WO2024135216A1 - Reflection panel, electromagnetic wave reflection device, and electromagnetic wave reflection fence - Google Patents

Reflection panel, electromagnetic wave reflection device, and electromagnetic wave reflection fence Download PDF

Info

Publication number
WO2024135216A1
WO2024135216A1 PCT/JP2023/042015 JP2023042015W WO2024135216A1 WO 2024135216 A1 WO2024135216 A1 WO 2024135216A1 JP 2023042015 W JP2023042015 W JP 2023042015W WO 2024135216 A1 WO2024135216 A1 WO 2024135216A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive pattern
layer
thickness
reflective
reflective panel
Prior art date
Application number
PCT/JP2023/042015
Other languages
French (fr)
Japanese (ja)
Inventor
真治 植木
久美子 神原
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Publication of WO2024135216A1 publication Critical patent/WO2024135216A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures

Definitions

  • the present invention relates to a reflective panel, an electromagnetic wave reflective device, and an electromagnetic wave reflective fence.
  • 5G fifth generation mobile communication system
  • IoT Internet of Things
  • 5G radio waves tend to travel in a very straight line, it is necessary to devise a propagation method by installing reflectors such as reflective panels in order to deliver the radio waves to the required areas.
  • Metasurfaces are formed with periodic structures or patterns that are finer than the wavelength, and are designed to reflect electromagnetic waves at a reflection angle different from the angle of incidence (see, for example, Non-Patent Document 1). Metasurfaces can reflect incident electromagnetic waves in a designed direction while maintaining a planar arrangement, so they function effectively as reflectors even in environments where there is not enough space to install a large number of mirror-reflecting reflective panels.
  • Metasurfaces are designed to reflect electromagnetic waves in a specific direction, and it is difficult to reflect incident electromagnetic waves in multiple directions with a certain degree of reflection intensity. Depending on the environment in which the reflective panel is installed, reflection in multiple directions may be required.
  • the present invention aims to provide a reflective panel that reflects incident electromagnetic waves in multiple directions with a certain degree of reflection intensity, and an electromagnetic wave reflection device using the same.
  • a reflective panel that reflects radio waves in a predetermined band selected from a frequency band of 1 GHz or more and 300 GHz or less, A dielectric layer; a periodic conductive pattern provided on one surface of the dielectric layer; a ground layer provided on the other surface of the dielectric layer; an adhesive layer that bonds the conductive pattern to the one surface;
  • the adhesive layer that adheres the conductive pattern is provided with the same area occupancy as the conductive pattern, and the conductive pattern has a thickness greater than 0.1 ⁇ m and less than 10.0 ⁇ m.
  • a reflective panel that reflects radio waves in a predetermined band selected from a frequency band of 1 GHz or more and 300 GHz or less,
  • a dielectric layer a periodic conductive pattern provided on one surface of the dielectric layer; a ground layer provided on the other surface of the dielectric layer; an adhesive layer that bonds the conductive pattern to the one surface of the dielectric layer;
  • the adhesive layer for adhering the conductive pattern is provided with the same area occupancy as the conductive pattern, and the thickness of the adhesive layer is greater than 50 ⁇ m and less than 1500 ⁇ m.
  • a reflective panel that reflects incident electromagnetic waves in multiple directions with a certain degree of reflection strength and an electromagnetic wave reflection device using this have been realized.
  • FIG. 1 is a schematic diagram of an electromagnetic wave reflection device using a reflection panel of an embodiment.
  • 5A to 5C are schematic diagrams illustrating a state of reflection on a reflective panel according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing a first example of a layer structure of a reflective panel.
  • FIG. 13 is a diagram showing a second example of a layer structure of a reflective panel.
  • FIG. 13 is a diagram showing a model of a conductive pattern used for evaluating reflection characteristics.
  • FIG. 6 is a schematic diagram showing the configuration of a unit cell of the model in FIG. 5 .
  • a reflective panel is used to improve the radio wave environment by reflecting incident electromagnetic waves in two or more directions with a certain degree of reflection intensity. More specifically, a reflective panel is provided that simultaneously reflects regular reflection, i.e., in a first direction for specular reflection and in a second direction for non-specular reflection. Non-specular reflection refers to reflection at an angle different from the angle of incidence, and includes reflection by a metasurface whose reflection characteristics are artificially controlled.
  • the thickness of the conductive pattern of the conductive layer constituting the reflective surface and the thickness of the adhesive layer supporting the conductive pattern are controlled. Specifically, in a configuration in which the conductive pattern is adhered to the dielectric layer with an adhesive layer arranged with a shape or in-plane occupancy rate similar to that of the conductive pattern, the thickness of the adhesive layer is set to be thicker than 50 ⁇ m and less than 1500 ⁇ m. Alternatively, the thickness of the conductive pattern is set to be thicker than 0.1 ⁇ m and less than 10.0 ⁇ m.
  • the shape or in-plane occupancy rate of the adhesive layer and the conductive pattern being "same” does not mean that they match in strict detail, but rather that the shape or in-plane occupancy rate of the adhesive layer and the conductive pattern match within a range of ⁇ 5%, including allowable errors, process variations, etc.
  • ⁇ Configuration of the reflection panel and electromagnetic wave reflection device> 1 is a schematic diagram of an electromagnetic wave reflecting device 60 using a reflecting panel 10.
  • the electromagnetic wave reflecting device 60 includes the reflecting panel 10 and a frame 50 that holds the reflecting panel.
  • the width or horizontal direction of the reflecting panel 10 is the X direction
  • the height or vertical direction is the Y direction
  • the thickness direction is the Z direction.
  • the electromagnetic wave reflecting device 60 may be provided with legs 56 to make the electromagnetic wave reflecting device 60 self-supporting.
  • the electromagnetic wave reflecting device 60 may have a top frame 57 that holds the upper end of the reflecting panel 10 in the height (Y) direction, and a bottom frame 58 that holds the lower end.
  • the reflective panel 10 is a single panel that reflects electromagnetic waves in a predetermined frequency band selected from frequencies between 1 GHz and 300 GHz, for example, between 1 GHz and 170 GHz, in the direction of specular reflection and the direction of non-specular reflection with a certain degree of reflection intensity.
  • a predetermined conductive pattern is supported on a dielectric layer by an adhesive layer, and a reflective surface is formed by the conductive pattern.
  • the conductive pattern is formed of a transparent conductive material or a metal material with good conductivity, into a periodic pattern, mesh pattern, geometric pattern, or the like.
  • the thickness of the conductive pattern is thicker than 0.1 ⁇ m and less than 10.0 ⁇ m.
  • the frame 50 holds both ends of the reflective panel in the width (X) direction.
  • the frame 50 may be called a side frame due to the positional relationship between the top frame 57 and the bottom frame 58.
  • the frame 50 not only stably holds the reflective panel 10 when the electromagnetic wave reflection device 60 is assembled, but also contributes to the safety of the transportation of the reflective panel 10 and reinforcement of its mechanical strength.
  • the frame 50 has the function and configuration of making the reflective potential between adjacent reflective panels 10 continuous.
  • Figure 2 shows a schematic diagram of the reflection mode of the reflective panel 10.
  • electromagnetic waves EMi are incident on the reflective surface 105 of the reflective panel 10 from a direction perpendicular to the reflective surface 105.
  • the angle of incidence of perpendicular incidence is 0 degrees.
  • the reflective panel 10 generates at least one of a non-specular reflection component Rnsp that is reflected to the +X side at a reflection angle different from 0°, and a non-specular reflection component -Rnsp that is reflected to the -X side.
  • the specular reflection component Rsp and the non-specular reflection component Rnsp or -Rnsp both have a reflection gain higher than -10 dB, and the difference in gain is within 8 dB, preferably within 5 dB.
  • the thickness of the conductive pattern that forms the reflective surface 105 and the adhesive layer that the conductive pattern supports are controlled.
  • ⁇ Layer structure of reflective panel> 3 shows the layer structure of the reflective panel 10A.
  • This layer structure is the layer structure in the thickness (Z) direction of the reflective panel 10A.
  • the reflective panel 10A has a dielectric layer 14, a conductive pattern 151 provided on one surface 141 of the dielectric layer 14, a ground layer 13 provided on the other surface 142 of the dielectric layer 14, and an adhesive layer 153 that bonds the conductive pattern 151 to the dielectric layer 14.
  • the adhesive layer 153 is provided on the surface 141 of the dielectric layer 14 with the same area occupancy as the conductive pattern 151.
  • the dielectric layer 14 is an insulating polymer film such as polycarbonate, cycloolefin polymer (COP), polyethylene terephthalate (PET), or fluororesin, and has a thickness of about 0.3 mm to 1.0 mm.
  • the thickness, dielectric constant, and dielectric dissipation factor of the dielectric layer 14 greatly affect the reflective characteristics of the reflective panel 10.
  • the thickness of the adhesive layer 153 and the conductive pattern 151 are controlled to achieve reflection in multiple directions, so the dielectric layer 14 may be made of a material that has a dielectric constant and dielectric dissipation factor that do not inhibit the expression of the target reflective characteristics.
  • an insulating polymer film with a dielectric constant of 3.0 or less and a dielectric dissipation factor of 0.1 or less is used.
  • the conductive pattern 151 is a periodic pattern formed of a good conductor such as Cu, Ni, or Ag, and has a thickness greater than 0.1 ⁇ m and less than 10.0 ⁇ m.
  • the conductive pattern 151 forms the reflective surface 105 (see FIG. 2) of the reflective panel 10.
  • the ground layer 13 may be formed of the same material as the conductive patterns 151, or may be formed of a different conductive material. A capacitance is formed between the ground layer 13 and each conductive pattern 151, and the magnitude of the phase delay is controlled for each conductive pattern 151.
  • the adhesive layer 153 bonds the conductive pattern 151 to the dielectric layer 14 and is formed to a thickness that allows the reflective characteristics of the reflective panel 10 to be controlled. Specifically, the thickness of the adhesive layer 153 is greater than 50 ⁇ m and less than 1500 ⁇ m.
  • the adhesive layer 153 may be made of a resin such as vinyl acetate resin, acrylic resin, cellulose resin, aniline resin, ethylene resin, silicone resin, or other resin.
  • FIG. 4 shows the layer structure of the reflective panel 10B.
  • the reflective panel 10B has an intermediate layer 16 that covers the conductive pattern 151 and the adhesive layer 153, and a dielectric substrate 17 that is joined to the conductive pattern 151 side by the intermediate layer 16.
  • the reflective panel 10B may further have an intermediate layer 12 that covers the ground layer 13, and a dielectric substrate 11 that is joined to the ground layer 13 side by the intermediate layer 12.
  • the intermediate layer 16 protects the surface of the conductive pattern 151 and adheres and holds the dielectric substrate 17. It is desirable for the intermediate layer 16 to be durable and moisture resistant, and for example, ethylene-vinyl acetate (EVA) copolymer or cycloolefin polymer (COP) can be used.
  • EVA ethylene-vinyl acetate
  • COP cycloolefin polymer
  • the thickness of the intermediate layer 16 is 10 ⁇ m to 400 ⁇ m.
  • the dielectric substrate 17 is preferably formed as the outermost layer of the reflective panel 10B from a material with excellent impact resistance, durability, and transparency.
  • a dielectric sheet that is provided as the outermost layer of the reflective panel 10B for protection and durability and has a thickness equal to or greater than that of the dielectric layer 14 is called a "dielectric substrate" to distinguish it from the dielectric layer 14 that carries the conductive pattern 151.
  • Polycarbonate, acrylic resin, PET, etc. can be used as the dielectric substrate 17.
  • the thickness of the dielectric substrate 17 is, for example, 1.0 mm or more and 10.0 mm or less.
  • the intermediate layer 12 protects the surface of the ground layer 13 and adheres and holds the dielectric substrate 11. It is desirable for the intermediate layer 12 to be durable and moisture resistant, and for example, ethylene-vinyl acetate (EVA) copolymer or cycloolefin polymer (COP) can be used.
  • EVA ethylene-vinyl acetate
  • COP cycloolefin polymer
  • the thickness of the intermediate layer 12 is 10 ⁇ m to 400 ⁇ m.
  • the dielectric substrate 11 is preferably formed as the outermost layer of the reflective panel 10B from a material that is excellent in impact resistance, durability, and transparency. Polycarbonate, acrylic resin, PET, etc. can be used as the dielectric substrate 11.
  • the thickness of the dielectric substrate 11 is, for example, 1.0 mm or more and 10.0 mm or less.
  • the conductive pattern 151 By covering the conductive pattern 151 with the intermediate layer 16 and bonding the dielectric substrate 17, the intrusion of moisture and air into the surface of the conductive pattern 151 is suppressed, and deterioration of the reflective surface is suppressed.
  • the ground layer 13 By covering the ground layer 13 with the intermediate layer 12 and bonding the dielectric substrate 11, the intrusion of moisture and air into the surface of the ground layer 13 is suppressed, and surface deterioration of the ground layer 13 is suppressed. This maintains the capacitance between the ground layer 13 and the conductive pattern 151 at a constant value, and the designed magnitude of phase delay can be maintained.
  • the thickness of the conductive pattern 151 or the thickness of the adhesive layer 153 supporting the conductive pattern 151 is designed to be within an appropriate range.
  • the model 21 for evaluation includes a periodic arrangement of unit cells (also called "supercells") 210.
  • the unit cells 210 are arranged in six rows in the X direction and 36 rows in the Y direction.
  • FIG. 6 is a schematic diagram showing the configuration of the unit cell 210 of the model 21.
  • the unit cell 210 is formed of six metal patches 211, 212, 213, 214, 215, and 216.
  • the width (W) direction and length (L) of the metal patches 211-216 correspond to the width (X) direction and height (Y) direction of the reflective panel 10 in FIG. 1, respectively.
  • the metal patches 211-216 have the same width W and different lengths L, but the central axes of the lengths are aligned (the Y coordinate position of the central axis is constant).
  • the pitch in the X direction is constant.
  • the shape and size of the metal patches 211-216 control the phase of reflection, and a reflected beam is formed in the desired direction by superimposing the reflected waves.
  • the unit cell 210 is designed to reflect electromagnetic waves that are perpendicularly incident (incident angle 0°) in a direction 50° from the normal.
  • Metal patches 211, 212, 213, 214, 215, and 216 that form unit cell 210 correspond to conductive pattern 151 in Figures 3 and 4, and are each supported by adhesive layer 153.
