WO2024135209A1 - Linear position sensor and level sensor - Google Patents

Linear position sensor and level sensor Download PDF

Info

Publication number
WO2024135209A1
WO2024135209A1 PCT/JP2023/041896 JP2023041896W WO2024135209A1 WO 2024135209 A1 WO2024135209 A1 WO 2024135209A1 JP 2023041896 W JP2023041896 W JP 2023041896W WO 2024135209 A1 WO2024135209 A1 WO 2024135209A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
long
magnetic body
magnet
flux density
Prior art date
Application number
PCT/JP2023/041896
Other languages
French (fr)
Japanese (ja)
Inventor
昌哉 萩山
忠勝 斎藤
弘一 矢島
栄一 小菅
Original Assignee
株式会社日本アレフ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本アレフ filed Critical 株式会社日本アレフ
Publication of WO2024135209A1 publication Critical patent/WO2024135209A1/en

Links

Images

Definitions

  • the long magnetic body is preferably made of PC permalloy, and the PC permalloy has a saturation magnetic flux density of 0.65 T or more and a magnetic permeability of 8000 or more at a magnetic flux density of 5 to 15 mT.
  • the long magnetic body is preferably made of PB permalloy, which has a saturation magnetic flux density of 1 T or more and a magnetic permeability of 5000 or more at a magnetic flux density of 5 to 15 mT.
  • the long magnetic body is preferably made of magnetically annealed permalloy.
  • the magnet is preferably made of a neodymium magnet or a samarium-cobalt magnet with a residual magnetic flux density of 1 T or more.
  • linear position sensor of this invention if two magnetic detection components are provided facing each end of the long magnetic body and both ends of the long magnetic body are positioned facing each magnetic detection component, magnetic flux can be detected at both ends of the long magnetic body, allowing a longer long magnetic body to be used and resulting in a wider detection range.
  • the elastic portion is biased to maintain a predetermined distance between both ends of the long magnetic body and each magnetic detection element, even if magnetic detection components are disposed at both ends of the long magnetic body, the distance between the magnetic detection element of each magnetic detection component and the ends of the long magnetic body can be kept constant when thermal expansion or contraction occurs in the frame portion.
  • the frame has a receiving portion that supports the end of the long magnetic body in a predetermined position, the end of the long magnetic body is prevented from shifting sideways relative to the magnetic detection component.
  • a gap can be provided between the long magnetic body and the magnetic detection element, which prevents the magnetic detection element from being loaded with magnetic flux that exceeds the detection range from the magnet, allowing for stable and accurate detection.
  • the long magnetic body is more likely to undergo slight displacement, and thermal deformation and vibrations that occur in the frame are further prevented from being directly transmitted.
  • FIG. 13 is a vertical cross-sectional view of the top side showing a modified example of the level sensor according to the first embodiment, illustrating an example in which an elastic resin molded body is used for the spring portion.
  • FIG. 6 is a vertical sectional view of a level sensor according to a second embodiment of the present invention.
  • FIG. 11 is a vertical sectional view of a level sensor according to a third embodiment of the present invention.
  • FIG. 13 is a vertical cross-sectional view of a level sensor according to a modified example of the third embodiment.
  • FIG. 10 is a vertical sectional view of a level sensor according to a fourth embodiment of the present invention.
  • FIG. 13 is a vertical cross-sectional view of a level sensor according to a fifth embodiment of the present invention.
  • FIG. 8B is a partially enlarged view of FIG. 8A.
  • 1 is a graph showing the results of Example 1.
  • FIG. 2 is a diagram showing a magnetization curve of a long magnetic body made of PB Permalloy used in Example 1.
  • FIG. 2 is a diagram showing a magnetization curve of a long magnetic body made of PC Permalloy used in Example 1.
  • FIG. 2 is a diagram showing a magnetization curve of a long magnetic body made of permendur used in Example 1.
  • FIG. 2 is a diagram showing a magnetization curve of a long magnetic body made of soft ferrite used in Example 1.
  • 1 is a graph showing the results of Example 2 and Reference Example 1.
  • 1 is a graph showing the results of Example 3.
  • 1 is a graph showing the results of Examples 4 to 6.
  • FIG. 13 is a diagram showing the magnetic flux density of the level sensor of the seventh embodiment.
  • FIG. 13 is a diagram showing an output voltage of the level sensor of the seventh embodiment.
  • FIG. 23 is a diagram showing the output voltage of the level sensor of the eighth embodiment.
  • 1 is a graph showing the results of Reference Example 2.
  • 1 is a graph showing the results of Reference Example 3.
  • a linear position sensor will be described as a level sensor for detecting the liquid level disposed in a container.
  • the level sensor 10 basically comprises a magnetic detection component 18, an elongated magnetic body 12, a magnet 15, and a frame 20.
  • the magnetic detection component 18 is configured with a magnetic sensor 18c containing a magnetic detection element 18d attached to a substrate 27.
  • the elongated magnetic body 12 is arranged facing the magnetic sensor 18c of the magnetic detection component 18 with its upper end facing the magnetic sensor 18c in Figure 1.
  • the magnet 15 is arranged surrounding the elongated magnetic body 12 and is arranged so as to be movable between both ends of the elongated magnetic body 12.
  • the frame 20 supports the elongated magnetic body 12 with respect to the magnetic detection component 18, and contains the magnet 15.
  • the frame 20 includes a base portion 11 that houses and fixes the magnetic detection component 18, a rigid frame portion 21 that is fixed to the base portion 11 at one end and supports the lower end of the long magnetic body 12 at the other end, and an elastic portion 23 that is disposed at one or the other end of the rigid frame portion 21 and biases the end of the long magnetic body 12 and the magnetic detection element 18d of the magnetic detection component 18 to maintain a predetermined distance.
  • the long magnetic body 12 is housed inside the long pipe 29 to form the stem portion 13.
  • the top end of the long magnetic body 12 is disposed opposite the magnetic detection component 18 of the base portion 11 and is biased by the elasticity of the elastic portion 23.
  • the magnet 15 is supported by a float 16 that acts as a slider.
  • the float 16 is movably surrounded by a rigid frame 21 and is arranged to be movable along the stem 13 and the long magnetic body 12. As the float 16 moves between both ends of the long magnetic body 12 in response to the movement of the detection target, such as movement or increase or decrease in weight, the magnetic flux of the magnet 15 induced by the long magnetic body 12 is detected by the magnetic detection component 18.
  • the base portion 11 has a resin housing 25 formed into various shapes, and the magnetic detection component 18 is fixed inside the housing 25.
  • the base portion 11 is sealed with resin, with the magnetic detection component 18 housed inside the housing 25.
  • the output 18a of the magnetic detection component 18 is drawn to the outside from the board 27 as a conductor.
  • the base portion 11 is provided with a flange portion 11a for mounting, and the stem portion 13 and rigid frame portion 21 are provided to protrude from the flange portion 11a, and the output 18a for connecting to a control unit (not shown) is drawn liquid-tightly from the board 27 to the outside of the flange portion 11a by a connector 18b.
  • the housing 25 of the base portion 11 is provided with a receiving portion 23b that fits one end of the long magnetic body 12 to support it in a predetermined position.
  • the receiving portion 23b is provided in a concave shape on the wall surface of the housing 25.
  • the receiving portion 23b has a shape corresponding to the shape of the end of the long magnetic body 12.
  • the receiving portion 23b may be opened through and arranged so that the upper end of the long magnetic body 12 abuts against the magnetic sensor 18c of the magnetic detection component 18.
  • the receiving portion 23b may also be provided with a bottom wall, and air or resin may be present between the bottom wall of the receiving portion 23b and the magnetic sensor 18c of the magnetic detection component 18. This allows the upper end of the long magnetic body 12 and the magnetic detection element 18d of the magnetic detection component 18 to be positioned facing each other at a specified distance.
  • the tip of the long magnetic body 12 can be arranged apart from the surface of the magnetic sensor 18c of the magnetic detection component 18 without directly contacting the surface. This prevents the end of the long magnetic body 12 from receiving excessive stress, and protects the magnetic sensor 18c of the magnetic detection component 18.
  • the magnetic detection element 18d By providing a constant gap between the tip of the long magnetic body 12 and the magnetic detection element 18d contained in the magnetic sensor 18c, it is possible to prevent the magnetic detection element 18d from being loaded with a magnetic flux that exceeds the detection range when the magnet 15 of the float 16 approaches the magnetic detection element 18d, and to suppress variation in the magnetic flux detected by the magnetic detection component 18.
  • the magnetic detection element 18d of the magnetic sensor 18c can be an electromagnetic conversion element, and specifically, a Hall element is preferable. If the linear position sensor is a liquid level sensor or a level sensor such as a liquid level sensor, a linear Hall IC or the like can be preferably used as the magnetic sensor 18c incorporating the magnetic detection element 18d. As will be described later, if the linearity between the liquid level and the linear Hall IC is not good, a programmable Hall IC can be used.
  • the programmable Hall IC includes an EEPROM element or the like and has the function of correcting the liquid level and the output of the linear Hall IC to a straight line. In this embodiment, a programmable Hall IC is used that can linearize the magnetic flux change using an approximation formula and output it.
  • the stem portion 13 has a long pipe 29 and a long magnetic body 12.
  • One end (also called the upper end) of the long pipe 29 is fixed to the base portion 11, and the other end (also called the lower end) is fixed to the rigid frame portion 21.
  • the long magnetic body 12 is placed along the stem portion 13 while being housed within the long pipe 29, and is supported in a non-jointed state with the long pipe 29.
  • the long pipe 29 is formed of, for example, resin, etc., to the same length as the long magnetic body 12, and has a generally cylindrical shape with a substantially constant cross section.
  • the stem portion 13 is provided with a detection area of at least 30 mm or more, preferably 40 mm or more, and particularly preferably 100 mm or more, in which the float 16 can move. Although stoppers or the like may be placed at each end to divide the detection area, in this embodiment, the detection area is defined by the entire length between the position where the float 16 abuts against the base portion 11 and the position where it abuts against the inner end of the rigid frame portion 21.
  • a plurality of ribs 29a extending in the axial direction are provided on the outer circumferential surface of the long pipe 29. This is to reduce sliding resistance when the float 16 and the long pipe 29 come into contact.
  • the spaces between the ribs may be closed or may be open, penetrating from the inside to the outside.
  • the internal support pieces 23c are provided on the inside of the long pipe 29 at multiple positions surrounding the long magnetic body 12, protruding so as to abut the outer periphery of the long magnetic body 12 in a non-bonded state.
  • the multiple internal support pieces 23c position the long magnetic body 12 at a predetermined radial position, such as the center of the long pipe 29, while allowing it to move in the longitudinal direction, and elastically support it in the radial direction.
  • the annular stem portion 13 is inserted into the through hole 16a of the float 16.
  • the float 16 can slide smoothly in the axial direction of the stem portion 13 without excessive rattling in the radial direction relative to the stem portion 13.
  • the shape and material of the float 16 as long as it floats on the surface of the liquid to be detected while supporting the magnet 15.
  • the magnet 15 supported by the float 16 is preferably a strong magnet such as neodymium, with both poles arranged along the axial direction of the through hole 16a of the float 16, for example formed in a ring shape surrounding the through hole 16a.
  • the magnet may be formed in one or more chunks or rods extending along the axial direction of the through hole 16a.
  • the magnetic flux density at the position of the magnetic detection element 18d obtained by the magnet 15 is preferably 1 mT or more.
  • the long magnetic body 12 induces the magnetic flux of the magnet 15 supported by the float 16 to the magnetic detection element 18d of the magnetic detection component 18, and is made of a soft magnetic material with, for example, a saturation magnetic flux density of 0.65 T or more, a coercive force of 12 A/m or less, and a magnetic permeability of 3000 or more at a magnetic flux density of 5 to 15 mT.
  • the deviation of the detection position depends on the coercive force of the long magnetic body 12, or what is called hysteresis, and in order to make deviation of the detection position less likely to occur, the coercive force is set to 12 A/m or less, and more preferably 4 A/m or less. If the coercive force is 4 A/m or less, there is almost no deviation of the detection position when the detection range is about 100 mm. If the coercive force is 20 A/m, the deviation of the detection position is, for example, about 10% when the detection range is about 100 mm, and deviation of the detection position occurs, which is undesirable. If the coercive force is 20 A/m or more, the deviation of the detection position becomes larger, but it can be used when the deviation of the detection position is not a problem, for example, when detecting liquid levels at zero, intermediate, or maximum.
  • the soft magnetic material used for the long magnetic body 12 In order to expand the detection range of the level sensor 10, it is necessary to increase the amount of magnetic flux density generated at the position of the magnetic detection element 18d of the magnetic detection component 18.
  • the soft magnetic material used for the long magnetic body 12 As a result of examining the soft magnetic material used for the long magnetic body 12 using electromagnetic field analysis software, it was found that in order to expand the detection range, it is effective for the soft magnetic material used for the long magnetic body 12 to have a sufficiently large saturation magnetic flux density and to have sufficient magnetic permeability near the minimum value of magnetic flux density that can be detected by the magnetic detection element 18d even if the initial permeability is small.
  • the magnetic permeability of the long magnetic body 12 was calculated when a surface magnetic flux density of about 1 to 3 mT was generated at the end position of the magnetic detection element 18d when the detection range was about 100 mm.
  • the magnetic permeability was calculated when the surface magnetic flux density generated at the end of the long magnetic body 12 was 5 to 15 mT. This revealed that in order to expand the detection range, the soft magnetic material used for the long magnetic body 12 must have a saturation magnetic flux density of 0.65 T or more and a magnetic permeability of 3000 or more at a magnetic flux density of 5 to 15 mT. Soft magnetic materials that meet this condition include, for example, PB permalloy, PC permalloy, and permendur. As will be described later, it was difficult to expand the detection range to about 100 mm with soft ferrite.
  • the long magnetic body 12 may be PB permalloy with magnetic grade 06 having DC magnetic properties conforming to JIS C2531:1999, PC permalloy with magnetic grade 30, iron-nickel magnetic materials with permeability and saturation magnetic flux density equal to or higher than these permalloys and coercivity equal to or lower than these permalloys, sendust, amorphous magnetic materials, nanocrystalline magnetic materials, etc.
  • PB permalloy may be a composition of 42-49% Ni by mass, the remainder being Fe.
  • PC permalloy may be a composition of 75-78% Ni by mass, 2-3% Cr by mass, 4-6% Cu by mass, the remainder being Fe, 75-80% Ni by mass, 1-6% Cu by mass, 3.5-6% Mo by mass, the remainder being Fe, 79-82% Ni by mass, 3.5-6% Mo by mass, the remainder being Fe.
  • the long magnetic body 12 can be in a variety of shapes, including cylindrical, prismatic, plate-like, and strip-like shapes, but a cylindrical shape allows for a larger cross-sectional area, which increases the saturation magnetic flux density and the magnetic flux density that reaches the magnetic detection element 18d.
  • the end of the long magnetic body 12 may have a tapered shape such as a spherical surface, a tapered surface, or a conical surface. In this way, the magnetic flux is concentrated in a narrow area at the end, so the peak of the magnetic flux density that reaches the magnetic detection element 18d can be increased.
  • the rigid frame portion 21 has a plurality of frame plates 21a fixed at one end to the base portion 11 and arranged along the long magnetic body 12 surrounding the periphery of the float 16, and a connecting portion 21b to which the other end sides of the plurality of frame plates 21a are connected, and the other end side of the stem portion 13 is supported by the connecting portion 21b.
  • the frame plates 21a are arranged in at least two directions, preferably three or more directions, around the periphery of the float 16, and each is formed into a plate shape that is more rigid than the long pipe 29.
  • the plurality of frame plates 21a may be connected together on the base portion 11 side.
  • Each frame plate 21a is arranged at a position spaced apart from the long pipe 29, except for the connecting portion 21b.
  • each frame plate 21a may be arranged so that the distance between the frame plate 21a and the long pipe 29 is, for example, two to six times the diameter of the long pipe 29.
  • the frame plate 21a is formed with an arc-shaped cross section that is wider than the diameter of the long pipe 29 and thicker than the long pipe 29, and is arranged approximately parallel to the long pipe 29 in each of the four directions around the float 16, supporting the connecting part 21b so that it cannot be displaced.
  • the elastic portion 23 presses the long magnetic body 12 against the base portion 11 by elastic force.
  • the long pipe 29 is fitted and fixed in a groove or recess provided in the housing 25 of the base portion 11 and the connecting portion 21b of the rigid frame portion 21, and the long magnetic body 12 housed in this long pipe 29 is pressed by elastic force.
  • a spring portion 23a is provided in the connecting portion 21b of the rigid frame portion 21, and it urges one end of the long magnetic body 12 against the magnetic detection component 18, thereby urging the other end of the long magnetic body 12.
  • the spring portion 23a is composed of an elastically deformable leaf spring 24a provided at the connecting portion 21b of the rigid frame portion 21.
  • the spring portion 23a can be formed integrally with it as long as the desired elastic force is obtained.
  • the spring portion 23a is not particularly limited to the leaf spring 24a shown in FIG. 3C, but may be a compression spring 24b consisting of a coil spring shown in FIG. 4A.
  • This compression spring 24b is disposed between the connecting portion 21b of the rigid frame portion 21 and the other end of the long magnetic body 12 to bias the long magnetic body 12 in the longitudinal direction.
  • the spring portion 23a may be formed of an elastic resin molded body 24c.
  • the resin molded body 24c is integrally provided with a pressure applying portion 24d that is disposed at the connecting portion 21b of the rigid frame portion 21 and applies pressure to the long magnetic body 12, and a receiving portion 24e into which the other end of the long magnetic body 12 is inserted.
  • a coil spring or a coned disc spring may be used, and various materials such as elastic resins and elastic non-magnetic metal materials may also be used.
  • the end of the long magnetic body 12 can be pressed against the magnetic detection component 18 with sufficient pressure even if thermal expansion or contraction occurs in the long pipe 29 or the rigid frame portion 21, and the distance between the end of the long magnetic body 12 and the magnetic detection element 18d can be kept constant with high precision.
  • the level sensor 10 described above is attached to the bottom wall or lid wall of a liquid storage unit such as a tank using the flange portion 11a, and is used with the stem portion 13 positioned vertically, for example.
  • the flange portion 11a is configured with a packing or the like to provide a liquid-tight structure.
  • the float 16 When liquid accumulates in the liquid storage section, the float 16 rises and falls according to the liquid level, and the magnetic flux of the magnet 15 supported by the float 16 is induced into the long magnetic body 12 and detected by the magnetic detection element 18d arranged at the end of the long magnetic body 12, and a detection signal corresponding to the magnetic flux is transmitted from the substrate 27 to the outside. At this time, the magnetic flux corresponding to the position of the magnet 15 can be detected throughout the entire detection area of the long magnetic body 12, so the liquid level can be detected continuously throughout the entire detection area. In particular, in this embodiment, the liquid is linearized and detected by the magnetic detection component 18, so a detection signal corresponding to the liquid level is obtained.
  • the long magnetic body 12 is made of a soft magnetic material with a saturation magnetic flux density of 0.65 T or more, a coercive force of 12 A/m or less, and a magnetic permeability of 3000 or more at a magnetic flux density of 5 to 15 mT, which allows the detection area to be long and prevents discrepancies between when the liquid level rises and when it falls. As a result, it is possible to detect the displacement of the liquid level in either direction continuously and with high accuracy over a wide range.
  • the saturation magnetic flux density, magnetic permeability, and coercive force are values obtained using the measurement method described in JISC2531:1999 Iron-nickel soft magnetic materials.
  • the magnetic detection component 18 is fixed to the base portion 11, the stem portion 13 having the long magnetic body 12 is provided so as to protrude from the base portion 11, and the magnetic detection component 18 is disposed at one end of the long magnetic body 12. Therefore, the end of the long magnetic body 12 is disposed facing the magnetic detection element 18d attached to the substrate 27, and the magnet 15 is disposed movably between both ends of the long magnetic body 12, so that the magnetic flux of the magnet 15 can be induced by the long magnetic body 12 and detected by the magnetic detection component 18, and the detection range can be widened according to the length of the long magnetic body 12.
  • the long magnetic body 12 can be formed long. As a result, even if the long magnetic body 12 has a large protrusion amount from the base portion 11 of the stem portion 13, the other end of the stem portion 13 is fixed and supported by the rigid frame portion 21 fixed to the base portion 11, so the stem portion 13 can be firmly supported relative to the base portion 11. Therefore, even if vibration, acceleration, etc. act on the linear position sensor, the long magnetic body 12 can be stably positioned relative to the magnetic detection component 18. Therefore, it is possible to prevent fluctuations in the angle and position of the long magnetic body 12 relative to the magnetic detection component 18, and the magnetic detection component 18 can accurately detect the position of the magnet 15 of the float 16. According to the present invention, the detection range of the level sensor 10 can be widened, and it is possible to reduce the occurrence of variations in detection accuracy even if the usage conditions change.
  • This level sensor 10 is provided with an elastic section 23 that elastically supports the long magnetic body 12, and the elasticity of the elastic section 23 supports the long magnetic body 12 so that it can be displaced relative to the rigid frame section 21. This prevents thermal deformation and vibrations that occur in the rigid frame section 21 from being directly transmitted to the long magnetic body 12, and allows the magnetic detection component 18 to detect the magnetic flux induced by the long magnetic body 12 with high accuracy and stability.
  • an elastic portion 23 is provided on the frame 20, and the elastic portion 23 biases the other end of the long magnetic body 12 so that a predetermined distance is maintained between one end of the long magnetic body 12 and the magnetic detection element 18d of the magnetic detection component 18. Therefore, even if thermal expansion or contraction occurs in the long pipe 29 or the rigid frame 21, one end of the long magnetic body 12 can be pressed toward the magnetic detection component 18 with an appropriate pressure, and the distance between the end of the long magnetic body 12 and the magnetic detection element 18d of the magnetic detection component 18 is kept constant, improving detection accuracy.
  • the elastic portion 23 has a receiving portion 23b arranged between one end of the long magnetic body 12 and the magnetic detection component 18, so that the long magnetic body 12 does not directly contact the surface of the magnetic sensor 18c of the magnetic detection component 18, but is stably separated at a close position. Therefore, the magnetic sensor 18c can be protected without receiving excessive stress from the end of the long magnetic body 12.
  • the stem portion 13 has a long pipe 29 that houses the long magnetic body 12 and slidably supports the float 16, and the long magnetic body 12 is supported in a non-jointed state with the long pipe 29 and fixed to the frame body 20.
  • [Second embodiment] 5 shows an example of the level sensor 10 of the second embodiment.
  • the level sensor 10 includes two magnetic detection components 18x and 18y, and each end of the long magnetic body 12 is arranged to face each of the magnetic detection components 18x and 18y.
  • the level sensor 10 includes a first magnetic detection component 18x having a magnetic detection sensor 18c attached to a first board 27x and a second magnetic detection component 18y having a magnetic detection sensor 18c attached to a second board 27y, facing both ends of the long magnetic body 12, and the movable range of the float 16 is set to 100 mm or more.
  • the first magnetic detection component 18x is arranged in the housing 25 of the base portion 11, and the long magnetic body 12 is accommodated in the long pipe 29.
  • a resin housing 30 is provided on the connecting portion 21b of the rigid frame portion 21, which is the other end side of the level sensor 10. The housing 30 is arranged between the connecting portion 21b of the rigid frame portion 21 and the other end of the elongated magnetic body 12, and the housing 30 is urged toward the other end of the elongated magnetic body 12 by a compression spring 32 as an elastic portion 23 arranged in the connecting portion 21b.
  • the housing 30 contains a second magnetic detection component 18y, similar to the one end side of the level sensor 10.
  • the first and second boards 27x, 27y arranged on both ends of the level sensor 10 are connected by a connection harness 31. Therefore, the magnetic flux of the magnet 15 of the float 16 can be detected on both ends of the long magnetic body 12, and the detection signal detected by the first and second magnetic detection components 18x, 18y on both ends is transmitted to the outside from the output 18b of the connector 18a on one end side.
