WO2024131718A1 - 发送功率确定方法、装置、用户设备及存储介质 - Google Patents

发送功率确定方法、装置、用户设备及存储介质 Download PDF

Info

Publication number
WO2024131718A1
WO2024131718A1 PCT/CN2023/139468 CN2023139468W WO2024131718A1 WO 2024131718 A1 WO2024131718 A1 WO 2024131718A1 CN 2023139468 W CN2023139468 W CN 2023139468W WO 2024131718 A1 WO2024131718 A1 WO 2024131718A1
Authority
WO
WIPO (PCT)
Prior art keywords
open
uplink signal
loop power
parameters
side device
Prior art date
Application number
PCT/CN2023/139468
Other languages
English (en)
French (fr)
Inventor
鲁智
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2024131718A1 publication Critical patent/WO2024131718A1/zh

Links

Definitions

  • the present application belongs to the field of communication technology, and specifically relates to a method, device, user equipment and storage medium for determining transmission power.
  • the network side supports full-duplex and the user equipment (UE) side supports half-duplex, that is, the network side can simultaneously send downlink signals or channels and receive uplink signals or channels within one time unit (such as time slot or symbol); the UE can only send uplink signals or channels, or receive downlink signals or channels within one time unit.
  • the network side supports full-duplex and the user equipment (UE) side supports half-duplex, that is, the network side can simultaneously send downlink signals or channels and receive uplink signals or channels within one time unit (such as time slot or symbol); the UE can only send uplink signals or channels, or receive downlink signals or channels within one time unit.
  • full duplex at the UE side that is, sending uplink and receiving downlink signals or channels at the same time in one time unit (simultaneous transmission and reception).
  • full duplex at the UE side since simultaneous uplink transmission and downlink reception will cause self-interference, how to reduce the self-interference intensity at the UE side when uplink transmission and downlink reception are performed at the same time is an urgent problem to be solved.
  • the embodiments of the present application provide a method, device, user equipment and storage medium for determining transmission power, which can solve the problem of how to reduce the self-interference intensity on the UE side when uplink transmission and downlink reception are performed simultaneously on the UE side.
  • a method for determining a transmission power comprising: a UE determines the transmission power of an uplink signal according to first information and parameters of an open-loop power parameter set configured by a network side device; wherein the first information is used to characterize whether the UE performs uplink transmission and downlink reception simultaneously in a time domain unit; and the parameters of the open-loop power parameter set include at least an open-loop power control operating point.
  • a transmission power determination device which is applied to a UE, and the transmission power determination device includes: a determination module.
  • the determination module is used to determine the transmission power of an uplink signal according to first information and parameters of an open-loop power parameter set configured by a network side device; wherein the first information is used to characterize whether the UE performs uplink transmission and downlink reception simultaneously in a time domain unit; and the parameters of the open-loop power parameter set at least include an open-loop power control operating point.
  • a UE comprising a processor and a memory, wherein the memory stores The program or instruction running on the processor, when the program or instruction is executed by the processor, implements the steps of the method described in the first aspect.
  • a UE comprising a processor and a communication interface, wherein the processor is used to determine the transmission power of an uplink signal based on first information and parameters of an open-loop power parameter set configured by a network side device; wherein the first information is used to characterize whether the UE performs uplink transmission and downlink reception simultaneously in a time domain unit; and the parameters of the open-loop power parameter set include at least an open-loop power control operating point.
  • a readable storage medium on which a program or instruction is stored.
  • the program or instruction is executed by a processor, the steps of the method described in the first aspect are implemented.
  • a computer program/program product is provided, wherein the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement the steps of the method for determining the transmission power as described in the first aspect.
  • the UE can determine the transmission power of the uplink signal according to whether the UE performs uplink transmission and downlink reception simultaneously in a time domain unit, and the parameters of the open-loop power parameter set configured by the network side device, and the parameters of the open-loop power parameter set at least include the open-loop power control working point.
  • the UE can determine the transmission power of the uplink signal sent by the UE in combination with whether the UE performs uplink transmission and downlink reception simultaneously in a time domain unit, and the open-loop power control working point configured by the network, that is, by controlling the transmission power of the uplink signal, the self-interference intensity when uplink transmission and downlink reception are performed simultaneously on the UE side can be reduced, thereby improving the utilization of system resources and reducing the transmission delay of the signal.
  • FIG1 is a schematic diagram of the architecture of a wireless communication system provided in an embodiment of the present application.
  • FIG2 is a flow chart of a method for determining transmission power provided in an embodiment of the present application.
  • FIG3 is one of the example schematic diagrams of the transmission power of a signal in full-duplex mode with non-overlapping sub-bands provided in an embodiment of the present application;
  • FIG4 is a second flowchart of a method for determining transmit power provided in an embodiment of the present application.
  • FIG5 is a second example schematic diagram of the transmission power of a signal in full-duplex mode with non-overlapping sub-bands provided in an embodiment of the present application;
  • FIG6 is a flowchart of a method for determining transmit power according to an embodiment of the present application.
  • FIG7 is a schematic diagram of an example of transmission power when CG PUSCH and SPS PDSCH are transmitted simultaneously provided by an embodiment of the present application;
  • FIG8 is a schematic diagram of an example of the transmission power of a CG PUSCH provided in an embodiment of the present application.
  • FIG9 is a fourth flowchart of a method for determining transmit power provided in an embodiment of the present application.
  • FIG10 is a schematic diagram of the structure of a transmission power determination device provided in an embodiment of the present application.
  • FIG11 is a schematic diagram of the hardware structure of a communication device provided in an embodiment of the present application.
  • FIG12 is a schematic diagram of the hardware structure of a UE provided in an embodiment of the present application.
  • first, second, etc. in the specification and claims of the present application are used to distinguish similar objects, and are not used to describe a specific order or sequence. It should be understood that the terms used in this way are interchangeable under appropriate circumstances, so that the embodiments of the present application can be implemented in an order other than those illustrated or described here, and the objects distinguished by “first” and “second” are generally of the same type, and the number of objects is not limited.
  • the first object can be one or more.
  • “and/or” in the specification and claims represents at least one of the connected objects, and the character “/" generally represents that the objects associated with each other are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency Division Multiple Access
  • NR new radio
  • FIG1 shows a block diagram of a wireless communication system applicable to an embodiment of the present application.
  • the wireless communication system includes a terminal 11 and a network side device 12 .
  • the terminal 11 can be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), a handheld computer, a netbook, an ultra-mobile personal computer (ultra-mobile personal computer, UMPC), a mobile Internet device (Mobile Internet Device, MID), augmented reality (augmented reality, AR)/virtual reality (virtual reality, VR) equipment, a robot, a wearable device (Wearable Device), a vehicle-mounted equipment (VUE), a pedestrian terminal (PUE), a smart home (home equipment with wireless communication functions, such as refrigerators, televisions, washing machines or furniture, etc.), a game console, a personal computer (personal computer, PC), a teller machine or a self-service machine and other terminal side devices,
  • the network side device 12 may include an access network device or a core network device, wherein the access network device 12 may also be referred to as a radio access network device, a radio access network (RAN), a radio access network function, or a radio access network unit.