  • the thickness of adhesive layer 153 or the thickness of conductive pattern 151 is changed to evaluate the reflection characteristics.
  • the conductive pattern 151 of model 21 in Figure 5 is used, and a plane wave of 28.0 GHz is incident at an incident angle of 0° using general-purpose three-dimensional electromagnetic field simulation software, and the scattering cross section of the reflected wave is analyzed.
  • the scattering cross section, or radar cross section (RCS) is used as an index of the ability to reflect incident electromagnetic waves.
  • Figure 7 shows the analysis space 101 for the electromagnetic field simulation.
  • the thickness direction of the layer structure of the reflective panel 10 is the Z direction
  • the width direction of the metal patch of the model 21 in Figure 5 is the X direction
  • the length direction is the Y direction
  • the analysis space is expressed as (size in the X direction) x (size in the Y direction) x (size in the Z direction).
  • the size of the analysis space 101 when the frequency of the incident electromagnetic wave is 28.0 GHz is 83.9 mm x 192.6 mm x 3.7 mm.
  • the boundary condition is a design in which electromagnetic wave absorbers 102 are placed around the periphery of the analysis space 101.
  • the layer structure in Figure 4 is used as the layer structure for evaluation.
  • Example 1 Focus on the thickness of the adhesive layer.
  • a polycarbonate film with a thickness of 0.7 mm is used as the dielectric layer 14.
  • a ground layer 13 is set on one side of the polycarbonate film with a thickness of 0.36 mm using an Ag-based multilayer film.
  • a conductive pattern 151 formed of copper foil with a thickness of 0.03 mm is placed on the other side of the polycarbonate film.
  • the conductive pattern 151 is supported by an adhesive layer 153 with a thickness of 550 ⁇ m and the same area occupancy rate as the conductive pattern 151.
  • the adhesive layer 153 is a commercially available general adhesive with a relative dielectric constant of 2.4 and a dielectric loss tangent of 0.05.
  • Each of the ground layer 13 and the conductive pattern 151 is covered with a layer of ethylene vinyl acetate with a thickness of 400 ⁇ m and sandwiched between two polycarbonate sheets with a thickness of 2.0 mm.
  • the polycarbonate sheets are used as the outermost dielectric substrates 11 and 17.
  • the RCS plot of a 28.0 GHz plane wave incident at an angle of incidence of 0° has a gain of -5.0616 dB at 0°, a gain of -2.9028 dB at +50°, and a gain of -14.6348 dB at -50°.
  • a gain higher than -6 dB is obtained in the 0° direction of specular reflection and the designed +50° direction, and the difference in gain in these two directions is within 3 dB.
  • Example 2 is Example 2. The conditions are the same as those of Example 1, except for the thickness of the adhesive layer.
  • a conductive pattern 151 formed of a copper foil with a thickness of 0.03 mm is supported by an adhesive layer 153 with a thickness of 750 ⁇ m and the same area occupancy as the conductive pattern 151.
  • the RCS plot of a 28.0 GHz plane wave incident at an incident angle of 0° has a gain of ⁇ 1.6845 dB at 0°, a gain of ⁇ 5.5111 dB at +50°, and a gain of ⁇ 12.9738 dB at ⁇ 50°.
  • a gain higher than -6 dB is obtained in the 0° direction of specular reflection and the designed +50° direction, and the difference in gain between these two directions is within 4 dB.
  • Example 3 is Example 3. The conditions are the same as those of Example 1, except for the thickness of the adhesive layer.
  • a conductive pattern 151 formed of a copper foil with a thickness of 0.03 mm is supported by an adhesive layer 153 with a thickness of 1000 ⁇ m and the same area occupancy as the conductive pattern 151.
  • the RCS plot of a 28.0 GHz plane wave incident at an incident angle of 0° has a gain of ⁇ 0.1677 dB at 0°, a gain of ⁇ 8.1477 dB at +50°, and a gain of ⁇ 14.1064 dB at ⁇ 50°.
  • a gain higher than -10 dB is obtained in the 0° direction of specular reflection and the designed +50° direction, and the difference in gain between these two directions is within 8 dB.
  • the thickness of the adhesive layer 153 carrying the conductive pattern 151 is 1000 ⁇ m, electromagnetic waves can be reflected in two directions: the direction of specular reflection and the designed direction.
  • Example 4 is Example 4. The conditions are the same as those of Example 1, except for the thickness of the adhesive layer.
  • a conductive pattern 151 formed of a copper foil with a thickness of 0.03 mm is supported by an adhesive layer 153 with a thickness of 250 ⁇ m and the same area occupancy as the conductive pattern 151.
  • the RCS plot of a 28.0 GHz plane wave incident at an incident angle of 0° has a gain of ⁇ 6.6782 dB at 0°, a gain of ⁇ 1.6853 dB at +50°, and a gain of ⁇ 16.9408 dB at ⁇ 50°.
  • a gain higher than -10 dB is obtained in the 0° direction of specular reflection and the designed +50° direction, and the difference in gain between these two directions is within 8 dB.
  • the thickness of the adhesive layer 153 carrying the conductive pattern 151 is 250 ⁇ m, electromagnetic waves can be reflected in two directions: the direction of specular reflection and the designed direction.
  • Example 5 is a fifth embodiment. Focus on the thickness of the conductive pattern 151.
  • a polycarbonate film with a thickness of 0.7 mm is used as the dielectric layer 14.
  • a ground layer 13 is set on one side of the polycarbonate film with a thickness of 0.36 mm using an Ag-based multilayer film.
  • a conductive pattern 151 formed of a copper foil with a thickness of 0.001 mm (1.0 ⁇ m) is placed on the other side of the polycarbonate film.
  • the conductive pattern 151 is supported by an adhesive layer 153 with a thickness of 1000 ⁇ m and the same area occupancy rate as the conductive pattern 151.
  • Each of the ground layer 13 and the conductive pattern 151 is covered with a layer of ethylene vinyl acetate with a thickness of 400 ⁇ m and sandwiched between two polycarbonate sheets with a thickness of 2.0 mm.
  • the RCS plot of a 28.0 GHz plane wave incident at an angle of incidence of 0° has a gain of ⁇ 9.0667 dB at 0°, a gain of ⁇ 0.9954 dB at +50°, and a gain of ⁇ 17.8861 dB at ⁇ 50°.
  • a gain higher than -10 dB is obtained in the 0° direction of specular reflection and the designed +50° direction, and the difference in gain between these two directions is approximately 8 dB.
  • the thickness of the conductive pattern 151 is 0.001 mm (1.0 ⁇ m)
  • electromagnetic waves can be reflected in two directions: the direction of specular reflection and the designed direction.
  • Example 6 is Example 6. The conditions are the same as those of Example 5, except for the thickness of the conductive pattern 151.
  • a ground layer 13 is set on one side of a 0.7 mm thick polycarbonate film as the dielectric layer 14, using an Ag-based multilayer film having a thickness of 0.36 mm.
  • a conductive pattern 151 made of copper foil having a thickness of 0.005 mm (5.0 ⁇ m) is disposed on the other side of the polycarbonate film.
  • the RCS plot of a 28.0 GHz plane wave incident at an incident angle of 0° has a gain of ⁇ 2.8762 dB at 0°, a gain of ⁇ 3.2452 dB at +50°, and a gain of ⁇ 16.7852 dB at ⁇ 50°.
  • a gain higher than -10 dB is obtained in the 0° direction of specular reflection and the designed +50° direction, and the difference in gain between these two directions is small at approximately 0.37 dB, so that the light is reflected in two directions with approximately the same strength.
  • the thickness of the conductive pattern 151 is 0.005 mm (5.0 ⁇ m)
  • electromagnetic waves can be effectively reflected in two directions, the direction of specular reflection and the designed direction.
  • Example 7 is Comparative Example 1.
  • the thickness of the adhesive layer 153 carrying the conductive pattern 151 having a thickness of 0.03 mm is set to 50 ⁇ m.
  • the other configurations are the same as those of Example 1.
  • the gain at 0° is ⁇ 16.3973 dB
  • the gain at +50° is ⁇ 1.5362 dB
  • the gain at ⁇ 50° is ⁇ 17.5759 dB.
  • the thickness of the adhesive layer 153 carrying the conductive pattern 151 is reduced to 50 ⁇ m, the perpendicularly incident electromagnetic wave will be reflected only in the designed 50° direction, and no gain exceeding -10 dB will be obtained in the 0° direction of specular reflection. It is desirable to make the adhesive layer 153 thicker than 50 ⁇ m.
  • Example 8 is Comparative Example 2.
  • the thickness of adhesive layer 153 carrying conductive pattern 151 with a thickness of 0.03 mm is set to 1500 ⁇ m.
  • the other configurations are the same as those of Example 1.
  • the gain at 0° is ⁇ 0.9954 dB
  • the gain at +50° is ⁇ 14.0880 dB
  • the gain at ⁇ 50° is ⁇ 17.8861 dB.
  • the thickness of the adhesive layer 153 supporting the conductive pattern 151 is increased to 1500 ⁇ m, the perpendicularly incident electromagnetic waves will be reflected only in the 0° direction, which is the direction of specular reflection, and no gain exceeding -10 dB will be obtained in the designed direction. It is desirable to keep the thickness of the adhesive layer 153 less than 1500 ⁇ m.
  • Example 9 is Comparative Example 3.
  • the conductive pattern 151 formed of a copper foil having a thickness of 0.01 mm (10.0 ⁇ m) is supported by an adhesive layer 153 having a thickness of 1000 ⁇ m and the same area occupancy as the conductive pattern 151.
  • the other conditions are the same as those of Example 1.
  • the gain at 0° is ⁇ 0.8865 dB
  • the gain at +50° is ⁇ 15.1212 dB
  • the gain at ⁇ 50° is ⁇ 14.134 dB.
  • the thickness of the conductive pattern 151 is 0.01 mm, electromagnetic waves that are perpendicularly incident will be reflected only in the direction of 0°, which is the direction of specular reflection, and no gain exceeding -10 dB will be obtained in the designed direction. It is desirable for the thickness of the conductive pattern 151 to be less than 0.01 mm (10.0 ⁇ m).
  • Example 10 is Comparative Example 4.
  • the thickness of the conductive pattern 151 is reduced.
  • the conductive pattern 151 formed of a copper foil having a thickness of 0.0001 mm (0.1 ⁇ m) is supported by an adhesive layer 153 having a thickness of 1000 ⁇ m and the same area occupancy as the conductive pattern 151.
  • the other conditions are the same as those of Example 1.
  • the gain at 0° is ⁇ 0.8865 dB
  • the gain at +50° is ⁇ 15.1212 dB
  • the gain at ⁇ 50° is ⁇ 14.134 dB.
  • the thickness of the conductive pattern 151 is reduced to 0.0001 mm, the perpendicularly incident electromagnetic wave will be reflected only in the 0° direction, which is the direction of specular reflection, and no gain exceeding -10 dB will be obtained in the designed direction. It is desirable for the thickness of the conductive pattern 151 to be thicker than 0.0001 mm (0.1 ⁇ m).
  • the thickness of the adhesive layer 153 that supports the conductive pattern 151 at the same occupancy rate as the conductive pattern 151 is preferably thicker than 50 ⁇ m and less than 1500 ⁇ m, more preferably 250 ⁇ m to 1000 ⁇ m, and even more preferably 250 ⁇ m to 750 ⁇ m.
  • the thickness of the adhesive layer 153 is preferably thicker than 0.1 ⁇ m and less than 10.0 ⁇ m. By setting the thickness of the conductive pattern 151 within this range, the incident electromagnetic wave can be reflected in two directions, the direction of specular reflection and the designed direction, while maintaining a certain degree of reflection intensity.
  • the reflection panel and the electromagnetic wave reflection device of the embodiment are not limited to the above-mentioned configuration examples.
  • the results of Examples 1 to 9 are applicable to electromagnetic waves of 28 GHz ⁇ 5 GHz.
  • the in-plane size of the reflection panel 10 can be appropriately selected within a range of 10.0 cm x 10.0 cm to 3.0 m x 3.0 m. It has been confirmed by calculation that the results close to those of Examples 1 to 6 can be obtained if the adhesive layer 153 that adheres the conductive pattern 151 to the dielectric layer 14 is at least partially separated or removed without covering the entire surface of the dielectric layer 14.
  • the reflection panel 10 reflects the incident electromagnetic wave in the direction of specular reflection and the designed direction while maintaining a certain degree of reflection intensity, so that even a small reflection panel can effectively improve the radio wave environment. As shown in FIG. 8, multiple reflection panels 10 may be connected and used.
  • ⁇ Electromagnetic wave reflective fence> 8 is a schematic diagram of an electromagnetic wave reflecting fence 100 in which a plurality of reflecting panels 10-1, 10-2, and 10-3 are connected by a frame 50.
  • the reflecting panels 10-1, 10-2, and 10-3 and the frame 50 that holds the side edges of these reflecting panels form electromagnetic wave reflecting devices 60-1, 60-2, and 60-3, respectively.
  • Each of the reflecting panels 10-1, 10-2, and 10-3 reflects an incident electromagnetic wave in a specular reflection direction and at least one non-specular reflection direction while maintaining a certain degree of reflection intensity.
  • the reflective panels 10-1, 10-2, and 10-3 may be electrically connected to each other by a frame 50 in order to maintain the continuity of the reflected potential.
  • the adjacent reflective panels 10 can be mechanically and electrically connected.
  • the electromagnetic wave reflective fence 100 may be made to stand on its own using legs 56, or may be installed on a wall or ceiling without legs 56. In this case, incident electromagnetic waves can be reflected in two or more directions while maintaining a certain level of reflection strength.
  • a reflective panel that reflects radio waves in a predetermined band selected from a frequency band of 1 GHz or more and 300 GHz or less, A dielectric layer; a periodic conductive pattern provided on one surface of the dielectric layer; a ground layer provided on the other surface of the dielectric layer; an adhesive layer that bonds the conductive pattern to the one surface; The adhesive layer that adheres the conductive pattern is provided with the same area occupancy as the conductive pattern, and the thickness of the conductive pattern is greater than 0.1 ⁇ m and less than 10.0 ⁇ m.
  • Reflective panel (Item 2) an intermediate layer covering the adhesive layer and the conductive pattern; Item 2.
  • the reflective panel according to item 1 further comprising: (Item 3) a dielectric substrate bonded onto the conductive pattern by the intermediate layer; 3.
  • a reflective panel that reflects radio waves in a predetermined band selected from a frequency band of 1 GHz or more and 300 GHz or less, A dielectric layer; a periodic conductive pattern provided on one surface of the dielectric layer; a ground layer provided on the other surface of the dielectric layer; an adhesive layer that bonds the conductive pattern to the one surface of the dielectric layer; The adhesive layer that adheres the conductive pattern is provided with the same area occupancy as the conductive pattern, and the thickness of the adhesive layer is greater than 50 ⁇ m and less than 1500 ⁇ m.
  • Reflective panel (Item 6) an intermediate layer covering the adhesive layer and the conductive pattern; Item 6.
  • the reflective panel according to item 5 further comprising: (Item 7) a dielectric substrate bonded onto the conductive pattern by the intermediate layer; Item 7.
  • the conductive pattern forms a reflective surface of the reflective panel, and reflects incident electromagnetic waves in a first direction of specular reflection and in a second direction of non-specular reflection, and the difference between the reflection intensity in the first direction and the reflection intensity in the second direction is within 8 dB.
  • Item 8 The reflective panel according to any one of items 5 to 7.
  • Item 9 Item 9.
  • An electromagnetic wave reflecting device having the same. Item 10.
  • An electromagnetic wave reflective fence comprising a plurality of reflective panels connected together according to item 9.
  • Electromagnetic wave reflecting device 100 Electromagnetic wave reflecting fence 210 Unit cell

