates such as iron, aluminum, titanium, and other metals, as well as alloys thereof, which are used as the substrates for the components of these batteries.
  • acid-modified polyolefin an acid-modified olefin thermoplastic resin
  • hot melt adhesive compositions are required to have durability against the constituent materials of the battery in addition to adhesive strength.
  • lithium ion batteries lithium hexafluorophosphate used as an electrolyte may react with moisture to generate hydrofluoric acid, and in fuel cells, acids such as hydrofluoric acid may be generated from the electrolyte membrane, which is a constituent material of the battery, so acid resistance is required.
  • durability against ethylene carbonate or diethyl carbonate used as a solvent for the electrolyte is required
  • nickel-metal hydride batteries durability against strong alkaline aqueous solutions is required.
  • a coolant containing ethylene glycol or propylene glycol is circulated inside the battery to cool the battery that generates heat due to power generation, so durability against the ethylene glycol, etc. is also required.
  • Patent Document 1 discloses a resin composition consisting of 50-99% by mass of a low-viscosity propylene-based base polymer that satisfies specific properties and 1-50% by mass of an acid-modified propylene-based elastomer that satisfies specific properties, as well as a hot melt adhesive that contains said resin composition. This has excellent adhesion to polyolefin-based substrates and also has excellent adhesion to metal substrates.
  • Patent Document 2 describes acid-modified polypropylene as an adhesive between metal and nylon-based resin.
  • Patent Document 3 describes a laminate sheet for sealing electronic devices in which a first sheet and a second sheet are laminated, the first sheet containing an acid-modified polyolefin thermoplastic resin, the second sheet having a higher melting point than the first sheet, and the peel strength of the second sheet against the first sheet at 25°C being 0.5 to 10.0 [N/15 mm].
  • Patent Document 3 describes polyethylene naphthalate as a specific example of the second sheet.
  • polyphenylene ether does not have the problems of deterioration over long-term use seen with other engineering plastics, it does have the serious problem of not adhering to the acid-modified polyolefin used in the adhesive layer, and easily undergoing interlayer delamination.
  • the problem that the present invention aims to solve is to provide a multilayer sheet that includes an adhesive layer containing an acid-modified polyolefin and a base layer containing polyphenylene ether, the multilayer sheet having high interlayer peel strength.
  • Another problem that the present invention aims to solve is to provide a base sheet containing polyphenylene ether that can be firmly adhered to an adhesive containing an acid-modified polyolefin.
  • the inventors conducted extensive research to solve the above problems when developing a multilayer sheet containing an adhesive layer containing an acid-modified polyolefin and a substrate layer containing polyphenylene ether. Specifically, they searched for various resin materials with the idea of providing a new tie layer with excellent adhesive strength between the adhesive layer containing an acid-modified polyolefin and the substrate layer containing polyphenylene ether, and discovered a resin composition suitable for the tie layer, thus completing the present invention.
  • a multilayer sheet comprising a substrate layer (A) containing a polyphenylene ether and an adhesive layer (B) containing an acid-modified polyolefin, and further comprising a tie layer (C) between the substrate layer (A) and the adhesive layer (B) containing a styrene-based elastomer, a polyphenylene ether, and a polyolefin.
  • styrene-based elastomer is selected from the group consisting of a styrene-diene block copolymer, a hydrogenated styrene-diene block copolymer, a modified styrene-diene block copolymer, a modified hydrogenated styrene-diene block copolymer, and combinations thereof.
  • the polyolefin of the tie layer (C) is polypropylene.
  • a substrate sheet comprising a substrate layer (A) containing polyphenylene ether, and a tie layer (C) containing a styrene-based elastomer, polyphenylene ether, and a polyolefin.
  • a method for producing a multilayer sheet comprising: preparing a base sheet comprising a base layer (A) containing polyphenylene ether and a tie layer (C) containing a styrene-based elastomer, polyphenylene ether, and a polyolefin; and laminating an adhesive layer (B) containing an acid-modified polyolefin on the tie layer (C).
  • a multilayer sheet can be provided that includes an adhesive layer containing an acid-modified polyolefin and a base layer containing polyphenylene ether, and that has high interlayer peel strength.
  • a base sheet can be provided that includes polyphenylene ether and can be firmly adhered to an adhesive containing an acid-modified polyolefin.
  • the interface between the adhesive layer and the base layer can be firmly bonded, producing a multi-layer sheet with excellent adhesion and heat resistance. This makes it possible to provide high-performance, economical sheet-type battery components, etc.
  • the multilayer sheet of the present invention comprises a substrate layer (A) containing polyphenylene ether and an adhesive layer (B) containing an acid-modified polyolefin, and further comprises a tie layer (C) containing a styrene-based elastomer, polyphenylene ether and polyolefin between the substrate layer (A) and the adhesive layer (B).
  • the tie layer is a layer disposed between the substrate layer and the adhesive layer, firmly bonding them together and increasing the peel strength of the multilayer sheet.
  • Typical layer configurations of the multilayer sheet include a three-layer sheet of substrate layer (A)/tie layer (C)/adhesive layer (B) and a five-layer sheet of adhesive layer (B)/tie layer (C)/substrate layer (A)/tie layer (C)/adhesive layer (B).
  • the substrate sheet of the present invention has a substrate layer (A) containing polyphenylene ether and a tie layer (C) containing a styrene-based elastomer, polyphenylene ether, and a polyolefin.
  • Typical layer configurations of the substrate sheet include a two-layer sheet of substrate layer (A)/tie layer (C) and a three-layer sheet of tie layer (C)/substrate layer (A)/tie layer (C).
  • the above multilayer sheet can be produced using the substrate sheet.
  • the substrate layer (A) contains polyphenylene ether.
  • Polyphenylene ether is typically a homopolymer or copolymer containing monomer units represented by the following formula:
  • R 1 to R 4 are selected from a hydrogen atom, a halogen atom, a primary or secondary alkyl group, an aryl group, an aminoalkyl group, a haloalkyl group, an alkoxy group and a haloalkoxy group, R 1 and R 3 are preferably hydrogen atoms, and R 2 and R 4 are preferably methyl groups.
  • polyphenylene ether homopolymers include poly(2,6-dimethyl-1,4-phenylene) ether, poly(2-methyl-6-ethyl-14-phenylene) ether, poly(2,6-diethyl-1,4-phenylene) ether, poly(2-ethyl-6-n-propyl-1,4-phenylene) ether, poly(2,6-di-n-propyl-1,4-phenylene) ether, poly(2-methyl-6-n-butyl-1,4-phenylene) ether, poly(2-ethyl-6-isopropyl-1,4-phenylene) ether, poly(2-methyl-6-chloroethyl-1,4-phenylene) ether, poly(2-methyl-6-hydroxyethyl-1,4-phenylene) ether, and poly(2-methyl-6-chloroethyl-1,4-phenylene) ether.
  • polyphenylene ether copolymers include a copolymer of 2,6-dimethylphenol and 2,3,6-trimethylphenol, a copolymer of 2,6-dimethylphenol and o-cresol, and a copolymer of 2,6-dimethylphenol and 2,3,6-trimethylphenol and o-cresol.
  • polyphenylene ethers poly(2,6-dimethyl-1,4-phenylene) ether is preferred.
  • Polyphenylene ether can be produced by a known method. For example, it can be polymerized using a metal catalyst such as copper. Specifically, it can be produced in accordance with the method for producing polyphenylene ether described in the examples of International Publication WO2012/046308 and the like. In addition, it is also available as a commercial material, and NORYL manufactured by SAIBC or the like can be suitably used.
  • the mass ratio of polyphenylene ether in the base layer (A) is preferably 50 mass% or more, more preferably 60 mass% or more, particularly preferably 70 mass% or more, and may be 100 mass%. When the mass ratio of polyphenylene ether in the base layer (A) is within such a range, the heat resistance of the multilayer sheet can be improved.
  • the mass ratio of polyphenylene ether in the base layer (A) is preferably 99.9 mass% or less, more preferably 98 mass% or less, particularly preferably 95 mass% or less. When the mass ratio of polyphenylene ether is within such a range, the moldability of the multilayer sheet can be improved.
  • the substrate layer (A) may optionally contain a polystyrene component selected from the group consisting of polystyrene, styrene-based elastomers, and combinations thereof.
  • Typical polystyrenes are general-purpose polystyrene (GPPS), which is a polymer of styrene alone, and high impact polystyrene (HIPS), which is GPPS with added rubber to give it impact resistance, but copolymers of styrene and acrylonitrile or (meth)acrylic acid esters can also be used.
  • GPPS general-purpose polystyrene
  • HIPS high impact polystyrene
  • styrene-based elastomers include styrene-butadiene binary block copolymers, styrene-butadiene-styrene ternary block copolymers, styrene-isoprene binary block copolymers, styrene-isoprene-styrene ternary block copolymers, and hydrogenated products thereof.
  • block copolymers and graft copolymers may be modified with an acid such as maleic anhydride, epoxy modified with an oxidizing agent, or terminal amine modified to provide functional groups such as carboxylic acid groups, carboxylic anhydride groups, epoxy groups, and amino groups.
  • These functional groups may be effective in improving the interfacial adhesion with the tie layer (C). The inclusion of these components improves toughness and molding stability at low temperatures.
  • the total amount of polyphenylene ether, polystyrene, and styrene-based elastomer in the base layer (A) is preferably 60% by mass or more, and more preferably 70% by mass or more. There is no particular upper limit to the total amount of polyphenylene ether, polystyrene, and styrene-based elastomer in the base layer (A), but in one embodiment of the present invention, the total amount of polyphenylene ether, polystyrene, and styrene-based elastomer in the base layer (A) is preferably 99.9% by mass or less, more preferably 98% by mass or less, and even more preferably 95% by mass or less.
  • the softening point of the base layer (A) is preferably 175°C or higher, more preferably 180°C or higher, and particularly preferably 185°C or higher. Having a softening point within this range improves the heat resistance of the multilayer sheet.
  • the storage modulus of the base layer (A) at 160°C is preferably 500 MPa or more, more preferably 700 MPa or more, and particularly preferably 1000 MPa or more.
  • the storage modulus of the base layer (A) at 170°C is preferably 500 MPa or more, more preferably 700 MPa or more, and particularly preferably 1000 MPa or more. If the storage modulus in this temperature range is 500 MPa or more, deformation and damage of the multilayer sheet due to thermocompression during adhesion can be prevented.
  • the softening point and storage modulus in this invention are values determined using a tensile viscoelasticity device (DMS6100 manufactured by Hitachi High-Tech Sanence Corporation). Specifically, the temperature is raised from room temperature to 250°C at a frequency of 1 Hz and a heating rate of 2°C/min, and the changes in storage modulus, loss modulus, and tan ⁇ with temperature are recorded.
  • the softening point in this invention refers to the temperature at which tan ⁇ is at its maximum.
  • the creep rate of the base layer (A) in a compression creep test is preferably 30% or less, and more preferably 25% or less.
  • the creep rate is measured according to the method described in the examples shown below.
  • the thermal deformation rate of the base layer (A) in a heat shrinkage test is preferably 0.50% or less, and more preferably 0.30% or less.
  • the thermal deformation rate is measured according to the method described in the examples shown below.
  • the melt flow rate of the base layer (A) is preferably 1 g/10 min or more, more preferably 2 g/10 min or more.
  • the melt flow rate of the base layer (A) is preferably 50 g/10 min or less, more preferably 30 g/10 min or less.
  • the melt flow rate of the base layer (A) is equal to or higher than the lower limit, the material strength is improved.
  • the melt flow rate of the base layer (A) is equal to or lower than the upper limit, the fluidity is improved and the moldability is improved.
  • melt flow rate is a value measured in accordance with JIS K7210:2014.
  • the melt flow rate of the base layer (A) was measured at a resin temperature of 300°C and a load of 2.16 kg.
  • the base layer (A) may contain, in addition to the above composition, polymers other than polyphenylene ether, polystyrene, and styrene-based elastomers (hereinafter referred to as other polymers (A)) to the extent that the characteristics of the present invention are not impaired.
  • other polymers (A) include ethylene homopolymers, metal neutralized products of ethylene-acrylic acid copolymers and ethylene-methacrylic acid copolymers, ethylene-butyl acrylate copolymers, propylene homopolymers, propylene- ⁇ -olefin copolymers, butene homopolymers, polyamide-based resins such as nylon 6 and nylon 66, and other resins.
  • the base layer (A) may further contain additives selected from the group consisting of antioxidants, ultraviolet absorbers, fillers, reinforcing fibers, release agents, processing aids, flame retardants, plasticizers, nucleating agents, antistatic agents, pigments, dyes, foaming agents, and combinations thereof.
  • the adhesive layer (B) contains an acid-modified polyolefin.
  • the acid-modified polyolefin is an unmodified polyolefin (hereinafter also simply referred to as "polyolefin") that has been graft-modified with an acid compound selected from the group consisting of unsaturated carboxylic acids, unsaturated carboxylic anhydrides, and combinations thereof.
  • monomer units constituting polyolefins include monomer units derived from monomers selected from the group consisting of ⁇ -olefins such as ethylene, propylene, 1-butene, 1-pentene, 1-hexene, and 4-methyl-1-pentene, diene monomers such as butadiene, isoprene, and chloroprene, aromatic vinyl compounds such as styrene, and combinations thereof.
  • ⁇ -olefins such as ethylene, propylene, 1-butene, 1-pentene, 1-hexene, and 4-methyl-1-pentene
  • diene monomers such as butadiene, isoprene, and chloroprene
  • aromatic vinyl compounds such as styrene, and combinations thereof.
  • polyolefins selected from the group consisting of polyethylene, polypropylene, polymer blends of polyethylene and polypropylene, ethylene-propylene copolymers, copolymers of the above-mentioned monomer units with one or more monomers selected from 1-octene, vinyl acetate, methyl (meth)acrylate, ethyl (meth)acrylate, butyl (meth)acrylate, glycidyl (meth)acrylate, (meth)acrylic acid, metal neutralized (meth)acrylic acid, maleic anhydride, and vinyl silanes, and combinations thereof, are preferred because they have high adhesive strength to the substrate.
  • Polyethylene is a polymer containing ethylene units as the main component, and may be either a homopolymer or a copolymer. When it is a copolymer, the content of ethylene units in the polyethylene is preferably 50% by mass or more, and may be 70% by mass or more.
  • Specific examples of polyethylene include homopolymers such as low-density polyethylene, high-density polyethylene, and linear low-density polyethylene; copolymers such as ethylene-diene monomer copolymers, ethylene-vinyl acetate copolymers, ethylene-acrylic acid ester copolymers, and ethylene-methacrylic acid ester copolymers; and halogen-modified products such as chlorinated polyethylene.
  • Polypropylene is a polymer containing propylene units as the main component, and may be either a homopolymer or a copolymer. When it is a copolymer, the content of propylene units in the polypropylene is preferably 50% by mass or more, and may be 70% by mass or more. Specific examples of polypropylene include homopolymers such as amorphous polypropylene and crystalline polypropylene, copolymers such as propylene-diene monomer copolymer, and halogen-modified products such as chlorinated polypropylene.
  • Ethylene-propylene copolymer is a polymer containing ethylene units and propylene units, and may be composed of only ethylene units and propylene units, or may further contain other monomer units in addition to ethylene units and propylene units.
  • An example of an ethylene-propylene copolymer containing other monomer units is an ethylene-propylene-diene monomer copolymer.
  • the total amount of ethylene units and propylene units in the ethylene-propylene copolymer is preferably 50% by mass or more, more preferably 70% by mass or more, even more preferably 80% by mass or more, particularly preferably 90% by mass or more, and may be 100% by mass.
  • polyolefins In addition to physical blends consisting of multiple components of these resins, polyolefins also include reactive blends in which functional groups are reacted between different polymers in a molding machine, graft copolymers and block copolymers consisting of multiple segments, and compositions in which physical blends using these as compatibilizers are microdispersed.
  • the total amount of ethylene units and propylene units is preferably 50% by mass or more, more preferably 70% by mass or more, even more preferably 80% by mass or more, particularly preferably 90% by mass or more, and may be 100% by mass.
  • Manufacturing methods for polyolefins include known manufacturing methods that use polymerization catalysts.
  • Polymerization catalysts include Ziegler catalysts and metallocene catalysts, and polymerization methods include slurry polymerization and gas phase polymerization.
  • Impact-resistant polypropylene also known as polypropylene block polymer, is essentially a mixture of polypropylene and a propylene-ethylene random copolymer, and can be manufactured by a process consisting of a first step of obtaining a propylene homopolymer and a second step of obtaining a propylene-ethylene random copolymer.
  • the acid compound used in producing the acid-modified polyolefin is selected from the group consisting of unsaturated carboxylic acids, unsaturated carboxylic anhydrides, and combinations thereof.
  • Unsaturated carboxylic acids are compounds that have an ethylenic double bond and a carboxylic acid group in the same molecule, and examples include various unsaturated monocarboxylic acids and unsaturated dicarboxylic acids. These acid compounds may be used alone or in combination of two or more types.
  • unsaturated monocarboxylic acids include acrylic acid, methacrylic acid, crotonic acid, and isocrotonic acid.
  • unsaturated dicarboxylic acids include maleic acid, fumaric acid, itaconic acid, citraconic acid, nadic acid, and endic acid.
  • Unsaturated carboxylic acid anhydrides are compounds that have an ethylenic double bond and a carboxylic acid anhydride group in the same molecule, and examples thereof include the acid anhydrides of the unsaturated dicarboxylic acids mentioned above.
  • Specific examples of acid anhydrides of unsaturated dicarboxylic acids include maleic anhydride, fumaric anhydride, itaconic anhydride, citraconic anhydride, nadic anhydride, and endic anhydride.
  • maleic acid and maleic anhydride are preferably used because of their high modifying effect, with maleic anhydride being particularly preferred.
  • the method of modifying a polyolefin with an acid compound is not particularly limited, and examples of the method include a solution modification method in which an acid compound and a radical generator are added to a solution in which the polyolefin is dissolved in an organic solvent, and the solution is reacted at a temperature of usually 60 to 350°C, preferably 80 to 190°C, for usually 0.5 to 15 hours, preferably 1 to 10 hours, or a melt modification method in which the polyolefin and the acid compound are melted at a temperature above the melting point of the polyolefin, for example 170 to 280°C, using an extruder or the like, and reacted for usually about 0.5 to 10 minutes.
  • a solution modification method in which an acid compound and a radical generator are added to a solution in which the polyolefin is dissolved in an organic solvent, and the solution is reacted at a temperature of usually 60 to 350°C, preferably 80 to 190°C, for usually 0.5 to 15 hours, preferably 1
  • the radical generator to be used may be selected from commercially available organic peroxides, taking into consideration the reaction temperature, etc.
  • the graft amount of the acid compound is preferably 0.01 mass% or more, more preferably 0.4 mass% or more, and particularly preferably 0.6 mass% or more. When the graft amount is within this range, the adhesiveness of the adhesive layer (B) can be improved.
  • the graft amount of the acid compound is preferably 5% by mass or less, more preferably 2% by mass or less, and particularly preferably 1% by mass or less. If the graft amount is within this range, it is possible to suppress the appearance of the product due to fish eyes, bumps, etc. during molding, and also to improve adhesion.
  • the graft amount means the amount of an acid compound introduced by graft copolymerization to the main chain of an unmodified polyolefin.
  • V valence of acid group (however, in the case of containing an acid anhydride group, this is the valence of the acid group when the acid anhydride group is completely hydrolyzed)
  • the acid value indicates the number of milligrams of potassium hydroxide required to neutralize the acid contained in 1 g of acid-modified polyolefin, and is measured in accordance with JIS K 0070:1992.
  • the melting point of the acid-modified polyolefin is preferably 130°C or higher, and more preferably 135°C or higher. If the melting point of the acid-modified polyolefin is within this range, the heat resistance and adhesive strength at high temperatures of the adhesive layer (B) can be improved.
  • the melting point of the acid-modified polyolefin is preferably 160°C or less, and more preferably 150°C or less. When the melting point of the acid-modified polyolefin is within this range, good thermocompression bonding properties can be obtained, and the adhesive durability at low temperatures can be improved.
  • the melting point refers to the temperature at the top of the endothermic peak that occurs when a differential scanning calorimeter (DSC) is used, the temperature is first held at 180°C for several minutes, then cooled to 0°C at a rate of 10°C per minute, and then heated to 200°C at a rate of 10°C per minute.
  • DSC differential scanning calorimeter
  • the melt flow rate of the acid-modified polyolefin is preferably 3 g/10 min or more, more preferably 7 g/10 min or more.
  • the melt flow rate of the acid-modified polyolefin is preferably 50 g/10 min or less, more preferably 30 g/10 min or less.
  • the melt flow rate is a value measured in accordance with JIS K7210:2014.
  • the melt flow rate of the adhesive layer (B) was measured at a resin temperature of 230°C and a load of 2.16 kg.
  • the content of the acid-modified polyolefin in the adhesive layer (B) may be 2% by mass or more.
  • the acid-modified polyolefin may be used in a mixture with an unmodified polyolefin, and when an acid-modified polyolefin with a high degree of acid modification is used, a small amount of about 2% by mass may be used.
  • the content of the acid-modified polyolefin in the adhesive layer (B) is not particularly limited, and may be a high content of, for example, 50% by mass or more.
  • a polymer other than the acid-modified polyolefin (hereinafter referred to as "other polymer (B)") can be added to the adhesive layer (B).
  • Examples of other polymers (B) include unmodified polyolefins such as polyethylene, polypropylene, and ethylene- ⁇ -olefin copolymers, styrene-butadiene-styrene block copolymers and their hydrogenated products, styrene-isoprene-styrene block copolymers and their hydrogenated products, styrene-isobutylene-styrene block copolymers, styrene-based graft copolymers in which styrene homopolymers or copolymers are grafted to polyolefins, and polyamide resins such as nylon 6 and nylon 66.
  • unmodified polyolefins such as polyethylene, polypropylene, and ethylene- ⁇ -olefin copolymers
  • styrene-butadiene-styrene block copolymers and their hydrogenated products styrene-is
  • the lower limit of the content of the other polymer (B) in the adhesive layer (B) is preferably 1% by mass or more, more preferably 2% by mass or more, and particularly preferably 3% by mass or more. When the amount added is within this range, the improving effect of the other polymer (B) is enhanced.
  • the content of other polymers (B) in the adhesive layer (B) is not limited as long as the adhesive performance is not reduced.
  • the content of the acid-modified polyolefin can be reduced.
  • the content of unmodified polyolefin may be high, and the content of unmodified polyolefin in the adhesive layer (B) may be, for example, 50% by mass or more, and the content of unmodified polyolefin in the adhesive layer (B) may be, for example, 98% by mass or less.
  • the adhesive layer (B) can obtain high heat resistance and high adhesive strength at high temperatures.
  • the total amount of the acid-modified polyolefin and the unmodified polyolefin in the adhesive layer (B) is preferably 80% by mass or more, and more preferably 90% by mass or more.
  • the adhesive layer (B) may further contain an additive selected from the group consisting of antioxidants, UV absorbers, fillers, reinforcing fibers, release agents, processing aids, flame retardants, plasticizers, nucleating agents, antistatic agents, pigments, dyes, foaming agents, and combinations thereof.
  • an additive selected from the group consisting of antioxidants, UV absorbers, fillers, reinforcing fibers, release agents, processing aids, flame retardants, plasticizers, nucleating agents, antistatic agents, pigments, dyes, foaming agents, and combinations thereof.
  • the tie layer (C) contains styrene-based elastomer, polyphenylene ether and polyolefin.
  • styrene-based elastomers examples include styrene-butadiene diblock copolymers, styrene-butadiene-styrene triblock copolymers, styrene-isoprene diblock copolymers, styrene-isoprene-styrene triblock copolymers, and hydrogenated products thereof.
  • styrene-ethylene-butylene block copolymers which are hydrogenated products of styrene-butadiene block copolymers
  • styrene-ethylene-propylene block copolymers which are hydrogenated products of styrene-isoprene block copolymers
  • SEBS styrene-ethylene-butylene-styrene triblock copolymers
  • SEPS styrene-ethylene-propylene-styrene triblock copolymers
  • block copolymers and graft copolymers may be modified with acids such as maleic anhydride, epoxy modified with an oxidizing agent, or modified with terminal amines to give functional groups such as carboxylic acid groups, carboxylic anhydride groups, epoxy groups, and amino groups. These functional groups may be effective in improving the interfacial adhesion between the substrate layer and the adhesive layer.
  • the polyphenylene ether may be the same as that described for the substrate layer (A).
  • the polyphenylene ether used in the tie layer (C) may be the same as or different from the polyphenylene ether used in the substrate layer (A).
  • the polyphenylene ether used in the tie layer (C) is preferably poly(2,6-dimethyl-1,4-phenylene) ether, as in the substrate layer (A).
  • Polyolefins are resins containing monomer units derived from monomers selected from the group consisting of ⁇ -olefins such as ethylene, propylene, 1-butene, 1-pentene, 1-hexene, and 4-methyl-1-pentene, diene monomers such as butadiene, isoprene, and chloroprene, aromatic vinyl compounds such as styrene, and combinations thereof.
  • ⁇ -olefins such as ethylene, propylene, 1-butene, 1-pentene, 1-hexene, and 4-methyl-1-pentene
  • diene monomers such as butadiene, isoprene, and chloroprene
  • aromatic vinyl compounds such as styrene, and combinations thereof.
  • polypropylene is particularly preferred.
  • Polypropylene is a polymer containing propylene units as the main component, and may be a homopolymer or copolymer, or may be an alloy or blend with other polymer components.
  • polypropylene examples include homopolymers such as amorphous polypropylene and crystalline polypropylene, copolymers whose main component is propylene, such as ethylene-propylene copolymers and propylene-diene monomer copolymers, halogen-modified products such as chlorinated polypropylene, and alloys or blends of polypropylene with other polymers.
  • polypropylene copolymers and alloys include monomer units derived from monomers selected from the group consisting of ⁇ -olefins such as ethylene, 1-butene, 1-pentene, 1-hexene, and 4-methyl-1-pentene, diene monomers such as butadiene, isoprene, chloroprene, and diene monomers, aromatic vinyl compounds such as vinyl acetate, (meth)acrylic acid esters, and styrene, and combinations thereof.
  • the polypropylene may be acid-modified polypropylene. Acid modification increases the affinity with the adhesive layer (B), and is expected to improve the interfacial adhesive strength.
  • Polyolefin can be produced by the production method described above for the adhesive layer (B), but as the polyolefin used in the tie layer (C), a polyolefin polymerized using a metallocene catalyst (hereinafter referred to as a metallocene polyolefin) is preferred, and polypropylene polymerized using a metallocene catalyst (hereinafter referred to as a metallocene polypropylene) is particularly preferred.
  • a metallocene catalyst hereinafter referred to as a metallocene polypropylene
  • a metallocene catalyst is a catalyst consisting of a transition metal compound of Group 4 of the periodic table containing a ligand having a cyclopentadienyl skeleton (a so-called metallocene compound), a cocatalyst that can be activated to a stable ion state by reacting with the metallocene compound, and, if necessary, an organoaluminum compound, and any known metallocene catalyst can be used.
  • the polymerization method any type of method can be adopted as long as the catalyst components and each monomer are efficiently contacted. Specific polymerization methods include a slurry method in the presence of a metallocene catalyst, a gas-phase fluidized bed method, a solution method, and a high-pressure bulk polymerization method.
  • the mass ratio of the styrene-based elastomer to polyphenylene ether in the tie layer (C) is preferably 30/70 to 80/20, more preferably 35/65 to 70/30, and particularly preferably 40/60 to 60/40.
  • the mass ratio is equal to or greater than the lower limit of the above range, it is possible to increase the strength of the tie layer (C).
  • the mass ratio is equal to or less than the upper limit of the above range, it is possible to improve heat resistance.
  • the mass ratio of the total amount of the styrene-based elastomer and polyphenylene ether to the polyolefin in the tie layer (C) is preferably 50/50 to 85/15, more preferably 60/40 to 80/20, and particularly preferably 70/30 to 80/20.
  • the mass ratio is equal to or greater than the lower limit of the above range, the adhesion to the base layer (A) can be improved.
  • the mass ratio is equal to or less than the upper limit of the above range, the adhesion to the adhesive layer (C) can be improved.
  • the total amount of the styrene-based elastomer, polyphenylene ether and polyolefin in the tie layer (C) is preferably 50% by mass or more, more preferably 70% by mass or more, and may be 100% by mass.
  • the melt flow rate of the tie layer (C) is preferably 0.5 g/10 min or more, more preferably 1 g/10 min or more.
  • the melt flow rate of the tie layer (C) is preferably 50 g/10 min or less, more preferably 30 g/10 min or less.
  • melt flow rate is a value measured in accordance with JIS K7210:2014.
  • the melt flow rate of the tie layer (C) was measured at a resin temperature of 260°C and a load of 2.16 kg.
  • the tie layer (C) may further comprise an additive selected from the group consisting of antioxidants, UV absorbers, fillers, reinforcing fibers, release agents, processing aids, flame retardants, plasticizers, nucleating agents, antistatic agents, pigments, dyes, foaming agents, and combinations thereof.
  • the substrate layer (A) preferably has a thickness in the range of 50 to 300 ⁇ m, more preferably in the range of 70 to 250 ⁇ m, and particularly preferably in the range of 100 to 200 ⁇ m.
  • a thickness of the substrate layer (A) is equal to or greater than this lower limit, sufficient rigidity is obtained.
  • the thickness of the substrate layer (A) is equal to or less than this upper limit, the effect on the thickness of an article incorporating the multilayer sheet, such as a battery, can be reduced.
  • the adhesive layer (B) preferably has a thickness in the range of 10 to 100 ⁇ m, more preferably in the range of 20 to 80 ⁇ m, and particularly preferably in the range of 30 to 70 ⁇ m.
  • the thickness of the adhesive layer (B) is equal to or greater than this lower limit, the occurrence of poor adhesion can be suppressed.
  • the thickness of the adhesive layer (B) is equal to or less than this upper limit, the adhesive can be prevented from overflowing from the multilayer sheet, and defects can be prevented in articles incorporating the multilayer sheet, such as batteries.
  • the tie layer (C) preferably has a thickness in the range of 2 to 50 ⁇ m, more preferably in the range of 5 to 40 ⁇ m, and particularly preferably in the range of 10 to 30 ⁇ m.
  • the thickness of the tie layer (C) is equal to or greater than this lower limit, sufficient adhesion is obtained.
  • the thickness of the tie layer (C) is equal to or less than this upper limit, the effect on the thickness of an article incorporating the multilayer sheet, such as a battery, can be reduced.
  • the multilayer sheet and the bonded body using it can exhibit excellent adhesive performance, durability, productivity, and cost-effectiveness.
  • the base layer (A), adhesive layer (B) and tie layer (C) can each be manufactured from a resin composition as a raw material.
  • the resin composition as the raw material of the base layer (A), adhesive layer (B) and tie layer (C) is a composition mainly composed of resin, which is composed of the components of the base layer (A), adhesive layer (B) and tie layer (C) described above.
  • the resin composition used for each layer can be manufactured by blending and mixing the components in the above-mentioned blending ratio in any order using a super mixer, Henschel mixer, etc., and kneading and granulating using a normal kneading machine such as a single-screw extruder, twin-screw extruder, Banbury mixer, roll mixer, Brabender plastograph, co-kneader, kneader-ruder, etc.
  • a normal kneading machine such as a single-screw extruder, twin-screw extruder, Banbury mixer, roll mixer, Brabender plastograph, co-kneader, kneader-ruder, etc.
  • kneading and granulation method that can achieve good dispersion of each component, and kneading and granulating using a twin-screw extruder is particularly preferable from the standpoint of economy, etc.
  • the temperature for melt-kneading the resin composition used in the base layer (A) is preferably 150 to 320°C, more preferably 180 to 300°C, and the kneading time is usually 0.5 to 20 minutes, preferably 1 to 15 minutes.
  • the temperature for melt-kneading the resin composition used in the adhesive layer (B) is preferably 150 to 270°C, more preferably 170 to 250°C, and the kneading time is usually 0.5 to 20 minutes, preferably 1 to 15 minutes.
  • the melt-kneading temperature of the resin composition used in the tie layer (C) is preferably 150 to 320°C, more preferably 170 to 300°C, and the kneading time is usually 0.5 to 20 minutes, preferably 1 to 15 minutes.
  • the resin composition used in the base layer (A), the resin composition used in the adhesive layer (B), and the resin composition used in the tie layer (C) obtained in this manner can be made into multilayer sheets of various shapes according to the application by conventionally known methods such as compression molding, injection molding, extrusion molding, multilayer extrusion molding, profile extrusion molding, or blow molding.
  • the substrate layer (A), adhesive layer (B) and tie layer (C) may be prepared in advance as sheets and then heat-laminated to form a multilayer, or may be formed into a multilayer by simultaneously forming a sheet and forming a multilayer, as in multilayer extrusion molding. In either case, it is preferable to bring the substrate layer (A) and the tie layer (C) into contact with each other while at least one of the substrate layer (A) and the tie layer (C) is in a molten state, and bring the tie layer (C) and the adhesive layer (B) into contact with each other while at least one of the tie layer (C) and the adhesive layer (B) is in a molten state.
  • the contact temperature is preferably 160°C or higher, more preferably 190°C or higher, and particularly preferably 220°C or higher.
  • the contact temperature is equal to or higher than the lower limit, fusion between the adhesive layer (B) and the tie layer (C), and between the tie layer (C) and the base layer (A) proceeds sufficiently, and the interlayer adhesive strength can be increased.
  • the base layer (A) and the adhesive layer (B) may be contacted with the tie layer (C) simultaneously or separately.
  • multilayer extrusion molding In terms of productivity and manufacturing costs, it is preferable to form the multilayer sheet by multilayer extrusion molding.
  • general extrusion molding the layered molten resin extruded from a T-die is cooled and stretched by rolls or the like to form a sheet.
  • Multilayer molding is possible by "co-extrusion", which extrudes multiple resins simultaneously.
  • Specific methods of co-extrusion include the "feed block method”, in which the resins are joined just before the T-die, and the “multi-manifold method”, in which the single layers are spread in a manifold and then joined at the lip, which is the discharge outlet of the T-die. Any of these methods or other methods may be used in the manufacture of the multilayer sheet of the present invention.
  • the multilayer sheet extruded by multilayer extrusion molding may be subsequently heat laminated (thermocompression bonded) by a heated roll.
  • the interlayer adhesive strength may be further improved by adding a heat lamination process.
  • the preferable temperature conditions for the heat lamination process are as described above.
  • the base sheet can be manufactured by laminating the base layer (A) and the tie layer (C) in the same manner as the multilayer sheet. After the base sheet is formed, an adhesive containing an acid-modified polyolefin can be applied or laminated to provide an adhesive layer (B) on the tie layer (C) provided on the surface of the base sheet, thereby forming a multilayer sheet.
  • the multilayer sheet of the present invention can be bonded to an adherend formed of various materials such as metal, glass, ceramics, or plastic. This makes it possible to produce an assembly including the multilayer sheet and the adherend.
  • an assembly including the multilayer sheet can be used as a member or part of a layered battery.
  • the metal used as the adherend may be a commonly known metal plate, flat metal plate, or metal foil, and iron, copper, aluminum, lead, zinc, titanium, chromium, stainless steel, etc. can be used. Among these, iron, aluminum, titanium, and stainless steel are particularly preferred.
  • thermoplastic or thermosetting resins can be used as the plastic to be used as the adherend.
  • Composite materials in which inorganic materials such as glass or ceramics, or fillers or fibers such as metal or carbon are combined with resin can also be used.
  • DSC DSC SEBS-1: Asahi Kasei, Tuftec (registered trademark), terminal amine-modified hydrogenated styrene-based thermoplastic elastomer (SEBS) MP10, styrene content 30% SEBS-2: Asahi Kasei, Tuftec (registered trademark), acid-modified hydrogenated styrene-based thermoplastic elastomer (SEBS) M1913, styrene content 30% TM55: Aronmelt (registered trademark) TM55, manufactured by Toagosei, maleic anhydride modified polyolefin, melting point 142°C, MFR 15g/10min PP-1: Japan Polypropylene, Wintech (registered trademark) WMG03, metallocene polypropylene, melting point 142°C PP-2: Sanallomer (registered trademark) PC630A, random polypropylene, melting point 142°C, manufactured by Sanallomer
  • melt flow rate (MFR) was measured using a commercially available melt indexer (G-02 manufactured by Toyo Seiki Seisakusho Co., Ltd.) in accordance with JIS K7210: 2014.
  • the measurement temperature for the base layer (A) was 300°C
  • the measurement temperature for the adhesive layer (B) was 230°C
  • the measurement temperature for the tie layer (C) was 260°C, and all layers were measured under a load of 2.16 kg.
  • the resin composition for the base layer (A) was molded into a sheet having a thickness of about 0.2 mm using a tabletop press molding machine.
  • the resin sheet was cut into a size of 10 mm x 4.5 mm, and the viscoelastic properties were measured using a tensile viscoelasticity device (Hitachi High-Tech San-Ens Co., Ltd. DMS6100). Specifically, the temperature was raised from room temperature to 250 ° C. at a frequency of 1 Hz and a heating rate of 2 ° C. / min, and the changes in storage modulus, loss modulus, and tan ⁇ due to temperature were recorded. The softening point was the temperature at which the value of tan ⁇ was the maximum value.
  • the resin composition for the base layer (A) was molded into a sheet having a thickness of 1 mm using a tabletop press molding machine. This resin sheet was cut into a size of 10 mm x 10 mm, and five sheets were stacked to form a sample having a thickness of 5 mm. Using a heat press device (Shinto Kogyo Digital Press CYPT-50), the sample was heated at a temperature of 170 ° C. and a pressure of 6 MPa for 12 hours, and the ratio of the thickness change before and after the test to the thickness before the test was calculated as the creep rate (%). The resin composition for the base layer (A) was molded into a sheet having a thickness of about 100 ⁇ m using a tabletop press molding machine.
  • This resin sheet was cut into a size of 200 mm x 100 mm to form a sample.
  • the prepared sample was hung in a 180 ° C. dryer for 30 seconds, and the thermal deformation rate was calculated from the dimensional change before and after heating.
  • the thermal deformation rate is the average of the absolute value of the change rate of the long side and the absolute value of the change rate of the short side.
  • Hot Water Peel Test A SUS304 plate with a thickness of 0.1 mm was used as an adherend, and both sides of the multilayer sheet were sandwiched between SUS304 plates and heat-pressed (180°C, 4 seconds, 3 MPa) with a precision press to produce a bonded body. This bonded body was cut into a strip with a width of 10 mm to prepare a test piece. The bonded part of the test piece was 10 mm wide and 15 mm long.
  • a load cell (eDPU-50N, manufactured by Imada) was attached to a measurement stand (MX2-1000N, manufactured by Imada), a heated water bath with a hook attached to the bottom was filled with hot water at 95°C, and the test piece was immersed in the water and peeled at 30 mm/min to evaluate the peel strength (N/10 mm).
  • the constant load immersion test is a test method in which a test piece is held in 120°C pressurized hot water under a constant peel load to evaluate the adhesion durability.
  • the test piece is the same as that used for measuring the peel strength.
  • One end of the handle of the test piece was connected to a fixed stand with a wire, and the other end was connected to a weight.
  • the test piece was hung from a fixed stand installed above the water surface together with the weight in 95°C hot water, and a peel load (0.5N) was applied by the weight in the water. After 2000 hours, the test piece was taken out and the above-mentioned hot water peel test was carried out to evaluate the peel strength (N/10mm). Note that, for test pieces that peeled off and fell in less than 2000 hours, only the fall time is indicated in Table 1.
  • PPE-1 and SEBS-1 were mixed in the ratio shown in Table 1 and melt-kneaded at 300° C. in a twin-screw extruder (TEX25 ⁇ III, manufactured by Japan Steel Works, Ltd.) to obtain resin composition A-1 for the substrate layer (A).
  • PPE-2, SEBS-1, and PP-1 were mixed in the ratios shown in Table 1 and melt-kneaded at 280°C in a twin-screw extruder (TEX25 ⁇ III, manufactured by Japan Steel Works) to obtain resin compositions C-1 to C-3 for the tie layer (C), respectively.
  • TM55 was used as the resin composition B-1 for the adhesive layer (B).
  • the above resin composition was molded using a T-die multilayer film molding machine (manufactured by Plastics Engineering Research Institute) so that the thickness of each layer was approximately 150 ⁇ m for the base material layer (A), approximately 50 ⁇ m for the adhesive layer (B), and approximately 25 ⁇ m for the tie layer (C), to obtain five-layer sheets of adhesive layer (B)/tie layer (C)/base material layer (A)/tie layer (C)/adhesive layer (B).
  • Example 4 The same resin compositions A-1 and B-1 as in Example 1 were used for the base layer (A) and adhesive layer (B). PPE-2, SEBS-1, and PP-2 were mixed in the ratio shown in Table 1 and melt-kneaded in the same manner as in Example 1 to obtain a resin composition C-4 for the tie layer (C). A five-layer sheet was obtained in the same manner as in Example 1.
  • Examples 5 to 8 The same resin compositions A-1 and B-1 as in Example 1 were used for the base layer (A) and adhesive layer (B). PPE-1, SEBS-1, and PP-2 were mixed in the ratios shown in Table 1 and melt-kneaded in the same manner as in Example 1 to obtain resin compositions C-5 to C-8 for the tie layer (C), respectively. In the same manner as in Example 1, five-layer sheets were obtained.
  • Example 9 The same resin compositions A-1 and B-1 as in Example 1 were used for the base layer (A) and adhesive layer (B). PPE-2, SEBS-2, and PP-2 were mixed in the ratio shown in Table 1 and melt-kneaded in the same manner as in Example 1 to obtain a resin composition C-9 for the tie layer (C). A five-layer sheet was obtained in the same manner as in Example 1.
  • Example 10 Resin composition A-1 for the substrate layer (A) and resin composition C-2 for the tie layer (C) used in Example 2 were molded in a T-die multilayer film molding machine (manufactured by Plastics Engineering Research Institute) to obtain a substrate sheet of tie layer (C)/substrate layer (A)/tie layer (C).
  • Resin composition B-1 for the adhesive layer (B) was molded in a T-die monolayer film molding machine (manufactured by Technovel) to obtain a monolayer sheet of adhesive layer (B).
  • Example 1 The same resin compositions A-1 and B-1 as in Example 1 were used for the base layer (A) and adhesive layer (B). Without providing a tie layer (C), molding was performed using a T-die multilayer film molding machine (manufactured by Plastics Engineering Research Institute) to obtain a three-layer sheet of adhesive layer (B)/substrate layer (A)/adhesive layer (B).
  • T-die multilayer film molding machine manufactured by Plastics Engineering Research Institute
  • Example 2 The same resin compositions A-1 and B-1 as in Example 1 were used for the base layer (A) and adhesive layer (B). PPE-1 and SEBS-1 were mixed in the ratio shown in Table 1 and melt-kneaded in the same manner as in Example 1 to obtain a resin composition C-10 for the tie layer (C). A five-layer sheet was obtained in the same manner as in Example 1.
  • Example 10 From the results of Example 6 and Example 8, it was confirmed that the adhesive strength and durability with the adherend were improved when a resin composition in which the total amount of the styrene-based elastomer and the polyphenylene ether and the mass ratio of the polyolefin are within a specific range is used as the tie layer (C).
  • a base material sheet consisting of the tie layer (C) / base material layer (A) / tie layer (C) was produced, and an adhesive layer (B) was provided on both sides to produce a multilayer sheet. It was confirmed that a multilayer sheet having the same adhesive strength as Example 2 can also be produced by the manufacturing method of Example 10. Comparing Examples 1 to 3 with Example 4, it was confirmed that the durability in water was further improved by using metallocene-based polypropylene as the polyolefin in the tie layer (C).
  • the multilayer sheet of the present invention is useful for bonding and sealing metals and other materials, and can be suitably used in applications where the resulting bonded body may come into contact with moisture continuously or intermittently.
  • the multilayer sheet has a base layer (A) with excellent rigidity and heat resistance, and by adding a tie layer (C) of a specific composition to this, the interfacial strength between the base layer (A) and the adhesive layer (B) is improved, forming a strong bonded body. Therefore, the multilayer sheet of the present invention is useful as a component of a battery, and can contribute to reducing the number of battery parts and costs, and significantly improving productivity.
  • Other applications include, for example, electric wires and cables in which metal conductors or optical fibers are covered with resin molded products, automotive mechanism parts, automotive exterior parts, automotive interior parts, molded power supply substrates, light reflectors for reflecting light sources, fuel cases for solid methanol batteries, insulation for metal pipes, insulation for vehicles, fuel cell water pipes, decorative molded products, water cooling tanks, boiler exterior cases, peripheral parts and components for printer ink, water piping, joints, secondary battery alkaline storage battery tanks, gasket sealants for various layered batteries, etc.

