WO2024135004A1 - 船舶 - Google Patents

船舶 Download PDF

Info

Publication number
WO2024135004A1
WO2024135004A1 PCT/JP2023/032357 JP2023032357W WO2024135004A1 WO 2024135004 A1 WO2024135004 A1 WO 2024135004A1 JP 2023032357 W JP2023032357 W JP 2023032357W WO 2024135004 A1 WO2024135004 A1 WO 2024135004A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
exhaust gas
flow rate
unit
combustion device
Prior art date
Application number
PCT/JP2023/032357
Other languages
English (en)
French (fr)
Inventor
弘友希 ▲柳▼澤
隆司 雲石
Original Assignee
三菱造船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022206692A external-priority patent/JP2024090656A/ja
Application filed by 三菱造船株式会社 filed Critical 三菱造船株式会社
Publication of WO2024135004A1 publication Critical patent/WO2024135004A1/ja

Links

Images

Definitions

  • Patent Document 1 discloses a recovery device equipped with a separation device that separates carbon dioxide from exhaust gas produced by burning fuel (natural gas).
  • the present disclosure has been made to solve the above problems, and aims to provide a ship that can efficiently capture carbon dioxide in accordance with the operating load of the combustion device.
  • the ship according to the present disclosure comprises a hull, a combustion device, a carbon dioxide capture unit, and an air blower.
  • the combustion device is provided on the hull and burns fuel.
  • the carbon dioxide capture unit is provided on the hull.
  • the carbon dioxide capture unit captures carbon dioxide in the exhaust gas from the exhaust gas of the combustion device.
  • the air blower sends the exhaust gas of the combustion device to the carbon dioxide capture unit.
  • the air blower comprises a blower and a flow rate adjustment unit.
  • the blower blows the exhaust gas of the combustion device towards the carbon dioxide capture unit.
  • the flow rate adjustment unit is provided on the inlet side of the blower.
  • the flow rate adjustment unit adjusts the flow rate of the exhaust gas sent to the carbon dioxide capture unit by the blower by changing the opening degree.
  • the ship disclosed herein can provide a ship that can efficiently capture carbon dioxide in accordance with the operating load of the combustion device.
  • FIG. 1 is a side view of a marine vessel according to an embodiment of the present disclosure.
  • FIG. 2 is a diagram showing a configuration of a carbon dioxide capture unit of a ship according to an embodiment of the present disclosure.
  • FIG. 2 is a diagram illustrating a configuration of a flow rate adjuster of a ship according to an embodiment of the present disclosure.
  • FIG. 2 is a diagram illustrating a hardware configuration of a control device for a vessel according to an embodiment of the present disclosure.
  • FIG. 2 is a functional block diagram of a control device according to an embodiment of the present disclosure.
  • a ship 1 As shown in Fig. 1, a ship 1 according to an embodiment of the present disclosure includes at least a hull 2, a superstructure 4, a combustion device 8, and a carbon dioxide capture unit 10.
  • the type of the ship 1 according to this embodiment is not limited to a specific type of ship. Examples of the type of the ship 1 include a liquefied gas carrier, a ferry, a RORO ship, a car carrier, and a passenger ship.
  • the hull 2 has a pair of side panels 5A, 5B and a bottom 6 that form its outer hull.
  • the side panels 5A, 5B each have a pair of side panel shells that form the starboard and port sides, respectively.
  • the bottom 6 has a bottom panel shell that connects the side panels 5A, 5B.
  • the pair of side panels 5A, 5B and the bottom 6 give the outer hull 2 a U-shape in cross section perpendicular to the bow-stern direction FA.
  • the hull 2 further includes an upper deck 7, which is a full-length deck located at the topmost level.
  • the superstructure 4 is formed on this upper deck 7. Accommodation areas and the like are provided within the superstructure 4.
  • a cargo space (not shown) for carrying cargo is provided on the bow 2a side in the bow-stern direction FA from the superstructure 4.
  • the combustion device 8 is a device that generates thermal energy by burning fuel, and is provided inside the hull 2.
  • Examples of the combustion device 8 include an internal combustion engine used in the main engine for propelling the ship 1, an internal combustion engine used in the power generation equipment that supplies electricity to the ship, and a boiler that generates steam as a working fluid.
  • the carbon dioxide capture unit 10 captures carbon dioxide in the exhaust gas of the combustion device 8.
  • the carbon dioxide capture unit 10 is provided in the hull 2.
  • the carbon dioxide capture unit 10 illustrated in this embodiment is provided on the upper deck 7 of the hull 2, but the location of the carbon dioxide capture unit 10 is not limited to on the upper deck 7.
  • FIG. 2 is a diagram showing a configuration of a carbon dioxide capture unit according to an embodiment of the present disclosure.
  • the carbon dioxide capture unit 10 includes an exhaust gas cooling tower 11 , an absorption tower 12 , a regeneration tower 13 , an exhaust gas scrubbing tower 14 , a capture unit 15 , a blower unit 20 , and a control device 60 .
  • the exhaust gas cooling tower 11 cools the exhaust gas from the combustion device 8 (see FIG. 1) (for example, to about 40°C) using the water around the ship 2 on which it floats or fresh water stored in a fresh water tank (not shown) installed inside the ship 2 as a cooling liquid.
  • the exhaust gas cooling tower 11 may be installed as needed, and may be omitted, for example, if the temperature of the exhaust gas introduced into the absorption tower 12 has been sufficiently reduced.
  • An exhaust gas introduction pipe 101 for supplying exhaust gas from the combustion device 8 is connected to the lower part of the exhaust gas cooling tower 11.
  • the exhaust gas cooling tower 11 includes a tower body 11a and a nozzle (not shown) for spraying a cooling liquid from the upper part inside the tower body 11a.
  • a cooling liquid supply system 102 for circulating a cooling liquid is connected to the exhaust gas cooling tower 11.
  • One end of the cooling liquid supply system 102 is connected to the bottom of the tower body 11a.
  • the other end of the cooling liquid supply system 102 is connected to a nozzle (not shown) at the top of the tower body 11a.
  • a cooling liquid supply pump 31 and a heat exchanger 41 are provided in the cooling liquid supply system 102.
  • the cooling liquid supply pump 31 draws the cooling liquid accumulated at the bottom of the tower body 11a out of the tower body 11a and supplies it to a nozzle at the top of the tower body 11a.
  • the cooling liquid supplied to the nozzle is sprayed from the nozzle into the tower body 11a and comes into contact with the exhaust gas sent into the tower body 11a. This cools the exhaust gas, and the soot and dust contained in the exhaust gas are captured and washed away by the cooling liquid.
  • the heat exchanger 41 exchanges heat between the cooling water supplied from outside the carbon dioxide capture unit 10 and the cooling liquid flowing in the cooling liquid supply system 102. In other words, the heat exchanger 41 cools the cooling liquid flowing in the cooling liquid supply system 102 with the cooling water supplied from outside the carbon dioxide capture unit 10.
  • One end of the exhaust gas discharge pipe 103 is connected to the top of the tower body 11a.
  • the exhaust gas discharge pipe 103 is cooled by a cooling liquid inside the tower body 11a, and sends the exhaust gas from which soot and other particles have been washed away to the absorption tower 12.
  • the absorption tower 12 absorbs the carbon dioxide contained in the exhaust gas into the absorbing liquid.
  • the absorption tower 12 is equipped with a tower body 12a and a nozzle (not shown) that sprays the absorbing liquid from the upper part of the tower body 12a.
  • the other end of the exhaust gas discharge pipe 103 is connected to the lower part of the tower body 12a. Through the exhaust gas discharge pipe 103, the exhaust gas that has passed through the exhaust gas cooling tower 11 is sent into the tower body 12a.
  • the absorbing liquid is supplied from the regenerator 13 via a circulation system 106, which will be described later.
  • the absorption tower 12 for example, drops the absorbing liquid from nozzles in the tower body 12a and brings it into contact with the exhaust gas introduced into the absorption tower 12, thereby absorbing the carbon dioxide contained in the exhaust gas into the absorbing liquid.
  • the absorption tower 12 absorbs the carbon dioxide contained in the exhaust gas into the absorbing liquid, for example, by chemical absorption.
  • MEA monoethanolamine
  • An absorbing liquid other than MEA can also be used.
  • the exhaust gas after the carbon dioxide has been absorbed by the absorbing liquid is introduced into the exhaust gas scrubber 14 through the gas discharge pipe 104 from the top of the tower body 12a.
  • the exhaust gas scrubber 14 drops scrubber liquid from the top of the exhaust gas scrubber 14 to wash away the absorbing liquid contained in the exhaust gas that has left the absorption tower 12.
  • the scrubber liquid is, for example, the water around the ship hull 2 or fresh water stored in a fresh water tank (not shown) provided inside the ship hull 2.
  • the exhaust gas scrubber 14 is equipped with a tower body 14a and a nozzle (not shown) that sprays the scrubber liquid from the top of the tower body 14a.
  • a cleaning liquid supply system 105 that circulates cleaning liquid is connected to the exhaust gas cleaning tower 14.
  • One end of the cleaning liquid supply system 105 is connected to the bottom of the tower body 14a.
  • the other end of the cleaning liquid supply system 105 is connected to a nozzle (not shown) in the tower body 14a at the top of the tower body 14a.
  • a cleaning liquid supply pump 33 and a heat exchanger 43 are provided in the middle of the cleaning liquid supply system 105.
  • the cleaning liquid supply pump 33 sucks the cleaning liquid from inside the tower body 14a through the bottom of the tower body 14a and supplies it to the nozzle at the top of the tower body 14a.
  • the cleaning liquid supplied to the nozzle is sprayed from the nozzle into the tower body 14a and comes into contact with the exhaust gas sent into the tower body 14a. As a result, the absorbing liquid contained in the exhaust gas is captured by the cleaning liquid and washed away.
  • the heat exchanger 43 exchanges heat between the cooling water supplied from outside the carbon dioxide capture unit 10 and the cleaning liquid flowing in the cleaning liquid supply system 105. In other words, the heat exchanger 43 cools the cleaning liquid circulating in the cleaning liquid supply system 105 with the cooling water supplied from outside the carbon dioxide capture unit 10. The cleaning liquid cooled by this heat exchanger 43 is then sprayed into the tower body 14a from a nozzle at the top of the tower body 14a.
  • the exhaust pipe 107 guides the exhaust gas leaving the exhaust gas scrubbing tower 14, in other words, the exhaust gas from which the absorbing liquid has been removed by the exhaust gas scrubbing tower 14, to, for example, an exhaust funnel (not shown) provided on the ship 1, and releases it into the atmosphere.
  • a circulation system 106 is provided between the absorption tower 12 and the regeneration tower 13, which will be described later, to circulate the absorbing liquid between the absorption tower 12 and the regeneration tower 13.
  • the circulation system 106 includes an absorbing liquid supply system 106A, an absorbing liquid discharge system 106B, and a heat exchanger 106C.
  • One end of the absorbing liquid supply system 106A is connected to the bottom of the tower body 13a of the regenerator 13.
  • the other end of the absorbing liquid supply system 106A is connected to a nozzle (not shown) in the tower body 12a at the top of the tower body 12a of the absorption tower 12.
  • a first circulation pump 32A is provided in the middle of the absorbing liquid supply system 106A. The first circulation pump 32A sucks the absorbing liquid from the bottom of the tower body 13a of the regenerator 13 through the absorbing liquid supply system 106A and supplies it to the nozzle at the top of the tower body 12a of the absorption tower 12.
  • One end of the absorption liquid discharge system 106B is connected to the bottom of the tower body 12a of the absorption tower 12.
  • the other end of the absorption liquid discharge system 106B is connected to a nozzle (not shown) provided in the tower body 13a at the top of the tower body 13a of the regeneration tower 13.
  • a second circulation pump 32B is provided in the middle of the absorption liquid discharge system 106B. The second circulation pump 32B sucks the absorption liquid from the bottom of the tower body 12a of the absorption tower 12 through the absorption liquid discharge system 106B and supplies it to a nozzle at the top of the tower body 13a of the regeneration tower 13.