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

Provided are a reflection panel that reflects incident electromagnetic waves in multiple directions with a certain degree of reflection intensity, and an electromagnetic wave reflection device using the same. A reflection panel for reflecting radio waves of a predetermined band selected from a frequency band of 1-300 GHz inclusive comprises: a dielectric layer; a periodic conductive pattern that is provided on one surface of the dielectric layer; a ground layer that is provided on the other surface of the dielectric layer; and an adhesion layer that joins the conductive pattern to the one surface. The thickness of the conductive pattern is 0.1-10.0 μm exclusive. Alternatively, the thickness of the adhesion layer is 50-1500 μm exclusive.

Description

反射パネル、電磁波反射装置、及び電磁波反射フェンスReflective panel, electromagnetic wave reflecting device, and electromagnetic wave reflecting fence
 本発明は、反射パネル、電磁波反射装置、及び電磁波反射フェンスに関する。 The present invention relates to a reflective panel, an electromagnetic wave reflective device, and an electromagnetic wave reflective fence.
 大量のデータを扱うIоT(Internet of Things)の通信ネットワークに、第5世代移動通信システム(以下、「5G」と呼ぶ)のような高速大容量、低遅延、かつ多数同時接続が可能な移動体通信技術を導入することが期待されている。移動体通信技術が本来有するモビリティと柔軟性に加え、5Gの低遅延特性がIoTに好適であるといわれている。一方、5Gの電波は直進性が高いことから、必要な領域に電波を届けるために反射パネル等のリフレクタを設置して、伝搬方法を工夫する必要がある。 It is expected that mobile communication technologies such as the fifth generation mobile communication system (hereinafter referred to as "5G"), which are high speed, large capacity, low latency and capable of multiple simultaneous connections, will be introduced into the communication networks of the IoT (Internet of Things), which handles large volumes of data. In addition to the inherent mobility and flexibility of mobile communication technologies, the low latency characteristics of 5G are said to be ideal for the IoT. However, because 5G radio waves tend to travel in a very straight line, it is necessary to devise a propagation method by installing reflectors such as reflective panels in order to deliver the radio waves to the required areas.
 近年、「メタサーフェス」と呼ばれる人工的な表面を持つ反射面が開発されている。メタサーフェスは、波長よりも細かい周期的な構造物またはパターンで形成され、入射角と異なる反射角で電磁波を反射するように設計されている(例えば、非特許文献1参照)。メタサーフェスは、平面的な配置構成を維持しながら、入射電磁波を設計された方向に反射できるため、鏡面反射の反射パネルを多数設置する空間的な余裕がない環境でも、リフレクタとして有効に機能する。 In recent years, reflective surfaces with artificial surfaces called "metasurfaces" have been developed. Metasurfaces are formed with periodic structures or patterns that are finer than the wavelength, and are designed to reflect electromagnetic waves at a reflection angle different from the angle of incidence (see, for example, Non-Patent Document 1). Metasurfaces can reflect incident electromagnetic waves in a designed direction while maintaining a planar arrangement, so they function effectively as reflectors even in environments where there is not enough space to install a large number of mirror-reflecting reflective panels.
 メタサーフェスは特定の方向に電磁波を反射するように設計されており、入射した電磁波を一定程度の反射強度で複数の方向に反射することは困難である。反射パネルが設置される環境によっては、複数の方向への反射が求められる場合がある。本発明は、入射電磁波を一定程度の反射強度で複数の方向に反射する反射パネルと、これを用いた電磁波反射装置を提供することを目的とする。 Metasurfaces are designed to reflect electromagnetic waves in a specific direction, and it is difficult to reflect incident electromagnetic waves in multiple directions with a certain degree of reflection intensity. Depending on the environment in which the reflective panel is installed, reflection in multiple directions may be required. The present invention aims to provide a reflective panel that reflects incident electromagnetic waves in multiple directions with a certain degree of reflection intensity, and an electromagnetic wave reflection device using the same.
 ひとつの側面で、1GHz以上、300GHz以下の周波数帯から選択される所定の帯域の電波を反射する反射パネルは、
 誘電体層と、
 前記誘電体層の一方の表面に設けられる周期的な導電パターンと、
 前記誘電体層の他方の表面に設けられるグラウンド層と、
 前記導電パターンを前記一方の表面に接合する接着層と、
を有し、前記導電パターンを接着する前記接着層は前記導電パターンと同じ面積占有率で設けられ、前記導電パターンの厚さは0.1μmより厚く、10.0μm未満である。
In one aspect, a reflective panel that reflects radio waves in a predetermined band selected from a frequency band of 1 GHz or more and 300 GHz or less,
A dielectric layer;
a periodic conductive pattern provided on one surface of the dielectric layer;
a ground layer provided on the other surface of the dielectric layer;
an adhesive layer that bonds the conductive pattern to the one surface;
The adhesive layer that adheres the conductive pattern is provided with the same area occupancy as the conductive pattern, and the conductive pattern has a thickness greater than 0.1 μm and less than 10.0 μm.
 別の側面において、1GHz以上、300GHz以下の周波数帯から選択される所定の帯域の電波を反射する反射パネルは、
 誘電体層と、
 前記誘電体層の一方の表面に設けられる周期的な導電パターンと、
 前記誘電体層の他方の表面に設けられるグラウンド層と、
 前記導電パターンを前記誘電体層の前記一方の表面に接合する接着層と、
を有し、前記導電パターンを接着する前記接着層は前記導電パターンと同じ面積占有率で設けられ、前記接着層の厚さは50μmより厚く、1500μm未満である。
In another aspect, a reflective panel that reflects radio waves in a predetermined band selected from a frequency band of 1 GHz or more and 300 GHz or less,
A dielectric layer;
a periodic conductive pattern provided on one surface of the dielectric layer;
a ground layer provided on the other surface of the dielectric layer;
an adhesive layer that bonds the conductive pattern to the one surface of the dielectric layer;
The adhesive layer for adhering the conductive pattern is provided with the same area occupancy as the conductive pattern, and the thickness of the adhesive layer is greater than 50 μm and less than 1500 μm.
 入射電磁波を一定程度の反射強度で複数の方向に反射する反射パネルと、これを用いた電磁波反射装置が実現される。 A reflective panel that reflects incident electromagnetic waves in multiple directions with a certain degree of reflection strength and an electromagnetic wave reflection device using this have been realized.
実施形態の反射パネルを用いた電磁波反射装置の模式図である。1 is a schematic diagram of an electromagnetic wave reflection device using a reflection panel of an embodiment. 実施形態の反射パネルでの反射の態様を示す模式図である。5A to 5C are schematic diagrams illustrating a state of reflection on a reflective panel according to an embodiment of the present invention. 反射パネルの層構成の第1の例を示す図である。FIG. 2 is a diagram showing a first example of a layer structure of a reflective panel. 反射パネルの層構成の第2の例を示す図である。FIG. 13 is a diagram showing a second example of a layer structure of a reflective panel. 反射特性の評価に用いる導電パターンのモデルを示す図である。FIG. 13 is a diagram showing a model of a conductive pattern used for evaluating reflection characteristics. 図5のモデルの単位セルの構成を示す模式図である。FIG. 6 is a schematic diagram showing the configuration of a unit cell of the model in FIG. 5 . 解析空間を示す図である。FIG. 1 is a diagram showing an analysis space. 複数の電磁波反射装置を連結した電磁波反射フェンスの模式図である。1 is a schematic diagram of an electromagnetic wave reflecting fence formed by connecting multiple electromagnetic wave reflecting devices.
 実施形態では、反射パネルを用いて電波環境を改善するために、入射電磁波を一定程度の反射強度で2つ以上の方向に反射する。より具体的には、正規反射、すなわち鏡面反射の第1方向と非鏡面反射の第2方向に、同時に反射する反射パネルを提供する。非鏡面反射は入射角と異なる角度での反射をいい、人工的に反射特性が制御されたメタサーフェスによる反射を含む。 In an embodiment, a reflective panel is used to improve the radio wave environment by reflecting incident electromagnetic waves in two or more directions with a certain degree of reflection intensity. More specifically, a reflective panel is provided that simultaneously reflects regular reflection, i.e., in a first direction for specular reflection and in a second direction for non-specular reflection. Non-specular reflection refers to reflection at an angle different from the angle of incidence, and includes reflection by a metasurface whose reflection characteristics are artificially controlled.
 入射電磁波を、一定程度の反射強度で、鏡面反射の方向と非鏡面反射の方向に反射するために、反射面を構成する導電層の導電パターンの厚さと、導電パターンを担持する接着層の厚さを制御する。具体的には、導電パターンを、導電パターンと同程度の形状または面内占有率で配置される接着層で誘電体層に接着する構成において、接着層の厚さを50μmより厚く、1500μm未満に設定する。あるいは、導電パターンの厚さ0.1μmより厚く、10.0μm未満にする。接着層と導電パターンの形状または面内占有率が「同じ」とは、厳密に細部まで一致していること意味するのではなく、許容される誤差、プロセスばらつきなどを含めて、接着層と導電パターンの形状または面内占有率が±5%以内の範囲で一致することをいう。 In order to reflect incident electromagnetic waves in the direction of specular reflection and the direction of non-specular reflection with a certain degree of reflection intensity, the thickness of the conductive pattern of the conductive layer constituting the reflective surface and the thickness of the adhesive layer supporting the conductive pattern are controlled. Specifically, in a configuration in which the conductive pattern is adhered to the dielectric layer with an adhesive layer arranged with a shape or in-plane occupancy rate similar to that of the conductive pattern, the thickness of the adhesive layer is set to be thicker than 50 μm and less than 1500 μm. Alternatively, the thickness of the conductive pattern is set to be thicker than 0.1 μm and less than 10.0 μm. The shape or in-plane occupancy rate of the adhesive layer and the conductive pattern being "same" does not mean that they match in strict detail, but rather that the shape or in-plane occupancy rate of the adhesive layer and the conductive pattern match within a range of ±5%, including allowable errors, process variations, etc.
 以下で、図面を参照して反射パネルの具体的な構成を説明する。以下に示す形態は本発明の技術思想を具現化するための一例であって、本発明を限定するものではない。各図面に示される各部材の大きさ、位置関係等は、発明の理解を容易にするために誇張して描かれている場合がある。以下の説明において、同一の構成要素または機能に同一の名称または符号を付けて重複する説明を省略する場合がある。 Below, the specific configuration of the reflective panel will be described with reference to the drawings. The form shown below is an example for embodying the technical idea of the present invention, and is not intended to limit the present invention. The size, positional relationship, etc. of each component shown in each drawing may be exaggerated to make the invention easier to understand. In the following description, the same components or functions may be given the same names or symbols, and duplicate descriptions may be omitted.
 <反射パネルと電磁波反射装置の構成>
 図1は、反射パネル10を用いた電磁波反射装置60の模式図である。電磁波反射装置60は、反射パネル10と、反射パネルを保持するフレーム50を含む。反射パネル10の幅または横方向をX方向、高さまたは縦方向をY方向、厚さ方向をZ方向とする。電磁波反射装置60に脚部56を設けて、電磁波反射装置60を自立させてもよい。電磁波反射装置60は、反射パネル10の高さ(Y)方向の上端を保持するトップフレーム57と、下端を保持するボトムフレーム58を有していてもよい。
<Configuration of the reflection panel and electromagnetic wave reflection device>
1 is a schematic diagram of an electromagnetic wave reflecting device 60 using a reflecting panel 10. The electromagnetic wave reflecting device 60 includes the reflecting panel 10 and a frame 50 that holds the reflecting panel. The width or horizontal direction of the reflecting panel 10 is the X direction, the height or vertical direction is the Y direction, and the thickness direction is the Z direction. The electromagnetic wave reflecting device 60 may be provided with legs 56 to make the electromagnetic wave reflecting device 60 self-supporting. The electromagnetic wave reflecting device 60 may have a top frame 57 that holds the upper end of the reflecting panel 10 in the height (Y) direction, and a bottom frame 58 that holds the lower end.
 反射パネル10は、一枚のパネルで、1GHz以上300GHz以下、たとえば、1GHz以上170GHz以下の周波数から選択される所定の周波数帯の電磁波を、一定程度の反射強度で、鏡面反射の方向と非鏡面反射の方向へ反射する。後述するように、反射パネル10では、誘電体層の上に所定の導電パターンが接着層で担持されており、導電パターンによって反射面が形成される。導電パターンは、透明導電材料や良導体の金属材料で、周期的なパターン、メッシュパターン、幾何学パターンなどに形成されている。導電パターンの厚さは0.1μmよりも厚く、10.0μm未満とする。 The reflective panel 10 is a single panel that reflects electromagnetic waves in a predetermined frequency band selected from frequencies between 1 GHz and 300 GHz, for example, between 1 GHz and 170 GHz, in the direction of specular reflection and the direction of non-specular reflection with a certain degree of reflection intensity. As described below, in the reflective panel 10, a predetermined conductive pattern is supported on a dielectric layer by an adhesive layer, and a reflective surface is formed by the conductive pattern. The conductive pattern is formed of a transparent conductive material or a metal material with good conductivity, into a periodic pattern, mesh pattern, geometric pattern, or the like. The thickness of the conductive pattern is thicker than 0.1 μm and less than 10.0 μm.
 フレーム50は、反射パネルの幅(X)方向の両端を保持する。フレーム50は、トップフレーム57とボトムフレーム58との位置関係から、サイドフレームと呼ばれてもよい。フレーム50は、電磁波反射装置60が組み立てられるときに反射パネル10を安定的に保持するだけではなく、反射パネル10の搬送の安全性と機械的強度の補強に寄与する。また、複数の反射パネル10を連結して用いるときに、フレーム50は隣接する反射パネル10間の反射電位を連続させる機能と構成を有する。 The frame 50 holds both ends of the reflective panel in the width (X) direction. The frame 50 may be called a side frame due to the positional relationship between the top frame 57 and the bottom frame 58. The frame 50 not only stably holds the reflective panel 10 when the electromagnetic wave reflection device 60 is assembled, but also contributes to the safety of the transportation of the reflective panel 10 and reinforcement of its mechanical strength. In addition, when multiple reflective panels 10 are connected for use, the frame 50 has the function and configuration of making the reflective potential between adjacent reflective panels 10 continuous.