  • the access network device 12 may include a base station, a WLAN access point, or a WiFi node, etc.
  • the base station may be referred to as a node B, an evolved node B (eNB), an access point, a base station, or a wireless access point.
  • BTS Base Transceiver Station
  • BSS Basic Service Set
  • ESS Extended Service Set
  • Home Node B Home Evolved Node B
  • TRP Transmitting Receiving Point
  • 5G mobile communication systems need to adapt to more diverse scenarios and business requirements.
  • the main scenarios of 5G include enhanced mobile broadband (eMBB), ultra-reliable and low latency communications (URLLC), massive machine type communications (mMTC), etc. These scenarios put forward requirements for the system such as high reliability, low latency, large bandwidth, and wide coverage.
  • eMBB enhanced mobile broadband
  • URLLC ultra-reliable and low latency communications
  • mMTC massive machine type communications
  • configuring full-duplex operation can significantly improve the latency and coverage performance of TDD systems.
  • Subbands non-overlapping Full duplex can improve transmission delay and enhance coverage.
  • the network For a downlink timeslot, the network configures a downlink (DL) bandwidth part (Bandwidth Part, BWP) for the UE, and for an uplink timeslot, the network configures an uplink (UL) BWP for the UE.
  • DL downlink
  • BWP bandwidth part
  • UL uplink
  • one SBFD subband consists of one resource block (RB) or a set of consecutive RBs with the same transmission direction.
  • the time unit (e.g., time slot or symbol) in which the gNB uses SBFD operation may be referred to as a SBFD time unit (e.g., time slot or symbol).
  • the network side supports full-duplex and the UE side supports half-duplex, that is, the network side can simultaneously send DL signals/channels and receive UL signals/channels within one time unit (such as time slot or symbol), and in one time unit, the UE can only send UL signals/channels or receive DL signals/channels.
  • full-duplex on the UE side that is, receiving DL and sending UL signals/channels at the same time in one time unit (simultaneous transmission and reception).
  • full-duplex on the UE side self-interference will be caused due to simultaneous UL transmission and DL reception.
  • the UE In order to protect the transmission in the interfered direction, the UE needs to enhance in the power domain direction to reduce the self-interference intensity. In this way, when uplink transmission and downlink reception are performed simultaneously on the UE side, how to reduce the self-interference intensity on the UE side is an urgent problem to be solved.
  • the embodiment of the present application provides a method for determining transmission power, wherein the UE can determine the transmission power of the uplink signal according to whether the UE performs uplink transmission and downlink reception simultaneously in a time domain unit, and the parameters of the open-loop power parameter set configured by the network side device.
  • the parameters of the open-loop power parameter set include at least an open-loop power control operating point.
  • the UE can determine the transmit power of the uplink signal sent by the UE in combination with whether the UE performs uplink transmission and downlink reception simultaneously in a time domain unit and the open-loop power control operating point configured by the network, that is, by controlling the transmit power of the uplink signal, the self-interference intensity when uplink transmission and downlink reception are performed simultaneously on the UE side can be reduced, thereby improving the utilization of system resources and reducing the transmission delay of the signal.
  • the embodiment of the present application provides a method for determining transmission power
  • Figure 2 shows a flow chart of a method for determining transmission power provided by the embodiment of the present application.
  • the method for determining transmission power provided by the embodiment of the present application may include the following steps 201 and 202.
  • Step 201 The UE obtains first information and parameters of an open-loop power parameter set configured by a network-side device.
  • Step 202 The UE determines the transmit power of the uplink signal according to the first information and the parameters of the open-loop power parameter set configured by the network-side device.
  • the first information is used to indicate whether the UE performs uplink transmission and downlink reception simultaneously in a time domain unit.
  • the parameters of the open-loop power parameter set at least include an open-loop power control operating point.
  • the above-mentioned first information can be configured/indicated by a network side device, or can be predefined, or agreed upon by a protocol, or determined autonomously by the UE.
  • the parameters of the above-mentioned open-loop power parameter set may also include a path loss compensation coefficient (alpha).
  • the UE in UE-side full-duplex with non-overlapping sub-bands or UE-side full-duplex with overlapping sub-bands, can determine the transmit power of the uplink signal based on the first information and the parameters of the open-loop power parameter set configured by the network-side device.
  • Network full-duplex operation that is, full-duplex is applied on the network side and half-duplex is applied on the UE side.
  • Terminal full-duplex operation that is, full-duplex is applied on the network side and full-duplex is applied on the UE side.
  • half-duplex on the UE side means that the UE can only receive DL or send UL signals/channels in one time unit.
  • Full-duplex on the UE side means that the UE can simultaneously receive DL and send UL signals/channels in one time unit.
  • the network full-duplex mode can achieve the purpose of enhancing coverage, reducing transmission delay, and improving resource utilization efficiency.
  • the terminal full-duplex mode can improve DL (or UL) throughput while achieving the above gains.
  • self-interference may be caused by simultaneous UL transmission and DL transmission.
  • the communication device in order to ensure transmission in the interfered direction, the communication device needs to have the ability to eliminate self-interference to reduce the intensity of self-interference.
  • a method for reducing self-interference in the power domain is to reduce the UL transmission power when transmitting and receiving at the same time, that is, to use a transmission power control parameter different from the power control parameter when only the uplink channel or signal is transmitted, so as to reduce the self-interference of the reception of the DL channel/signal of the same UE.
  • the present solution can be applied to at least UL transmission and DL reception with semi-static configuration at the same time, and can also be applied to UL transmission and DL reception with dynamic indication at the same time.
  • it can also be used for simultaneous transmission in different transmission directions, one transmission direction is semi-statically configured transmission, and the other transmission direction is dynamically scheduled transmission.
  • the network can configure multiple open-loop power parameter sets based on the combination of channels or signals that are simultaneously transmitted and received, and determine the transmission power based on different open-loop power control working points P 0 , thereby achieving precise control of the level of self-interference elimination.
  • the above-mentioned time unit is a time slot or a symbol.
  • the uplink signal described in the embodiments of the present application refers to a signal or a channel.
  • an uplink (UL) signal may include at least one of the following: a physical uplink shared channel (Physical Uplink Shared Channel, PUSCH), a configured grant physical uplink shared channel (Configured Grant PUSCH, CG PUSCH), a scheduling request (Scheduling Request, SR), a sounding reference signal (Sounding Reference Signal, SRS), and a physical random access channel (Physical Random Access Channel, PRACH).
  • PUSCH Physical Uplink shared channel
  • Configured Grant PUSCH, CG PUSCH configured grant physical uplink shared channel
  • SR scheduling request
  • SRS Sounding Reference Signal
  • PRACH Physical Random Access Channel
  • a downlink (DL) signal may include at least one of the following: a semi-persistent scheduling physical downlink shared channel (SPS PDSCH), a channel state information reference signal (Channel State Information-Reference Signal, CSI RS), and a physical downlink control channel (PDCCH).