  • the heat exchanger 106C exchanges heat between the absorbing liquid flowing in the absorbing liquid supply system 106A and the absorbing liquid flowing in the absorbing liquid discharge system 106B. In other words, the heat of the absorbing liquid immediately after the carbon dioxide is separated by the regeneration tower 13 heats the absorbing liquid that has absorbed carbon dioxide before being introduced into the regeneration tower 13. Note that the heat exchanger 106C may be omitted.
  • the regeneration tower 13 separates gaseous carbon dioxide from the absorbing liquid that has absorbed carbon dioxide in the absorption tower 12. More specifically, the regeneration tower 13 heats the absorbing liquid sent from the absorption tower 12 to the regeneration tower 13 via the absorbing liquid discharge system 106B, using the absorbing liquid heating system 108.
  • the absorption liquid heating system 108 is connected to the regenerator 13.
  • the absorption liquid heating system 108 circulates the absorption liquid between the regenerator 13 and the reboiler 18. That is, the absorption liquid heating system 108 supplies the absorption liquid taken out from the regenerator 13 to the reboiler 18, and returns the absorption liquid from the reboiler 18 to the regenerator 13.
  • the reboiler 18 is provided in the middle of the absorption liquid heating system 108.
  • a steam supply pipe 81 is connected to the reboiler 18, and the steam generated in a boiler (not shown) or the like in the hull 2 is sent to the reboiler 18 through this steam supply pipe 81.
  • the reboiler 18 exchanges heat between the steam sent through the steam supply pipe 81 and the absorption liquid flowing in the absorption liquid heating system 108. That is, the reboiler 18 heats the absorption liquid with the heat of the steam.
  • the absorption liquid heated by the reboiler 18 has gaseous carbon dioxide separated from it.
  • the absorption liquid and gaseous carbon dioxide are then returned to the tower body 13a.
  • the absorption liquid from which the gaseous carbon dioxide has been separated and regenerated is returned to the absorption tower 12 through the absorption liquid supply system 106A and reused.
  • the separated gaseous carbon dioxide is sent to the recovery section 15 through the gaseous carbon dioxide discharge line 109.
  • a condenser 19 is provided midway along the gaseous carbon dioxide discharge line 109. The condenser 19 condenses the moisture contained in the gaseous carbon dioxide by heat exchange with cooling water supplied from outside the carbon dioxide recovery section 10.
  • the recovery section 15 recovers the gaseous carbon dioxide separated in the regeneration tower 13.
  • the recovery section 15 is equipped with a regeneration reflux tower 16.
  • the regeneration reflux tower 16 separates the gaseous carbon dioxide sent through the condenser 19 from the condensed water that is the condensed water.
  • the condensed water separated into gas and liquid is returned from the bottom of the regeneration reflux tower 16 to the regeneration tower 13 through the reflux line 110.
  • a reflux pump 112 is provided in the middle of the reflux line 110 to return the condensed water to the regeneration tower 13.
  • the gaseous carbon dioxide from which moisture has been removed in the regeneration reflux tower 16 is discharged to the outside of the carbon dioxide capture unit 10 through the carbon dioxide exhaust pipe 111.
  • the gaseous carbon dioxide discharged through the carbon dioxide exhaust pipe 111 is stored, for example, in a carbon dioxide capture tank (not shown) provided in the hull 2. At this time, the gaseous carbon dioxide may be liquefied by an appropriate carbon dioxide liquefaction device and stored in the carbon dioxide capture tank.
  • the exhaust gas discharged from the combustion device 8 is cooled and washed in the exhaust gas cooling tower 11, and then introduced into the absorption tower 12.
  • the carbon dioxide contained in the exhaust gas is absorbed by the absorption liquid.
  • the exhaust gas from which the carbon dioxide has been separated by absorbing the carbon dioxide into the absorption liquid is washed in the exhaust gas scrubbing tower 14 and then released into the atmosphere.
  • the absorption liquid that has absorbed the carbon dioxide contained in the exhaust gas in the absorption tower 12 is sent to the regeneration tower 13 via the circulation system 106.
  • the absorption liquid that has absorbed the carbon dioxide is heated by the reboiler 18 to increase its temperature, and the gaseous carbon dioxide contained in the absorption liquid is separated.
  • the separated gaseous carbon dioxide is recovered via the regeneration reflux tower 16. Meanwhile, the absorption liquid from which the carbon dioxide has been separated in the regeneration tower 13 is circulated to the absorption tower 12 via the circulation system 106.
  • a blower 20 is provided in the exhaust gas introduction pipe 101.
  • the blower 20 sends the exhaust gas from the combustion device 8 to the carbon dioxide capture section 10.
  • the blower 20 sends the exhaust gas in the exhaust gas introduction pipe 101 to the exhaust gas cooling tower 11.
  • the blower 20 may be provided in the exhaust gas discharge pipe 103 between the exhaust gas cooling tower 11 and the absorption tower 12, or may be provided both in the exhaust gas introduction pipe 101 and in the exhaust gas discharge pipe 103.
  • the blower section 20 includes a blower 21 and a flow rate adjustment section 22.
  • the blower 21 blows exhaust gas from the combustion device 8 through an exhaust gas introduction pipe 101 toward the carbon dioxide capture section 10.
  • the flow rate adjustment section 22 is provided on the inlet side of the blower 21.
  • the flow rate adjustment section 22 is configured to be able to adjust the flow rate of exhaust gas flowing into the inlet of the blower 21 by changing its opening degree. In other words, the flow rate adjustment section 22 is able to adjust the flow rate of exhaust gas sent to the carbon dioxide capture section 10 by the blower 21.
  • FIG. 3 is a diagram illustrating a configuration of a flow rate adjuster of a ship according to an embodiment of the present disclosure.
  • the flow rate adjusting unit 22 of this embodiment is a so-called inlet guide vane (IGV), and includes a plurality of movable vanes 24.
  • the plurality of movable vanes 24 are provided between a center hub 25 and a frame 26.
  • the center hub 25 extends along an axis O that extends in the extension direction of the exhaust gas introduction pipe 101.
  • the frame 26 is provided on the outer side Dro of the center hub 25 in a radial direction Dr centered on the axis O.
  • the frame 26 has an annular shape when viewed from the direction of the axis O.
  • the frame 26 may be continuous with an inlet of the blower 21, for example.
  • the multiple movable blades 24 are arranged on the inner side Dri in the radial direction Dr relative to the frame 26.
  • the multiple movable blades 24 are arranged at equal intervals in the circumferential direction Dc centered on the axis O.
  • Each movable blade 24 is supported by the center hub 25 and the frame 26 via shafts 24s, 24t extending in the radial direction Dr, and is rotatable around the shafts 24s, 24t.
  • the multiple movable blades 24 are driven to rotate around the shafts 24s, 24t by a blade drive source such as a motor (not shown).
  • the flow rate adjustment unit 22 adjusts the opening of the exhaust gas flow path 22r on the inner side in the radial direction Dr from the frame 26 by rotating the multiple movable blades 24 around the shafts 24s, 24t.
  • the control device 60 controls the operation of the flow rate adjustment unit 22 based on the flow rate of the exhaust gas from the combustion device 8.
  • the control device 60 adjusts the opening of the multiple movable vanes 24 of the flow rate adjustment unit 22 based on the flow rate of the exhaust gas from the combustion device 8. In other words, the control device 60 increases the opening of the flow rate adjustment unit 22 if the flow rate of the exhaust gas from the combustion device 8 is high, and decreases the opening of the flow rate adjustment unit 22 if the flow rate of the exhaust gas from the combustion device 8 is low.
  • FIG. 4 is a diagram illustrating a hardware configuration of a control device of the carbon dioxide capture unit according to an embodiment of the present disclosure.
  • the control device 60 is a computer including a central processing unit (CPU) 61, a read only memory (ROM) 62, a random access memory (RAM) 63, a storage 64, and a signal transmission/reception module 65.
  • the signal transmission/reception module 65 receives a signal related to the flow rate of exhaust gas from the combustion device 8.
  • FIG. 5 is a functional block diagram of a control device according to an embodiment of the present disclosure.
  • a CPU 61 of a control device 60 executes a program pre-stored in a storage device such as a ROM 62 or a storage 64, thereby realizing each of the components of a signal input unit 70, an information acquisition unit 71, an exhaust gas flow rate control unit 72, a pump output control unit 73, and an output unit 75.
  • the signal input unit 70 receives a signal related to the flow rate of exhaust gas from the combustion device 8 via the signal transmission/reception module 65, which is hardware.
  • Examples of signals related to the flow rate of exhaust gas from the combustion device 8 include a signal indicating the load of the combustion device 8 and a signal indicating the flow rate of fuel supplied to the combustion device 8.
  • an example of a signal related to the flow rate of exhaust gas from the combustion device 8 is a signal indicating the rotation speed of the turbocharger. Note that in large ships, the diameter of the pipes through which the exhaust gas flows is generally very large, so it is often difficult to directly measure the flow rate of exhaust gas using a flow meter or the like.
  • the information acquisition unit 71 acquires information related to the flow rate of exhaust gas from the combustion device 8 based on the signal received by the signal input unit 70. Specifically, the information acquisition unit 71 in this embodiment acquires, as information related to the flow rate of exhaust gas from the combustion device 8, information indicating, for example, the ratio of the flow rate of exhaust gas from the combustion device 8 at that time to the expected maximum flow rate of exhaust gas.
  • the exhaust gas flow control unit 72 rotates the multiple movable vanes 24 and controls the opening degree of the flow rate adjustment unit 22 based on information related to the flow rate of exhaust gas from the combustion device 8.
  • the exhaust gas flow control unit 72 controls the multiple movable vanes 24 to increase or decrease the opening degree of the flow rate adjustment unit 22 according to the flow rate of exhaust gas from the combustion device 8.
  • the exhaust gas flow control unit 72 may adjust the opening degree of the flow rate adjustment unit 22 in multiple stages based on table information, map information, etc. that are previously set in association with the flow rate of exhaust gas from the combustion device 8.
  • a flow rate control function for various pumps in the carbon dioxide capture device may be added as follows.
  • the pump output control unit 73 controls the output of each of the cooling liquid supply pump 31, the first circulation pump 32A, the second circulation pump 32B, and the cleaning liquid supply pump 33 based on information related to the flow rate of the exhaust gas from the combustion device 8.
  • the pump output control unit 73 controls the output of each of the cooling liquid supply pump 31, the first circulation pump 32A, the second circulation pump 32B, the cleaning liquid supply pump 33, and the reflux pump 112 in conjunction with the opening degree of the flow rate adjustment unit 22.
  • Each of the cooling liquid supply pump 31, the first circulation pump 32A, the second circulation pump 32B, the cleaning liquid supply pump 33, and the reflux pump 112 illustrated in this embodiment is an electric pump.
  • the pump output control unit 73 controls the output of each of the cooling liquid supply pump 31, the first circulation pump 32A, the second circulation pump 32B, the cleaning liquid supply pump 33, and the reflux pump 112 by controlling the rotation speed of a motor (not shown) that drives each of the cooling liquid supply pump 31, the first circulation pump 32A, the second circulation pump 32B, the cleaning liquid supply pump 33, and the reflux pump 112 through inverter control.
  • Information related to the flow rate of exhaust gas also includes the carbon dioxide concentration, which changes depending on the flow rate, and the temperature and pressure of various fluids.
  • the pump output control unit 73 of this embodiment performs so-called inverter control, in which the current supplied to each motor of the coolant supply pump 31, first circulation pump 32A, second circulation pump 32B, cleaning liquid supply pump 33, and reflux pump 112 is increased or decreased by an inverter (not shown) to control the rotation speed of each motor.
  • An example of a control method for this inverter is PWM (Pulse Width Modulation) control.
  • Methods for adjusting the output of the coolant supply pump 31, first circulation pump 32A, second circulation pump 32B, cleaning liquid supply pump 33, and reflux pump 112 according to the opening degree of the flow rate adjustment unit 22 include, for example, a method of adjusting linearly or stepwise according to the opening degree of the flow rate adjustment unit 22.
