WO2024133261A1 - Dispositif d'eclairage pour vehicule automobile - Google Patents

Dispositif d'eclairage pour vehicule automobile Download PDF

Info

Publication number
WO2024133261A1
WO2024133261A1 PCT/EP2023/086642 EP2023086642W WO2024133261A1 WO 2024133261 A1 WO2024133261 A1 WO 2024133261A1 EP 2023086642 W EP2023086642 W EP 2023086642W WO 2024133261 A1 WO2024133261 A1 WO 2024133261A1
Authority
WO
WIPO (PCT)
Prior art keywords
light sources
reflection surface
row
light
lighting device
Prior art date
Application number
PCT/EP2023/086642
Other languages
English (en)
Inventor
Yves Gromfeld
Sergio Donoso
Carlos-Rafael MARCOS
Original Assignee
Valeo Vision
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR2214355A external-priority patent/FR3144249A1/fr
Application filed by Valeo Vision filed Critical Valeo Vision
Publication of WO2024133261A1 publication Critical patent/WO2024133261A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/143Light emitting diodes [LED] the main emission direction of the LED being parallel to the optical axis of the illuminating device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/147Light emitting diodes [LED] the main emission direction of the LED being angled to the optical axis of the illuminating device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/151Light emitting diodes [LED] arranged in one or more lines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/151Light emitting diodes [LED] arranged in one or more lines
    • F21S41/153Light emitting diodes [LED] arranged in one or more lines arranged in a matrix
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/25Projection lenses
    • F21S41/27Thick lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/285Refractors, transparent cover plates, light guides or filters not provided in groups F21S41/24 - F21S41/2805
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • F21S41/32Optical layout thereof
    • F21S41/322Optical layout thereof the reflector using total internal reflection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/60Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution
    • F21S41/65Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on light sources
    • F21S41/663Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on light sources by switching light sources