  • SPS PDSCH semi-persistent scheduling physical downlink shared channel
  • CSI RS Channel State Information-Reference Signal
  • PDCCH physical downlink control channel
  • the transmit power of a signal in full-duplex with non-overlapping subbands is shown. Different signals in different directions are transmitted and received simultaneously, and the transmit power of the UL signal of the UE can be calculated based on the open-loop power control operating point of different open-loop power parameter sets.
  • the network can configure multiple open-loop power parameter sets (P 0, set ) based on the combination of signals received and transmitted simultaneously.
  • Each open-loop power parameter set may include at least one open-loop power control operating point, namely P 0.
  • the first open-loop power parameter set in the drawings of the embodiment of the present application is the first open-loop power parameter set among multiple open-loop power parameter sets configured by the network, represented by P 0, set 1
  • the second open-loop power parameter set is the second open-loop power parameter set among multiple open-loop power parameter sets configured by the network, represented by P 0, set 2 .
  • the network side device may be configured to use different CSI-RS powers for time slots for full-duplex operation and time slots for half-duplex operation on the UE side.
  • the energy per resource element (Energy Per Resource Element, EPRE) of the downlink CSI-RS can be derived from the downlink transmission power of the synchronization signal block (SSB) given by the parameter SS-PBCH-BlockPower and the CSI-RS power offset given by the parameter powerControlOffsetSS provided by the upper layer.
  • the downlink reference signal transmission power is defined as the linear average of the power contribution (in W) of the resource elements carrying the configured CSI-RS within the operating bandwidth.
  • the EPRE of CSI is obtained based on SS-PBCH-BlockPower and powerControlOffsetSS A.
  • the EPRE of CSI is obtained based on SS-PBCH-BlockPower and powerControlOffsetSS B.
  • step 202 can be specifically implemented by the following step 202a or step 202b.
  • Step 202a When the UE sends only an uplink signal in one time unit, the UE determines the transmission power of the uplink signal according to the parameters of the first open-loop power parameter set configured by the network side device.
  • Step 202b When the UE simultaneously sends an uplink signal and receives a downlink signal in one time unit, the UE determines the transmission power of the uplink signal according to the parameters of the second open-loop power parameter set configured by the network side device.
  • the parameters of the open-loop power parameter set configured by the network side device include at least the open-loop power control working point P 0.
  • the first open-loop power parameter set and the second open-loop power parameter set may be different.
  • step 202 may be specifically implemented through the following step 202c.
  • Step 202c When the UE simultaneously sends an uplink signal and receives a downlink signal in one time unit, if the transmit power determined by the UE according to the parameters of the open-loop power parameter set is greater than the maximum transmit power configured by the network-side device, the UE determines the maximum transmit power as the transmit power of the uplink signal.
  • the network can configure the maximum transmission power P cmax, FD of the UL signal. If for a time domain unit, the UE is configured or scheduled to perform simultaneous transmission and reception, if the UL transmission power of the UE is greater than the maximum transmission power P cmax, FD configured by the network, then the UE can use the maximum transmission power P cmax, FD to send the uplink signal. Among them, P cmax, FD may be different from the maximum transmission power of the UE.
  • the transmit power of a signal in full-duplex with non-overlapping subbands is shown.
  • the network may configure the maximum transmit power P cmax,FD of the UL signal, and when the UL transmit power of the UE is greater than the maximum transmit power P cmax,FD configured by the network, the UE may use the maximum transmit power P cmax,FD to send an uplink signal.
  • step 202 may be specifically implemented through the following step 202d.
  • Step 202d When the UE simultaneously sends an uplink signal and receives a downlink signal in one time unit, if an uplink signal of the UE overlaps with at least one downlink signal in time domain, the UE determines the transmission power of the uplink signal from multiple transmission powers according to the transmission power sequence configured by the network side device.
  • the above-mentioned multiple transmission powers are determined according to parameters of multiple open-loop power parameter sets configured by the network side device for the above-mentioned one uplink signal and at least one downlink signal.
  • the UE can determine multiple transmit powers (open-loop power control working points based on multiple open-loop power parameter sets) based on the combination of multiple UL signals and DL signals, and the UE determines the transmit power of the uplink signal according to the order of the transmit power size configured by the network.
  • the network can configure the UE to select the maximum transmit power among the determined multiple transmit powers to transmit the UL signal, or select the minimum transmit power, or transmit the UL signal in other orders.
  • the network may configure multiple open-loop power parameter sets based on a combination of simultaneously transmitted and received signals, and determine the transmit power based on an open-loop power control operating point P 0 of the multiple open-loop power parameter sets.
  • the transmit power of the UE is calculated based on the open-loop power control working point P 0,1 of the first open-loop power parameter set to obtain the transmit power PA .
  • the transmit power of the UE is calculated based on the open-loop power control working point P 0,2 of the second open-loop power parameter set to obtain the transmit power PB , and PA ⁇ PB .
  • the UE can send CG PUSCH at PA .
  • step 202 can be specifically implemented by the following step 202e or step 202f.
  • Step 202e When the UE simultaneously sends an uplink signal and receives a downlink signal in one time unit, for repeated transmissions indicated by a dynamic Grant, the UE determines the transmission power of the uplink signal based on the parameters of the x open-loop power parameter sets configured by the network-side device.
  • x is an integer greater than 1.
  • Step 202f When the UE simultaneously sends an uplink signal and receives a downlink signal in one time unit, for repeated transmission of CG PUSCH, the UE determines the transmission power of the uplink signal according to the parameters of y open-loop power parameter sets configured by the network-side device.
  • y is an integer greater than 1.
  • the network side device configures x open-loop power parameter sets, and the x open-loop power parameter sets (for example, at least including the following third open-loop power parameter set and fourth open-loop power parameter set)
  • the parameter P 0 of the data set is as follows:
  • the UE determines the transmit power of the PUSCH according to the parameter P 0,A of the third open-loop power parameter set;
  • the UE determines the transmit power of the PUSCH according to the parameter P 0,B of the fourth open-loop power parameter set.
  • the network side device configures y open-loop power parameter sets, and the parameter P0 of the y open-loop power parameter sets (for example, at least including the following fifth open-loop power parameter set and sixth open-loop power parameter set) is as follows:
  • the UE determines the transmit power of the PUSCH according to the parameter P 0,m of the fifth open-loop power parameter set;
  • the UE determines the transmit power of the PUSCH according to the parameter P 0,n of the sixth open-loop power parameter set.
  • the third open-loop power parameter set and the fifth open-loop power parameter set may be the same.
  • the first open-loop power parameter set to the sixth open-loop power parameter set are only used to indicate that power control is determined based on parameters of different open-loop power parameter sets.
  • the transmit power of part of the CG PUSCH is calculated based on the open-loop power control operating point P 0,1 of the first open-loop power parameter set, and the transmit power of part of the CG PUSCH is calculated based on the open-loop power control operating point P 0,2 of the second open-loop power parameter set.
  • the UE determines the transmission power of the uplink signal according to the first indication field and the parameters of the open-loop power parameter set configured by the network side device.
  • the first indication field is used to indicate the open-loop power parameter set when the UE simultaneously sends an uplink signal and receives a downlink signal in one time unit.
  • an open-loop power parameter set indication field (i.e., the first indication field mentioned above) may be introduced in the scheduling downlink control information (Downlink Control Information, DCI).