  • the elasticity of the compression spring 32 biases the elongated magnetic body 12 towards the housing 25 on one side via the housing 30.
  • the second board 27y in the second magnetic detection component 18y is pressed by the compression spring 32, and biases the magnetic detection element 18d of the second magnetic detection component 18y so as to maintain a predetermined distance from the end of the elongated magnetic body 12.
  • the compression spring 32 also biases the housing 30, and the second board 27y in the second magnetic detection component 18y is pressed, thereby biasing the elongated magnetic body 12, and the end of the elongated magnetic body 12 is biased so as to maintain a predetermined distance from the magnetic detection element 18d of the first magnetic detection component 18x.
  • the distance between one end of the long magnetic body 12 and the first magnetic detection component 18x of the housing 25 can be kept constant, while the distance between the other end of the long magnetic body 12 and the second magnetic detection component 18y of the housing 30 can be kept constant, thereby improving detection accuracy.
  • a receiving portion 33 having a shape corresponding to the shape of the end of the long magnetic body 12 is provided on the wall surface of the housing 30 facing the long magnetic body 12.
  • the tip of the long magnetic body 12 abuts against the bottom of the receiving portion 33 and is positioned without any positional misalignment in the horizontal direction, i.e., in the direction perpendicular to the insertion direction.
  • the rest is the same as in the first embodiment.
  • This level sensor 10 also provides the same effect as the first embodiment. Moreover, since the long magnetic body 12 has the first magnetic detection component 18x and the second magnetic detection component 18y at both ends, no matter which end of the movable range the float 16 moves to, it can be detected with high accuracy by either of the magnetic detection components 18x, 18y. Therefore, even if the long magnetic body 12 is so long that the magnetic detection components 18x, 18y at either end cannot detect the middle of the long magnetic body 12 with high accuracy, it can be detected with high accuracy near both ends, i.e., near the lower and upper ends of the movable range of the float 16.
  • FIG. 6A shows a level sensor 10 according to a third embodiment.
  • This level sensor 10 is similar to the first embodiment, except for the structure of the frame 20.
  • This frame 20 is divided into two parts in the vertical direction, i.e., in the longitudinal direction of the long magnetic body 12, and connected by a connection part 35.
  • the frame 20 is composed of a base part 11, a rigid frame part 21 that is connected to the base part 11 at one end and supports the other end of the long magnetic body 12 at the other end, a connection part 35 that connects the upper end side of the rigid frame part 21 to the base part 11, and an elastic part 23 arranged in the connection part 35.
  • the base portion 11 has the magnetic detection component 18 housed and fixed in the housing 25.
  • connection protrusions 36 for connecting each frame plate 21a are provided, bent inwardly and having a generally L-shaped cross section.
  • the rigid frame portion 21 is connected to the base portion 11 via the connection portion 35.
  • the rigid frame portion 21 integrally comprises a plurality of frame plates 21a extending along the long magnetic body 12, a connection piece 21c bent outward in a generally L-shape at one end of each frame plate 21a and connected to the base portion 11, a connection pin 21d protruding from each connection piece 21c in a direction along the long magnetic body 12, and a connection portion 21b provided on the other end of the plurality of frame plates 21a to connect them to each other.
  • connection portion 35 the connection pieces 21c of each frame plate 21a of the rigid frame portion 21 are arranged between the housing 25 of the base portion 11 and the connection protrusion 36, and the connection pins 21d protruding from each connection piece 21c are inserted into the through holes 21e of the connection protrusion 36.
  • the elastic portion 23 is made of a compression spring attached around each connection pin 21d, and urges the connection protrusion 36 and the connection piece 21c of the frame plate 21a in a direction to separate them from each other. The elastic portion 23 urges each connection piece 21c of the rigid frame portion 21 toward the housing 25, so that the entire rigid frame portion 21 is urged toward the housing 25.
  • the long magnetic body 12 of the stem portion 13 supported by the connecting portion 21b of the rigid frame portion 21 can be pressed toward the housing 25.
  • the upper end of the long magnetic body 12 and the magnetic detection element 18d of the magnetic detection component 18 are urged to maintain a predetermined distance.
  • This level sensor 10 can achieve the same effects as the first embodiment.
  • FIG. 6B shows a modified example of the third embodiment.
  • the level sensor 10 of this modified example has the same configuration as the level sensor 10 of the third embodiment shown in Fig. 6A, except that the structure of the frame body 20 is different and the first and second magnetic detection components 18x and 18y are arranged on both ends of the long magnetic body 12. That is, the base portion 11 accommodating the first magnetic detection component 18x is provided on one end of the frame body 20 as in Fig. 6A, and the second board 27y of the second magnetic detection component 18y is fixed by a fixing member 21k to the connecting portion 21b on the other end side of the rigid frame portion 21.
  • the first and second boards 27x and 27y are connected by a connection harness (not shown), and the detection signals detected by both magnetic detection components 18x and 18y are transmitted from the connector 18b.
  • the elastic portion 23 disposed in the connection portion 35 biases the second magnetic detection component 18y together with the rigid frame portion 21 toward the housing 25.
  • both ends of the long magnetic body 12 and the magnetic detection elements 18d, 18d of each magnetic detection component 18, 18y are biased to maintain a predetermined distance.
  • the same effects as those in the first embodiment can be obtained.
  • the long magnetic body 12 has the magnetic detection components 18x, 18y at both ends, accurate detection is possible even if the length of the long magnetic body 12 is increased.
  • [Fourth embodiment] 7 shows a level sensor 10 according to a fourth embodiment.
  • This level sensor 10 is similar to the level sensor 10 according to the first embodiment, except for the structure of the frame 20.
  • the rigid frame portion 21 is divided into two in the vertical direction, i.e., in the longitudinal direction of the long magnetic body 12.
  • the rigid frame portion 21 has multiple frame plates 21a that are fixed at one end to the flange portion 11a of the base portion 11 and extend along the long magnetic body 12, and a connecting portion 21b to which the other ends of the multiple frame plates 21a are connected.
  • Each frame plate 21a is divided at a dividing portion 21f, and the frame piece 21g on the base portion 11 side and the frame piece 21g on the connecting portion 21b side are connected by a connecting portion 35 of the dividing portion 21f.
  • An elastic portion 23 is disposed in the connecting portion 35, and the frame pieces 21g are connected via the elastic portion 35.
  • connection pieces 21c bent outward in a generally L-shaped cross section are provided facing each other at the end of the frame piece 21g on the base portion 11 side and the end of the frame piece 21g on the connecting portion 21b side.
  • One of the facing connection pieces 21c is provided with a connection pin 21d that protrudes in a direction along the elongated magnetic body 12, and the other is provided with a through hole 21e through which the connection pin 21d can be inserted.
  • the connection pieces 21c are faced each other and connected with the connection pin 21d inserted through the through hole 21e.
  • the elastic portion 23 is made of a tension spring attached around each connection pin 21d, and biases the connection pieces 21c in a direction to bring them closer together.
  • the elastic portion 23 pulls the frame piece 21g on the connecting portion 21b side toward the frame piece 21g on the base portion 11 side, thereby biasing the connecting portion 21b of the rigid frame portion 21 toward the housing 25 side of the base portion 11.
  • This allows the long magnetic body 12 of the stem portion 13, which is fixed and supported by the connecting portion 21b of the rigid frame portion 21, to be pressed toward the housing 25 side, and the end of the long magnetic body 12 and the magnetic detection component 18 can be biased so that they always abut or maintain a predetermined distance from each other.
  • This level sensor 10 also provides the same effect as the first embodiment.
  • the level sensor 10 of the fifth embodiment is similar to the fourth embodiment except for the structure of the frame body 20.
  • Figures 8A and 8B show the level sensor 10 of the fifth embodiment.
  • the rigid frame portion 21 is also divided into two in the vertical direction, i.e., in the longitudinal direction of the long magnetic body 12.
  • the rigid frame portion 21 has multiple frame plates 21a that are fixed at one end to the flange portion 11a of the base portion 11 and extend along the long magnetic body 12, and a connecting portion 21b to which the other ends of the multiple frame plates 21a are connected.
  • Each frame plate 21a is divided at a dividing portion 21f near the connecting portion 21b, and the frame piece 21g on the base portion 11 side and the frame piece 21g on the connecting portion 21b side are connected by an elastic connecting portion 35a.
  • a cylindrical protrusion 21h that protrudes outward is provided on one of the ends of the frame piece 21g on the base portion 11 side and the end of the frame piece 21g on the connecting portion 21b side, and a clip 21i that elastically clamps the cylindrical protrusion 21h is provided on the other.
  • the clip 21i protrudes from the frame piece 21g and is formed integrally with the frame piece 21g.
  • the clip 21i has a pair of elastic claws 21j that are arranged close to each other and opposite each other, and the cylindrical protrusion 21h can be clamped between the elastic claws 21j by elastic force.
  • This level sensor 10 can achieve the same effects as the first embodiment. Also, as in the modified example of the third embodiment, it is possible to place magnetic detection components 18 on both ends of the long magnetic body 12.
  • the first to fifth embodiments described above can be modified as appropriate within the scope of the present invention.
  • the long magnetic body 12 was housed in the long pipe 29 as the stem portion 13, but the stem portion 13 made of the long magnetic body 12 may be supported by the base portion 11 or the rigid frame portion 21 without using the long pipe 29.
  • Example 1 The magnetic flux density at the position of the magnetic detection element 18d was calculated by magnetic simulation using the long magnetic body 12 having a wire shape of 0.6 mm in diameter and 150 mm in length and made of PB permalloy (manufactured by Hitachi Metals, Ltd., YEP-B, initial permeability: 6000, saturation magnetic flux density: 1.4 T), PC permalloy (manufactured by Hitachi Metals, Ltd., YEP-C, initial permeability: 200,000, saturation magnetic flux density: 0.7 T), permendur (manufactured by Hitachi Metals, Ltd., YEP-2V, initial permeability: 840, saturation magnetic flux density: 2.45 T), and soft ferrite (manufactured by JFE Ferrite Corporation, MBT2, initial permeability: 3300, saturation magnetic flux density: 0.53 T).
  • PB permalloy manufactured by Hitachi Metals, Ltd., YEP-B, initial permeability: 6000, saturation magnetic flux density:
  • the magnet 15 used was an anisotropic ferrite magnet with a residual magnetic flux density of 395 mT, ring-shaped with an outer diameter of 15 mm, an inner diameter of 10 mm, and a thickness of 3 mm, and magnetized in the thickness direction.
  • the magnetic flux density at the position of the magnetic detection element 18d was calculated by placing the long magnetic body 12 at the center of the ring-shaped magnet 15 and simulating the magnetic flux generated according to the distance between the magnet and the end using electromagnetic field analysis software (JMAG) from JSOL Corporation.
  • JMAG electromagnetic field analysis software
  • FIG. 9 The calculation results of the magnetic flux density in Example 1 are shown in Figure 9.
  • the horizontal axis of Figure 9 is the distance (mm) between the long magnetic body 12 and the magnet 15, and the vertical axis is the magnetic flux density (mT) at the position of the magnetic detection element 18d.
  • PB permalloy, PC permalloy, and permendur generate a magnetic flux density of 1.5 mT or more even at a magnet distance of 110 mm, while soft ferrite has a small magnetic flux density of 1 mT or less.
  • the surface magnetic flux density of the end of the long magnetic body 12 at the magnet position when a magnetic flux density of 2 mT was generated at the magnetic detection element 18d was calculated to be 10 mT.
  • the magnetic permeability was calculated from the surface magnetic flux density based on the magnetization curve of each material.
  • Figures 10A to 10D show the magnetization curves of the long magnetic body 12 used in Example 1.
  • the long magnetic bodies 12 are shown in Figure 10A for PB permalloy, in Figure 10B for PC permalloy, in Figure 10C for permendur, and in Figure 10D for soft ferrite.
  • the magnetic permeability at magnetic flux densities of 5 to 15 mT calculated from the magnetization curves of Figures 10A to 10D was 6,600 for PB permalloy, 37,000 for PC permalloy, 4,000 for permendur, and 3,300 for soft ferrite.
  • the soft magnetic material used for the long magnetic body 12 needs to have a sufficiently large saturation magnetic flux density, and even if the initial permeability is small, it needs to have sufficient permeability near the minimum value of the magnetic flux density detected by the magnetic detection element 18d.
  • Soft magnetic materials that meet this condition have a saturation magnetic flux density of 0.65T or more and a permeability of 3000 or more at a magnetic flux density of 5 to 15mT, such as PB permalloy, PC permalloy, and permendur.
  • Example 2 The influence of hysteresis was measured using a long magnetic body 12 obtained by annealing a PC permalloy (manufactured by Oji Alloy Co., Ltd., model number: 78Ni) having a wire shape of 0.6 mm in diameter and 150 mm in length under conditions of a treatment temperature of 850 degrees and a treatment time of 6 minutes or more in a nitrogen atmosphere.
  • the composition of the PC permalloy of Example 2 is 77.0 mass% Ni, 4.2 mass% Mo, 5.0 mass% Cu, and 13.5 mass% Fe.
  • the magnet 15 used was made of samarium cobalt with a residual magnetic flux density of 1.06 T, had a ring shape with an outer diameter of 12 mm, an inner diameter of 7 mm, and a thickness of 3 mm, and was magnetized in the thickness direction.
  • the measurement was performed by placing the long magnetic body 12 inside a plastic pipe and fixing it there, and fixing the end of the plastic pipe to the probe of a gauss meter (manufactured by Lake Shore, model number: 425) which serves as the magnetic detection component 18, while passing the plastic pipe through the ring-shaped magnet 15 described above.
  • the magnet 15 was then moved along the long pipe 29 in both directions, toward and away from the gauss meter, to measure the magnetic flux generated at the probe.
  • the wire was made of 52% iron-nickel alloy used as a reed switch material (52 alloy wire for reed switches (Fe-Ni: 52%), manufactured by Nippon Bell Parts Co., Ltd.) and had the same wire shape as in Example 1.
  • the magnet was moved along the long pipe 29 in the direction toward and away from the gaussmeter, and the magnetic flux generated in the probe was measured.
  • the 52% iron-nickel alloy has a saturation magnetic flux density similar to that of the PB permalloy of Example 1, a magnetic permeability at a magnetic flux density of 5 to 15 mT, and a coercive force of 20 A/m.
  • Example 11 The results of the magnetic flux measurements in Example 2 and Reference Example 1 are shown in Figure 11.
  • the horizontal axis of Figure 11 is the distance (mm) between the long magnetic body 12 and the magnet 15, and the vertical axis is the magnetic flux density (mT) at the end of the long magnetic body 12 measured with a gauss meter.
  • the change in magnetic flux when the magnet 15 was moved in a direction toward the gauss meter was approximately the same as the change in magnetic flux when it was moved in a direction away from the gauss meter.
  • the 52% iron-nickel alloy of Reference Example 1 has a higher saturation magnetic flux density of 1.4 T than PC permalloy, and therefore generates a larger magnetic flux, but its coercive force is large at 20 A/m, which causes the effects of hysteresis and results in a significant difference between the magnetic flux when approaching and when separating.
  • the magnet distance when a magnetic flux density of 2 mT is generated is 100 mm when approaching and 112 mm when separating, resulting in an error of 12 mm when determining the distance from the numerical value of the magnetic flux density at the position of magnetic detection element 18d. If the detection range is 100 mm, the error is approximately 12%.
  • soft magnetic materials with high coercivity such as the 52% iron-nickel alloy of Reference Example 1 are less suitable for use as the long magnetic body 12 due to the generation of hysteresis.
  • Specific examples of soft magnetic materials with high coercivity other than Reference Example 1 include pure iron such as SUY-0 (coercivity 60 A/m or less), electromagnetic stainless steel such as K-M31 (coercivity 105 A/m or less), and permendur such as YEP-2V (coercivity 68 A/m or less).
  • a soft magnetic material such as PC permalloy, which has a small coercive force of 4 A/m or less, as used in Example 2, it is possible to suppress the detection error of the sensor caused by hysteresis.
  • PB permalloy which has a coercive force of 12 A/m or less but a high saturation magnetic flux density of 1.4 T or more.
  • Example 3 The long magnetic body 12 was the same as in Example 1 except that the wire shape was 2 mm in diameter, and was made of PC permalloy with a length of 150 mm, and was not annealed under conditions of a treatment temperature of 850 degrees and a treatment time of 6 minutes or more in a nitrogen atmosphere.
  • the magnet used was an anisotropic ferrite magnet with a residual magnetic flux density of 410 mT, in the shape of a ring with an outer diameter of 12.5 mm, an inner diameter of 5.3 mm, and a thickness of 6 mm, magnetized in the thickness direction.
  • the magnetic flux generated in the probe of the gaussmeter was measured in the same manner as in Example 1.
  • Example 3 The results of Example 3 are shown in Figure 12. As is clear from Figure 12, in Example 3, which used an unannealed long magnetic body 12, there was a significant difference in the magnetic flux obtained at the middle part of the long magnetic body 12 when the magnet 15 was moved in a direction toward the gaussmeter and when it was moved in a direction away from the gaussmeter. This is because the long magnetic body 12 had an increased coercive force due to processing distortion; by annealing it to return it to its original coercive force as in Example 1, it is possible to make the magnetic flux in both directions consistent.
  • PC permalloy wires having a length of 150 mm and a diameter of 0.6 mm (Example 4), 0.8 mm (Example 5), and 2 mm (Example 6) were used after annealing under conditions of a treatment temperature of 850 degrees and a treatment time of 6 minutes or more in a nitrogen atmosphere.
  • the same PC permalloy as in Example 1 was used except for the wire diameter.
  • a neodymium magnet with a residual magnetic flux density of 1.35 T having a ring shape with an outer diameter of 12 mm, an inner diameter of 8 mm, and a thickness of 3 mm, and magnetized in the thickness direction was used.
  • the magnetic flux generated in the probe of the gaussmeter was measured in the same manner as in Example 1. The results are shown in FIG. 13. As is clear from FIG. 13, regardless of the thickness of the annealed long magnetic body 12, the magnetic flux in both the direction in which the magnet 15 approaches and the direction in which it is separated was the same. Moreover, the thicker the magnetic body, the greater the magnetic flux density when the magnet 15 is located in the middle part.
  • Example 7 the level sensor 10 shown in FIG. 1 was produced using the long magnetic body 12 (PC permalloy with a wire shape of 0.6 mm in diameter and 50 mm in length) made of PC permalloy in Example 1 and a programmable Hall IC as the magnetic sensor 18c of the magnetic detection component 18.
  • the programmable Hall IC used was model number HAL2425 manufactured by TDK-Micronas.
  • FIG. 14 shows the magnetic flux density of the level sensor 10 of Example 7. The horizontal axis of the figure is the float position (mm), and the vertical axis is the magnetic flux density (mT).
  • the magnetic flux density is the magnetic flux density measured from the output voltage of the linear Hall IC that does not correct the linearity in the programmable Hall IC. From FIG. 14, in the level sensor 10 of Example 7, the magnetic flux density changes according to the float position, but it is a curved line rather than a straight line. The magnetic flux density with respect to the float position was linearized by the function of the programmable Hall IC.
  • Figure 15 shows the output voltage of the level sensor 10 of Example 7.
  • the horizontal axis of the figure is the float position (mm), and the vertical axis is the output voltage (V) linearly corrected by the programmable Hall IC.
  • the output voltage changes from 0.5 V to 4.5 V
  • the output voltage changes by 1 V, showing good linearity and indicating that a liquid level displacement of 40 mm can be measured.
  • Example 8 the level sensor 10 shown in Fig. 1 was fabricated using the long magnetic body 12 (PC permalloy with a wire shape of 0.6 mm in diameter and 110 mm in length) of Example 1 and the same programmable Hall IC as in Example 7 for the magnetic detection component 18.
  • the level sensor 10 was fabricated in the same manner as in Example 7 except that the length of the long magnetic body 12 was changed.
  • Figure 16 shows the output voltage of the level sensor 10 of Example 8.
  • the horizontal axis of the figure is the float position (mm), and the vertical axis is the output voltage (V) linearly corrected by the programmable Hall IC.
  • V the output voltage
  • the change in magnetic flux density was calculated by magnetic simulation when the distance between the tip of one end of the long magnetic body 12 and the magnetic detection element 18d of the magnetic detection component 18 was changed in the axial direction of the long magnetic body 12.
  • the long magnetic body 12 used had a wire shape of 2 mm in diameter and 80 mm in length, and was made of PC permalloy (manufactured by Hitachi Metals, Ltd., YEP-C, initial permeability: 200000, saturation magnetic flux density: 0.7 T).
  • the magnet 15 used was a neodymium magnet with a residual magnetic flux density of 1200 mT, ring-shaped with an outer diameter of 11 mm, an inner diameter of 9 mm, and a thickness of 5 mm, and magnetized in the thickness direction.
  • the magnetic flux density at the position of the magnetic detection element 18d was calculated by simulating the magnetic flux generated according to the distance between the magnet and the end by placing the long magnetic body 12 at the center of the ring-shaped magnet 15 and using electromagnetic field analysis software (JMAG) from JSOL Corporation.
  • JMAG electromagnetic field analysis software
  • the distance between the tip of the long magnetic body 12 and the magnetic detection element 18d was changed in 0.3 mm increments within a range of ⁇ 0.6 mm, with 1.4 mm as the reference, and the magnetic flux density at the position of the magnetic detection element 18d relative to the magnet distance was calculated by magnetic simulation.
  • the calculation results of the magnetic flux density for Reference Example 2 are shown in Figure 17.
  • the horizontal axis of Figure 17 is the magnet distance, i.e., the distance (mm) between the end of the long magnetic body 12 and the magnet 15, and the vertical axis is the magnetic flux density (mT) at the position of the magnetic detection element 18d.
  • the magnetic flux density increases as the distance between the magnetic detection element 18d and the tip of the long magnetic body 12 becomes closer, and decreases as the distance becomes farther.
  • the linear expansion coefficient of the PC permalloy used for the long magnetic body 12 is 13 ⁇ 10 ⁇ 6 /° C., and the length is 80 mm, so the length will expand by 0.0416 mm with a temperature change from 20° C. to 60° C.
  • the material of the stem portion 13 is polypropylene with a linear expansion coefficient of 100 ⁇ 10 ⁇ 6 /° C. and the length is 80 mm, the length will expand by 0.352 mm with a temperature change from 20° C. to 60° C.
  • a difference in length of approximately 0.31 mm occurs between the long magnetic body 12 and the stem portion 13 with a temperature change from 20° C. to 60° C., and the position of the end of the long magnetic body 12 can vary by up to 0.31 mm in the longitudinal direction.
  • the change in magnetic flux density when the distance between the tip of one end of the long magnetic body 12 and the magnetic detection element 18d is changed in a direction perpendicular to the axial direction of the long magnetic body 12 was calculated by magnetic simulation.
  • the long magnetic body 12 used had a wire shape of 2 mm in diameter and 80 mm in length, and was made of PC permalloy (YEP-C, manufactured by Hitachi Metals, Ltd.; initial permeability: 200000; saturation magnetic flux density: 0.7 T).
  • the magnet 15 used was a neodymium magnet with a residual magnetic flux density of 1200 mT, a ring shape with an outer diameter of 11 mm, an inner diameter of 9 mm, and a thickness of 5 mm, and magnetized in the thickness direction.
  • the magnetic flux density at the position of the magnetic detection element 18d was calculated by simulating the magnetic flux generated according to the distance between the magnet and the end by placing the long magnetic body 12 at the center of the ring-shaped magnet 15 and using electromagnetic field analysis software (JMAG) from JSOL Corporation.
  • JMAG electromagnetic field analysis software
  • the magnetic flux density at the position of the magnetic detection element 18d relative to the magnet distance was calculated by magnetic simulation with the long magnetic body 12 shifted in the orthogonal direction within a range of 1.2 mm from the magnetic detection element 18d.
  • Figure 18 The calculation results of the magnetic flux density for Reference Example 3 are shown in Figure 18.
  • the horizontal axis of Figure 18 is the distance (mm) between the long magnetic body 12 and the magnet 15, and the vertical axis is the magnetic flux density (mT) at the position of the magnetic detection element 18d.
  • the output of the programmable hall IC is shown as a voltage, but this is not limited to this.
  • the liquid level and the liquid level scale can be displayed on a separate display device equipped with a liquid crystal or organic electroluminescence (EL) or the like, or the liquid level position information can be output to an external device via wired or wireless communication.
  • the output of the magnetic detection component 18 is output using the connector 18b, but a lead wire made of an insulated conductor or a wire harness can also be used.
  • 10...Level sensor 11...base portion, 11a...flange portion, 12... Long magnetic body, 13... stem portion, 15...Magnet, 16... float (slider), 16a... through hole, 18, 18x, 18y...magnetic detection components, 18a...output, 18b...connector, 18c...magnetic sensor, 18d...magnetic detection element, 20...frame body, 21...rigid frame portion, 21a...frame plate, 21b...connecting portion, 21c...connecting piece, 21d...connecting pin, 21e...through hole, 21f...dividing portion, 21g...frame piece, 21h...cylindrical protrusion, 21i...clip, 21j...elastic claw, 21k...fixing member, 23...elastic portion, 23a...spring portion, 23b...receiving portion, 23c...internal support piece, 24a...

