WO2024131785A1 - 一种动力电池的电驱动系统及包括其的车辆 - Google Patents

一种动力电池的电驱动系统及包括其的车辆 Download PDF

Info

Publication number
WO2024131785A1
WO2024131785A1 PCT/CN2023/139865 CN2023139865W WO2024131785A1 WO 2024131785 A1 WO2024131785 A1 WO 2024131785A1 CN 2023139865 W CN2023139865 W CN 2023139865W WO 2024131785 A1 WO2024131785 A1 WO 2024131785A1
Authority
WO
WIPO (PCT)
Prior art keywords
power battery
heat dissipation
charging
liquid
drive system
Prior art date
Application number
PCT/CN2023/139865
Other languages
English (en)
French (fr)
Inventor
郑力夫
马勇
刘强
Original Assignee
北京车和家汽车科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京车和家汽车科技有限公司 filed Critical 北京车和家汽车科技有限公司
Publication of WO2024131785A1 publication Critical patent/WO2024131785A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/22Constructional details or arrangements of charging converters specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/32Rotating parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present application relates to the technical field of vehicle charging equipment, and in particular to an electric drive system of a power battery and a vehicle comprising the same.
  • the battery voltage capacity is gradually increased.
  • the voltage capacity of some power batteries has been upgraded to 800V, while the upper limit of the current charging pile output voltage is generally 500V, 750V, and 1000V. Therefore, in order to make the electric drive system of the high-voltage power battery compatible with the low-voltage output charging pile on the market, it is generally necessary to add a boost charging module in the electric drive system, so that a 500V or 750V charging pile can charge a battery with a capacity of 800V. In this way, it is necessary to add an independent module or accessory to achieve boost charging, which makes the structure of the electric drive system complicated.
  • the existing electric drive system is directly connected to the charging pile.
  • the upper limit of the output voltage of the charging pile is small (for example, the power battery is an 800V battery, and the upper limit of the charging pile output is only 500V)
  • the temperature of the motor will rise sharply during operation due to the higher working intensity. Excessive temperature will affect the stability and safety of the electric drive system.
  • the purpose of the present application is to provide an electric drive system of a power battery and a vehicle including the same, so as to solve the problem in the prior art that it is difficult to simplify the structure of a high-voltage battery charging system while ensuring the stability of the charging process.
  • the technical solution of the present application provides an electric drive system of a power battery, including a motor controller, a motor and a cooling component, wherein:
  • the motor comprises three phase circuits, and a first end of each phase circuit is connected to a charging end of a charging pile to receive a charging voltage output by the charging end;
  • a cooling component is arranged in the motor
  • the motor controller is connected to the second end of each phase circuit, and controls the single-phase voltage amplitude of each phase circuit charged into the power battery so that the charging voltage amplitude of the motor charged into the power battery is within the preset charging voltage range of the power battery.
  • the motor controller controls the single-phase voltage amplitude of each phase circuit by controlling the energization duty cycle of each phase circuit; wherein the input voltage amplitude, the current voltage amplitude of the power battery and the duty cycle have the following relationship:
  • u in is the input voltage amplitude
  • u dc is the current voltage amplitude of the power battery
  • D is the duty cycle
  • the motor controller controls the single-phase voltage amplitude of each phase circuit to be less than a first set threshold when the charging voltage is greater than a first voltage value, and the first set threshold makes the current in each phase circuit less than the ripple current; the first voltage value is determined according to the preset minimum charging voltage of the power battery; wherein the first set threshold is pre-set and stored in the motor controller.
  • the electric drive system of the power battery described in the motor controller controls the single-phase voltage amplitude of each phase circuit when the charging voltage is less than the second voltage value, so that the charging voltage amplitude satisfies:
  • the first voltage value is set to be close to the preset minimum charging voltage value according to the charging range of the power battery.
  • the second voltage value is 550V.
  • the electric drive system of the power battery described in some solutions also includes:
  • a connecting wire wherein a first end of the connecting wire is connected to the high voltage end of the power battery, and a second end of the connecting wire is used to connect to another charging end of the charging pile;
  • the cooling component includes a cooling liquid path, the cooling liquid path is at least partially disposed in the motor and in contact with the heat dissipation component, and the cooling liquid medium in the cooling liquid path performs heat exchange with the heat dissipation component;
  • the heat dissipation component includes a rotor core of the motor, and the cooling liquid path includes a plurality of heat dissipation channels penetrating the rotor core.
  • the motor shaft of the motor is formed with an inner cavity, and the inner cavity is formed with a first liquid hole and a second liquid hole;
  • a first end plate is disposed at the first end of the motor shaft, a first annular cavity is formed between the first end plate and the first side of the rotor core, and the first annular cavity is communicated with the first liquid hole;
  • a second end plate is provided at the second end of the motor shaft, a second annular cavity is formed between the second end plate and the second side of the rotor core, and the second annular cavity is communicated with the second liquid hole;
  • the first annular cavity and the second annular cavity are respectively communicated with at least one of the heat dissipation channels.
  • a plurality of first liquid grooves and first liquid spraying ports are formed on the first end plate, and a plurality of second liquid grooves and second liquid spraying ports are formed on the second end plate;
  • the at least two first liquid grooves on the first end plate are connected to the second liquid spray port in the second annular cavity through different heat dissipation channels; the at least two second liquid grooves on the second end plate are connected to the second liquid spray port in the second annular cavity through different heat dissipation channels.
  • the first liquid spraying ports in the first annular cavity are connected so that the plurality of heat dissipation channels form parallel liquid paths.
  • the first liquid tank on the first end plate is connected to the first liquid spray port on the first end plate via a heat dissipation channel, the second liquid tank on the second end plate, and another heat dissipation channel in sequence;
  • the second liquid tank on the second end plate is connected to the second liquid spray port on the second end plate via a heat dissipation channel, the first liquid tank on the first end plate, and another heat dissipation channel in sequence, so that multiple heat dissipation channels form a serial liquid circuit.
  • the holes at both ends of at least one of the heat dissipation channels are first cooling holes; the holes at both ends of at least one of the heat dissipation channels are second cooling holes; the heat dissipation channel corresponding to the first cooling hole is used as the first heat dissipation channel, and the heat dissipation channel corresponding to the second cooling hole is used as the second heat dissipation channel;
  • a plurality of the first heat dissipation channels are evenly distributed along a first circumference in the rotor core; a plurality of the second heat dissipation channels are evenly distributed along a second circumference in the rotor core; the first circumference and the second circumference both have the same central axis as the rotor core, and a diameter of the first circumference is smaller than a diameter of the second circumference.
  • the number of the second heat dissipation channels is determined according to the number of magnetic steel slots on the rotor core, and one second heat dissipation channel is provided between every two adjacent magnetic steel slots;
  • Each of the magnetic steel slots is provided with a plurality of magnetic steel components.
  • the technical solution of the present application provides a vehicle, wherein the vehicle comprises an electric drive system of the power battery as described in any one of the first aspects.
  • the electric drive system of the power battery provided in the embodiment of the present application and the vehicle including the same are provided with a cooling component inside the motor so as to cool down the inside of the motor, and the single-phase voltage amplitude of each phase circuit in the motor charged into the power battery is controlled by the motor controller so that the charging voltage amplitude charged into the power battery is within the preset charging voltage range of the power battery, thereby enabling the low-voltage charging pile to charge the high-voltage power battery without the need to add an additional boost charging module.
  • the electric drive system provided in the embodiment of the present application can enable the low-voltage charging pile to charge the high-voltage power battery under the premise of omitting the boost charging module, and can avoid the situation where the motor temperature is too high due to the low-voltage charging pile charging the high-voltage battery through the cooling component, while simplifying the structure of the electric drive system and ensuring the stability of the electric drive system during the charging process.
  • FIG1 is a schematic diagram of the connection relationship between an electric drive system and a charging pile in one embodiment of the present application
  • FIG2 is a schematic diagram of the connection relationship between the electric drive system, the power battery and the charging pile in one embodiment of the present application;
  • FIG3 is a control strategy for the output voltage of the charging pile when the upper limit of the charging pile output is 700V and the charging range is 600V-800V for charging a power battery vehicle in one embodiment of the present application;