  • the pump output control unit 73 controls the output of the cooling liquid supply pump 31, the first circulation pump 32A, the second circulation pump 32B, the cleaning liquid supply pump 33, and the reflux pump 112 according to the opening degree of the flow rate adjustment unit 22, the adjustment may be made based on table information, map information, etc. between the opening degree of the flow rate adjustment unit 22 and the output of each of the above pumps, which is created in advance based on simulations, experiments, etc.
  • the output unit 75 outputs a control signal for changing the opening degree of the multiple movable vanes 24 of the flow rate adjustment unit 22 based on the control of the exhaust gas flow rate control unit 72. Specifically, the output unit 75 outputs a control signal for changing the output of the coolant supply pump 31, the first circulation pump 32A, the second circulation pump 32B, the cleaning liquid supply pump 33, and the reflux pump 112 based on the control of the pump output control unit 73.
  • exhaust gas from the combustion device 8 is blown to the carbon dioxide capture unit 10 by the blower 20.
  • This blower 20 is provided with a flow rate adjuster 22 whose opening degree can be changed on the inlet side of a blower 21, and therefore it is possible to adjust the flow rate of exhaust gas sent to the carbon dioxide capture unit 10 via the blower 21 by changing the opening degree of the flow rate adjuster 22. Therefore, by changing the opening degree of the flow rate adjuster 22 in accordance with the flow rate of exhaust gas from the combustion device 8, it is possible to appropriately adjust the flow rate of exhaust gas sent to the carbon dioxide capture unit 10.
  • the flow rate adjustment unit 22 changes the opening degree by rotating the multiple movable blades 24 around the shafts 24s, 24t, and adjusts the flow rate of the exhaust gas sent to the carbon dioxide capture unit 10 by the blower 21. Therefore, it is possible to reduce pressure loss caused by the flow rate adjustment unit 22 while improving the response and control accuracy when adjusting the change in the flow rate of the exhaust gas sent to the carbon dioxide capture unit 10 by the blower 21.
  • control device 60 controls the operation of the flow rate adjustment unit 22 based on the flow rate of the exhaust gas from the combustion device 8. Therefore, automatic operation is possible, and the carbon dioxide capture unit 10 can be operated efficiently.
  • the operation of the flow rate adjustment unit 22 is controlled based on information related to the load of the combustion device 8 acquired by the information acquisition unit 71, and the flow rate of the exhaust gas sent to the carbon dioxide capture unit 10 by the blower 21 is adjusted. Therefore, even in cases where the flow rate of the exhaust gas cannot be directly measured, such as in the case of a large ship 1, the flow rate adjustment unit 22 can be controlled to open according to the flow rate of the exhaust gas, and the carbon dioxide capture unit 10 including the absorption tower 12, regeneration tower 13, and capture unit 15 can be operated efficiently.
  • the exhaust gas flow control unit 72 of the control device 60 adjusts the flow rate of the exhaust gas sent to the carbon dioxide capture unit 10 using the flow rate adjustment unit 22 based on information related to the flow rate of the exhaust gas from the combustion device 8, but this configuration is not limited to this.
  • the control device 60 may adjust the flow rate of the exhaust gas sent to the carbon dioxide capture unit 10 based on a required value of the carbon dioxide capture capacity of the carbon dioxide capture unit 10, in addition to information related to the flow rate of the exhaust gas.
  • the required value of the carbon dioxide capture capacity of the carbon dioxide capture unit 10 is, for example, a required value of the proportion of carbon dioxide to be captured from the exhaust gas by the carbon dioxide capture unit 10.
  • the International Maritime Organization has developed the Carbon Intensity Index (CII) as a rating system for the fuel efficiency performance of ships.
  • the CII sets out multiple ratings (ranks) for fuel efficiency performance based on the amount of carbon dioxide emissions per unit of transport capacity. These fuel efficiency ratings are set to become increasingly strict over a specified period of time.
  • the required value of the carbon dioxide capture capacity can be set according to this fuel economy performance rating.
  • the control device 60 can set the required value of the carbon dioxide capture capacity in the carbon dioxide capture unit 10 according to the fuel economy performance rating that is targeted at that time. Also, for example, if the fuel economy performance rating (rank) is to be maintained, the required value of the carbon dioxide capture capacity can be set so that the amount of carbon dioxide emissions is gradually reduced every time a specified period of time has passed.
  • the flow rate of the exhaust gas sent to the carbon dioxide capture unit 10 by the blower unit 20 can be adjusted based on the required carbon dioxide capture capacity of the carbon dioxide capture unit 10, which prevents the carbon dioxide capture unit 10 from operating in an excessively high carbon dioxide capture capacity state, thereby further reducing energy consumption.
  • the flow rate of the exhaust gas sent to the carbon dioxide capture unit 10 by the blower 21 is adjusted by adjusting the opening degree of the flow rate adjustment unit 22, but the present invention is not limited to this.
  • the flow rate may be adjusted by the blower 21.
  • the exhaust gas flow rate control unit 72 may use inverter control to control the rotation speed of a motor (not shown) that drives the blower 21.
  • An example of a control method for the blower 21 by the exhaust gas flow rate control unit 72 is inverter control, similar to the above-mentioned pumps of the carbon dioxide capture unit 10. In this way, it is possible to reduce energy consumption when the flow rate of the exhaust gas decreases by reducing the rotation speed of the blower 21 in response to the reduction in the exhaust gas flow rate, while ensuring the ability to follow changes in the flow rate of the exhaust gas by the flow rate adjustment unit 22.
  • the flow rate adjustment unit 22 is configured to include multiple movable vanes 24, but the flow rate adjustment unit 22 is not limited to this configuration.
  • the flow rate adjustment unit 22 may be configured to adjust the flow rate of the exhaust gas sent to the carbon dioxide capture unit 10, and other flow rate adjustment valves such as butterfly valves may be used.
  • the opening degree of the flow rate adjustment unit 22 can be changed according to the flow rate of the exhaust gas from the combustion device 8, and the flow rate of the exhaust gas sent to the carbon dioxide capture unit 10 can be appropriately adjusted, just like a configuration with multiple movable vanes 24.
  • a ship 1 includes a hull 2, a combustion device 8 provided on the hull 2 for burning fuel, a carbon dioxide capture section 10 provided on the hull 2 for capturing carbon dioxide from the exhaust gas of the combustion device 8, and a blower section 20 for sending the exhaust gas of the combustion device 8 to the carbon dioxide capture section 10.
  • the blower section 20 includes a blower 21 for blowing the exhaust gas of the combustion device 8 toward the carbon dioxide capture section 10, and a flow rate adjustment section 22 provided on the inlet side of the blower 21 for adjusting the flow rate of the exhaust gas sent by the blower 21 to the carbon dioxide capture section 10 by changing the opening degree.
  • the carbon dioxide in the exhaust gas generated by burning fuel in the combustion device 8 is captured in the carbon dioxide capture section 10.
  • the blower section 20 blows the exhaust gas from the combustion device 8 toward the carbon dioxide target section using the blower 21.
  • a flow rate adjustment section 22 is provided on the inlet side of the blower 21.
  • the flow rate adjustment section 22 can adjust the flow rate of the exhaust gas sent to the carbon dioxide capture section 10 by the blower 21 by changing the opening degree. Therefore, by changing the opening degree of the flow rate adjustment section 22 according to the amount of exhaust gas from the combustion device 8, the flow rate of the exhaust gas sent to the carbon dioxide capture section 10 can be appropriately adjusted. Therefore, the carbon dioxide capture section 10 does not need to operate in preparation for an excessive flow rate of exhaust gas, and energy consumption can be reduced. As a result, the carbon dioxide capture section 10 can be operated efficiently.
  • the ship 1 according to the second aspect is the ship 1 according to (1), and the flow rate adjustment section 22 includes a center hub 25 extending in the direction of the axis O, and a plurality of movable vanes 24 arranged at intervals in the circumferential direction Dc around the axis O on the outer side Dro of the radial direction Dr centered on the axis O relative to the center hub 25, and rotatable around shaft portions 24s, 24t extending in the radial direction Dr.
  • the flow rate adjustment unit 22 can change the opening by rotating the multiple movable blades 24 around the shafts 24s, 24t, and adjust the flow rate of the exhaust gas sent to the carbon dioxide capture unit 10 by the blower 21.
  • the flow rate adjustment unit 22 rotates the multiple movable blades 24 around the shafts 24s, 24t, it is possible to improve the response to changes in the exhaust gas flow rate and control accuracy, and reduce pressure loss.
  • the ship 1 according to the third aspect is the ship 1 according to (1) or (2), further comprising a control device 60 that controls the operation of the flow rate adjustment unit 22 based on the flow rate of the exhaust gas of the combustion device 8.
  • control device 60 can control the operation of the flow rate adjustment unit 22 based on the flow rate of the exhaust gas from the combustion device 8, allowing the carbon dioxide capture unit 10 to operate efficiently and automatically.
  • the ship 1 according to the fourth aspect is the ship 1 according to (3), in which the control device 60 controls the rotation speed of the blower 21.
  • the ship 1 according to a fifth aspect is the ship 1 of (3), wherein the carbon dioxide capture unit 10 includes an absorption tower 12 into which exhaust gas from the combustion device 8 and an absorption liquid capable of absorbing carbon dioxide in the exhaust gas are introduced, and which causes the absorption liquid to absorb the carbon dioxide in the exhaust gas, a regeneration tower 13 which heats the absorption liquid that has absorbed the carbon dioxide and separates the carbon dioxide from the absorption liquid, and a capture unit 15 which captures the carbon dioxide separated in the regeneration tower 13, and the control device 60 further includes an information acquisition unit 71 which acquires information related to the load of the combustion device 8, and controls the operation of the flow rate adjustment unit 22 based on the information related to the load of the combustion device 8 acquired by the information acquisition unit 71, to adjust the flow rate of the exhaust gas sent to the carbon dioxide capture unit 10 by the blower 21.
  • the information relating to the load of the combustion device 8 includes the load on the combustion device 8, the fuel consumption amount in the combustion device 8, and the rotation speed of the turbocharger in the case where the combustion device 8
  • the operation of the flow rate adjustment unit 22 is controlled based on information related to the load of the combustion device 8 acquired by the information acquisition unit 71, and the flow rate of the exhaust gas sent to the carbon dioxide capture unit 10 by the blower 21 is adjusted.
  • the ship 1 according to the sixth aspect is any one of the ships 1 according to (3) to (5), and the control device 60 adjusts the flow rate of the exhaust gas sent to the carbon dioxide capture unit 10 by the flow rate adjustment unit 22 based on the required value of the carbon dioxide capture capacity of the carbon dioxide capture unit 10.
  • control device 60 adjusts the flow rate of the exhaust gas sent to the carbon dioxide capture unit 10 by the flow rate adjustment unit 22 based on the required value of the carbon dioxide capture capacity of the carbon dioxide capture unit 10. This makes it possible to adjust the flow rate of the exhaust gas sent to the carbon dioxide capture unit 10 based not only on the amount of exhaust gas from the combustion device 8 but also on the required value of the carbon dioxide capture capacity set on the carbon dioxide capture unit 10 side. This prevents the carbon dioxide capture unit 10 from operating with excessive carbon dioxide capture capacity, and reduces energy consumption by the carbon dioxide capture unit 10.
  • the ship disclosed herein can provide a ship that can efficiently capture carbon dioxide in accordance with the operating load of the combustion device.