Landscapes

  • Laminated Bodies (AREA)

Abstract

A multilayer sheet according to the present invention is characterized by: comprising a substrate layer (A) containing a polyphenylene ether, and an adhesive agent layer (B) containing an acid-modified polyolefin; and further comprising, between the substrate layer (A) and the adhesive layer (B), a tie layer (C) containing a styrene-based elastomer, a polyphenylene ether, and a polyolefin.

Description

多層シートMulti-layer sheet
 本発明は、各種部品の接着や封止に利用でき、それ自体をシート状部材として使用できる、接着性と耐熱性に優れた多層シート及びその製造部材である基材シートに関する。 The present invention relates to a multilayer sheet with excellent adhesiveness and heat resistance that can be used to bond or seal various parts and can be used as a sheet-like member by itself, and a base sheet that is a manufacturing material for the multilayer sheet.
 近年、ホットメルト型接着剤組成物は、接着性フィルム又はシート(以下、まとめて「接着性部材」という。)として、ノートパソコン、スマートフォン、タブレット及び自動車等に組み込まれるリチウムイオン電池及び燃料電池等の化学電池、並びに太陽電池及びキャパシタ(コンデンサ)等の物理電池に使用されるようになってきている。これら電池の構成部材の基材に用いられる、鉄、アルミニウム、チタン及びその他金属、並びにそれらの合金等の金属基材を接着するために、酸により変性されたオレフィン系熱可塑性樹脂(以下、「酸変性ポリオレフィン」ともいう)を主成分とするホットメルト型接着剤組成物を用いると、比較的良好な接着力が得られることが知られている。 In recent years, hot melt adhesive compositions have come to be used as adhesive films or sheets (hereinafter collectively referred to as "adhesive members") in chemical batteries such as lithium ion batteries and fuel cells that are incorporated into notebook computers, smartphones, tablets, automobiles, etc., as well as physical batteries such as solar cells and capacitors. It is known that relatively good adhesive strength can be obtained by using hot melt adhesive compositions whose main component is an acid-modified olefin thermoplastic resin (hereinafter also referred to as "acid-modified polyolefin") to bond metal substrates such as iron, aluminum, titanium, and other metals, as well as alloys thereof, which are used as the substrates for the components of these batteries.
 電池用途では、接着力に加えて電池の構成材料への耐久性もホットメルト型接着剤組成物に要求される。リチウムイオン電池においては、電解質として用いるヘキサフルオロリン酸リチウムが水分と反応してフッ酸が発生する場合があり、また、燃料電池においては、電池の構成部材である電解質膜からフッ酸等の酸が発生する場合があり、耐酸性が要求される。更に、リチウムイオン電池においては、電解質の溶剤として用いるエチレンカーボネート又はジエチルカーボネート等に対する耐久性、ニッケル水素電池においては、強アルカリ水溶液に対する耐久性が必要となる。また、燃料電池においては、発電により発熱した電池を冷却する目的で、電池内部にエチレングリコール又はプロピレングリコール等を含む冷却液を循環させるため、前記エチレングリコール等に対する耐久性も要求されている。 For battery applications, hot melt adhesive compositions are required to have durability against the constituent materials of the battery in addition to adhesive strength. In lithium ion batteries, lithium hexafluorophosphate used as an electrolyte may react with moisture to generate hydrofluoric acid, and in fuel cells, acids such as hydrofluoric acid may be generated from the electrolyte membrane, which is a constituent material of the battery, so acid resistance is required. Furthermore, in lithium ion batteries, durability against ethylene carbonate or diethyl carbonate used as a solvent for the electrolyte is required, and in nickel-metal hydride batteries, durability against strong alkaline aqueous solutions is required. In addition, in fuel cells, a coolant containing ethylene glycol or propylene glycol is circulated inside the battery to cool the battery that generates heat due to power generation, so durability against the ethylene glycol, etc. is also required.
 特許文献1には、特定性状を満たす低粘度プロピレン系ベースポリマー50~99質量%と、特定性状を満たす酸変性プロピレン系エラストマー1~50質量%から構成される樹脂組成物、並びに当該樹脂組成物を含んでなるホットメルト接着剤が開示されている。これは、ポリオレフィン系基材への付着性に優れると同時に、金属基材との接着力にも優れるものである。特許文献2には金属とナイロン系樹脂の接着剤として、酸変性ポリプロピレンが記載されている。 Patent Document 1 discloses a resin composition consisting of 50-99% by mass of a low-viscosity propylene-based base polymer that satisfies specific properties and 1-50% by mass of an acid-modified propylene-based elastomer that satisfies specific properties, as well as a hot melt adhesive that contains said resin composition. This has excellent adhesion to polyolefin-based substrates and also has excellent adhesion to metal substrates. Patent Document 2 describes acid-modified polypropylene as an adhesive between metal and nylon-based resin.
 酸変性ポリオレフィン系接着性フィルム又はシートを基材層上に積層して多層シートとすることで、更に高性能・高機能な接着性部材を得ることも可能である。この多層シートの基材層には剛性や耐熱性に優れたエンジニアリングプラスチックが用いられる。酸変性ポリオレフィン系接着剤をこのような多層シートとすることで、強度や剛性、ガスバリア性、耐薬品性、耐酸・アルカリ性、耐熱性等が向上し、上述したリチウムイオン電池や燃料電池等、これらの耐久性が求められる用途に好適に用いることができる。また、多層シートをリチウムイオン電池や燃料電池の接着性部材に用いることで、構成部材や部品の数を低減することが可能となり、コスト低減や生産性の向上も可能となる。 By laminating an acid-modified polyolefin adhesive film or sheet onto a substrate layer to form a multilayer sheet, it is possible to obtain an adhesive member with even higher performance and functionality. Engineering plastics with excellent rigidity and heat resistance are used for the substrate layer of this multilayer sheet. By forming the acid-modified polyolefin adhesive into such a multilayer sheet, the strength, rigidity, gas barrier properties, chemical resistance, acid and alkali resistance, heat resistance, etc. are improved, making it suitable for use in applications requiring these durability, such as the lithium ion batteries and fuel cells mentioned above. In addition, by using the multilayer sheet as an adhesive member for lithium ion batteries and fuel cells, it is possible to reduce the number of constituent materials and parts, which also enables cost reduction and productivity improvement.
 多層シートの基材に用いられるエンジニアリングプラスチックとして、耐熱性、剛性、寸法安定性、コストの点からポリエチレンナフタレート、シクロオレフィンポリマー等の耐熱性ポリオレフィン、ポリフェニレンエーテル系アロイ、芳香族ポリアミド樹脂等が用いられてきた。例えば、特許文献3には、第1シートと第2シートとが積層されている電子機器の封止用積層シートであって、前記第1シートが酸変性ポリオレフィン系熱可塑性樹脂を含み、前記第2シートが、前記第1シートよりも高い融点を有し、前記第1シートに対する前記第2シートの25℃におけるピール強度が0.5~10.0[N/15mm]であることを特徴とする電子機器の封止用積層シートが記載されている。特許文献3には、第2シートの具体例としてポリエチレンナフタレートが記載されている。 In terms of heat resistance, rigidity, dimensional stability, and cost, engineering plastics used as the base material of multilayer sheets have included polyethylene naphthalate, heat-resistant polyolefins such as cycloolefin polymers, polyphenylene ether alloys, and aromatic polyamide resins. For example, Patent Document 3 describes a laminate sheet for sealing electronic devices in which a first sheet and a second sheet are laminated, the first sheet containing an acid-modified polyolefin thermoplastic resin, the second sheet having a higher melting point than the first sheet, and the peel strength of the second sheet against the first sheet at 25°C being 0.5 to 10.0 [N/15 mm]. Patent Document 3 describes polyethylene naphthalate as a specific example of the second sheet.
特開2013-060521号公報JP 2013-060521 A 特開2017-109613号公報JP 2017-109613 A 国際公開第2011/013389号International Publication No. 2011/013389
 上記の通り、酸変性ポリオレフィンを含む接着剤層と、ポリエチレンナフタレート、シクロオレフィンポリマー等の耐熱性ポリオレフィン、ポリフェニレンエーテル、芳香族ポリアミド樹脂等のエンジニアリングプラスチックを含む基材層とを積層した多層シートが接着性部材として使用されている。しかしながら、ポリエチレンナフタレートや芳香族ポリアミド樹脂は長期使用時に加水分解し、水分と接触する環境下での耐久性に問題があった。シクロオレフィンポリマーは軟化点が十分高くないため圧着温度が制約されるという問題があった。また、シクロオレフィンポリマーは強靭性も低いため長期の使用で割れ等の問題が起きやすかった。 As mentioned above, a multilayer sheet made by laminating an adhesive layer containing acid-modified polyolefin and a base layer containing heat-resistant polyolefins such as polyethylene naphthalate and cycloolefin polymers, and engineering plastics such as polyphenylene ether and aromatic polyamide resins, is used as an adhesive member. However, polyethylene naphthalate and aromatic polyamide resins undergo hydrolysis during long-term use, and there are problems with their durability in environments where they come into contact with moisture. Cycloolefin polymers have a problem in that their softening point is not high enough, limiting the bonding temperature. Cycloolefin polymers also have low toughness, making them prone to problems such as cracking after long-term use.
 ポリフェニレンエーテルには他のエンジニアリングプラスチックに見られるような長期使用時の劣化に関する問題は見られないが、接着剤層に使用する酸変性ポリオレフィンと接着せず、容易に層間剥離してしまうという重大な問題があった。 Although polyphenylene ether does not have the problems of deterioration over long-term use seen with other engineering plastics, it does have the serious problem of not adhering to the acid-modified polyolefin used in the adhesive layer, and easily undergoing interlayer delamination.
 本発明が解決しようとする課題は、酸変性ポリオレフィンを含む接着剤層とポリフェニレンエーテルを含む基材層とを含む多層シートであって、層間の剥離強度が高い多層シートを提供することにある。また、本発明が解決しようとする別の課題は、酸変性ポリオレフィンを含む接着剤に強固に接着可能なポリフェニレンエーテルを含む基材シートを提供することにある。 The problem that the present invention aims to solve is to provide a multilayer sheet that includes an adhesive layer containing an acid-modified polyolefin and a base layer containing polyphenylene ether, the multilayer sheet having high interlayer peel strength. Another problem that the present invention aims to solve is to provide a base sheet containing polyphenylene ether that can be firmly adhered to an adhesive containing an acid-modified polyolefin.
 本発明者らは、酸変性ポリオレフィンを含む接着剤層とポリフェニレンエーテルを含む基材層とを含む多層シートを開発する上で、上記の課題を解決するために鋭意検討した。具体的には、酸変性ポリオレフィンを含む接着剤層とポリフェニレンエーテルを含む基材層との間に接着力に優れたタイ層を新たに設け、このタイ層によって接着剤層と基材層を結合させる発想で種々の樹脂材料を探索し、タイ層に適した樹脂組成を発見し本発明を完成した。 The inventors conducted extensive research to solve the above problems when developing a multilayer sheet containing an adhesive layer containing an acid-modified polyolefin and a substrate layer containing polyphenylene ether. Specifically, they searched for various resin materials with the idea of providing a new tie layer with excellent adhesive strength between the adhesive layer containing an acid-modified polyolefin and the substrate layer containing polyphenylene ether, and discovered a resin composition suitable for the tie layer, thus completing the present invention.
 上記課題を解決するための手段には、以下の態様が含まれる。
[1]ポリフェニレンエーテルを含む基材層(A)と、酸変性ポリオレフィンを含む接着剤層(B)とを含み、前記基材層(A)と前記接着剤層(B)との間に、スチレン系エラストマー、ポリフェニレンエーテル及びポリオレフィンを含むタイ層(C)をさらに含む、多層シート。
[2]前記スチレン系エラストマーが、スチレン-ジエンブロック共重合体、スチレン-ジエンブロック共重合体の水素添加物、スチレン-ジエンブロック共重合体の変性物、スチレン-ジエンブロック共重合体の水素添加物の変性物及びそれらの組み合わせから成る群より選択される、[1]に記載の多層シート。
[3]前記スチレン系エラストマーが、スチレン-ジエンブロック共重合体の水素添加物の変性物を含み、前記スチレン-ジエンブロック共重合体の水素添加物の変性物がカルボン酸基、カルボン酸無水物基、エポキシ基、アミノ基及びそれらの組み合わせから成る群より選択される官能基を有する、[1]又は[2]に記載の多層シート。
[4]前記タイ層(C)の前記ポリオレフィンがポリプロピレンである、[1]~[3]のいずれかに記載の多層シート。
[5]前記タイ層(C)の前記ポリオレフィンがメタロセン系ポリプロピレンである、[1]~[4]のいずれかに記載の多層シート。
[6]前記タイ層(C)において、前記スチレン系エラストマーと前記ポリフェニレンエーテルの質量比率が30/70~80/20である、[1]~[5]のいずれかに記載の多層シート。
[7]前記タイ層(C)において、前記スチレン系エラストマーと前記ポリフェニレンエーテルの合計量と前記ポリオレフィンの質量比率が50/50~85/15である、[1]~[6]のいずれかに記載の多層シート。
[8]前記基材層(A)の軟化点が175℃以上である、[1]~[7]のいずれかに記載の多層シート。
[9]前記基材層(A)の160℃における貯蔵弾性率が500MPa以上である、[1]~[8]のいずれかに記載の多層シート。
[10]前記酸変性ポリオレフィンが無水マレイン酸変性ポリオレフィンである、[1]~[9]のいずれかに記載の多層シート。
[11]前記基材層(A)が50~300μmの厚みを有し、前記接着剤層(B)が10~100μmの厚みを有し、前記タイ層(C)が2~50μmの厚みを有する、[1]~[10]のいずれかに記載の多層シート。
[12]ポリフェニレンエーテルを含む基材層(A)と、スチレン系エラストマー、ポリフェニレンエーテル及びポリオレフィンを含むタイ層(C)とを含む、基材シート。
[13]前記タイ層(C)において、前記スチレン系エラストマーと前記ポリフェニレンエーテルの質量比率が30/70~80/20である、[12]に記載の基材シート。
[14]前記タイ層(C)において、前記スチレン系エラストマーと前記ポリフェニレンエーテルの合計量と前記ポリオレフィンの質量比率が50/50~85/15である、[12]又は[13]に記載の基材シート。
[15]ポリフェニレンエーテルを含む基材層(A)と、スチレン系エラストマー、ポリフェニレンエーテル及びポリオレフィンを含むタイ層(C)とを含む、基材シートを用意する工程、及び前記タイ層(C)上に酸変性ポリオレフィンを含む接着剤層(B)を積層する工程を含む、多層シートの製造方法。
Means for solving the above problems include the following aspects.
[1] A multilayer sheet comprising a substrate layer (A) containing a polyphenylene ether and an adhesive layer (B) containing an acid-modified polyolefin, and further comprising a tie layer (C) between the substrate layer (A) and the adhesive layer (B) containing a styrene-based elastomer, a polyphenylene ether, and a polyolefin.
[2] The multilayer sheet according to [1], wherein the styrene-based elastomer is selected from the group consisting of a styrene-diene block copolymer, a hydrogenated styrene-diene block copolymer, a modified styrene-diene block copolymer, a modified hydrogenated styrene-diene block copolymer, and combinations thereof.
[3] The multilayer sheet according to [1] or [2], wherein the styrene-based elastomer comprises a modified product of a hydrogenated styrene-diene block copolymer, and the modified product of the hydrogenated styrene-diene block copolymer has a functional group selected from the group consisting of a carboxylic acid group, a carboxylic anhydride group, an epoxy group, an amino group, and combinations thereof.
[4] The multilayer sheet according to any one of [1] to [3], wherein the polyolefin of the tie layer (C) is polypropylene.
[5] The multilayer sheet according to any one of [1] to [4], wherein the polyolefin of the tie layer (C) is a metallocene-based polypropylene.
[6] The multilayer sheet according to any one of [1] to [5], wherein in the tie layer (C), a mass ratio of the styrene-based elastomer to the polyphenylene ether is 30/70 to 80/20.
[7] The multilayer sheet according to any one of [1] to [6], wherein in the tie layer (C), a mass ratio of the total amount of the styrene-based elastomer and the polyphenylene ether to the polyolefin is 50/50 to 85/15.
[8] The multilayer sheet according to any one of [1] to [7], wherein the softening point of the base layer (A) is 175° C. or higher.
[9] The multilayer sheet according to any one of [1] to [8], wherein the storage modulus of the base layer (A) at 160° C. is 500 MPa or more.
[10] The multilayer sheet according to any one of [1] to [9], wherein the acid-modified polyolefin is a maleic anhydride-modified polyolefin.
[11] The multilayer sheet according to any one of [1] to [10], wherein the base layer (A) has a thickness of 50 to 300 μm, the adhesive layer (B) has a thickness of 10 to 100 μm, and the tie layer (C) has a thickness of 2 to 50 μm.
[12] A substrate sheet comprising a substrate layer (A) containing polyphenylene ether, and a tie layer (C) containing a styrene-based elastomer, polyphenylene ether, and a polyolefin.
[13] The base sheet according to [12], wherein in the tie layer (C), a mass ratio of the styrene-based elastomer to the polyphenylene ether is 30/70 to 80/20.
[14] The base sheet according to [12] or [13], wherein in the tie layer (C), a mass ratio of the total amount of the styrene-based elastomer and the polyphenylene ether to the polyolefin is 50/50 to 85/15.
[15] A method for producing a multilayer sheet, comprising: preparing a base sheet comprising a base layer (A) containing polyphenylene ether and a tie layer (C) containing a styrene-based elastomer, polyphenylene ether, and a polyolefin; and laminating an adhesive layer (B) containing an acid-modified polyolefin on the tie layer (C).
 本発明の一実施形態によれば、酸変性ポリオレフィンを含む接着剤層とポリフェニレンエーテルを含む基材層とを含む多層シートであって、層間の剥離強度が高い多層シートを提供できる。また、本発明の一実施形態によれば、酸変性ポリオレフィンを含む接着剤に強固に接着可能なポリフェニレンエーテルを含む基材シートを提供できる。 According to one embodiment of the present invention, a multilayer sheet can be provided that includes an adhesive layer containing an acid-modified polyolefin and a base layer containing polyphenylene ether, and that has high interlayer peel strength. Also, according to one embodiment of the present invention, a base sheet can be provided that includes polyphenylene ether and can be firmly adhered to an adhesive containing an acid-modified polyolefin.
 接着剤層及び基材層の間にスチレン系エラストマー、ポリフェニレンエーテル及びポリオレフィンを主成分とするタイ層を設けることで、接着剤層と基材層の界面を強固に接着して、接着力と耐熱性に優れた多層シートを製造できる。これにより高性能かつ経済的なシート状電池の部材等を提供することができる。 By providing a tie layer between the adhesive layer and the base layer, whose main components are styrene-based elastomer, polyphenylene ether, and polyolefin, the interface between the adhesive layer and the base layer can be firmly bonded, producing a multi-layer sheet with excellent adhesion and heat resistance. This makes it possible to provide high-performance, economical sheet-type battery components, etc.
 以下に記載する構成要件の説明は、本発明の代表的な実施形態に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。なお、本願明細書において「~」とはその前後に記載される数値を下限値及び上限値として含む意味で使用される。 The following description of the constituent elements may be based on a representative embodiment of the present invention, but the present invention is not limited to such an embodiment. In this specification, the word "~" is used to mean that the numerical values before and after it are included as the lower and upper limits.
 本明細書中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。 In the numerical ranges described in this specification in stages, the upper or lower limit value described in one numerical range may be replaced with the upper or lower limit value of another numerical range described in stages. In addition, in the numerical ranges described in this specification, the upper or lower limit value of that numerical range may be replaced with a value shown in the examples.
 本発明の多層シートは、ポリフェニレンエーテルを含む基材層(A)及び酸変性ポリオレフィンを含む接着剤層(B)を含み、更に基材層(A)と接着剤層(B)との間にスチレン系エラストマー、ポリフェニレンエーテル及びポリオレフィンを含むタイ層(C)を有する。タイ層とは基材層と接着剤層との間に配置され、これらを強固に接着し、多層シートの剥離強度を高める層である。多層シートの典型的な層構成としては、基材層(A)/タイ層(C)/接着剤層(B)の3層シート及び接着剤層(B)/タイ層(C)/基材層(A)/タイ層(C)/接着剤層(B)の5層シートが挙げられる。 The multilayer sheet of the present invention comprises a substrate layer (A) containing polyphenylene ether and an adhesive layer (B) containing an acid-modified polyolefin, and further comprises a tie layer (C) containing a styrene-based elastomer, polyphenylene ether and polyolefin between the substrate layer (A) and the adhesive layer (B). The tie layer is a layer disposed between the substrate layer and the adhesive layer, firmly bonding them together and increasing the peel strength of the multilayer sheet. Typical layer configurations of the multilayer sheet include a three-layer sheet of substrate layer (A)/tie layer (C)/adhesive layer (B) and a five-layer sheet of adhesive layer (B)/tie layer (C)/substrate layer (A)/tie layer (C)/adhesive layer (B).