  • FIG4 is a control strategy for the output voltage of the charging pile when the upper limit of the charging pile output is 450V and the charging range is 600V-800V for charging a power battery vehicle in one embodiment of the present application;
  • 5a and 5b are a cross-sectional schematic diagram and a side schematic diagram of a rotor core provided with a heat dissipation channel in one embodiment of the present application;
  • 6a and 6b are schematic structural diagrams of the internal cavity of the motor shaft and the first liquid hole and the second liquid hole in one embodiment of the present application;
  • FIG7a is a schematic structural diagram of a first end plate in one embodiment of the present application.
  • FIG7b is a schematic structural diagram of a second end plate in one embodiment of the present application.
  • FIG7c is a schematic diagram of cooling medium flow when the heat dissipation channel is a parallel liquid path in one embodiment of the present application;
  • FIG7d is a schematic structural diagram of a first end plate in one embodiment of the present application.
  • FIG7e is a schematic structural diagram of a second end plate in one embodiment of the present application.
  • FIG. 7f is a schematic diagram of the cooling medium flow when the heat dissipation channel is a serial liquid path in one embodiment of the present application.
  • the embodiment of the present application provides an electric drive system 100 of a power battery, as shown in FIG1 , the system includes a motor controller 11, a motor 12 and a cooling component.
  • the motor 12 includes three phase circuits, such as the A phase circuit, the B phase circuit and the C phase circuit in the figure, and the first end of each phase circuit is connected to a charging end of the charging pile 200 to receive the charging voltage output by the charging end, and the other end of the charging pile 200 is used to connect the power battery.
  • the cooling component is arranged in the motor 12, which can absorb the heat generated by the heat dissipation component in the motor 12 in time to avoid the temperature of the motor 12 being too high, and because the cooling component is placed inside the motor 12, it will not affect the increase in the volume of the electric drive system 100.
  • the motor controller 11 is connected to the second end of each phase circuit, and the motor controller 11 controls the single-phase voltage amplitude of each phase circuit charged into the power battery so that the charging voltage amplitude of the motor 12 charged into the power battery is within the preset charging voltage range of the power battery.
  • the preset charging voltage of the power battery is a known parameter. For example, for a power battery with a voltage capacity of 800V, its preset charging voltage range can usually be between 600V and 800V.
  • the motor controller 11 can achieve a charging voltage amplitude of 600V-800V for the power battery by controlling the charging parameters of each phase circuit.
  • the above solution provided by the embodiment of the present application sets a cooling component inside the motor so as to cool the heat dissipation components in the motor, and controls the charging voltage amplitude of each phase circuit in the motor that is charged into the power battery through the motor controller so that the charging voltage amplitude is within the preset charging voltage range of the power battery, thereby enabling the low-voltage charging pile to charge the high-voltage power battery without the need to add an additional boost charging module.
  • the electric drive system provided by the present solution can enable the low-voltage charging pile to charge the high-voltage power battery without the need to add a boost charging module, and can avoid the situation where the motor temperature is too high due to the low-voltage charging pile charging the high-voltage battery through the cooling component, while simplifying the structure of the electric drive system.
  • When charging ensure the stability of the electric drive system during the charging process.
  • connection relationship between the electric drive system of the power battery and the power battery and the charging pile can be as shown in FIG2, the low voltage end of the motor controller 11 is connected to the low voltage terminal HVDC1 of the power battery 10, the high voltage terminal of the motor controller 11 is connected to the high voltage terminal HVDC2 of the power battery 10, each phase circuit of the motor 12 includes a phase coil, such as the A phase coil L1, the B phase coil L2, and the C phase coil L3 in the figure, and one end of the three phase coils is connected to the terminal of the motor 12.
  • a phase coil such as the A phase coil L1, the B phase coil L2, and the C phase coil L3 in the figure
  • the terminal is connected to one end of the charging pile 20 through a wire S1; in some embodiments, the above-mentioned electric drive system also includes a connecting wire S2, the first end of the connecting wire S2 is connected to the high voltage terminal of the motor controller 11, and the second end of the connecting wire S2 is used to connect to the other end of the charging pile 20, thereby realizing the connection between the charging pile 20 and the high voltage terminal HVDC2 of the power battery 10.
  • a capacitor C1 is connected between the motor controller 11 and the power battery 10, and other electrical components that are not related to the improvement points of this application may also be included, which will not be described in detail in this application scheme.
  • the cooling components since they are arranged inside the motor, they will not cause an increase in the volume of the electric drive system.
  • a device with a cooling function is also provided, such as a coolant circuit.
  • a part of the cooling medium in the existing coolant circuit can be led out to the inside of the motor through a pipeline, thereby cooling the heat dissipation components inside the motor.
  • the motor controller 11 controls the single-phase voltage amplitude of each phase circuit by controlling the power-on duty cycle of each phase circuit.
  • the motor controller 11 includes a control circuit composed of switch tubes, that is, it is connected to the phase circuits of the three phases through switch tubes.
  • the power-on duty cycle of each phase circuit can be controlled.
  • a frequency of 30KHz can be selected to control the conduction of the switch, and the wire S1 is used to connect the three phase circuits with the charging pile 20.
  • the single-phase voltage amplitude input to each phase circuit by the charging pile 20 during the cycle can be changed, and then the charging voltage amplitude can be changed.
  • the ripple current of each phase circuit can be reduced by changing the single-phase voltage amplitude of each phase circuit.
  • the ripple currents of the three phase circuits A, B and C are out of phase by 120 degrees, the eddy current loss of the motor rotor will increase, causing serious heating problems in the motor rotor.
  • the magnitude of the eddy current loss is proportional to the amplitude of the ripple current. The inventors found in the process of implementing this application that when the voltage of the power battery is fixed, the magnitude of the ripple current of each phase coil can be adjusted based on the magnitude of the voltage amplitude.
  • the input voltage amplitude, the current voltage amplitude of the power battery and the ripple current is explained.
  • the input, the current voltage amplitude of the power battery and the duty cycle have the following relationship:
  • u in is the input voltage amplitude
  • u dc is the current voltage amplitude of the power battery
  • D is the duty cycle.
  • the period Ts and the inductance L are known quantities. Based on the fixed battery voltage, it can be seen from the above formula that the ripple current amplitude and the input voltage amplitude are in a quadratic curve relationship. When the input voltage is u dc /2, the ripple current ⁇ i amplitude is maximum, and when the input voltage is zero and u dc , the ripple current ⁇ i amplitude is zero.
  • the motor controller 11 changes the single-phase voltage amplitude of the charging pile for each phase circuit by controlling the power-on duty cycle of each phase circuit, which is equivalent to changing the input voltage in the above formula, thereby being able to change the amplitude of the ripple current.
  • the above scheme of the present application directly connects the electric drive system to the charging pile 20 through the wire S1 and the connecting wire S2, and does not require a boost charging module, thereby simplifying the structure of the electric drive system.
  • a cooling component is set inside the motor to cool the heat dissipation component in the motor to avoid the situation where the motor temperature is too high when the high-voltage power battery is charged using a low-voltage charging pile.
  • the motor controller 11 can control the energization duty cycle of the three phase coils in the motor, thereby adjusting the input voltage amplitude of the charging pile introduced by the wire S1.
  • the amplitude of the input voltage can affect the ripple current. Therefore, by controlling the single-phase voltage amplitude, the influence of the ripple current in the electric drive system during the charging process can be controlled.
  • the above scheme can simplify the structure of the electric drive system while ensuring the stability of the electric drive system during the charging process.
  • the input voltage amplitude of the charging pile should be as far away from half of the current voltage of the power battery as possible.
  • the input voltage amplitude of the charging pile has the same effect on reducing the ripple current.
  • the ripple current amplitude in the electric drive system is the largest, and when the input voltage at the pile end is 700v and 100V, the difference between 400V and half of the power battery voltage is the same, and the same effect of reducing the ripple current amplitude is achieved.
  • the charging situation is divided into the following two situations:
  • the motor controller 11 controls the single-phase voltage amplitude of each phase circuit to be less than a first set threshold value when the charging voltage is greater than a first voltage value, and the first set threshold value makes the current in each phase circuit less than the ripple current; the first voltage value is determined according to the preset minimum value of the charging voltage of the power battery.