Landscapes

  • Treating Waste Gases (AREA)

Abstract

船舶は、船体と、船体に設けられ、燃料を燃焼させる燃焼装置と、船体に設けられて、燃焼装置の排ガスから、排ガス中の二酸化炭素を回収する二酸化炭素回収部と、燃焼装置の排ガスを、二酸化炭素回収部に送り込む送風部と、を備え、送風部は、燃焼装置の排ガスを二酸化炭素回収部に向かって送風するブロワと、ブロワの入口側に設けられ、開度が変更されることで、ブロワで二酸化炭素回収部に送り込む排ガスの流量を調整する流量調整部と、を備える。

Description

船舶
 本開示は、船舶に関する。
 本願は、2022年12月23日に日本に出願された特願2022-206692号について優先権を主張し、その内容をここに援用する。
 特許文献1には、燃料(天然ガス)を燃焼した排ガスから二酸化炭素を分離する分離装置を備えた回収装置が開示されている。
特開2017-176954号公報
 ところで、発電所等の陸上プラントにおいては、燃料を燃焼させることで発生する排ガスの量に大きな変動が生じることは少ない。このため、上記した特許文献1のような回収装置では、例えば、排ガスから二酸化炭素を分離するために用いる吸収液、分離装置等で冷却を行うための水等の液体を送給するためのポンプが、ほぼ一定の回転数で運転される場合が多い。
 これに対し、船舶の主機、発電機等の燃焼装置においては、船舶の運航状況、天候等に応じて、負荷が大きく変動する。この場合、燃焼装置で発生する排ガスの量も、状況に応じて大きく変動することがある。一方、回収装置においては、燃焼装置で想定される排ガスの最大量に応じて、運転がなされる。このため、例えば、燃焼装置の負荷が小さい状態では、回収装置を運転するために必要なエネルギーに無駄が生じてしまうこともある。
 本開示は、上記課題を解決するためになされたものであって、燃焼装置の運転負荷に則して二酸化炭素回収を効率良く行うことができる船舶を提供することを目的とする。
 上記課題を解決するために、本開示に係る船舶は、船体と、燃焼装置と、二酸化炭素回収部と、送風部と、を備える。前記燃焼装置は、前記船体に設けられ、燃料を燃焼させる。前記二酸化炭素回収部は、前記船体に設けられている。前記二酸化炭素回収部は、前記燃焼装置の排ガスから、前記排ガス中の二酸化炭素を回収する。前記送風部は、前記燃焼装置の排ガスを、前記二酸化炭素回収部に送り込む。前記送風部は、ブロワと、流量調整部と、を備える。前記ブロワは、前記燃焼装置の排ガスを前記二酸化炭素回収部に向かって送風する。前記流量調整部は、前記ブロワの入口側に設けられている。前記流量調整部は、開度が変更されることで、前記ブロワで前記二酸化炭素回収部に送り込む排ガスの流量を調整する。
 本開示の船舶によれば、燃焼装置の運転負荷に則して二酸化炭素回収を効率良く行うことができる船舶を提供することができる。
本開示の実施形態に係る船舶の側面図である。 本開示の実施形態に係る船舶の二酸化炭素回収部の構成を示す図である。 本開示の実施形態に係る船舶の流量調整部の構成を示す図である。 本開示の実施形態に係る船舶の制御装置のハードウェア構成を示す図である。 本開示の実施形態に係る制御装置の機能ブロック図である。
 以下、本開示の実施形態に係る船舶について、図1~図5を参照して説明する。
(船舶の構成)
 図1に示すように、本開示の実施形態の船舶1は、船体2と、上部構造4と、燃焼装置8と、二酸化炭素回収部10と、を少なくとも備えている。なお、この実施形態の船舶1の船種は、特定の船種に限られない。船舶1の船種としては、液化ガス運搬船、フェリー、RORO船、自動車運搬船、客船等を例示できる。
 船体2は、その外殻をなす一対の舷側5A,5Bと船底6とを有している。舷側5A,5Bは、左右舷側をそれぞれ形成する一対の舷側外板を備える。船底6は、これら舷側5A,5Bを接続する船底外板を備える。これら一対の舷側5A,5B及び船底6により、船体2の外殻は、船首尾方向FAと垂直な断面においてU字状を成している。
 船体2は、最も上層に配置される全通甲板である上甲板7を更に備えている。上部構造4は、この上甲板7上に形成されている。上部構造4内には、居住区等が設けられている。この実施形態の船舶1では、例えば、上部構造4よりも船首尾方向FAの船首2a側に、貨物を搭載するカーゴスペース(図示無し)が設けられている。
 燃焼装置8は、燃料を燃焼させることで熱エネルギーを発生させる装置であり、上記の船体2内に設けられている。燃焼装置8としては、船舶1を推進させるための主機に用いられる内燃機関、船内に電気を供給する発電設備に用いられる内燃機関、作動流体としての蒸気を発生させるボイラー等を例示できる。
(二酸化炭素回収部の構成)
 二酸化炭素回収部10は、燃焼装置8の排ガス中の二酸化炭素を回収する。二酸化炭素回収部10は、船体2に設けられている。本実施形態で例示する二酸化炭素回収部10は、船体2の上甲板7上に設けられているが、二酸化炭素回収部10の配置は、上甲板7上に限られるものでは無い。
 図2は、本開示の実施形態に係る二酸化炭素回収部の構成を示す図である。
 図2に示すように、二酸化炭素回収部10は、排ガス冷却塔11と、吸収塔12と、再生塔13と、排ガス洗浄塔14と、回収部15と、送風部20と、制御装置60と、を備えている。
 排ガス冷却塔11は、燃焼装置8(図1参照)の排ガスを、船体2の浮かぶ周囲の水や、船体2内に設けられた清水タンク(図示せず)に貯留されている清水を冷却液として冷却(例えば、40℃程度まで冷却)している。なお、排ガス冷却塔11は、必要に応じて設ければ良く、例えば、吸収塔12に導入される排ガス温度が十分に低下している場合には省略してもよい。
 排ガス冷却塔11の下部には、燃焼装置8の排ガスを送給する排ガス導入管101が接続されている。排ガス冷却塔11は、塔本体11aと、塔本体11a内の上部から冷却液を散布するノズル(図示せず)と、を備えている。
 排ガス冷却塔11には、冷却液を循環させる冷却液供給系統102が接続されている。冷却液供給系統102の一端は、塔本体11aの底部に接続されている。冷却液供給系統102の他端は、塔本体11aの上部において、ノズル(図示せず)に接続されている。
 冷却液供給系統102の途中には、冷却液供給ポンプ31と、熱交換器41と、が設けられている。冷却液供給ポンプ31は、塔本体11aの底部に溜まった冷却液を塔本体11a内から吸い出し、塔本体11aの上部のノズルに供給する。ノズルに供給された冷却液は、ノズルから塔本体11a内に散布され、塔本体11a内に送り込まれた排ガスと接触する。これにより、排ガスが冷却されるとともに、排ガスに含まれる煤塵等が冷却液によって捕捉されて洗い流される。
 熱交換器41は、二酸化炭素回収部10の外部から供給される冷却水と、冷却液供給系統102内を流れる冷却液との間で熱交換を行う。言い換えれば、熱交換器41は、二酸化炭素回収部10の外部から供給される冷却水により、冷却液供給系統102内を流れる冷却液を冷却する。
 塔本体11aの頂部には、排ガス吐出管103の一端が接続されている。排ガス吐出管103は、塔本体11a内で冷却液によって冷却されるとともに、煤塵等が洗い流された排ガスを、吸収塔12に送り込む。
 吸収塔12は、排ガスに含まれる二酸化炭素を吸収液に吸収させる。吸収塔12は、塔本体12aと、塔本体12a内の上部から吸収液を散布するノズル(図示せず)と、を備えている。塔本体12aの下部には、排ガス吐出管103の他端が接続されている。排ガス吐出管103を通して、排ガス冷却塔11を経た排ガスが、塔本体12a内に送り込まれる。
 吸収液は、後述する循環系統106を介して再生塔13から供給される。吸収塔12は、例えば、塔本体12a内のノズルから吸収液を降らせて、吸収塔12内に導入された排ガスに接触させることで、排ガスに含まれる二酸化炭素を吸収液に吸収させる。吸収塔12は、排ガスに含まれる二酸化炭素を、例えば化学吸収法により、吸収液に吸収させる。この実施形態において、二酸化炭素を化学吸収法で吸収させる吸収液としては、MEA(モノエタノールアミン)が用いられている。吸収液としては、MEA以外のものを用いることもできる。
 二酸化炭素を吸収液に吸収させた後の排ガスは、塔本体12aの頂部よりガス吐出管104を通して、排ガス洗浄塔14に導入される。排ガス洗浄塔14は、排ガス洗浄塔14内の上部から洗浄液を降らせて、吸収塔12を出た排ガスに含まれる吸収液を洗い流す。この実施形態における洗浄液としては、例えば、船体2の浮かぶ周囲の水や、船体2内に設けられた清水タンク(図示せず)に貯留されている清水が用いられている。排ガス洗浄塔14は、塔本体14aと、塔本体14a内の上部から洗浄液を散布するノズル(図示せず)と、を備えている。