 本発明の基材シートは、ポリフェニレンエーテルを含む基材層(A)とスチレン系エラストマー、ポリフェニレンエーテル及びポリオレフィンを含むタイ層(C)とを有する。基材シートの典型的な層構成としては、基材層(A)/タイ層(C)の2層シート及びタイ層(C)/基材層(A)/タイ層(C)の3層シートが挙げられる。基材シートを用いて上記の多層シートを作製できる。 The substrate sheet of the present invention has a substrate layer (A) containing polyphenylene ether and a tie layer (C) containing a styrene-based elastomer, polyphenylene ether, and a polyolefin. Typical layer configurations of the substrate sheet include a two-layer sheet of substrate layer (A)/tie layer (C) and a three-layer sheet of tie layer (C)/substrate layer (A)/tie layer (C). The above multilayer sheet can be produced using the substrate sheet.
 基材層(A)はポリフェニレンエーテルを含む。ポリフェニレンエーテルは典型的には以下式により表される単量体単位を含む単独重合体又は共重合体である。 The substrate layer (A) contains polyphenylene ether. Polyphenylene ether is typically a homopolymer or copolymer containing monomer units represented by the following formula:
Figure JPOXMLDOC01-appb-C000001
式中、R~Rは水素原子、ハロゲン原子、第1級又は第2級アルキル基、アリール基、アミノアルキル基、ハロアルキル基、アルコキシ基及びハロアルコキシ基から選択され、R及びRは好ましくは水素原子であり、R及びRは好ましくはメチル基である。
Figure JPOXMLDOC01-appb-C000001
In the formula, R 1 to R 4 are selected from a hydrogen atom, a halogen atom, a primary or secondary alkyl group, an aryl group, an aminoalkyl group, a haloalkyl group, an alkoxy group and a haloalkoxy group, R 1 and R 3 are preferably hydrogen atoms, and R 2 and R 4 are preferably methyl groups.
 ポリフェニレンエーテルの単独重合体の代表例としては、ポリ(2,6-ジメチル-1,4-フェニレン)エーテル、ポリ(2-メチル-6-エチル-14-フェニレン)エーテル、ポリ(2,6-ジエチル-1,4-フェニレン)エーテル、ポリ(2-エチル-6-n-プロピル-1,4-フェニレン)エーテル、ポリ(2,6-ジ-n-プロピル-1,4-フェニレン)エーテル、ポリ(2-メチル-6-n-ブチル-1,4-フェニレン)エーテル、ポリ(2-エチル-6-イソプロピル-1,4-フェニレン)エーテル、ポリ(2-メチル-6-クロロエチル-1,4-フェニレン)エーテル、ポリ(2-メチル-6-ヒドロキシエチル-1,4-フェニレン)エーテル、ポリ(2-メチル-6-クロロエチル-1,4-フェニレン)エーテル等が挙げられる。
 ポリフェニレンエーテル共重合体の代表例としては、2,6-ジメチルフェノールと2,3,6-トリメチルフェノールとの共重合体、2,6-ジメチルフェノールとo-クレゾールとの共重合体、あるいは2,6-ジメチルフェノールと2,3,6-トリメチルフェノール及びo-クレゾールとの共重合体等が挙げられる。
 ポリフェニレンエーテルの中でも、ポリ(2,6-ジメチル-1,4-フェニレン)エーテルが好ましい。
Representative examples of polyphenylene ether homopolymers include poly(2,6-dimethyl-1,4-phenylene) ether, poly(2-methyl-6-ethyl-14-phenylene) ether, poly(2,6-diethyl-1,4-phenylene) ether, poly(2-ethyl-6-n-propyl-1,4-phenylene) ether, poly(2,6-di-n-propyl-1,4-phenylene) ether, poly(2-methyl-6-n-butyl-1,4-phenylene) ether, poly(2-ethyl-6-isopropyl-1,4-phenylene) ether, poly(2-methyl-6-chloroethyl-1,4-phenylene) ether, poly(2-methyl-6-hydroxyethyl-1,4-phenylene) ether, and poly(2-methyl-6-chloroethyl-1,4-phenylene) ether.
Representative examples of polyphenylene ether copolymers include a copolymer of 2,6-dimethylphenol and 2,3,6-trimethylphenol, a copolymer of 2,6-dimethylphenol and o-cresol, and a copolymer of 2,6-dimethylphenol and 2,3,6-trimethylphenol and o-cresol.
Among the polyphenylene ethers, poly(2,6-dimethyl-1,4-phenylene) ether is preferred.
 ポリフェニレンエーテルは、公知の方法で製造することができる。例えば、銅等の金属触媒により重合することができる。具体的には、国際公開WO2012/046308号等の実施例に記載のポリフェニレンエーテルの製造方法に準じて製造することができる。
 また、市販材料としても入手することができ、SAIBC製NORYL等が好適に用いることができる。
Polyphenylene ether can be produced by a known method. For example, it can be polymerized using a metal catalyst such as copper. Specifically, it can be produced in accordance with the method for producing polyphenylene ether described in the examples of International Publication WO2012/046308 and the like.
In addition, it is also available as a commercial material, and NORYL manufactured by SAIBC or the like can be suitably used.
 基材層(A)中のポリフェニレンエーテルの質量比率は、好ましくは50質量%以上、より好ましくは60質量%以上、特に好ましくは70質量%以上であり、100質量%であってもよい。基材層(A)におけるポリフェニレンエーテルの質量比率がこのような範囲内にあることで、多層シートの耐熱性を向上できる。基材層(A)中のポリフェニレンエーテルの質量比率の上限は特には限定されないが、例えばポリフェニレンエーテル以外のポリマーを基材層(A)において使用する場合には、基材層(A)中のポリフェニレンエーテルの質量比率は、好ましくは99.9質量%以下、より好ましくは98質量%以下、特に好ましくは95質量%以下である。ポリフェニレンエーテルの質量比率がこのような範囲内にあることで、多層シートの成形性を向上できる。 The mass ratio of polyphenylene ether in the base layer (A) is preferably 50 mass% or more, more preferably 60 mass% or more, particularly preferably 70 mass% or more, and may be 100 mass%. When the mass ratio of polyphenylene ether in the base layer (A) is within such a range, the heat resistance of the multilayer sheet can be improved. There is no particular upper limit to the mass ratio of polyphenylene ether in the base layer (A), but for example, when a polymer other than polyphenylene ether is used in the base layer (A), the mass ratio of polyphenylene ether in the base layer (A) is preferably 99.9 mass% or less, more preferably 98 mass% or less, particularly preferably 95 mass% or less. When the mass ratio of polyphenylene ether is within such a range, the moldability of the multilayer sheet can be improved.
 基材層(A)は、ポリスチレン、スチレン系エラストマー及びこれらの組み合わせから成る群より選択されるポリスチレン成分を任意成分として含んでよい。 The substrate layer (A) may optionally contain a polystyrene component selected from the group consisting of polystyrene, styrene-based elastomers, and combinations thereof.
 ポリスチレンとしては、スチレンのみの重合体である汎用ポリスチレン(GPPS)、GPPSにゴムを加え耐衝撃性を持たせた耐衝撃性ポリスチレン(HIPS)が代表的であるが、スチレンとアクリロニトリル又は(メタ)アクリル酸エステルとの共重合体も使用できる。 Typical polystyrenes are general-purpose polystyrene (GPPS), which is a polymer of styrene alone, and high impact polystyrene (HIPS), which is GPPS with added rubber to give it impact resistance, but copolymers of styrene and acrylonitrile or (meth)acrylic acid esters can also be used.
 スチレン系エラストマーとしては、例えば、スチレン-ブタジエン二元ブロック共重合体、スチレン-ブタジエン-スチレン三元ブロック共重合体、スチレン-イソプレン二元ブロック共重合体、スチレン-イソプレン-スチレン三元ブロック共重合体、及びそれらの水素添加物等が挙げられる。これらのブロック共重合体及びグラフト共重合体は、無水マレイン酸等による酸変性、酸化剤を用いたエポキシ変性、末端アミン変性等によりカルボン酸基、カルボン酸無水物基、エポキシ基、アミノ基等の官能基を付与されたものであってよい。これらの官能基がタイ層(C)との界面接着力向上に有効となる場合がある。これらの成分を含むことにより、低温での強靭性及び成形安定性が向上する。 Examples of styrene-based elastomers include styrene-butadiene binary block copolymers, styrene-butadiene-styrene ternary block copolymers, styrene-isoprene binary block copolymers, styrene-isoprene-styrene ternary block copolymers, and hydrogenated products thereof. These block copolymers and graft copolymers may be modified with an acid such as maleic anhydride, epoxy modified with an oxidizing agent, or terminal amine modified to provide functional groups such as carboxylic acid groups, carboxylic anhydride groups, epoxy groups, and amino groups. These functional groups may be effective in improving the interfacial adhesion with the tie layer (C). The inclusion of these components improves toughness and molding stability at low temperatures.
 基材層(A)中のポリフェニレンエーテル、ポリスチレン及びスチレン系エラストマーの総量は、好ましくは60質量%以上、より好ましくは70質量%以上である。基材層(A)中のポリフェニレンエーテル、ポリスチレン及びスチレン系エラストマーの総量の上限は特には限定されないが、本発明の一実施形態においては基材層(A)中のポリフェニレンエーテル、ポリスチレン及びスチレン系エラストマーの総量は、好ましくは99.9質量%以下、より好ましくは98質量%以下、さらに好ましくは95質量%以下である。 The total amount of polyphenylene ether, polystyrene, and styrene-based elastomer in the base layer (A) is preferably 60% by mass or more, and more preferably 70% by mass or more. There is no particular upper limit to the total amount of polyphenylene ether, polystyrene, and styrene-based elastomer in the base layer (A), but in one embodiment of the present invention, the total amount of polyphenylene ether, polystyrene, and styrene-based elastomer in the base layer (A) is preferably 99.9% by mass or less, more preferably 98% by mass or less, and even more preferably 95% by mass or less.
 基材層(A)の軟化点は、好ましくは175℃以上、より好ましくは180℃以上、特に好ましくは185℃以上である。軟化点がこの範囲内であることで、多層シートの耐熱性が向上する。 The softening point of the base layer (A) is preferably 175°C or higher, more preferably 180°C or higher, and particularly preferably 185°C or higher. Having a softening point within this range improves the heat resistance of the multilayer sheet.
 基材層(A)の160℃における貯蔵弾性率が500MPa以上であることが好ましく、700MPa以上であることがより好ましく、1000MPa以上であることが特に好ましい。基材層(A)の170℃における貯蔵弾性率が500MPa以上であることが好ましく、700MPa以上であることがより好ましく、1000MPa以上であることが特に好ましい。。該温度域の貯蔵弾性率が500MPa以上であると、接着時の熱圧着による多層シートの変形・損傷を防止できる。 The storage modulus of the base layer (A) at 160°C is preferably 500 MPa or more, more preferably 700 MPa or more, and particularly preferably 1000 MPa or more. The storage modulus of the base layer (A) at 170°C is preferably 500 MPa or more, more preferably 700 MPa or more, and particularly preferably 1000 MPa or more. If the storage modulus in this temperature range is 500 MPa or more, deformation and damage of the multilayer sheet due to thermocompression during adhesion can be prevented.
 ここで、本発明における軟化点と貯蔵弾性率は引張粘弾性装置(日立ハイテクサンエンス社製DMS6100)を用いて求めた値である。具体的には、周波数1Hz、昇温速度2℃/分で室温から250℃まで昇温し、貯蔵弾性率・損失弾性率・tanδの温度による変化を記録する。本発明でいう軟化点とは、tanδの値が最高値を示した温度を意味する。 The softening point and storage modulus in this invention are values determined using a tensile viscoelasticity device (DMS6100 manufactured by Hitachi High-Tech Sanence Corporation). Specifically, the temperature is raised from room temperature to 250°C at a frequency of 1 Hz and a heating rate of 2°C/min, and the changes in storage modulus, loss modulus, and tan δ with temperature are recorded. The softening point in this invention refers to the temperature at which tan δ is at its maximum.
 耐熱性の点から基材層(A)の圧縮クリープ試験におけるクリープ率は、好ましくは30%以下、より好ましくは25%以下である。クリープ率は以下で示される実施例に記載される方法に従って測定されるものである。 In terms of heat resistance, the creep rate of the base layer (A) in a compression creep test is preferably 30% or less, and more preferably 25% or less. The creep rate is measured according to the method described in the examples shown below.
 耐熱性の点から基材層(A)の熱収縮試験における熱変形率は、好ましくは0.50%以下、より好ましくは0.30%以下である。熱変形率は以下で示される実施例に記載される方法に従って測定されるものである。 In terms of heat resistance, the thermal deformation rate of the base layer (A) in a heat shrinkage test is preferably 0.50% or less, and more preferably 0.30% or less. The thermal deformation rate is measured according to the method described in the examples shown below.
 基材層(A)のメルトフローレートは、好ましくは1g/10min以上、より好ましくは2g/10min以上である。基材層(A)のメルトフローレートは、好ましくは50g/10min以下、より好ましくは30g/10min以下である。基材層(A)のメルトフローレートが下限値以上において材料強度が向上する。また、基材層(A)のメルトフローレートが上限値以下において流動性が良好となり成形加工性が高まる。 The melt flow rate of the base layer (A) is preferably 1 g/10 min or more, more preferably 2 g/10 min or more. The melt flow rate of the base layer (A) is preferably 50 g/10 min or less, more preferably 30 g/10 min or less. When the melt flow rate of the base layer (A) is equal to or higher than the lower limit, the material strength is improved. When the melt flow rate of the base layer (A) is equal to or lower than the upper limit, the fluidity is improved and the moldability is improved.
 ここで、メルトフローレートとは、JIS K7210:2014に準拠して測定した値である。基材層(A)のメルトフローレートは、樹脂温度300℃、荷重2.16kgにて測定されたものである。 Here, the melt flow rate is a value measured in accordance with JIS K7210:2014. The melt flow rate of the base layer (A) was measured at a resin temperature of 300°C and a load of 2.16 kg.
 基材層(A)は、上記組成に加えて本発明の特性を損なわない範囲で、ポリフェニレンエーテル、ポリスチレン及びスチレン系エラストマー以外のポリマー(以下、その他のポリマー(A)という)を含んでよい。その他のポリマー(A)としては、例えば、エチレン単独重合体、エチレン-アクリル酸共重合体及びエチレン-メタクリル酸共重合体の金属中和物、エチレン-アクリル酸ブチル共重合体、プロピレン単独重合体、プロピレン-αオレフィン共重合体、ブテン単独重合体、ナイロン6、ナイロン66等のポリアミド系樹脂等の樹脂等が挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。基材層(A)は、さらに添加剤として酸化防止剤、紫外線吸収剤、充てん剤、補強用繊維、離型剤、加工助剤、難燃剤、可塑剤、造核剤、帯電防止剤、顔料、染料、発泡剤、及びそれらの組み合わせから成る群より選択される添加剤をさらに含んでもよい。 The base layer (A) may contain, in addition to the above composition, polymers other than polyphenylene ether, polystyrene, and styrene-based elastomers (hereinafter referred to as other polymers (A)) to the extent that the characteristics of the present invention are not impaired. Examples of other polymers (A) include ethylene homopolymers, metal neutralized products of ethylene-acrylic acid copolymers and ethylene-methacrylic acid copolymers, ethylene-butyl acrylate copolymers, propylene homopolymers, propylene-α-olefin copolymers, butene homopolymers, polyamide-based resins such as nylon 6 and nylon 66, and other resins. These may be used alone or in combination of two or more. The base layer (A) may further contain additives selected from the group consisting of antioxidants, ultraviolet absorbers, fillers, reinforcing fibers, release agents, processing aids, flame retardants, plasticizers, nucleating agents, antistatic agents, pigments, dyes, foaming agents, and combinations thereof.
 接着剤層(B)は酸変性ポリオレフィンを含む。酸変性ポリオレフィンは、未変性のポリオレフィン(以降、単に「ポリオレフィン」とも記載する。)が、不飽和カルボン酸、不飽和カルボン酸無水物、及びそれらの組み合わせから成る群より選択される酸化合物でグラフト変性されたものである。 The adhesive layer (B) contains an acid-modified polyolefin. The acid-modified polyolefin is an unmodified polyolefin (hereinafter also simply referred to as "polyolefin") that has been graft-modified with an acid compound selected from the group consisting of unsaturated carboxylic acids, unsaturated carboxylic anhydrides, and combinations thereof.
 ポリオレフィンを構成する単量体単位としては、例えば、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、4-メチル-1-ペンテン等のα-オレフィン、ブタジエン、イソプレン、クロロプレン等のジエン系モノマー、スチレン等の芳香族ビニル化合物、及びこれらの組み合わせから成る群より選択されるモノマーに由来する単量体単位が挙げられる。 Examples of monomer units constituting polyolefins include monomer units derived from monomers selected from the group consisting of α-olefins such as ethylene, propylene, 1-butene, 1-pentene, 1-hexene, and 4-methyl-1-pentene, diene monomers such as butadiene, isoprene, and chloroprene, aromatic vinyl compounds such as styrene, and combinations thereof.
 これらの中でも、ポリエチレン、ポリプロピレン、ポリエチレン及びポリプロピレンのポリマーブレンド、エチレン-プロピレン共重合体、更に前述の単量体単位と、1-オクテン、酢酸ビニル、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、グリシジル(メタ)アクリレート、(メタ)アクリル酸、(メタ)アクリル酸金属中和物、無水マレイン酸、ビニルシラン類から選ばれる1種類以上の単量体との共重合体並びにそれらの組み合わせから成る群より選択されるポリオレフィンが、被着体への高い接着力を有するため好ましい。 Among these, polyolefins selected from the group consisting of polyethylene, polypropylene, polymer blends of polyethylene and polypropylene, ethylene-propylene copolymers, copolymers of the above-mentioned monomer units with one or more monomers selected from 1-octene, vinyl acetate, methyl (meth)acrylate, ethyl (meth)acrylate, butyl (meth)acrylate, glycidyl (meth)acrylate, (meth)acrylic acid, metal neutralized (meth)acrylic acid, maleic anhydride, and vinyl silanes, and combinations thereof, are preferred because they have high adhesive strength to the substrate.
 ポリエチレンは、エチレン単位を主成分として含むポリマーであり、単独重合体でも、共重合体でもよい。共重合体である場合、ポリエチレンにおけるエチレン単位の含有量は好ましくは50質量%以上であり、70質量%以上であってもよい。ポリエチレンの具体例としては、低密度ポリエチレン、高密度ポリエチレン、線状低密度ポリエチレン等の単独重合体、エチレン-ジエンモノマー共重合体、エチレン-酢酸ビニル共重合体、エチレン-アクリル酸エステル共重合体、エチレン-メタクリル酸エステル共重合体等の共重合体、塩素化ポリエチレン等のハロゲン変性体等が挙げられる。 Polyethylene is a polymer containing ethylene units as the main component, and may be either a homopolymer or a copolymer. When it is a copolymer, the content of ethylene units in the polyethylene is preferably 50% by mass or more, and may be 70% by mass or more. Specific examples of polyethylene include homopolymers such as low-density polyethylene, high-density polyethylene, and linear low-density polyethylene; copolymers such as ethylene-diene monomer copolymers, ethylene-vinyl acetate copolymers, ethylene-acrylic acid ester copolymers, and ethylene-methacrylic acid ester copolymers; and halogen-modified products such as chlorinated polyethylene.
 ポリプロピレンは、プロピレン単位を主成分として含むポリマーであり、単独重合体でも、共重合体でもよい。共重合体である場合、ポリプロピレンにおけるプロピレン単位の含有量は好ましくは50質量%以上であり、70質量%以上であってもよい。ポリプロピレンの具体例としては、非晶性ポリプロピレン、結晶性ポリプロピレン等の単独重合体、プロピレン-ジエンモノマー共重合体等の共重合体、塩素化ポリプロピレン等のハロゲン変性体等が挙げられる。 Polypropylene is a polymer containing propylene units as the main component, and may be either a homopolymer or a copolymer. When it is a copolymer, the content of propylene units in the polypropylene is preferably 50% by mass or more, and may be 70% by mass or more. Specific examples of polypropylene include homopolymers such as amorphous polypropylene and crystalline polypropylene, copolymers such as propylene-diene monomer copolymer, and halogen-modified products such as chlorinated polypropylene.
 エチレン-プロピレン共重合体は、エチレン単位とプロピレン単位を含むポリマーであり、エチレン単位とプロピレン単位のみから構成されてもよく、エチレン単位とプロピレン単位に加えてその他の単量体単位をさらに含んでもよい。その他の単量体単位を含むエチレン-プロピレン共重合体としては、例えば、エチレン-プロピレン-ジエンモノマー共重合体が挙げられる。エチレン-プロピレン共重合体におけるエチレン単位とプロピレン単位の総量は好ましくは50質量%以上、より好ましくは70質量%以上、さらに好ましくは80質量%以上、特に好ましくは90質量%以上であり、100質量%であってもよい。 Ethylene-propylene copolymer is a polymer containing ethylene units and propylene units, and may be composed of only ethylene units and propylene units, or may further contain other monomer units in addition to ethylene units and propylene units. An example of an ethylene-propylene copolymer containing other monomer units is an ethylene-propylene-diene monomer copolymer. The total amount of ethylene units and propylene units in the ethylene-propylene copolymer is preferably 50% by mass or more, more preferably 70% by mass or more, even more preferably 80% by mass or more, particularly preferably 90% by mass or more, and may be 100% by mass.