  • the first set threshold value can be pre-set and stored in the motor controller 11, which is an empirical value or a preferred value obtained through pre-test verification.
  • the first voltage value can be selected according to the charging range of the power battery, and can be close to the preset minimum value of the charging voltage. For example, if the preset charging voltage of the power battery is in the range of 600V-800V, the first voltage value can be selected as 600V. As shown in FIG3 , when the power battery with a charging range of 600V-800V is charged when the output upper limit voltage of the charging pile is 700V, the motor controller 11 controls the charging strategy of the input voltage amplitude.
  • the inventor found that when the output upper limit of the charging pile is high, the input voltage amplitude of the pile end is kept at the highest level (i.e., close to 700V) during the charging process, which is conducive to reducing the amplitude of the ripple current of the electric drive system, thereby improving the stability during the charging process and reducing the heating of the motor rotor.
  • the motor controller 11 controls the single-phase voltage amplitude of each phase circuit when the charging voltage is less than the second voltage value, so that the charging voltage amplitude satisfies:
  • the second set threshold value is a threshold value; wherein, "
  • the second set threshold value can be pre-set and stored in the motor controller 11, which is an empirical value or a preferred value obtained after pre-test verification. In some embodiments, A is 50%, because half of the current voltage amplitude of the power battery corresponds to the maximum ripple current.
  • the second voltage value can be selected according to the charging range of the power battery.
  • the second voltage value can be selected as 550V.
  • the motor controller 11 controls the charging strategy of the input voltage amplitude. Since the amplitude of the ripple current is the largest when the input voltage amplitude is 400V, a higher input voltage amplitude is used as the input voltage when the power battery voltage is relatively small. The purpose is to quickly charge the power battery.
  • the input voltage amplitude can be reduced to make it as far away as possible from half of the power battery voltage, so as to reduce the amplitude of the ripple current, improve the stability of the electric drive system, and reduce rotor heating.
  • the cooling component can be a cooling functional element suitable for being arranged inside the motor, such as a ceramic radiator.
  • the cooling component includes a cooling liquid circuit, which is at least partially arranged inside the motor and in contact with the heat dissipation component, and the cooling liquid medium in the cooling liquid circuit exchanges heat with the heat dissipation component.
  • the battery management system itself also has a cooling liquid circuit. This solution can lead part of the coolant to the inside of the motor without changing the original cooling liquid circuit to achieve cooling of the heat dissipation components inside the motor, without increasing the volume of the system and without making too much change to the internal structure.
  • the heat dissipation component includes the rotor core 40 of the motor, and the coolant path includes a plurality of heat dissipation channels 41 penetrating the rotor core 40; wherein, the openings at both ends of some heat dissipation channels 41 are first cooling holes 411, and the openings at both ends of some heat dissipation channels 41 are second cooling holes 412.
  • the motor shaft 50 of the motor is formed with an inner cavity 53, and the inner cavity 53 is formed with a first liquid hole 51 and a second liquid hole 52.
  • the rotor core 40 can be sleeved on the outside of the motor shaft 50 through the mounting hole 43 in the middle thereof, and the first end plate 61 is provided at the first end of the motor shaft 50, and a first annular cavity 613 is formed between the first end plate 61 and the first side of the rotor core 40, and the first annular cavity 613 is communicated with the first liquid hole 51; the second end plate 62 is provided at the second end of the motor shaft 50, and a second annular cavity 623 is formed between the second end plate 62 and the second side of the rotor core 40, and the second annular cavity 623 is communicated with the second liquid hole 52; the first annular cavity 613 and the second annular cavity 623 are respectively communicated with at least one of the heat dissipation channels 41.
  • a heat dissipation channel 41 is added to the rotor core 40, and a first cooling hole 411 and a second cooling hole 412 are provided on both sides of the heat dissipation channel 41.
  • a first end plate 61 and a second end plate 62 are provided at both ends of the motor shaft 50 and the surfaces of the end plates are specially designed, so that a channel for the flow of cooling medium is formed between the end plates and the heat dissipation channel inside the rotor core, thereby increasing the contact area between the cooling medium and the rotor core, and effectively cooling the rotor core 40, while also cooling the motor shaft 50 and the two end plates, thereby reducing the temperature of the rotor core and the magnetic steel and improving the motor performance.
  • the first end plate 61 is formed with a plurality of The first liquid groove 612 and the first liquid spraying port 612 are formed on the second end plate 62 with a plurality of second liquid grooves 621 and second liquid spraying ports 622; at least two first liquid grooves 612 on the first end plate 61 are connected to the second liquid spraying ports 622 in the second annular cavity 623 after passing through different heat dissipation channels 41; at least two second liquid grooves 621 on the second end plate 62 are connected to the first liquid spraying ports 612 in the first annular cavity 613 after passing through different heat dissipation channels 41, so that multiple heat dissipation channels 41 form parallel liquid paths.
  • the cooling medium can flow from one side of the rotor core to the other side and then be directly sprayed out from the other side, thereby absorbing the heat generated by the rotor core during the flow process.
  • the figure only takes the cooling medium in two heat dissipation channels as an example. In actual application, the number of heat dissipation channels can be adjusted according to demand.
  • the first liquid tank 611 on the first end plate 61 is connected to the first liquid spray port 612 on the first end plate 61 after passing through a heat dissipation channel, the second liquid tank 621 on the second end plate 62, and another heat dissipation channel in sequence; the second liquid tank 621 on the second end plate 62 is connected to the second liquid spray port 622 on the second end plate 62 after passing through a heat dissipation channel, the first liquid tank 611 on the first end plate 61, and another heat dissipation channel in sequence; so that multiple heat dissipation channels form a serial liquid circuit.
  • the cooling medium in the serial liquid circuit, can flow from one side of the rotor core to the other side, and then spray out after returning to the original side, so as to absorb the heat generated by the rotor core during the flow process.
  • the figure only takes the cooling medium in two heat dissipation channels as an example. In actual application, the number of heat dissipation channels can be adjusted according to demand.
  • the number and position of the first liquid tank 611, the first liquid spray port 612, the second liquid tank 621 and the second liquid spray port 622 are coordinated with the position of the first cooling hole 411 and the second cooling hole 412 on the rotor core 40, so that the cooling medium can form a cooling circuit between the above-mentioned liquid tanks and cooling holes and liquid spray ports.
  • the heat dissipation channel corresponding to the first cooling hole 411 is used as the first heat dissipation channel
  • the heat dissipation channel corresponding to the second cooling hole 412 is used as the second heat dissipation channel; as shown in Figure 5a, multiple first heat dissipation channels are evenly distributed along the first circumference in the rotor core 40; multiple second heat dissipation channels are evenly distributed along the second circumference in the rotor core 40; the first circumference and the second circumference have the same central axis as the rotor core, and the diameter of the first circumference is smaller than the diameter of the second circumference.
  • the first cooling hole 411 is an elliptical hole, close to the inner ring of the core, which can effectively cool the rotor core
  • the second cooling hole 412 can be a triangle, a waist-shaped hole, an ellipse and other polygons.
  • the second cooling hole 412 is close to the magnetic steel slot 42, which can effectively cool the magnetic steel and the rotor core.
  • the shape of the above cooling hole can be adjusted and is not limited to the above exemplary description.
  • the number of the second heat dissipation channels is determined according to the number of magnetic steel slots 42 on the rotor core 40, and one second heat dissipation channel is set between every two adjacent magnetic steel slots 42. Such an arrangement can better cool the magnetic steel.
  • each magnetic steel slot 42 multiple segments of magnetic steel components are arranged in each magnetic steel slot 42. That is, the magnetic steel is divided into multiple small segments of magnetic steel components and then placed in the magnetic steel slot 42, which can reduce the eddy current loss of the magnetic steel under the same working conditions.
  • a vehicle comprising an electric drive system of a power battery as described in any one of the above embodiments.
  • the booster accessory composed of external components is eliminated, a cooling component is provided inside the motor, and the motor controller controls the input voltage amplitude of the pile end in real time, thereby ensuring the simplification of the structure of the electric drive system while ensuring its working stability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种动力电池的电驱动系统,包括电机控制器(11)、电机(12)和冷却部件,其中:电机(12)包括三个相位电路,每一相位电路的第一端与充电桩(200)的一个充电端连接以接收充电端输出的充电电压;冷却部件,设置于电机内;电机控制器(11)与每一相位电路的第二端连接,电机控制器(11)控制每一相位电路充入动力电池的单相电压幅值使充入动力电池的充入电压幅值在动力电池的预置充电电压范围内。还涉及一种车辆。