Landscapes

  • Level Indicators Using A Float (AREA)

Abstract

Provided are a linear position sensor and a level sensor with which the detection accuracy is less likely to vary even when the detection range is increased and usage conditions fluctuate, the linear position sensor comprising: a magnetic sensor 18c in which a magnetic detection element 18d is enclosed; a magnetism detection component 18 formed by attaching the magnetic sensor 18c to a substrate 27; an elongated magnetic body 12 disposed so that an end thereof faces the magnetism detection component 18; a magnet 15 capable of moving between the two ends of the elongated magnetic body 12; and a frame body 20 that supports the elongated magnetic body 12 with respect to the magnetism detection component 18 so as to be capable of moving in the longitudinal direction, the frame body 20 enclosing a magnet 15, an elastic part 23 being provided to the frame body 20, and the end of the elongated magnetic body 12 and the magnetic detection element 18d being biased by the elastic part 23 so as to maintain a prescribed spacing.

Description

リニア位置センサ及びレベルセンサLinear Position and Level Sensors
 本発明は、リニア位置センサ及びこれを用いたレベルセンサに関する。 The present invention relates to a linear position sensor and a level sensor using the same.
 従来、リニア位置センサを各種タンクの液面位を検出するレベルセンサに利用し、ステムに沿って昇降可能なフロートにマグネットを支持させ、磁気的にフロートの位置を検出するものが多数知られている。このようなリニア位置センサの多くは、ステムの所定位置にリードスイッチを配置し、フロートがステムの所定位置に達したときに液面位が所定位置に達したことを検出する。 Traditionally, linear position sensors have been used as level sensors to detect the liquid level in various tanks, with many known sensors supporting a magnet on a float that can rise and fall along a stem, magnetically detecting the position of the float. Many of these linear position sensors place a reed switch at a specified position on the stem, and detect that the liquid level has reached a specified position when the float reaches a specified position on the stem.
 ステムに磁気収束部材を配置して、磁気収束部材の長手方向の端部に磁電変換素子を配置したレベルセンサも提案されている(特許文献1参照)。このレベルセンサでは、液面位の変化を連続的に検出することができるとされている。 A level sensor has also been proposed in which a magnetic concentrator member is placed on the stem and a magnetoelectric conversion element is placed on the longitudinal end of the magnetic concentrator member (see Patent Document 1). This level sensor is said to be able to continuously detect changes in the liquid level.
特開2009-300189号公報JP 2009-300189 A
 しかしながら、特許文献1記載のソフトフェライトを用いたレベルセンサでは、液面位を連続的に検出できる範囲が狭く、しかも温度が変化する使用条件下では検出精度にバラツキを生じ易いという課題がある。 However, the level sensor using soft ferrite described in Patent Document 1 has the problem that the range in which the liquid level can be continuously detected is narrow, and detection accuracy is prone to fluctuating under operating conditions where the temperature changes.
 本発明は、検出範囲を広くして使用条件が変動しても検出精度にバラツキが生じ難いリニア位置センサ及びこれを利用したレベルセンサを提供することを目的とする。 The present invention aims to provide a linear position sensor with a wide detection range that is less susceptible to variations in detection accuracy even when usage conditions change, and a level sensor that uses the same.
 上記課題を解決する本発明のリニア位置センサは、磁気検出素子を内包した磁気センサと、この磁気センサを基板に取り付けて構成した磁気検出部品と、磁気検出部品に端部を臨ませて配置した長尺磁性体と、長尺磁性体の両端部間を移動可能なマグネットと、磁気検出部品に対して長尺磁性体を長手方向に移動可能な状態で支持するとともに、マグネットを内包した枠体と、を備え、枠体に弾性部が設けられ、弾性部により長尺磁性体の端部と磁気検出素子とが所定間隔を維持するように付勢されている。 The linear position sensor of the present invention, which solves the above problems, comprises a magnetic sensor containing a magnetic detection element, a magnetic detection component formed by mounting the magnetic sensor on a substrate, a long magnetic body arranged with its end facing the magnetic detection component, a magnet that can move between both ends of the long magnetic body, and a frame that supports the long magnetic body in a state where it can move longitudinally relative to the magnetic detection component and contains the magnet, and an elastic part is provided on the frame, and the elastic part biases the end of the long magnetic body and the magnetic detection element to maintain a predetermined distance.
 このリニア位置センサは、長尺磁性体の各端部に対向して2つの磁気検出部品を備え、長尺磁性体の両端部を各磁気検出部品に臨ませて配置するとともに、弾性部により長尺磁性体の両端部と各磁気検出素子とが所定間隔を維持するように付勢されていてもよい。 This linear position sensor may have two magnetic detection components facing each end of the long magnetic body, with both ends of the long magnetic body facing the magnetic detection components, and may be biased by an elastic part to maintain a predetermined distance between both ends of the long magnetic body and each magnetic detection element.
 このリニア位置センサは、好ましくは枠体が長尺磁性体の端部を所定位置に支持する受部を有する。このリニア位置センサは、長尺磁性体を収容する長尺パイプを有し、長尺パイプが長尺磁性体とは非接合状態で枠体に固定されているのが好ましい。長尺磁性体は、好ましくは、飽和磁束密度が0.65T以上、保磁力が12A/m以下で、磁束密度5から15mTにおける透磁率が3000以上の軟磁性材料からなる。長尺磁性体の磁束密度5から15mTにおける透磁率が好ましくは5000以上である。長尺磁性体は好ましくは、PCパーマロイからなり、該PCパーマロイの飽和磁束密度が0.65T以上であり、磁束密度5から15mTにおける透磁率が8000以上である。長尺磁性体は、好ましくはPBパーマロイからなり、該PBパーマロイの飽和磁束密度が1T以上であり、磁束密度5から15mTにおける透磁率が5000以上である。長尺磁性体は、好ましくは磁性焼鈍されたパーマロイからなる。マグネットは、好ましくは、残留磁束密度1T以上のネオジム磁石またはサマリウムコバルト磁石からなる。 In this linear position sensor, the frame preferably has a receiving portion that supports the end of the long magnetic body at a predetermined position. This linear position sensor preferably has a long pipe that houses the long magnetic body, and the long pipe is fixed to the frame in a non-jointed state with the long magnetic body. The long magnetic body is preferably made of a soft magnetic material having a saturation magnetic flux density of 0.65 T or more, a coercive force of 12 A/m or less, and a magnetic permeability of 3000 or more at a magnetic flux density of 5 to 15 mT. The magnetic permeability of the long magnetic body at a magnetic flux density of 5 to 15 mT is preferably 5000 or more. The long magnetic body is preferably made of PC permalloy, and the PC permalloy has a saturation magnetic flux density of 0.65 T or more and a magnetic permeability of 8000 or more at a magnetic flux density of 5 to 15 mT. The long magnetic body is preferably made of PB permalloy, which has a saturation magnetic flux density of 1 T or more and a magnetic permeability of 5000 or more at a magnetic flux density of 5 to 15 mT. The long magnetic body is preferably made of magnetically annealed permalloy. The magnet is preferably made of a neodymium magnet or a samarium-cobalt magnet with a residual magnetic flux density of 1 T or more.
 本発明のリニア位置センサは、好ましくは長尺磁性体が長尺パイプの内部に収容され、長尺パイプの端部は枠体により固定して支持され、マグネットはスライダに支持されて、このスライダが枠体内で長尺パイプに沿って移動可能に配置され、検出対象の移動や増減に伴い、スライダが長尺磁性体の両端部間を移動することで、長尺磁性体により誘導されたマグネットの磁束を磁気検出部品で検出する構成とし、長尺磁性体の端部と磁気検出素子とは弾性部の弾性により所定の一定間隔を維持するように付勢される。好ましくは、磁気検出部品に磁気検出素子が組み込まれ、スライダが前記磁気検出部品の磁気検出素子から最も離間した位置に配置された状態で、マグネットにより前記磁気検出素子位置に生じる磁束密度が1mT以上である。このリニア位置センサは典型的にはレベルセンサとして利用される。 The linear position sensor of the present invention is preferably configured such that a long magnetic body is housed inside a long pipe, the ends of the long pipe are fixed and supported by a frame, the magnet is supported by a slider, and the slider is arranged movably along the long pipe within the frame, and the slider moves between both ends of the long magnetic body as the detection target moves or increases or decreases, thereby detecting the magnetic flux of the magnet induced by the long magnetic body with a magnetic detection component, and the end of the long magnetic body and the magnetic detection element are biased to maintain a predetermined constant distance by the elasticity of the elastic part. Preferably, the magnetic detection element is incorporated in the magnetic detection component, and when the slider is arranged at a position furthest from the magnetic detection element of the magnetic detection component, the magnetic flux density generated by the magnet at the position of the magnetic detection element is 1 mT or more. This linear position sensor is typically used as a level sensor.
 本発明によれば、磁気検出部品に長尺磁性体の端部を臨ませて配置するとともに、長尺磁性体の両端部間に移動可能にマグネットを配置するので、マグネットの磁束を長尺磁性体により誘導して磁気検出素子で検出でき、長尺磁性体の長さに応じて検出範囲を広くすることができる。 According to the present invention, the end of the long magnetic body is placed facing the magnetic detection component, and a magnet is movably placed between both ends of the long magnetic body, so that the magnetic flux of the magnet can be induced by the long magnetic body and detected by the magnetic detection element, and the detection range can be expanded according to the length of the long magnetic body.
 長尺磁性体はマグネットを内包した枠体により支持されているので、長尺磁性体を長く形成しても磁気検出部品に対して安定して配置できる。従って検出範囲を広くしても磁気検出部品の磁気検出素子により精度よくマグネットの位置を検出できる。 The long magnetic body is supported by a frame that contains a magnet, so even if the long magnetic body is long, it can be stably positioned relative to the magnetic detection component. Therefore, even if the detection range is wide, the position of the magnet can be detected with high accuracy by the magnetic detection element of the magnetic detection component.
 特に枠体に弾性部が設けられ、この弾性部により長尺磁性体の端部と磁気検出部品の磁気検出素子とが所定間隔を維持するように付勢されているので、枠部に熱膨張や熱収縮が生じても、長尺磁性体の端部と磁気検出素子との間の距離を一定に保つことができ、検出精度が向上する。 In particular, the frame is provided with an elastic portion that biases the end of the long magnetic body and the magnetic detection element of the magnetic detection component to maintain a predetermined distance. This means that even if thermal expansion or contraction occurs in the frame, the distance between the end of the long magnetic body and the magnetic detection element can be kept constant, improving detection accuracy.
 従って、本発明によれば、検出範囲を広くできるとともに使用条件が変動しても検出精度にバラツキが生じ難く、精度よく安定して検出可能なリニア位置センサ及びレベルセンサを提供することができる。 Therefore, the present invention can provide a linear position sensor and a level sensor that can provide a wide detection range, are less susceptible to variations in detection accuracy even when the conditions of use change, and are capable of accurate and stable detection.
 この発明のリニア位置センサにおいて、長尺磁性体の各端部に対向して2つの磁気検出部品を備えていて、長尺磁性体の両端部が各磁気検出部品に臨ませて配置されていれば、長尺磁性体の両端部で磁束を検出できるので、より長い長尺磁性体を用いることができ、検出範囲がより広くなる。 In the linear position sensor of this invention, if two magnetic detection components are provided facing each end of the long magnetic body and both ends of the long magnetic body are positioned facing each magnetic detection component, magnetic flux can be detected at both ends of the long magnetic body, allowing a longer long magnetic body to be used and resulting in a wider detection range.
 弾性部によって長尺磁性体の両端部と各磁気検出素子とが所定間隔を維持するように付勢されていれば、長尺磁性体の両端部に磁気検出部品が配設されていても、枠部に熱膨張や熱収縮が生じた際に各磁気検出部品の磁気検出素子と長尺磁性体の端部との間の距離を一定に保つことができる。 If the elastic portion is biased to maintain a predetermined distance between both ends of the long magnetic body and each magnetic detection element, even if magnetic detection components are disposed at both ends of the long magnetic body, the distance between the magnetic detection element of each magnetic detection component and the ends of the long magnetic body can be kept constant when thermal expansion or contraction occurs in the frame portion.
 この発明のリニア位置センサにおいて、枠体が長尺磁性体の端部を所定位置に支持する受部を有していれば、長尺磁性体の端部が磁気検出部品に対して横方向に位置ズレすることが防止される。また長尺磁性体と磁気検出素子の間に間隔を設けることができ、マグネットから磁気検出素子に検出範囲を超えるような磁束が負荷されることも防止でき、安定して精度良く検出することができる。 In the linear position sensor of this invention, if the frame has a receiving portion that supports the end of the long magnetic body in a predetermined position, the end of the long magnetic body is prevented from shifting sideways relative to the magnetic detection component. In addition, a gap can be provided between the long magnetic body and the magnetic detection element, which prevents the magnetic detection element from being loaded with magnetic flux that exceeds the detection range from the magnet, allowing for stable and accurate detection.
 この発明のリニア位置センサにおいて、長尺磁性体を収容する長尺パイプを有し、長尺パイプが長尺磁性体とは非接合状態で枠体に固定されていれば、長尺磁性体が微少変位し易く、枠体に生じる熱変形や振動等が直接伝わることが一層防止される。 In the linear position sensor of this invention, if a long pipe is provided to house the long magnetic body and the long pipe is fixed to the frame in a non-jointed state with the long magnetic body, the long magnetic body is more likely to undergo slight displacement, and thermal deformation and vibrations that occur in the frame are further prevented from being directly transmitted.
本発明の第1実施形態に係るレベルセンサの斜視図である。1 is a perspective view of a level sensor according to a first embodiment of the present invention; 本発明の第1実施形態に係るレベルセンサの縦断面図である。1 is a vertical sectional view of a level sensor according to a first embodiment of the present invention; 図2のA-A横断面を示す拡大断面図である。FIG. 3 is an enlarged cross-sectional view showing the AA cross section of FIG. 2. 本発明の実施形態に係るレベルセンサのベース部の拡大縦断面である。4 is an enlarged vertical cross-sectional view of a base portion of a level sensor according to an embodiment of the present invention. 本発明の実施形態に係るレベルセンサの頂部側の縦断面である。1 is a vertical cross-section of the top side of a level sensor according to an embodiment of the present invention. 第1実施形態に係るレベルセンサの変形例を示す頂部側の縦断面図であり、バネ部に圧縮バネを用いた例を示す。FIG. 13 is a vertical cross-sectional view of the top side showing a modified example of the level sensor according to the first embodiment, illustrating an example in which a compression spring is used for the spring portion. 第1実施形態に係るレベルセンサの変形例を示す頂部側の縦断面図であり、バネ部に弾性を有する樹脂成形体を用いた例を示す。FIG. 13 is a vertical cross-sectional view of the top side showing a modified example of the level sensor according to the first embodiment, illustrating an example in which an elastic resin molded body is used for the spring portion. 本発明の第2実施形態に係るレベルセンサの縦断面図である。FIG. 6 is a vertical sectional view of a level sensor according to a second embodiment of the present invention. 本発明の第3実施形態に係るレベルセンサの縦断面図である。FIG. 11 is a vertical sectional view of a level sensor according to a third embodiment of the present invention. 第3実施形態の変形例に係るレベルセンサの縦断面図である。FIG. 13 is a vertical cross-sectional view of a level sensor according to a modified example of the third embodiment. 本発明の第4実施形態に係るレベルセンサの縦断面図である。FIG. 10 is a vertical sectional view of a level sensor according to a fourth embodiment of the present invention. 本発明の第5実施形態に係るレベルセンサの縦断面図である。FIG. 13 is a vertical cross-sectional view of a level sensor according to a fifth embodiment of the present invention. 図8(A)の部分拡大図である。FIG. 8B is a partially enlarged view of FIG. 8A. 実施例1の結果を示すグラフである。1 is a graph showing the results of Example 1. 実施例1で用いたPBパーマロイからなる長尺磁性体の磁化曲線を示す図である。FIG. 2 is a diagram showing a magnetization curve of a long magnetic body made of PB Permalloy used in Example 1. 実施例1で用いたPCパーマロイからなる長尺磁性体の磁化曲線を示す図である。FIG. 2 is a diagram showing a magnetization curve of a long magnetic body made of PC Permalloy used in Example 1. 実施例1で用いたパーメンジュールからなる長尺磁性体の磁化曲線を示す図である。FIG. 2 is a diagram showing a magnetization curve of a long magnetic body made of permendur used in Example 1. 実施例1で用いたソフトフェライトからなる長尺磁性体の磁化曲線を示す図である。FIG. 2 is a diagram showing a magnetization curve of a long magnetic body made of soft ferrite used in Example 1. 実施例2及び参考例1の結果を示すグラフである。1 is a graph showing the results of Example 2 and Reference Example 1. 実施例3の結果を示すグラフである。1 is a graph showing the results of Example 3. 実施例4乃至実施例6の結果を示すグラフである。1 is a graph showing the results of Examples 4 to 6. 実施例7のレベルセンサの磁束密度を示す図である。FIG. 13 is a diagram showing the magnetic flux density of the level sensor of the seventh embodiment. 実施例7のレベルセンサの出力電圧を示す図である。FIG. 13 is a diagram showing an output voltage of the level sensor of the seventh embodiment. 実施例8のレベルセンサの出力電圧を示す図である。FIG. 23 is a diagram showing the output voltage of the level sensor of the eighth embodiment. 参考例2の結果を示すグラフである。1 is a graph showing the results of Reference Example 2. 参考例3の結果を示すグラフである。1 is a graph showing the results of Reference Example 3.
 以下、本発明の実施形態について図を用いて詳細に説明する。この実施形態では、図1及び図2に示すようにリニア位置センサを、容器内に配設された液面検知用レベルセンサとして説明する。 Below, an embodiment of the present invention will be described in detail with reference to the drawings. In this embodiment, as shown in Figures 1 and 2, a linear position sensor will be described as a level sensor for detecting the liquid level disposed in a container.
 レベルセンサ10は、基本的には、磁気検出部品18と長尺磁性体12とマグネット15と枠体20とを備える。磁気検出部品18は、磁気検出素子18dを内包する磁気センサ18cを基板27に取り付けた状態で構成される。長尺磁性体12は磁気検出部品18の磁気センサ18cに図1において上端部を臨ませて対向配置される。マグネット15は長尺磁性体12を囲んで配置され長尺磁性体12の両端部間を移動可能に配置される。枠体20は磁気検出部品18に対して長尺磁性体12を支持するとともにマグネット15を内包する。枠体20は、具体的には、磁気検出部品18を収容して固定したベース部11と、一端側でベース部11に固定されると共に、他端側で長尺磁性体12の下端側を支持する剛性枠部21と、剛性枠部21の一端側又は他端側に配置され、長尺磁性体12の端部と磁気検出部品18の磁気検出素子18dとを所定間隔を維持するように付勢する弾性部23と、を備えている。 The level sensor 10 basically comprises a magnetic detection component 18, an elongated magnetic body 12, a magnet 15, and a frame 20. The magnetic detection component 18 is configured with a magnetic sensor 18c containing a magnetic detection element 18d attached to a substrate 27. The elongated magnetic body 12 is arranged facing the magnetic sensor 18c of the magnetic detection component 18 with its upper end facing the magnetic sensor 18c in Figure 1. The magnet 15 is arranged surrounding the elongated magnetic body 12 and is arranged so as to be movable between both ends of the elongated magnetic body 12. The frame 20 supports the elongated magnetic body 12 with respect to the magnetic detection component 18, and contains the magnet 15. Specifically, the frame 20 includes a base portion 11 that houses and fixes the magnetic detection component 18, a rigid frame portion 21 that is fixed to the base portion 11 at one end and supports the lower end of the long magnetic body 12 at the other end, and an elastic portion 23 that is disposed at one or the other end of the rigid frame portion 21 and biases the end of the long magnetic body 12 and the magnetic detection element 18d of the magnetic detection component 18 to maintain a predetermined distance.
 長尺磁性体12は、長尺パイプ29の内部に収容されてステム部13を構成する。長尺磁性体12は、長尺パイプ29に収容された状態で、上端部がベース部11の磁気検出部品18に対向配置され、弾性部23の弾性により付勢される。 The long magnetic body 12 is housed inside the long pipe 29 to form the stem portion 13. When housed in the long pipe 29, the top end of the long magnetic body 12 is disposed opposite the magnetic detection component 18 of the base portion 11 and is biased by the elasticity of the elastic portion 23.
 マグネット15は、スライダとしてのフロート16に支持される。フロート16は剛性枠部21に移動可能に囲まれてステム部13及び長尺磁性体12に沿って移動可能に配置される。フロート16が検出対象の動きや増減などの移動に伴い長尺磁性体12の両端部間を移動することで、長尺磁性体12により誘導されたマグネット15の磁束が磁気検出部品18により検出される。 The magnet 15 is supported by a float 16 that acts as a slider. The float 16 is movably surrounded by a rigid frame 21 and is arranged to be movable along the stem 13 and the long magnetic body 12. As the float 16 moves between both ends of the long magnetic body 12 in response to the movement of the detection target, such as movement or increase or decrease in weight, the magnetic flux of the magnet 15 induced by the long magnetic body 12 is detected by the magnetic detection component 18.
 ベース部11は、図2及び図3Bに示すように、各種形状に形成された樹脂製のハウジング25を有し、磁気検出部品18がハウジング25内に固定される。本実施形態のベース部11はハウジング25内に磁気検出部品18を収容して樹脂封止される。磁気検出部品18の出力18aが基板27から導線として外部に引き出される。ベース部11には取付用のフランジ部11aが設けられ、フランジ部11aにステム部13及び剛性枠部21が突出して設けられ、フランジ部11aの外側には基板27から図示しない制御部等に接続するための出力18aがコネクタ18bにより液密に引き出される。 As shown in Figures 2 and 3B, the base portion 11 has a resin housing 25 formed into various shapes, and the magnetic detection component 18 is fixed inside the housing 25. In this embodiment, the base portion 11 is sealed with resin, with the magnetic detection component 18 housed inside the housing 25. The output 18a of the magnetic detection component 18 is drawn to the outside from the board 27 as a conductor. The base portion 11 is provided with a flange portion 11a for mounting, and the stem portion 13 and rigid frame portion 21 are provided to protrude from the flange portion 11a, and the output 18a for connecting to a control unit (not shown) is drawn liquid-tightly from the board 27 to the outside of the flange portion 11a by a connector 18b.