Definitions

  • the present invention relates to the field of lighting, which includes signaling, and that of the organs, particularly optical, which participate therein. Its application is particularly advantageous in the field of motor vehicles. In particular, it relates to a lighting device.
  • An object of the present invention is therefore to propose a device making it possible to overcome at least partly the disadvantage cited.
  • a lighting device comprising:
  • a primary lens comprising a first input diopter, a second input diopter and an output diopter
  • the first input diopter being configured to receive light rays coming from the set of light sources
  • the second diopter d 'input being configured to receive light rays coming from the first row of light sources
  • the output diopter being configured to transmit light rays coming from the first row of light sources after their transmission into the primary lens from the second diopter of entrance
  • the first plane being defined so as to contain the first direction d and be perpendicular to the optical axis
  • the first reflection surface being configured to reflect, towards the second reflection surface, light rays coming from the set of light sources after their transmission into the primary lens from the first input diopter, characterized in that the second reflection surface is configured to reflect, towards the output diopter, the light rays coming from the set of light sources after their reflection on the first reflection surface.
  • the first beam and the second beam produced share the same output diopter (for the primary lens), this having the consequence of reducing the number of optics necessary for this device.
  • this configuration allows specific localization of the light output of the beams to be produced, creating in particular, in the primary lens, a common zone for the passage of rays for the cut-off beam and the complementary road beam.
  • the lighting device requires, for the primary lens, the use of a single output diopter makes it possible to overcome losses of brightness, resulting from the difficulties of achieving alignment of the different elements optics of the device and coordinate the separate adjustment of two output diopters.
  • Another aspect concerns a vehicle equipped with at least one lighting device.
  • Figure 1 represents a sectional view along the second plane p2 of the lighting device according to the invention.
  • Figure 2 represents a particular embodiment of the invention in which the second input diopter is inclined.
  • Figure 3 represents a configuration of the first reflection surface according to a particular embodiment as well as its arrangement in relation to the set of light sources and the collimators in a plane perpendicular to the second plane p2 passing through the first reflection surface.
  • the lighting device comprises a third reflection surface 8, the third reflection surface 8 being configured so that light rays coming from the set of light sources 1 are reflected on the third surface of reflection 8 after their reflection on the first reflection surface 6 and before their reflection on the second reflection surface 7.
  • this third reflection surface 8 makes it possible, with a folding machine effect, to take into account within the final resulting lighting the maximum of the light rays coming from the set of light sources 1.
  • this third reflection surface 8 makes it possible to obtain lighting (after the passage of the two lenses) in a zone positioned in height relative to the lighting obtained thanks to the light rays reflecting only on the second surface reflection 7.
  • the third reflection surface 8 is at least partly formed by the second input diopter 5.
  • the third reflection surface 8 and the second input diopter 5 are on the same plane, thus leading the light rays to be reflected on the second reflection surface 7 after having been reflected on the third reflection surface 8.
  • This configuration also allows simplification of the lighting device.
  • the second input diopter 5 is inclined relative to the first plane p1.
  • This configuration makes it possible to obtain different brightness distributions and in particular more or less oriented towards the top or bottom of the central illuminated zone.
  • the second input diopter 5 is inclined relative to the first plane p1 by an angle between 0 and 10° so that the angle between the first reflection surface 6 and the third surface of reflection 8 is less than the angle between the first reflection surface 6 and the first plane p1.
  • This configuration makes it possible to obtain a good compromise between a desired distribution of brightness and sufficient luminance. Furthermore, the value of this inclination is determined so as to obtain the desired efficiency for the light rays coming from the light sources of the set of light sources 1.
  • the first reflection surface 6 comprises for each light source of the set of light sources 1 a reflection sub-surface 6a having a concave profile so as to direct light rays coming from the set of light sources 1 towards the second reflection surface 7 and light rays coming from the set of light sources 1 towards the third reflection surface 8, the reflection sub-surfaces 6a being juxtaposed and crossed by a first plane parallel to the plane p1 .
  • the light rays coming from each light source of the set of light sources 1 will be oriented towards a reflection sub-surface 6a.
  • a minimum number of light rays will not be intercepted by the first reflection surface 6 and therefore a minimum number of light rays will not be able to participate in the lighting function.
  • the concave profile of the reflection sub-surfaces 6a makes it possible to obtain, for each reflection sub-surface, a localized concentration of light rays on the second reflection surface 7 or the third reflection surface 8.
  • the distribution of the light rays intercepting the second reflection surface 7 and the third reflection surface 8 after being reflected on the first reflection surface 6 is more uniform than if the first reflection surface 6 consisted of a single concave element.
  • the fact that the sub-surfaces of reflection are concave makes it possible to limit the number of light rays not participating in the lighting function.
  • the convergence of the rays towards the top of the lens 3 (and in particular towards the reflection surface 7) is improved.
  • the second reflection surface 7 has a concave profile in a plane defined so as to direct the light rays coming from the set of light sources 1 towards the output diopter 12.
  • This configuration allows the light rays, after having intercepted the second reflection surface 7, to converge towards the output diopter 12, so that these light rays participate in the lighting function as desired and are not excluded from it. .
  • the lighting device comprises a second plane p2, the second plane p2 being defined so as to contain the optical axis 9 and be perpendicular to the first direction d, the second reflection surface 7 has a concave profile in the second plane p2.
  • the fact that the second reflection surface 7 has a concave profile in the plane p2 makes it possible to limit geometric aberrations.
  • the lighting device comprises a second row of light sources 2a comprising light sources aligned in a second direction d1 and a third row of light sources 2b comprising light sources aligned in a third direction d2, the second direction d1 and the third direction d2 being parallel to the first direction d, the second row of light sources 2a being positioned in contact with the first row of light sources 2 and the third row of light sources 2b being positioned in contact with the second row of light sources 2a.
  • the first row of light sources 2, the second row of light sources 2a and the third row of light sources 2b are configured to form or participate in forming a complementary road beam.
  • the set of light sources 1 is configured to form a cut-off beam of a low beam.
  • the lighting device comprises collimators 10, each collimator 10 being associated with a light source distinct from the set of light sources 1, each collimator 10 receiving light from said source and sending it in a collimated manner towards the first input diopter 4.
  • each light source of the set of light sources 1 makes it possible to obtain individually for each light source of the set of light sources 1 a collimated beam, that is to say a beam composed of parallel light rays. Due to their direction of intersection with the first entry diopter 4, this configuration makes it possible to better control the path of these light rays until the exit of the lighting device.
  • the collimators 10 are oriented towards the first reflection surface 6 with their exit face directed towards the second reflection surface 7, an axis perpendicular to their exit face forming with the optical axis 9 an angle between 0° and 30°.
  • This configuration makes it possible to better direct the light rays coming from the set of light sources 1 so that these light rays (in particular those entering towards the bottom of the lens), after having intercepted the first reflection surface 6, are direct towards a zone located at the level of the third reflection surface 8 and the part of the second reflection surface 7 located towards the third reflection surface 8.
  • the lighting device comprises a planar support 11, the set of light sources 1 and the first row of light sources 2 being fixed to the support 11, the support 11 forming with the optical axis 9 a angle equal to 90° ⁇ 25°.
  • the lighting device comprises a first support 11 a and a second support 11 b, the first support 11 a being perpendicular to the optical axis 9 and parallel to the second support 11 b, the set of light sources 1 being fixed to the first support 11a and the first row of light sources 2, the second row of light sources 2a and the third row of light sources 2b being fixed to the second support 11b.
  • the support(s) 11, 11a, 11b are typically printed circuit boards comprising the electrical and electronic controls of the sources.
  • the positioning of a separate support for on the one hand the set of light sources 1 and on the other hand the first row of light sources 2, the second row of light sources 2a and the third row of light sources 2b provides a wide possibility of configurations for the inclination of the light sources in question. Indeed, on the one hand the set of light sources 1 and on the other hand the first row of light sources 2, the second row of light sources 2a and the third row of light sources 2b can be inclined relative to the optical axis 9 according to different inclinations.
  • the lighting device comprises a projection lens 13 positioned on the optical axis 9 after the primary lens 3.
  • association of a primary lens with a projection lens makes it possible to obtain the desired distribution of light along a plane perpendicular to the optical axis 9 while having a light power and an imaging quality sufficient.
  • This configuration makes it possible to control the distribution of the brightness at the output of the lighting device, in particular by having a distribution of the brightness symmetrical with respect to the plane p2.
  • the terms relating to verticality, horizontality or transversality (or even lateral direction), or their equivalents, are understood in relation to the position in which the system d
  • the lighting is intended to be mounted in a vehicle.
  • the terms “vertical” and “horizontal” are used in this description to designate directions, following an orientation perpendicular to the plane of the horizon for the term “vertical” (which corresponds to the height of the systems), and following an orientation parallel to the plane of the horizon for the term “horizontal”. They must be considered in the operating conditions of the device in a vehicle. The use of these words does not mean that slight variations around the vertical and horizontal directions are excluded from the invention.
  • an inclination relative to these directions of the order of + or - 10° is considered here as a minor variation around the two preferred directions.
  • the inclination is in principle between -5° and +4° and it is between -6° and +7.5° laterally.
  • the lighting device comprises a set of light sources 1, a first row of light sources 2, a primary lens 3, a first reflection surface 6 and a second reflection surface 7.
  • the first row of light sources 2 comprises light sources arranged in a straight line in the first direction d.
  • the primary lens 3 comprises a first input diopter 4, a second input diopter 5 and an output diopter 12.
  • the first input diopter 4 is configured to transmit light rays coming from the set of light sources 1
  • the second input diopter 5 is configured to transmit light rays coming from the first row of light sources 2.
  • the output diopter 12 is configured to pass through light rays coming from the first row of light sources 2 after their reception. by the second entrance diopter 5 of the primary lens 3.
  • the first plane p1 is defined so as to contain the first direction d and be perpendicular to the optical axis 9.
  • the first reflection surface 6 is configured to reflect, towards the second reflection surface 7, light rays coming from the set of light sources 1 after their reception by the first input diopter 4 of the primary lens 3 .
  • the second reflection surface 7 is configured to reflect, towards the output diopter 12, the light rays coming from the set of light sources 1 after their reflection on the first reflection surface 6.
  • the output diopter 12 of the primary lens 3 can be distorted in the lower part (that is to say under the optical axis 9) so as to add volume to the beam coming from the first row of light sources 2, that is to say so as to increase the width and height of the beam in question.
  • the output diopter 12 of the primary lens 3 can also be distorted in the upper part (that is to say above the optical axis 9) so as to improve the junction between the beam coming from the first row of light sources 2 and that coming from the set of light sources 1.
  • the lighting device comprises a third reflection surface 8.
  • the third reflection surface 8 is configured so that some of the light rays from the set of light sources 1 are reflected on the third reflection surface 8 after their reflection by the first reflection surface 6 and before their reflection by the second reflection surface 7.
  • the third reflection surface 8 and the second input diopter 5 are located on the same preferably flat surface.
  • the third reflection surface 8 is formed by part of the second input diopter 5.
  • the first row of light sources 2 can have as entry diopter in the primary lens a zone comprising a part of the second entry diopter 5 and a part of the second reflection surface 7 (for this , the first row of light sources 2 can be translated in the vertical direction).
  • this zone can be intercepted by light rays coming from the set of light sources 1 and the first row of light sources 2.
  • the second entry diopter 5 and the second reflection surface 7 can be joined by an edge.
  • the second input diopter 5 is oriented relative to the first plane p1 so as to form a non-zero angle with it.
  • the second input diopter 5 is oriented relative to the first plane p1 so as to form with it an angle of between 0 and 10° so as to reduce the value of the angle formed between the first reflection surface 6 and the second input diopter 5.
  • the first reflection surface 6 comprises a set of reflection sub-surfaces 6a.
  • Each light source of the set of light sources 1 is associated with a reflection sub-surface 6a.
  • Each reflection sub-surface 6a has a concave profile so as to direct light rays coming from the set of light sources 1 towards the second reflection surface 7 and light rays coming from the set of light sources 1 towards the third reflection surface 8.
  • the reflection sub-surfaces 6a are positioned next to each other and partly contained by a plane parallel to the plane p1.