 ポリオレフィンには、これらの樹脂の複数成分からなる物理的ブレンドの他、成形機内にて異種高分子間で官能基を反応させた反応ブレンド、複数セグメントから成るグラフト共重合体やブロック共重合体、これらを相溶化剤として用いた物理的ブレンドをミクロ分散させた組成物等も包含される。 In addition to physical blends consisting of multiple components of these resins, polyolefins also include reactive blends in which functional groups are reacted between different polymers in a molding machine, graft copolymers and block copolymers consisting of multiple segments, and compositions in which physical blends using these as compatibilizers are microdispersed.
 ポリオレフィンに含まれる全単量体単位において、エチレン単位とプロピレン単位の合計量は、好ましくは50質量%以上、より好ましくは70質量%以上、さらに好ましくは80質量%以上、特に好ましくは90質量%以上であり、100質量%であってもよい。 In all monomer units contained in the polyolefin, the total amount of ethylene units and propylene units is preferably 50% by mass or more, more preferably 70% by mass or more, even more preferably 80% by mass or more, particularly preferably 90% by mass or more, and may be 100% by mass.
 ポリオレフィンの製造方法としては、重合触媒を用いる公知の製造方法が挙げられる。重合触媒としてはチーグラー触媒やメタロセン触媒が挙げられ、重合方法としてはスラリー重合や気相重合が挙げられる。ポリプロピレンブロックポリマーと称される耐衝撃性ポリプロピレンは、実質的にポリプロピレンとプロピレン-エチレンランダム共重合体の混合物であり、プロピレンの単独重合体を得る第一工程とプロピレン-エチレンランダム共重合体を得る第二工程から成るプロセスで製造できる。  Manufacturing methods for polyolefins include known manufacturing methods that use polymerization catalysts. Polymerization catalysts include Ziegler catalysts and metallocene catalysts, and polymerization methods include slurry polymerization and gas phase polymerization. Impact-resistant polypropylene, also known as polypropylene block polymer, is essentially a mixture of polypropylene and a propylene-ethylene random copolymer, and can be manufactured by a process consisting of a first step of obtaining a propylene homopolymer and a second step of obtaining a propylene-ethylene random copolymer.
 酸変性ポリオレフィンを製造する際に用いる酸化合物は、不飽和カルボン酸、不飽和カルボン酸無水物、及びそれらの組み合わせから成る群より選択される。 The acid compound used in producing the acid-modified polyolefin is selected from the group consisting of unsaturated carboxylic acids, unsaturated carboxylic anhydrides, and combinations thereof.
 不飽和カルボン酸は、エチレン性二重結合及びカルボン酸基を同一分子内に持つ化合物であり、各種の不飽和モノカルボン酸及び不飽和ジカルボン酸等が挙げられる。これらの酸化合物は、1種のみを使用しても、2種以上を併用してもよい。 Unsaturated carboxylic acids are compounds that have an ethylenic double bond and a carboxylic acid group in the same molecule, and examples include various unsaturated monocarboxylic acids and unsaturated dicarboxylic acids. These acid compounds may be used alone or in combination of two or more types.
 不飽和モノカルボン酸の具体例としては、アクリル酸、メタクリル酸、クロトン酸及びイソクロトン酸等が挙げられる。 Specific examples of unsaturated monocarboxylic acids include acrylic acid, methacrylic acid, crotonic acid, and isocrotonic acid.
 不飽和ジカルボン酸の具体例としては、マレイン酸、フマル酸、イタコン酸、シトラコン酸、ナジック酸及びエンディック酸等が挙げられる。 Specific examples of unsaturated dicarboxylic acids include maleic acid, fumaric acid, itaconic acid, citraconic acid, nadic acid, and endic acid.
 不飽和カルボン酸無水物は、エチレン性二重結合及びカルボン酸無水物基を同一分子内に持つ化合物であり、前記不飽和ジカルボン酸の酸無水物等が挙げられる。不飽和ジカルボン酸の酸無水物の具体例としては、無水マレイン酸、無水フマル酸、無水イタコン酸、無水シトラコン酸、無水ナジック酸及び無水エンディック酸等が挙げられる。 Unsaturated carboxylic acid anhydrides are compounds that have an ethylenic double bond and a carboxylic acid anhydride group in the same molecule, and examples thereof include the acid anhydrides of the unsaturated dicarboxylic acids mentioned above. Specific examples of acid anhydrides of unsaturated dicarboxylic acids include maleic anhydride, fumaric anhydride, itaconic anhydride, citraconic anhydride, nadic anhydride, and endic anhydride.
 これらの中で、変性効果が高いことから、マレイン酸及び無水マレイン酸が好ましく用いられ、無水マレイン酸が特に好ましく用いられる。 Among these, maleic acid and maleic anhydride are preferably used because of their high modifying effect, with maleic anhydride being particularly preferred.
 ポリオレフィンを酸化合物により変性する方法は特に限定されるものではなく、例えば前記のポリオレフィンを有機溶剤に溶解した溶液に酸化合物及びラジカル発生剤等を加え、通常60~350℃、好ましくは80~190℃の温度で、通常0.5~15時間、好ましくは1~10時間にて反応させることにより行う溶液変性法や、押出機等を使用して、上記のポリオレフィンと酸化合物とをポリオレフィンの融点以上、例えば170~280℃で溶融状態として、通常0.5~10分間程度反応させることにより変性させる溶融変性法を用いることができる。いずれの変性方法を採用するにしても、変性用の酸化合物を効率良く反応させるために、ラジカル発生剤の存在下に反応を行うことが好ましい。 The method of modifying a polyolefin with an acid compound is not particularly limited, and examples of the method include a solution modification method in which an acid compound and a radical generator are added to a solution in which the polyolefin is dissolved in an organic solvent, and the solution is reacted at a temperature of usually 60 to 350°C, preferably 80 to 190°C, for usually 0.5 to 15 hours, preferably 1 to 10 hours, or a melt modification method in which the polyolefin and the acid compound are melted at a temperature above the melting point of the polyolefin, for example 170 to 280°C, using an extruder or the like, and reacted for usually about 0.5 to 10 minutes. Whichever modification method is used, it is preferable to carry out the reaction in the presence of a radical generator in order to efficiently react the acid compound for modification.
 使用するラジカル発生剤は、反応温度等を考慮して、市販の有機過酸化物から選定してよい。 The radical generator to be used may be selected from commercially available organic peroxides, taking into consideration the reaction temperature, etc.
 グラフト変性に用いた酸化合物の一部が未反応である場合は、接着力への悪影響を抑制するため、減圧留去等の公知の方法により、未反応の酸化合物を除去することが好ましい。 If some of the acid compound used in the graft modification remains unreacted, it is preferable to remove the unreacted acid compound by a known method such as vacuum distillation in order to prevent adverse effects on the adhesive strength.
 酸化合物のグラフト量は、好ましくは0.01質量%以上であり、より好ましくは0.4質量%以上であり、特に好ましくは0.6質量%以上である。このような範囲にグラフト量がある場合には、接着剤層(B)の接着性を高めることができる。 The graft amount of the acid compound is preferably 0.01 mass% or more, more preferably 0.4 mass% or more, and particularly preferably 0.6 mass% or more. When the graft amount is within this range, the adhesiveness of the adhesive layer (B) can be improved.
 酸化合物のグラフト量は、好ましくは5質量%以下であり、より好ましくは2質量%以下であり、特に好ましくは1質量%以下である。このような範囲にグラフト量がある場合には、成形時にフィッシュアイ、ブツ等により製品外観を抑制でき、また、接着性を高めることができる。 The graft amount of the acid compound is preferably 5% by mass or less, more preferably 2% by mass or less, and particularly preferably 1% by mass or less. If the graft amount is within this range, it is possible to suppress the appearance of the product due to fish eyes, bumps, etc. during molding, and also to improve adhesion.
 本明細書において、グラフト量とは、未変性のポリオレフィンの主鎖に対して、グラフト共重合により導入された酸化合物の量である。グラフト量は酸変性ポリオレフィンの酸価から次式で算出できる。
 グラフト量(質量%)=酸価×M×100/(1000×56.1×V)
 式中、M及びVは次式で定義される。
 M=(酸化合物の分子量)+(酸化合物中の不飽和基の数)×1.008
 V=酸基の価数(但し、酸無水物基を含む場合には、酸無水物基を完全に加水分解したときの酸基の価数である)
 酸価は、酸変性ポリオレフィン1g中に含まれる酸を中和するのに要する水酸化カリウムのミリグラム数を示し、JIS K 0070:1992に準じて測定される。
In this specification, the graft amount means the amount of an acid compound introduced by graft copolymerization to the main chain of an unmodified polyolefin. The graft amount can be calculated from the acid value of the acid-modified polyolefin by the following formula:
Graft amount (mass%)=acid value×M×100/(1000×56.1×V)
In the formula, M and V are defined as follows:
M = (molecular weight of acid compound) + (number of unsaturated groups in acid compound) x 1.008
V=valence of acid group (however, in the case of containing an acid anhydride group, this is the valence of the acid group when the acid anhydride group is completely hydrolyzed)
The acid value indicates the number of milligrams of potassium hydroxide required to neutralize the acid contained in 1 g of acid-modified polyolefin, and is measured in accordance with JIS K 0070:1992.
 酸変性ポリオレフィンの融点は、好ましくは130℃以上、より好ましくは135℃以上である。このような範囲に酸変性ポリオレフィンの融点がある場合には、接着剤層(B)の耐熱性や高温での接着力を向上できる。 The melting point of the acid-modified polyolefin is preferably 130°C or higher, and more preferably 135°C or higher. If the melting point of the acid-modified polyolefin is within this range, the heat resistance and adhesive strength at high temperatures of the adhesive layer (B) can be improved.
 酸変性ポリオレフィンの融点は、好ましくは160℃以下、より好ましくは150℃以下である。このような範囲に酸変性ポリオレフィンの融点がある場合には、良好な熱圧着性を得ることができ、また低温での接着耐久性を向上できる。 The melting point of the acid-modified polyolefin is preferably 160°C or less, and more preferably 150°C or less. When the melting point of the acid-modified polyolefin is within this range, good thermocompression bonding properties can be obtained, and the adhesive durability at low temperatures can be improved.
 なお、本発明において融点とは、示差走査熱量計(DSC)を用い、一旦180℃で数分保持した後に毎分10℃ずつ0℃まで冷却し、その後毎分10℃ずつ200℃まで昇温する過程で生じる吸熱ピークの頂点の温度を意味する。 In the present invention, the melting point refers to the temperature at the top of the endothermic peak that occurs when a differential scanning calorimeter (DSC) is used, the temperature is first held at 180°C for several minutes, then cooled to 0°C at a rate of 10°C per minute, and then heated to 200°C at a rate of 10°C per minute.
 酸変性ポリオレフィンのメルトフローレートは、好ましくは3g/10min以上、より好ましくは7g/10min以上である。酸変性ポリオレフィンのメルトフローレートは、好ましくは50g/10min以下、より好ましくは30g/10min以下である。 The melt flow rate of the acid-modified polyolefin is preferably 3 g/10 min or more, more preferably 7 g/10 min or more. The melt flow rate of the acid-modified polyolefin is preferably 50 g/10 min or less, more preferably 30 g/10 min or less.
 本発明においてメルトフローレートとは、JIS K7210:2014に準拠して測定した値である。接着剤層(B)のメルトフローレートは、樹脂温度230℃、荷重2.16kgにて測定されたものである。 In the present invention, the melt flow rate is a value measured in accordance with JIS K7210:2014. The melt flow rate of the adhesive layer (B) was measured at a resin temperature of 230°C and a load of 2.16 kg.
 接着剤層(B)における酸変性ポリオレフィンの含有量は2質量%以上であってよい。例えば、酸変性ポリオレフィンは未変性のポリオレフィンと混合して使用してよく、酸変性度が高い酸変性ポリオレフィンを使用する場合には2質量%程度の少量を使用してもよい。接着剤層(B)における酸変性ポリオレフィンの含有量は特に限定されず例えば50質量%以上の高い含有量であってもよい。 The content of the acid-modified polyolefin in the adhesive layer (B) may be 2% by mass or more. For example, the acid-modified polyolefin may be used in a mixture with an unmodified polyolefin, and when an acid-modified polyolefin with a high degree of acid modification is used, a small amount of about 2% by mass may be used. The content of the acid-modified polyolefin in the adhesive layer (B) is not particularly limited, and may be a high content of, for example, 50% by mass or more.
 接着剤層(B)には、低温での接着力、接着耐久性、成形安定性向上、及びタイ層(C)との接着性等の改良を目的として、酸変性ポリオレフィン以外のポリマー(以下、その他のポリマー(B)という)を添加することができる。その他のポリマー(B)としては、例えば、ポリエチレン、ポリプロピレン及びエチレン-αオレフィン共重合体等の未変性のポリオレフィン、スチレン-ブタジエン-スチレンブロック共重合体及びその水素添加物、スチレン-イソプレン-スチレンブロック共重合体及びその水素添加物、並びにスチレン-イソブチレン-スチレンブロック共重合体等のスチレン系ブロック共重合体、ポリオレフィンにスチレン単独重合体や共重合体をグラフトさせたスチレン系グラフト共重合体、ナイロン6、ナイロン66等のポリアミド系樹脂等が挙げられる。 In order to improve the adhesive strength at low temperatures, adhesive durability, and molding stability, and to improve adhesion to the tie layer (C), a polymer other than the acid-modified polyolefin (hereinafter referred to as "other polymer (B)") can be added to the adhesive layer (B). Examples of other polymers (B) include unmodified polyolefins such as polyethylene, polypropylene, and ethylene-α-olefin copolymers, styrene-butadiene-styrene block copolymers and their hydrogenated products, styrene-isoprene-styrene block copolymers and their hydrogenated products, styrene-isobutylene-styrene block copolymers, styrene-based graft copolymers in which styrene homopolymers or copolymers are grafted to polyolefins, and polyamide resins such as nylon 6 and nylon 66.
 その他のポリマー(B)を使用する場合、接着剤層(B)におけるその他のポリマー(B)の含有量の下限は、好ましくは1質量%以上、より好ましくは2質量%以上、特に好ましくは3質量%以上である。添加量がこのような範囲にある場合に、その他のポリマー(B)による改良効果が高まる。 When the other polymer (B) is used, the lower limit of the content of the other polymer (B) in the adhesive layer (B) is preferably 1% by mass or more, more preferably 2% by mass or more, and particularly preferably 3% by mass or more. When the amount added is within this range, the improving effect of the other polymer (B) is enhanced.
 その他のポリマー(B)を使用する場合、接着剤層(B)におけるその他のポリマー(B)の含有量は接着性能が低下しない限り限定されるものではない。上述した通り、酸変性度が高い酸変性ポリオレフィンを使用する場合には酸変性ポリオレフィンの含有量を低減できる。このような場合に、未変性のポリオレフィンの含有量は高くてもよく、接着剤層(B)における未変性のポリオレフィンの含有量は例えば50質量%以上であってもよく、接着剤層(B)における未変性のポリオレフィンの含有量は例えば98質量%以下であってもよい。添加量がこのような範囲にある場合に、接着剤層(B)が高い耐熱性及び高い高温での接着力を得ることができる。接着剤層(B)における酸変性ポリオレフィンと未変性のポリオレフィンの総量は80質量%以上であることが好ましく、90質量%以上であることがより好ましい。 When using other polymers (B), the content of other polymers (B) in the adhesive layer (B) is not limited as long as the adhesive performance is not reduced. As described above, when using an acid-modified polyolefin with a high degree of acid modification, the content of the acid-modified polyolefin can be reduced. In such a case, the content of unmodified polyolefin may be high, and the content of unmodified polyolefin in the adhesive layer (B) may be, for example, 50% by mass or more, and the content of unmodified polyolefin in the adhesive layer (B) may be, for example, 98% by mass or less. When the amount added is within such a range, the adhesive layer (B) can obtain high heat resistance and high adhesive strength at high temperatures. The total amount of the acid-modified polyolefin and the unmodified polyolefin in the adhesive layer (B) is preferably 80% by mass or more, and more preferably 90% by mass or more.
 接着剤層(B)は、酸化防止剤、紫外線吸収剤、充てん剤、補強用繊維、離型剤、加工助剤、難燃剤、可塑剤、造核剤、帯電防止剤、顔料、染料、発泡剤、及びそれらの組み合わせから成る群より選択される添加剤をさらに含んでもよい。 The adhesive layer (B) may further contain an additive selected from the group consisting of antioxidants, UV absorbers, fillers, reinforcing fibers, release agents, processing aids, flame retardants, plasticizers, nucleating agents, antistatic agents, pigments, dyes, foaming agents, and combinations thereof.
 タイ層(C)はスチレン系エラストマー、ポリフェニレンエーテル及びポリオレフィンを含む The tie layer (C) contains styrene-based elastomer, polyphenylene ether and polyolefin.
 スチレン系エラストマーは、スチレン-ブタジエン二元ブロック共重合体、スチレン-ブタジエン-スチレン三元ブロック共重合体、スチレン-イソプレン二元ブロック共重合体、スチレン-イソプレン-スチレン三元ブロック共重合体、及びそれらの水素添加物が例として挙げられる。これらのブロック共重合体の中では、スチレン-ブタジエンブロック共重合体の水素添加物であるスチレン-エチレン・ブチレンブロック共重合体、スチレン-イソプレンブロック共重合体の水素添加物であるスチレン-エチレン・プロピレンブロック共重合体が好ましく用いられ、市販品を入手し易い点から、スチレン-エチレン・ブチレン-スチレン三元ブロック共重合体(以下、SEBSと略称することがある)とスチレン-エチレン・プロピレン-スチレン三元ブロック共重合体(以下、SEPSと略称することがある)が特に好ましく用いられる。これらのブロック共重合体及びグラフト共重合体は、無水マレイン酸等による酸変性、酸化剤を用いたエポキシ変性、末端アミン変性等によりカルボン酸基、カルボン酸無水物基、エポキシ基及びアミノ基等の官能基を付与されたものであってよい。これらの官能基が基材層及び接着剤層との界面接着力向上に有効となる場合がある。 Examples of styrene-based elastomers include styrene-butadiene diblock copolymers, styrene-butadiene-styrene triblock copolymers, styrene-isoprene diblock copolymers, styrene-isoprene-styrene triblock copolymers, and hydrogenated products thereof. Among these block copolymers, styrene-ethylene-butylene block copolymers, which are hydrogenated products of styrene-butadiene block copolymers, and styrene-ethylene-propylene block copolymers, which are hydrogenated products of styrene-isoprene block copolymers, are preferably used, and styrene-ethylene-butylene-styrene triblock copolymers (hereinafter sometimes abbreviated as SEBS) and styrene-ethylene-propylene-styrene triblock copolymers (hereinafter sometimes abbreviated as SEPS) are particularly preferably used because they are readily available commercially. These block copolymers and graft copolymers may be modified with acids such as maleic anhydride, epoxy modified with an oxidizing agent, or modified with terminal amines to give functional groups such as carboxylic acid groups, carboxylic anhydride groups, epoxy groups, and amino groups. These functional groups may be effective in improving the interfacial adhesion between the substrate layer and the adhesive layer.
 ポリフェニレンエーテルは、基材層(A)にて説明されたものを使用してよい。タイ層(C)に用いられるポリフェニレンエーテルは、基材層(A)に用いられるポリフェニレンエーテルと同様のポリフェニレンエーテルであっても、異なってもよい。タイ層(C)に用いられるポリフェニレンエーテルは、基材層(A)と同様にポリ(2,6-ジメチル-1,4-フェニレン)エーテルであることが好ましい。 The polyphenylene ether may be the same as that described for the substrate layer (A). The polyphenylene ether used in the tie layer (C) may be the same as or different from the polyphenylene ether used in the substrate layer (A). The polyphenylene ether used in the tie layer (C) is preferably poly(2,6-dimethyl-1,4-phenylene) ether, as in the substrate layer (A).
 ポリオレフィンは、構成する単量体単位として、例えば、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、4-メチル-1-ペンテン等のα-オレフィン、ブタジエン、イソプレン、クロロプレン等のジエン系モノマー、スチレン等の芳香族ビニル化合物、及びこれらの組み合わせから成る群より選択されるモノマーに由来する単量体単位を含む樹脂である。 Polyolefins are resins containing monomer units derived from monomers selected from the group consisting of α-olefins such as ethylene, propylene, 1-butene, 1-pentene, 1-hexene, and 4-methyl-1-pentene, diene monomers such as butadiene, isoprene, and chloroprene, aromatic vinyl compounds such as styrene, and combinations thereof.
 ポリオレフィンとして、ポリプロピレンが特に好ましい。ポリプロピレンは、プロピレン単位を主成分として含むポリマーであり、単独重合体でも共重合体でもよく、他のポリマー成分とのアロイ又はブレンドでもよい。 As a polyolefin, polypropylene is particularly preferred. Polypropylene is a polymer containing propylene units as the main component, and may be a homopolymer or copolymer, or may be an alloy or blend with other polymer components.
 ポリプロピレンの具体例としては、非晶性ポリプロピレン、結晶性ポリプロピレン等の単独重合体、エチレン-プロピレン共重合体やプロピレン-ジエンモノマー共重合体等のプロピレンを主成分とする共重合体、塩素化ポリプロピレン等のハロゲン変性体、ポリプロピレンと他のポリマーとのアロイもしくはブレンド等が挙げられる。 Specific examples of polypropylene include homopolymers such as amorphous polypropylene and crystalline polypropylene, copolymers whose main component is propylene, such as ethylene-propylene copolymers and propylene-diene monomer copolymers, halogen-modified products such as chlorinated polypropylene, and alloys or blends of polypropylene with other polymers.