Description

一种动力电池的电驱动系统及包括其的车辆
相关申请的交叉引用
本申请基于申请号为202211632911.7、申请日为2022年12月19日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及车辆充电设备技术领域,尤其涉及一种动力电池的电驱动系统及包括其的车辆。
背景技术
在以动力电池为动力来源的车辆中,为了提升车辆的续航里程,电池电压容量逐级升高,目前一些动力电池的电压容量已经升级至800V,而目前的充电桩输出电压的上限一般为500V,750V,1000V。因此,为了使高压动力电池的电驱动系统可以与市面上的低压输出的充电桩相适配,在电驱动系统中一般需要增加升压充电模块,从而可以实现500V或750V充电桩为800V容量的电池充电,这样就需要增加独立的模块或附件才能实现升压充电,导致电驱动系统结构复杂化。而基于贸然地为了减少器件数量或简化结构,直接用现有的电驱动系统与充电桩连接,在充电桩的输出电压上限较小的情况下(例如动力电池为800V电池,而充电桩输出上限仅为500V),就会导致电机在工作过程中由于工作强度更高而温度急剧上升,过高的温度会影响电驱动系统的稳定性和安全性。
发明内容
本申请的目的在于提供一种动力电池的电驱动系统及包括其的车辆,以解决现有技术中难以在保证充电过程稳定性的前提下简化高压电池充电系统结构的问题。
第一方面,本申请技术方案提供一种动力电池的电驱动系统,包括电机控制器、电机和冷却部件,其中:
所述电机包括三个相位电路,每一所述相位电路的第一端与充电桩的一个充电端连接以接收所述充电端输出的充电电压;
冷却部件,设置于所述电机内;
所述电机控制器,与每一所述相位电路的第二端连接,所述电机控制器控制每一所述相位电路充入动力电池的单相电压幅值使所述电机充入所述动力电池的充入电压幅值在所述动力电池的预置充电电压范围内。
一些方案中所述的动力电池的电驱动系统,所述电机控制器通过控制每一所述相位电路的通电占空比,控制每一所述相位电路的单相电压幅值;其中,输入电压幅值、动力电池当前电压幅值和所述占空比有如下关系:
其中,uin为所述输入电压幅值,udc为所述动力电池当前电压幅值,D为所述占空比。
一些方案中所述的动力电池的电驱动系统,所述电机控制器,在所述充电电压大于第一电压值时,控制每一所述相位电路的单相电压幅值小于第一设定阈值,所述第一设定阈值使每一所述相位电路中的电流小于波纹电流;所述第一电压值根据所述动力电池的预置充电电压最低值确定;其中,所述第一设定阈值预先设定好并存储在所述电机控制器内。
一些方案中所述的动力电池的电驱动系统,所述电机控制器,在所述充电电压小于第二电压值时,控制每一所述相位电路的单相电压幅值,使所述充入电压幅值满足:|充入电压幅值-动力电池当前电压幅值×A|>第二设定阈值;其中,“||”表示绝对值符号,A为调节系数且A<1,所述第二电压值根据所述动力电池的预置充电电压最低值确定且所述第二电压值小于所述第一电压值;其中,所述第二设定阈值预先设定好并存储在所述电机控制器内。
一些方案中所述的动力电池的电驱动系统,所述第一电压值根据所述动力电池的充电范围设置为接近所述预置充电电压最低值。
一些方案中所述的动力电池的电驱动系统,所述动力电池充电范围为600V-800V时,则所述第二电压值为550V。
一些方案中所述的动力电池的电驱动系统,还包括:
连接线,所述连接线的第一端与所述动力电池的高压端连接,所述连接线的第二端用于与所述充电桩的另一个充电端连接;其中,
所述冷却部件包括冷却液路,所述冷却液路至少部分地设置于所述电机内且与散热部件相接触,所述冷却液路内的冷却液体介质与所述散热部件进行热交换;
所述散热部件包括电机的转子铁芯,所述冷却液路包括贯穿所述转子铁芯的多条散热通道。
一些方案中所述的动力电池的电驱动系统,所述电机的电机轴成型有内腔,所述内腔上成型有第一液孔和第二液孔;
所述电机轴的第一端设置有第一端板,所述第一端板与所述转子铁芯的第一侧之间形成第一环形腔,所述第一环形腔与所述第一液孔连通;
所述电机轴的第二端设置有第二端板,所述第二端板与所述转子铁芯的第二侧之间形成第二环形腔,所述第二环形腔与所述第二液孔连通;
所述第一环形腔和所述第二环形腔分别与至少一条所述散热通道连通。
一些方案中所述的动力电池的电驱动系统,所述第一端板上成型有多个第一液槽和第一喷液口,所述第二端板上成型有多个第二液槽和第二喷液口;
所述第一端板上的至少两个第一液槽分别经不同的所述散热通道后与所述第二环形腔中的第二喷液口连通;所述第二端板上的至少两个第二液槽分别经不同的所述散热通道后与 所述第一环形腔中的第一喷液口连通,使多条散热通道形成并行液路。
一些方案中所述的动力电池的电驱动系统,所述第一端板上的第一液槽依次经一条散热通道、所述第二端板上的第二液槽、另一条散热通道后与所述第一端板上的第一喷液口连通;所述第二端板上的第二液槽依次经一条散热通道、所述第一端板上的第一液槽、另一条散热通道后与所述第二端板上的第二喷液口连通,使多条散热通道形成串行液路。
一些方案中所述的动力电池的电驱动系统,至少一条所述散热通道的两端开孔为第一冷却孔;至少一条所述散热通道的两端开孔为第二冷却孔;以与所述第一冷却孔对应的散热通道作为第一散热通道,与所述第二冷却孔对应的散热通道作为第二散热通道;
多个所述第一散热通道在所述转子铁芯内沿第一圆周均匀分布;多个所述第二散热通道在所述转子铁芯内沿第二圆周均匀分布;所述第一圆周和所述第二圆周均与所述转子铁芯具有相同的中心轴线,且所述第一圆周的直径小于所述第二圆周的直径。
一些方案中所述的动力电池的电驱动系统,所述第二散热通道的数量根据所述转子铁芯上的磁钢槽的数量确定,每两个相邻的所述磁钢槽之间设置一个所述第二散热通道;其中,
每一所述磁钢槽内均设置有多段磁钢部件。
第二方面,本申请技术方案提供一种车辆,所述车辆包括第一方面任一项所述的动力电池的电驱动系统。
本申请实施例提供的动力电池的电驱动系统及包括其的车辆,在电机内部设置冷却部件从而可以对电机内部进行降温冷却,通过电机控制器对电机中每一相位电路充入动力电池的单相电压幅值进行控制,以使充入动力电池的充入电压幅值在动力电池的预置充电电压范围内,由此不必额外增加升压充电模块也可以实现低压充电桩为高压动力电池充电。因此,本申请实施例提供的电驱动系统,能够在省略升压充电模块的前提下实现低压充电桩为高压动力电池充电,且能通过冷却部件避免由于低压充电桩为高压电池充电而导致的电机温度过高的情形,在简化电驱动系统结构的同时,确保电驱动系统在充电过程中的稳定性。
附图说明
图1为本申请一实施例中电驱动系统与充电桩的连接关系示意图;
图2为本申请一实施例中电驱动系统与动力电池和充电桩的连接关系示意图;
图3为本申请一个实施例中充电桩输出上限为700V时为充电范围600V-800V动力电池车进行充电时的桩端输出电压控制策略;
图4为本申请一个实施例中充电桩输出上限为450V时为充电范围600V-800V动力电池车进行充电时的桩端输出电压控制策略;
图5a和图5b为本申请一个实施例中设置了散热通道的转子铁芯的断面示意图和侧面示意图;
图6a和图6b为本申请一个实施例中电机轴内部腔体和第一液孔、第二液孔的结构示意图;
图7a为本申请一个实施例中第一端板的结构示意图;
图7b为本申请一个实施例中第二端板的结构示意图;
图7c为本申请一个实施例中散热通道为并行液路时的冷却介质流动示意图;
图7d为本申请一个实施例中第一端板的结构示意图;