  • the reflection sub-surfaces 6a can be positioned so that all of the reflection sub-surfaces 6a describe an overall concave shape in the plane parallel to the plane p1 in which they are partly contained.
  • the reflection sub-surfaces can therefore be staggered on either side of the centrally positioned reflection sub-surface. This positioning is advantageously symmetrical along a vertical plane passing through the optical axis of the lens.
  • the second reflection surface 7 has a concave profile in a plane defined so as to direct the light rays coming from the set of light sources 1 towards the output diopter 12.
  • the lighting device comprises a second plane p2.
  • the second plane p2 is defined so as to contain the optical axis 9 and be perpendicular to the first direction d.
  • the second reflection surface 7 has a concave profile in the second plane p2 so as to limit geometric aberrations.
  • the lighting device comprises a second row of light sources 2a and a third row of light sources 2b.
  • the second row of light sources 2a comprises light sources arranged in a straight line in a second direction d1.
  • the third row of light sources 2b comprises light sources arranged in a straight line in a third direction d2.
  • the second direction d1 and the third direction d2 are parallel to the first direction d.
  • the second row of light sources 2a is positioned in contact with the first row of light sources 2 and the third row of light sources 2b is positioned in contact with the second row of light sources 2a.
  • the second row of light sources 2a and the third row of light sources 2b are positioned so that the light rays coming from these light sources are directed towards the second input diopter 5.
  • the first row of light sources 2, the second row of light sources 2a and the third row of light sources 2b are configured to form or participate in forming a complementary road beam.
  • the invention can participate in a high beam function which has the function of illuminating over a wide area the scene facing the vehicle, but also over a significant distance, typically around two hundred meters.
  • This light beam due to its lighting function, is mainly located above the horizon line. It may have a slightly ascending optical axis of illumination, for example.
  • it can be used to generate a lighting function of the “complementary” type which forms a portion of a high beam complementary to that produced by a near field beam, the road complement seeking entirely or at least mainly to illuminate above the horizon line while the near field beam (which can present the specificities of a high beam crossing) seeks to illuminate completely or at least mainly below the horizon line.
  • the road complement can therefore be a main part of the overall “road” beam and be associated with another beam participating in the code.
  • the device can also be used to form other lighting functions via or apart from those described above, in relation to the adaptive beams. It is thus possible to create a lighting matrix to selectively illuminate parts of the space in front of the vehicle.
  • the set of light sources 1 is configured to form a cut-off beam of a low beam.
  • the lighting device comprises collimators 10.
  • Each collimator 10 is associated with a light source distinct from the set of light sources 1.
  • Each collimator 10 receives light from said source and sends it in a manner collimated towards the first input diopter 4.
  • the collimators 10 are oriented so as to direct the collimated light rays towards the first reflection surface 6. More precisely, the exit face of the collimators 10 is oriented towards the second reflection surface 7.
  • the longitudinal axis of symmetry of the collimators forms with the optical axis 9 an angle of between 0° and 30°.
  • the lighting device comprises a flat support 11.
  • the set of light sources 1 and the first row of light sources 2 are integral with the support 11.
  • the support 11 is inclined relative to the optical axis 9 so as to create with it an angle equal to 90° ⁇ 25°.
  • the lighting device comprises a first support 11 a and a second support 11 b.
  • the first support 11 a is perpendicular to the optical axis 9 and parallel to the second support 11 b.
  • the set of light sources 1 is integral with the first support 11a.
  • the first row of light sources 2, the second row of light sources 2a and the third row of light sources 2b are integral with the second support 11 b.
  • the second row of light sources 2a can be positioned under the first row of light sources 2.
  • the third row of light sources 2b can be positioned under the second row of light sources 2a.
  • the first row of light sources 2, the second row of light sources 2a and the third row of light sources 2b can be spaced from the primary lens 3 by a distance of 0.5 mm.
  • This distance is chosen as a function of the thermal resistance of the material of the primary lens 3 which is selected so as to minimize as much as possible the distance between the light sources and the primary lens 3, this in order to collect the maximum amount of light and therefore to maximize efficiency.
  • the support 11 a can be spaced from the support 11 b by a distance of between 10 and 30 mm.
  • the supports 11, 11 a and 11 b can be made of Printed Circuit Board (PCB).
  • the light sources 1, 2, 2a and 2b can be fixed to the supports by gluing or by another type of fixing, for example by clip.
  • the second input diopter 5 is distant from the output diopter 12 by a distance greater than 30 mm. This distance is taken into account at optical axis 9.
  • This configuration was selected so as to obtain a compromise between minimal bulk of the lighting device and an orientation of the light rays at the ends of the output diopter 12 allowing them to reach the projection lens 13.
  • the distance between the entry diopter and the exit diopter of the projection lens 13 can be 25 mm.
  • the distance between the primary lens 3 and the projection lens 13 can be 7.5 mm.
  • the lighting device comprises a projection lens 13 positioned on the optical axis 9 after the primary lens 3.
  • the primary lens 3 and the projection lens 13 are made of PMMA (polymethyl methacrylate), silicone, glass or PC (polycarbonate) which allows better thermal resistance than PPMA.
  • the system comprising the primary lens 3 and the projection lens 13 can have a focal length of 44 mm.
  • the geometric aperture of the primary lens 3 and that of the projection lens 13 can be 30 mm by 60 mm.
  • the primary lens 3 and the projection lens 13 have a size of 30 by 60 mm (excluding fixing zones).
  • the optical axis 9 and the first direction d are orthogonal.
  • the light sources of the set of sources light sources 1, of the first row of light sources 2, of the second row of light sources 2a and of the third row of light sources 2b are, all or only some, selectively activated, thus creating a pixelated light source.
  • the positioning of the light sources of the set of light sources 1 which can be lit individually makes it possible to control the value of the brightness according to the area considered.
  • ADB for Adaptive Driving Beam
  • a segmented beam is a beam whose projection forms an image composed of beam segments, each segment being able to be lit independently.
  • all the emissive elements are not necessarily simultaneously active, that is to say emissive of light. This function allows you to modulate the shape of the rendered beam.
  • a light source In the event that a light source is not activated, its image, as projected by the optical device, will be zero. It then forms a lighting void in the resulting overall beam. This void can be understood from the coupling phenomena at the level of the source and the effects of stray light from the optics.
  • the system according to the invention may comprise a unit for controlling the activation of each of the sources, configured to produce at least one dark zone forming a tunnel in a beam projected by deactivation of a group of adjacent sources, the control unit being configured to determine the number of sources in the group corresponding to the dark zone as a function of the width dimension of the sources.
  • the control unit may comprise a computer program product, preferably stored in a non-transitory memory, in which the computer program product comprises instructions which, when executed by a processor, make it possible to determine the sources to activate, in particular to obtain at least one dark zone (in which the sources are not activated) of a determined surface taking into account the variable surface of the images of the elements.
  • the LEDs of the entire lighting device 1, 2, 2a and 2b have an emissive surface of 0.5 mm 2 or 1 mm 2 .
  • LEDs can be 0.74mm high and 1mm wide.
  • the size of the LEDs is directly related to the volume of the desired beam. Furthermore, to have a large beam volume, it is also possible to add rows of LEDs.
  • Two consecutive light sources of the set of light sources 1, of the first row of light sources 2, of the second row of light sources 2a and of the third row of light sources 2b can be at a distance of 0.025 mm .
  • the rows of light sources 2, 2a and 2b can be spaced apart by a distance of 1.025 mm.
  • the rows of light sources 2, 2a and 2b can be spaced from the set of light sources 1 by a distance of between 10 mm and 30 mm.
  • the first row of light sources 2 can be positioned at a distance of 1 mm from the second reflection surface 7.
  • the light sources of the rows of light sources 2, 2a and 2b can each be composed of 24 light sources.
  • the light sources of the set of light sources 1 may be 9 in number.
  • the light sources of the set of light sources 1 may be 9 in number.
  • the beam coming from the row of light sources 2 can illuminate an opening of 30° (30° exterior and 12° interior).
  • the beam coming from the set of light sources 1 can illuminate an opening of 35°.
  • the entire system allows a resolution of 1.5° which is notably the consequence of the distance between two edges of two successive pixels (having a light illuminance of 1 lux).
  • the conventional sources currently used in the automotive field are light-emitting diodes, also commonly called LEDs, individually encapsulated in a housing; the light-emitting portion of the diode is covered by at least one light-transmissive layer, for example made of transparent polymer material. Depending on the shape given to the transmissive layer, it can serve as primary optics from the generation of light in the diode. Thus, such an LED forms a complex assembly combining an emissive part and an optical part. Furthermore, when these LEDs are arranged next to each other, the emissive parts of the adjacent LEDs are relatively far from each other, which requires an optical projection designed not to image this spacing between the LEDs. [0104]
  • the light sources of the entire lighting device 1, 2, 2a and 2b have a maximized emissive portion.
  • the emissive part can be exposed to the terminal face of the source and occupied at least 90% of the surface of said terminal face, preferably 98% and even more preferably 100% of the surface. In the latter case, the emissive part then forms the exit face of the light from the source.
  • these sources can be equipped with at least one chip using semiconductor technology and capable of emitting light.
  • the term light source here means a set of at least one elementary source capable of producing a flow leading to generating at least one light beam at the output of the device of the invention.
  • the source can be delimited laterally by several circumferential walls which extend along the growth axis of the diode and by a terminal face.
  • the end face in this case, includes an emissive part through which light is emitted when the diode is polarized.
  • the emissive part can be either a layer, which can be called an active layer, in which the generation of photons takes place by electron-hole recombinations, or, which is more common in particular for white light, a conversion layer equipped with charges, such as phosphorus particles, making it possible to re-emit photons produced in the active layer in a wavelength band adapted to the application.
  • the end face of the source is of rectangular section, which is typical for LED chips.
  • the emissive part also has a rectangular section whose size is slightly smaller than that of the exit face.
  • the length of one of the sides of the emissive part is less than the length of one of the sides of the source terminal face by a value between 10 micrometers to 40 micrometers.
  • the distance between an edge of the end face and an edge of the emissive part can be between 5 micrometers to 20 micrometers.
  • the maximized size of the emissive part results in a reduction in the size of the housing surrounding the light-emitting diode.
  • the housing may include edges which cover the circumferential walls of the diode. By having the emissive part occupying almost all, or even all, of the terminal face of the diode, these edges can be configured so that they have a very small thickness, for example of the order of a few micrometers.
  • the casing surrounding the light-emitting diode is almost the same size as this diode.
  • the size of the package protrudes only a few micrometers from the terminal face of the diode.
  • the light sources comprise at least two rows of sources on a common substrate.
  • This arrangement of elements can result from growth on the substrate from which they grew respectively, or from any other method of production, for example by transfer of the elements by transfer techniques.
  • Different arrangements of electroluminescent elements can meet this definition of monolithic matrix, as long as the electroluminescent elements have one of their main elongation dimensions substantially perpendicular to a common substrate and the transverse spacing between the pixels, formed by one or more electroluminescent elements grouped together electrically, is small in comparison with the spacings imposed in known arrangements of generally flat square chips soldered on a printed circuit board.
  • the invention may be a monolithic electroluminescent source which is divided into several individual segments.
  • the individual segments are separated by a thin wall, made for example of silicone.
  • the thickness of this thin wall is between 10 micrometers to 25 micrometers. It is possible in particular to use such sources marketed under the brand PixCell® by the company Samsung®.
  • light sources making it possible to form a near field beam can be integrated into the lighting device. This beam can also be called “fiat” beam for flat or spread beam. It is projected globally below the cutoff and serves to illuminate the near field in front of the vehicle.
  • the beam coming from the set of light sources 1 makes it possible to define a cut-off zone.
  • the association of the near field beam and the beam coming from the set of light sources 1 makes it possible to at least partially define a low beam beam.
  • the beam coming from the set of light sources 1 can therefore be configured to produce, in code mode, a portion of low beam with cut-off.
  • the resulting bent portion is called the “kink” of the “code” beam.
  • the beams of the low beam type typically have a first lateral zone (normally on the edge of the roadway) projecting at a slightly higher height than in a second lateral zone (normally on the middle of the roadway), these two zones following each other laterally with the presence of a bend or elbow between them.
  • a near field beam of a low beam is typically a projection relatively spread laterally at the front of the vehicle, mainly or completely below the horizon line, generally seeking a good distribution of illumination over the entire illuminated area.
  • Several lighting devices according to the invention can be arranged in a housing closed by a glass so as to obtain one or more lighting and/or signaling beams at the output of the projector.
  • a projector can also be complex and combine several devices which may, moreover, possibly share components.
  • first row of light sources 2a second row of light sources 2b. third row of light sources