 排ガス洗浄塔14には、洗浄液を循環させる洗浄液供給系統105が接続されている。洗浄液供給系統105の一端は、塔本体14aの底部に接続されている。洗浄液供給系統105の他端は、塔本体14aの上部において、塔本体14a内のノズル(図示せず)に接続されている。洗浄液供給系統105の途中には、洗浄液供給ポンプ33と、熱交換器43と、が設けられている。
 洗浄液供給ポンプ33は、塔本体14aの底部から塔本体14a内の洗浄液を吸い出し、塔本体14aの上部のノズルに供給する。ノズルに供給された洗浄液は、ノズルから塔本体14a内に散布され、塔本体14a内に送り込まれた排ガスと接触する。これにより、排ガスに含まれる吸収液が洗浄液によって捕捉されて洗い流される。
 熱交換器43は、二酸化炭素回収部10の外部から供給する冷却水と、洗浄液供給系統105内を流れる洗浄液との間で熱交換を行う。言い換えれば、熱交換器43は、二酸化炭素回収部10の外部から供給する冷却水によって洗浄液供給系統105を循環する洗浄液を冷却している。そして、この熱交換器43によって冷却された洗浄液が塔本体14aの上部のノズルから塔本体14a内に散布される。
 塔本体14aの頂部には、排気管107の一端が接続されている。排気管107は、排ガス洗浄塔14を出た排ガス、言い換えれば排ガス洗浄塔14によって吸収液が除去された排ガスを、例えば、船舶1に設けられた排気用のファンネル(図示せず)等に導いて大気放出させる。
 吸収塔12と、後述する再生塔13との間には、吸収塔12と再生塔13との間で吸収液を循環させる循環系統106が設けられている。循環系統106は、吸収液供給系統106Aと、吸収液排出系統106Bと、熱交換器106Cと、を備えている。
 吸収液供給系統106Aの一端は、再生塔13の塔本体13aの底部に接続されている。吸収液供給系統106Aの他端は、吸収塔12の塔本体12aの上部において、塔本体12a内のノズル(図示せず)に接続されている。吸収液供給系統106Aの途中には、第一循環ポンプ32Aが設けられている。第一循環ポンプ32Aは、吸収液供給系統106Aを通して、再生塔13の塔本体13aの底部から吸収液を吸い出し、吸収塔12の塔本体12aの上部のノズルに供給する。
 吸収液排出系統106Bの一端は、吸収塔12の塔本体12aの底部に接続されている。吸収液排出系統106Bの他端は、再生塔13の塔本体13aの上部において、塔本体13a内に設けられたノズル(図示せず)に接続されている。吸収液排出系統106Bの途中には、第二循環ポンプ32Bが設けられている。第二循環ポンプ32Bは、吸収液排出系統106Bを通して、吸収塔12の塔本体12aの底部から吸収液を吸い出し、再生塔13の塔本体13aの上部のノズルに供給する。
 熱交換器106Cは、吸収液供給系統106A内を流れる吸収液と、吸収液排出系統106B内を流れる吸収液との間で、熱交換を行う。言い換えれば、再生塔13により二酸化炭素を分離させた直後の吸収液の熱により、再生塔13に導入される前の二酸化炭素を吸収した吸収液を加熱している。なお、熱交換器106Cは、省略してもよい。
 再生塔13は、吸収塔12で二酸化炭素を吸収させた吸収液から、気体の二酸化炭素を分離させる。より具体的には、再生塔13は、吸収塔12から吸収液排出系統106Bを介して再生塔13内に送られた吸収液を、吸収液加熱系統108により加熱する。
 吸収液加熱系統108は、再生塔13に接続されている。吸収液加熱系統108は、再生塔13とリボイラ18との間で吸収液を循環させる。つまり、吸収液加熱系統108は、再生塔13内から取り出した吸収液を、リボイラ18に供給すると共に、リボイラ18から再生塔13内に吸収液を戻している。更に言い換えれば、リボイラ18は、吸収液加熱系統108の途中に設けられている。リボイラ18には、蒸気供給管81が接続されており、この蒸気供給管81により船体2内のボイラ(図示せず)等で生成された蒸気がリボイラ18に送り込まれる。リボイラ18は、蒸気供給管81を通して送り込まれた蒸気と、吸収液加熱系統108内を流れる吸収液とを熱交換させる。つまり、リボイラ18は、蒸気の熱により吸収液を加熱する。
 リボイラ18により加熱された吸収液は、気体の二酸化炭素が分離される。そして、これら吸収液と気体の二酸化炭素とが塔本体13a内に戻される。気体の二酸化炭素が分離されて再生された吸収液は、吸収液供給系統106Aを通して吸収塔12に戻されて再利用される。その一方で、分離された気体の二酸化炭素は、気体二酸化炭素排出ライン109を通して、回収部15に送り込まれる。気体二酸化炭素排出ライン109の途中には、凝縮器19が設けられている。凝縮器19は、二酸化炭素回収部10の外部から供給される冷却水との熱交換により、気体の二酸化炭素に含まれる水分を凝縮させる。
 回収部15は、再生塔13で分離された気体の二酸化炭素を回収する。回収部15は、再生還流塔16を備えている。再生還流塔16は、凝縮器19を経て送り込まれた気体の二酸化炭素と、水分が凝縮した凝縮水とを気液分離させる。
 気液分離された凝縮水は、再生還流塔16の底部から、還流ライン110を通して、再生塔13に還流される。還流ライン110の途中には、凝縮水を再生塔13に還流させるための還流ポンプ112が設けられている。一方で、再生還流塔16で水分が除去された気体の二酸化炭素は、二酸化炭素排出管111を通して、二酸化炭素回収部10の外部に排出される。二酸化炭素排出管111を通して排出された気体の二酸化炭素は、例えば、船体2に設けられた二酸化炭素回収タンク(図示せず)に蓄えられる。このとき、気体の二酸化炭素は、適宜の二酸化炭素液化装置により液化し、二酸化炭素回収タンクに蓄えるようにしてもよい。
 上記したような二酸化炭素回収部10においては、燃焼装置8から排出される排ガスは、排ガス冷却塔11で冷却、及び洗い流された後、吸収塔12に導入される。吸収塔12では、吸収液により、排ガスに含まれる二酸化炭素が吸収される。二酸化炭素が吸収液に吸収されることで、二酸化炭素が分離された排ガスは、排ガス洗浄塔14で洗浄された後、大気中に放出される。また、吸収塔12で、排ガスに含まれる二酸化炭素を吸収した吸収液は、循環系統106を介して再生塔13に送られる。二酸化炭素を吸収した吸収液は、リボイラ18により加熱されて温度上昇し、吸収液に含まれる気体の二酸化炭素が分離される。分離された気体の二酸化炭素は、再生還流塔16を経て回収される。一方で、再生塔13内で二酸化炭素が分離された吸収液は、循環系統106を介して、吸収塔12に循環される。
(送風部の構成)
 排ガス導入管101の途中には、送風部20が設けられている。送風部20は、燃焼装置8の排ガスを、二酸化炭素回収部10に送り込む。本実施形態では、送風部20が排ガス導入管101内の排ガスを排ガス冷却塔11に送り込む場合を例示している。なお、送風部20は、排ガス冷却塔11と吸収塔12との間の、排ガス吐出管103の途中に設けたり、排ガス導入管101の途中と排ガス吐出管103の途中との両方に設けたりしてもよい。
 送風部20は、ブロワ21と、流量調整部22と、を備えている。ブロワ21は、燃焼装置8の排ガスを、排ガス導入管101を通して二酸化炭素回収部10に向かって送風する。流量調整部22は、ブロワ21の流入口側に設けられている。流量調整部22は、その開度を変更することで、ブロワ21の流入口に流入する排ガスの流量を調整可能に構成されている。換言すれば、流量調整部22は、ブロワ21で二酸化炭素回収部10に送り込む排ガスの流量を調整可能とされている。
 図3は、本開示の実施形態に係る船舶の流量調整部の構成を示す図である。
 図3に示すように、本実施形態の流量調整部22は、いわゆる入口案内翼(IGV:Inlet Guide Vane)であり、複数の可動翼24を備えている。これら複数の可動翼24は、センターハブ25と、フレーム26との間に設けられている。センターハブ25は、排ガス導入管101の延伸方向に延びる軸線Oに沿って延びている。フレーム26は、センターハブ25に対し、軸線Oを中心とした径方向Drの外側Droに設けられている。フレーム26は、軸線O方向から見た際に、円環状をなしている。フレーム26は、例えば、ブロワ21の流入口に連続するようにしてもよい。
 複数の可動翼24は、フレーム26に対して径方向Drの内側Driに配置されている。これら複数の可動翼24は、軸線Oを中心とした周方向Dcに等間隔で配置されている。各可動翼24は、径方向Drに延びる軸部24s,24tを介してセンターハブ25、及びフレーム26に支持され、軸部24s,24t回りに回転可能とされている。これら複数の可動翼24は、モータ等の翼駆動源(図示せず)により、軸部24s,24t回りに回転駆動される。流量調整部22は、複数の可動翼24を軸部24s,24t回りに回動させることで、フレーム26よりも径方向Drの内側における排ガス流路22rの開度を調整する。
 制御装置60は、燃焼装置8の排ガスの流量に基づいて、流量調整部22の動作を制御する。制御装置60は、燃焼装置8の排ガスの流量に基づいて、流量調整部22の複数の可動翼24の開度を調整する。すなわち、制御装置60は、燃焼装置8の排ガスの流量が多ければ、流量調整部22の開度を増大させ、燃焼装置8の排ガスの流量が少なければ、流量調整部22の開度を減少させる。