 図2は、反射パネル10の反射の態様を模式的に示す。反射パネル10の反射面105に、反射面105と垂直な方向から電磁波EMiが入射する場合を考える。垂直入射の入射角は0度である。反射パネル10は、0°の方向への鏡面反射成分Rspに加えて、0°とは異なる反射角度で+X側に反射する非鏡面反射成分Rnspと、-X側に反射される非鏡面反射成分-Rnspの少なくとも一方を生成する。鏡面反射成分Rspと、非鏡面反射成分Rnspまたは-Rnspは、ともに-10dBよりも高い反射ゲインをもち、そのゲインの差は8dB以内、好ましくは5dB以内である。 Figure 2 shows a schematic diagram of the reflection mode of the reflective panel 10. Consider the case where electromagnetic waves EMi are incident on the reflective surface 105 of the reflective panel 10 from a direction perpendicular to the reflective surface 105. The angle of incidence of perpendicular incidence is 0 degrees. In addition to the specular reflection component Rsp in the 0° direction, the reflective panel 10 generates at least one of a non-specular reflection component Rnsp that is reflected to the +X side at a reflection angle different from 0°, and a non-specular reflection component -Rnsp that is reflected to the -X side. The specular reflection component Rsp and the non-specular reflection component Rnsp or -Rnsp both have a reflection gain higher than -10 dB, and the difference in gain is within 8 dB, preferably within 5 dB.
 一定程度の反射強度を維持して複数方向への反射を実現するために、反射面105を形成する導電パターンと、導電パターンの担持する接着層の厚さを制御する。 In order to maintain a certain level of reflection intensity and achieve reflection in multiple directions, the thickness of the conductive pattern that forms the reflective surface 105 and the adhesive layer that the conductive pattern supports are controlled.
 <反射パネルの層構成>
 図3は、反射パネル10Aの層構成を示す。この層構成は、反射パネル10Aの厚さ(Z)方向の層構成である。反射パネル10Aは、誘電体層14と、この誘電体層14の一方の表面141に設けられた導電パターン151と、誘電体層14の他方の表面142に設けられたグラウンド層13と、導電パターン151を誘電体層14に接合する接着層153とを有する。接着層153は、導電パターン151と同じ面積占有率で誘電体層14の表面141に設けられている。
<Layer structure of reflective panel>
3 shows the layer structure of the reflective panel 10A. This layer structure is the layer structure in the thickness (Z) direction of the reflective panel 10A. The reflective panel 10A has a dielectric layer 14, a conductive pattern 151 provided on one surface 141 of the dielectric layer 14, a ground layer 13 provided on the other surface 142 of the dielectric layer 14, and an adhesive layer 153 that bonds the conductive pattern 151 to the dielectric layer 14. The adhesive layer 153 is provided on the surface 141 of the dielectric layer 14 with the same area occupancy as the conductive pattern 151.
 誘電体層14は、ポリカーボネート、シクロオレフィンポリマー(COP)、ポリエチレンテレフタレート(PET)、フッ素樹脂など、絶縁性のポリマーフィルムであり、厚さは0.3mmから1.0mm程度である。一般的に、誘電体層14の厚さと比誘電率、及び誘電正接は、反射パネル10の反射特性に大きく影響する。実施形態では、接着層153と導電パターン151の厚さを制御して複数方向への反射を実現するので、誘電体層14は目標の反射特性の発現を阻害しない比誘電率と誘電正接を持つ材料であればよい。一例として、比誘電率が3.0以下、誘電正接が0.1以下の絶縁性ポリマーフィルムを用いる。 The dielectric layer 14 is an insulating polymer film such as polycarbonate, cycloolefin polymer (COP), polyethylene terephthalate (PET), or fluororesin, and has a thickness of about 0.3 mm to 1.0 mm. In general, the thickness, dielectric constant, and dielectric dissipation factor of the dielectric layer 14 greatly affect the reflective characteristics of the reflective panel 10. In the embodiment, the thickness of the adhesive layer 153 and the conductive pattern 151 are controlled to achieve reflection in multiple directions, so the dielectric layer 14 may be made of a material that has a dielectric constant and dielectric dissipation factor that do not inhibit the expression of the target reflective characteristics. As an example, an insulating polymer film with a dielectric constant of 3.0 or less and a dielectric dissipation factor of 0.1 or less is used.
 導電パターン151は、Cu、Ni、Ag等の良導体で形成される周期的なパターンであり、その厚さは、0.1μmより厚く、10.0μm未満である。導電パターン151は、反射パネル10の反射面105(図2参照)を形成する。 The conductive pattern 151 is a periodic pattern formed of a good conductor such as Cu, Ni, or Ag, and has a thickness greater than 0.1 μm and less than 10.0 μm. The conductive pattern 151 forms the reflective surface 105 (see FIG. 2) of the reflective panel 10.
 グラウンド層13は、導電パターン151と同じ材料で形成されてもよいし、異なる導電材料で形成されてもよい。グラウンド層13とそれぞれの導電パターン151の間にキャパシタンスが形成され、導電パターン151ごとに位相遅れの大きさが制御される。 The ground layer 13 may be formed of the same material as the conductive patterns 151, or may be formed of a different conductive material. A capacitance is formed between the ground layer 13 and each conductive pattern 151, and the magnitude of the phase delay is controlled for each conductive pattern 151.
 接着層153は、導電パターン151を誘電体層14に接合するとともに、反射パネル10の反射特性を制御できる厚さに形成されている。具体的には、接着層153の厚さは50μmよりも厚く、1500μm未満である。接着層153として、酢酸ビニル樹脂、アクリル樹脂、セルロース樹脂、アニリン樹脂、エチレン樹脂、シリコン樹脂、その他の樹脂が用いられる。 The adhesive layer 153 bonds the conductive pattern 151 to the dielectric layer 14 and is formed to a thickness that allows the reflective characteristics of the reflective panel 10 to be controlled. Specifically, the thickness of the adhesive layer 153 is greater than 50 μm and less than 1500 μm. The adhesive layer 153 may be made of a resin such as vinyl acetate resin, acrylic resin, cellulose resin, aniline resin, ethylene resin, silicone resin, or other resin.
 図4は、反射パネル10Bの層構成を示す。反射パネル10Bは、図3の構成に加え、導電パターン151及び接着層153を覆う中間層16と、中間層16によって導電パターン151の側に接合される誘電体基板17とを有する。反射パネル10Bはさらに、グラウンド層13を覆う中間層12と、中間層12によってグラウンド層13側に接合される誘電体基板11を有していてもよい。 FIG. 4 shows the layer structure of the reflective panel 10B. In addition to the structure of FIG. 3, the reflective panel 10B has an intermediate layer 16 that covers the conductive pattern 151 and the adhesive layer 153, and a dielectric substrate 17 that is joined to the conductive pattern 151 side by the intermediate layer 16. The reflective panel 10B may further have an intermediate layer 12 that covers the ground layer 13, and a dielectric substrate 11 that is joined to the ground layer 13 side by the intermediate layer 12.
 中間層16は導電パターン151の表面を保護するとともに、誘電体基板17を接着保持する。中間層16は、耐久性と耐湿性を有することが望ましく、たとえばエチレン・酢酸ビニル(EVA:ethylene-vinyl acetate)共重合体やシクロオレフィンポリマー(COP)を用いることができる。中間層16の厚さは10μmから400μmである。 The intermediate layer 16 protects the surface of the conductive pattern 151 and adheres and holds the dielectric substrate 17. It is desirable for the intermediate layer 16 to be durable and moisture resistant, and for example, ethylene-vinyl acetate (EVA) copolymer or cycloolefin polymer (COP) can be used. The thickness of the intermediate layer 16 is 10 μm to 400 μm.
 誘電体基板17は、反射パネル10Bの最外層として、耐衝撃性、耐久性、透明度に優れた材料で形成されていることが望ましい。反射パネル10Bの最外層に保護と耐久性向上のために設けられて誘電体層14の厚み以上の厚さを有する誘電体シートを「誘電体基板」と呼んで、導電パターン151を担持する誘電体層14と区別する。誘電体基板17としてポリカーボネート、アクリル樹脂、PETなどを用いることができる。誘電体基板17の厚さは、たとえば、1.0mm以上10.0mm以下である。 The dielectric substrate 17 is preferably formed as the outermost layer of the reflective panel 10B from a material with excellent impact resistance, durability, and transparency. A dielectric sheet that is provided as the outermost layer of the reflective panel 10B for protection and durability and has a thickness equal to or greater than that of the dielectric layer 14 is called a "dielectric substrate" to distinguish it from the dielectric layer 14 that carries the conductive pattern 151. Polycarbonate, acrylic resin, PET, etc. can be used as the dielectric substrate 17. The thickness of the dielectric substrate 17 is, for example, 1.0 mm or more and 10.0 mm or less.
 中間層12は、グラウンド層13の表面を保護するとともに、誘電体基板11を接着保持する。中間層12は、耐久性と耐湿性を有することが望ましく、たとえばエチレン・酢酸ビニル(EVA:ethylene-vinyl acetate)共重合体やシクロオレフィンポリマー(COP)を用いることができる。中間層12の厚さは10μmから400μmである。 The intermediate layer 12 protects the surface of the ground layer 13 and adheres and holds the dielectric substrate 11. It is desirable for the intermediate layer 12 to be durable and moisture resistant, and for example, ethylene-vinyl acetate (EVA) copolymer or cycloolefin polymer (COP) can be used. The thickness of the intermediate layer 12 is 10 μm to 400 μm.
 誘電体基板11は、反射パネル10Bの最外層として、耐衝撃性、耐久性、透明度に優れた材料で形成されていることが望ましい。誘電体基板11としてポリカーボネート、アクリル樹脂、PETなどを用いることができる。誘電体基板11の厚さは、たとえば、1.0mm以上10.0mm以下である。 The dielectric substrate 11 is preferably formed as the outermost layer of the reflective panel 10B from a material that is excellent in impact resistance, durability, and transparency. Polycarbonate, acrylic resin, PET, etc. can be used as the dielectric substrate 11. The thickness of the dielectric substrate 11 is, for example, 1.0 mm or more and 10.0 mm or less.
 導電パターン151を中間層16で覆って誘電体基板17を接合することで、導電パターン151の表面への水分や空気の侵入が抑制され、反射面の劣化が抑制される。グラウンド層13を中間層12で覆って誘電体基板11を接合することで、グラウンド層13の表面への水分や空気の侵入が抑制され、グラウンド層13の表面劣化が抑制される。これにより、グラウンド層13と導電パターン151の間のキャパシタンスが一定の値に維持され、設計された位相遅れの大きさを維持することができる。 By covering the conductive pattern 151 with the intermediate layer 16 and bonding the dielectric substrate 17, the intrusion of moisture and air into the surface of the conductive pattern 151 is suppressed, and deterioration of the reflective surface is suppressed. By covering the ground layer 13 with the intermediate layer 12 and bonding the dielectric substrate 11, the intrusion of moisture and air into the surface of the ground layer 13 is suppressed, and surface deterioration of the ground layer 13 is suppressed. This maintains the capacitance between the ground layer 13 and the conductive pattern 151 at a constant value, and the designed magnitude of phase delay can be maintained.
 反射パネル10で、一定程度の反射強度を維持して、2以上の方向に電磁波を反射するために、導電パターン151の厚さ、または導電パターン151を担持する接着層153の厚さを適切な範囲に設計する。 In order for the reflective panel 10 to maintain a certain level of reflection intensity and reflect electromagnetic waves in two or more directions, the thickness of the conductive pattern 151 or the thickness of the adhesive layer 153 supporting the conductive pattern 151 is designed to be within an appropriate range.
 <接着層と導電パターンの設計と評価>
 図5は、反射パネル10の評価に用いる導電パターン151のモデル21を示す。評価用のモデル21は、単位セル(「スーパーセル」とも呼ばれる)210の周期的な配列を含む。単位セル210は、X方向に6列、Y方向に36列配置される。
<Design and evaluation of adhesive layers and conductive patterns>
5 shows a model 21 of the conductive pattern 151 used for evaluating the reflective panel 10. The model 21 for evaluation includes a periodic arrangement of unit cells (also called "supercells") 210. The unit cells 210 are arranged in six rows in the X direction and 36 rows in the Y direction.
 図6は、モデル21の単位セル210の構成を示す模式図である。単位セル210は、6個の金属パッチ211、212、213、214、215、及び216で形成される。金属パッチ211-216の幅(W)方向と長さ(L)は、図1の反射パネル10の幅(X)方向と高さ(Y)方向にそれぞれ対応する。金属パッチ211-216は、幅Wが等しく、長さLはそれぞれ異なるが長さの中心軸が揃っている(中心軸のY座標位置が一定)。X方向のピッチは一定である。金属パッチ211-216の形状とサイズで反射の位相を制御し、反射波の重ね合わせにより所望の方向に反射ビームを形成する。この例で、単位セル210は、垂直入射(入射角0°)した電磁波を、法線から50°の方向に反射するように設計されている。 FIG. 6 is a schematic diagram showing the configuration of the unit cell 210 of the model 21. The unit cell 210 is formed of six metal patches 211, 212, 213, 214, 215, and 216. The width (W) direction and length (L) of the metal patches 211-216 correspond to the width (X) direction and height (Y) direction of the reflective panel 10 in FIG. 1, respectively. The metal patches 211-216 have the same width W and different lengths L, but the central axes of the lengths are aligned (the Y coordinate position of the central axis is constant). The pitch in the X direction is constant. The shape and size of the metal patches 211-216 control the phase of reflection, and a reflected beam is formed in the desired direction by superimposing the reflected waves. In this example, the unit cell 210 is designed to reflect electromagnetic waves that are perpendicularly incident (incident angle 0°) in a direction 50° from the normal.
 単位セル210を形成する金属パッチ211、212、213、214、215、及び216は、図3及び図4の導電パターン151に対応し、それぞれが接着層153で担持されている。接着層153の厚さ、または導電パターン151の厚さを変えて、反射特性を評価する。 Metal patches 211, 212, 213, 214, 215, and 216 that form unit cell 210 correspond to conductive pattern 151 in Figures 3 and 4, and are each supported by adhesive layer 153. The thickness of adhesive layer 153 or the thickness of conductive pattern 151 is changed to evaluate the reflection characteristics.
 評価では、図5のモデル21の導電パターン151を用い、汎用の三次元電磁界シミュレーションソフトウェアで、28.0GHzの平面波を入射角0°で入射し、反射波の散乱断面積を解析する。散乱断面積、すなわちレーダ反射断面積(RCS:Rader Cross Section)、は、入射電磁波を反射させる能力を示す指標として用いられる。 In the evaluation, the conductive pattern 151 of model 21 in Figure 5 is used, and a plane wave of 28.0 GHz is incident at an incident angle of 0° using general-purpose three-dimensional electromagnetic field simulation software, and the scattering cross section of the reflected wave is analyzed. The scattering cross section, or radar cross section (RCS), is used as an index of the ability to reflect incident electromagnetic waves.