 ポリプロピレンの共重合体やアロイを構成する他の単量体単位としては、エチレン、1-ブテン、1-ペンテン、1-ヘキセン、4-メチル-1-ペンテン等のα-オレフィン、ブタジエン、イソプレン、クロロプレン、ジエンモノマー等のジエン系モノマー、酢酸ビニル、(メタ)アクリル酸エステル、スチレン等の芳香族ビニル化合物等、及びこれらの組み合わせから成る群より選択されるモノマーに由来する単量体単位が挙げられる。ポリプロピレンは、酸変性されたポリプロピレンであってもよい。酸変性することによって接着剤層(B)との親和性が増し界面接着力の向上も期待できる。 Other monomer units constituting polypropylene copolymers and alloys include monomer units derived from monomers selected from the group consisting of α-olefins such as ethylene, 1-butene, 1-pentene, 1-hexene, and 4-methyl-1-pentene, diene monomers such as butadiene, isoprene, chloroprene, and diene monomers, aromatic vinyl compounds such as vinyl acetate, (meth)acrylic acid esters, and styrene, and combinations thereof. The polypropylene may be acid-modified polypropylene. Acid modification increases the affinity with the adhesive layer (B), and is expected to improve the interfacial adhesive strength.
 ポリオレフィンは、上述の接着剤層(B)にて説明された製造方法により製造できるが、タイ層(C)に用いられるポリオレフィンとして、メタロセン触媒を用いて重合されたポリオレフィン(以下メタロセン系ポリオレフィンと略称する)が好ましく、メタロセン触媒を用いて重合されたポリプロピレン(メタロセン系ポリプロピレンと略称する)が特に好ましい。メタロセン触媒とは、シクロペンタジエニル骨格を有する配位子を含む周期表第4族の遷移金属化合物(いわゆるメタロセン化合物)と、メタロセン化合物と反応して安定なイオン状態に活性化し得る助触媒と、必要により、有機アルミニウム化合物とから成る触媒であり、公知のメタロセン触媒はいずれも使用できる。重合方法は、触媒成分と各モノマーが効率よく接触するならば、あらゆる様式の方法を採用することができる。具体的な重合方法としては、メタロセン触媒の存在下でのスラリー法、気相流動床法や溶液法、高圧バルク重合法等が挙げられる。 Polyolefin can be produced by the production method described above for the adhesive layer (B), but as the polyolefin used in the tie layer (C), a polyolefin polymerized using a metallocene catalyst (hereinafter referred to as a metallocene polyolefin) is preferred, and polypropylene polymerized using a metallocene catalyst (hereinafter referred to as a metallocene polypropylene) is particularly preferred. A metallocene catalyst is a catalyst consisting of a transition metal compound of Group 4 of the periodic table containing a ligand having a cyclopentadienyl skeleton (a so-called metallocene compound), a cocatalyst that can be activated to a stable ion state by reacting with the metallocene compound, and, if necessary, an organoaluminum compound, and any known metallocene catalyst can be used. As the polymerization method, any type of method can be adopted as long as the catalyst components and each monomer are efficiently contacted. Specific polymerization methods include a slurry method in the presence of a metallocene catalyst, a gas-phase fluidized bed method, a solution method, and a high-pressure bulk polymerization method.
 タイ層(C)のスチレン系エラストマーとポリフェニレンエーテルの質量比率(スチレン系エラストマー/ポリフェニレンエーテル)は、30/70~80/20であることが好ましく、35/65~70/30であることがより好ましく、40/60~60/40であることが特に好ましい。質量比率が上記範囲の下限以上となることでタイ層(C)の強度を上げることが可能となる。質量比率が上記範囲の上限以下となることで耐熱性を改善できる。 The mass ratio of the styrene-based elastomer to polyphenylene ether in the tie layer (C) (styrene-based elastomer/polyphenylene ether) is preferably 30/70 to 80/20, more preferably 35/65 to 70/30, and particularly preferably 40/60 to 60/40. When the mass ratio is equal to or greater than the lower limit of the above range, it is possible to increase the strength of the tie layer (C). When the mass ratio is equal to or less than the upper limit of the above range, it is possible to improve heat resistance.
 タイ層(C)のスチレン系エラストマーとポリフェニレンエーテルの合計量とポリオレフィンの質量比率(合計量/ポリオレフィン)は、50/50~85/15であることが好ましく、60/40~80/20であることがより好ましく、70/30~80/20であることが特に好ましい。質量比率が上記範囲の下限以上となることで基材層(A)との接着性を向上できる。質量比率が上記範囲の上限以下となることで接着剤層(C)との接着性を向上できる The mass ratio of the total amount of the styrene-based elastomer and polyphenylene ether to the polyolefin in the tie layer (C) (total amount/polyolefin) is preferably 50/50 to 85/15, more preferably 60/40 to 80/20, and particularly preferably 70/30 to 80/20. When the mass ratio is equal to or greater than the lower limit of the above range, the adhesion to the base layer (A) can be improved. When the mass ratio is equal to or less than the upper limit of the above range, the adhesion to the adhesive layer (C) can be improved.
 タイ層(C)におけるスチレン系エラストマー、ポリフェニレンエーテル及びポリオレフィンの合計量は好ましくは50質量%以上、より好ましくは70質量%以上であり、100質量%であってもよい。 The total amount of the styrene-based elastomer, polyphenylene ether and polyolefin in the tie layer (C) is preferably 50% by mass or more, more preferably 70% by mass or more, and may be 100% by mass.
 タイ層(C)のメルトフローレートは、好ましくは0.5g/10min以上、より好ましくは1g/10min以上である。タイ層(C)のメルトフローレートは、好ましくは50g/10min以下、より好ましくは30g/10min以下である。タイ層(C)のメルトフローレートが下限値以上で溶融粘度が適切となりシート成形が容易となり、上限値以下で溶融張力が適切となりシート成形が容易となる。 The melt flow rate of the tie layer (C) is preferably 0.5 g/10 min or more, more preferably 1 g/10 min or more. The melt flow rate of the tie layer (C) is preferably 50 g/10 min or less, more preferably 30 g/10 min or less. When the melt flow rate of the tie layer (C) is equal to or higher than the lower limit, the melt viscosity becomes appropriate and sheet forming becomes easy, and when it is equal to or lower than the upper limit, the melt tension becomes appropriate and sheet forming becomes easy.
 ここで、メルトフローレートとは、JIS K7210:2014に準拠して測定した値である。タイ層(C)のメルトフローレートは、樹脂温度260℃、荷重2.16kgにて測定されたものである。 Here, the melt flow rate is a value measured in accordance with JIS K7210:2014. The melt flow rate of the tie layer (C) was measured at a resin temperature of 260°C and a load of 2.16 kg.
 タイ層(C)は、酸化防止剤、紫外線吸収剤、充てん剤、補強用繊維、離型剤、加工助剤、難燃剤、可塑剤、造核剤、帯電防止剤、顔料、染料、発泡剤、及びそれらの組み合わせから成る群より選択される添加剤をさらに含んでもよい。 The tie layer (C) may further comprise an additive selected from the group consisting of antioxidants, UV absorbers, fillers, reinforcing fibers, release agents, processing aids, flame retardants, plasticizers, nucleating agents, antistatic agents, pigments, dyes, foaming agents, and combinations thereof.
 基材層(A)は50~300μmの範囲内の厚みを有することが好ましく、70~250μmの範囲内の厚みを有することがより好ましく、100~200μmの範囲内の厚みを有することが特に好ましい。基材層(A)の厚みがこの下限値以上において、十分な剛性が得られる。基材層(A)の厚みがこの上限値以下において、電池等の多層シートを組み込んだ物品の厚みへの影響を低減できる。 The substrate layer (A) preferably has a thickness in the range of 50 to 300 μm, more preferably in the range of 70 to 250 μm, and particularly preferably in the range of 100 to 200 μm. When the thickness of the substrate layer (A) is equal to or greater than this lower limit, sufficient rigidity is obtained. When the thickness of the substrate layer (A) is equal to or less than this upper limit, the effect on the thickness of an article incorporating the multilayer sheet, such as a battery, can be reduced.
 接着剤層(B)は10~100μmの範囲内の厚みを有することが好ましく、20~80μmの範囲内の厚みを有することがより好ましく、30~70μmの範囲内の厚みを有することが特に好ましい。接着剤層(B)の厚みがこの下限値以上において、接着不良の発生を抑制できる。接着剤層(B)の厚みがこの上限値以下において、多層シートからの接着剤のはみ出しを防止でき、電池等の多層シートを組み込んだ物品の不具合の発生を防止できる。 The adhesive layer (B) preferably has a thickness in the range of 10 to 100 μm, more preferably in the range of 20 to 80 μm, and particularly preferably in the range of 30 to 70 μm. When the thickness of the adhesive layer (B) is equal to or greater than this lower limit, the occurrence of poor adhesion can be suppressed. When the thickness of the adhesive layer (B) is equal to or less than this upper limit, the adhesive can be prevented from overflowing from the multilayer sheet, and defects can be prevented in articles incorporating the multilayer sheet, such as batteries.
 タイ層(C)は2~50μmの範囲内の厚みを有することが好ましく、5~40μmの範囲内の厚みを有することがより好ましく、10~30μmの範囲内の厚みを有することが特に好ましい。タイ層(C)の厚みがこの下限値以上において、十分な接着性が得られる。タイ層(C)の厚みがこの上限値以下において、電池等の多層シートを組み込んだ物品の厚みへの影響を低減できる。 The tie layer (C) preferably has a thickness in the range of 2 to 50 μm, more preferably in the range of 5 to 40 μm, and particularly preferably in the range of 10 to 30 μm. When the thickness of the tie layer (C) is equal to or greater than this lower limit, sufficient adhesion is obtained. When the thickness of the tie layer (C) is equal to or less than this upper limit, the effect on the thickness of an article incorporating the multilayer sheet, such as a battery, can be reduced.
 このような範囲に多層シートの各層の厚みを制御することにより、多層シート及びそれを用いた接合体が優れた接着性能、耐久性、生産性、経済性を発揮できる。 By controlling the thickness of each layer of the multilayer sheet within this range, the multilayer sheet and the bonded body using it can exhibit excellent adhesive performance, durability, productivity, and cost-effectiveness.
 基材層(A)、接着剤層(B)及びタイ層(C)は、それぞれ、原料である樹脂組成物から製造できる。基材層(A)、接着剤層(B)及びタイ層(C)の原料である樹脂組成物とは、それぞれ、上にて説明した基材層(A)、接着剤層(B)及びタイ層(C)の構成成分から成る、樹脂を主成分とする組成物である。例えば、各層に使用する樹脂組成物は、構成成分を上記した配合割合で任意の順序にてスーパーミキサー、ヘンシェルミキサー等で配合、混合して、単軸押出機、二軸押出機、バンバリーミキサー、ロールミキサー、ブラベンダープラストグラフ、コニーダー、ニーダー・ルーダー等通常の混練機を用いて混練、造粒することによって製造することができる。この場合、各成分の分散を良好にすることができる混練、造粒方法を選択することが好ましく、特に二軸押出機を用いて、混練、造粒することが経済性等の面から好ましい。 The base layer (A), adhesive layer (B) and tie layer (C) can each be manufactured from a resin composition as a raw material. The resin composition as the raw material of the base layer (A), adhesive layer (B) and tie layer (C) is a composition mainly composed of resin, which is composed of the components of the base layer (A), adhesive layer (B) and tie layer (C) described above. For example, the resin composition used for each layer can be manufactured by blending and mixing the components in the above-mentioned blending ratio in any order using a super mixer, Henschel mixer, etc., and kneading and granulating using a normal kneading machine such as a single-screw extruder, twin-screw extruder, Banbury mixer, roll mixer, Brabender plastograph, co-kneader, kneader-ruder, etc. In this case, it is preferable to select a kneading and granulation method that can achieve good dispersion of each component, and kneading and granulating using a twin-screw extruder is particularly preferable from the standpoint of economy, etc.
 基材層(A)に用いられる樹脂組成物の溶融混練の温度は、好ましくは150~320℃、より好ましくは180~300℃であり、混練時間は、通常0.5~20分であり、好ましくは1~15分である。 The temperature for melt-kneading the resin composition used in the base layer (A) is preferably 150 to 320°C, more preferably 180 to 300°C, and the kneading time is usually 0.5 to 20 minutes, preferably 1 to 15 minutes.
 接着剤層(B)に用いられる樹脂組成物の溶融混練の温度は、好ましくは150~270℃、より好ましくは170~250℃であり、混練時間は、通常0.5~20分であり、好ましくは1~15分である。 The temperature for melt-kneading the resin composition used in the adhesive layer (B) is preferably 150 to 270°C, more preferably 170 to 250°C, and the kneading time is usually 0.5 to 20 minutes, preferably 1 to 15 minutes.
 タイ層(C)に用いられる樹脂組成物の溶融混練の温度は、好ましくは150~320℃、より好ましくは170~300℃であり、混練時間は、通常0.5~20分であり、好ましくは1~15分である。 The melt-kneading temperature of the resin composition used in the tie layer (C) is preferably 150 to 320°C, more preferably 170 to 300°C, and the kneading time is usually 0.5 to 20 minutes, preferably 1 to 15 minutes.
 このようにして得られた基材層(A)に用いられる樹脂組成物、接着剤層(B)に用いられる樹脂組成物及びタイ層(C)に用いられる樹脂組成物を、従来公知の方法、例えば、圧縮成形、射出成形、押出成形、多層押出成形、異形押出成形又は中空成形により、用途に応じた各種形状の多層シートとすることができる。 The resin composition used in the base layer (A), the resin composition used in the adhesive layer (B), and the resin composition used in the tie layer (C) obtained in this manner can be made into multilayer sheets of various shapes according to the application by conventionally known methods such as compression molding, injection molding, extrusion molding, multilayer extrusion molding, profile extrusion molding, or blow molding.
 基材層(A)、接着剤層(B)及びタイ層(C)は、予め各々シートとして用意したものを熱ラミネート加工して多層化してもよく、多層押出成形のようにシート化と多層化を同時に行い、多層化してもよい。いずれの場合においても、基材層(A)とタイ層(C)の少なくとも一方を溶融状態にして基材層(A)とタイ層(C)とを接触させ、タイ層(C)と接着剤層(B)の少なくとも一方を溶融状態にしてタイ層(C)と接着剤層(B)とを接触させることが好ましい。基材層(A)とタイ層(C)の両方、タイ層(C)と接着剤層(B)の両方が溶融状態にある状態で接触させるのが更に好ましい。接触させる温度は160℃以上が好ましく、190℃以上がさらに好ましく、220℃以上が特に好ましい。接触させる温度が下限値以上の場合、接着剤層(B)とタイ層(C)、タイ層(C)と基材層(A)の融着が十分に進行し、層間接着力を高めることができる。基材層(A)及び接着剤層(B)のタイ層(C)への接触は同時に行っても、別々に行ってもよい。 The substrate layer (A), adhesive layer (B) and tie layer (C) may be prepared in advance as sheets and then heat-laminated to form a multilayer, or may be formed into a multilayer by simultaneously forming a sheet and forming a multilayer, as in multilayer extrusion molding. In either case, it is preferable to bring the substrate layer (A) and the tie layer (C) into contact with each other while at least one of the substrate layer (A) and the tie layer (C) is in a molten state, and bring the tie layer (C) and the adhesive layer (B) into contact with each other while at least one of the tie layer (C) and the adhesive layer (B) is in a molten state. It is more preferable to bring the substrate layer (A) and the tie layer (C) into contact with each other while both the substrate layer (A) and the tie layer (C) and the tie layer (C) and the adhesive layer (B) are in a molten state. The contact temperature is preferably 160°C or higher, more preferably 190°C or higher, and particularly preferably 220°C or higher. When the contact temperature is equal to or higher than the lower limit, fusion between the adhesive layer (B) and the tie layer (C), and between the tie layer (C) and the base layer (A) proceeds sufficiently, and the interlayer adhesive strength can be increased. The base layer (A) and the adhesive layer (B) may be contacted with the tie layer (C) simultaneously or separately.
 多層シートは、生産性と製造コストの点から多層押出成形によってシート化するのが好ましい。一般の押出成形ではTダイから押し出された層状の溶融樹脂がロール等によって冷却・引き延ばされシートとなる。複数の樹脂を同時に押し出す「共押出し」により、多層成形が可能となる。共押出しの具体的手法としては、Tダイの手前で樹脂を合流させる「フィードブロック法」と、単層をそれぞれマニホールド内で広げてから、Tダイの吐出口であるリップで合流させる「マルチマニホールド法」がある。本発明の多層シートの製造ではこれらいずれの手法を使用してもよく、その他の手法を使用してもよい。なお、多層押出成形によって押し出された多層シートを、引き続き加熱ロールによって熱ラミネート(熱圧着)してもよい。熱ラミネート工程を追加することにより、層間接着力が更に向上する場合がある。熱ラミネート工程の好ましい温度条件は前述した通りである。 In terms of productivity and manufacturing costs, it is preferable to form the multilayer sheet by multilayer extrusion molding. In general extrusion molding, the layered molten resin extruded from a T-die is cooled and stretched by rolls or the like to form a sheet. Multilayer molding is possible by "co-extrusion", which extrudes multiple resins simultaneously. Specific methods of co-extrusion include the "feed block method", in which the resins are joined just before the T-die, and the "multi-manifold method", in which the single layers are spread in a manifold and then joined at the lip, which is the discharge outlet of the T-die. Any of these methods or other methods may be used in the manufacture of the multilayer sheet of the present invention. The multilayer sheet extruded by multilayer extrusion molding may be subsequently heat laminated (thermocompression bonded) by a heated roll. The interlayer adhesive strength may be further improved by adding a heat lamination process. The preferable temperature conditions for the heat lamination process are as described above.
 多層シートと同様の方法で基材層(A)及びタイ層(C)を積層して基材シートを製造できる。基材シートを形成した後で、酸変性ポリオレフィンを含む接着剤を塗布又はラミネート加工することで、基材シートの表面に設けられたタイ層(C)上に接着剤層(B)を設け、多層シートとすることができる。 The base sheet can be manufactured by laminating the base layer (A) and the tie layer (C) in the same manner as the multilayer sheet. After the base sheet is formed, an adhesive containing an acid-modified polyolefin can be applied or laminated to provide an adhesive layer (B) on the tie layer (C) provided on the surface of the base sheet, thereby forming a multilayer sheet.
 本発明の多層シートは、金属、ガラス、セラミックス又はプラスチック等各種の材料で形成されている被着体と接着できる。これにより多層シートと被着体とを含む接合体を作製できる。例えば、多層シートを含む接合体を、層状電池の部材・部品として利用できる。 The multilayer sheet of the present invention can be bonded to an adherend formed of various materials such as metal, glass, ceramics, or plastic. This makes it possible to produce an assembly including the multilayer sheet and the adherend. For example, an assembly including the multilayer sheet can be used as a member or part of a layered battery.
 被着体として用いられる金属は、一般に知られる金属板、金属平面板もしくは金属箔であってよく、鉄、銅、アルミニウム、鉛、亜鉛、チタン、クロム、ステンレス等を使用できる。これらの中でも、鉄、アルミニウム、チタン、ステンレスが特に好ましい。 The metal used as the adherend may be a commonly known metal plate, flat metal plate, or metal foil, and iron, copper, aluminum, lead, zinc, titanium, chromium, stainless steel, etc. can be used. Among these, iron, aluminum, titanium, and stainless steel are particularly preferred.
 被着体として用いられるプラスチックには、各種の熱可塑性又は熱硬化性樹脂を使用できる。ガラス又はセラミックス等の無機物、金属又は炭素等のフィラー又は繊維を樹脂に複合化した複合材料を用いてもよい。 Various types of thermoplastic or thermosetting resins can be used as the plastic to be used as the adherend. Composite materials in which inorganic materials such as glass or ceramics, or fillers or fibers such as metal or carbon are combined with resin can also be used.
 以下に、実施例を示し、本発明をより具体的に説明する。なお、特段の記載がない場合には、以下において「部」は質量部を意味し、「%」は質量%を意味する。 The present invention will be explained in more detail below with reference to examples. Unless otherwise specified, "parts" below means parts by mass and "%" means % by mass.
 表1中の基材層(A)、接着剤層(B)及びタイ層(C)に使用した樹脂の詳細は以下の通りである。
PPE-1:三菱エンジニアリングプラスチック製、ポリフェニレンエーテル PX100F、Tg=204℃(DSC)
PPE-2:SABIC製、NORYL(登録商標)ポリフェニレンエーテル PPO630、Tg=208℃(DSC)
SEBS-1:旭化成製、タフテック(登録商標)、末端アミン変性水添スチレン系熱可塑性エラストマー(SEBS) MP10、スチレン含量30%
SEBS-2:旭化成製、タフテック(登録商標)、酸変性水添スチレン系熱可塑性エラストマー(SEBS) M1913、スチレン含量30%
TM55:東亞合成製、アロンメルト(登録商標) TM55、無水マレイン酸変性ポリオレフィン、融点142℃、MFR15g/10min