  • DCI Downlink Control Information
  • the network side device may configure parameter sets applied to combinations of different signals.
  • parameter set 1 used for CG PUSCH and SPS PDSCH
  • parameter set 2 used for CG PUSCH and CSI-RS
  • ... parameter set n: used for CG PUSCH and PDCCH.
  • parameter sets 1-n may also be configured as combinations of other UL signals and DL signals.
  • each of the above open-loop power parameter sets may include multiple P0 values.
  • the above method may use the open-loop power control parameter set indication field (Open-loop power control parameter set indication) in the DCI and use 1 bit (bit), and indicate based on the above Table 2.
  • Open-loop power control parameter set indication Open-loop power control parameter set indication
  • a 1-bit or 2-bit open-loop power parameter set indication field in the DCI can be determined by a high-level parameter, such as olpc-ParameterSetDCI-0-1 or olpc-ParameterSetDCI-0-2, and an indication can be made based on the above Table 2 or expanded based on Table 2.
  • an open-loop power parameter set may be added to the high-level parameter SRS-Config.
  • an open-loop power control parameter set indication field may be added to indicate the open-loop power operating point P 0 and the path loss compensation factor (alpha) of the simultaneously transmitted and received open-loop power parameter set (P 0 -SRS-AlphaSet-FD) and calculate the transmit power of SRS based on P 0 and alpha.
  • the network side device may configure multiple open-loop power control parameter sets, for example, parameter set 1: for CG PUSCH and SPS PDSCH, parameter set 2: for CG PUSCH and CSI-RS,..., parameter set n: for CG PUSCH and PDCCH.
  • step 202 can be specifically implemented by the following step 202g or step 202h.
  • Step 202g When the UE sends an uplink signal and receives a downlink signal simultaneously in one time unit, the Physical Uplink Control Channel (PUCCH) indicating the dynamic authorization is repeatedly sent, and the UE determines the transmission power of the uplink signal according to the parameters of the z open-loop power parameter sets configured by the network-side device.
  • PUCCH Physical Uplink Control Channel
  • z is an integer greater than 1.
  • Step 202h When the UE simultaneously sends an uplink signal and receives a downlink signal in one time unit, for the configured PUCCH repeated transmission, the UE determines the transmission power of the uplink signal according to the parameters of the k open-loop power parameter sets configured by the network side device.
  • k is an integer greater than 1.
  • the network side device configures z open-loop power parameter sets, and the parameter P0 of the z open-loop power parameter sets (for example, at least including the following seventh open-loop power parameter set and eighth open-loop power parameter set) is as follows:
  • the UE determines the transmit power of the PUCCH according to the parameter P 0,k of the seventh open-loop power parameter set;
  • the UE determines the transmit power of the PUCCH according to the parameter P 0,1 of the eighth open-loop power parameter set.
  • the network side device configures k open-loop power parameter sets, and the parameters P0 of the k open-loop power parameter sets (for example, at least including the following ninth open-loop power parameter set and tenth open-loop power parameter set) are as follows:
  • the UE determines the transmit power of the PUCCH according to the parameter P 0,p of the ninth open-loop power parameter set;
  • the UE determines the PUCCH according to the parameter P 0,q of the tenth open-loop power parameter set. of transmission power.
  • the UE determines the transmission power of the uplink signal according to the second indication field and the parameters of the open-loop power parameter set configured by the network side device.
  • the second indication field is used to indicate the open-loop power control working point of the open-loop power parameter set when the UE simultaneously sends an uplink signal and receives a downlink signal in one time unit.
  • an open-loop power control indication field (i.e., the second indication field mentioned above) can be added to the scheduling DCI of PUCCH to indicate the open-loop power control working point P 0 (P 0 -PUCCH-Value) of the open-loop power parameter set (P 0 -Set-FD) sent and received simultaneously, and the transmit power of PUCCH is calculated based on P 0 .
  • step 202 may be specifically implemented through the following step 202i.
  • Step 202i When the UE simultaneously sends an uplink signal and receives a downlink signal in one time unit, the UE determines the transmission power of the uplink signal according to the parameters of the open-loop power parameter set and the power backoff value configured by the network-side device.
  • the above-mentioned power backoff value is a power backoff value configured by the network side device for the signal combination of the UE sending an uplink signal and receiving a downlink signal simultaneously in one time unit.
  • the network can configure a power backoff value (power backoff) for the UE, and different power backoff values can be configured for different combinations of simultaneous sending and receiving signals.
  • power backoff a power backoff value
  • the UE determines that the transmit power is equal to the transmit power calculated by the UE minus the power backoff value.
  • the UE can calculate the transmit power according to existing methods.
  • the power control for PUSCH is calculated based on the following formula:
  • the UE transmits a PUSCH on an activated UL BWP of carrier f of a serving cell c, uses parameter set configuration index j and PUSCH power control adjustment state index l, and determines the PUSCH transmit power P PUSCH,b,f,c (i,j,q d ,l) at PUSCH transmission opportunity i as follows:
  • PCMAX,f,c (i) is the maximum output power configured for the UE on carrier f of serving cell c at PUSCH transmission opportunity i.
  • P O-PUSCH,b,f,c (j) is a parameter composed of the sum of the following components, namely
  • ⁇ b,f,c (j) is provided by the alpha set in P0-PUSCH-AlphaSet indicated by the higher layer parameter p0-PUSCH-AlphaSetId.
  • P O_UE_PUSC,Hb,f,c (1) is provided by p0 obtained from p0-PUSCH-Alpha in the higher layer parameter ConfiguredGrantConfig.
  • ConfiguredGrantConfig provides an index P0-PUSCH-AlphaSetId pointing to the P0-PUSCH-AlphaSet parameter of the UL BWP of the carrier of the serving cell.
  • ⁇ b,f,c (1) is provided by the alpha in p0-PUSCH-Alpha in the higher layer parameter ConfiguredGrantConfig.
  • ConfiguredGrantConfig provides an index P0-PUSCH-AlphaSetId pointing to the P0-PUSCH-AlphaSet parameter of the UL BWP of the carrier of the serving cell.
  • the UE transmits a PUCCH on the activated UL BWP of carrier f of a primary cell c, uses the PUCCH power control adjustment state index l, and determines the PUSCH transmit power at PUCCH transmission opportunity i as:
  • PCMAX,f,c (i) is the maximum output power configured for the UE on carrier f of primary cell c at PUCCH transmission opportunity i.
  • P O_PUCCHb,,f,c (q u ) is composed of the sum of the following components, namely provided by p0-nominal, or if p0-nominal is not provided, then dBm i, for the carrier of primary cell c, if provided for carrier f of primary cell c and, if provided, a component Provided by p0-PUCCH-Value of P0-PUCCH parameters of carrier f of primary cell c, where 0 ⁇ q u ⁇ Q u .Q u is the size of the P O_UE_PUCCH set provided by maxNrofPUCCH-P0-PerSet. The set of P O_UE_PUCCH values is provided by p0-Set.
  • P O_UE_PUCCH (q u ) 0,0 ⁇ q u ⁇ Q u .