 ベース部11のハウジング25には、長尺磁性体12の一端部を嵌合して所定位置に支持する受部23bが設けられる。受部23bは、ハウジング25の壁面に凹形状に設けられる。受部23bは長尺磁性体12の端部の形状に対応する形状を有する。受部23bに長尺磁性体12の先端を挿入して嵌合した状態では、長尺磁性体12の先端が受部23bの底部に当接するとともに、横方向、即ち、挿入方向と直交する方向には位置ズレが全く生じない状態で配置される。受部23bは、貫通して開口することで、長尺磁性体12の上端が磁気検出部品18の磁気センサ18cに対して当接して配置されてもよい。また受部23bに底部壁が設けられてもよく、さらに受部23bの底部壁と磁気検出部品18の磁気センサ18cとの間に空気又は樹脂が存在してもよい。これにより長尺磁性体12の上端と磁気検出部品18の磁気検出素子18dとを所定の間隔で対向して配置できる。 The housing 25 of the base portion 11 is provided with a receiving portion 23b that fits one end of the long magnetic body 12 to support it in a predetermined position. The receiving portion 23b is provided in a concave shape on the wall surface of the housing 25. The receiving portion 23b has a shape corresponding to the shape of the end of the long magnetic body 12. When the tip of the long magnetic body 12 is inserted into the receiving portion 23b and fitted, the tip of the long magnetic body 12 abuts the bottom of the receiving portion 23b and is arranged without any positional deviation in the horizontal direction, i.e., in the direction perpendicular to the insertion direction. The receiving portion 23b may be opened through and arranged so that the upper end of the long magnetic body 12 abuts against the magnetic sensor 18c of the magnetic detection component 18. The receiving portion 23b may also be provided with a bottom wall, and air or resin may be present between the bottom wall of the receiving portion 23b and the magnetic sensor 18c of the magnetic detection component 18. This allows the upper end of the long magnetic body 12 and the magnetic detection element 18d of the magnetic detection component 18 to be positioned facing each other at a specified distance.
 長尺磁性体12の端部と磁気検出部品18の磁気センサ18cとの間に空気又は樹脂が存在することにより、磁気検出部品18の磁気センサ18cの表面に長尺磁性体12の先端を直接当接させることなく離間させて配置し得る。そのため、長尺磁性体12の端部から過剰な応力を受けることが防止され、磁気検出部品18の磁気センサ18cを保護できる。同時に長尺磁性体12の先端と磁気センサ18cに内包された磁気検出素子18dとの間に間隔を設けて一定に保つことで、フロート16のマグネット15が磁気検出素子18dに最接近した際に磁気検出素子18dに検出範囲を超えるような磁束が負荷されることを防止できるとともに、磁気検出部品18により検出される磁束のバラツキを抑えることができる。 By having air or resin between the end of the long magnetic body 12 and the magnetic sensor 18c of the magnetic detection component 18, the tip of the long magnetic body 12 can be arranged apart from the surface of the magnetic sensor 18c of the magnetic detection component 18 without directly contacting the surface. This prevents the end of the long magnetic body 12 from receiving excessive stress, and protects the magnetic sensor 18c of the magnetic detection component 18. At the same time, by providing a constant gap between the tip of the long magnetic body 12 and the magnetic detection element 18d contained in the magnetic sensor 18c, it is possible to prevent the magnetic detection element 18d from being loaded with a magnetic flux that exceeds the detection range when the magnet 15 of the float 16 approaches the magnetic detection element 18d, and to suppress variation in the magnetic flux detected by the magnetic detection component 18.
 磁気センサ18cの磁気検出素子18dは電磁変換素子を用いることができ、具体的には、ホール素子が好適である。リニア位置センサが液面センサ又は液面センサのようなレベルセンサの場合には、磁気検出素子18dを内包した磁気センサ18cとしてリニアホールIC等が好適に使用できる。後述するように、液面のレベルとリニアホールICとの直線性が良好でない場合には、プログラマブルホールICを用いることができる。プログラマブルホールICは、EEPROM素子等を備え、液面のレベルとリニアホールICの出力を直線に補正する機能を有する。本実施形態では、磁束変化を近似式により線形化して出力できるプログラマブルホールICを用いる。 The magnetic detection element 18d of the magnetic sensor 18c can be an electromagnetic conversion element, and specifically, a Hall element is preferable. If the linear position sensor is a liquid level sensor or a level sensor such as a liquid level sensor, a linear Hall IC or the like can be preferably used as the magnetic sensor 18c incorporating the magnetic detection element 18d. As will be described later, if the linearity between the liquid level and the linear Hall IC is not good, a programmable Hall IC can be used. The programmable Hall IC includes an EEPROM element or the like and has the function of correcting the liquid level and the output of the linear Hall IC to a straight line. In this embodiment, a programmable Hall IC is used that can linearize the magnetic flux change using an approximation formula and output it.
 ステム部13は、図2及び図3Aに示すように、長尺パイプ29と長尺磁性体12とを有する。長尺パイプ29は一端部(上端部とも呼ぶ)がベース部11に固定され、他端部(下端部とも呼ぶ)が剛性枠部21に固定される。長尺磁性体12は長尺パイプ29内に収容された状態でステム部13に沿って配置され、長尺パイプ29と非接合状態で支持される。 As shown in Figures 2 and 3A, the stem portion 13 has a long pipe 29 and a long magnetic body 12. One end (also called the upper end) of the long pipe 29 is fixed to the base portion 11, and the other end (also called the lower end) is fixed to the rigid frame portion 21. The long magnetic body 12 is placed along the stem portion 13 while being housed within the long pipe 29, and is supported in a non-jointed state with the long pipe 29.
 長尺パイプ29は、例えば樹脂等により長尺磁性体12と同等の長さに形成され、横断面が略一定の概略円筒形状である。このステム部13にはフロート16が移動可能な少なくとも30mm以上、好ましくは40mm以上の検出領域、特に好ましくは100mm以上の検出領域が設けられる。検出領域を区画するために各端部にストッパ等を配置してもよいが、本実施形態では、フロート16がベース部11と当接する位置と、剛性枠部21の内側端部と当接する位置との間の全長で検出領域を画成する。図2及び図3Cに示すように、長尺パイプ29の外周面には、軸方向に延びるリブ29aが複数設けられる。これはフロート16と長尺パイプ29とが接触した際に摺動抵抗を少なくするためである。各リブ間は閉塞されても、内外に貫通した開口であってもよい。 The long pipe 29 is formed of, for example, resin, etc., to the same length as the long magnetic body 12, and has a generally cylindrical shape with a substantially constant cross section. The stem portion 13 is provided with a detection area of at least 30 mm or more, preferably 40 mm or more, and particularly preferably 100 mm or more, in which the float 16 can move. Although stoppers or the like may be placed at each end to divide the detection area, in this embodiment, the detection area is defined by the entire length between the position where the float 16 abuts against the base portion 11 and the position where it abuts against the inner end of the rigid frame portion 21. As shown in Figures 2 and 3C, a plurality of ribs 29a extending in the axial direction are provided on the outer circumferential surface of the long pipe 29. This is to reduce sliding resistance when the float 16 and the long pipe 29 come into contact. The spaces between the ribs may be closed or may be open, penetrating from the inside to the outside.
 長尺パイプ29の内側には、内部支持片23cが、長尺磁性体12を囲む複数位置に、長尺磁性体12の外周に非接合状態で当接するように突出して設けられる。複数の内部支持片23cにより長尺磁性体12は長手方向に移動可能な状態で長尺パイプ29内の中心等の径方向の所定位置に配置されて、径方向に弾性支持される。 The internal support pieces 23c are provided on the inside of the long pipe 29 at multiple positions surrounding the long magnetic body 12, protruding so as to abut the outer periphery of the long magnetic body 12 in a non-bonded state. The multiple internal support pieces 23c position the long magnetic body 12 at a predetermined radial position, such as the center of the long pipe 29, while allowing it to move in the longitudinal direction, and elastically support it in the radial direction.
 フロート16の貫通孔16aには、環状に形成されたステム部13が挿通される。貫通孔16aにステム部13の長尺パイプ29を挿通した状態では、ステム部13に対して径方向に過剰にガタつかない範囲でフロート16がステム部13の軸線方向に滑らかにスライド可能である。フロート16の他の形状及び材質などは、マグネット15を支持した状態で、検出対象の液体の液面に浮くものあれば特に限定されない。 The annular stem portion 13 is inserted into the through hole 16a of the float 16. When the long pipe 29 of the stem portion 13 is inserted into the through hole 16a, the float 16 can slide smoothly in the axial direction of the stem portion 13 without excessive rattling in the radial direction relative to the stem portion 13. There are no particular limitations on the shape and material of the float 16, as long as it floats on the surface of the liquid to be detected while supporting the magnet 15.
 フロート16に支持されたマグネット15は、ネオジムなどの強力な磁石が好ましく、両極がフロート16の貫通孔16aの軸方向に沿って配置され、例えば貫通孔16aを囲む環状に形成される。マグネットは、貫通孔16aの軸方向に沿って延びる1又は複数の塊状又は棒状に形成されてもよい。 The magnet 15 supported by the float 16 is preferably a strong magnet such as neodymium, with both poles arranged along the axial direction of the through hole 16a of the float 16, for example formed in a ring shape surrounding the through hole 16a. The magnet may be formed in one or more chunks or rods extending along the axial direction of the through hole 16a.
 例えばフロート16が検出領域における磁気検出部品18の磁気検出素子18dから最も離間した位置に配置された状態において、マグネット15により得られる磁気検出素子18d位置の磁束密度は好ましくは1mT以上である。 For example, when the float 16 is positioned at the farthest position from the magnetic detection element 18d of the magnetic detection component 18 in the detection area, the magnetic flux density at the position of the magnetic detection element 18d obtained by the magnet 15 is preferably 1 mT or more.
 長尺磁性体12は、フロート16に支持されたマグネット15の磁束を磁気検出部品18の磁気検出素子18dに誘導し、例えば飽和磁束密度が0.65T以上、保磁力が12A/m以下であって、磁束密度5から15mTにおける透磁率が3000以上の軟磁性材料からなる。長尺磁性体12の保磁力を12A/m以下とするのは、液面位が上昇する際と下降する際とで検出位置にズレを生じ難くするためであり、長尺磁性体12の飽和磁束密度を0.65T以上とし、かつ、磁束密度5から15mTにおける透磁率を3000以上とするのは、検出範囲を拡大するためである。 The long magnetic body 12 induces the magnetic flux of the magnet 15 supported by the float 16 to the magnetic detection element 18d of the magnetic detection component 18, and is made of a soft magnetic material with, for example, a saturation magnetic flux density of 0.65 T or more, a coercive force of 12 A/m or less, and a magnetic permeability of 3000 or more at a magnetic flux density of 5 to 15 mT. The reason why the coercive force of the long magnetic body 12 is set to 12 A/m or less is to prevent the detection position from shifting when the liquid level rises and falls, and the reason why the saturation magnetic flux density of the long magnetic body 12 is set to 0.65 T or more and the magnetic permeability of 3000 or more at a magnetic flux density of 5 to 15 mT is to expand the detection range.
 検出位置のズレは、長尺磁性体12の保磁力、所謂ヒステリシスに依存し、検出位置のズレを生じ難くするためには保磁力が12A/m以下、より好ましくは4A/m以下とする。保磁力が4A/m以下では、検出範囲が100mm程度の場合に検出位置のズレは殆ど生じない。なお、保磁力が20A/mでは、検出範囲が100mm程度の場合に検出位置のズレは例えば10%程度であり、検出位置のズレが生じ好ましくない。保磁力が20A/m以上では検出位置のズレはより大きくなるが、検出位置のズレが問題とならない場合、例えば、液位がゼロ、中間、最大のような検知の場合には使用することができる。 The deviation of the detection position depends on the coercive force of the long magnetic body 12, or what is called hysteresis, and in order to make deviation of the detection position less likely to occur, the coercive force is set to 12 A/m or less, and more preferably 4 A/m or less. If the coercive force is 4 A/m or less, there is almost no deviation of the detection position when the detection range is about 100 mm. If the coercive force is 20 A/m, the deviation of the detection position is, for example, about 10% when the detection range is about 100 mm, and deviation of the detection position occurs, which is undesirable. If the coercive force is 20 A/m or more, the deviation of the detection position becomes larger, but it can be used when the deviation of the detection position is not a problem, for example, when detecting liquid levels at zero, intermediate, or maximum.
 レベルセンサ10の検出範囲を拡大するには、磁気検出部品18の磁気検出素子18dの位置に生ずる磁束密度の量を大きくする必要がある。長尺磁性体12に用いる軟磁性材料を電磁界解析ソフトウェアにより検討した結果、検出範囲の拡大には、長尺磁性体12に用いる軟磁性材料が十分大きな飽和磁束密度を持っていることと、初透磁率が小さくとも磁気検出素子18dで検出できる磁束密度の最小値近辺において十分な透磁率を備えること、が有効であることが判明した。検出範囲を100mm程度としたときに磁気検出素子18dの端部の位置に表面磁束密度として1から3mT程度が生じるときの長尺磁性体12の透磁率を求めた。具体的には、長尺磁性体12の端部に生じる表面磁束密度が5から15mTにおける透磁率を算出した。これにより、検出範囲を拡大するためには、長尺磁性体12に用いる軟磁性材料として、飽和磁束密度を0.65T以上とし、磁束密度5から15mTにおける透磁率は3000以上が必要であることが判明した。この条件を満たす軟磁性材料は、例えばPBパーマロイ、PCパーマロイ、パーメンジュール等である。後述するように、ソフトフェライトでは、検出範囲を100mm程度に拡大するのは困難であった。 In order to expand the detection range of the level sensor 10, it is necessary to increase the amount of magnetic flux density generated at the position of the magnetic detection element 18d of the magnetic detection component 18. As a result of examining the soft magnetic material used for the long magnetic body 12 using electromagnetic field analysis software, it was found that in order to expand the detection range, it is effective for the soft magnetic material used for the long magnetic body 12 to have a sufficiently large saturation magnetic flux density and to have sufficient magnetic permeability near the minimum value of magnetic flux density that can be detected by the magnetic detection element 18d even if the initial permeability is small. The magnetic permeability of the long magnetic body 12 was calculated when a surface magnetic flux density of about 1 to 3 mT was generated at the end position of the magnetic detection element 18d when the detection range was about 100 mm. Specifically, the magnetic permeability was calculated when the surface magnetic flux density generated at the end of the long magnetic body 12 was 5 to 15 mT. This revealed that in order to expand the detection range, the soft magnetic material used for the long magnetic body 12 must have a saturation magnetic flux density of 0.65 T or more and a magnetic permeability of 3000 or more at a magnetic flux density of 5 to 15 mT. Soft magnetic materials that meet this condition include, for example, PB permalloy, PC permalloy, and permendur. As will be described later, it was difficult to expand the detection range to about 100 mm with soft ferrite.
 長尺磁性体12としては、JISC2531:1999に準拠した直流磁気特性を有する磁気等級06のPBパーマロイ、磁気等級30のPCパーマロイ、これらのパーマロイと同等以上の透磁率及び飽和磁束密度を有して同等以下の保磁力を有する鉄ニッケル磁性材料、センダスト、アモルファス磁性材料、ナノ結晶磁性材料などが挙げられる。PBパーマロイとしては、Niが42-49質量%、残部がFeの組成が挙げられる。PCパーマロイとしては、Niが75-78質量%,Crが2-3質量%,Cuが4-6質量%,残部がFe、Niが75-80質量%,Cuが1-6質量%,Moが3.5-6質量%,残部がFe、Niが79-82質量%,Moが3.5-6質量%,残部がFeのような組成が挙げられる。 The long magnetic body 12 may be PB permalloy with magnetic grade 06 having DC magnetic properties conforming to JIS C2531:1999, PC permalloy with magnetic grade 30, iron-nickel magnetic materials with permeability and saturation magnetic flux density equal to or higher than these permalloys and coercivity equal to or lower than these permalloys, sendust, amorphous magnetic materials, nanocrystalline magnetic materials, etc. PB permalloy may be a composition of 42-49% Ni by mass, the remainder being Fe. PC permalloy may be a composition of 75-78% Ni by mass, 2-3% Cr by mass, 4-6% Cu by mass, the remainder being Fe, 75-80% Ni by mass, 1-6% Cu by mass, 3.5-6% Mo by mass, the remainder being Fe, 79-82% Ni by mass, 3.5-6% Mo by mass, the remainder being Fe.
 長尺磁性体12は、円柱形状、角柱形状、板状、帯状など各種のものが使用可能であるが、柱状形状は断面積を大きくでき、飽和磁束密度が大きくなり、磁気検出素子18dに届く磁束密度が大きくなる。 The long magnetic body 12 can be in a variety of shapes, including cylindrical, prismatic, plate-like, and strip-like shapes, but a cylindrical shape allows for a larger cross-sectional area, which increases the saturation magnetic flux density and the magnetic flux density that reaches the magnetic detection element 18d.
 長尺磁性体12の端部は球面、テーパー面、錐面等の先細り形状を有してもよい。このようにすれば端部の狭い範囲に磁束が集中するため、磁気検出素子18dに届く磁束密度のピークを大きくできる。 The end of the long magnetic body 12 may have a tapered shape such as a spherical surface, a tapered surface, or a conical surface. In this way, the magnetic flux is concentrated in a narrow area at the end, so the peak of the magnetic flux density that reaches the magnetic detection element 18d can be increased.
 剛性枠部21は、図2及び図3B及び図3Cに示すように、一端側がベース部11に固定されフロート16の周囲を囲んで長尺磁性体12に沿って配置された複数本の枠板21aと、複数本の枠板21aの他端側が連結した連結部21bと、を有し、連結部21bによりステム部13の他端側が支持される。枠板21aはフロート16の周囲の少なくとも2方向、好ましくは3方向以上の位置に配置され、それぞれが長尺パイプ29より剛性の板形状に形成される。複数の枠板21aはベース部11側で一体に連結されてもよい。各枠板21aは、連結部21bを除き、長尺パイプ29から離間した位置に配置される。特に限定されないが、各枠板21aは例えば長尺パイプ29との間の距離が長尺パイプ29の直径の2倍から6倍となるように配置されてもよい。本実施形態では、枠板21aは、長尺パイプ29の直径より幅広であるとともに長尺パイプ29以上の厚みの断面弧形状に形成され、フロート16の周囲の4方向でそれぞれ長尺パイプ29と略平行に配置されて、連結部21bを変位不能に支持している。 2, 3B, and 3C, the rigid frame portion 21 has a plurality of frame plates 21a fixed at one end to the base portion 11 and arranged along the long magnetic body 12 surrounding the periphery of the float 16, and a connecting portion 21b to which the other end sides of the plurality of frame plates 21a are connected, and the other end side of the stem portion 13 is supported by the connecting portion 21b. The frame plates 21a are arranged in at least two directions, preferably three or more directions, around the periphery of the float 16, and each is formed into a plate shape that is more rigid than the long pipe 29. The plurality of frame plates 21a may be connected together on the base portion 11 side. Each frame plate 21a is arranged at a position spaced apart from the long pipe 29, except for the connecting portion 21b. Although not particularly limited, each frame plate 21a may be arranged so that the distance between the frame plate 21a and the long pipe 29 is, for example, two to six times the diameter of the long pipe 29. In this embodiment, the frame plate 21a is formed with an arc-shaped cross section that is wider than the diameter of the long pipe 29 and thicker than the long pipe 29, and is arranged approximately parallel to the long pipe 29 in each of the four directions around the float 16, supporting the connecting part 21b so that it cannot be displaced.
 弾性部23は図3Cに示すように、長尺磁性体12をベース部11に対して弾性力により押圧する。本実施形態では、長尺パイプ29がベース部11のハウジング25と剛性枠部21の連結部21bとに設けられた溝や凹部等に嵌合して固定され、この長尺パイプ29内に収容された長尺磁性体12が弾性により押圧される。本実施形態の弾性部23として、バネ部23aが剛性枠部21の連結部21bに設けられ、長尺磁性体12の一端部を磁気検出部品18側に押し付けるようにしてこの長尺磁性体12の他端部を付勢する。 As shown in FIG. 3C, the elastic portion 23 presses the long magnetic body 12 against the base portion 11 by elastic force. In this embodiment, the long pipe 29 is fitted and fixed in a groove or recess provided in the housing 25 of the base portion 11 and the connecting portion 21b of the rigid frame portion 21, and the long magnetic body 12 housed in this long pipe 29 is pressed by elastic force. As the elastic portion 23 in this embodiment, a spring portion 23a is provided in the connecting portion 21b of the rigid frame portion 21, and it urges one end of the long magnetic body 12 against the magnetic detection component 18, thereby urging the other end of the long magnetic body 12.
 バネ部23aは、剛性枠部21の連結部21bに設けられた弾性変形可能な板バネ24aで構成される。バネ部23aは、例えば長尺パイプ29又は剛性枠部21が樹脂製の場合には所望の弾性力が得られればこれと一体に形成できる。バネ部23aは、図3Cに示す板バネ24aに特に限定されず、図4Aに示すコイルバネからなる圧縮バネ24bであってもよい。この圧縮バネ24bは、剛性枠部21の連結部21bと長尺磁性体12の他端部との間に配置されて長尺磁性体12を長手方向に付勢する。また、例えば図4Bに示すように、バネ部23aは弾性を有する樹脂成形体24cにより形成し得る。樹脂成形体24cには、剛性枠部21の連結部21bに配置されて長尺磁性体12を付勢する加圧部24dと、長尺磁性体12の他端部が挿入される受部24eと、が一体に設けられる。或いは、コイルバネや皿バネなどでもよく、弾性を有する樹脂や弾性を有する非磁性の金属材料等の各種材料も使用可能である。 The spring portion 23a is composed of an elastically deformable leaf spring 24a provided at the connecting portion 21b of the rigid frame portion 21. For example, if the long pipe 29 or the rigid frame portion 21 is made of resin, the spring portion 23a can be formed integrally with it as long as the desired elastic force is obtained. The spring portion 23a is not particularly limited to the leaf spring 24a shown in FIG. 3C, but may be a compression spring 24b consisting of a coil spring shown in FIG. 4A. This compression spring 24b is disposed between the connecting portion 21b of the rigid frame portion 21 and the other end of the long magnetic body 12 to bias the long magnetic body 12 in the longitudinal direction. Also, for example, as shown in FIG. 4B, the spring portion 23a may be formed of an elastic resin molded body 24c. The resin molded body 24c is integrally provided with a pressure applying portion 24d that is disposed at the connecting portion 21b of the rigid frame portion 21 and applies pressure to the long magnetic body 12, and a receiving portion 24e into which the other end of the long magnetic body 12 is inserted. Alternatively, a coil spring or a coned disc spring may be used, and various materials such as elastic resins and elastic non-magnetic metal materials may also be used.