 図7は、電磁界シミュレーションの解析空間101を示す。反射パネル10の層構造の厚さ方向をZ方向、図5のモデル21の金属パッチの幅方向をX方向、長さ方向をY方向として、解析空間を(X方向のサイズ)×(Y方向のサイズ)×(Z方向のサイズ)で表す。入射電磁波の周波数が28.0GHzのときの解析空間101のサイズを、83.9mm×192.6mm×3.7mmとする。境界条件は、解析空間101の周囲に電磁波吸収体102を配置した設計とする。評価用の層構成として、図4の層構成を用いる。 Figure 7 shows the analysis space 101 for the electromagnetic field simulation. The thickness direction of the layer structure of the reflective panel 10 is the Z direction, the width direction of the metal patch of the model 21 in Figure 5 is the X direction, and the length direction is the Y direction, and the analysis space is expressed as (size in the X direction) x (size in the Y direction) x (size in the Z direction). The size of the analysis space 101 when the frequency of the incident electromagnetic wave is 28.0 GHz is 83.9 mm x 192.6 mm x 3.7 mm. The boundary condition is a design in which electromagnetic wave absorbers 102 are placed around the periphery of the analysis space 101. The layer structure in Figure 4 is used as the layer structure for evaluation.
 <例1>
 例1は実施例1である。接着層の厚さに着目する。誘電体層14として、厚さ0.7mmのポリカーボネートフィルムを用いる。ポリカーボネートフィルムの一方の面に、厚さ0.36mmのAg系多層膜でグラウンド層13を設定する。ポリカーボネートフィルムの他方の面に、厚さ0.03mmの銅箔で形成される導電パターン151を配置する。導電パターン151を、この導電パターン151と同じ面積占有率の厚さ550μmの接着層153で担持する。接着層153は比誘電率が2.4、誘電正接が0.05の市販されている一般的な接着剤である。グラウンド層13と導電パターン151のそれぞれを、400μmの厚さのエチレン酢酸ビニルの層で覆い、2枚の厚さ2.0mmのポリカーボネートシートで挟む。ポリカーボネートシートは、最外層の誘電体基板11、17として用いられる。
<Example 1>
Example 1 is Example 1. Focus on the thickness of the adhesive layer. A polycarbonate film with a thickness of 0.7 mm is used as the dielectric layer 14. A ground layer 13 is set on one side of the polycarbonate film with a thickness of 0.36 mm using an Ag-based multilayer film. A conductive pattern 151 formed of copper foil with a thickness of 0.03 mm is placed on the other side of the polycarbonate film. The conductive pattern 151 is supported by an adhesive layer 153 with a thickness of 550 μm and the same area occupancy rate as the conductive pattern 151. The adhesive layer 153 is a commercially available general adhesive with a relative dielectric constant of 2.4 and a dielectric loss tangent of 0.05. Each of the ground layer 13 and the conductive pattern 151 is covered with a layer of ethylene vinyl acetate with a thickness of 400 μm and sandwiched between two polycarbonate sheets with a thickness of 2.0 mm. The polycarbonate sheets are used as the outermost dielectric substrates 11 and 17.
 入射角0°で入射した28.0GHzの平面波のRCSプロットの0°でのゲインは、-5.0616dB、+50°でのゲインは-2.9028dB、-50°でのゲインは-14.6348dBである。鏡面反射の0°の方向と、設計された+50°の方向で、-6dBよりも高いゲインが得られ、かつ、これら2つの方向でのゲインの差は3dB以内である。導電パターン151を担持する接着層153の厚さを550μmにすることで、鏡面反射の方向と、設計された方向の2方向に電磁波を反射することができる。 The RCS plot of a 28.0 GHz plane wave incident at an angle of incidence of 0° has a gain of -5.0616 dB at 0°, a gain of -2.9028 dB at +50°, and a gain of -14.6348 dB at -50°. A gain higher than -6 dB is obtained in the 0° direction of specular reflection and the designed +50° direction, and the difference in gain in these two directions is within 3 dB. By making the thickness of the adhesive layer 153 supporting the conductive pattern 151 550 μm, electromagnetic waves can be reflected in two directions: the direction of specular reflection and the designed direction.
 <例2>
 例2は実施例2である。接着層の厚さを除いて、実施例1と同じ条件にする。厚さ0.03mmの銅箔で形成される導電パターン151を、導電パターン151と同じ面積占有率の厚さ750μmの接着層153で担持する。入射角0°で入射した28.0GHzの平面波のRCSプロットの0°でのゲインは-1.6845dB、+50°でのゲインは-5.5111dB、-50°でのゲインは-12.9738dBである。
<Example 2>
Example 2 is Example 2. The conditions are the same as those of Example 1, except for the thickness of the adhesive layer. A conductive pattern 151 formed of a copper foil with a thickness of 0.03 mm is supported by an adhesive layer 153 with a thickness of 750 μm and the same area occupancy as the conductive pattern 151. The RCS plot of a 28.0 GHz plane wave incident at an incident angle of 0° has a gain of −1.6845 dB at 0°, a gain of −5.5111 dB at +50°, and a gain of −12.9738 dB at −50°.
 鏡面反射の0°の方向と設計された+50°の方向で、-6dBよりも高いゲインが得られ、かつ、これら2つの方向でのゲインの差は4dB以内である。導電パターン151を担持する接着層153の厚さを750μmにすることで、鏡面反射の方向と設計された方向の2方向に電磁波を反射することができる。 A gain higher than -6 dB is obtained in the 0° direction of specular reflection and the designed +50° direction, and the difference in gain between these two directions is within 4 dB. By making the thickness of the adhesive layer 153 supporting the conductive pattern 151 750 μm, electromagnetic waves can be reflected in two directions: the direction of specular reflection and the designed direction.
 <例3>
 例3は実施例3である。接着層の厚さを除いて、実施例1と同じ条件にする。厚さ0.03mmの銅箔で形成される導電パターン151を、導電パターン151と同じ面積占有率の厚さ1000μmの接着層153で担持する。入射角0°で入射した28.0GHzの平面波のRCSプロットの0°でのゲインは-0.1677dB、+50°でのゲインは-8.1477dB、-50°でのゲインは-14.1064dBである。
<Example 3>
Example 3 is Example 3. The conditions are the same as those of Example 1, except for the thickness of the adhesive layer. A conductive pattern 151 formed of a copper foil with a thickness of 0.03 mm is supported by an adhesive layer 153 with a thickness of 1000 μm and the same area occupancy as the conductive pattern 151. The RCS plot of a 28.0 GHz plane wave incident at an incident angle of 0° has a gain of −0.1677 dB at 0°, a gain of −8.1477 dB at +50°, and a gain of −14.1064 dB at −50°.
 鏡面反射の0°の方向と設計された+50°の方向で、-10dBよりも高いゲインが得られ、かつ、これら2つの方向でのゲインの差は8dB以内である。導電パターン151を担持する接着層153の厚さが1000μmのときに、鏡面反射の方向と設計された方向の2方向に電磁波を反射することができる。 A gain higher than -10 dB is obtained in the 0° direction of specular reflection and the designed +50° direction, and the difference in gain between these two directions is within 8 dB. When the thickness of the adhesive layer 153 carrying the conductive pattern 151 is 1000 μm, electromagnetic waves can be reflected in two directions: the direction of specular reflection and the designed direction.
 <例4>
 例4は実施例4である。接着層の厚さを除いて、実施例1と同じ条件にする。厚さ0.03mmの銅箔で形成される導電パターン151を、導電パターン151と同じ面積占有率の厚さ250μmの接着層153で担持する。入射角0°で入射した28.0GHzの平面波のRCSプロットの0°でのゲインは-6.6782dB、+50°でのゲインは-1.6853dB、-50°でのゲインは-16.9408dBである。
<Example 4>
Example 4 is Example 4. The conditions are the same as those of Example 1, except for the thickness of the adhesive layer. A conductive pattern 151 formed of a copper foil with a thickness of 0.03 mm is supported by an adhesive layer 153 with a thickness of 250 μm and the same area occupancy as the conductive pattern 151. The RCS plot of a 28.0 GHz plane wave incident at an incident angle of 0° has a gain of −6.6782 dB at 0°, a gain of −1.6853 dB at +50°, and a gain of −16.9408 dB at −50°.
 鏡面反射の0°の方向と設計された+50°の方向で、-10dBよりも高いゲインが得られ、かつ、これら2つの方向でのゲインの差は8dB以内である。導電パターン151を担持する接着層153の厚さが250μmのときに、鏡面反射の方向と設計された方向の2方向に電磁波を反射することができる。 A gain higher than -10 dB is obtained in the 0° direction of specular reflection and the designed +50° direction, and the difference in gain between these two directions is within 8 dB. When the thickness of the adhesive layer 153 carrying the conductive pattern 151 is 250 μm, electromagnetic waves can be reflected in two directions: the direction of specular reflection and the designed direction.
 <例5>
 例5は実施例5である。導電パターン151の厚さに着目する。誘電体層14として、厚さ0.7mmのポリカーボネートフィルムを用いる。ポリカーボネートフィルムの一方の面に、厚さ0.36mmのAg系多層膜でグラウンド層13を設定する。ポリカーボネートフィルムの他方の面に、厚さ0.001mm(1.0μm)の銅箔で形成される導電パターン151を配置する。導電パターン151は、導電パターン151と同じ面積占有率の厚さ1000μmの接着層153で担持されている。グラウンド層13と導電パターン151のそれぞれを、400μmの厚さのエチレン酢酸ビニルの層で覆って、2枚の厚さ2.0mmのポリカーボネートシートで挟む。入射角0°で入射した28.0GHzの平面波のRCSプロットの0°でのゲインは-9.0667dB、+50°でのゲインは-0.9954dB、-50°でのゲインは-17.8861dBである。
<Example 5>
Example 5 is a fifth embodiment. Focus on the thickness of the conductive pattern 151. A polycarbonate film with a thickness of 0.7 mm is used as the dielectric layer 14. A ground layer 13 is set on one side of the polycarbonate film with a thickness of 0.36 mm using an Ag-based multilayer film. A conductive pattern 151 formed of a copper foil with a thickness of 0.001 mm (1.0 μm) is placed on the other side of the polycarbonate film. The conductive pattern 151 is supported by an adhesive layer 153 with a thickness of 1000 μm and the same area occupancy rate as the conductive pattern 151. Each of the ground layer 13 and the conductive pattern 151 is covered with a layer of ethylene vinyl acetate with a thickness of 400 μm and sandwiched between two polycarbonate sheets with a thickness of 2.0 mm. The RCS plot of a 28.0 GHz plane wave incident at an angle of incidence of 0° has a gain of −9.0667 dB at 0°, a gain of −0.9954 dB at +50°, and a gain of −17.8861 dB at −50°.
 鏡面反射の0°の方向と設計された+50°の方向で、-10dBよりも高いゲインが得られ、かつ、これら2つの方向でのゲインの差はほぼ8dBである。導電パターン151の厚さが0.001mm(1.0μm)のときに、鏡面反射の方向と設計された方向の2方向に電磁波を反射することができる。 A gain higher than -10 dB is obtained in the 0° direction of specular reflection and the designed +50° direction, and the difference in gain between these two directions is approximately 8 dB. When the thickness of the conductive pattern 151 is 0.001 mm (1.0 μm), electromagnetic waves can be reflected in two directions: the direction of specular reflection and the designed direction.
 <例6>
 例6は実施例6である。導電パターン151の厚さを除いて例5と同じ条件にする。誘電体層14としての厚さ0.7mmのポリカーボネートフィルムの一方の面に、厚さ0.36mmのAg系多層膜でグラウンド層13を設定する。ポリカーボネートフィルムの他方の面に、厚さ0.005mm(5.0μm)の銅箔で形成される導電パターン151を配置する。入射角0°で入射した28.0GHzの平面波のRCSプロットの0°でのゲインは-2.8762dB、+50°でのゲインは-3.2452dB、-50°でのゲインは-16.7852dBである。
<Example 6>
Example 6 is Example 6. The conditions are the same as those of Example 5, except for the thickness of the conductive pattern 151. A ground layer 13 is set on one side of a 0.7 mm thick polycarbonate film as the dielectric layer 14, using an Ag-based multilayer film having a thickness of 0.36 mm. A conductive pattern 151 made of copper foil having a thickness of 0.005 mm (5.0 μm) is disposed on the other side of the polycarbonate film. The RCS plot of a 28.0 GHz plane wave incident at an incident angle of 0° has a gain of −2.8762 dB at 0°, a gain of −3.2452 dB at +50°, and a gain of −16.7852 dB at −50°.
 鏡面反射の0°の方向と設計された+50°の方向で、-10dBよりも高いゲインが得られ、かつ、これら2つの方向でのゲインの差は約0.37dBと小さく、ほぼ同程度の強度で2方向に反射される。導電パターン151の厚さが0.005mm(5.0μm)のときに、鏡面反射の方向と設計された方向の2方向に効果的に電磁波を反射することができる。 A gain higher than -10 dB is obtained in the 0° direction of specular reflection and the designed +50° direction, and the difference in gain between these two directions is small at approximately 0.37 dB, so that the light is reflected in two directions with approximately the same strength. When the thickness of the conductive pattern 151 is 0.005 mm (5.0 μm), electromagnetic waves can be effectively reflected in two directions, the direction of specular reflection and the designed direction.
 <例7>
 例7は比較例1である。比較例1では、厚さ0.03mmの導電パターン151を担持する接着層153の厚さを50μmに設定する。その他の構成は実施例1と同じである。入射角0°で入射した28.0GHzの平面波のRCSプロットの0°でのゲインは-16.3973dB、+50°でのゲインは-1.5362dB、-50°でのゲインは-17.5759dBである。
<Example 7>
Example 7 is Comparative Example 1. In Comparative Example 1, the thickness of the adhesive layer 153 carrying the conductive pattern 151 having a thickness of 0.03 mm is set to 50 μm. The other configurations are the same as those of Example 1. In the RCS plot of a 28.0 GHz plane wave incident at an incident angle of 0°, the gain at 0° is −16.3973 dB, the gain at +50° is −1.5362 dB, and the gain at −50° is −17.5759 dB.
 導電パターン151を担持する接着層153の厚さを50μmまで減らすと、垂直入射する電磁波は、設計された50°の方向にのみ反射され、鏡面反射の0°の方向で-10dBを超えるゲインが得られない。接着層153の厚さを50μmよりも厚くすることが望ましい。 If the thickness of the adhesive layer 153 carrying the conductive pattern 151 is reduced to 50 μm, the perpendicularly incident electromagnetic wave will be reflected only in the designed 50° direction, and no gain exceeding -10 dB will be obtained in the 0° direction of specular reflection. It is desirable to make the adhesive layer 153 thicker than 50 μm.
 <例8>
 例8は比較例2である。比較例2では、厚さ0.03mmの導電パターン151を担持する接着層153の厚さを1500μmに設定する。その他の構成は実施例1と同じである。入射角0°で入射した28.0GHzの平面波のRCSプロットの0°でのゲインは-0.9954dB、+50°でのゲインは-14.0880dB、-50°でのゲインは-17.8861dBである。
<Example 8>
Example 8 is Comparative Example 2. In Comparative Example 2, the thickness of adhesive layer 153 carrying conductive pattern 151 with a thickness of 0.03 mm is set to 1500 μm. The other configurations are the same as those of Example 1. In the RCS plot of a 28.0 GHz plane wave incident at an incident angle of 0°, the gain at 0° is −0.9954 dB, the gain at +50° is −14.0880 dB, and the gain at −50° is −17.8861 dB.
 導電パターン151を担持する接着層153の厚さを1500μmまで増やすと、垂直入射する電磁波は、鏡面反射の方向である0°の方向にのみ反射され、設計された方向で-10dBを超えるゲインが得られない。接着層153の厚さを1500μm未満とすることが望ましい。 If the thickness of the adhesive layer 153 supporting the conductive pattern 151 is increased to 1500 μm, the perpendicularly incident electromagnetic waves will be reflected only in the 0° direction, which is the direction of specular reflection, and no gain exceeding -10 dB will be obtained in the designed direction. It is desirable to keep the thickness of the adhesive layer 153 less than 1500 μm.