  • the open-loop power control parameter set and the open-loop power control operating point are p0-Set and p0-PUCCH-Value respectively.
  • the UE transmits an SRS based on the SRS-ResourceSet configuration on the activated UL BWP of carrier f of a serving cell c, uses the SRS power control adjustment state index l, and determines the SRS transmit power at SRS transmission opportunity i:
  • PCMAX,f,c (i) is the maximum output power configured for the UE on carrier f of serving cell c at SRS transmission opportunity i.
  • P O_SRS,b,f,c (q s ) is provided by p0 of the activated UL BWP of carrier f of serving cell c.
  • the SRS resource set q s is provided by parameters SRS-ResourceSet and SRS-ResourceSetId.
  • ⁇ SRS,b,f,c (q s ) is provided by the alpha of the activated UL BWP of carrier f of serving cell c and the SRS resource set q s parameter.
  • the embodiment of the present application provides a method for determining transmission power, wherein the UE can determine the transmission power of the uplink signal according to whether the UE simultaneously performs uplink transmission and downlink reception in a time domain unit, and the parameters of the open-loop power parameter set configured by the network side device, wherein the parameters of the open-loop power parameter set at least include an open-loop power control operating point.
  • the UE can determine the transmission power of the uplink signal sent by the UE in combination with whether the UE simultaneously performs uplink transmission and downlink reception in a time domain unit, and the open-loop power control operating point configured by the network, that is, by controlling the transmission power of the uplink signal, This can reduce the self-interference intensity when uplink transmission and downlink reception are performed simultaneously on the UE side, thereby improving system resource utilization and reducing signal transmission delay.
  • the transmit power determination method provided in the embodiment of the present application may also be executed by a transmit power determination device.
  • the transmit power determination method executed by a UE is taken as an example to illustrate the transmit power determination device provided in the embodiment of the present application.
  • Fig. 10 shows a possible structural diagram of a transmission power determination device involved in an embodiment of the present application, and the transmission power determination device is applied to a UE.
  • the transmission power determination device 70 may include: a determination module 71 .
  • the determination module 71 is used to determine the transmission power of the uplink signal according to the first information and the parameters of the open-loop power parameter set configured by the network side device; wherein the first information is used to characterize whether the UE performs uplink transmission and downlink reception simultaneously in a time domain unit; the parameters of the open-loop power parameter set include at least the open-loop power control working point.
  • An embodiment of the present application provides a transmission power determination device, which can determine the transmission power of the uplink signal sent by the UE based on whether the UE performs uplink transmission and downlink reception simultaneously in a time domain unit, and the open-loop power control working point configured by the network, that is, by controlling the transmission power of the uplink signal, the self-interference intensity when uplink transmission and downlink reception are performed simultaneously on the UE side can be reduced, thereby improving system resource utilization and reducing signal transmission delay.
  • the determination module 71 is specifically configured to:
  • the UE When the UE sends only an uplink signal in a time unit, determining the transmission power of the uplink signal according to the parameters of the first open-loop power parameter set configured by the network side device;
  • the transmission power of the uplink signal is determined according to the parameters of the second open-loop power parameter set configured by the network side device.
  • the above-mentioned determination module 71 is specifically used to, when the UE simultaneously sends an uplink signal and receives a downlink signal in one time unit, if the transmission power determined by the UE according to the parameters of the open-loop power parameter set is greater than the maximum transmission power configured by the network side device, then the maximum transmission power is determined as the transmission power of the uplink signal.
  • the above-mentioned determination module 71 is specifically used to determine the transmission power of the uplink signal from multiple transmission powers according to the transmission power sequence configured by the network side device when the UE simultaneously sends an uplink signal and receives a downlink signal in a time unit. If an uplink signal of the UE overlaps with at least one downlink signal in time domain, the multiple transmission powers are determined according to the parameters of multiple open-loop power parameter sets configured by the network side device for an uplink signal and at least one downlink signal.
  • the determination module 71 is specifically configured to:
  • the transmission power of the uplink signal is determined according to the parameters of the x open-loop power parameter sets configured by the network side device, where x is an integer greater than 1;
  • the transmission power of the uplink signal is determined according to the parameters of the y open-loop power parameter sets configured by the network side device. y is an integer greater than 1.
  • the UE determines the transmission power of the uplink signal based on the first indication field and the parameters of the open-loop power parameter set configured by the network side device; wherein the first indication field is used to indicate the open-loop power parameter set when the UE simultaneously sends an uplink signal and receives a downlink signal in one time unit.
  • the determination module 71 is specifically configured to:
  • the transmission power of the uplink signal is determined according to the parameters of the z open-loop power parameter sets configured by the network side device, where z is an integer greater than 1;
  • the transmission power of the uplink signal is determined according to the parameters of k open-loop power parameter sets configured by the network side device, where k is an integer greater than 1.
  • the UE determines the transmission power of the uplink signal based on the second indication field and the parameters of the open-loop power parameter set configured by the network side device; wherein the second indication field is used to indicate the open-loop power control operating point of the open-loop power parameter set when the UE simultaneously sends an uplink signal and receives a downlink signal in one time unit.
  • the above-mentioned determination module 71 is specifically used to determine the transmission power of the uplink signal according to the parameters and power backoff value of the open-loop power parameter set configured by the network side device when the UE simultaneously sends an uplink signal and receives a downlink signal in one time unit; wherein the power backoff value is the power backoff value configured by the network side device for the signal combination of the UE sending an uplink signal and receiving a downlink signal in one time unit at the same time.
  • the transmission power determination device provided in the embodiment of the present application can implement each process implemented by the UE in the above method embodiment and achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • the transmission power determination device in the embodiment of the present application may be a UE, such as a UE with an operating system, or a component in the UE, such as an integrated circuit or a chip.
  • the UE may be a terminal, or may be other devices other than a terminal.
  • the UE may include but is not limited to the types of UE 11 listed above, and other devices may be servers, network attached storage (NAS), etc., which are not specifically limited in the embodiment of the present application.
  • an embodiment of the present application also provides a communication device 5000, including a processor 5001 and a memory 5002, and the memory 5002 stores programs or instructions that can be executed on the processor 5001.
  • the communication device 5000 is a UE
  • the program or instruction is executed by the processor 5001 to implement the various steps of the above-mentioned UE side method embodiment, and can achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • the embodiment of the present application also provides a UE, including a processor and a communication interface, wherein the processor is used to determine the transmission power of an uplink signal according to the first information and the parameters of the open-loop power parameter set configured by the network side device; wherein the first information is used to characterize whether the UE performs uplink transmission and downlink reception simultaneously in a time domain unit; the parameters of the open-loop power parameter set at least include an open-loop power control operating point.
  • This UE embodiment corresponds to the above-mentioned UE side method embodiment, and each implementation process and implementation method of the above-mentioned method embodiment can be applied to this UE embodiment, and can achieve the same technical effect.
  • FIG12 is a schematic diagram of the hardware structure of a UE implementing an embodiment of the present application.
  • the UE 7000 includes but is not limited to: a radio frequency unit 7001, a network module 7002, an audio output unit 7003, an input unit 7004, a sensor 7005, a display unit 7006, a user input unit 7007, an interface unit 7008, a memory 7009 and at least some of the components of the processor 7010.