图7e为本申请一个实施例中第二端板的结构示意图;
图7f为本申请一个实施例中散热通道为串行液路时的冷却介质流动示意图。
具体实施方式
下面结合附图来进一步说明本申请的具体实施方式。
容易理解,根据本申请的技术方案,在不变更本申请实质精神下,本领域的一般技术人员可相互替换的多种结构方式以及实现方式。因此,以下具体实施方式以及附图仅是对本申请的技术方案的示例性说明,而不应当视为本申请的全部或视为对申请技术方案的限定或限制。
在本说明书中提到或者可能提到的上、下、左、右、前、后、正面、背面、顶部、底部等方位用语是相对于各附图中所示的构造进行定义的,它们是相对的概念,因此有可能会根据其所处不同位置、不同使用状态而进行相应地变化。所以,也不应当将这些或者其他的方位用语解释为限制性用语。
本申请的实施例提供一种动力电池的电驱动系统100,如图1所示,所述系统包括电机控制器11、电机12和冷却部件。其中,所述电机12中包括三个相位电路,如图中的A相位电路、B相位电路和C相位电路,每一所述相位电路的第一端与充电桩200的一个充电端连接以接收所述充电端输出的充电电压,所述充电桩200的另一端用于连接动力电池。所述冷却部件,设置于所述电机12内,其可以将电机12内的散热部件产生的热量及时吸收掉,避免电机12的温度过高,而且由于冷却部件置于电机12的内部,其不会影响增加电驱动系统100的体积。所述电机控制器11,与每一所述相位电路的第二端连接,所述电机控制器11控制每一所述相位电路充入所述动力电池的单相电压幅值使所述电机12充入所述动力电池的充入电压幅值在所述动力电池的预置充电电压范围内。所述动力电池的预置充电电压为已知参数,例如,对于800V电压容量的动力电池来说,其预置充电电压范围通常可以在600V-800V之间。而由于所述动力电池通过三个相位电路进行充电,三相电中的各单相电压幅值与总的充入电压幅值之间具有特定的换算关系,所以能够通过控制各单相电压幅值,进而控制总的充入电压幅值。因此,基于充电桩为450V充电桩,则电机控制器11通过控制各个相位电路的充电参数,能够实现充入动力电池的充入电压幅值达到600V-800V之间。
本申请的实施例提供的以上方案,在电机内部设置冷却部件从而可以对电机内的散热部件进行降温冷却,通过电机控制器对电机中每一相位电路充入动力电池的充入电压幅值进行控制,以使充入电压幅值在动力电池的预置充电电压范围内,由此可以不必额外增加升压充电模块也可以实现低压充电桩为高压动力电池充电。因此,本方案提供的电驱动系统,能够在省略升压充电模块的前提下实现低压充电桩为高压动力电池充电,且能通过冷却部件避免由于低压充电桩为高压电池充电时导致的电机温度过高的情形,在简化电驱动系统结构的同 时,确保电驱动系统在充电过程中的稳定性。
具体实现时,所述动力电池的电驱动系统与动力电池和充电桩的连接关系可以如图2所示,所述电机控制器11的低压端与所述动力电池10的低压端子HVDC1连接,所述电机控制器11的高压接线端与所述动力电池10的高压端子HVDC2连接,所述电机12中每一相位电路均包括一个相位线圈,如图中的A相线圈L1,B相线圈L2,C相线圈L3,三个相位线圈的一端均连接至所述电机12的接线端。通过一根导线S1将所述接线端与充电桩20的一端连接;在一些实施例中上述电驱动系统还包括连接线S2,所述连接线S2的第一端与所述电机控制器11的高压接线端连接,所述连接线S2的第二端用于与所述充电桩20的另一端连接,由此实现充电桩20与动力电池10的高压端子HVDC2连接。如现有技术电路连接关系,电机控制器11与动力电池10之间连接有电容C1,还可以包括其他并不涉及本申请改进点相关的电器件等,在本申请方案中不再详细描述。针对冷却部件,由于其设置在电机内部,因此并不会造成电驱动系统的体积上的增加。在现有车辆的电池管理系统中,也设置有具有冷却功能的装置,例如冷却液回路,本申请中可以将已有的冷却液回路中的冷却介质通过管路引出一部分至电机内部,从而对电机内部的散热部件进行冷却。
一些方案中,所述电机控制器11通过控制每一所述相位电路的通电占空比,控制每一所述相位电路的单相电压幅值。如图2所示,所述电机控制器11包括开关管组成的控制电路,即其与三个相位的相位电路之间通过开关管连接,通过电机控制器11控制各个开关管的导通时间,即可控制各个相位电路的通电占空比,在实际应用时,可选择30KHz的频率控制开关的导通,而导线S1是用于连接三个相位电路与充电桩20的,基于三个相位电路的通电占空比发生变化,就能够改变周期内充电桩20输入到各个相位电路的单相电压幅值,进而可以改变充入电压幅值。
另外,通过改变各相位电路的单相电压幅值还能够降低各相位电路的波纹电流。现有技术中,由于A,B和C三个相位电路的波纹电流错相120度,电机转子的涡流损耗会增加,导致电机转子产生严重的发热问题,涡流损耗的大小与纹波电流的幅值成正比,发明人在实现本申请的过程中发现,在动力电池的电压固定时,基于调节电压幅值的大小可以调节各相线圈的纹波电流的大小。以升压斩波电路为例,对输入电压幅值、动力电池当前电压幅值与波纹电流之间的关系进行说明。其中,输入、动力电池当前电压幅值和占空比有如下关系:
其中,uin为输入电压幅值,udc为动力电池当前电压幅值,D为占空比。在一个开关周期内的纹波电流的变化和占空比以及输入电压幅值的关系如下,把占空比的上述公式代入得到:
以上公式中,周期Ts和电感L为已知量,基于电池电压固定,通过上式可以看出波纹电流幅值和输入电压幅值为二次曲线关系,在输入电压为udc/2时纹波电流Δi幅值为最大,输入电压为零和udc时纹波电流Δi幅值为零。
具体到本申请中的方案,能够确定,电机控制器11通过控制各相位电路的通电占空比改变充电桩对于各相位电路的单相电压幅值相当于改变了上述公式中的输入电压,从而能够改变波纹电流的幅值。
本申请的以上方案,通过导线S1和连接线S2直接将电驱动系统与充电桩20进行连接,不需要升压充电模块,从而简化了电驱动系统的结构,同时,在电机内部设置冷却部件对电机内的散热部件进行冷却,避免高压动力电池在使用低压充电桩进行充电时电机温度过高的情形,而电机控制器11能够对电机内三个相位线圈的通电占空比进行控制,从而对导线S1引入的充电桩的输入电压幅值进行调节,对于各相位线圈所在的相位电路来说,输入电压的幅值能够影响到波纹电流,因此通过控制单相电压幅值即可控制充电过程中电驱动系统内的波纹电流的影响。以上方案,能够在简化电驱动系统结构的同时,确保电驱动系统在充电过程中的稳定性。
基于上述分析,在执行充电时,电驱动系统要想减小每一相位电路的波纹电流幅值,则充电桩输入电压幅值要尽量远离动力电池当前电压的一半,相对于一半的动力电池电压减小或者增加相同的电压幅值时,充电桩输入电压幅值对纹波电流的减小具有同样效果,例如,针对800V动力电池来说,充电桩输入电压为400V时,电驱动系统内的波纹电流幅值最大,而桩端输入电压为700v和100V时,与动力电池电压的一半400V之间的差值时相同的,此时有同样的减小纹波电流幅值的效果。在一些实施例中,在充电时,将充电情况分为如下两种情形:
情形一:充电桩输出上限较高
所述电机控制器11,在所述充电电压大于第一电压值时,控制每一所述相位电路的单相电压幅值小于第一设定阈值,所述第一设定阈值使每一所述相位电路中的电流小于波纹电流;所述第一电压值根据所述动力电池的预置充电电压最低值确定。其中,第一设定阈值可以预先设定好并存储在电机控制器11内,其为经验值,或者预先通过试验验证后得到的优选值。