 このようなバネ部23aにより、長尺磁性体12を磁気検出部品18側に押し付ける方向に付勢すれば、長尺パイプ29や剛性枠部21に熱膨張や熱収縮が生じても、長尺磁性体12の端部を十分な圧力で磁気検出部品18側に押し付けることができ、長尺磁性体12の端部と磁気検出素子18dとの間の間隔を精度よく一定に保つことができる。 If such a spring portion 23a is used to bias the long magnetic body 12 in a direction pressing it against the magnetic detection component 18, the end of the long magnetic body 12 can be pressed against the magnetic detection component 18 with sufficient pressure even if thermal expansion or contraction occurs in the long pipe 29 or the rigid frame portion 21, and the distance between the end of the long magnetic body 12 and the magnetic detection element 18d can be kept constant with high precision.
 以上述べたレベルセンサ10は、フランジ部11aを用いてタンク等の液体貯留部の底壁や蓋壁などに装着され、例えばステム部13が上下方向に配置されて使用される。フランジ部11aにはパッキン等により液密構造に構成される。 The level sensor 10 described above is attached to the bottom wall or lid wall of a liquid storage unit such as a tank using the flange portion 11a, and is used with the stem portion 13 positioned vertically, for example. The flange portion 11a is configured with a packing or the like to provide a liquid-tight structure.
 液体貯留部に液体が貯まると、液面位に応じてフロート16が昇降し、フロート16に支持されたマグネット15の磁束が長尺磁性体12に誘導され、長尺磁性体12の端部に配置された磁気検出素子18dにより検出され、磁束に対応した検出信号が基板27から外部に伝達される。このとき長尺磁性体12の検出領域全体でマグネット15の位置に対応した磁束が検出できるため、検出領域全体で液面位を連続的に検出することができる。特に本実施形態では、磁気検出部品18により線形化されて検出されるため、液面位に対応した検出信号が得られる。 When liquid accumulates in the liquid storage section, the float 16 rises and falls according to the liquid level, and the magnetic flux of the magnet 15 supported by the float 16 is induced into the long magnetic body 12 and detected by the magnetic detection element 18d arranged at the end of the long magnetic body 12, and a detection signal corresponding to the magnetic flux is transmitted from the substrate 27 to the outside. At this time, the magnetic flux corresponding to the position of the magnet 15 can be detected throughout the entire detection area of the long magnetic body 12, so the liquid level can be detected continuously throughout the entire detection area. In particular, in this embodiment, the liquid is linearized and detected by the magnetic detection component 18, so a detection signal corresponding to the liquid level is obtained.
 長尺磁性体12は、飽和磁束密度が0.65T以上、保磁力が12A/m以下であって、磁束密度5から15mTにおける透磁率が3000以上の軟磁性材料からなるため、検出領域を長くでき、しかも液面位の上昇時と下降時とでズレが生じることを防止できる。その結果、何れの方向の液面位の変位であっても精度よく広い範囲で連続的に検出することが可能である。ここで、飽和磁束密度、透磁率及び保磁力は、JISC2531:1999鉄ニッケル軟質磁性材料に記載された測定方法によって求めた値である。 The long magnetic body 12 is made of a soft magnetic material with a saturation magnetic flux density of 0.65 T or more, a coercive force of 12 A/m or less, and a magnetic permeability of 3000 or more at a magnetic flux density of 5 to 15 mT, which allows the detection area to be long and prevents discrepancies between when the liquid level rises and when it falls. As a result, it is possible to detect the displacement of the liquid level in either direction continuously and with high accuracy over a wide range. Here, the saturation magnetic flux density, magnetic permeability, and coercive force are values obtained using the measurement method described in JISC2531:1999 Iron-nickel soft magnetic materials.
 この実施形態のレベルセンサ10では、磁気検出部品18がベース部11に固定され、長尺磁性体12を有するステム部13がベース部11から突出して設けられ、そして磁気検出部品18が長尺磁性体12の一端部に配置される。従って、基板27に取り付けられた磁気検出素子18dに長尺磁性体12の端部を臨ませて配置するとともに、長尺磁性体12の両端部間に移動可能にマグネット15が配置されるので、マグネット15の磁束を長尺磁性体12により誘導して磁気検出部品18で検出でき、長尺磁性体12の長さに応じて検出範囲を広くすることができる。 In the level sensor 10 of this embodiment, the magnetic detection component 18 is fixed to the base portion 11, the stem portion 13 having the long magnetic body 12 is provided so as to protrude from the base portion 11, and the magnetic detection component 18 is disposed at one end of the long magnetic body 12. Therefore, the end of the long magnetic body 12 is disposed facing the magnetic detection element 18d attached to the substrate 27, and the magnet 15 is disposed movably between both ends of the long magnetic body 12, so that the magnetic flux of the magnet 15 can be induced by the long magnetic body 12 and detected by the magnetic detection component 18, and the detection range can be widened according to the length of the long magnetic body 12.
 本発明では長尺磁性体12は長く形成されることができる。これにより、長尺磁性体12がステム部13のベース部11からの突出量が大きくても、ベース部11に固定された剛性枠部21によりステム部13の他端部が固定されて支持されるので、ベース部11に対してステム部13を強固に支持できる。従ってリニア位置センサに振動や加速度等が作用しても、磁気検出部品18に対して長尺磁性体12を安定して配置できる。そのため、磁気検出部品18に対する長尺磁性体12の角度や位置に変動が生じることを防止でき、磁気検出部品18により精度よくフロート16のマグネット15の位置を検出できる。本発明によれば、レベルセンサ10の検出範囲を広くできるとともに、使用条件が変動しても検出精度にバラツキを生じ難くすることが可能である。 In the present invention, the long magnetic body 12 can be formed long. As a result, even if the long magnetic body 12 has a large protrusion amount from the base portion 11 of the stem portion 13, the other end of the stem portion 13 is fixed and supported by the rigid frame portion 21 fixed to the base portion 11, so the stem portion 13 can be firmly supported relative to the base portion 11. Therefore, even if vibration, acceleration, etc. act on the linear position sensor, the long magnetic body 12 can be stably positioned relative to the magnetic detection component 18. Therefore, it is possible to prevent fluctuations in the angle and position of the long magnetic body 12 relative to the magnetic detection component 18, and the magnetic detection component 18 can accurately detect the position of the magnet 15 of the float 16. According to the present invention, the detection range of the level sensor 10 can be widened, and it is possible to reduce the occurrence of variations in detection accuracy even if the usage conditions change.
 このレベルセンサ10には、長尺磁性体12を弾性により支持する弾性部23が設けられ、弾性部23の弾性により長尺磁性体12が剛性枠部21に対して変位可能に支持される。そのため剛性枠部21に生じる熱変形や振動等が、直接長尺磁性体12に伝わることを防止でき、長尺磁性体12により誘導された磁束を磁気検出部品18により精度よく安定して検出することができる。 This level sensor 10 is provided with an elastic section 23 that elastically supports the long magnetic body 12, and the elasticity of the elastic section 23 supports the long magnetic body 12 so that it can be displaced relative to the rigid frame section 21. This prevents thermal deformation and vibrations that occur in the rigid frame section 21 from being directly transmitted to the long magnetic body 12, and allows the magnetic detection component 18 to detect the magnetic flux induced by the long magnetic body 12 with high accuracy and stability.
 本発明では、枠体20に弾性部23が設けられ、弾性部23が長尺磁性体12の一端部と磁気検出部品18の磁気検出素子18dとが所定間隔を維持するように長尺磁性体12の他端部を付勢している。従って長尺パイプ29や剛性枠部21に熱膨張や熱収縮が生じても、長尺磁性体12の一端部を適度な圧力で磁気検出部品18側に押圧できるとともに、長尺磁性体12の端部と磁気検出部品18の磁気検出素子18dとの間の間隔を一定に保って検出精度が向上する。 In the present invention, an elastic portion 23 is provided on the frame 20, and the elastic portion 23 biases the other end of the long magnetic body 12 so that a predetermined distance is maintained between one end of the long magnetic body 12 and the magnetic detection element 18d of the magnetic detection component 18. Therefore, even if thermal expansion or contraction occurs in the long pipe 29 or the rigid frame 21, one end of the long magnetic body 12 can be pressed toward the magnetic detection component 18 with an appropriate pressure, and the distance between the end of the long magnetic body 12 and the magnetic detection element 18d of the magnetic detection component 18 is kept constant, improving detection accuracy.
 このレベルセンサ10は、弾性部23が長尺磁性体12の一端部と磁気検出部品18との間に配置された受部23bを有するので、磁気検出部品18の磁気センサ18cの表面に長尺磁性体12が直接当接せずに、近接した位置で安定して離間される。そのため長尺磁性体12の端部から過剰な応力を受けることなく磁気センサ18cを保護できる。長尺磁性体12と磁気検出部品18の磁気検出素子18dの間に間隔を設けることで、フロート16のマグネット15が磁気検出部品18に最接近した際に磁気検出素子18dに検出範囲を超えるような磁束が負荷されることを防止でき、安定した検出状態が得られる。 In this level sensor 10, the elastic portion 23 has a receiving portion 23b arranged between one end of the long magnetic body 12 and the magnetic detection component 18, so that the long magnetic body 12 does not directly contact the surface of the magnetic sensor 18c of the magnetic detection component 18, but is stably separated at a close position. Therefore, the magnetic sensor 18c can be protected without receiving excessive stress from the end of the long magnetic body 12. By providing a gap between the long magnetic body 12 and the magnetic detection element 18d of the magnetic detection component 18, it is possible to prevent the magnetic detection element 18d from being loaded with a magnetic flux that exceeds the detection range when the magnet 15 of the float 16 is closest to the magnetic detection component 18, and a stable detection state can be obtained.
 このレベルセンサ10は、ステム部13が、長尺磁性体12を収容してフロート16を摺動可能に支持する長尺パイプ29を有し、長尺磁性体12が長尺パイプ29と非接合状態で支持されて枠体20に固定される。そのため長尺磁性体12が微少変位し易く、ベース部11、剛性枠部21、長尺パイプ29等に生じる熱変形や振動等が長尺磁性体12に直接伝わることを一層防止できる。 In this level sensor 10, the stem portion 13 has a long pipe 29 that houses the long magnetic body 12 and slidably supports the float 16, and the long magnetic body 12 is supported in a non-jointed state with the long pipe 29 and fixed to the frame body 20. This makes it easier for the long magnetic body 12 to be slightly displaced, and further prevents thermal deformation and vibrations that occur in the base portion 11, rigid frame portion 21, long pipe 29, etc. from being directly transmitted to the long magnetic body 12.
[第2実施形態]
 図5は第2実施形態のレベルセンサ10の一例を示す。このレベルセンサ10は、2つの磁気検出部品18x,18yを備え、長尺磁性体12の各端部が各磁気検出部品18x,18yに対向配置される構成を有する。第2実施形態では、長尺磁性体12の両端に対向して、第1の基板27xに磁気検出センサ18cを取り付けた第1の磁気検出部品18xと、第2の基板27yに磁気検出センサ18cを取り付けた第2の磁気検出部品18yとを備え、フロート16の移動可能範囲が100mm以上とされる。詳細には、レベルセンサ10の一端側及びステム部13は第1実施形態と同様であり、第1の磁気検出部品18xがベース部11のハウジング25内に配置され、長尺パイプ29に長尺磁性体12が収容される。レベルセンサ10の他端側となる剛性枠部21の連結部21bには、樹脂製のハウジング30が設けられる。ハウジング30は剛性枠部21の連結部21bと長尺磁性体12の他端部との間に配置され、連結部21bに配置された弾性部23としての圧縮バネ32により、ハウジング30が長尺磁性体12の他端部側に向けて付勢される。
[Second embodiment]
5 shows an example of the level sensor 10 of the second embodiment. The level sensor 10 includes two magnetic detection components 18x and 18y, and each end of the long magnetic body 12 is arranged to face each of the magnetic detection components 18x and 18y. In the second embodiment, the level sensor 10 includes a first magnetic detection component 18x having a magnetic detection sensor 18c attached to a first board 27x and a second magnetic detection component 18y having a magnetic detection sensor 18c attached to a second board 27y, facing both ends of the long magnetic body 12, and the movable range of the float 16 is set to 100 mm or more. In detail, one end side of the level sensor 10 and the stem portion 13 are the same as those of the first embodiment, the first magnetic detection component 18x is arranged in the housing 25 of the base portion 11, and the long magnetic body 12 is accommodated in the long pipe 29. A resin housing 30 is provided on the connecting portion 21b of the rigid frame portion 21, which is the other end side of the level sensor 10. The housing 30 is arranged between the connecting portion 21b of the rigid frame portion 21 and the other end of the elongated magnetic body 12, and the housing 30 is urged toward the other end of the elongated magnetic body 12 by a compression spring 32 as an elastic portion 23 arranged in the connecting portion 21b.
 ハウジング30には、レベルセンサ10の一端側と同様に第2の磁気検出部品18yが収容される。レベルセンサ10の両端側に配置された第1及び第2の基板27x、27y間は、接続ハーネス31により接続される。そのため長尺磁性体12の両端側で、フロート16のマグネット15の磁束を検出でき、両端側の第1及び第2の磁気検出部品18x,18yの第1及び第2の磁気検出部品18x,18yで検出された検出信号が、一端側のコネクタ18aの出力18bから外部に伝達される。 The housing 30 contains a second magnetic detection component 18y, similar to the one end side of the level sensor 10. The first and second boards 27x, 27y arranged on both ends of the level sensor 10 are connected by a connection harness 31. Therefore, the magnetic flux of the magnet 15 of the float 16 can be detected on both ends of the long magnetic body 12, and the detection signal detected by the first and second magnetic detection components 18x, 18y on both ends is transmitted to the outside from the output 18b of the connector 18a on one end side.
 第2の実施形態では、圧縮バネ32の弾性により、ハウジング30を介して長尺磁性体12が一方側のハウジング25側に向けて付勢される。第2の磁気検出部品18yにおける第2の基板27yは、圧縮バネ32により押圧されて、長尺磁性体12の端部に対して第2の磁気検出部品18yの磁気検出素子18dが所定間隔を維持するように付勢される。また圧縮バネ32によりハウジング30が付勢されて、第2の磁気検出部品18yにおける第2の基板27yが押圧されることで、長尺磁性体12が付勢され、長尺磁性体12の端部は、第1の磁気検出部品18xの磁気検出素子18dに対して所定間隔を維持するように付勢される。このようにして、長尺磁性体12の一端部とハウジング25の第1の磁気検出部品18xとの間の間隔を一定に保つと同時に、長尺磁性体12の他端部とハウジング30の第2の磁気検出部品18yとの間の間隔を一定に保つことができ、以て検出精度が向上する。 In the second embodiment, the elasticity of the compression spring 32 biases the elongated magnetic body 12 towards the housing 25 on one side via the housing 30. The second board 27y in the second magnetic detection component 18y is pressed by the compression spring 32, and biases the magnetic detection element 18d of the second magnetic detection component 18y so as to maintain a predetermined distance from the end of the elongated magnetic body 12. The compression spring 32 also biases the housing 30, and the second board 27y in the second magnetic detection component 18y is pressed, thereby biasing the elongated magnetic body 12, and the end of the elongated magnetic body 12 is biased so as to maintain a predetermined distance from the magnetic detection element 18d of the first magnetic detection component 18x. In this way, the distance between one end of the long magnetic body 12 and the first magnetic detection component 18x of the housing 25 can be kept constant, while the distance between the other end of the long magnetic body 12 and the second magnetic detection component 18y of the housing 30 can be kept constant, thereby improving detection accuracy.
 ハウジング30の長尺磁性体12側の壁面には、長尺磁性体12の端部の形状に対応する形状の受部33が設けられる。受部33に長尺磁性体12を挿入して嵌合した状態では、長尺磁性体12の先端が受部33の底部に当接するとともに、横方向、即ち、挿入方向と直交する方向には位置ズレが全く生じない状態で配置される。その他は、第1実施形態と同様である。 A receiving portion 33 having a shape corresponding to the shape of the end of the long magnetic body 12 is provided on the wall surface of the housing 30 facing the long magnetic body 12. When the long magnetic body 12 is inserted into the receiving portion 33 and engaged, the tip of the long magnetic body 12 abuts against the bottom of the receiving portion 33 and is positioned without any positional misalignment in the horizontal direction, i.e., in the direction perpendicular to the insertion direction. The rest is the same as in the first embodiment.
 このレベルセンサ10でも、第1実施形態と同様の作用効果が得られる。しかも長尺磁性体12の両端に第1の磁気検出部品18xと第2の磁気検出部品18yを有するため、フロート16が移動可能範囲におけるどちらの端部付近に移動しても、何れかの磁気検出部品18x,18yにより精度よく検出できる。従って、長尺磁性体12の中間に、何れの端部の磁気検出部品18x,18yでも精度よく検出できない程に長尺磁性体12が長い場合であっても、両端付近、即ち、フロート16の移動可能範囲における下端付近及び上端付近では精度よく検出することができる。 This level sensor 10 also provides the same effect as the first embodiment. Moreover, since the long magnetic body 12 has the first magnetic detection component 18x and the second magnetic detection component 18y at both ends, no matter which end of the movable range the float 16 moves to, it can be detected with high accuracy by either of the magnetic detection components 18x, 18y. Therefore, even if the long magnetic body 12 is so long that the magnetic detection components 18x, 18y at either end cannot detect the middle of the long magnetic body 12 with high accuracy, it can be detected with high accuracy near both ends, i.e., near the lower and upper ends of the movable range of the float 16.
[第3実施形態]
 図6Aは第3の実施形態のレベルセンサ10である。このレベルセンサ10は、枠体20の構造が異なる他は、第1実施形態と同様である。この枠体20は上下方向、即ち長尺磁性体12の長手方向に2分割されて接続部35で接続される。詳細には、枠体20は、ベース部11と、一端側でベース部11と連結されると共に他端側で長尺磁性体12の他端側を支持する剛性枠部21と、剛性枠部21の上端側とベース部11とを接続する接続部35と、接続部35に配置された弾性部23と、で構成される。
[Third embodiment]
6A shows a level sensor 10 according to a third embodiment. This level sensor 10 is similar to the first embodiment, except for the structure of the frame 20. This frame 20 is divided into two parts in the vertical direction, i.e., in the longitudinal direction of the long magnetic body 12, and connected by a connection part 35. In detail, the frame 20 is composed of a base part 11, a rigid frame part 21 that is connected to the base part 11 at one end and supports the other end of the long magnetic body 12 at the other end, a connection part 35 that connects the upper end side of the rigid frame part 21 to the base part 11, and an elastic part 23 arranged in the connection part 35.
 ベース部11は、第1実施形態と同様に、磁気検出部品18がハウジング25内に収容されて固定される。剛性枠部21の各枠板21aに対応する複数の位置には、各枠板21aを接続するための接続用突起36が、断面略L字状に内向きに屈曲して設けられる。 As in the first embodiment, the base portion 11 has the magnetic detection component 18 housed and fixed in the housing 25. At a number of positions corresponding to each frame plate 21a of the rigid frame portion 21, connection protrusions 36 for connecting each frame plate 21a are provided, bent inwardly and having a generally L-shaped cross section.
 剛性枠部21は、接続部35を介してベース部11と接続される。剛性枠部21は、長尺磁性体12に沿って延びる複数本の枠板21aと、各枠板21aの一端側に略L字状に外向きに屈曲してベース部11と接続される接続片21cと、各接続片21cから長尺磁性体12に沿う方向に突出した接続ピン21dと、複数の枠板21aの他端側に設けられて互いに連結する連結部21bと、を一体に有する。 The rigid frame portion 21 is connected to the base portion 11 via the connection portion 35. The rigid frame portion 21 integrally comprises a plurality of frame plates 21a extending along the long magnetic body 12, a connection piece 21c bent outward in a generally L-shape at one end of each frame plate 21a and connected to the base portion 11, a connection pin 21d protruding from each connection piece 21c in a direction along the long magnetic body 12, and a connection portion 21b provided on the other end of the plurality of frame plates 21a to connect them to each other.
 接続部35では、ベース部11のハウジング25と接続用突起36との間に剛性枠部21の各枠板21aの接続片21cが配置され、各接続片21cから突出した接続ピン21dが接続用突起36の貫通孔21eに挿通される。弾性部23は、各接続ピン21dの周囲にそれぞれ装着された圧縮バネからなり、接続用突起36と枠板21aの接続片21cとを互いに離間させる方向に付勢する。弾性部23により剛性枠部21の各接続片21cがハウジング25側に付勢されることで、剛性枠部21全体がハウジング25側に付勢される。よって剛性枠部21の連結部21bに支持されたステム部13の長尺磁性体12をハウジング25側に押し付けることができる。これにより長尺磁性体12の上端部と磁気検出部品18の磁気検出素子18dとが所定間隔を維持するように付勢される。 In the connection portion 35, the connection pieces 21c of each frame plate 21a of the rigid frame portion 21 are arranged between the housing 25 of the base portion 11 and the connection protrusion 36, and the connection pins 21d protruding from each connection piece 21c are inserted into the through holes 21e of the connection protrusion 36. The elastic portion 23 is made of a compression spring attached around each connection pin 21d, and urges the connection protrusion 36 and the connection piece 21c of the frame plate 21a in a direction to separate them from each other. The elastic portion 23 urges each connection piece 21c of the rigid frame portion 21 toward the housing 25, so that the entire rigid frame portion 21 is urged toward the housing 25. Therefore, the long magnetic body 12 of the stem portion 13 supported by the connecting portion 21b of the rigid frame portion 21 can be pressed toward the housing 25. As a result, the upper end of the long magnetic body 12 and the magnetic detection element 18d of the magnetic detection component 18 are urged to maintain a predetermined distance.
 このレベルセンサ10でも、第1実施形態と同様の作用効果を得ることができる。 This level sensor 10 can achieve the same effects as the first embodiment.
[第3実施形態の変形例]