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

L'invention concerne un dispositif d'éclairage comprenant un ensemble de sources lumineuses (1), une première rangée de sources lumineuses (2), une première surface de réflexion (6), une deuxième surface de réflexion (7) et une lentille primaire (3) Le premier dioptre d'entrée (4) et le deuxième dioptre d'entrée (5) sont configurés pour recevoir des rayons lumineux respectivement issus de l'ensemble de sources lumineuses et de la première rangée de sources lumineuses. Le dioptre de sortie (12) est configuré pour transmettre des rayons lumineux issus de la première rangée de sources lumineuses après leur transmission par le deuxième dioptre d'entrée. La première surface de ré- flexion est configurée pour réfléchir, vers la deuxième surface de réflexion, des rayons lumineux issus de l'ensemble de sources lumineuses après leur trans- mission par le premier dioptre d'entrée. Ces rayons sont ensuite réfléchis sur la deuxième surface de réflexion pour se diriger vers le dioptre de sortie.

Description

Description
Titre de l’invention : DISPOSITIF D -ÉCLAIRAGE POUR VEHICULE AUTOMOBILE DOMAINE TECHNIQUE
[0001] La présente invention concerne le domaine de l’éclairage, ce qui inclut la signalisation, et celui des organes, notamment optiques, qui y participent. Elle trouve pour application particulièrement avantageuse le domaine des véhicules automobiles. Notamment, elle est relative à un dispositif d’éclairage.
ETAT DE LA TECHNIQUE
[0002] Dans le secteur de l’automobile, on connaît des dispositifs susceptibles d’émettre des faisceaux lumineux, encore appelés fonctions d’éclairage et/ou de signalisation.
[0003] Ces dispositifs doivent répondre aux réglementations en vigueur en émettant la lumière aux endroits souhaités tout en limitant la luminosité dans certaines zones. Une des contraintes auxquelles les industriels sont également confrontés est la réduction de l’encombrement du dispositif, ceci afin d’aboutir à un dispositif le plus facilement utilisable.
[0004] Afin de parvenir au mieux à atteindre ces différents objectifs, une solution technique a été proposée dans le document FR3077362 A1 . Cette solution est basée sur le développement d’un projecteur muni de trois faisceaux, pour former un feu de croisement associé à un faisceau de complément route permettant d’obtenir une répartition de lumière souhaitée. La particularité de cette solution réside dans le fait que le faisceau de champ proche de feu de croisement traverse un guide d’ondes dans lequel il subit plusieurs réflexions internes permettant de diriger le faisceau lumineux aux positions souhaitées.
[0005] Néanmoins, ce type de solution comporte des inconvénients et notamment le fait qu’elle est pénalisée par le nombre d’optiques nécessaires et donc par l’encombrement du dispositif.
[0006] Un objet de la présente invention est donc de proposer un dispositif permettant de s’affranchir au moins en partie de l’inconvénient cité.
[0007] Les autres objets, caractéristiques et avantages de la présente invention apparaîtront à l'examen de la description suivante et des dessins d'accompagnement. Il est entendu que d'autres avantages peuvent être incorporés.
RESUME
[0008] Pour atteindre cet objectif, selon un mode de réalisation on prévoit un dispositif d’éclairage comprenant :
- un ensemble de sources lumineuses,
- une première rangée de sources lumineuses comprenant des sources lumineuses alignées selon une première direction,
- une lentille primaire comprenant un premier dioptre d’entrée, un deuxième dioptre d’entrée et un dioptre de sortie, le premier dioptre d’entrée étant configuré pour recevoir des rayons lumineux issus de l’ensemble de sources lumineuses, le deuxième dioptre d’entrée étant configuré pour recevoir des rayons lumineux issus de la première rangée de sources lumineuses, le dioptre de sortie étant configuré pour transmettre des rayons lumineux issus de la première rangée de sources lumineuses après leur transmission dans la lentille primaire depuis le deuxième dioptre d’entrée,
- un axe optique et un premier plan, le premier plan étant défini de manière à contenir la première direction d et être perpendiculaire à l’axe optique,
- une première surface de réflexion et une deuxième surface de réflexion, la première surface de réflexion étant configurée pour réfléchir, vers la deuxième surface de réflexion, des rayons lumineux issus de l’ensemble de sources lumineuses après leur transmission dans la lentille primaire depuis le premier dioptre d’entrée, caractérisé en ce que la deuxième surface de réflexion est configurée pour réfléchir, vers le dioptre de sortie, les rayons lumineux issus de l’ensemble de sources lumineuses après leur réflexion sur la première surface de réflexion.
[0009] Ainsi, étant donné le positionnement de surfaces de réflexion sur le trajet des rayons lumineux du premier faisceau, le premier faisceau et le deuxième faisceau produits partagent un même dioptre de sortie (pour la lentille primaire), ceci ayant pour conséquence de réduire le nombre d’optiques nécessaire pour ce dispositif.
[0010] Par ailleurs, cette configuration permet une localisation spécifique de la sortie de lumière des faisceaux à produire, créant notamment, dans la lentille primaire, une zone commune de passage des rayons pour le faisceau à coupure et le faisceau de complément route.
[0011] Également, le fait que le dispositif d’éclairage nécessite, pour la lentille primaire, l’utilisation d’un seul dioptre de sortie permet de s’affranchir des pertes de luminosité, résultantes des difficultés de réaliser un alignement des différents éléments optiques du dispositif et de coordonner le réglage séparé de deux dioptres de sortie.
[0012] Un autre aspect concerne un véhicule équipé d’au moins un dispositif d’éclairage.
BREVE DESCRIPTION DES FIGURES
[0013] Les buts, objets, ainsi que les caractéristiques et avantages de l’inven- tion ressortiront mieux de la description détaillée d’un mode de réalisation de cette dernière qui est illustré par les dessins d’accompagnement suivants dans lesquels :
[0014] [Fig.1 ] La figure 1 représente une vue en coupe selon le deuxième plan p2 du dispositif d’éclairage selon l’invention.
[0015] [Fig.2] La figure 2 représente un mode de réalisation de l’invention particulier dans lequel le deuxième dioptre d’entrée est incliné.
[0016] [Fig.3] La figure 3 représente une configuration de la première surface de réflexion selon un mode de réalisation particulier ainsi que son agencement par rapport à l’ensemble de sources lumineuses et aux collimateurs dans un plan perpendiculaire au deuxième plan p2 passant par la première surface de réflexion.
[0017] Les dessins sont donnés à titre d'exemples et ne sont pas limitatifs de l’invention. Ils constituent des représentations schématiques de principe destinées à faciliter la compréhension de l’invention et ne sont pas nécessairement à l'échelle des applications pratiques.
DESCRIPTION DÉTAILLÉE
[0018] Avant d’entamer une revue détaillée de modes de réalisation de l’invention, sont énoncées ci-après des caractéristiques optionnelles qui peuvent éventuellement être utilisées en association ou alternativement :
[0019] Selon un exemple, le dispositif d’éclairage comprend une troisième surface de réflexion 8, la troisième surface de réflexion 8 étant configurée de manière que des rayons lumineux issus de l’ensemble de sources lumineuses 1 se réfléchissent sur la troisième surface de réflexion 8 après leur réflexion sur la première surface de réflexion 6 et avant leur réflexion sur la deuxième surface de réflexion 7.
[0020] L’agencement de cette troisième surface de réflexion 8 permet, avec un effet de plieuse, de prendre en compte au sein de l’éclairage résultant final le maximum des rayons lumineux provenant de l’ensemble de sources lumineuses 1 .
[0021] Le positionnement de cette troisième surface de réflexion 8 permet d’obtenir un éclairage (après le passage des deux lentilles) dans une zone positionnée en hauteur par rapport à l’éclairage obtenu grâce aux rayons lumineux se réfléchissant uniquement sur la deuxième surface de réflexion 7.
[0022] Selon un exemple, la troisième surface de réflexion 8 est au moins en partie formée par le deuxième dioptre d’entrée 5.
[0023] Grâce à cette configuration, la troisième surface de réflexion 8 et le deuxième dioptre d’entrée 5 sont sur le même plan, conduisant ainsi les rayons lumineux à se réfléchir sur la deuxième surface de réflexion 7 après avoir été réfléchi sur la troisième surface de réflexion 8. Cette configuration permet également une simplification du dispositif d’éclairage.
[0024] Selon un exemple, le deuxième dioptre d’entrée 5 est incliné par rapport au premier plan p1 .
[0025] Cette configuration permet d’obtenir des répartitions de luminosité différentes et notamment plus ou moins orientées vers le haut ou le bas de la zone centrale éclairée.
[0026] Selon un exemple, le deuxième dioptre d’entrée 5 est incliné par rapport au premier plan p1 d’un angle compris entre 0 et 10° de sorte que l’angle entre la première surface de réflexion 6 et la troisième surface de réflexion 8 soit inférieur à l’angle entre la première surface de réflexion 6 et le premier plan p1 .
[0027] Cette configuration permet d’obtenir un bon compromis entre une répartition de luminosité souhaitée et une luminance suffisante. Par ailleurs, la valeur de cette inclinaison est déterminée de manière à obtenir le rendement souhaité pour les rayons lumineux issus des sources lumineuses de l’ensemble de sources lumineuses 1 .
[0028] Selon un exemple, la première surface de réflexion 6 comprend pour chaque source lumineuse de l’ensemble de sources lumineuses 1 une sous-surface de réflexion 6a ayant un profil concave de manière à diriger des rayons lumineux issus de l’ensemble de sources lumineuses 1 vers la deuxième surface de réflexion 7 et des rayons lumineux issus de l’ensemble de sources lumineuses 1 vers la troisième surface de réflexion 8, les sous-surfaces de réflexion 6a étant juxtaposées et traversées par un premier plan parallèle au plan p1 .
[0029] Par cette configuration, les rayons lumineux issus de chaque source lumineuse de l’ensemble de sources lumineuses 1 seront orientés vers une sous-surface de réflexion 6a. Ainsi, un nombre minimal de rayons lumineux ne sera pas intercepté par la première surface de réflexion 6 et donc un nombre minimal de rayons lumineux ne pourra pas participer à la fonction d’éclairage.
[0030] Le profil concave des sous-surfaces de réflexion 6a permet d’obtenir, pour chaque sous-surface de réflexion, une concentration localisée de rayons lumineux sur la deuxième surface de réflexion 7 ou la troisième surface de réflexion 8. La répartition des rayons lumineux interceptant la deuxième surface de réflexion 7 et la troisième surface de réflexion 8 après s’être réfléchis sur la première surface de réflexion 6 est plus uniforme que si la première surface de réflexion 6 était constituée d’un seul élément concave. En comparaison avec le cas où les sous-sur- faces de réflexion 6a seraient planes, le fait que les sous-surfaces de réflexion soient concaves permet de limiter le nombre de rayons lumineux ne participant pas à la fonction d’éclairage. La convergence des rayons vers le haut de la lentille 3 (et en particulier vers la surface de réflexion 7) est améliorée.