PP-1:日本ポリプロ製、ウィンテック(登録商標) WMG03、メタロセン系ポリプロピレン、融点142℃
PP-2:サンアロマー製、サンアロマー(登録商標) PC630A、ランダムポリプロピレン、融点142℃
Details of the resins used in the substrate layer (A), adhesive layer (B) and tie layer (C) in Table 1 are as follows:
PPE-1: Polyphenylene ether PX100F, made by Mitsubishi Engineering Plastics, Tg = 204°C (DSC)
PPE-2: SABIC, NORYL (registered trademark) polyphenylene ether PPO630, Tg = 208 ° C. (DSC)
SEBS-1: Asahi Kasei, Tuftec (registered trademark), terminal amine-modified hydrogenated styrene-based thermoplastic elastomer (SEBS) MP10, styrene content 30%
SEBS-2: Asahi Kasei, Tuftec (registered trademark), acid-modified hydrogenated styrene-based thermoplastic elastomer (SEBS) M1913, styrene content 30%
TM55: Aronmelt (registered trademark) TM55, manufactured by Toagosei, maleic anhydride modified polyolefin, melting point 142°C, MFR 15g/10min
PP-1: Japan Polypropylene, Wintech (registered trademark) WMG03, metallocene polypropylene, melting point 142°C
PP-2: Sanallomer (registered trademark) PC630A, random polypropylene, melting point 142°C, manufactured by Sanallomer
 表1にて記載の評価結果は以下記載の通りに評価したものである。 The evaluation results shown in Table 1 were evaluated as follows:
(1)メルトフローレート
 メルトフローレート(MFR)は、市販のメルトインデクサー(株式会社東洋精機製作所製G-02)を用いて、JIS K7210:2014に準拠して実施した。基材層(A)については測定温度300℃、接着剤層(B)については測定温度230℃、タイ層(C)については測定温度260℃とし、いずれの層とも荷重2.16kgにて測定した。
(1) Melt Flow Rate The melt flow rate (MFR) was measured using a commercially available melt indexer (G-02 manufactured by Toyo Seiki Seisakusho Co., Ltd.) in accordance with JIS K7210: 2014. The measurement temperature for the base layer (A) was 300°C, the measurement temperature for the adhesive layer (B) was 230°C, and the measurement temperature for the tie layer (C) was 260°C, and all layers were measured under a load of 2.16 kg.
(2)軟化点と貯蔵弾性率
 基材層(A)用の樹脂組成物を、卓上プレス成形機を用いて厚み約0.2mmのシート状に成形した。この樹脂シートを10mm×4.5mmのサイズに切り出し、引張粘弾性装置(日立ハイテクサンエンス社製DMS6100)を用いて粘弾性特性を測定した。具体的には、周波数1Hz、昇温速度2℃/分で室温から250℃まで昇温し、貯蔵弾性率、損失弾性率、及びtanδの温度による変化を記録した。軟化点は、tanδの値が最高値を示した温度とした。
(2) Softening point and storage modulus The resin composition for the base layer (A) was molded into a sheet having a thickness of about 0.2 mm using a tabletop press molding machine. The resin sheet was cut into a size of 10 mm x 4.5 mm, and the viscoelastic properties were measured using a tensile viscoelasticity device (Hitachi High-Tech San-Ens Co., Ltd. DMS6100). Specifically, the temperature was raised from room temperature to 250 ° C. at a frequency of 1 Hz and a heating rate of 2 ° C. / min, and the changes in storage modulus, loss modulus, and tan δ due to temperature were recorded. The softening point was the temperature at which the value of tan δ was the maximum value.
(3)圧縮クリープ試験
 基材層(A)用の樹脂組成物を、卓上プレス成形機を用いて厚み1mmのシート状に成形した。この樹脂シートを10mm×10mmのサイズに切り出し、5枚重ねて厚み5mmの試料とした。熱プレス装置(新東工業製デジタルプレスCYPT-50)を用い、温度170℃、圧力6MPaで12時間加熱し、試験前の厚みに対する試験前後の厚み変化量の比率をクリープ率(%)として計算した。
(3) Compression creep test The resin composition for the base layer (A) was molded into a sheet having a thickness of 1 mm using a bench press molding machine. This resin sheet was cut into a size of 10 mm x 10 mm, and five sheets were stacked to form a sample having a thickness of 5 mm. Using a heat press device (Shinto Kogyo Digital Press CYPT-50), the sample was heated at a temperature of 170 ° C. and a pressure of 6 MPa for 12 hours, and the ratio of the thickness change before and after the test to the thickness before the test was calculated as the creep rate (%).
(4)熱収縮試験
 基材層(A)用の樹脂組成物を、卓上プレス成形機を用いて厚み1mmのシート状に成形した。この樹脂シートを10mm×10mmのサイズに切り出し、5枚重ねて厚み5mmの試料とした。熱プレス装置(新東工業製デジタルプレスCYPT-50)を用い、温度170℃、圧力6MPaで12時間加熱し、試験前の厚みに対する試験前後の厚み変化量の比率をクリープ率(%)として計算した。基材層(A)用の樹脂組成物を、卓上プレス成形機を用いて厚み約100μmのシート状に成形した。この樹脂シートを200mm×100mmのサイズに切り出し試料とした。180℃の乾燥機内に30秒間、作製した試料を吊り下げ、加熱前後の寸法変化から熱変形率を計算した。熱変形率は、長辺の変化率の絶対値と短辺の変化率の絶対値の平均である。
(4) Heat shrinkage test The resin composition for the base layer (A) was molded into a sheet having a thickness of 1 mm using a tabletop press molding machine. This resin sheet was cut into a size of 10 mm x 10 mm, and five sheets were stacked to form a sample having a thickness of 5 mm. Using a heat press device (Shinto Kogyo Digital Press CYPT-50), the sample was heated at a temperature of 170 ° C. and a pressure of 6 MPa for 12 hours, and the ratio of the thickness change before and after the test to the thickness before the test was calculated as the creep rate (%). The resin composition for the base layer (A) was molded into a sheet having a thickness of about 100 μm using a tabletop press molding machine. This resin sheet was cut into a size of 200 mm x 100 mm to form a sample. The prepared sample was hung in a 180 ° C. dryer for 30 seconds, and the thermal deformation rate was calculated from the dimensional change before and after heating. The thermal deformation rate is the average of the absolute value of the change rate of the long side and the absolute value of the change rate of the short side.
(5)温水剥離試験
 被着体として厚み0.1mmのSUS304板を用い、多層シートの両面をSUS304板で挟んで、精密プレス機で熱圧着(180℃,4秒,3MPa)し、接合体を作製した。この接合体を幅10mmの短冊状にカットして試験片とした。試験片の接着部は幅10mm、長さ15mmであった。温水剥離試験では、計測スタンド(イマダ製 MX2-1000N)にロードセル(イマダ製 eDPU-50N)を取り付け、底にフックを取り付けた加熱水槽中に95℃の温水を満たし、試験片を浸漬した状態で30mm/minで剥離させて剥離強度(N/10mm)を評価した。
(5) Hot Water Peel Test A SUS304 plate with a thickness of 0.1 mm was used as an adherend, and both sides of the multilayer sheet were sandwiched between SUS304 plates and heat-pressed (180°C, 4 seconds, 3 MPa) with a precision press to produce a bonded body. This bonded body was cut into a strip with a width of 10 mm to prepare a test piece. The bonded part of the test piece was 10 mm wide and 15 mm long. In the hot water peel test, a load cell (eDPU-50N, manufactured by Imada) was attached to a measurement stand (MX2-1000N, manufactured by Imada), a heated water bath with a hook attached to the bottom was filled with hot water at 95°C, and the test piece was immersed in the water and peeled at 30 mm/min to evaluate the peel strength (N/10 mm).
(6)水中での接着耐久性
 水中での接着耐久性を評価するため、定荷重浸漬試験を実施した。定荷重浸漬試験は、一定の剥離荷重をかけた状態で120℃加圧温水中に試験片を保持させ、接着耐久性を評価する試験法である。試験片は剥離強度の測定に用いたものと同様である。試験片の持ち手部の片方を針金で固定架台に繋ぎ、他方を錘に繋いだ。水面上に設置した固定架台から試験片を錘とともに95℃温水中へぶら下げ、水中で錘により剥離荷重(0.5N)を掛けた。2000hr後に試験片を取り出し、上述の温水剥離試験を実施することで剥離強度(N/10mm)を評価した。なお、2000hr未満で試験片が剥離し、落下したものは表1中に落下時間のみ表記している。
(6) Adhesion durability in water A constant load immersion test was carried out to evaluate the adhesion durability in water. The constant load immersion test is a test method in which a test piece is held in 120°C pressurized hot water under a constant peel load to evaluate the adhesion durability. The test piece is the same as that used for measuring the peel strength. One end of the handle of the test piece was connected to a fixed stand with a wire, and the other end was connected to a weight. The test piece was hung from a fixed stand installed above the water surface together with the weight in 95°C hot water, and a peel load (0.5N) was applied by the weight in the water. After 2000 hours, the test piece was taken out and the above-mentioned hot water peel test was carried out to evaluate the peel strength (N/10mm). Note that, for test pieces that peeled off and fell in less than 2000 hours, only the fall time is indicated in Table 1.
<実施例1~3>
 PPE-1とSEBS-1を表1記載の比率で混合し、二軸押出機(日本製鋼所製、TEX25αIII)にて300℃で溶融混練し、基材層(A)の樹脂組成物A-1を得た。
 PPE-2、SEBS-1、PP-1を表1記載の比率で混合し、二軸押出機(日本製鋼所製、TEX25αIII)にて280℃で溶融混練し、タイ層(C)の樹脂組成物C-1~3をそれぞれ得た。
 接着剤層(B)の樹脂組成物B-1には、TM55を使用した。
 次いで、各層の厚みが、基材層(A)約150μm、接着剤層(B)約50μmの接着剤層(B)、タイ層(C)約25μmとなるように、上記樹脂組成物をTダイ多層フィルム成形機(プラスチック工学研究所製)にて成形し、接着剤層(B)/タイ層(C)/基材層(A)/タイ層(C)/接着剤層(B)の5層シートをそれぞれ得た。
<Examples 1 to 3>
PPE-1 and SEBS-1 were mixed in the ratio shown in Table 1 and melt-kneaded at 300° C. in a twin-screw extruder (TEX25αIII, manufactured by Japan Steel Works, Ltd.) to obtain resin composition A-1 for the substrate layer (A).
PPE-2, SEBS-1, and PP-1 were mixed in the ratios shown in Table 1 and melt-kneaded at 280°C in a twin-screw extruder (TEX25αIII, manufactured by Japan Steel Works) to obtain resin compositions C-1 to C-3 for the tie layer (C), respectively.
TM55 was used as the resin composition B-1 for the adhesive layer (B).
Next, the above resin composition was molded using a T-die multilayer film molding machine (manufactured by Plastics Engineering Research Institute) so that the thickness of each layer was approximately 150 μm for the base material layer (A), approximately 50 μm for the adhesive layer (B), and approximately 25 μm for the tie layer (C), to obtain five-layer sheets of adhesive layer (B)/tie layer (C)/base material layer (A)/tie layer (C)/adhesive layer (B).
<実施例4>
 基材層(A)と接着層(B)には、実施例1と同様の樹脂組成物A-1とB-1を使用した。
 PPE-2、SEBS-1、PP-2を表1記載の比率で混合し、実施例1と同様の方法で溶融混練し、タイ層(C)の樹脂組成物C-4を得た。
 実施例1と同様の方法で5層シートを得た。
Example 4
The same resin compositions A-1 and B-1 as in Example 1 were used for the base layer (A) and adhesive layer (B).
PPE-2, SEBS-1, and PP-2 were mixed in the ratio shown in Table 1 and melt-kneaded in the same manner as in Example 1 to obtain a resin composition C-4 for the tie layer (C).
A five-layer sheet was obtained in the same manner as in Example 1.
<実施例5~8>
 基材層(A)と接着層(B)は、実施例1と同様の樹脂組成物A-1とB-1を使用した。
 PPE-1、SEBS-1、PP-2を表1記載の比率で混合し、実施例1と同様の方法で溶融混練し、タイ層(C)の樹脂組成物C-5~8をそれぞれ得た。
 実施例1と同様の方法で5層シートをそれぞれ得た。
<Examples 5 to 8>
The same resin compositions A-1 and B-1 as in Example 1 were used for the base layer (A) and adhesive layer (B).
PPE-1, SEBS-1, and PP-2 were mixed in the ratios shown in Table 1 and melt-kneaded in the same manner as in Example 1 to obtain resin compositions C-5 to C-8 for the tie layer (C), respectively.
In the same manner as in Example 1, five-layer sheets were obtained.
<実施例9>
 基材層(A)と接着層(B)は、実施例1と同様の樹脂組成物A-1とB-1を使用した。
 PPE-2、SEBS-2、PP-2を表1記載の比率で混合し、実施例1と同様の方法で溶融混練し、タイ層(C)の樹脂組成物C-9を得た。
 実施例1と同様の方法で5層シートを得た。
<Example 9>
The same resin compositions A-1 and B-1 as in Example 1 were used for the base layer (A) and adhesive layer (B).
PPE-2, SEBS-2, and PP-2 were mixed in the ratio shown in Table 1 and melt-kneaded in the same manner as in Example 1 to obtain a resin composition C-9 for the tie layer (C).
A five-layer sheet was obtained in the same manner as in Example 1.
<実施例10>
 基材層(A)の樹脂組成物A-1と実施例2で使用したタイ層(C)の樹脂組成物C-2を用いて、Tダイ多層フィルム成形機(プラスチック工学研究所製)にて成形し、タイ層(C)/基材層(A)/タイ層(C)の基材シートを得た。また、接着剤層(B)の樹脂組成物B-1をTダイ単層フィルム成形機(テクノベル製)にて成形し、接着剤層(B)の単層シートを得た。
 上記3層シートの両面に接着剤層(B)の単層シートをラミネート加工(190℃、0.3MPa、1.8m/min)によって貼り合わせ5層シートを得た。
Example 10
Resin composition A-1 for the substrate layer (A) and resin composition C-2 for the tie layer (C) used in Example 2 were molded in a T-die multilayer film molding machine (manufactured by Plastics Engineering Research Institute) to obtain a substrate sheet of tie layer (C)/substrate layer (A)/tie layer (C). Resin composition B-1 for the adhesive layer (B) was molded in a T-die monolayer film molding machine (manufactured by Technovel) to obtain a monolayer sheet of adhesive layer (B).
A single layer sheet of the adhesive layer (B) was laminated onto both sides of the three-layer sheet (190° C., 0.3 MPa, 1.8 m/min) to obtain a five-layer sheet.
<比較例1>
 基材層(A)と接着層(B)は、実施例1と同様の樹脂組成物A-1とB-1を使用した。
 タイ層(C)を設けずに、Tダイ多層フィルム成形機(プラスチック工学研究所製)にて成形し、接着剤層(B)/基材層(A)/接着剤層(B)の3層シートを得た。
<Comparative Example 1>
The same resin compositions A-1 and B-1 as in Example 1 were used for the base layer (A) and adhesive layer (B).
Without providing a tie layer (C), molding was performed using a T-die multilayer film molding machine (manufactured by Plastics Engineering Research Institute) to obtain a three-layer sheet of adhesive layer (B)/substrate layer (A)/adhesive layer (B).
<比較例2>
 基材層(A)と接着層(B)は、実施例1と同様の樹脂組成物A-1とB-1を使用した。
 PPE-1、SEBS-1を表1記載の比率で混合し、実施例1と同様の方法で溶融混練し、タイ層(C)の樹脂組成物C-10を得た。
 実施例1と同様の方法で5層シートを得た。
<Comparative Example 2>
The same resin compositions A-1 and B-1 as in Example 1 were used for the base layer (A) and adhesive layer (B).
PPE-1 and SEBS-1 were mixed in the ratio shown in Table 1 and melt-kneaded in the same manner as in Example 1 to obtain a resin composition C-10 for the tie layer (C).
A five-layer sheet was obtained in the same manner as in Example 1.
Figure JPOXMLDOC01-appb-T000002
なお、表中の試験結果において「--」と記載されている項目は未評価であることを意味する。
Figure JPOXMLDOC01-appb-T000002
In addition, in the test results in the table, items marked with "--" mean that they have not been evaluated.
 表1の結果より、本発明の多層シートを用いることで、被着体との接着力及び耐久性が大幅に向上した。実施例1と比較例1の結果より、タイ層(C)を設けることで基材層(A)と接着剤層(B)が強固に接着し、被着体との接着力向上を確認した。実施例5と実施例6の結果より、タイ層(C)としてスチレン系エラストマーとポリフェニレンエーテルの質量比率が特定範囲内となる樹脂組成物を用いると、被着体との接着力及び耐久性が向上することを確認した。実施例6と実施例8の結果より、タイ層(C)としてスチレン系エラストマーとポリフェニレンエーテルの合計量とポリオレフィンの質量比率が特定範囲内となる樹脂組成物を用いると、被着体との接着力及び耐久性が向上することを確認した。実施例10では、タイ層(C)/基材層(A)/タイ層(C)から成る基材シートを製造し、その両面に接着剤層(B)を設けて多層シートを作製した。実施例10の製造方法においても、実施例2と同等の接着力を有する多層シートが製造できることを確認した。
 実施例1~3と実施例4を比較すると、タイ層(C)のポリオレフィンとしてメタロセン系ポリプロピレンを用いることで水中の耐久性がさらに向上することを確認した。
From the results of Table 1, by using the multilayer sheet of the present invention, the adhesive strength and durability with the adherend were significantly improved. From the results of Example 1 and Comparative Example 1, it was confirmed that the base material layer (A) and the adhesive layer (B) were firmly bonded by providing the tie layer (C), and the adhesive strength with the adherend was improved. From the results of Example 5 and Example 6, it was confirmed that the adhesive strength and durability with the adherend were improved when a resin composition in which the mass ratio of the styrene-based elastomer and the polyphenylene ether is within a specific range is used as the tie layer (C). From the results of Example 6 and Example 8, it was confirmed that the adhesive strength and durability with the adherend were improved when a resin composition in which the total amount of the styrene-based elastomer and the polyphenylene ether and the mass ratio of the polyolefin are within a specific range is used as the tie layer (C). In Example 10, a base material sheet consisting of the tie layer (C) / base material layer (A) / tie layer (C) was produced, and an adhesive layer (B) was provided on both sides to produce a multilayer sheet. It was confirmed that a multilayer sheet having the same adhesive strength as Example 2 can also be produced by the manufacturing method of Example 10.
Comparing Examples 1 to 3 with Example 4, it was confirmed that the durability in water was further improved by using metallocene-based polypropylene as the polyolefin in the tie layer (C).
本発明の多層シートは、金属及びその他の材料の接着やシールに有用であり、得られる接合体が継続的又は断続的に水分と接触し得る用途に好適に用いることができる。多層シートが剛性や耐熱性に優れた基材層(A)を有し、これに特定配合のタイ層(C)を付与することにより基材層(A)と接着剤層(B)との界面強度が向上して、強固な接合体を形成できるため、本発明の多層シートは電池の構成部材として有用であり、電池の部品数やコストの低減、生産性の大幅な向上に寄与できる。 The multilayer sheet of the present invention is useful for bonding and sealing metals and other materials, and can be suitably used in applications where the resulting bonded body may come into contact with moisture continuously or intermittently. The multilayer sheet has a base layer (A) with excellent rigidity and heat resistance, and by adding a tie layer (C) of a specific composition to this, the interfacial strength between the base layer (A) and the adhesive layer (B) is improved, forming a strong bonded body. Therefore, the multilayer sheet of the present invention is useful as a component of a battery, and can contribute to reducing the number of battery parts and costs, and significantly improving productivity.
 他の用途としては、例えば金属導体又は光ファイバーを樹脂成形品で被覆した電線・ケーブル、自動車機構部品、自動車外装品、自動車内装品、給電用成形基板、光源反射用光反射板、固体メタノール電池用燃料ケース、金属パイプ用断熱材、車両用断熱材、燃料電池配水管、加飾成形品、水冷用タンク、ボイラー外装ケース、プリンターのインク周辺部品・部材、水配管、継ぎ手、二次電池アルカリ蓄電池槽、各種層状電池のガスケットシール材等が挙げられる。 Other applications include, for example, electric wires and cables in which metal conductors or optical fibers are covered with resin molded products, automotive mechanism parts, automotive exterior parts, automotive interior parts, molded power supply substrates, light reflectors for reflecting light sources, fuel cases for solid methanol batteries, insulation for metal pipes, insulation for vehicles, fuel cell water pipes, decorative molded products, water cooling tanks, boiler exterior cases, peripheral parts and components for printer ink, water piping, joints, secondary battery alkaline storage battery tanks, gasket sealants for various layered batteries, etc.
 2022年12月20日に出願された日本国特許出願第2022-203014号の開示は、その全体が参照により本明細書に取り込まれる。本明細書に記載された全ての文献、特許出願、及び、技術規格は、個々の文献、特許出願、及び、技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。 The disclosure of Japanese Patent Application No. 2022-203014, filed on December 20, 2022, is incorporated herein by reference in its entirety. All documents, patent applications, and technical standards described herein are incorporated herein by reference to the same extent as if each individual document, patent application, and technical standard was specifically and individually indicated to be incorporated by reference.