 図6Bは第3実施形態の変形例を示す。この変形例のレベルセンサ10は、枠体20の構造を異ならせて長尺磁性体12の両端側に第1及び第2の磁気検出部品18x、18yを配置した他は、図6Aに示す第3実施形態のレベルセンサ10と同様の構成である。即ち、枠体20の一端側には、第1の磁気検出部品18xを収容したベース部11が図6Aと同様に設けられ、剛性枠部21の他端側の連結部21bには、第2の磁気検出部品18yの第2の基板27yが固定部材21kにより固定される。第1及び第2の基板27x、27y間は図示しない接続ハーネスにより接続され、両磁気検出部品18x,18yで検出された検出信号がコネクタ18bから伝達される。この変形例では、第2の磁気検出部品18yが剛性枠部21に固定されるため、接続部35に配置された弾性部23により剛性枠部21とともに第2の磁気検出部品18yがハウジング25側に付勢される。これにより長尺磁性体12の両端部と各磁気検出部品18,18yの磁気検出素子18d,18dとが、所定間隔を維持するように付勢される。この変形例であっても、第1実施形態と同様の作用効果が得られる。しかも第2実施形態と同じく、長尺磁性体12の両端に磁気検出部品18x,18yを有するので、長尺磁性体12の長さを長くしても精度よく検出することが可能である。
[Modification of the third embodiment]
Fig. 6B shows a modified example of the third embodiment. The level sensor 10 of this modified example has the same configuration as the level sensor 10 of the third embodiment shown in Fig. 6A, except that the structure of the frame body 20 is different and the first and second magnetic detection components 18x and 18y are arranged on both ends of the long magnetic body 12. That is, the base portion 11 accommodating the first magnetic detection component 18x is provided on one end of the frame body 20 as in Fig. 6A, and the second board 27y of the second magnetic detection component 18y is fixed by a fixing member 21k to the connecting portion 21b on the other end side of the rigid frame portion 21. The first and second boards 27x and 27y are connected by a connection harness (not shown), and the detection signals detected by both magnetic detection components 18x and 18y are transmitted from the connector 18b. In this modification, since the second magnetic detection component 18y is fixed to the rigid frame portion 21, the elastic portion 23 disposed in the connection portion 35 biases the second magnetic detection component 18y together with the rigid frame portion 21 toward the housing 25. As a result, both ends of the long magnetic body 12 and the magnetic detection elements 18d, 18d of each magnetic detection component 18, 18y are biased to maintain a predetermined distance. Even in this modification, the same effects as those in the first embodiment can be obtained. Moreover, as in the second embodiment, since the long magnetic body 12 has the magnetic detection components 18x, 18y at both ends, accurate detection is possible even if the length of the long magnetic body 12 is increased.
[第4実施形態]
 図7に第4の実施形態のレベルセンサ10を示す。このレベルセンサ10も、枠体20の構造が異なる他は、第1実施形態と同様のレベルセンサ10である。この枠体20では、剛性枠部21が上下方向、即ち長尺磁性体12の長手方向に2分割されている。
[Fourth embodiment]
7 shows a level sensor 10 according to a fourth embodiment. This level sensor 10 is similar to the level sensor 10 according to the first embodiment, except for the structure of the frame 20. In this frame 20, the rigid frame portion 21 is divided into two in the vertical direction, i.e., in the longitudinal direction of the long magnetic body 12.
 剛性枠部21は、ベース部11のフランジ部11aに一端側で固定されて長尺磁性体12に沿って延びる複数本の枠板21aと、複数本の枠板21aの他端側が連結された連結部21bと、を有する。各枠板21aは、それぞれ分割部21fで分割され、ベース部11側の枠片21gと連結部21b側の枠片21gとが、分割部21fの接続部35により接続される。接続部35には弾性部23が配置され、枠片21g間が弾性部35を介して接続される。 The rigid frame portion 21 has multiple frame plates 21a that are fixed at one end to the flange portion 11a of the base portion 11 and extend along the long magnetic body 12, and a connecting portion 21b to which the other ends of the multiple frame plates 21a are connected. Each frame plate 21a is divided at a dividing portion 21f, and the frame piece 21g on the base portion 11 side and the frame piece 21g on the connecting portion 21b side are connected by a connecting portion 35 of the dividing portion 21f. An elastic portion 23 is disposed in the connecting portion 35, and the frame pieces 21g are connected via the elastic portion 35.
 接続部35では、ベース部11側の枠片21gの端部と連結部21b側の枠片21gの端部とに、断面略L字状に外向きに屈曲した接続片21cが互いに対向するように設けられる。対向する接続片21cの一方には、長尺磁性体12に沿う方向に突出した接続ピン21dが設けられ、他方には、接続ピン21dを挿通可能な貫通孔21eが設けられる。この接続部35では、接続片21c同士を対向させて、接続ピン21dを貫通孔21eに挿通させた状態で接続される。 In the connection portion 35, connection pieces 21c bent outward in a generally L-shaped cross section are provided facing each other at the end of the frame piece 21g on the base portion 11 side and the end of the frame piece 21g on the connecting portion 21b side. One of the facing connection pieces 21c is provided with a connection pin 21d that protrudes in a direction along the elongated magnetic body 12, and the other is provided with a through hole 21e through which the connection pin 21d can be inserted. In this connection portion 35, the connection pieces 21c are faced each other and connected with the connection pin 21d inserted through the through hole 21e.
 弾性部23は、各接続ピン21dの周囲にそれぞれ装着された引張りバネからなり、接続片21c同士を近接させる方向に付勢する。弾性部23により連結部21b側の枠片21gがベース部11側の枠片21gに向けて引張られることで、剛性枠部21の連結部21bがベース部11のハウジング25側に付勢される。これにより、剛性枠部21の連結部21bに固定して支持されたステム部13の長尺磁性体12をハウジング25側に押し付けることができ、長尺磁性体12の端部と磁気検出部品18とを常に当接するか又は所定間隔を維持するように付勢することができる。 The elastic portion 23 is made of a tension spring attached around each connection pin 21d, and biases the connection pieces 21c in a direction to bring them closer together. The elastic portion 23 pulls the frame piece 21g on the connecting portion 21b side toward the frame piece 21g on the base portion 11 side, thereby biasing the connecting portion 21b of the rigid frame portion 21 toward the housing 25 side of the base portion 11. This allows the long magnetic body 12 of the stem portion 13, which is fixed and supported by the connecting portion 21b of the rigid frame portion 21, to be pressed toward the housing 25 side, and the end of the long magnetic body 12 and the magnetic detection component 18 can be biased so that they always abut or maintain a predetermined distance from each other.
 このレベルセンサ10であっても、第1実施形態と同様の作用効果が得られる。この実施形態でも、第3実施形態の変形例と同様に、長尺磁性体12の両端側に磁気検出部品18を配置することが可能である。 This level sensor 10 also provides the same effect as the first embodiment. In this embodiment, as in the modified example of the third embodiment, it is possible to place magnetic detection components 18 on both ends of the long magnetic body 12.
[第5実施形態]
 第5実施形態のレベルセンサ10は、枠体20の構造が異なる他は、第4実施形態と同様である。図8A及び図8Bに第5実施形態のレベルセンサ10を示す。この実施形態の枠体20でも、剛性枠部21が上下方向、即ち長尺磁性体12の長手方向に2分割されている。
[Fifth embodiment]
The level sensor 10 of the fifth embodiment is similar to the fourth embodiment except for the structure of the frame body 20. Figures 8A and 8B show the level sensor 10 of the fifth embodiment. In the frame body 20 of this embodiment, the rigid frame portion 21 is also divided into two in the vertical direction, i.e., in the longitudinal direction of the long magnetic body 12.
 剛性枠部21は、ベース部11のフランジ部11aに一端側で固定されて長尺磁性体12に沿って延びる複数本の枠板21aと、複数本の枠板21aの他端側が連結された連結部21bと、を有する。各枠板21aは、それぞれ連結部21b近傍の分割部21fで分割され、ベース部11側の枠片21gと連結部21b側の枠片21gとが、弾性接続部35aにより接続される。 The rigid frame portion 21 has multiple frame plates 21a that are fixed at one end to the flange portion 11a of the base portion 11 and extend along the long magnetic body 12, and a connecting portion 21b to which the other ends of the multiple frame plates 21a are connected. Each frame plate 21a is divided at a dividing portion 21f near the connecting portion 21b, and the frame piece 21g on the base portion 11 side and the frame piece 21g on the connecting portion 21b side are connected by an elastic connecting portion 35a.
 弾性接続部35では、ベース部11側の枠片21gの端部と連結部21b側の枠片21gの端部との一方に、外向きに突出する円柱状突起21hが設けられ、他方には、円柱状突起21hを弾性により挟持するクリップ21iが設けられる。クリップ21iは枠片21gから突出して枠片21gと一体に形成される。クリップ21iは互いに対向して近接配置された一対の弾性爪21jを有し、弾性爪21j間に円柱状突起21hを弾性力により挟持可能である。 In the elastic connection portion 35, a cylindrical protrusion 21h that protrudes outward is provided on one of the ends of the frame piece 21g on the base portion 11 side and the end of the frame piece 21g on the connecting portion 21b side, and a clip 21i that elastically clamps the cylindrical protrusion 21h is provided on the other. The clip 21i protrudes from the frame piece 21g and is formed integrally with the frame piece 21g. The clip 21i has a pair of elastic claws 21j that are arranged close to each other and opposite each other, and the cylindrical protrusion 21h can be clamped between the elastic claws 21j by elastic force.
 弾性爪21j間に円柱状突起21hが挟持されると、一対の弾性爪21jにおける円柱状突起21hとの当接面の角度や弾性力等により、円柱状突起21hとクリップ21iとの間に引張り方向の弾性力が作用し、連結部21b側の枠片21gがベース部11側の枠片21gに向けて引っ張られ、剛性枠部21の連結部21bがベース部11のハウジング25側に付勢される。これにより、剛性枠部21に支持固定されたステム部13の長尺磁性体12をハウジング25側に押し付けることができ、長尺磁性体12の端部と磁気検出部品18とが常に当接するか又は所定間隔を維持するように付勢される。 When the cylindrical projection 21h is clamped between the elastic claws 21j, an elastic force acts in the tensile direction between the cylindrical projection 21h and the clip 21i due to the angle of the contact surface between the pair of elastic claws 21j and the cylindrical projection 21h, the frame piece 21g on the connecting part 21b side is pulled toward the frame piece 21g on the base part 11 side, and the connecting part 21b of the rigid frame part 21 is biased toward the housing 25 side of the base part 11. This allows the long magnetic body 12 of the stem part 13 supported and fixed to the rigid frame part 21 to be pressed toward the housing 25 side, and the end of the long magnetic body 12 and the magnetic detection component 18 are biased so that they always abut or maintain a predetermined distance.
 このレベルセンサ10であっても、第1実施形態と同様の作用効果が得られる。また、第3実施形態の変形例と同様に、長尺磁性体12の両端側に磁気検出部品18を配置することも可能である。 This level sensor 10 can achieve the same effects as the first embodiment. Also, as in the modified example of the third embodiment, it is possible to place magnetic detection components 18 on both ends of the long magnetic body 12.
 上記した第1実施形態乃至第5実施形態は、本発明の範囲内において適宜変更可能である。例えば上記実施形態では、ステム部13として長尺パイプ29内に長尺磁性体12を収容した例について説明したが、長尺パイプ29を用いることなく、長尺磁性体12からなるステム部13がベース部11或いは剛性枠部21に支持されてもよい。上記実施形態は、長尺磁性体12とマグネット15を除き非磁性の材料を用いることが望ましい。非磁性材料としては、軟質樹脂や非磁性の金属材料等が挙げられる。 The first to fifth embodiments described above can be modified as appropriate within the scope of the present invention. For example, in the above embodiments, an example was described in which the long magnetic body 12 was housed in the long pipe 29 as the stem portion 13, but the stem portion 13 made of the long magnetic body 12 may be supported by the base portion 11 or the rigid frame portion 21 without using the long pipe 29. In the above embodiments, it is preferable to use non-magnetic materials except for the long magnetic body 12 and the magnet 15. Examples of non-magnetic materials include soft resins and non-magnetic metal materials.
 以下、本発明の実施例及び参考例について説明する。
[実施例1]
 線材形状が直径0.6mm、長さ150mmで、それぞれPBパーマロイ(日立金属株式会社製、YEP-B 初透磁率:6000 飽和磁束密度:1.4T)、PCパーマロイ(日立金属株式会社製、YEP-C 初透磁率:200000 飽和磁束密度:0.7T)、パーメンジュール(日立金属株式会社製、YEP-2V 初透磁率:840 飽和磁束密度:2.45T)、ソフトフェライト(JFEフェライト株式会社製、MBT2 初透磁率:3300 飽和磁束密度:0.53T)で構成される長尺磁性体12を用いて、磁気検出素子18dの位置における磁束密度を磁気シミュレーションにより算出した。マグネット15は、残留磁束密度395mTの異方性フェライト磁石で、外径が15mm、内径が10mm、厚みが3mmのリング状を有し、厚み方向に着磁したものを使用した。
Examples and reference examples of the present invention will be described below.
[Example 1]
The magnetic flux density at the position of the magnetic detection element 18d was calculated by magnetic simulation using the long magnetic body 12 having a wire shape of 0.6 mm in diameter and 150 mm in length and made of PB permalloy (manufactured by Hitachi Metals, Ltd., YEP-B, initial permeability: 6000, saturation magnetic flux density: 1.4 T), PC permalloy (manufactured by Hitachi Metals, Ltd., YEP-C, initial permeability: 200,000, saturation magnetic flux density: 0.7 T), permendur (manufactured by Hitachi Metals, Ltd., YEP-2V, initial permeability: 840, saturation magnetic flux density: 2.45 T), and soft ferrite (manufactured by JFE Ferrite Corporation, MBT2, initial permeability: 3300, saturation magnetic flux density: 0.53 T). The magnet 15 used was an anisotropic ferrite magnet with a residual magnetic flux density of 395 mT, ring-shaped with an outer diameter of 15 mm, an inner diameter of 10 mm, and a thickness of 3 mm, and magnetized in the thickness direction.
 磁気検出素子18dの位置の磁束密度は、環状のマグネット15の中心に長尺磁性体12を配置して、マグネットと端部の距離に応じて発生する磁束を、株式会社JSOLの電磁界解析ソフトウェア(JMAG)を用いてシミュレートすることにより算出した。 The magnetic flux density at the position of the magnetic detection element 18d was calculated by placing the long magnetic body 12 at the center of the ring-shaped magnet 15 and simulating the magnetic flux generated according to the distance between the magnet and the end using electromagnetic field analysis software (JMAG) from JSOL Corporation.
 実施例1の磁束密度の算出結果を図9に示す。図9の横軸は、長尺磁性体12とマグネット15との距離(mm)であり、縦軸は磁気検出素子18dの位置の磁束密度(mT)である。図9において、PBパーマロイ、PCパーマロイ、パーメンジュールはマグネット距離110mmにおいても1.5mT以上の磁束密度が生じるのに対し、ソフトフェライトは1mT以下と小さい磁束密度となっている。 The calculation results of the magnetic flux density in Example 1 are shown in Figure 9. The horizontal axis of Figure 9 is the distance (mm) between the long magnetic body 12 and the magnet 15, and the vertical axis is the magnetic flux density (mT) at the position of the magnetic detection element 18d. In Figure 9, PB permalloy, PC permalloy, and permendur generate a magnetic flux density of 1.5 mT or more even at a magnet distance of 110 mm, while soft ferrite has a small magnetic flux density of 1 mT or less.
 磁気検出素子18dの位置に磁束密度が2mT生じている時のマグネット位置における長尺磁性体12の端部の表面磁束密度を算出すると、10mTであった。その表面磁束密度から各材料の磁化曲線に基づいて透磁率を求めた。図10Aから図10Dは、実施例1で用いた長尺磁性体12の磁化曲線を示す。長尺磁性体12はそれぞれ、図10AがPBパーマロイ、図10BがPCパーマロイ、図10Cがパーメンジュール、図10Dがソフトフェライトを示す。図10Aから図10Dの磁化曲線から、磁束密度5から15mTにおける透磁率を算出すると、PBパーマロイは6600、PCパーマロイは37000、パーメンジュールは4000、ソフトフェライトは3300であった。 The surface magnetic flux density of the end of the long magnetic body 12 at the magnet position when a magnetic flux density of 2 mT was generated at the magnetic detection element 18d was calculated to be 10 mT. The magnetic permeability was calculated from the surface magnetic flux density based on the magnetization curve of each material. Figures 10A to 10D show the magnetization curves of the long magnetic body 12 used in Example 1. The long magnetic bodies 12 are shown in Figure 10A for PB permalloy, in Figure 10B for PC permalloy, in Figure 10C for permendur, and in Figure 10D for soft ferrite. The magnetic permeability at magnetic flux densities of 5 to 15 mT calculated from the magnetization curves of Figures 10A to 10D was 6,600 for PB permalloy, 37,000 for PC permalloy, 4,000 for permendur, and 3,300 for soft ferrite.
 これらから、磁気検出素子18dの位置に生ずる磁束密度の量を大きくするためには、長尺磁性体12に用いる軟磁性材料が十分大きな飽和磁束密度を有することと、初透磁率が小さくとも磁気検出素子18dで検出する磁束密度の最小値近辺において十分な透磁率を備えることが必要なことが判明した。飽和磁束密度が0.65T以上で、かつ磁束密度5から15mTにおける透磁率が3000以上の軟磁性材料としては、PBパーマロイ、PCパーマロイ、パーメンジュールがその条件に当てはまる。 From these, it was found that in order to increase the amount of magnetic flux density generated at the position of the magnetic detection element 18d, the soft magnetic material used for the long magnetic body 12 needs to have a sufficiently large saturation magnetic flux density, and even if the initial permeability is small, it needs to have sufficient permeability near the minimum value of the magnetic flux density detected by the magnetic detection element 18d. Soft magnetic materials that meet this condition have a saturation magnetic flux density of 0.65T or more and a permeability of 3000 or more at a magnetic flux density of 5 to 15mT, such as PB permalloy, PC permalloy, and permendur.
[実施例2]
 線材形状が直径0.6mm、長さ150mmのPCパーマロイ(王子合金株式会社製、型番:78Ni)を、窒素雰囲気下において処理温度850度、処理時間6分以上の条件で焼鈍を施した長尺磁性体12を用いてヒステリシスの影響を測定した。実施例2のPCパーマロイの組成は、Niが77.0質量%、Moが4.2質量%、Cuが5.0質量%、Feが13.5質量%である。マグネット15は、残留磁束密度1.06Tのサマリウムコバルトからなり、外形が12mm、内径が7mm、厚みが3mmのリング状を有し、厚み方向に着磁したものを使用した。
[Example 2]
The influence of hysteresis was measured using a long magnetic body 12 obtained by annealing a PC permalloy (manufactured by Oji Alloy Co., Ltd., model number: 78Ni) having a wire shape of 0.6 mm in diameter and 150 mm in length under conditions of a treatment temperature of 850 degrees and a treatment time of 6 minutes or more in a nitrogen atmosphere. The composition of the PC permalloy of Example 2 is 77.0 mass% Ni, 4.2 mass% Mo, 5.0 mass% Cu, and 13.5 mass% Fe. The magnet 15 used was made of samarium cobalt with a residual magnetic flux density of 1.06 T, had a ring shape with an outer diameter of 12 mm, an inner diameter of 7 mm, and a thickness of 3 mm, and was magnetized in the thickness direction.
 測定は、長尺磁性体12を樹脂パイプに内に収容して固定し、樹脂パイプの端部を、磁気検出部品18となるガウスメータ(Lake Shore社製、型番:425)のプローブに固定するとともに、上記の環状のマグネット15に樹脂パイプを通し、マグネット15を長尺パイプ29に沿ってガウスメータに接近させる方向と離反させる方向とに移動させて、プローブに生じる磁束を測定した。 The measurement was performed by placing the long magnetic body 12 inside a plastic pipe and fixing it there, and fixing the end of the plastic pipe to the probe of a gauss meter (manufactured by Lake Shore, model number: 425) which serves as the magnetic detection component 18, while passing the plastic pipe through the ring-shaped magnet 15 described above. The magnet 15 was then moved along the long pipe 29 in both directions, toward and away from the gauss meter, to measure the magnetic flux generated at the probe.
[参考例1]
 リードスイッチ材料に使用される52%鉄ニッケル合金(日本ベルパーツ会社製、リードスイッチ用52合金線(Fe-Ni:52%))からなり、実施例1と同様の線材形状を有する他は、実施例1と同様にして、マグネットを長尺パイプ29に沿ってガウスメータに接近させる方向と離反させる方向とに移動させて、プローブに生じる磁束を測定した。52%鉄ニッケル合金は、実施例1のPBパーマロイに近似した飽和磁束密度、磁束密度5から15mTにおける透磁率を有し、保磁力は20A/mである。
[Reference Example 1]
The wire was made of 52% iron-nickel alloy used as a reed switch material (52 alloy wire for reed switches (Fe-Ni: 52%), manufactured by Nippon Bell Parts Co., Ltd.) and had the same wire shape as in Example 1. In the same manner as in Example 1, the magnet was moved along the long pipe 29 in the direction toward and away from the gaussmeter, and the magnetic flux generated in the probe was measured. The 52% iron-nickel alloy has a saturation magnetic flux density similar to that of the PB permalloy of Example 1, a magnetic permeability at a magnetic flux density of 5 to 15 mT, and a coercive force of 20 A/m.
 実施例2及び参考例1の磁束測定の結果を図11に示す。図11の横軸は、長尺磁性体12とマグネット15との距離(mm)であり、縦軸はガウスメータで測定した長尺磁性体12の端部の磁束密度(mT)である。図11に示すように、実施例2では、マグネット15をガウスメータに接近させる方向に移動させたときの磁束の変化と、離反させる方向に移動させたときの磁束の変化とが、略一致していた。 The results of the magnetic flux measurements in Example 2 and Reference Example 1 are shown in Figure 11. The horizontal axis of Figure 11 is the distance (mm) between the long magnetic body 12 and the magnet 15, and the vertical axis is the magnetic flux density (mT) at the end of the long magnetic body 12 measured with a gauss meter. As shown in Figure 11, in Example 2, the change in magnetic flux when the magnet 15 was moved in a direction toward the gauss meter was approximately the same as the change in magnetic flux when it was moved in a direction away from the gauss meter.
 参考例1の52%鉄ニッケル合金は、PCパーマロイに比べ飽和磁束密度が1.4Tと大きいために発生する磁束が大きいものの、保磁力が20A/mと大きいのでヒステリシスの影響が生じており、接近時の磁束と離反時の磁束が顕著に乖離している。磁気検出素子18dの位置において磁束密度2mT発生時のマグネット距離は、接近時に100mmであるのに対して離反時は112mmとなっており、磁気検出素子18dの位置の磁束密度の数値から距離を判別する際に12mmの誤差が生じる。検出範囲を100mmとすると、誤差は約12%である。 The 52% iron-nickel alloy of Reference Example 1 has a higher saturation magnetic flux density of 1.4 T than PC permalloy, and therefore generates a larger magnetic flux, but its coercive force is large at 20 A/m, which causes the effects of hysteresis and results in a significant difference between the magnetic flux when approaching and when separating. At the position of magnetic detection element 18d, the magnet distance when a magnetic flux density of 2 mT is generated is 100 mm when approaching and 112 mm when separating, resulting in an error of 12 mm when determining the distance from the numerical value of the magnetic flux density at the position of magnetic detection element 18d. If the detection range is 100 mm, the error is approximately 12%.