本申请的实施例中,第一电压值可以根据动力电池的充电范围来选择,可接近预置充电电压最低值,例如动力电池的预置充电电压的范围为600V-800V,则第一电压值可以选择600V。如图3所示,为针对充电桩输出上限电压为700v时对充电范围600V-800V的动力电池进行充电时,电机控制器11控制输入电压幅值的充电策略,发明人在实现本申请的过程中发现,充电桩输出上限较高时,充电过程中保持桩端输入电压幅值为最高(即接近700V),有利于减小电驱动系统的纹波电流的幅值,从而提高充电过程中的稳定性,降低电机转子发热情况。
情形二:充电桩输出上限较低
所述电机控制器11,在所述充电电压小于第二电压值时,控制每一所述相位电路的单相电压幅值,使所述充入电压幅值满足:|充入电压幅值-动力电池当前电压幅值×A|>第二设 定阈值;其中,“||”表示绝对值符号,A为调节系数,且A<1,所述第二电压值根据所述动力电池的预置充电电压最低值确定且所述第二电压值小于所述第一电压值。所述第二设定阈值,可以预先设定好并存储在电机控制器11内,其为经验值,或者预先通过试验验证后得到的优选值。A在一些实施例中为50%,因为动力电池当前电压幅值的一半对应于波纹电流最大的情况。
本申请的实施例中,第二电压值可以根据动力电池的充电范围来选择,例如动力电池充电范围为600V-800V时,则第二电压值可以选择550V。如图4所示,为针对充电桩输出上限电压为450v、对充电范围600V-800V的动力电池进行充电时,电机控制器11控制输入电压幅值的充电策略,由于输入电压幅值为400v时纹波电流的幅值最大,因此在动力电池电压比较小的情况下以较高的输入电压幅值作为输入电压,目的是为动力电池快速充电,当动力电池的电压超过其充电范围的最低值的一定区间后,即可降低输入电压幅值,使其尽量远离动力电池电压的一半,以降低纹波电流的幅值,提高电驱动系统的稳定性,降低转子发热。
一些方案中,冷却部件可以为适于设置在电机内部的冷却功能元件,例如陶瓷散热器等。在一些方案中,所述冷却部件包括冷却液路,所述冷却液路至少部分地设置于所述电机内且与散热部件相接触,所述冷却液路内的冷却液体介质与所述散热部件进行热交换。如前所述,在现有车辆中,电池管理系统本身也具有冷却液路,本方案可以在不改变原冷却液路的情况下,引出部分冷却液至电机内部即可实现对电机内部散热部件的降温,可不增加系统的体积,也不需要对内部结构做太大的改变。
进一步地,如图5a和图5b所示,所述散热部件包括电机的转子铁芯40,所述冷却液路包括贯穿所述转子铁芯40的多条散热通道41;其中,部分散热通道41的两端开孔为第一冷却孔411,部分散热通道41的两端开孔为第二冷却孔412。通过本方案,增加了电机中的转子铁芯40的散热能力,在转子铁芯40的内部建立散热通道41,在转子铁芯40发热严重或温度较高的直接的进行冷却降温,以降低转子铁芯发热的风险,提升持续工作的时间。
如图6a和图6b所示,动力电池的电驱动系统中,所述电机的电机轴50成型有内腔53,所述内腔53上成型有第一液孔51和第二液孔52。结合图7a至图7f,转子铁芯40通过其中间的安装孔43能够套于电机轴50的外部,所述电机轴50的第一端设置有第一端板61,所述第一端板61与所述转子铁芯40的第一侧之间形成第一环形腔613,所述第一环形腔613与所述第一液孔51连通;所述电机轴50的第二端设置有第二端板62,所述第二端板62与所述转子铁芯40的第二侧之间形成第二环形腔623,所述第二环形腔623与所述第二液孔52连通;所述第一环形腔613和所述第二环形腔623分别与至少一条所述散热通道41连通。本方案中,通过在转子铁芯40内增加散热通道41,散热通道41的两侧具有第一冷却孔411、第二冷却孔412,通过在电机轴50的两端设置第一端板61和第二端板62并对端板的表面进行特殊设计,使得端板与转子铁芯内部的散热通道形成了供冷却介质流动的通道,增加冷却介质与转子铁芯的接触面积,可有效冷却转子铁芯40,同时还能冷却电机轴50和两个端板,从而可降低转子铁芯和磁钢的温度,提高电机性能。
进一步地,结合图7a-图7c,动力电池的电驱动系统中,所述第一端板61上成型有多个 第一液槽612和第一喷液口612,所述第二端板62上成型有多个第二液槽621和第二喷液口622;所述第一端板61上的至少两个第一液槽612分别经不同的所述散热通道41后与所述第二环形腔623中的第二喷液口622连通;所述第二端板62上的至少两个第二液槽621分别经不同的所述散热通道41后与所述第一环形腔613中的第一喷液口612连通,使多条散热通道41形成并行液路。结合图7c所示,在并行液路中,冷却介质可以从转子铁芯的一侧流动至另一侧后直接从另一侧喷出,从而在流动过程中将转子铁芯产生的热量吸收掉。图中仅以两条散热通道中有冷却介质为例,在实际应用时,其散热通道的数量可根据需求调整。
作为另一种可实现方式,如图7d-图7f所示,所述第一端板61上的第一液槽611依次经一条散热通道、所述第二端板62上的第二液槽621、另一条散热通道后与所述第一端板61上的第一喷液口612连通;所述第二端板62上的第二液槽621依次经一条散热通道、所述第一端板61上的第一液槽611、另一条散热通道后与所述第二端板62上的第二喷液口622连通;使多条散热通道形成串行液路。结合图7f所示,在串行液路中,冷却介质可以从转子铁芯的一侧流动至另一侧,之后在返回至原来一侧后喷出,从而在流动过程中将转子铁芯产生的热量吸收掉。图中仅以两条散热通道中有冷却介质为例,在实际应用时,其散热通道的数量可根据需求调整。
可以理解,以上方案中,第一液槽611、第一喷液口612、第二液槽621和第二喷液口622的数量和位置与转子铁芯40上的第一冷却孔411和第二冷却孔412的位置配合,使得冷却介质能够在上述液槽和冷却孔、喷液口之间进行冷却回路。
在一些实施例中,以上方案中,与所述第一冷却孔411对应的散热通道作为第一散热通道,与所述第二冷却孔412对应的散热通道作为第二散热通道;如图5a,多个所述第一散热通道在所述转子铁芯40内沿第一圆周均匀分布;多个所述第二散热通道在所述转子铁芯40内沿第二圆周均匀分布;所述第一圆周和所述第二圆周均与所述转子铁芯具有相同的中心轴线,且所述第一圆周的直径小于所述第二圆周的直径。在满足性能的基础上,可参考图中所示,第一冷却孔411为椭圆形孔,靠近铁芯内圈,可有效的冷却转子铁芯,第二冷却孔412可以为三角形、腰型孔,椭圆形及其他的多边形,第二冷却孔412靠近磁钢槽42,可有效地冷却磁钢和转子铁芯。在实际应用时,上述冷却孔的形状可以进行调整,并不限于上述示例性说明。进一步地,所述第二散热通道的数量根据所述转子铁芯40上的磁钢槽42的数量确定,每两个相邻的所述磁钢槽42之间设置一个所述第二散热通道。如此设置,可以更好地对磁钢进行冷却。
进一步地,以上方案中,每一所述磁钢槽42内均设置有多段磁钢部件。也即,将磁钢分为多个小段的磁钢部件后置入磁钢槽42内,能够减少同等工况下磁钢的涡流损耗。
在本申请的一些实施例中还提供一种车辆,包括以上实施例中任一项方案所述的动力电池的电驱动系统。本方案车辆的电驱动系统中取消了外部零部件组成的升压附件,在电机内部设置了冷却部件,电机控制器对桩端输入电压幅值进行实时控制,从而能够保证电驱动系统结构简化的同时,确保其工作稳定性。
根据需要,可以将上述各技术方案进行结合,以达到最佳技术效果。
以上的仅是本申请的原理和较佳的实施例。应当指出,对于本领域的普通技术人员来说,在本申请原理的基础上,还可以做出若干其它变型,也应视为本申请的保护范围。