(ハードウェア構成図)
 図4は、本開示の実施形態に係る二酸化炭素回収部の制御装置のハードウェア構成を示す図である。
 図4に示すように、制御装置60は、CPU61(Central Processing Unit)、ROM62(Read Only Memory)、RAM63(Random Access Memory)、ストレージ64、信号送受信モジュール65を備えるコンピュータである。信号送受信モジュール65は、燃焼装置8の排ガスの流量に関連する信号を受信する。
(機能ブロック図)
 図5は、本開示の実施形態に係る制御装置の機能ブロック図である。
 図5に示すように、制御装置60のCPU61はROM62やストレージ64等の記憶装置に予め記憶されたプログラムを実行することにより、信号入力部70、情報取得部71、排ガス流量制御部72、ポンプ出力制御部73、出力部75の各構成を実現する。
 信号入力部70は、ハードウェアである信号送受信モジュール65を介して、燃焼装置8の排ガスの流量に関連する信号を受信する。燃焼装置8の排ガスの流量に関連する信号としては、例えば、燃焼装置8の負荷を示す信号、燃焼装置8に供給される燃料の流量を示す信号を例示できる。また、燃焼装置8が過給機(図示無し)を備えている場合、燃焼装置8の排ガスの流量に関連する信号としては、過給機の回転数を示す信号を例示できる。なお、大型の船舶においては、一般に、排ガスの流れる配管径が非常に大きいため、排ガスの流量を、流量計などを用いて直接計測することが困難な場合が多い。
 情報取得部71は、信号入力部70で受信した信号に基づいて、燃焼装置8の排ガスの流量に関連する情報を取得する。具体的には、この実施形態の情報取得部71は、燃焼装置8の排ガスの流量に関連する情報として、例えば、想定される排ガスの最大流量に対する、その時点における燃焼装置8の排ガスの流量の割合を示す情報を取得する。
 排ガス流量制御部72は、燃焼装置8の排ガスの流量に関連する情報に基づいて、複数の可動翼24を回動させ、流量調整部22の開度を制御する。排ガス流量制御部72は、燃焼装置8の排ガスの流量に応じて、流量調整部22の開度を増減させるよう、複数の可動翼24を制御する。排ガス流量制御部72は、燃焼装置8の排ガスの流量に応じて、流量調整部22の開度を増減させるよう、複数の可動翼24を制御する際、燃焼装置8の排ガスの流量と関連付けて予め設定されたテーブル情報、マップ情報等に基づいて、流量調整部22の開度を複数段階に調整するようにしてもよい。
 尚、排ガス流量の制御に加え、二酸化炭素回収装置の各種ポンプの流量制御機能を以下のように追加しても良い。
 ポンプ出力制御部73は、燃焼装置8の排ガスの流量に関連する情報に基づいて、冷却液供給ポンプ31、第一循環ポンプ32A、第二循環ポンプ32B、及び洗浄液供給ポンプ33の、各々の出力を制御する。ポンプ出力制御部73は、流量調整部22の開度に連動して、冷却液供給ポンプ31、第一循環ポンプ32A、第二循環ポンプ32B、洗浄液供給ポンプ33、還流ポンプ112の出力を制御する。本実施形態で例示する冷却液供給ポンプ31、第一循環ポンプ32A、第二循環ポンプ32B、洗浄液供給ポンプ33、還流ポンプ112の各々は、電動ポンプである。ポンプ出力制御部73は、インバータ制御により、冷却液供給ポンプ31、第一循環ポンプ32A、第二循環ポンプ32B、洗浄液供給ポンプ33、還流ポンプ112の各々を駆動するモータ(図示せず)の回転数を制御することで、それぞれの出力を制御している。排ガスの流量に関連する情報としては、流量に応じて変化する二酸化炭素濃度や各種流体の温度、圧力なども含まれる。
 本実施形態のポンプ出力制御部73は、冷却液供給ポンプ31、第一循環ポンプ32A、第二循環ポンプ32B、洗浄液供給ポンプ33、還流ポンプ112の各モータに供給する電流をインバータ(図示せず)により増減させて、各モータの回転数を制御する、いわゆるインバータ制御を行っている。このインバータの制御方式としては、PWM(Pulse Width Modulation:パルス幅変調)制御等を例示できる。そして、流量調整部22の開度に応じて、冷却液供給ポンプ31、第一循環ポンプ32A、第二循環ポンプ32B、洗浄液供給ポンプ33、還流ポンプ112の出力を調整する方法としては、例えば、流量調整部22の開度に応じてリニア又は段階的に調整する方法が挙げられる。なお、ポンプ出力制御部73では、流量調整部22の開度に応じて、冷却液供給ポンプ31、第一循環ポンプ32A、第二循環ポンプ32B、洗浄液供給ポンプ33、還流ポンプ112の出力を制御する際、シミュレーションや実験等に基づいて予め作成した流量調整部22の開度と上記各ポンプ出力とのテーブル情報、マップ情報等に基づいて調整するようにしてもよい。
 出力部75は、排ガス流量制御部72の制御に基づいて、流量調整部22の複数の可動翼24の開度を変化させるための制御信号を出力する。具体的には、出力部75は、ポンプ出力制御部73の制御に基づいて、冷却液供給ポンプ31、第一循環ポンプ32A、第二循環ポンプ32B、洗浄液供給ポンプ33、還流ポンプ112の出力を変化させるための制御信号を出力する。
(作用効果)
 上記実施形態の船舶1では、燃焼装置8の排ガスを送風部20により二酸化炭素回収部10へ送風している。この送風部20は、ブロワ21の入口側に、開度を変更可能な流量調整部22を備えているため、流量調整部22の開度を変更することで、ブロワ21を介して二酸化炭素回収部10に送り込まれる排ガスの流量を調整することが可能となる。したがって、燃焼装置8の排ガスの流量に応じて流量調整部22の開度を変更して、二酸化炭素回収部10に送り込む排ガスの流量を適切に調整することができる。
 尚、前述のように、二酸化炭素回収部10に送り込まれる排ガスの量に応じて、冷却液供給ポンプ31、第一循環ポンプ32A、第二循環ポンプ32B、洗浄液供給ポンプ33、還流ポンプ112の出力を調整する機能を追加することも可能で、それを追加すれば二酸化炭素回収部10で、過度な流量の排ガスに備えた運転を継続する必要が無くなり、更に、エネルギー消費を抑えることができる。したがって、二酸化炭素回収部10を、効率良く運転することが可能となる。
 また、上記実施形態では、流量調整部22が、複数の可動翼24を軸部24s,24t回りに回転させることで開度を変更し、ブロワ21で二酸化炭素回収部10に送り込む排ガスの流量を調整している。そのため、ブロワ21で二酸化炭素回収部10に送り込む排ガスの流量変化を調整する際の追随性や制御精度を高めつつ、流量調整部22による圧損を低減することができる。
 さらに、上記実施形態では、制御装置60で、燃焼装置8の排ガスの流量に基づいて、流量調整部22の動作を制御している。そのため、自動的に運転することができると共に、二酸化炭素回収部10を効率良く運転できる。
 また、上記実施形態では、情報取得部71で取得した、燃焼装置8の負荷に関連する情報に基づいて、流量調整部22の動作を制御してブロワ21で二酸化炭素回収部10に送り込む排ガスの流量を調整している。そのため、大型の船舶1のように排ガスの流量を直接的に計測できない場合であっても、排ガスの流量に応じた開度となるように流量調整部22を制御して、吸収塔12、再生塔13、回収部15を含む二酸化炭素回収部10の運転を、効率良く行うことができる。
(実施形態の変形例)
 上記実施形態では、制御装置60の排ガス流量制御部72は、燃焼装置8の排ガスの流量に関連する情報に基づいて、二酸化炭素回収部10に送り込まれる排ガスの流量を、流量調整部22によって調整するようにしたが、この構成に限られるものではない。
 例えば、制御装置60は、排ガスの流量に関連する情報に加えて、二酸化炭素回収部10における二酸化炭素の回収能力の要求値に基づいて、二酸化炭素回収部10に送り込む排ガスの流量を調整するようにしてもよい。ここで、二酸化炭素回収部10における二酸化炭素の回収能力の要求値とは、例えば、二酸化炭素回収部10で排ガス中から回収する二酸化炭素の割合の要求値である。
 温室効果ガス(GHG)削減の取組として、国際海事機関(International Maritime Organization: IMO)において、船舶における燃費実績の格付けとしてCII(Carbon Intensity Index)が策定されている。このCIIにおいては、輸送能力当たりの二酸化炭素の排出量に基づいて、燃費実績の格付け(ランク)が複数段階に設定されている。この燃費実績の格付けは、所定期間の経過と共に、順次厳しくなるよう設定されている。
 上記の二酸化炭素の回収能力の要求値は、この燃費実績の格付けに応じて設定することができる。この場合、制御装置60では、その時点で目標とする燃費実績の格付けに合わせて、二酸化炭素回収部10における二酸化炭素の回収能力の要求値を設定すればよい。また例えば、燃費実績の格付け(ランク)を維持し続ける場合、所定期間経過毎に、二酸化炭素の排出量を順次少なくしていくように二酸化炭素の回収能力の要求値を設定すればよい。