Claims (15)

  1.  ポリフェニレンエーテルを含む基材層(A)と、酸変性ポリオレフィンを含む接着剤層(B)とを含み、前記基材層(A)と前記接着剤層(B)との間に、スチレン系エラストマー、ポリフェニレンエーテル及びポリオレフィンを含むタイ層(C)をさらに含む、多層シート。 A multilayer sheet comprising a substrate layer (A) containing polyphenylene ether and an adhesive layer (B) containing an acid-modified polyolefin, and further comprising a tie layer (C) between the substrate layer (A) and the adhesive layer (B) containing a styrene-based elastomer, polyphenylene ether, and a polyolefin.
  2.  前記スチレン系エラストマーが、スチレン-ジエンブロック共重合体、スチレン-ジエンブロック共重合体の水素添加物、スチレン-ジエンブロック共重合体の変性物、スチレン-ジエンブロック共重合体の水素添加物の変性物及びそれらの組み合わせから成る群より選択される、請求項1に記載の多層シート。 The multilayer sheet according to claim 1, wherein the styrene-based elastomer is selected from the group consisting of styrene-diene block copolymers, hydrogenated styrene-diene block copolymers, modified styrene-diene block copolymers, modified hydrogenated styrene-diene block copolymers, and combinations thereof.
  3.  前記スチレン系エラストマーが、スチレン-ジエンブロック共重合体の水素添加物の変性物を含み、前記スチレン-ジエンブロック共重合体の水素添加物の変性物がカルボン酸基、カルボン酸無水物基、エポキシ基、アミノ基及びそれらの組み合わせから成る群より選択される官能基を有する、請求項1に記載の多層シート。 The multilayer sheet according to claim 1, wherein the styrene-based elastomer comprises a modified product of a hydrogenated styrene-diene block copolymer, and the modified product of the hydrogenated styrene-diene block copolymer has a functional group selected from the group consisting of a carboxylic acid group, a carboxylic anhydride group, an epoxy group, an amino group, and combinations thereof.
  4.  前記タイ層(C)の前記ポリオレフィンがポリプロピレンである、請求項1に記載の多層シート。 The multilayer sheet of claim 1, wherein the polyolefin of the tie layer (C) is polypropylene.
  5.  前記タイ層(C)の前記ポリオレフィンがメタロセン系ポリプロピレンである、請求項1に記載の多層シート。 The multilayer sheet of claim 1, wherein the polyolefin of the tie layer (C) is a metallocene-based polypropylene.
  6.  前記タイ層(C)において、前記スチレン系エラストマーと前記ポリフェニレンエーテルの質量比率が30/70~80/20である、請求項1に記載の多層シート。 The multilayer sheet according to claim 1, wherein the mass ratio of the styrene-based elastomer to the polyphenylene ether in the tie layer (C) is 30/70 to 80/20.
  7.  前記タイ層(C)において、前記スチレン系エラストマーと前記ポリフェニレンエーテルの合計量と前記ポリオレフィンの質量比率が50/50~85/15である、請求項6に記載の多層シート。 The multilayer sheet according to claim 6, wherein the mass ratio of the total amount of the styrene-based elastomer and the polyphenylene ether to the polyolefin in the tie layer (C) is 50/50 to 85/15.
  8.  前記基材層(A)の軟化点が175℃以上である、請求項1に記載の多層シート。 The multilayer sheet according to claim 1, wherein the softening point of the substrate layer (A) is 175°C or higher.
  9.  前記基材層(A)の160℃における貯蔵弾性率が500MPa以上である、請求項1に記載の多層シート。 The multilayer sheet according to claim 1, wherein the storage modulus of the base layer (A) at 160°C is 500 MPa or more.
  10.  前記酸変性ポリオレフィンが無水マレイン酸変性ポリオレフィンである、請求項1に記載の多層シート。 The multilayer sheet according to claim 1, wherein the acid-modified polyolefin is a maleic anhydride-modified polyolefin.
  11.  前記基材層(A)が50~300μmの厚みを有し、前記接着剤層(B)が10~100μmの厚みを有し、前記タイ層(C)が2~50μmの厚みを有する、請求項1に記載の多層シート。 The multilayer sheet according to claim 1, wherein the base layer (A) has a thickness of 50 to 300 μm, the adhesive layer (B) has a thickness of 10 to 100 μm, and the tie layer (C) has a thickness of 2 to 50 μm.
  12.  ポリフェニレンエーテルを含む基材層(A)と、スチレン系エラストマー、ポリフェニレンエーテル及びポリオレフィンを含むタイ層(C)とを含む、基材シート。 A substrate sheet comprising a substrate layer (A) containing polyphenylene ether and a tie layer (C) containing a styrene-based elastomer, polyphenylene ether, and a polyolefin.
  13.  前記タイ層(C)において、前記スチレン系エラストマーと前記ポリフェニレンエーテルの質量比率が30/70~80/20である、請求項12に記載の基材シート。 The substrate sheet according to claim 12, wherein the mass ratio of the styrene-based elastomer to the polyphenylene ether in the tie layer (C) is 30/70 to 80/20.
  14.  前記タイ層(C)において、前記スチレン系エラストマーと前記ポリフェニレンエーテルの合計量と前記ポリオレフィンの質量比率が50/50~85/15である、請求項13に記載の基材シート。 The substrate sheet according to claim 13, wherein in the tie layer (C), the mass ratio of the total amount of the styrene-based elastomer and the polyphenylene ether to the polyolefin is 50/50 to 85/15.
  15.  ポリフェニレンエーテルを含む基材層(A)と、スチレン系エラストマー、ポリフェニレンエーテル及びポリオレフィンを含むタイ層(C)とを含む、基材シートを用意する工程、及び
     前記タイ層(C)上に酸変性ポリオレフィンを含む接着剤層(B)を積層する工程
    を含む、多層シートの製造方法。
     