[0031] Selon un exemple, la deuxième surface de réflexion 7 présente un profil concave dans un plan défini de manière à diriger les rayons lumineux issus de l’ensemble de sources lumineuses 1 vers le dioptre de sortie 12.
[0032] Cette configuration permet aux rayons lumineux après avoir interceptés la deuxième surface de réflexion 7 de converger vers le dioptre de sortie 12, ceci de manière que ces rayons lumineux participent à la fonction d’éclairage comme souhaité et n’en soient pas exclus.
[0033] Selon un exemple, le dispositif d’éclairage comprend un deuxième plan p2, le deuxième plan p2 étant défini de manière à contenir l’axe optique 9 et être perpendiculaire à la première direction d, la deuxième surface de réflexion 7 présente un profil concave dans le deuxième plan p2.
[0034] Le fait que la deuxième surface de réflexion 7 présente un profil concave dans le plan p2 permet de limiter les aberrations géométriques.
[0035] Selon un exemple, le dispositif d’éclairage comprend une deuxième rangée de sources lumineuses 2a comprenant des sources lumineuses alignées selon une deuxième direction d1 et une troisième rangée de sources lumineuses 2b comprenant des sources lumineuses alignées selon une troisième direction d2, la deuxième direction d1 et la troisième direction d2 étant parallèles à la première direction d, la deuxième rangée de sources lumineuses 2a étant positionnée au contact de la première rangée de sources lumineuses 2 et la troisième rangée de sources lumineuses 2b étant positionnée au contact de la deuxième rangée de sources lumineuses 2a.
[0036] Le positionnement de la deuxième rangée de sources lumineuses 2a et de la troisième rangée de sources lumineuses 2b permet d’obtenir un éclairage plus important et notamment un éclairage s’étendant de manière plus importante vers le haut de la zone centrale devant être éclairée.
[0037] Selon un exemple, la première rangée de sources lumineuses 2, la deuxième rangée de sources lumineuses 2a et la troisième rangée de sources lumineuses 2b sont configurées pour former ou participer à former un faisceau de complément route.
[0038] Selon un exemple, l’ensemble de sources lumineuses 1 est configuré pour former un faisceau à coupure d’un feu de croisement.
[0039] Selon un exemple, le dispositif d’éclairage comprend des collimateurs 10, chaque collimateur 10 étant associé à une source lumineuse distincte de l’ensemble de sources lumineuses 1 , chaque collimateur 10 recevant de la lumière depuis ladite source et l’envoyant de manière collimatée vers le premier dioptre d’entrée 4.
[0040] Le positionnement d’un collimateur associé à chaque source lumineuse de l’ensemble de sources lumineuses 1 permet d’obtenir individuellement pour chaque source lumineuse de l’ensemble de sources lumineuses 1 un faisceau collimaté, c’est-à-dire un faisceau composé de rayons lumineux parallèles. En raison de leur direction d’intersection avec le premier dioptre d’entrée 4, cette configuration permet de mieux maitriser le parcours de ces rayons lumineux jusqu’à la sortie du dispositif d’éclairage.
[0041] Selon un exemple, les collimateurs 10 sont orientés vers la première surface de réflexion 6 avec leur face de sortie dirigée vers la deuxième surface de réflexion 7, un axe perpendiculaire à leur face de sortie formant avec l’axe optique 9 un angle compris entre 0° et 30°.
[0042] Cette configuration permet de mieux orienter les rayons lumineux issus de l’ensemble de sources lumineuses 1 de manière que ces rayons lumineux (en particulier ceux entrant vers le bas de la lentille), après avoir interceptés la première surface de réflexion 6 se dirigent vers une zone située au niveau de la troisième surface de réflexion 8 et de la partie de la deuxième surface de réflexion 7 située vers la troisième surface de réflexion 8.
[0043] Selon un exemple, le dispositif d’éclairage comprend un support 11 plan, l’ensemble de sources lumineuses 1 et la première rangée de sources lumineuses 2 étant fixés au support 11 , le support 11 formant avec l’axe optique 9 un angle égal à 90° ± 25°.
[0044] En raison de l’inclinaison du support 11 par rapport à l’axe optique 9, cette configuration permet d’obtenir différents éclairements étant plus ou moins répartis vers le haut ou vers le bas de la zone centrale devant être éclairée.
[0045] Selon un exemple, le dispositif d’éclairage comprend un premier support 11 a et un deuxième support 11 b, le premier support 11 a étant perpendiculaire à l’axe optique 9 et parallèle au deuxième support 11 b, l’ensemble de sources lumineuses 1 étant fixé au premier support 11a et la première rangée de sources lumineuses 2, la deuxième rangée de sources lumineuses 2a et la troisième rangée de sources lumineuses 2b étant fixées au deuxième support 11b.
[0046] Le ou les supports 11 , 11 a, 11 b, sont typiquement des cartes à circuits imprimés comprenant les commandes électriques et électroniques des sources. [0047] Le positionnement d’un support distinct pour d’un part l’ensemble de sources lumineuses 1 et pour d’autre part la première rangée de sources lumineuses 2, la deuxième rangée de sources lumineuses 2a et la troisième rangée de sources lumineuses 2b permet de disposer d’une large possibilité de configurations pour l’inclinaison des sources lumineuses en question. En effet, d’un part l’ensemble de sources lumineuses 1 et d’autre part la première rangée de sources lumineuses 2, la deuxième rangée de sources lumineuses 2a et la troisième rangée de sources lumineuses 2b pourront être inclinées par rapport à l’axe optique 9 selon des inclinaisons différentes.
[0048] Selon un exemple, le dispositif d’éclairage comprend une lentille de projection 13 positionnée sur l’axe optique 9 après la lentille primaire 3.
[0049] Ainsi, l’association d’une lentille primaire avec une lentille de projection permet d’obtenir la répartition de la lumière souhaitée selon un plan perpendiculaire à l’axe optique 9 tout en ayant une puissance lumineuse et une qualité d’imagerie suffisante.
[0050] Cette configuration permet de maitriser la répartition de la luminosité à la sortie du dispositif d’éclairage, notamment en ayant une répartition de la luminosité symétrique par rapport au plan p2.
[0051] Dans les caractéristiques exposées dans la présente, les termes relatifs à la verticalité, à l’horizontalité ou à la transversalité (ou encore direction latérale), ou leurs équivalents, s’entendent par rapport à la position dans laquelle le système d’éclairage est destiné à être monté dans un véhicule. Les termes « vertical » et « horizontal » sont utilisés dans la présente description pour désigner des directions, suivant une orientation perpendiculaire au plan de l’horizon pour le terme « vertical » (qui correspond à la hauteur des systèmes), et suivant une orientation parallèle au plan de l’horizon pour le terme « horizontal ». Elles sont à considérer dans les conditions de fonctionnement du dispositif dans un véhicule. L’emploi de ces mots ne signifie pas que de légères variations autour des directions verticale et horizontale soient exclues de l’invention. Par exemple, une inclinaison relativement à ces directions de l’ordre de + ou - 10° est ici considérée comme une variation mineure autour des deux directions privilégiées. Par rapport au plan horizontal, l'inclinaison est en principe comprise entre -5° et +4° et elle est comprise entre -6° et +7.5° latéralement.
[0052] Dans le cadre de la présente description, les adjectifs « inférieur » et « supérieur » et leurs équivalents (sous, dessous, sur, dessus) sont à prendre en relation avec la direction verticale, c’est-à-dire la direction perpendiculaire à la première direction d et à l’axe optique 9. Dans un même contexte, un élément supérieur est situé au-dessus (mais pas forcément au contact, ni directement au droit) d’un élément inférieur, suivant la direction verticale.
[0053] L’invention n’est pas limitée aux modes de réalisations précédemment décrits et s’étend à tous les modes de réalisation couverts par l’invention.
[0054] Selon un mode de réalisation, le dispositif d’éclairage comprend un ensemble de sources lumineuses 1 , une première rangée de sources lumineuses 2, une lentille primaire 3, une première surface de réflexion 6 et une deuxième surface de réflexion 7. La première rangée de sources lumineuses 2 comprend des sources lumineuses rangées sur une ligne droite selon la première direction d. La lentille primaire 3 comprend un premier dioptre d’entrée 4, un deuxième dioptre d’entrée 5 et un dioptre de sortie 12. Le premier dioptre d’entrée 4 est configuré pour transmettre des rayons lumineux issus de l’ensemble de sources lumineuses 1. Le deuxième dioptre d’entrée 5 est configuré pour transmettre des rayons lumineux issus de la première rangée de sources lumineuses 2. Le dioptre de sortie 12 est configuré pour être traversé des rayons lumineux issus de la première rangée de sources lumineuses 2 après leur réception par le deuxième dioptre d’entrée 5 de la lentille primaire 3. Le premier plan p1 est défini de manière à contenir la première direction d et être perpendiculaire à l’axe optique 9.
[0055] La première surface de réflexion 6 est configurée pour réfléchir, vers la deuxième surface de réflexion 7, des rayons lumineux issus de l’ensemble de sources lumineuses 1 après leur réception par le premier dioptre d’entrée 4 de la lentille primaire 3.
[0056] La deuxième surface de réflexion 7 est configurée pour réfléchir, vers le dioptre de sortie 12, les rayons lumineux issus de l’ensemble de sources lumineuses 1 après leur réflexion sur la première surface de réflexion 6.
[0057] Le dioptre de sortie 12 de la lentille primaire 3 peut être distordu en partie inférieure (c’est-à-dire sous l’axe optique 9) de manière à apporter du volume au faisceau issu de la première rangée de sources lumineuses 2, c’est-à-dire de manière à augmenter la largeur et la hauteur du faisceau en question. Le dioptre de sortie 12 de la lentille primaire 3 peut également être distordu en partie supérieure (c’est-à-dire au-dessus de l’axe optique 9) de manière à améliorer la jonction entre le faisceau issu de la première rangée de sources lumineuses 2 et celui issu de l’ensemble de sources lumineuses 1.
[0058] De manière préférée, le dispositif d’éclairage comprend une troisième surface de réflexion 8. Préférentiellement, la troisième surface de réflexion 8 est configurée de manière que certains des rayons lumineux issus de l’ensemble de sources lumineuses 1 se réfléchissent sur la troisième surface de réflexion 8 après leur réflexion par la première surface de réflexion 6 et avant leur réflexion par la deuxième surface de réflexion 7.
[0059] Avantageusement, la troisième surface de réflexion 8 et le deuxième dioptre d’entrée 5 sont situés sur une même surface de préférence plane. La troisième surface de réflexion 8 est formée par une partie du deuxième dioptre d’entrée 5.