  • UE 7000 may also include a power source (such as a battery) for supplying power to various components, and the power source may be logically connected to processor 7010 through a power management system, thereby implementing functions such as managing charging, discharging, and power consumption management through the power management system.
  • a power source such as a battery
  • the UE structure shown in FIG12 does not constitute a limitation on the UE, and the UE may include more or fewer components than shown in the figure, or combine certain components, or arrange components differently, which will not be described in detail here.
  • the input unit 7004 may include a graphics processing unit (GPU) 70041 and a microphone 70042, and the graphics processor 70041 processes the image data of the static picture or video obtained by the image capture device (such as a camera) in the video capture mode or the image capture mode.
  • the display unit 7006 may include a display panel 70061, and the display panel 70061 may be configured in the form of a liquid crystal display, an organic light emitting diode, etc.
  • the user input unit 7007 includes a touch panel 70071 and at least one of other input devices 70072.
  • the touch panel 70071 is also called a touch screen.
  • the touch panel 70071 may include two parts: a touch detection device and a touch controller.
  • Other input devices 70072 may include, but are not limited to, a physical keyboard, function keys (such as a volume control key, a switch key, etc.), a trackball, a mouse, and a joystick, which will not be repeated here.
  • the RF unit 7001 can transmit the data to the processor 7010 for processing; in addition, the RF unit 7001 can send uplink data to the network side device.
  • the RF unit 7001 includes but is not limited to an antenna, an amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, etc.
  • the memory 7009 can be used to store software programs or instructions and various data.
  • the memory 7009 may mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage area may store an operating system, an application program or instruction required for at least one function (such as a sound playback function, an image playback function, etc.), etc.
  • the memory 7009 may include a volatile memory or a non-volatile memory, or the memory 7009 may include both volatile and non-volatile memories.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), an electrically erasable programmable read-only memory (EEPROM), or a flash memory.
  • the volatile memory may be a random access memory (RAM), a static random access memory (SRAM), a dynamic random access memory (DRAM), a synchronous dynamic random access memory (SDRAM), a double data rate synchronous dynamic random access memory (DDRSDRAM), an enhanced synchronous dynamic random access memory (ESDRAM), a synchronous link dynamic random access memory (SLDRAM) and a direct memory bus random access memory (DRRAM).
  • the memory 7009 in the embodiment of the present application includes but is not limited to these and any other suitable types of memory.
  • the processor 7010 may include one or more processing units; optionally, the processor 7010 integrates an application processor and a debugger.
  • the modem processor includes a baseband processor, a modem processor, and a control processor.
  • the application processor mainly processes operations related to the operating system, the user interface, and the application program, and the modem processor mainly processes wireless communication signals. It is understandable that the modem processor may not be integrated into the processor 7010.
  • the processor 7010 is used to determine the transmission power of the uplink signal according to the first information and the parameters of the open-loop power parameter set configured by the network side device; wherein the first information is used to characterize whether the UE performs uplink transmission and downlink reception simultaneously in a time domain unit; the parameters of the open-loop power parameter set include at least the open-loop power control operating point.
  • An embodiment of the present application provides a UE, which can determine the transmission power of the uplink signal sent by the UE based on whether the UE performs uplink transmission and downlink reception simultaneously in a time domain unit, and the open-loop power control working point configured by the network, that is, by controlling the transmission power of the uplink signal, the self-interference intensity when uplink transmission and downlink reception are performed simultaneously on the UE side can be reduced, thereby improving system resource utilization and reducing signal transmission delay.