 保磁力に起因する別の問題として、52%鉄ニッケル合金の接近時のマグネット距離130mm以上の領域において、磁気検出素子18dの位置における磁束密度の変化は0.2mT以下とごく小さく、磁束密度の変化からマグネット位置を判別するのが困難である。これに対し、実施例2のPCパーマロイはマグネット距離110mm以上の領域で線形に近い磁気検出素子18dの位置における磁束密度の変化が得られている。 Another problem caused by coercive force is that when the 52% iron-nickel alloy is approached, in areas where the magnet distance is 130 mm or more, the change in magnetic flux density at the position of the magnetic detection element 18d is very small, at 0.2 mT or less, making it difficult to determine the magnet position from the change in magnetic flux density. In contrast, the PC permalloy of Example 2 obtains a change in magnetic flux density at the position of the magnetic detection element 18d that is nearly linear in areas where the magnet distance is 110 mm or more.
 上記により、参考例1の52%鉄ニッケル合金のように保磁力の大きい軟磁性材料は、ヒステリシスを生じるため長尺磁性体12としての適性が低いことがわかる。参考例1以外の保磁力の大きい軟磁性材料として、具体的には、SUY-0(保磁力60A/m以下)のような純鉄や、K-M31(保磁力105A/m以下)のような電磁ステンレス鋼、YEP-2V(保磁力68A/m以下)のようなパーメンジュールが挙げられる。 From the above, it can be seen that soft magnetic materials with high coercivity, such as the 52% iron-nickel alloy of Reference Example 1, are less suitable for use as the long magnetic body 12 due to the generation of hysteresis. Specific examples of soft magnetic materials with high coercivity other than Reference Example 1 include pure iron such as SUY-0 (coercivity 60 A/m or less), electromagnetic stainless steel such as K-M31 (coercivity 105 A/m or less), and permendur such as YEP-2V (coercivity 68 A/m or less).
 実施例2で用いた、保磁力が4A/m以下と小さいPCパーマロイのような軟磁性材料を用いることで、ヒステリシスにより生じるセンサの検出誤差を抑制することが可能である。検出誤差が問題とならない用途の場合、保磁力が12A/m以下であるが飽和磁束密度が1.4T以上と大きいPBパーマロイを用いることで、弱い磁力のマグネットや低感度な磁気検出部品18の磁気センサ18cを利用してリニア位置センサを構成することが可能である。 By using a soft magnetic material such as PC permalloy, which has a small coercive force of 4 A/m or less, as used in Example 2, it is possible to suppress the detection error of the sensor caused by hysteresis. For applications in which detection error is not an issue, it is possible to configure a linear position sensor using a magnet with weak magnetic force or the magnetic sensor 18c of the low-sensitivity magnetic detection component 18 by using PB permalloy, which has a coercive force of 12 A/m or less but a high saturation magnetic flux density of 1.4 T or more.
[実施例3]
 長尺磁性体12として、線材形状が直径2mmである以外は実施例1と同じで、長さ150mmのPCパーマロイからなり、窒素雰囲気下において処理温度850度、処理時間6分以上の条件で焼鈍を施していないものを使用した。マグネットとして、残留磁束密度410mTの異方性フェライト磁石で、外形が12.5mm、内径が5.3mm、厚みが6mmのリング状を有し、厚み方向に着磁したものを使用した。その他は、実施例1と同様にして、ガウスメータのプローブに生じる磁束を測定した。
[Example 3]
The long magnetic body 12 was the same as in Example 1 except that the wire shape was 2 mm in diameter, and was made of PC permalloy with a length of 150 mm, and was not annealed under conditions of a treatment temperature of 850 degrees and a treatment time of 6 minutes or more in a nitrogen atmosphere. The magnet used was an anisotropic ferrite magnet with a residual magnetic flux density of 410 mT, in the shape of a ring with an outer diameter of 12.5 mm, an inner diameter of 5.3 mm, and a thickness of 6 mm, magnetized in the thickness direction. The magnetic flux generated in the probe of the gaussmeter was measured in the same manner as in Example 1.
 実施例3の結果を図12に示す。図12から明らかなように、焼鈍しない長尺磁性体12を使用した実施例3では、マグネット15をガウスメータに接近させる方向に移動させたときと離反させる方向に移動させたときとで、長尺磁性体12の中間部分で得られる磁束に顕著なズレが生じている。これは長尺磁性体12に加工歪による保磁力の増大が生じているためであり、実施例1のように焼鈍して本来の保磁力に戻して使用することで、両方向における磁束を一致させることができる。 The results of Example 3 are shown in Figure 12. As is clear from Figure 12, in Example 3, which used an unannealed long magnetic body 12, there was a significant difference in the magnetic flux obtained at the middle part of the long magnetic body 12 when the magnet 15 was moved in a direction toward the gaussmeter and when it was moved in a direction away from the gaussmeter. This is because the long magnetic body 12 had an increased coercive force due to processing distortion; by annealing it to return it to its original coercive force as in Example 1, it is possible to make the magnetic flux in both directions consistent.
[実施例4-実施例6]
 長尺磁性体12として、線材形状が長さ150mmで、直径が0.6mm(実施例4)、0.8mm(実施例5)、2mm(実施例6)のPCパーマロイを、窒素雰囲気下において処理温度850度、処理時間6分以上の条件で焼鈍を施して使用した。線径以外は実施例1と同じPCパーマロイを用いた。マグネット15として、残留磁束密度1.35Tのネオジム磁石で、外形が12mm、内径が8mm、厚みが3mmのリング状を有し、厚み方向に着磁したものを使用した。その他は、実施例1と同様にしてガウスメータのプローブに生じる磁束を測定した。結果を図13に示す。図13から明らかなように、焼鈍した長尺磁性体12の太さがいずれであっても、マグネット15の接近させる方向と離反させる方向の両方向における磁束が一致していた。しかも太い磁性体ほどマグネット15が中間部に位置した際の磁束密度を大きくできた。
[Examples 4 to 6]
As the long magnetic body 12, PC permalloy wires having a length of 150 mm and a diameter of 0.6 mm (Example 4), 0.8 mm (Example 5), and 2 mm (Example 6) were used after annealing under conditions of a treatment temperature of 850 degrees and a treatment time of 6 minutes or more in a nitrogen atmosphere. The same PC permalloy as in Example 1 was used except for the wire diameter. As the magnet 15, a neodymium magnet with a residual magnetic flux density of 1.35 T, having a ring shape with an outer diameter of 12 mm, an inner diameter of 8 mm, and a thickness of 3 mm, and magnetized in the thickness direction was used. The magnetic flux generated in the probe of the gaussmeter was measured in the same manner as in Example 1. The results are shown in FIG. 13. As is clear from FIG. 13, regardless of the thickness of the annealed long magnetic body 12, the magnetic flux in both the direction in which the magnet 15 approaches and the direction in which it is separated was the same. Moreover, the thicker the magnetic body, the greater the magnetic flux density when the magnet 15 is located in the middle part.
[実施例7]
 実施例7では、実施例1のPCパーマロイからなる長尺磁性体12(線材形状が直径0.6mm、長さ50mmのPCパーマロイ)と磁気検出部品18の磁気センサ18cとしてプログラマブルホールICを用い、図1に示すレベルセンサ10を試作した。プログラマブルホールICは、TDK-Micronas社製、型番HAL2425を用いた。図14は実施例7のレベルセンサ10の磁束密度を示す。図の横軸はフロート位置(mm)、縦軸は磁束密度(mT)である。磁束密度は、プログラマブルホールICにおいて、直線性の補正をしないリニアホールICの出力電圧から測定した磁束密度である。図14から、実施例7のレベルセンサ10では、フロート位置に従って磁束密度は変化するが、直線ではなく曲線となっている。このフロート位置に対する磁束密度を、プログラマブルホールICの機能により直線化を図った。
[Example 7]
In Example 7, the level sensor 10 shown in FIG. 1 was produced using the long magnetic body 12 (PC permalloy with a wire shape of 0.6 mm in diameter and 50 mm in length) made of PC permalloy in Example 1 and a programmable Hall IC as the magnetic sensor 18c of the magnetic detection component 18. The programmable Hall IC used was model number HAL2425 manufactured by TDK-Micronas. FIG. 14 shows the magnetic flux density of the level sensor 10 of Example 7. The horizontal axis of the figure is the float position (mm), and the vertical axis is the magnetic flux density (mT). The magnetic flux density is the magnetic flux density measured from the output voltage of the linear Hall IC that does not correct the linearity in the programmable Hall IC. From FIG. 14, in the level sensor 10 of Example 7, the magnetic flux density changes according to the float position, but it is a curved line rather than a straight line. The magnetic flux density with respect to the float position was linearized by the function of the programmable Hall IC.
 図15は、実施例7のレベルセンサ10の出力電圧を示す。図の横軸はフロート位置(mm)、縦軸はプログラマブルホールICで直線補正をした出力電圧(V)である。図15に示すように、フロート位置が0mmから40mmのときに、出力電圧が0.5Vから4.5V迄変化し、フロート位置が1cm変化すると、出力電圧が1V変化し、直線性が良好であり、液面の変位として40mmを測定できることが分かる。 Figure 15 shows the output voltage of the level sensor 10 of Example 7. The horizontal axis of the figure is the float position (mm), and the vertical axis is the output voltage (V) linearly corrected by the programmable Hall IC. As shown in Figure 15, when the float position is from 0 mm to 40 mm, the output voltage changes from 0.5 V to 4.5 V, and when the float position changes by 1 cm, the output voltage changes by 1 V, showing good linearity and indicating that a liquid level displacement of 40 mm can be measured.
[実施例8]
 実施例8においては、実施例1の長尺磁性体12(線材形状が直径0.6mm、長さ110mmのPCパーマロイ)と磁気検出部品18に実施例7と同じプログラマブルホールICを用い、図1に示すレベルセンサ10を試作した。長尺磁性体12の長さを変えた以外は、実施例7と同様である。
[Example 8]
In Example 8, the level sensor 10 shown in Fig. 1 was fabricated using the long magnetic body 12 (PC permalloy with a wire shape of 0.6 mm in diameter and 110 mm in length) of Example 1 and the same programmable Hall IC as in Example 7 for the magnetic detection component 18. The level sensor 10 was fabricated in the same manner as in Example 7 except that the length of the long magnetic body 12 was changed.
 図16は、実施例8のレベルセンサ10の出力電圧を示す。図の横軸はフロート位置(mm)、縦軸はプログラマブルホールICで直線補正をした出力電圧(V)である。図16に示すように、フロート位置が0mmから100mmのときに、出力電圧が0.5Vから4.5V迄変化し、フロート位置が2cm変化すると出力電圧が0.8V変化し、直線性が良好であり、液面の変位として100mmを測定できる。 Figure 16 shows the output voltage of the level sensor 10 of Example 8. The horizontal axis of the figure is the float position (mm), and the vertical axis is the output voltage (V) linearly corrected by the programmable Hall IC. As shown in Figure 16, when the float position is from 0 mm to 100 mm, the output voltage changes from 0.5 V to 4.5 V, and when the float position changes by 2 cm, the output voltage changes by 0.8 V, showing good linearity and allowing the measurement of a liquid level displacement of 100 mm.
[参考例2]
 長尺磁性体12の一端部の先端と磁気検出部品18の磁気検出素子18dとの間の距離を長尺磁性体12の軸方向に変化させたとき、磁束密度の変化を磁気シミュレーションにより算出した。線材形状が直径2mm、長さ80mmで、PCパーマロイ(日立金属株式会社製、YEP-C 初透磁率:200000 飽和磁束密度:0.7T)で構成される長尺磁性体12を用いた。マグネット15は、残留磁束密度1200mTのネオジム磁石で、外径が11mm、内径が9mm、厚みが5mmのリング状を有し、厚み方向に着磁したものを使用した。
[Reference Example 2]
The change in magnetic flux density was calculated by magnetic simulation when the distance between the tip of one end of the long magnetic body 12 and the magnetic detection element 18d of the magnetic detection component 18 was changed in the axial direction of the long magnetic body 12. The long magnetic body 12 used had a wire shape of 2 mm in diameter and 80 mm in length, and was made of PC permalloy (manufactured by Hitachi Metals, Ltd., YEP-C, initial permeability: 200000, saturation magnetic flux density: 0.7 T). The magnet 15 used was a neodymium magnet with a residual magnetic flux density of 1200 mT, ring-shaped with an outer diameter of 11 mm, an inner diameter of 9 mm, and a thickness of 5 mm, and magnetized in the thickness direction.
 磁気検出素子18dの位置の磁束密度は、環状のマグネット15の中心に長尺磁性体12を配置して、マグネットと端部の距離に応じて発生する磁束を、株式会社JSOLの電磁界解析ソフトウェア(JMAG)を用いてシミュレートすることにより算出した。長尺磁性体12の先端と磁気検出素子18dとの間の距離は、1.4mmを基準として、±0.6mm範囲で0.3mm毎に変化させた状態で、マグネット距離に対する磁気検出素子18dの位置における磁束密度を、磁気シミュレーションにより算出した。 The magnetic flux density at the position of the magnetic detection element 18d was calculated by simulating the magnetic flux generated according to the distance between the magnet and the end by placing the long magnetic body 12 at the center of the ring-shaped magnet 15 and using electromagnetic field analysis software (JMAG) from JSOL Corporation. The distance between the tip of the long magnetic body 12 and the magnetic detection element 18d was changed in 0.3 mm increments within a range of ±0.6 mm, with 1.4 mm as the reference, and the magnetic flux density at the position of the magnetic detection element 18d relative to the magnet distance was calculated by magnetic simulation.
 参考例2の磁束密度の算出結果を図17に示す。図17の横軸は、マグネット距離、即ち、長尺磁性体12の端部とマグネット15との距離(mm)であり、縦軸は磁気検出素子18dの位置における磁束密度(mT)である。図17から明らかなように、同じマグネット距離でも磁気検出素子18dと長尺磁性体12の先端との距離が近いほど磁束が増加し、離れるほど磁束が減少している。 The calculation results of the magnetic flux density for Reference Example 2 are shown in Figure 17. The horizontal axis of Figure 17 is the magnet distance, i.e., the distance (mm) between the end of the long magnetic body 12 and the magnet 15, and the vertical axis is the magnetic flux density (mT) at the position of the magnetic detection element 18d. As is clear from Figure 17, even with the same magnet distance, the magnetic flux increases as the distance between the magnetic detection element 18d and the tip of the long magnetic body 12 becomes closer, and decreases as the distance becomes farther.
 例えば使用温度が20℃から60℃に変化する場合を想定すると、長尺磁性体12に用いたPCパーマロイの線膨張係数は13×10―6/℃であり、長さが80mmなので、20℃から60℃の温度変化で長さは0.0416mm伸長する。ステム部13の材質が線膨張係数100×10―6/℃のポリプロピレンで、長さが80mmであった場合、20℃から60℃の温度変化で長さは0.352mm伸長する。上記の長尺磁性体12とステム部13の組み合わせとすると、20℃から60℃の温度変化で、長尺磁性体12とステム部13とでおよそ0.31mmの長さの差が生じ、長尺磁性体12の端部の位置が長手方向に最大で0.31mm変動しうる。 For example, assuming that the operating temperature changes from 20° C. to 60° C., the linear expansion coefficient of the PC permalloy used for the long magnetic body 12 is 13×10 −6 /° C., and the length is 80 mm, so the length will expand by 0.0416 mm with a temperature change from 20° C. to 60° C. If the material of the stem portion 13 is polypropylene with a linear expansion coefficient of 100×10 −6 /° C. and the length is 80 mm, the length will expand by 0.352 mm with a temperature change from 20° C. to 60° C. In the above combination of the long magnetic body 12 and the stem portion 13, a difference in length of approximately 0.31 mm occurs between the long magnetic body 12 and the stem portion 13 with a temperature change from 20° C. to 60° C., and the position of the end of the long magnetic body 12 can vary by up to 0.31 mm in the longitudinal direction.
 ステム部13にポリプロピレンを用いて、磁気検出素子18dの位置と長尺磁性体12の先端との間の距離が20℃の時に1.4mmとすると、60℃のときには1.7mmとなる。図17によれば、磁気検出素子18dの位置で磁束密度が10mT生じているときに、磁気検出素子18dと長尺磁性体12の先端との間の距離が1.4mmの場合には、マグネット15の距離が28mmと検出されるのに対して、1.7mmの場合には、マグネット15の距離が22mmである。従って、使用温度が20℃から60℃に変化したときに磁気検出素子18dの位置で検出される磁束密度の数値からマグネット15の距離を判別すると、6mmの誤差が生じる。このように、長尺磁性体12の先端と磁気検出素子18dの位置との間の距離が僅かでも変動すると、磁気検出部品18の出力が変動して、検出されるマグネット15の距離に大きな誤差が生じるため、本発明では機構的に距離の変動を抑制している。 If polypropylene is used for the stem portion 13, and the distance between the position of the magnetic detection element 18d and the tip of the long magnetic body 12 is 1.4 mm at 20°C, it becomes 1.7 mm at 60°C. According to FIG. 17, when the magnetic flux density is 10 mT at the position of the magnetic detection element 18d, if the distance between the magnetic detection element 18d and the tip of the long magnetic body 12 is 1.4 mm, the distance of the magnet 15 is detected as 28 mm, whereas if the distance is 1.7 mm, the distance of the magnet 15 is 22 mm. Therefore, when the operating temperature changes from 20°C to 60°C, an error of 6 mm occurs when determining the distance of the magnet 15 from the numerical value of the magnetic flux density detected at the position of the magnetic detection element 18d. In this way, even a slight change in the distance between the tip of the long magnetic body 12 and the position of the magnetic detection element 18d causes the output of the magnetic detection component 18 to change, resulting in a large error in the detected distance of the magnet 15. Therefore, the present invention mechanically suppresses the change in distance.
[参考例3]
 長尺磁性体12の一端部の先端と磁気検出素子18dとの間の距離を、長尺磁性体12の軸方向に対して直交方向に変化させたときの磁束密度の変化を磁気シミュレーションにより算出した。線材形状が直径2mm、長さ80mmで、PCパーマロイ(日立金属株式会社製、YEP-C;初透磁率:200000;飽和磁束密度:0.7T)で構成される長尺磁性体12を用いた。マグネット15は、残留磁束密度1200mTのネオジム磁石で、外径が11mm、内径が9mm、厚みが5mmのリング状を有し、厚み方向に着磁したものを使用した。
[Reference Example 3]
The change in magnetic flux density when the distance between the tip of one end of the long magnetic body 12 and the magnetic detection element 18d is changed in a direction perpendicular to the axial direction of the long magnetic body 12 was calculated by magnetic simulation. The long magnetic body 12 used had a wire shape of 2 mm in diameter and 80 mm in length, and was made of PC permalloy (YEP-C, manufactured by Hitachi Metals, Ltd.; initial permeability: 200000; saturation magnetic flux density: 0.7 T). The magnet 15 used was a neodymium magnet with a residual magnetic flux density of 1200 mT, a ring shape with an outer diameter of 11 mm, an inner diameter of 9 mm, and a thickness of 5 mm, and magnetized in the thickness direction.
 磁気検出素子18dの位置の磁束密度は、環状のマグネット15の中心に長尺磁性体12を配置して、マグネットと端部の距離に応じて発生する磁束を、株式会社JSOLの電磁界解析ソフトウェア(JMAG)を用いてシミュレートすることにより算出した。長尺磁性体12の先端と磁気検出素子18dとの間の直交方向の距離は、磁気検出素子18dに対し長尺磁性体12が直交方向に1.2mmの範囲内でずれた状態で、マグネット距離に対する磁気検出素子18dの位置における磁束密度を、磁気シミュレーションにより算出した。 The magnetic flux density at the position of the magnetic detection element 18d was calculated by simulating the magnetic flux generated according to the distance between the magnet and the end by placing the long magnetic body 12 at the center of the ring-shaped magnet 15 and using electromagnetic field analysis software (JMAG) from JSOL Corporation. The magnetic flux density at the position of the magnetic detection element 18d relative to the magnet distance was calculated by magnetic simulation with the long magnetic body 12 shifted in the orthogonal direction within a range of 1.2 mm from the magnetic detection element 18d.
 参考例3の磁束密度の算出結果を図18に示す。図18の横軸は長尺磁性体12とマグネット15との距離(mm)であり、縦軸は磁気検出素子18dの位置の磁束密度(mT)である。 The calculation results of the magnetic flux density for Reference Example 3 are shown in Figure 18. The horizontal axis of Figure 18 is the distance (mm) between the long magnetic body 12 and the magnet 15, and the vertical axis is the magnetic flux density (mT) at the position of the magnetic detection element 18d.
 図18から明らかなように、同じマグネット距離でも磁気検出素子18dから長尺磁性体12の先端が直交方向にずれると磁束密度の変動が生じている。磁気検出素子18dの位置において磁束密度10mT発生時、長尺磁性体12のずれが0mmの場合はマグネット距離が28mmであるのに対して、長尺磁性体12のずれが0.4mmの場合はマグネット距離が26mmである。この場合、磁気検出素子18dの素子位置の磁束密度の数値から距離を判別する際に2mmの誤差が生じる。このように長尺磁性体12の先端と磁気検出素子18dとの直交方向のずれが大きくなると、センサ出力の誤差が生じるため、機構的に直交方向のずれを抑制できることが望ましい。 As is clear from Figure 18, even with the same magnet distance, fluctuations in magnetic flux density occur when the tip of the long magnetic body 12 is misaligned in the orthogonal direction from the magnetic detection element 18d. When a magnetic flux density of 10 mT is generated at the position of the magnetic detection element 18d, if the misalignment of the long magnetic body 12 is 0 mm, the magnet distance is 28 mm, whereas if the misalignment of the long magnetic body 12 is 0.4 mm, the magnet distance is 26 mm. In this case, an error of 2 mm occurs when determining the distance from the numerical value of the magnetic flux density at the element position of the magnetic detection element 18d. As such, when the misalignment in the orthogonal direction between the tip of the long magnetic body 12 and the magnetic detection element 18d becomes large, an error occurs in the sensor output, so it is desirable to be able to suppress the misalignment in the orthogonal direction mechanically.
 本発明はその趣旨を逸脱しない範囲において様々な形態で実施し得る。例えば、上述した実施形態においては、プログラマブルホールICの出力は電圧で示したが、これに限らず、別途液晶や有機EL等を備えた表示装置で、液面の位置や、液面の目盛り等を表示したり、有線及び無線による通信を介して外部装置への液面位置情報を出力してもよい。また上記実施形態では、磁気検出部品18の出力をコネクタ18bを用いて出力しているが、絶縁被覆した導線による引き出し線やワイヤーハーネスを用いてもよい。 The present invention can be implemented in various forms without departing from the spirit of the invention. For example, in the above embodiment, the output of the programmable hall IC is shown as a voltage, but this is not limited to this. The liquid level and the liquid level scale can be displayed on a separate display device equipped with a liquid crystal or organic electroluminescence (EL) or the like, or the liquid level position information can be output to an external device via wired or wireless communication. Also, in the above embodiment, the output of the magnetic detection component 18 is output using the connector 18b, but a lead wire made of an insulated conductor or a wire harness can also be used.
10…レベルセンサ、
11…ベース部、11a…フランジ部、
12…長尺磁性体、
13…ステム部、
15…マグネット、
16…フロート(スライダ)、16a…貫通孔、
18,18x,18y…磁気検出部品、18a…出力、18b…コネクタ、18c…磁気センサ、18d…磁気検出素子、
20…枠体、
21…剛性枠部、21a…枠板、21b…連結部、21c…接続片、21d…接続ピン、21e…貫通孔、21f…分割部、21g…枠片、21h…円柱状突起、21i…クリップ、21j…弾性爪、21k…固定部材、
23…弾性部、23a…バネ部、23b…受部、23c…内部支持片、
24a…板バネ、24b…圧縮バネ、24c…樹脂成形体、24d…加圧部、24e…受部、
25…ハウジング、
27,27x,27y…基板、
29…長尺パイプ、29a…リブ、
30…ハウジング、
31…接続ハーネス、
32…圧縮バネ、
33…受部、
35…接続部、35a…弾性接続部、
36…接続用突起