Claims (13)

  1. 一种动力电池的电驱动系统,包括电机控制器、电机和冷却部件,其中:
    所述电机包括三个相位电路,每一所述相位电路的第一端与充电桩的一个充电端连接以接收所述充电端输出的充电电压;
    冷却部件,设置于所述电机内;
    所述电机控制器,与每一所述相位电路的第二端连接,所述电机控制器控制每一所述相位电路充入动力电池的单相电压幅值使所述电机充入所述动力电池的充入电压幅值在所述动力电池的预置充电电压范围内。
  2. 根据权利要求1所述的动力电池的电驱动系统,其中:
    所述电机控制器通过控制每一所述相位电路的通电占空比,控制每一所述相位电路的单相电压幅值;其中,输入电压幅值、动力电池当前电压幅值和所述占空比有如下关系:
    其中,uin为所述输入电压幅值,udc为所述动力电池当前电压幅值,D为所述占空比。
  3. 根据权利要求1所述的动力电池的电驱动系统,其中:
    所述电机控制器,在所述充电电压大于第一电压值时,控制每一所述相位电路的单相电压幅值小于第一设定阈值,所述第一设定阈值使每一所述相位电路中的电流小于波纹电流;所述第一电压值根据所述动力电池的预置充电电压最低值确定;其中,所述第一设定阈值预先设定好并存储在所述电机控制器内。
  4. 根据权利要求3所述的动力电池的电驱动系统,其中:
    所述电机控制器,在所述充电电压小于第二电压值时,控制每一所述相位电路的单相电压幅值,使所述充入电压幅值满足:|充入电压幅值-动力电池当前电压幅值×A|>第二设定阈值;其中,“| |”表示绝对值符号,A为调节系数且A<1,所述第二电压值根据所述动力电池的预置充电电压最低值确定且所述第二电压值小于所述第一电压值;其中,所述第二设定阈值预先设定好并存储在所述电机控制器内。
  5. 根据权利要求3所述的动力电池的电驱动系统,其中:
    所述第一电压值根据所述动力电池的充电范围设置为接近所述预置充电电压最低值。
  6. 根据权利要求4所述的动力电池的电驱动系统,其中:
    所述动力电池充电范围为600V-800V时,则所述第二电压值为550V。
  7. 根据权利要求1-4中任一项所述的动力电池的电驱动系统,还包括:
    连接线,所述连接线的第一端与所述动力电池的高压端连接,所述连接线的第二端用于与所述充电桩的另一个充电端连接;其中,
    所述冷却部件包括冷却液路,所述冷却液路至少部分地设置于所述电机内且与散热部件相接触,所述冷却液路内的冷却液体介质与所述散热部件进行热交换;
    所述散热部件包括电机的转子铁芯,所述冷却液路包括贯穿所述转子铁芯的多条散热通道。
  8. 根据权利要求7所述的动力电池的电驱动系统,其中:
    所述电机的电机轴成型有内腔,所述内腔上成型有第一液孔和第二液孔;
    所述电机轴的第一端设置有第一端板,所述第一端板与所述转子铁芯的第一侧之间形成第一环形腔,所述第一环形腔与所述第一液孔连通;
    所述电机轴的第二端设置有第二端板,所述第二端板与所述转子铁芯的第二侧之间形成第二环形腔,所述第二环形腔与所述第二液孔连通;
    所述第一环形腔和所述第二环形腔分别与至少一条所述散热通道连通。
  9. 根据权利要求8所述的动力电池的电驱动系统,其中:
    所述第一端板上成型有多个第一液槽和第一喷液口,所述第二端板上成型有多个第二液槽和第二喷液口;
    所述第一端板上的至少两个第一液槽分别经不同的所述散热通道后与所述第二环形腔中的第二喷液口连通;所述第二端板上的至少两个第二液槽分别经不同的所述散热通道后与所述第一环形腔中的第一喷液口连通,使多条散热通道形成并行液路。
  10. 根据权利要求9所述的动力电池的电驱动系统,其中:
    所述第一端板上的第一液槽依次经一条散热通道、所述第二端板上的第二液槽、另一条散热通道后与所述第一端板上的第一喷液口连通;所述第二端板上的第二液槽依次经一条散热通道、所述第一端板上的第一液槽、另一条散热通道后与所述第二端板上的第二喷液口连通,使多条散热通道形成串行液路。
  11. 根据权利要求7所述的动力电池的电驱动系统,其中:
    至少一条所述散热通道的两端开孔为第一冷却孔;至少一条所述散热通道的两端开孔为第二冷却孔;以与所述第一冷却孔对应的散热通道作为第一散热通道,与所述第二冷却孔对应的散热通道作为第二散热通道;
    多个所述第一散热通道在所述转子铁芯内沿第一圆周均匀分布;多个所述第二散热通道在所述转子铁芯内沿第二圆周均匀分布;所述第一圆周和所述第二圆周均与所述转子铁芯具有相同的中心轴线,且所述第一圆周的直径小于所述第二圆周的直径。
  12. 根据权利要求11所述的动力电池的电驱动系统,其中:
    所述第二散热通道的数量根据所述转子铁芯上的磁钢槽的数量确定,每两个相邻的所述磁钢槽之间设置一个所述第二散热通道;其中,
    每一所述磁钢槽内均设置有多段磁钢部件。
  13. 一种车辆,包括权利要求1-12中任一项所述的动力电池的电驱动系统。
PCT/CN2023/139865 2022-12-19 2023-12-19 一种动力电池的电驱动系统及包括其的车辆 WO2024131785A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211632911.7 2022-12-19
CN202211632911.7A CN118219878A (zh) 2022-12-19 2022-12-19 一种动力电池的电驱动系统及包括其的车辆