[0060] Selon une possibilité, la première rangée de sources lumineuses 2 peut avoir comme dioptre d’entrée dans la lentille primaire une zone comprenant une partie du deuxième dioptre d’entrée 5 et une partie de la deuxième surface de réflexion 7 (pour cela, la première rangée de sources lumineuses 2 pourra être translatée selon la direction verticale). Ainsi, cette zone pourra être interceptée par des rayons lumineux issus de l’ensemble de sources lumineuses 1 et de la première rangée de sources lumineuses 2. Il en résultera une combinaison avantageuse entre le faisceau issus de l’ensemble de sources lumineuses 1 et celui issu de la première rangée de sources lumineuses 2 et notamment après le dioptre de sortie de la lentille de projection 13. De manière préférée, le deuxième dioptre d’entrée 5 et la deuxième surface de réflexion 7 peuvent être joints par une arrête.
[0061] Préférentiellement, le deuxième dioptre d’entrée 5 est orienté par rapport au premier plan p1 de manière à former avec lui un angle non nul.
[0062] Dans un mode de réalisation préféré, le deuxième dioptre d’entrée 5 est orienté par rapport au premier plan p1 de manière à former avec lui un angle compris entre 0 et 10° de sorte à diminuer la valeur de l’angle formé entre la première surface de réflexion 6 et le deuxième dioptre d’entrée 5.
[0063] Préférentiellement, la première surface de réflexion 6 comprend un ensemble de sous-surfaces de réflexion 6a. Chaque source lumineuse de l’ensemble de sources lumineuses 1 est associée à une sous-surface de réflexion 6a. Chaque sous-surface de réflexion 6a a un profil concave de manière à orienter des rayons lumineux issus de l’ensemble de sources lumineuses 1 vers la deuxième surface de réflexion 7 et des rayons lumineux issus de l’ensemble de sources lumineuses 1 vers la troisième surface de réflexion 8. Les sous-surfaces de réflexion 6a sont positionnées l’une à côté de l’autre et en partie contenues par un plan parallèle au plan p1.
[0064] Les sous-surfaces de réflexion 6a peuvent être positionnées de manière que l’ensemble des sous-surfaces de réflexion 6a décrivent une forment globale concave dans le plan parallèle au plan p1 dans lequel elles sont en partie contenues.
[0065] Les sous-surfaces de réflexion peuvent donc être échelonnées de part et d’autre de la sous-surface de réflexion positionnée centralement. Ce positionnement est avantageusement symétrique suivant un plan vertical passant par l’axe optique de la lentille.
[0066] Avantageusement, la deuxième surface de réflexion 7 présente un profil concave dans un plan défini de manière à orienter les rayons lumineux issus de l’ensemble de sources lumineuses 1 vers le dioptre de sortie 12.
[0067] Dans un mode de réalisation avantageux, le dispositif d’éclairage comprend un deuxième plan p2. Le deuxième plan p2 est défini de manière à contenir l’axe optique 9 et être perpendiculaire à la première direction d. La deuxième surface de réflexion 7 présente un profil concave dans le deuxième plan p2 de manière à limiter les aberrations géométriques.
[0068] Préférentiellement, le dispositif d’éclairage comprend une deuxième rangée de sources lumineuses 2a et une troisième rangée de sources lumineuses 2b. La deuxième rangée de sources lumineuses 2a comprend des sources lumineuses rangées sur une ligne droite selon une deuxième direction d1. La troisième rangée de sources lumineuses 2b comprend des sources lumineuses rangées sur une ligne droite selon une troisième direction d2. La deuxième direction d1 et la troisième direction d2 sont parallèles à la première direction d. La deuxième rangée de sources lumineuses 2a est positionnée au contact de la première rangée de sources lumineuses 2 et la troisième rangée de sources lumineuses 2b est positionnée au contact de la deuxième rangée de sources lumineuses 2a. La deuxième rangée de sources lumineuses 2a et la troisième rangée de sources lumineuses 2b sont positionnées de manière que les rayons lumineux issus de ces sources lumineuses se dirigent vers le deuxième dioptre d’entrée 5.
[0069] Selon un mode de réalisation préférée, la première rangée de sources lumineuses 2, la deuxième rangée de sources lumineuses 2a et la troisième rangée de sources lumineuses 2b sont configurées pour former ou participer à former un faisceau de complément route.
[0070] L’invention peut participer à une fonction faisceau de route qui a pour fonction d’éclairer sur une large étendue la scène face au véhicule, mais également sur une distance conséquente, typiquement environ deux cents mètres. Ce faisceau lumineux, de par sa fonction d’éclairage, se situe principalement au-dessus de la ligne d’horizon. Il peut présenter un axe optique d’éclairement légèrement ascendant par exemple. Notamment, il peut servir à générer une fonction d’éclairage du type « complémentaire » qui forme une portion d’un feu de route complémentaire à celle produite par un faisceau de champ proche, le complément route cherchant en totalité ou au moins majoritairement à éclairer au-dessus de la ligne d’horizon alors que le faisceau de champ proche (qui peut présenter les spécificités d’un feu de croisement) cherche à éclairer en totalité ou au moins majoritairement en dessous de la ligne d’horizon. Le complément route peut donc être une partie principale de faisceau global « route » et être associé à un autre faisceau participant au code.
[0071] Le dispositif peut aussi servir à former d’autres fonctions d’éclairage via ou en dehors de celles décrites précédemment, en relation aux faisceaux adaptatifs. On peut ainsi réaliser une matrice d’éclairage pour illuminer sélectivement des parties de l’espace en avant du véhicule.
[0072] De manière avantageuse, l’ensemble de sources lumineuses 1 est configuré pour former un faisceau à coupure d’un feu de croisement.
[0073] Préférentiellement, le dispositif d’éclairage comprend des collimateurs 10. Chaque collimateur 10 est associé à une source lumineuse distincte de l’ensemble de sources lumineuses 1. Chaque collimateur 10 reçoit de la lumière depuis ladite source et l’envoie de manière collimatée vers le premier dioptre d’entrée 4.
[0074] De manière préférée, les collimateurs 10 sont orientés de manière à diriger les rayons lumineux collimatés vers la première surface de réflexion 6. Plus précisément, la face de sortie des collimateurs 10 est orientée vers la deuxième surface de réflexion 7. Préférentiellement, l’axe de symétrie longitudinal des collimateurs forme avec l’axe optique 9 un angle compris entre 0° et 30°.
[0075] Avantageusement, le dispositif d’éclairage comprend un support 11 plan. L’ensemble de sources lumineuses 1 et la première rangée de sources lumineuses 2 sont solidaires du support 11 . Le support 11 est incliné par rapport à l’axe optique 9 de manière à créer avec lui un angle égal à 90° ± 25°.
[0076] Préférentiellement, le dispositif d’éclairage comprend un premier support 11 a et un deuxième support 11 b. Le premier support 11 a est perpendiculaire à l’axe optique 9 et parallèle au deuxième support 11 b. L’ensemble de sources lumineuses 1 est solidaire du premier support 11a. La première rangée de sources lumineuses 2, la deuxième rangée de sources lumineuses 2a et la troisième rangée de sources lumineuses 2b sont solidaires du deuxième support 11 b. La deuxième rangée de sources lumineuses 2a peut être positionnée sous la première rangée de sources lumineuses 2. La troisième rangée de sources lumineuses 2b peut être positionnée sous la deuxième rangée de sources lumineuses 2a. [0077] La première rangée de sources lumineuses 2, la deuxième rangée de sources lumineuses 2a et la troisième rangée de sources lumineuses 2b peuvent être espacées de la lentille primaire 3 d’une distance de 0,5 mm.
[0078] Cette distance est choisie en fonction de la résistance thermique du matériau de la lentille primaire 3 qui est sélectionnée de manière à minimiser au maximum la distance entre les sources lumineuses et la lentille primaire 3, ceci afin de collecter le maximum de lumière et donc de maximiser l’efficience.
[0079] Le support 11 a peut être espacé du support 11 b d’une distance comprise entre 10 et 30 mm.
[0080] Les supports 11 , 11 a et 11 b peuvent être en Printed Circuit Board (PCB). Les sources lumineuses 1 , 2, 2a et 2b peuvent être fixées sur les supports par collage ou par un autre type de fixation, par exemple par attache.
[0081] De manière préférée, le deuxième dioptre d’entrée 5 est distant du dioptre de sortie 12 d’une distance supérieure à 30 mm. Cette distance est prise en compte au niveau de l’axe optique 9.
[0082] Cette configuration a été sélectionnée de manière à obtenir un compromis entre un encombrement minimal du dispositif d’éclairage et une orientation des rayons lumineux aux extrémités du dioptre de sortie 12 leur permettant d’atteindre la lentille de projection 13.
[0083] La distance entre le dioptre d’entrée et le dioptre de sortie de la lentille de projection 13 peut être de 25 mm.
[0084] La distance entre la lentille primaire 3 et la lentille de projection 13 peut être de 7,5 mm.
[0085] De manière avantageuse, le dispositif d’éclairage comprend une lentille de projection 13 positionnée sur l’axe optique 9 après la lentille primaire 3.
[0086] Préférentiellement, la lentille primaire 3 et la lentille de projection 13 est en PMMA (polyméthacrylate de méthyle), en silicone, en verre ou en PC (polycarbonate) qui permet une meilleure résistance thermique que le PPMA. Le système comprenant la lentille primaire 3 et la lentille de projection 13 peut avoir une distance focale de 44 mm. L’ouverture géométrique de la lentille primaire 3 et celle de la lentille de projection 13 peuvent être de 30 mm par 60 mm.
[0087] Avantageusement, la lentille primaire 3 et la lentille de projection 13 ont une taille de 30 par 60 mm (hors zones de fixation).
[0088] Selon un mode de réalisation avantageux, l’axe optique 9 et la première direction d sont orthogonaux.
[0089] Préférentiellement, les sources lumineuses de l’ensemble de sources lumineuses 1 , de la première rangée de sources lumineuses 2, de la deuxième rangée de sources lumineuses 2a et de la troisième rangée de sources lumineuses 2b sont, toutes ou seulement certaines, activates sélectivement, créant ainsi une source de lumière pixélisée.
[0090] Ainsi, le positionnement des sources lumineuses de l’ensemble de sources lumineuses 1 pouvant être allumées individuellement permet de contrôler la valeur de la luminosité selon la zone considérée. L’acronyme ADB (pour Adaptative Driving Beam signifiant faisceau de route adaptatif) est utilisé pour ce type de fonction.
[0091] En effet, une activation sélective des sources lumineuses permet d’obtenir des configurations de faisceaux lumineux variées permettant de s’adapter à diverses situations. Ainsi, les zones devant être éclairées le sont et celles dont la luminosité doit être réduite en raison de contraintes réglementaires le seront aussi.
[0092] Cette discrétisation de la lumière est également désignée sous le nom de faisceau segmenté. Ainsi, on appelle faisceau segmenté un faisceau dont la projection forme une image composée de segments de faisceau, chaque segment pouvant être allumé de manière indépendante.
[0093] Ainsi, tous les éléments émissifs ne sont pas forcément simultanément actifs, c’est-à-dire émissifs de lumière. Cette fonction permet de moduler la forme du faisceau rendu. Dans le cas où une source lumineuse n’est pas activée, son image, telle que projetée par le dispositif optique sera nulle. Elle forme alors un vide d’éclairage dans le faisceau global résultant. Ce vide s’entend aux phénomènes de couplage au niveau de la source et des effets des lumières parasites de l’optique près.