  • the UE provided in the embodiment of the present application can implement each process implemented by the UE in the above method embodiment and achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • An embodiment of the present application also provides a readable storage medium, on which a program or instruction is stored.
  • a program or instruction is stored.
  • the various processes of the above-mentioned transmission power determination method embodiment are implemented, and the same technical effect can be achieved. To avoid repetition, it will not be repeated here.
  • the processor is the processor in the communication device described in the above embodiment.
  • the readable storage medium includes a computer readable storage medium, such as a computer read-only memory ROM, a random access memory RAM, a magnetic disk or an optical disk.
  • An embodiment of the present application further provides a chip, which includes a processor and a communication interface, wherein the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement the various processes of the above-mentioned method embodiment, and can achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • the chip mentioned in the embodiments of the present application can also be called a system-level chip, a system chip, a chip system or a system-on-chip chip, etc.
  • the embodiments of the present application further provide a computer program/program product, which is stored in a storage medium and is executed by at least one processor to implement the various processes of the above-mentioned method embodiments and can achieve the same technical effect. To avoid repetition, it will not be described here.
  • the technical solution of the present application can be embodied in the form of a computer software product, which is stored in a storage medium (such as ROM/RAM, a magnetic disk, or an optical disk), and includes a number of instructions for enabling a terminal (which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) to execute the methods described in each embodiment of the present application.
  • a storage medium such as ROM/RAM, a magnetic disk, or an optical disk
  • a terminal which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种发送功率确定方法、装置、用户设备及存储介质,属于通信技术领域,本申请实施例的发送功率确定方法包括:UE根据第一信息和网络侧设备配置的开环功率参数集的参数,确定上行信号的发送功率;其中,第一信息用于表征UE在一个时域单元是否同时进行上行发送和下行接收;开环功率参数集的参数至少包括开环功率控制工作点。

Description

发送功率确定方法、装置、用户设备及存储介质
相关申请的交叉引用
本申请主张在2022年12月23日提交的申请号为202211667764.7的中国专利的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,具体涉及一种发送功率确定方法、装置、用户设备及存储介质。
背景技术
在新空口(New Radio,NR)中,配置全双工操作可以显著地改善时分双工(Time Division Duplexing,TDD)系统的延时及覆盖性能。
目前,仅讨论网络侧支持全双工,用户设备(User Equipment,UE)侧支持半双工的情况,即:网络侧可以在一个时间单元(例如时隙或符号)内进行同时发送下行信号或信道,以及接收上行信号或信道;UE在一个时间单元内仅能发送上行信号或信道,或者接收下行信号或信道。
然而,对于UE侧全双工,即在一个时间单元同时发送上行及接收下行信号或信道(同时收发)还没有讨论。并且,对于UE侧全双工,由于同时进行上行发送与下行接收会引起自干扰,因此在UE侧同时进行上行发送与下行接收时,如何减少UE侧自干扰强度是亟待解决的问题。
发明内容
本申请实施例提供一种发送功率确定方法、装置、用户设备及存储介质,能够解决在UE侧同时进行上行发送与下行接收时,如何减少UE侧自干扰强度的问题。
第一方面,提供了一种发送功率确定方法,该方法包括:UE根据第一信息和网络侧设备配置的开环功率参数集的参数,确定上行信号的发送功率;其中,第一信息用于表征UE在一个时域单元是否同时进行上行发送和下行接收;开环功率参数集的参数至少包括开环功率控制工作点。
第二方面,提供了一种发送功率确定装置,应用于UE,该发送功率确定装置包括:确定模块。确定模块,用于根据第一信息和网络侧设备配置的开环功率参数集的参数,确定上行信号的发送功率;其中,第一信息用于表征UE在一个时域单元是否同时进行上行发送和下行接收;开环功率参数集的参数至少包括开环功率控制工作点。
第三方面,提供了一种UE,该UE包括处理器和存储器,所述存储器存储可在 所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第四方面,提供了一种UE,包括处理器及通信接口,其中,所述处理器用于根据第一信息和网络侧设备配置的开环功率参数集的参数,确定上行信号的发送功率;其中,第一信息用于表征UE在一个时域单元是否同时进行上行发送和下行接收;开环功率参数集的参数至少包括开环功率控制工作点。
第五方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤。
第六方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法。
第七方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如第一方面所述的发送功率确定方法的步骤。
在本申请实施例中,UE可以根据UE在一个时域单元是否同时进行上行发送和下行接收,以及网络侧设备配置的开环功率参数集的参数,确定上行信号的发送功率,该开环功率参数集的参数至少包括开环功率控制工作点。本方案中,由于UE可以结合UE在一个时域单元是否同时进行上行发送和下行接收,以及网络配置的开环功率控制工作点,确定UE发送上行信号的发送功率,即通过控制上行信号的发送功率,以降低在UE侧同时进行上行发送与下行接收时的自干扰强度,从而提升系统资源利用率并降低信号的传输时延。
附图说明
图1是本申请实施例提供的一种无线通信系统的架构示意图;
图2是本申请实施例提供的一种发送功率确定方法的流程图之一;
图3是本申请实施例提供的一种子带非重叠全双工下的信号的发送功率的实例示意图之一;
图4是本申请实施例提供的一种发送功率确定方法的流程图之二;
图5是本申请实施例提供的一种子带非重叠全双工下的信号的发送功率的实例示意图之二;
图6是本申请实施例提供的一种发送功率确定方法的流程图之三;
图7是本申请实施例提供的一种CG PUSCH和SPS PDSCH同时传输时的发送功率的实例示意图;
图8是本申请实施例提供的一种CG PUSCH的发送功率的实例示意图;
图9是本申请实施例提供的一种发送功率确定方法的流程图之四;
图10是本申请实施例提供的一种发送功率确定装置的结构示意图;
图11是本申请实施例提供的一种通信设备的硬件结构示意图;
图12是本申请实施例提供的一种UE的硬件结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(VUE)、行人终端(PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以包括接入网设备或核心网设备,其中,接入网设备12也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备12可以包括基站、WLAN接入点或WiFi节点等,基站可被称为节点B、演进节点B(eNB)、接入点、基收 发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmitting Receiving Point,TRP)或所属领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例进行介绍,并不限定基站的具体类型。
下面对本申请实施例提供的一种发送功率确定方法、装置、用户设备及存储介质中涉及的一些概念和/或术语做一下解释说明。