 <例9>(
 例9は比較例3である。比較例3では、導電パターン151の厚さに着目する。厚さ0.01mm(10.0μm)の銅箔で形成される導電パターン151を、導電パターン151と同じ面積占有率の厚さ1000μmの接着層153で担持する。その他の条件は実施例1と同じである。入射角0°で入射した28.0GHzの平面波のRCSプロットの0°でのゲインは-0.8865dB、+50°でのゲインは-15.1212dB、-50°でのゲインは-14.134dBである。
<Example 9> (
Example 9 is Comparative Example 3. In Comparative Example 3, attention is focused on the thickness of the conductive pattern 151. The conductive pattern 151 formed of a copper foil having a thickness of 0.01 mm (10.0 μm) is supported by an adhesive layer 153 having a thickness of 1000 μm and the same area occupancy as the conductive pattern 151. The other conditions are the same as those of Example 1. In the RCS plot of a 28.0 GHz plane wave incident at an incident angle of 0°, the gain at 0° is −0.8865 dB, the gain at +50° is −15.1212 dB, and the gain at −50° is −14.134 dB.
 導電パターン151の厚さを0.01mmにすると、垂直入射する電磁波は、鏡面反射の方向である0°の方向にのみ反射され、設計された方向で-10dBを超えるゲインが得られない。導電パターン151の厚さは0.01mm(10.0μm)未満であることが望ましい。 If the thickness of the conductive pattern 151 is 0.01 mm, electromagnetic waves that are perpendicularly incident will be reflected only in the direction of 0°, which is the direction of specular reflection, and no gain exceeding -10 dB will be obtained in the designed direction. It is desirable for the thickness of the conductive pattern 151 to be less than 0.01 mm (10.0 μm).
 <例10>
 例10は比較例4である。比較例4では、導電パターン151の厚さを薄くする。厚さ0.0001mm(0.1μm)の銅箔で形成される導電パターン151を、導電パターン151と同じ面積占有率の厚さ1000μmの接着層153で担持する。その他の条件は実施例1と同じである。入射角0°で入射した28.0GHzの平面波のRCSプロットの0°でのゲインは-0.8865dB、+50°でのゲインは-15.1212dB、-50°でのゲインは-14.134dBである。
<Example 10>
Example 10 is Comparative Example 4. In Comparative Example 4, the thickness of the conductive pattern 151 is reduced. The conductive pattern 151 formed of a copper foil having a thickness of 0.0001 mm (0.1 μm) is supported by an adhesive layer 153 having a thickness of 1000 μm and the same area occupancy as the conductive pattern 151. The other conditions are the same as those of Example 1. In the RCS plot of a 28.0 GHz plane wave incident at an incident angle of 0°, the gain at 0° is −0.8865 dB, the gain at +50° is −15.1212 dB, and the gain at −50° is −14.134 dB.
 導電パターン151の厚さを0.0001mmまで減らすと、垂直入射する電磁波は、鏡面反射の方向である0°の方向にのみ反射され、設計された方向で-10dBを超えるゲインが得られない。導電パターン151の厚さは0.0001mm(0.1μm)よりも厚いことが望ましい。 If the thickness of the conductive pattern 151 is reduced to 0.0001 mm, the perpendicularly incident electromagnetic wave will be reflected only in the 0° direction, which is the direction of specular reflection, and no gain exceeding -10 dB will be obtained in the designed direction. It is desirable for the thickness of the conductive pattern 151 to be thicker than 0.0001 mm (0.1 μm).
 例1から10(実施例1から6と、比較例1から4)に基づくと、導電パターン151をこの導電パターン151と同じ占有率で担持する接着層153の厚さは、50μmよりも厚く、1500μm未満であるのが望ましく、より好ましくは、250μm以上1000μm以下、さらに好ましくは250μm以上750μm以下である。接着層153の厚さをこの範囲にすることで、入射電磁波を一定程度の反射強度を維持して、鏡面反射の方向と、設計された方向の2つの方向に反射することができる。また、導電パターン151の厚さは、0.1μmよりも厚く、10.0μm未満であることが望ましい。導電パターン151の厚さをこの範囲にすることで、入射電磁波を一定程度の反射強度を維持して、鏡面反射の方向と、設計された方向の2つの方向に反射することができる。 Based on Examples 1 to 10 (Examples 1 to 6 and Comparative Examples 1 to 4), the thickness of the adhesive layer 153 that supports the conductive pattern 151 at the same occupancy rate as the conductive pattern 151 is preferably thicker than 50 μm and less than 1500 μm, more preferably 250 μm to 1000 μm, and even more preferably 250 μm to 750 μm. By setting the thickness of the adhesive layer 153 within this range, the incident electromagnetic wave can be reflected in two directions, the direction of specular reflection and the designed direction, while maintaining a certain degree of reflection intensity. In addition, the thickness of the conductive pattern 151 is preferably thicker than 0.1 μm and less than 10.0 μm. By setting the thickness of the conductive pattern 151 within this range, the incident electromagnetic wave can be reflected in two directions, the direction of specular reflection and the designed direction, while maintaining a certain degree of reflection intensity.
 実施形態の反射パネルと電磁波反射装置は、上述した構成例に限定されない。例1から9の結果は、28GHz±5GHzの電磁波に妥当する。反射パネル10の面内サイズは、10.0cm×10.0cmから3.0m×3.0mの範囲で、適宜選択可能である。また、導電パターン151を誘電体層14に接着する接着層153は、誘電体層14の全面を覆わずに少なくとも一部が分離または除去されていれば、例1から6に近い結果が得られることが計算から確認されている。反射パネル10は、入射電磁波を一定程度の反射強度を維持して、鏡面反射の方向と設計された方向とに反射するので、小さな反射パネルでも効果的に電波環境を向上できる。図8に示すように、複数の反射パネル10を連結して使用してもよい。 The reflection panel and the electromagnetic wave reflection device of the embodiment are not limited to the above-mentioned configuration examples. The results of Examples 1 to 9 are applicable to electromagnetic waves of 28 GHz ± 5 GHz. The in-plane size of the reflection panel 10 can be appropriately selected within a range of 10.0 cm x 10.0 cm to 3.0 m x 3.0 m. It has been confirmed by calculation that the results close to those of Examples 1 to 6 can be obtained if the adhesive layer 153 that adheres the conductive pattern 151 to the dielectric layer 14 is at least partially separated or removed without covering the entire surface of the dielectric layer 14. The reflection panel 10 reflects the incident electromagnetic wave in the direction of specular reflection and the designed direction while maintaining a certain degree of reflection intensity, so that even a small reflection panel can effectively improve the radio wave environment. As shown in FIG. 8, multiple reflection panels 10 may be connected and used.
 <電磁波反射フェンス>
 図8は、複数の反射パネル10-1、10-2、及び10-3をフレーム50で連結した電磁波反射フェンス100の模式図である。反射パネル10-1、10-2、及び10-3とこれらの反射パネルの側端を保持するフレーム50により、電磁波反射装置60-1、60-2、及び60-3がそれぞれ形成される。反射パネル10-1、10-2、10-3のそれぞれは、入射する電磁波を一定程度の反射強度を維持して、鏡面反射の方向と、少なくとも1つの非鏡面反射の方向に反射する。
<Electromagnetic wave reflective fence>
8 is a schematic diagram of an electromagnetic wave reflecting fence 100 in which a plurality of reflecting panels 10-1, 10-2, and 10-3 are connected by a frame 50. The reflecting panels 10-1, 10-2, and 10-3 and the frame 50 that holds the side edges of these reflecting panels form electromagnetic wave reflecting devices 60-1, 60-2, and 60-3, respectively. Each of the reflecting panels 10-1, 10-2, and 10-3 reflects an incident electromagnetic wave in a specular reflection direction and at least one non-specular reflection direction while maintaining a certain degree of reflection intensity.
 反射パネル10-1、10-2、10-3(適宜「反射パネル10」と総称する)は、反射電位の連続性を保つ観点から、フレーム50によって互いに電気的に接続されていてもよい。フレーム50の少なくとも一部、たとえば2枚の反射パネル10の互いに隣接する側端と側端の間をつなぐ部分を導電材料で形成することで、隣接する反射パネル10を機械的かつ電気的に接続することができる。図8のように、脚部56を用いて電磁波反射フェンス100を自立させてもよいし、脚部56を設けずに、壁面や天井に設置してもよい。その場合も、入射電磁波を、一定程度の反射強度を維持して2以上の方向に反射できる。 The reflective panels 10-1, 10-2, and 10-3 (collectively referred to as "reflective panels 10" as appropriate) may be electrically connected to each other by a frame 50 in order to maintain the continuity of the reflected potential. By forming at least a part of the frame 50, for example the part connecting the adjacent side ends of the two reflective panels 10, from a conductive material, the adjacent reflective panels 10 can be mechanically and electrically connected. As shown in FIG. 8, the electromagnetic wave reflective fence 100 may be made to stand on its own using legs 56, or may be installed on a wall or ceiling without legs 56. In this case, incident electromagnetic waves can be reflected in two or more directions while maintaining a certain level of reflection strength.
 以上の開示は、以下の態様を含み得る。
(項1)
 1GHz以上、300GHz以下の周波数帯から選択される所定の帯域の電波を反射する反射パネルであって、
 誘電体層と、
 前記誘電体層の一方の表面に設けられる周期的な導電パターンと、
 前記誘電体層の他方の表面に設けられるグラウンド層と、
 前記導電パターンを前記一方の表面に接合する接着層と、
を有し、前記導電パターンを接着する前記接着層は前記導電パターンと同じ面積占有率で設けられ、前記導電パターンの厚さは0.1μmより厚く、10.0μm未満である、
反射パネル。
(項2)
 前記接着層と前記導電パターンとを覆う中間層、
をさらに有する項1に記載の反射パネル。
(項3)
 前記中間層により前記導電パターンの上に接合される誘電体基板、
をさらに有する項2に記載の反射パネル。
(項4)
 前記導電パターンは前記反射パネルの反射面を形成し、入射電磁波を鏡面反射の第1方向と、非鏡面反射の第2方向とに反射し、前記第1方向と前記第2方向の反射強度の差は8dB以内である、項1から3のいずれかに記載の反射パネル。
(項5)
 1GHz以上、300GHz以下の周波数帯から選択される所定の帯域の電波を反射する反射パネルであって、
 誘電体層と、
 前記誘電体層の一方の表面に設けられる周期的な導電パターンと、
 前記誘電体層の他方の表面に設けられるグラウンド層と、
 前記導電パターンを前記誘電体層の前記一方の表面に接合する接着層と、
を有し、前記導電パターンを接着する前記接着層は前記導電パターンと同じ面積占有率で設けられ、前記接着層の厚さは50μmより厚く、1500μm未満である、
反射パネル。
(項6)
 前記接着層と前記導電パターンとを覆う中間層、
をさらに有する項5に記載の反射パネル。
(項7)
 前記中間層により前記導電パターンの上に接合される誘電体基板、
をさらに有する項6に記載の反射パネル。
(項8)
 前記導電パターンは前記反射パネルの反射面を形成し、入射電磁波を鏡面反射の第1方向と、非鏡面反射の第2方向とに反射し、前記第1方向と前記第2方向への反射強度との差は8dB以内である、
項5から7のいずれかに記載の反射パネル。
(項9)
 項1から8のいずれかに記載の反射パネルと、
 前記反射パネルを保持するフレームと、
を有する電磁波反射装置。
(項10)
 項9に記載の反射パネルを複数枚連結した電磁波反射フェンス。
The above disclosure may include the following aspects.
(Item 1)
A reflective panel that reflects radio waves in a predetermined band selected from a frequency band of 1 GHz or more and 300 GHz or less,
A dielectric layer;
a periodic conductive pattern provided on one surface of the dielectric layer;
a ground layer provided on the other surface of the dielectric layer;
an adhesive layer that bonds the conductive pattern to the one surface;
The adhesive layer that adheres the conductive pattern is provided with the same area occupancy as the conductive pattern, and the thickness of the conductive pattern is greater than 0.1 μm and less than 10.0 μm.
Reflective panel.
(Item 2)
an intermediate layer covering the adhesive layer and the conductive pattern;
Item 2. The reflective panel according to item 1, further comprising:
(Item 3)
a dielectric substrate bonded onto the conductive pattern by the intermediate layer;
3. The reflective panel according to claim 2, further comprising:
(Item 4)
A reflective panel described in any one of items 1 to 3, wherein the conductive pattern forms a reflective surface of the reflective panel, reflects incident electromagnetic waves in a first direction for specular reflection and in a second direction for non-specular reflection, and the difference in reflection intensity between the first direction and the second direction is within 8 dB.
(Item 5)
A reflective panel that reflects radio waves in a predetermined band selected from a frequency band of 1 GHz or more and 300 GHz or less,
A dielectric layer;
a periodic conductive pattern provided on one surface of the dielectric layer;
a ground layer provided on the other surface of the dielectric layer;
an adhesive layer that bonds the conductive pattern to the one surface of the dielectric layer;
The adhesive layer that adheres the conductive pattern is provided with the same area occupancy as the conductive pattern, and the thickness of the adhesive layer is greater than 50 μm and less than 1500 μm.
Reflective panel.
(Item 6)
an intermediate layer covering the adhesive layer and the conductive pattern;
Item 6. The reflective panel according to item 5, further comprising:
(Item 7)
a dielectric substrate bonded onto the conductive pattern by the intermediate layer;
Item 7. The reflective panel according to item 6, further comprising:
(Item 8)
The conductive pattern forms a reflective surface of the reflective panel, and reflects incident electromagnetic waves in a first direction of specular reflection and in a second direction of non-specular reflection, and the difference between the reflection intensity in the first direction and the reflection intensity in the second direction is within 8 dB.
Item 8. The reflective panel according to any one of items 5 to 7.
(Item 9)
Item 9. A reflective panel according to any one of items 1 to 8,
A frame for holding the reflective panel;
An electromagnetic wave reflecting device having the same.
(Item 10)
Item 10. An electromagnetic wave reflective fence comprising a plurality of reflective panels connected together according to item 9.
この出願は、2022年12月23日に出願された日本国特許出願第2022-206475号に基づいてその優先権を主張するものであり、この日本国特許出願の全内容を含む。 This application claims priority based on Japanese Patent Application No. 2022-206475, filed on December 23, 2022, and includes the entire contents of this Japanese patent application.
10、10-1、10-2、10-3 反射パネル
11、17 誘電体基板
12、16 中間層
13 グラウンド層
14 誘電体層
151 導電パターン
153 接着層
50 フレーム(サイドフレーム)
57 トップフレーム
58 ボトムフレーム
60、60-1、60-2、60-3 電磁波反射装置
100 電磁波反射フェンス
210 単位セル
10, 10-1, 10-2, 10-3 Reflection panel 11, 17 Dielectric substrate 12, 16 Intermediate layer 13 Ground layer 14 Dielectric layer 151 Conductive pattern 153 Adhesive layer 50 Frame (side frame)
57 Top frame 58 Bottom frame 60, 60-1, 60-2, 60-3 Electromagnetic wave reflecting device 100 Electromagnetic wave reflecting fence 210 Unit cell