Publications (1)

Publication Number Publication Date
WO2024131785A1 true WO2024131785A1 (zh) 2024-06-27

Family

ID=91503415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/139865 WO2024131785A1 (zh) 2022-12-19 2023-12-19 一种动力电池的电驱动系统及包括其的车辆

Country Status (2)

Country Link
CN (1) CN118219878A (zh)
WO (1) WO2024131785A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200177014A1 (en) * 2018-12-04 2020-06-04 Hyundai Motor Company Charging system using motor driving system
CN111355432A (zh) * 2018-12-21 2020-06-30 比亚迪股份有限公司 电机驱动装置、控制方法、车辆及可读存储介质
CN111355429A (zh) * 2018-12-21 2020-06-30 比亚迪股份有限公司 电机驱动装置、控制方法、车辆及可读存储介质
CN113022344A (zh) * 2021-04-30 2021-06-25 重庆长安新能源汽车科技有限公司 一种基于双电机的动力电池充电系统及电动汽车
US20220209565A1 (en) * 2021-01-21 2022-06-30 Huawei Digital Power Technologies Co., Ltd. Charging system and electric vehicle
CN217455656U (zh) * 2022-05-12 2022-09-20 徐工集团工程机械股份有限公司道路机械分公司 一种电驱动压路机温度管理控制系统
CN115230498A (zh) * 2022-08-09 2022-10-25 北京新能源汽车股份有限公司 一种汽车的快充升压系统、方法及汽车

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200177014A1 (en) * 2018-12-04 2020-06-04 Hyundai Motor Company Charging system using motor driving system
CN111355432A (zh) * 2018-12-21 2020-06-30 比亚迪股份有限公司 电机驱动装置、控制方法、车辆及可读存储介质
CN111355429A (zh) * 2018-12-21 2020-06-30 比亚迪股份有限公司 电机驱动装置、控制方法、车辆及可读存储介质
US20220209565A1 (en) * 2021-01-21 2022-06-30 Huawei Digital Power Technologies Co., Ltd. Charging system and electric vehicle
CN113022344A (zh) * 2021-04-30 2021-06-25 重庆长安新能源汽车科技有限公司 一种基于双电机的动力电池充电系统及电动汽车
CN217455656U (zh) * 2022-05-12 2022-09-20 徐工集团工程机械股份有限公司道路机械分公司 一种电驱动压路机温度管理控制系统
CN115230498A (zh) * 2022-08-09 2022-10-25 北京新能源汽车股份有限公司 一种汽车的快充升压系统、方法及汽车

Also Published As

Publication number Publication date
CN118219878A (zh) 2024-06-21

Similar Documents

Publication Publication Date Title
US20230097060A1 (en) Energy conversion device and vehicle
CN108847513B (zh) 一种锂离子电池低温加热控制方法
CN212373187U (zh) 电池自加热装置和车辆
CN113506934B (zh) 一种锂电池加热系统及加热方法
CN102315786A (zh) 一种电流型控制的单路输出反激式变换器
WO2022204944A1 (zh) 一种电驱动系统、动力总成、加热方法及电动车辆
CA3180352A1 (en) Battery energy processing device and method, and vehicle
US20200406769A1 (en) Multilevel motor drive with integrated battery charger
WO2023087331A1 (zh) 充放电电路、系统及其控制方法
CN111446520A (zh) 一种采用电磁感应加热动力电池包的装置和方法
CN110601525A (zh) 新能源汽车集成车载充电变换系统
CN218241996U (zh) 电池自加热装置和具有其的车辆
US20220329195A1 (en) Energy conversion device and vehicle
WO2023185245A1 (zh) 电池自加热装置、方法及车辆
US20240282498A1 (en) Variable voltage inductor with direct liquid cooling
CN108988655A (zh) 电力电子控制器和电动汽车
Jia et al. A high power density and efficiency bi-directional DC/DC converter for electric vehicles
WO2024131785A1 (zh) 一种动力电池的电驱动系统及包括其的车辆
Bai et al. The impact of bidirectional DC-DC converter on the inverter operation and battery current in hybrid electric vehicles
CN202268808U (zh) 电流型控制的单路输出反激式变换器
CN213520110U (zh) 一种动力电池包
WO2023207495A1 (zh) 电池自加热装置、方法及车辆
CN214707489U (zh) 一种集成有双电机逆变器和升压变换器的功率模块及电路
WO2024045657A1 (zh) 电池自加热系统及车辆
CN210576338U (zh) 一种液冷电池包加热系统和汽车

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23905948

Country of ref document: EP

Kind code of ref document: A1