 このような構成では、二酸化炭素回収部10における二酸化炭素の回収能力の要求値に基づいて、送風部20により二酸化炭素回収部10に送り込む排ガスの流量を調整することができるため、二酸化炭素回収部10における二酸化炭素の回収能力が過剰な状態で運転されることを抑え、より一層、エネルギー消費を抑えることができる。
(その他の実施形態)
 以上、本開示の実施の形態について図面を参照して詳述したが、具体的な構成はこの実施の形態に限られるものではなく、本開示の要旨を逸脱しない範囲の設計変更等も含まれる。
 上記実施形態では、流量調整部22の開度を調整することによって、ブロワ21で二酸化炭素回収部10に送り込む排ガスの流量を調整するようにしたが、これに限られない。
 例えば、上記の流量調整部22による流量調整に加えて、ブロワ21による流量調整を行うようにしてもよい。
 この場合、排ガス流量制御部72は、インバータ制御により、ブロワ21を駆動するモータ(図示せず)の回転数を制御すればよい。排ガス流量制御部72によるブロワ21の制御方式としては、上述した二酸化炭素回収部10の各ポンプと同様に、インバータ制御を例示できる。このようにすることで、排ガスの流量変化に対する追随性を流量調整部22により担保しつつ、排ガスの流量が低下した場合には、この排ガス流量の低下に応じてブロワ21の回転数を低下させてエネルギー消費を低減することが可能となる。
 さらに上記実施形態では、流量調整部22として、複数の可動翼24を備える構成としたが、流量調整部22はこの構成に限られるものでは無い。流量調整部22は、二酸化炭素回収部10に送り込む排ガスの流量を調整できる構成であればよく、例えばバタフライ弁等の他の流量調整弁を用いてもよい。この場合、複数の可動翼24を備える構成に対し追随性や制御精度は低下するものの、複数の可動翼24を備える構成と同様に、燃焼装置8の排ガスの流量に応じて流量調整部22の開度を変更して、二酸化炭素回収部10に送り込む排ガスの流量を適切に調整することができる。
<付記>
 実施形態に記載の船舶1は、例えば以下のように把握される。
(1)第1の態様に係る船舶1は、船体2と、前記船体2に設けられ、燃料を燃焼させる燃焼装置8と、前記船体2に設けられて、前記燃焼装置8の排ガスから、前記排ガス中の二酸化炭素を回収する二酸化炭素回収部10と、前記燃焼装置8の排ガスを、前記二酸化炭素回収部10に送り込む送風部20と、を備え、前記送風部20は、前記燃焼装置8の排ガスを前記二酸化炭素回収部10に向かって送風するブロワ21と、前記ブロワ21の入口側に設けられ、開度が変更されることで、前記ブロワ21で前記二酸化炭素回収部10に送り込む排ガスの流量を調整する流量調整部22と、を備える。
 燃焼装置8で燃料を燃焼させることで生成される排ガス中の二酸化炭素は、二酸化炭素回収部10で回収される。送風部20は、ブロワ21により、燃焼装置8の排ガスを二酸化対象部に向かって送風する。ブロワ21の入口側には、流量調整部22が設けられている。流量調整部22では、開度を変更することで、ブロワ21で二酸化炭素回収部10に送り込む排ガスの流量を調整することができる。そのため、燃焼装置8の排ガスの量に応じて、流量調整部22の開度を変更することによって、二酸化炭素回収部10に送り込む排ガスの流量を適切に調整することができる。したがって、二酸化炭素回収部10で、過度な流量の排ガスに備えて運転する必要が無くなり、エネルギー消費を抑えることができる。その結果、二酸化炭素回収部10を、効率良く運転することが可能となる。
(2)第2の態様に係る船舶1は、(1)の船舶1であって、前記流量調整部22は、軸線O方向に延びるセンターハブ25と、前記センターハブ25に対し、前記軸線Oを中心とした径方向Drの外側Droに、前記軸線O回りの周方向Dcに間隔をあけて配置され、前記径方向Drに延びる軸部24s,24t回りに回転可能とされた複数の可動翼24と、を備える。
 これにより、流量調整部22では、複数の可動翼24を軸部24s,24t回りに回転させることで、開度を変更し、ブロワ21で二酸化炭素回収部10に送り込む排ガスの流量を調整することができる。また、流量調整部22を、軸部24s,24t回りに複数の可動翼24を回転させる方式とすることで、排ガス流量変化への追随性や制御精度を高め、圧損を低減することができる。
(3)第3の態様に係る船舶1は、(1)又は(2)の船舶1であって、前記燃焼装置8の排ガスの流量に基づいて、前記流量調整部22の動作を制御する制御装置60、を更に備える。
 これにより、制御装置60で、燃焼装置8の排ガスの流量に基づいて、流量調整部22の動作を制御することで、二酸化炭素回収部10を効率良く運転できると共に、自動的に運転することができる。
(4)第4の態様に係る船舶1は、(3)の船舶1であって、前記制御装置60は、前記ブロワ21の回転数を制御する。
 このようにブロワ21の回転数を制御することで、ブロワ21で二酸化炭素回収部10に送り込む排ガスの流量を調整することもできる。したがって、ブロワ21によるエネルギー消費を低減できる。
(5)第5の態様に係る船舶1は、(3)の船舶1であって、前記二酸化炭素回収部10は、前記燃焼装置8の排ガス、及び前記排ガス中の二酸化炭素を吸収可能な吸収液が導入され、前記吸収液により前記排ガス中の二酸化炭素を吸収させる吸収塔12と、二酸化炭素を吸収した前記吸収液を加熱し、前記吸収液から二酸化炭素を分離させる再生塔13と、前記再生塔13で分離された二酸化炭素を回収する回収部15と、を備え、前記制御装置60は、前記燃焼装置8の負荷に関連する情報を取得する情報取得部71を更に備え、前記情報取得部71で取得した、前記燃焼装置8の負荷に関連する情報に基づいて、前記流量調整部22の動作を制御して前記ブロワ21で前記二酸化炭素回収部10に送り込む排ガスの流量を調整する。
 燃焼装置8の負荷に関する情報としては、燃焼装置8における負荷、燃焼装置8における燃料消費量、燃焼装置8が過給機を備える場合における過給機の回転数、が挙げられる。
 このような構成では、情報取得部71で取得した、燃焼装置8の負荷に関連する情報に基づいて、流量調整部22の動作を制御してブロワ21で二酸化炭素回収部10に送り込む排ガスの流量を調整する。これにより、吸収塔12、再生塔13、回収部15を含む二酸化炭素回収部10の運転を、効率良く行うことができる。
(6)第6の態様に係る船舶1は、(3)から(5)の何れか一つの船舶1であって、前記制御装置60は、前記二酸化炭素回収部10における前記二酸化炭素の回収能力の要求値に基づいて、前記流量調整部22で前記二酸化炭素回収部10に送り込む排ガスの流量を調整する。
 このような構成では、制御装置60は、二酸化炭素回収部10における二酸化炭素の回収能力の要求値に基づいて、流量調整部22で二酸化炭素回収部10に送り込む排ガスの流量を調整する。これにより、燃焼装置8の排ガスの量だけでなく、二酸化炭素回収部10側で設定した二酸化炭素の回収能力の要求値に基づいて、二酸化炭素回収部10に送り込む排ガスの流量を調整することができる。したがって、過度な二酸化炭素回収能力で二酸化炭素回収部10が運転されることを抑えて、二酸化炭素回収部10によるエネルギー消費を抑えることができる。
 本開示の船舶によれば、燃焼装置の運転負荷に則して二酸化炭素回収を効率良く行うことができる船舶を提供することができる。
1…船舶 2…船体 2a…船首 4…上部構造 5A,5B…舷側 6…船底 7…上甲板 8…燃焼装置 10…二酸化炭素回収部 11…排ガス冷却塔 11a…塔本体 12…吸収塔 12a…塔本体 13…再生塔 13a…塔本体 14…排ガス洗浄塔 14a…塔本体 15…回収部 16…再生還流塔 18…リボイラ 19…凝縮器 20…送風部 21…ブロワ 22…流量調整部 22r…排ガス流路 24…可動翼 24s,24t…軸部 25…センターハブ 26…フレーム 31…冷却液供給ポンプ 32A…第一循環ポンプ 32B…第二循環ポンプ 33…洗浄液供給ポンプ 41,43…熱交換器 60…制御装置 61…CPU 62…ROM 63…RAM 64…ストレージ 65…信号送受信モジュール 70…信号入力部 71…情報取得部 72…排ガス流量制御部 73…ポンプ出力制御部 75…出力部 81…蒸気供給管 101…排ガス導入管 102…冷却液供給系統 103…排ガス吐出管 104…ガス吐出管 105…洗浄液供給系統 106…循環系統 106A…吸収液供給系統 106B…吸収液排出系統 106C…熱交換器 107…排気管 108…吸収液加熱系統 109…気体二酸化炭素排出ライン 110…還流ライン 111…二酸化炭素排出管 112…還流ポンプ Dc…周方向 Dr…径方向 Dri…内側 Dro…外側 FA…船首尾方向 O…軸線