Claims (10)

  1.  1GHz以上、300GHz以下の周波数帯から選択される所定の帯域の電波を反射する反射パネルであって、
     誘電体層と、
     前記誘電体層の一方の表面に設けられる周期的な導電パターンと、
     前記誘電体層の他方の表面に設けられるグラウンド層と、
     前記導電パターンを前記一方の表面に接合する接着層と、
    を有し、前記導電パターンを接着する前記接着層は前記導電パターンと同じ面積占有率で設けられ、前記導電パターンの厚さは0.1μmより厚く、10.0μm未満である、
    反射パネル。
    A reflective panel that reflects radio waves in a predetermined band selected from a frequency band of 1 GHz or more and 300 GHz or less,
    A dielectric layer;
    a periodic conductive pattern provided on one surface of the dielectric layer;
    a ground layer provided on the other surface of the dielectric layer;
    an adhesive layer that bonds the conductive pattern to the one surface;
    The adhesive layer that adheres the conductive pattern is provided with the same area occupancy as the conductive pattern, and the thickness of the conductive pattern is greater than 0.1 μm and less than 10.0 μm.
    Reflective panel.
  2.  前記接着層と前記導電パターンとを覆う中間層、
    をさらに有する請求項1に記載の反射パネル。
    an intermediate layer covering the adhesive layer and the conductive pattern;
    The reflective panel of claim 1 further comprising:
  3.  前記中間層により前記導電パターンの上に接合される誘電体基板、
    をさらに有する請求項2に記載の反射パネル。
    a dielectric substrate bonded onto the conductive pattern by the intermediate layer;
    The reflective panel of claim 2 further comprising:
  4.  前記導電パターンは前記反射パネルの反射面を形成し、入射電磁波を鏡面反射の第1方向と、非鏡面反射の第2方向とに反射し、前記第1方向と前記第2方向の反射強度の差は8dB以内である、
    請求項1に記載の反射パネル。
    The conductive pattern forms a reflective surface of the reflective panel, and reflects incident electromagnetic waves in a first direction of specular reflection and a second direction of non-specular reflection, and the difference in reflection intensity between the first direction and the second direction is within 8 dB.
    The reflective panel according to claim 1 .
  5.  1GHz以上、300GHz以下の周波数帯から選択される所定の帯域の電波を反射する反射パネルであって、
     誘電体層と、
     前記誘電体層の一方の表面に設けられる周期的な導電パターンと、
     前記誘電体層の他方の表面に設けられるグラウンド層と、
     前記導電パターンを前記誘電体層の前記一方の表面に接合する接着層と、
    を有し、前記導電パターンを接着する前記接着層は前記導電パターンと同じ面積占有率で設けられ、前記接着層の厚さは50μmより厚く、1500μm未満である、
    反射パネル。
    A reflective panel that reflects radio waves in a predetermined band selected from a frequency band of 1 GHz or more and 300 GHz or less,
    A dielectric layer;
    a periodic conductive pattern provided on one surface of the dielectric layer;
    a ground layer provided on the other surface of the dielectric layer;
    an adhesive layer that bonds the conductive pattern to the one surface of the dielectric layer;
    The adhesive layer for adhering the conductive pattern is provided with the same area occupancy as the conductive pattern, and the thickness of the adhesive layer is greater than 50 μm and less than 1500 μm.
    Reflective panel.
  6.  前記接着層と前記導電パターンとを覆う中間層、
    をさらに有する請求項5に記載の反射パネル。
    an intermediate layer covering the adhesive layer and the conductive pattern;
    The reflective panel of claim 5 further comprising:
  7.  前記中間層により前記導電パターンの上に接合される誘電体基板、
    をさらに有する請求項6に記載の反射パネル。
    a dielectric substrate bonded onto the conductive pattern by the intermediate layer;
    The reflective panel of claim 6 further comprising:
  8.  前記導電パターンは前記反射パネルの反射面を形成し、入射電磁波を鏡面反射の第1方向と、非鏡面反射の第2方向とに反射し、前記第1方向と前記第2方向への反射強度との差は8dB以内である、
    請求項5に記載の反射パネル。
    The conductive pattern forms a reflective surface of the reflective panel, and reflects incident electromagnetic waves in a first direction of specular reflection and in a second direction of non-specular reflection, and the difference between the reflection intensity in the first direction and the reflection intensity in the second direction is within 8 dB.
    The reflective panel according to claim 5.
  9.  請求項1から8のいずれか1項に記載の反射パネルと、
     前記反射パネルを保持するフレームと、
    を有する電磁波反射装置。
    A reflective panel according to any one of claims 1 to 8;
    A frame for holding the reflective panel;
    An electromagnetic wave reflecting device having the same.
  10.  請求項9に記載の反射パネルを複数枚連結した電磁波反射フェンス。 An electromagnetic wave reflective fence made by connecting multiple reflective panels according to claim 9.
PCT/JP2023/042015 2022-12-23 2023-11-22 Reflection panel, electromagnetic wave reflection device, and electromagnetic wave reflection fence WO2024135216A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022206475 2022-12-23
JP2022-206475 2022-12-23