[0094] Le système selon l’invention peut comprendre une unité de pilotage de l’activation de chacune des sources, configurée pour produire au moins une zone sombre formant un tunnel dans un faisceau projeté par désactivation d’un groupe de sources adjacentes, l’unité de pilotage étant configurée pour déterminer le nombre de sources du groupe correspondant à la zone sombre en fonction de la dimension en largeur des sources.
[0095] L’unité de pilotage peut comprendre un produit programme d’ordinateur, de préférence stocké dans une mémoire non transitoire, dans lequel le produit programme d’ordinateur comprend des instructions qui, lorsqu’elles sont exécutées par un processeur, permettent de déterminer les sources à activer, en particulier pour obtenir au moins une zone sombre (dans laquelle les sources ne sont pas activées) d’une surface déterminée en tenant compte de la surface variable des images des éléments.
[0096] Avantageusement, les LEDs de l’ensemble du dispositif d’éclairage 1 , 2, 2a et 2b ont une surface émissive de 0,5 mm2 ou de 1 mm2. Les LEDs peuvent avoir une hauteur de 0,74 mm et une largeur de 1 mm. La taille des LED est directement liée au volume du faisceau souhaité. Par ailleurs, pour avoir un volume de faisceau important, il est également possible de rajouter des rangées de LED.
[0097] Deux sources lumineuses consécutives de l’ensemble de sources lumineuses 1 , de la première rangée de sources lumineuses 2, de la deuxième rangée de sources lumineuses 2a et de la troisième rangée de sources lumineuses 2b peuvent être à une distance de 0,025mm.
[0098] Les rangées de sources lumineuses 2, 2a et 2b peuvent être espacées entre-elles d’une distance de 1 ,025 mm.
[0099] Les rangées de sources lumineuses 2, 2a et 2b peuvent être espacées de l’ensemble de sources lumineuses 1 d’une distance comprise entre 10 mm et 30 mm.
[0100] La première rangée de sources lumineuses 2 peut être positionnée à une distance de 1 mm de la deuxième surface de réflexion 7.
[0101] Les sources lumineuses des rangées de sources lumineuses 2, 2a et 2b peuvent être composées chacune de 24 sources lumineuses. Les sources lumineuses de l’ensemble de sources lumineuses 1 peuvent être au nombre de 9. Les sources lumineuses de l’ensemble de sources lumineuses 1 peuvent être au nombre de 9.
[0102] Le faisceau issu de la rangée de sources lumineuses 2 peut éclairer sur une ouverture de 30° (30° extérieur et 12° intérieur). Le faisceau issu de l’ensemble de sources lumineuses 1 peut éclairer sur une ouverture de 35°. L’ensemble du système permet une résolution de 1 ,5° qui est notamment la conséquence de la distance entre deux bords de deux pixels successifs (ayant un éclairement lumineux de 1 lux).
[0103] Les sources conventionnelles actuellement utilisées dans le domaine automobile sont des diodes électroluminescentes, encore communément appelées LEDs, encapsulées individuellement dans un boîtier ; la portion émissive de lumière de la diode est recouverte par au moins une couche transmissive de lumière, par exemple en matériau polymère transparent. En fonction de la forme donnée à la couche transmissive, celle-ci peut servir d’optique primaire dès la génération de lumière dans la diode. Ainsi, une telle LED forme un ensemble complexe associant une partie émissive et une partie optique. Par ailleurs, lorsque ces LEDs sont disposées les unes à côté des autres, les parties émissives des LEDs adjacentes sont relativement éloignées l’une de l’autre, ce qui nécessite une projection optique conçue pour ne pas imager cet espacement entre les LEDs. [0104] De manière avantageuse, les sources lumineuses de l’ensemble du dispositif d’éclairage 1 , 2, 2a et 2b sont à partie émissive maximisée.
[0105] Ainsi, de cette manière, dans le cas où plusieurs sources électroluminescentes sont mises en œuvre, la résolution spatiale entre ces différentes sources est meilleure. En effet, il n’y a un espace minimal entre les différentes sources lumineuses.
[0106] La partie émissive peut être exposée à la face terminale de la source et occupée au moins 90% de la surface de ladite face terminale, de préférence 98% et encore plus préférentiellement 100% de la surface. Dans ce dernier cas, la partie émissive forme alors la face de sortie de la lumière de la source.
[0107] Notamment, ces sources peuvent être dotées d’au moins une puce utilisant la technologie des semi-conducteurs et apte à émettre une lumière. Par ailleurs, le terme source lumineuse s’entend ici d’un ensemble d’au moins une source élémentaire apte à produire un flux conduisant à générer en sortie du dispositif de l’invention au moins un faisceau lumineux.
[0108] Ainsi, on tire profit de ce type de sources de lumière de sorte à disposer ces sources très proches les unes des autres (typiquement avec un espace de moins de 50 microns, voire de moins de 25 microns). Il est possible de venir imager directement au niveau de ces sources ; cependant, l’efficacité du dispositif optique est maintenue et on opère une mise en forme, notamment verticale, des pixels, par l’intermédiaire de l’élément optique primaire qui est un élément commun aux sources.
[0109] La source peut être délimitée latéralement par plusieurs parois circonférentielles qui s’étendent le long de l’axe de croissance de la diode et par une face terminale. La face terminale, dans ce cas, comprend une partie émissive à travers laquelle est émise la lumière lorsque la diode fait objet d’une polarisation.
[0110] La partie émissive peut être soit une couche, pouvant être appelée couche active, dans laquelle s’effectue la génération de photons par des recombinaisons électron-trou, soit, ce qui est plus commun en particulier pour de la lumière blanche, une couche de conversion dotée de charges, comme des particules de phosphore, permettant de réémettre des photons produits dans la couche active dans une bande de longueur d’ondes adaptée à l’application.
[0111] Dans un mode avantageux, la face terminale de la source est de section rectangulaire, ce qui est typique pour des puces de LEDs. Ainsi, la partie émissive présente également une section rectangulaire dont la taille est légèrement inférieure à celle de la face de sortie. Notamment, la longueur d’un des côtés de la partie émissive est inférieure à la longueur d’un des côtés de la face terminale de source d’une valeur comprise entre 10 micromètres à 40 micromètres. En d’autres termes, la distance entre un bord de la face terminale et une arrête de la partie émissive peut être comprise entre 5 micromètres à 20 micromètres.
[0112] Dans le cas des sources à électroluminescentes à emballage individuelle, encore appelée puces de LEDs, la taille maximisée de la partie émissive se traduit par une réduction de la taille du boîtier entourant la diode électroluminescente. En effet, le boîtier peut comprendre des bords qui couvrent les parois circonférentielles de la diode. En ayant la partie émissive occupant presque la totalité, voire, la totalité de la face terminale de la diode, ces bords peuvent être configurés de façon qu’ils présentent une très faible épaisseur, par exemple de l’ordre de quelques micromètres. Ainsi, le boîtier entourant la diode électroluminescente a presque la même taille que cette diode. La taille du boîtier ne dépasse que de quelques micromètres de la face terminale de la diode.
[0113] On peut notamment employer de telles sources commercialisées sous la marque Luxeon NEO Exact® par la société Lumileds®.
[0114] Un autre exemple des sources de lumière à partie émissive maximisée : les sources de lumière comprennent au moins deux rangées de sources sur un substrat commun. Cet arrangement d’éléments peut être issu d’une croissance sur le substrat à partir duquel ils ont crû respectivement, ou de toute autre méthode de réalisation, par exemple par report des éléments par des techniques de transfert. Différents agencements d’éléments électroluminescents peuvent répondre à cette définition de matrice monolithique, dès lors que les éléments électroluminescents présentent l’une de leurs dimensions principales d’allongement sensiblement perpendiculaire à un substrat commun et que l’écartement transversal entre les pixels, formé par un ou plusieurs éléments électroluminescents regroupés ensemble électriquement, est faible en comparaison des écartements imposés dans des agencements connus de puces généralement carrés plats soudés sur une carte de circuits imprimés.
[0115] En d’autres termes, dans l’invention, il peut s’agir d’une source électroluminescente monolithique qui est divisée en plusieurs segments individuels. Les segments individuels sont séparés par une paroi mince, réalisée par exemple en silicone. L’épaisseur de cette paroi mince est comprise entre 10 micromètres à 25 micromètres. On peut notamment employer de telles sources commercialisées sous la marque PixCell® par la société Samsung®. [0116] Avantageusement, des sources lumineuses permettant de former un faisceau de champ proche peuvent être intégrées au dispositif d’éclairage. Ce faisceau peut également être appelé faisceau « fiat » pour faisceau plat ou étalé. Il est projeté globalement sous la coupure et sert à illuminer le champ proche à l’avant du véhicule. Le faisceau issu de l’ensemble de sources lumineuses 1 permet de définir une zone de coupure. Ainsi, l’association du faisceau de champ proche et du faisceau issus de l’ensemble de sources lumineuses 1 permet de définir au moins partiellement un faisceau de feu de croisement.
[0117] Le faisceau issu de l’ensemble de sources lumineuses 1 peut donc être configuré pour produire, en mode code, une portion de feu de croisement à coupure. La portion coudée résultante est appelée « kink » (en anglais) du faisceau « code ».
[0118] Les faisceaux du type feu de croisement présentent typiquement une première zone latérale (normalement côté bord de la chaussée) projetant à une hauteur un peu supérieure que dans une deuxième zone latérale (normalement côté milieu de chaussée), ces deux zones se suivant latéralement avec la présence d’un virage ou coude entre-elles.
[0119] Un faisceau de champ proche d’un feu de croisement est typiquement une projection relativement étalée latéralement à l’avant du véhicule, majoritairement ou totalement sous la ligne d’horizon, en recherchant généralement une bonne répartition de l’illumination sur l’ensemble de la zone éclairée.
[0120] Plusieurs dispositifs d’éclairage selon l’invention peuvent être agencés dans un boîtier fermé par une glace de manière à obtenir un ou plusieurs faisceaux d’éclairage et/ou de signalisation à la sortie du projecteur. Un projecteur peut aussi être complexe et associer plusieurs dispositifs qui peuvent, en outre, éventuellement partager des composants.
[0121] Liste des références
1. ensemble de sources lumineuses
2. première rangée de sources lumineuses 2a. deuxième rangée de sources lumineuses 2b. troisième rangée de sources lumineuses
3. lentille primaire
4. premier dioptre d’entrée
5. deuxième dioptre d’entrée
6. première surface de réflexion 6a. sous-surfaces de réflexion
7. deuxième surface de réflexion
8. troisième surface de réflexion 9. axe optique
10. collimateurs
11. support lla. premier support llb. deuxième support
12. dioptre de sortie
13. lentille de projection p1. premier plan p2. deuxième plan d. première direction d1. deuxième direction d2. troisième direction