    A method for producing a multilayer sheet, comprising: preparing a substrate sheet including a substrate layer (A) containing polyphenylene ether and a tie layer (C) containing a styrene-based elastomer, polyphenylene ether, and a polyolefin; and laminating an adhesive layer (B) containing an acid-modified polyolefin on the tie layer (C).
PCT/JP2023/045113 2022-12-20 2023-12-15 Multilayer sheet WO2024135571A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-203014 2022-12-20
JP2022203014 2022-12-20

Publications (1)

Publication Number Publication Date
WO2024135571A1 true WO2024135571A1 (en) 2024-06-27

Family

ID=91588689

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/045113 WO2024135571A1 (en) 2022-12-20 2023-12-15 Multilayer sheet

Country Status (1)

Country Link
WO (1) WO2024135571A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01269533A (en) * 1988-04-22 1989-10-27 Asahi Chem Ind Co Ltd Laminate having thermoplastic elastomer layer
JPH0376643A (en) * 1989-06-09 1991-04-02 General Electric Co <Ge> Multilayer structure having laye formed of blend of polyphenylene ether and impact resistant polystyrene
JPH11227077A (en) * 1998-02-13 1999-08-24 Mitsubishi Eng Plast Corp Multi-layer hollow body
JP2007217685A (en) * 2006-01-23 2007-08-30 Nippon Polystyrene Kk Heat resistant soft resin composition
JP2019514739A (en) * 2016-04-29 2019-06-06 サビック グローバル テクノロジーズ ベスローテン フェンノートシャップ Poly (phenylene ether) compositions, lining tubes and injection molded articles prepared therefrom, and methods of controlling microbial growth during water transport and storage
WO2022211081A1 (en) * 2021-04-01 2022-10-06 東亞合成株式会社 Multi-layer sheet and production method for same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01269533A (en) * 1988-04-22 1989-10-27 Asahi Chem Ind Co Ltd Laminate having thermoplastic elastomer layer
JPH0376643A (en) * 1989-06-09 1991-04-02 General Electric Co <Ge> Multilayer structure having laye formed of blend of polyphenylene ether and impact resistant polystyrene
JPH11227077A (en) * 1998-02-13 1999-08-24 Mitsubishi Eng Plast Corp Multi-layer hollow body
JP2007217685A (en) * 2006-01-23 2007-08-30 Nippon Polystyrene Kk Heat resistant soft resin composition
JP2019514739A (en) * 2016-04-29 2019-06-06 サビック グローバル テクノロジーズ ベスローテン フェンノートシャップ Poly (phenylene ether) compositions, lining tubes and injection molded articles prepared therefrom, and methods of controlling microbial growth during water transport and storage
WO2022211081A1 (en) * 2021-04-01 2022-10-06 東亞合成株式会社 Multi-layer sheet and production method for same

Similar Documents

Publication Publication Date Title
JP6581668B2 (en) Laminated body and method for producing the same
US9102849B2 (en) Thermoplastic polymer composition and molded article
WO2022211081A1 (en) Multi-layer sheet and production method for same
JPS6063243A (en) Highly adhesive composition
WO2018143373A1 (en) Multilayer sheet for skin material
JP5078247B2 (en) Battery pack laminate
JP2018138639A (en) Adhesive resin composition, and composite adhesive body comprising the same
WO2024109437A1 (en) Multifunctional film-coated plate and preparation method therefor, and anti-corrosion bottom film
JP6074832B2 (en) Resin composition containing polyphenylene ether and method for producing the same
WO2009088092A1 (en) Composition containing polyphenylene sulfide resin, and process for producing the same
WO2024135571A1 (en) Multilayer sheet
JP2018138638A (en) Aliphatic polyketone laminated film and its drawn film, transfer film using them, and adhesive resin composition for aliphatic polyketone adhesion used for them
EP4357129A1 (en) Adhesive film and method for producing adhesive film
WO2022270468A1 (en) Multilayer sheet and production method therefor
WO2023286808A1 (en) Multilayer sheet and production method therefor
WO2022065286A1 (en) Adhesive composition, film-like adhesive, and multilayer film
EP4332188A1 (en) Multi-layer sheet and method for producing same
JP4321693B2 (en) Multilayer film and use thereof
JP2014208729A (en) Laminated sealant film for sealing tab lead composed of modified polyolefin-based resin film and thermoplastic resin film
WO2022255370A1 (en) Multilayer sheet and method for producing same
JP6992547B2 (en) Adhesive resin composition and composite adhesive using it
JP2004047146A (en) Resin composition for secondary battery
JP2004026891A (en) Resin composition for hermetically sealed secondary battery cell
JP2022127843A (en) Composite body
JP2024045851A (en) SEALING MATERIAL AND SECONDARY BATTERY COMPRISING SAME