Publications (1)

Publication Number Publication Date
WO2024135216A1 true WO2024135216A1 (en) 2024-06-27

Family

ID=91588607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/042015 WO2024135216A1 (en) 2022-12-23 2023-11-22 Reflection panel, electromagnetic wave reflection device, and electromagnetic wave reflection fence

Country Status (1)

Country Link
WO (1) WO2024135216A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10278147A (en) * 1997-04-09 1998-10-20 Yamaha Motor Co Ltd Radio wave reflecting frp molded object
CA2205873A1 (en) * 1997-05-22 1998-11-22 Jafar Shaker Novel techniques for the cancellation of beam squint in planar printed reflectors
US6407716B1 (en) * 2001-04-19 2002-06-18 Ems Technologies Canada, Ltd. Broadband dichroic surface
US20080210456A1 (en) * 2005-02-23 2008-09-04 Astrium Sas Method For Producing Electrically Conductive Patterns on a Non-Developable Surface of an Insulating Substrate, and Resulting Device
JP2010251899A (en) * 2009-04-13 2010-11-04 Sankei Giken Kogyo Co Ltd Metal composite material of electromagnetic wave transparency and method for manufacturing the same
JP2021082896A (en) * 2019-11-15 2021-05-27 昭和電工マテリアルズ株式会社 Electromagnetic frequency selective transmission material and vehicle component

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10278147A (en) * 1997-04-09 1998-10-20 Yamaha Motor Co Ltd Radio wave reflecting frp molded object
CA2205873A1 (en) * 1997-05-22 1998-11-22 Jafar Shaker Novel techniques for the cancellation of beam squint in planar printed reflectors
US6407716B1 (en) * 2001-04-19 2002-06-18 Ems Technologies Canada, Ltd. Broadband dichroic surface
US20080210456A1 (en) * 2005-02-23 2008-09-04 Astrium Sas Method For Producing Electrically Conductive Patterns on a Non-Developable Surface of an Insulating Substrate, and Resulting Device
JP2010251899A (en) * 2009-04-13 2010-11-04 Sankei Giken Kogyo Co Ltd Metal composite material of electromagnetic wave transparency and method for manufacturing the same
JP2021082896A (en) * 2019-11-15 2021-05-27 昭和電工マテリアルズ株式会社 Electromagnetic frequency selective transmission material and vehicle component

Similar Documents

Publication Publication Date Title
CN107240778B (en) Metamaterial antenna housing
US7898499B2 (en) Electromagnetic wave shielding body
WO2013016900A1 (en) Man-made microstructure and artificial electromagnetic material
US20220200156A1 (en) Antenna unit and window glass
CN113036443B (en) Optically transparent electromagnetic super-surface for reducing broadband and wide-angle RCS
US20150263425A1 (en) Flattened Dihedral-Shaped Device Possessing an Adapted (Maximized Or Minimized) Equivalent Radar Cross Section
WO2024135216A1 (en) Reflection panel, electromagnetic wave reflection device, and electromagnetic wave reflection fence
JP7424537B1 (en) Frequency selective reflector and communication relay system
KR20220058481A (en) Electromagnetic wave absorber with metasurface
JP7497736B2 (en) Millimeter wave reflective building materials
WO2021241455A1 (en) Antenna unit and window glass
WO2023233885A1 (en) Electromagnetic wave reflection device, electromagnetic wave reflection fence, and reflection panel
WO2023233879A1 (en) Electromagnetic wave reflecting device, electromagnetic wave reflecting fence, and reflecting panel
WO2023233921A1 (en) Electromagnetic wave reflection device, electromagnetic wave reflection fence, and reflection panel
WO2024029365A1 (en) Reflecting panel, electromagnetic wave reflecting device using same, and electromagnetic wave reflecting fence
WO2023233928A1 (en) Electromagnetic wave reflection device, electromagnetic wave reflection fence, and reflection panel
WO2024029325A1 (en) Reflective panel, electromagnetic wave reflective device, and electromagnetic wave reflective fence
TW202425422A (en) Reflector, electromagnetic wave reflecting device using the same, and electromagnetic wave reflecting grid
WO2024135455A1 (en) Reflective panel and electromagnetic wave reflecting device
WO2023218887A1 (en) Electromagnetic wave reflection device and electromagnetic wave reflection fence
JP7525030B1 (en) Reflect Array Unit
JP7492072B1 (en) Electromagnetic wave reflector and electromagnetic wave reflector
WO2023210566A1 (en) Frequency-selective reflector
JP7525011B1 (en) Reflectarray, electromagnetic wave reflection system, and reflectarray installation method
WO2023132113A1 (en) Antenna module and vehicle