 
10...Level sensor,
11...base portion, 11a...flange portion,
12... Long magnetic body,
13... stem portion,
15…Magnet,
16... float (slider), 16a... through hole,
18, 18x, 18y...magnetic detection components, 18a...output, 18b...connector, 18c...magnetic sensor, 18d...magnetic detection element,
20...frame body,
21...rigid frame portion, 21a...frame plate, 21b...connecting portion, 21c...connecting piece, 21d...connecting pin, 21e...through hole, 21f...dividing portion, 21g...frame piece, 21h...cylindrical protrusion, 21i...clip, 21j...elastic claw, 21k...fixing member,
23...elastic portion, 23a...spring portion, 23b...receiving portion, 23c...internal support piece,
24a... leaf spring, 24b... compression spring, 24c... resin molded body, 24d... pressure portion, 24e... receiving portion,
25...Housing,
27, 27x, 27y...substrate,
29... Long pipe, 29a... Rib,
30...Housing,
31...connection harness,
32...Compression spring,
33…Receiver,
35...connection portion, 35a...elastic connection portion,
36...Connection protrusion

Claims (13)

  1.  磁気検出素子を内包した磁気センサと、この磁気センサを基板に取り付けて構成した磁気検出部品と、
     前記磁気検出部品に端部を臨ませて配置した長尺磁性体と、
     前記長尺磁性体の両端部間を移動可能なマグネットと、
     前記磁気検出部品に対して前記長尺磁性体を長手方向に移動可能な状態で支持するとともに、前記マグネットを内包した枠体と、
     を備えたリニア位置センサであって、
     前記枠体に弾性部が設けられ、
     前記弾性部により前記長尺磁性体の端部と前記磁気検出素子とが所定間隔を維持するように付勢されている、前記リニア位置センサ。
    A magnetic sensor including a magnetic detection element, and a magnetic detection component configured by mounting the magnetic sensor on a substrate;
    a long magnetic body arranged with an end facing the magnetic detection component;
    a magnet movable between both ends of the long magnetic body;
    a frame that supports the elongated magnetic body in a state in which the elongated magnetic body can move in a longitudinal direction relative to the magnetic detection component and that contains the magnet;
    A linear position sensor comprising:
    The frame body is provided with an elastic portion,
    The linear position sensor, in which the elastic portion biases the end of the long magnetic body and the magnetic detection element to maintain a predetermined distance therebetween.
  2.  前記長尺磁性体の両端部に対向して2つの前記磁気検出部品を備え、前記長尺磁性体の両端部を前記各磁気検出部品に臨ませて配置するとともに、前記弾性部により前記長尺磁性体の両端部と前記各磁気検出素子とが所定間隔を維持するように付勢されている、請求項1に記載のリニア位置センサ。 The linear position sensor according to claim 1, comprising two of the magnetic detection components facing both ends of the long magnetic body, both ends of the long magnetic body facing the magnetic detection components, and biased by the elastic portion so as to maintain a predetermined distance between both ends of the long magnetic body and each of the magnetic detection elements.
  3.  前記枠体は、前記長尺磁性体の端部を所定位置に支持する受部を有する、請求項1又は2に記載のリニア位置センサ。 The linear position sensor according to claim 1 or 2, wherein the frame has a receiving portion that supports the end of the long magnetic body at a predetermined position.
  4.  前記長尺磁性体を収容する長尺パイプを有し、該長尺パイプは、前記長尺磁性体とは非接合状態で前記枠体に固定されている、請求項1又は2に記載のリニア位置センサ。 The linear position sensor according to claim 1 or 2, which has a long pipe that houses the long magnetic body, and the long pipe is fixed to the frame in a non-jointed state with the long magnetic body.
  5.  前記長尺磁性体は、飽和磁束密度が0.65T以上、保磁力が12A/m以下で、磁束密度5から15mTにおける透磁率が3000以上の軟磁性材料からなる、請求項1に記載のリニア位置センサ。 The linear position sensor of claim 1, wherein the long magnetic body is made of a soft magnetic material having a saturation magnetic flux density of 0.65 T or more, a coercive force of 12 A/m or less, and a magnetic permeability of 3000 or more at a magnetic flux density of 5 to 15 mT.
  6.  前記長尺磁性体の前記磁束密度5から15mTにおける透磁率が5000以上である、請求項1に記載のリニア位置センサ。 The linear position sensor of claim 1, wherein the magnetic permeability of the long magnetic body is 5000 or more at a magnetic flux density of 5 to 15 mT.
  7.  前記長尺磁性体がPCパーマロイからなり、該PCパーマロイの飽和磁束密度が0.65T以上で、前記磁束密度5から15mTにおける透磁率が8000以上である、請求項6に記載のリニア位置センサ。 The linear position sensor of claim 6, wherein the long magnetic body is made of PC permalloy, the saturation magnetic flux density of the PC permalloy is 0.65 T or more, and the magnetic permeability at the magnetic flux density of 5 to 15 mT is 8000 or more.
  8.  前記長尺磁性体がPBパーマロイからなり、該PBパーマロイの飽和磁束密度が1T以上で、前記磁束密度5から15mTにおける透磁率が5000以上である、請求項6に記載のリニア位置センサ。 The linear position sensor of claim 6, wherein the long magnetic body is made of PB permalloy, the saturation magnetic flux density of the PB permalloy is 1 T or more, and the magnetic permeability at the magnetic flux density of 5 to 15 mT is 5000 or more.
  9.  前記長尺磁性体は磁性焼鈍されたパーマロイからなる、請求項1に記載のリニア位置センサ。 The linear position sensor of claim 1, wherein the long magnetic body is made of magnetically annealed permalloy.
  10.  前記マグネットは残留磁束密度1T以上のネオジム磁石またはサマリウムコバルト磁石からなる、請求項1に記載のリニア位置センサ。 The linear position sensor of claim 1, wherein the magnet is a neodymium magnet or a samarium-cobalt magnet with a residual magnetic flux density of 1 T or more.
  11.  前記長尺磁性体は長尺パイプの内部に収容され、
     前記枠体は、前記長尺パイプの端部を固定して支持し、
     前記マグネットはスライダに支持されて、該スライダが前記枠体内で前記長尺パイプに沿って移動可能に配置され、
     検出対象の移動に伴い、前記スライダが前記長尺磁性体の両端部間を移動することで、前記長尺磁性体により誘導された前記マグネットの磁束を前記磁気検出部品により検出するリニア位置センサであって、
     前記弾性部の弾性により前記長尺磁性体の端部と前記磁気検出素子とが所定間隔を維持するように付勢されている、請求項1又は2に記載のリニア位置センサ。
    The long magnetic body is accommodated inside a long pipe,
    The frame fixes and supports the end of the long pipe,
    the magnet is supported by a slider, and the slider is disposed within the frame so as to be movable along the long pipe;
    A linear position sensor in which the slider moves between both ends of the long magnetic body in accordance with the movement of a detection target, and the magnetic detection component detects the magnetic flux of the magnet induced by the long magnetic body,
    3. The linear position sensor according to claim 1, wherein the elastic portion is urged to maintain a predetermined distance between the end of the long magnetic body and the magnetic detection element.
  12.  前記磁気検出部品に磁気検出素子が組み込まれ、
     前記スライダが前記磁気検出部品の前記磁気検出素子から最も離間した位置に配置された状態で、前記マグネットにより前記磁気検出素子位置に生じる磁束密度が1mT以上である、請求項11記載のリニア位置センサ。
    A magnetic detection element is incorporated in the magnetic detection component,
    12. The linear position sensor according to claim 11, wherein a magnetic flux density generated by said magnet at the position of said magnetic detection element is 1 mT or more when said slider is disposed at a position farthest from said magnetic detection element of said magnetic detection component.
  13.  液面検知用レベルセンサとした、請求項11に記載のリニア位置センサ。

     
    12. The linear position sensor of claim 11, which is a level sensor for detecting a liquid level.

PCT/JP2023/041896 2022-12-19 2023-11-21 Linear position sensor and level sensor WO2024135209A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-202552 2022-12-19
JP2022202552A JP2024087624A (en) 2022-12-19 2022-12-19 Linear Position and Level Sensors

Publications (1)

Publication Number Publication Date
WO2024135209A1 true WO2024135209A1 (en) 2024-06-27

Family

ID=91588581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/041896 WO2024135209A1 (en) 2022-12-19 2023-11-21 Linear position sensor and level sensor

Country Status (2)

Country Link
JP (1) JP2024087624A (en)
WO (1) WO2024135209A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009300189A (en) * 2008-06-11 2009-12-24 Na:Kk Liquid level sensor
JP2023131081A (en) * 2022-03-08 2023-09-21 ニデックコンポーネンツ株式会社 Rotation angle detection device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009300189A (en) * 2008-06-11 2009-12-24 Na:Kk Liquid level sensor
JP2023131081A (en) * 2022-03-08 2023-09-21 ニデックコンポーネンツ株式会社 Rotation angle detection device

Also Published As

Publication number Publication date
JP2024087624A (en) 2024-07-01

Similar Documents

Publication Publication Date Title
US4810965A (en) Position detecting apparatus using a magnetic sensor and a closed magnetic circuit with non-uniform magnetic flux distribution
JP5027191B2 (en) Pressure sensor and adjustment method thereof
US4412454A (en) Pressure sensing unit for a pressure sensor
US8692545B2 (en) Magnetostrictive stress sensor
US20050030004A1 (en) Current sensor
JPH02138875A (en) Acceleration sensor
JP4993401B2 (en) Stress sensor
KR20160128996A (en) Magnetoelastic sensor
US20140225595A1 (en) Proximity sensor
JP2008039517A (en) Current sensor
US4361045A (en) Vibration sensor
EP1977207B1 (en) Accurate pressure sensor
US4338823A (en) Vibration sensor
WO2024135209A1 (en) Linear position sensor and level sensor
WO2024135208A1 (en) Linear position sensor and level sensor
CN112665616A (en) Measuring device and sensor package
JP2013029337A (en) Liquid level detection device
JP6422740B2 (en) Inverse magnetostrictive vibration velocity sensor and measurement method using the same
JP2005221418A (en) Pressure sensor
JP2022013185A (en) Current sensor and transformer
JP6417957B2 (en) Stress sensor
US4336657A (en) Position sensor
JP2019144027A (en) Clamp sensor and measurement device
JP2009300189A (en) Liquid level sensor
JP2008070215A (en) Detection section of position sensor, and position sensor