Claims (6)

  1.  船体と、
     前記船体に設けられ、燃料を燃焼させる燃焼装置と、
     前記船体に設けられて、前記燃焼装置の排ガスから、前記排ガス中の二酸化炭素を回収する二酸化炭素回収部と、
     前記燃焼装置の排ガスを、前記二酸化炭素回収部に送り込む送風部と、を備え、
     前記送風部は、
     前記燃焼装置の排ガスを前記二酸化炭素回収部に向かって送風するブロワと、
     前記ブロワの入口側に設けられ、開度が変更されることで、前記ブロワで前記二酸化炭素回収部に送り込む排ガスの流量を調整する流量調整部と、
    を備える船舶。
  2.  前記流量調整部は、
     軸線方向に延びるセンターハブと、
     前記センターハブに対し、前記軸線を中心とした径方向の外側に、前記軸線回りの周方向に間隔をあけて配置され、前記径方向に延びる軸部回りに回転可能とされた複数の可動翼と、を備える
    請求項1に記載の船舶。
  3.  前記燃焼装置の排ガスの流量に基づいて、前記流量調整部の動作を制御する制御装置、を更に備える
    請求項1又は2に記載の船舶。
  4.  前記制御装置は、前記ブロワの回転数を制御する
    請求項3に記載の船舶。
  5.  前記二酸化炭素回収部は、
     前記燃焼装置の排ガス、及び前記排ガス中の二酸化炭素を吸収可能な吸収液が導入され、前記吸収液により前記排ガス中の二酸化炭素を吸収させる吸収塔と、
     二酸化炭素を吸収した前記吸収液を加熱し、前記吸収液から二酸化炭素を分離させる再生塔と、
     前記再生塔で分離された二酸化炭素を回収する回収部と、を備え、
     前記制御装置は、
     前記燃焼装置の負荷に関連する情報を取得する情報取得部を更に備え、
     前記情報取得部で取得した、前記燃焼装置の負荷に関連する情報に基づいて、前記流量調整部の動作を制御して前記ブロワで前記二酸化炭素回収部に送り込む排ガスの流量を調整する
    請求項3に記載の船舶。
  6.  前記制御装置は、
     前記二酸化炭素回収部における前記二酸化炭素の回収能力の要求値に基づいて、前記流量調整部で前記二酸化炭素回収部に送り込む排ガスの流量を調整する
    請求項3に記載の船舶。
PCT/JP2023/032357 2022-12-23 2023-09-05 船舶 WO2024135004A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-206692 2022-12-23
JP2022206692A JP2024090656A (ja) 2022-12-23 船舶

Publications (1)

Publication Number Publication Date
WO2024135004A1 true WO2024135004A1 (ja) 2024-06-27

Family

ID=91588081

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/032357 WO2024135004A1 (ja) 2022-12-23 2023-09-05 船舶

Country Status (1)

Country Link
WO (1) WO2024135004A1 (ja)

Similar Documents

Publication Publication Date Title
US8479489B2 (en) Turbine exhaust recirculation
FI125247B (fi) Koneistojärjestely vesikulkuneuvoon ja menetelmä vesikulkuneuvon koneistojärjestelyn käyttämiseksi
EP1460337A2 (en) Exhaust gas cooling system
KR20130021456A (ko) 엔진 배기 가스 정화 장치
CN1394789A (zh) 废气-压载水联合处理装置和处理压载水的方法
JP6122300B2 (ja) エンジンシステム及び船舶
US20180216532A1 (en) System and method for treating exhaust gas
KR20120025664A (ko) 선박용 흡수식 냉동장치 및 흡수식 냉동방법
WO2024135004A1 (ja) 船舶
CN103380277A (zh) 用于具有涡轮增压器的海上船舶的吸入空气冷却系统
KR101878825B1 (ko) 선박의 폐열을 이용한 청수 생산 설비
JP2024090656A (ja) 船舶
JP2023068025A (ja) 二酸化炭素回収システム
KR102314621B1 (ko) 선박의 냉각 해수 시스템을 이용한 황산화물 스크러버 세정수 공급장치
KR20230104363A (ko) 선박용 불활성가스 생성시스템 결합 온실가스배출 저감시스템 및 이를 구비한 선박
KR102538599B1 (ko) 선박의 휘발성 유기화합물 처리 시스템
KR20180076922A (ko) 선박의 폐열을 이용한 에너지 절감 시스템
US11725565B2 (en) Exhaust pipe apparatus and ship comprising same
KR20240034941A (ko) 선박의 이산화탄소 포집시스템
US20230258124A1 (en) Gas turbine plant
US20230134621A1 (en) Carbon Capture System and Method with Exhaust Gas Recirculation
KR20220034334A (ko) 극지 운항용 선박
KR20240041042A (ko) 배기가스 처리 시스템
KR20230136270A (ko) 동력발생시스템
RU180005U1 (ru) Газотурбинная воздухонезависимая установка подводного аппарата