Claims

Revendications
[Revendication 1] Dispositif d’éclairage comprenant :
- un ensemble de sources lumineuses (1),
- une première rangée de sources lumineuses (2) comprenant des sources lumineuses alignées selon une première direction (d),
- une lentille primaire (3) comprenant un premier dioptre d’entrée (4), un deuxième dioptre d’entrée (5) et un dioptre de sortie (12), le premier dioptre d’entrée (4) étant configuré pour recevoir des rayons lumineux issus de l’ensemble de sources lumineuses (1), le deuxième dioptre d’entrée (5) étant configuré pour recevoir des rayons lumineux issus de la première rangée de sources lumineuses (2), le dioptre de sortie (12) étant configuré pour transmettre des rayons lumineux issus de la première rangée de sources lumineuses (2) après leur transmission dans la lentille primaire (3) depuis le deuxième dioptre d’entrée (5),
- un axe optique (9) et un premier plan (p1), le premier plan (p1) étant défini de manière à contenir la première direction (d) et être perpendiculaire à l’axe optique (9),
- une première surface de réflexion (6) et une deuxième surface de réflexion (7), la première surface de réflexion (6) étant configurée pour réfléchir, vers la deuxième surface de réflexion (7), des rayons lumineux issus de l’ensemble de sources lumineuses (1) après leur transmission dans la lentille primaire (3) depuis le premier dioptre d’entrée (4), caractérisé en ce que la deuxième surface de réflexion (7) est configurée pour réfléchir, vers le dioptre de sortie (12), les rayons lumineux issus de l’ensemble de sources lumineuses (1) après leur réflexion sur la première surface de réflexion (6).
[Revendication 2] Dispositif d’éclairage selon la revendication précédente comprenant une troisième surface de réflexion (8), la troisième surface de réflexion (8) étant configurée de manière que des rayons lumineux issus de l’ensemble de sources lumineuses (1) se réfléchissent sur la troisième surface de réflexion (8) après leur réflexion sur la première surface de réflexion (6) et avant leur réflexion sur la deuxième surface de réflexion (7).
[Revendication 3] Dispositif d’éclairage selon la revendication précédente dans lequel la troisième surface de réflexion (8) est au moins en partie formée par le deuxième dioptre d’entrée (5).
[Revendication 4] Dispositif d’éclairage selon l’une quelconque des revendications précédentes dans lequel le deuxième dioptre d’entrée (5) est incliné par rapport au premier plan (p1 ).
[Revendication 5] Dispositif d’éclairage selon l’une quelconque des revendications précédentes dans lequel le deuxième dioptre d’entrée (5) est incliné par rapport au premier plan (p1 ) d’un angle compris entre 0 et 10° de sorte que l’angle entre la première surface de réflexion (6) et la troisième surface de réflexion (8) soit inférieur à l’angle entre la première surface de réflexion (6) et le premier plan (p1 ).
[Revendication 6] Dispositif d’éclairage selon l’une quelconque des revendications 2 à 5 dans lequel la première surface de réflexion (6) comprend pour chaque source lumineuse de l’ensemble de sources lumineuses (1) une sous-surface de réflexion (6a) ayant un profil concave de manière à diriger des rayons lumineux issus de l’ensemble de sources lumineuses (1) vers la deuxième surface de réflexion (7) et des rayons lumineux issus de l’ensemble de sources lumineuses (1) vers la troisième surface de réflexion (8), les sous-surfaces de réflexion (6a) étant juxtaposées et traversées par un plan parallèle au premier plan (p1 ).
[Revendication 7] Dispositif d’éclairage selon l’une quelconque des revendications précédentes dans lequel la deuxième surface de réflexion (7) présente un profil concave dans un plan défini de manière à diriger les rayons lumineux issus de l’ensemble de sources lumineuses (1) vers le dioptre de sortie (12).
[Revendication 8] Dispositif d’éclairage selon l’une quelconque des revendications précédentes comprenant un deuxième plan (p2), le deuxième plan (p2) étant défini de manière à contenir l’axe optique (9) et être perpendiculaire à la première direction (d), la deuxième surface de réflexion (7) présente un profil concave dans le deuxième plan (p2).
[Revendication 9] Dispositif d’éclairage selon l’une quelconque des revendications précédentes comprenant une deuxième rangée de sources lumineuses (2a) comprenant des sources lumineuses alignées selon une deuxième direction (d1) et une troisième rangée de sources lumineuses (2b) comprenant des sources lumineuses alignées selon une troisième direction (d2), la deuxième direction (d1) et la troisième direction (d2) étant parallèles à la première direction (d), la deuxième rangée de sources lumineuses (2a) étant positionnée au contact de la première rangée de sources lumineuses (2) et la troisième rangée de sources lumineuses (2b) étant positionnée au contact de la deuxième rangée de sources lumineuses (2a).
[Revendication 10] Dispositif d’éclairage selon la revendication précédente dans lequel la première rangée de sources lumineuses (2), la deuxième rangée de sources lumineuses (2a) et la troisième rangée de sources lumineuses (2b) sont configurées pour former ou participer à former un faisceau de complément route.
[Revendication 11] Dispositif d’éclairage selon l’une quelconque des revendications précédentes dans lequel l’ensemble de sources lumineuses (1) est configuré pour former un faisceau à coupure d’un feu de croisement.
[Revendication 12] Dispositif d’éclairage selon l’une quelconque des revendications précédentes comprenant des collimateurs (10), chaque collimateur (10) étant associé à une source lumineuse distincte de l’ensemble de sources lumineuses (1), chaque collimateur (10) recevant de la lumière depuis ladite source et l’envoyant de manière collimatée vers le premier dioptre d’entrée (4).
[Revendication 13] Dispositif d’éclairage selon la revendication précédente dans lequel les collimateurs (10) sont orientés vers la première surface de réflexion (6) avec leur face de sortie dirigée vers la deuxième surface de réflexion (7), un axe perpendiculaire à leur face de sortie formant avec l’axe optique (9) un angle compris entre 0° et 30°.
[Revendication 14] Dispositif d’éclairage selon l’une quelconque des revendications précédentes comprenant un support (11) plan, l’ensemble de sources lumineuses (1) et la première rangée de sources lumineuses (2) étant fixés au support (11 ), le support (11 ) formant avec l’axe optique (9) un angle égal à 90° ± 25°.
[Revendication 15] Dispositif d’éclairage selon la revendication 9 seule ou en combinaison avec l’une quelconque des revendications 10 à 13 comprenant un premier support (11 a) et un deuxième support (11 b), le premier support (11 a) étant perpendiculaire à l’axe optique (9) et parallèle au deuxième support (11 b), l’ensemble de sources lumineuses (1) étant fixé au premier support (11a) et la première rangée de sources lumineuses (2), la deuxième rangée de sources lumineuses (2a) et la troisième rangée de sources lumineuses (2b) étant fixées au deuxième support (11 b).
[Revendication 16] Dispositif d’éclairage selon l’une quelconque des revendications précédentes comprenant une lentille de projection (13) positionnée sur l’axe optique (9) après la lentille primaire (3).
PCT/EP2023/086642 2022-12-22 2023-12-19 Dispositif d'eclairage pour vehicule automobile WO2024133261A1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR2214355A FR3144249A1 (fr) 2022-12-22 2022-12-22 Module d’éclairage
FRFR2214355 2022-12-22
FR2301615A FR3144252A1 (fr) 2022-12-22 2023-02-22 Dispositif d’éclairage
FRFR2301615 2023-02-22

Publications (1)

Publication Number Publication Date
WO2024133261A1 true WO2024133261A1 (fr) 2024-06-27

Family

ID=89473326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2023/086642 WO2024133261A1 (fr) 2022-12-22 2023-12-19 Dispositif d'eclairage pour vehicule automobile

Country Status (1)

Country Link
WO (1) WO2024133261A1 (fr)

Similar Documents

Publication Publication Date Title
FR3065784B1 (fr) Module lumineux avec optique d'imagerie optimisee pour un modulateur spatial pixellise, destine a un vehicule automobile
EP1746339B1 (fr) Dispositif d'éclairage ou de signalisation, notamment pour véhicule automobile
WO2020025171A1 (fr) Module lumineux imageant la surface eclairee d'un collecteur
EP3167226B1 (fr) Module lumineux d'un véhicule automobile
EP2607165B1 (fr) Module d'éclairage comprenant au moins deux sources lumineuses installées de manière sensiblement orthogonale
EP3870893B1 (fr) Module lumineux pour dispositif d'eclairage de vehicule
FR3093789A1 (fr) Dispositif lumineux imageant les surfaces eclairees d’au moins deux collecteurs
EP1500869A1 (fr) Module d'éclairage elliptique sans cache réalisant un faisceau d'éclairage à coupure et projecteur comportant un tel module
FR3051541A1 (fr) Projecteur a led a dioptre creant coupure pour vehicules
EP3803198A1 (fr) Module lumineux pour véhicule automobile, et dispositif d'éclairage et/ou de signalisation muni d'un tel module
FR3119440A1 (fr) Dispositif d’éclairage de la route d’un véhicule automobile
FR3007501A1 (fr) Dispositif d'eclairage d'un vehicule utilisant une lentille optique multifonction
FR3101391A1 (fr) Système optique
WO2024133261A1 (fr) Dispositif d'eclairage pour vehicule automobile
FR3144252A1 (fr) Dispositif d’éclairage
WO2024094529A1 (fr) Dispositif d'éclairage
FR3086770A1 (fr) Systeme optique de projection et module lumineux pour vehicule
WO2024094530A1 (fr) Dispositif d'éclairage
WO2024094536A1 (fr) Dispositif d'éclairage
WO2023006673A1 (fr) Module lumineux pour phare de vehicule
EP2853804B1 (fr) Module d'éclairage et/ou de signalisation avec plusieurs systèmes optiques rotatifs
WO2023030808A1 (fr) Module lumineux pour vehicule automobile
FR2948174A1 (fr) Paroi lumineuse
FR3097935A1 (fr) Dispositif d’éclairage et/ou de signalisation
FR3079598A1 (fr) Module d'eclairage avec element optique multisource avec face de sortie lisse