与以往的移动通信系统相比,未来5G移动通信系统需要适应更加多样化的场景和业务需求。5G的主要场景包括增强型移动宽带(Enhanced Mobile Broadband,eMBB)、超可靠低时延通信(Ultra-reliable and Low Latency Communications,URLLC)、海量机器类通信(Massive Machine Type Communication,mMTC)等,这些场景对系统提出了高可靠,低时延,大带宽,广覆盖等要求。
在NR中,配置全双工操作可以显著地改善TDD系统的延时及覆盖性能。
子带非重叠全双工(subbands non-overlapping Full duplex,SBFD)可改进传输延时及增强覆盖。
对于一个下行时隙,网络为UE配置下行(Downlink,DL)带宽部分(Bandwidth Part,BWP),对于上行时隙,网络为UE配置上行(Uplink,UL)BWP。
对于全双工(full duplex)场景,对于一个下行时隙有两种情况:(1)配置DL BWP;(2)配置DL BWP及UL子带;
对于一个上行时隙有两种情况:(1)配置UL BWP;(2)配置UL BWP及DL子带。
对于SBFD操作,一个SBFD子带由具有相同传输方向的1个资源块(Resource Block,RB)或一个连续的RB集合构成。
gNB使用SBFD操作的时间单元(例如时隙或符号),可称为SBFD时间单元(例如时隙或符号)。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的发送功率确定方法进行详细地说明。
目前仅讨论网络侧支持全双工,UE侧支持半双工的情况,即网络侧可以在一个时间单元(例如时隙或符号)内进行同时发送DL信号/信道以及接收UL信号/信道,在一个时间单元,UE仅能发送UL信号/信道或者接收DL信号/信道。
对于UE侧全双工,即在一个时间单元同时接收DL及发送UL信号/信道(同时收发)还没有讨论。对于UE侧全双工,由于同时进行UL发送与DL接收会引起自干扰。为了保护受干扰方向的传输,需要UE在功率域方向进行增强以减少自干扰强度。如此,在UE侧同时进行上行发送与下行接收时,如何减少UE侧自干扰强度是亟待解决的问题。
本申请实施例提供一种发送功率确定方法,UE可以根据UE在一个时域单元是否同时进行上行发送和下行接收,以及网络侧设备配置的开环功率参数集的参数,确定上行信 号的发送功率,该开环功率参数集的参数至少包括开环功率控制工作点。本方案中,由于UE可以结合UE在一个时域单元是否同时进行上行发送和下行接收,以及网络配置的开环功率控制工作点,确定UE发送上行信号的发送功率,即通过控制上行信号的发送功率,以降低在UE侧同时进行上行发送与下行接收时的自干扰强度,从而提升系统资源利用率并降低信号的传输时延。
本申请实施例提供一种发送功率确定方法,图2示出了本申请实施例提供的一种发送功率确定方法的流程图。如图2所示,本申请实施例提供的发送功率确定方法可以包括下述的步骤201和步骤202。
步骤201、UE获取第一信息和网络侧设备配置的开环功率参数集的参数。
步骤202、UE根据第一信息和网络侧设备配置的开环功率参数集的参数,确定上行信号的发送功率。
本申请实施例中,上述第一信息用于表征UE在一个时域单元是否同时进行上行发送和下行接收。上述开环功率参数集的参数至少包括开环功率控制工作点。
可选地,本申请实施例中,上述第一信息可以由网络侧设备配置/指示,或者为预定义的,或者为协议约定的,或者为UE自主决定的。
可选地,本申请实施例中,上述开环功率参数集的参数还可以包括路损补偿系数(alpha)。
可选地,本申请实施例中,在子带非重叠的UE侧全双工或子带重叠的UE侧全双工下,UE可以根据第一信息和网络侧设备配置的开环功率参数集的参数,确定上行信号的发送功率。
可选地,对于全双工的定义:
(1)网络全双工操作,即网络侧应用全双工,UE侧应用半双工。
(2)终端全双工操作,即网络侧应用全双工,UE侧应用全双工。
其中,UE侧半双工,即UE在一个时间单元仅能接收DL或者发送UL信号/信道。UE侧全双工,即UE在一个时间单元同时接收DL以及发送UL信号/信道。
需要说明的是,网络全双工模式可以达到增强覆盖,减少传输延时,改进资源利用效率的目的。终端全双工模式可以在获得上述增益的同时改进DL(或UL)吞吐量。
对于一个通信设备,由于同时进行UL传输与DL传输会引起自干扰。本申请实施例中,为了保证受干扰方向的传输,需要通信设备具有自干扰消除能力,以减少自干扰强度,一个功率域自干扰降低方法是在同时收发时,降低UL发送功率,即采用一个与只有上行信道或信号发送时的功率控制参数不同的发送功率控制参数,以达到降低对同一个UE的DL信道/信号的接收的自干扰。
可选地,本申请实施例中,本方案至少可应用于半静态配置的同时的UL传输和DL接收,也可以用于动态指示的同时的UL传输和DL接收。当然,也可以用于不同传输方向的同时传输中,一个传输方向是半静态配置的传输,另一个传输方向是动态调度的传输。
本申请实施例中,由于NR中定义了不同的信号或信道,不同传输方向的不同信号或信道特性并不相同,不同的UL信号或信道的发送可能对同一个DL信号或信道干扰并不相同。网络可以基于同时收发的信道或信号的组合配置多个开环功率参数集,并基于不同的开环功率控制工作点P0确定发送功率,从而达到对自干扰消除水平的精确控制。
可选地,本申请实施例中,上述时间单元为时隙(slot)或符号。
需要说明的是,本申请实施例所述的上行信号是指信号或信道。
可选地,本申请实施例中,上行(UL)信号可以包括以下至少一项:物理上行共享信道(Physical Uplink Shared Channel,PUSCH)、配置授权物理上行共享信道(Configured Grant PUSCH,CG PUSCH)、调度请求(Scheduling Request,SR)、探测参考信号(Sounding Reference Signal,SRS)、物理随机接入信道(Physical Random Access Channel,PRACH)。
可选地,本申请实施例中,下行(DL)信号可以包括以下至少一项:半持续调度物理下行共享信道(Semi-Persistent Scheduling Physical Downlink Shared Channel,SPS PDSCH)、信道状态信息参考信号(Channel State Information-Reference Signal,CSI RS)、物理下行控制信道(Physical Downlink Control Channel,PDCCH)。
示例性地,如下述表1所示,示出了同时收发的信号的组合配置的开环功率参数集,以及开环功率参数集的参数(开环功率控制工作点P0)。
表1
示例性地,如图3所示,示出了子带非重叠全双工下的信号的发送功率。不同方向的不同信号同时发送和接收,UE的UL信号的发送功率可以基于不同的开环功率参数集的开环功率控制工作点计算。
需要说明的是,网络可以基于同时收发的信号的组合配置多个开环功率参数集(P0,set), 每个开环功率参数集可以包括至少一个开环功率控制工作点,即P0。本申请实施例附图中的第一个开环功率参数集是网络配置的多个开环功率参数集中的第一个开环功率参数集,以P0,set 1表示,第二个开环功率参数集是网络配置的多个开环功率参数集中的第二个开环功率参数集,以P0,set 2表示。
可选地,本申请实施例中,网络侧设备可以配置:UE侧进行全双工操作的时隙和半双工的时隙采用不同的CSI-RS功率。
其中,下行CSI-RS的每资源粒子的能量(Energy Per Resource Element,EPRE)可以由参数SS-PBCH-BlockPower给出的同步信号块(Synchronization Signal Block,,SSB)下行发射功率和高层提供的参数powerControlOffsetSS给出的CSI-RS功率偏移量推导出。下行参考信号发射功率被定义为在操作带宽内承载配置的CSI-RS的资源元素的功率贡献(单位W)的线性平均值。
即:对于UE侧进行全双工操作的时隙:CSI的EPRE基于SS-PBCH-BlockPower和powerControlOffsetSS A得到。对于UE侧进行半双工操作的时隙:CSI的EPRE基于SS-PBCH-BlockPower和powerControlOffsetSS B得到。
可选地,本申请实施例中,上述步骤202具体可以通过下述的步骤202a或步骤202b实现。
步骤202a、在UE在一个时间单元仅发送上行信号的情况下,UE根据网络侧设备配置的第一开环功率参数集的参数,确定上行信号的发送功率。
步骤202b、在UE在一个时间单元同时发送上行信号和接收下行信号的情况下,UE根据网络侧设备配置的第二开环功率参数集的参数,确定上行信号的发送功率。
可以理解,网络侧设备配置的开环功率参数集的参数至少包括开环功率控制工作点P0。当UE在一个时间单元内只发送UL信道或信号时,UE可以根据第一开环功率参数集的参数P0,N(N>=1)确定上行信号的发送功率。当UE在一个时间单元既发送UL信号又接收DL信号(即同时收发)时,UE采用第二开环功率参数集的参数P0,M(M>=1)确定发送功率。
其中,上述第一开环功率参数集和第二开环功率参数集可以不同。
可选地,本申请实施例中,结合图2,如图4所示,上述步骤202具体可以通过下述的步骤202c实现。
步骤202c、在UE在一个时间单元同时发送上行信号和接收下行信号的情况下,若UE根据开环功率参数集的参数确定的发送功率大于网络侧设备配置的最大发送功率,则UE将最大发送功率确定为上行信号的发送功率。
可以理解,对于UE侧的同时收发,网络可配置UL信号的最大发送功率Pcmax,FD。如果对于一个时域单元,UE被配置或调度进行同时收发,若UE的UL发送功率大于网络配置的最大发送功率Pcmax,FD,那么UE可以使用最大发送功率Pcmax,FD发送上行信号。其中,Pcmax,FD可以与UE的最大发送功率不同。
示例性地,如图5所示,示出了子带非重叠全双工下的信号的发送功率。网络可以配置UL信号的最大发送功率Pcmax,FD,在UE的UL发送功率大于网络配置的最大发送功率Pcmax,FD的情况下,UE可以使用最大发送功率Pcmax,FD发送上行信号。
可选地,本申请实施例中,结合图2,如图6所示,上述步骤202具体可以通过下述的步骤202d实现。
步骤202d、在UE在一个时间单元同时发送上行信号和接收下行信号的情况下,若UE的一个上行信号与至少一个下行信号时域重叠,则UE根据网络侧设备配置的发送功率顺序,从多个发送功率中确定上行信号的发送功率。
本申请实施例中,上述多个发送功率为根据网络侧设备为上述的一个上行信号和至少一个下行信号配置的多个开环功率参数集的参数确定。
可以理解,对于UE侧的同时收发,如果一个UL信号与多个DL信号时域重叠,则UE可以基于多个UL信号和DL信号的组合确定多个发送功率(基于多个开环功率参数集的开环功率控制工作点),UE按照网络配置的发送功率大小的顺序确定上行信号的发送功率。例如,网络可以配置UE选择确定的多个发送功率中的最大发送功率发送UL信号,或者选择最小发送功率,或者按照其他顺序发送UL信号。
可选地,本申请实施例中,网络可以基于同时收发的信号的组合,来配置多个开环功率参数集,并基于该多个开环功率参数集的开环功率控制工作点P0确定发送功率。
示例性地,如图7所示,对于CG PUSCH和SPS PDSCH的同时传输,UE的发送功率基于第一个开环功率参数集的开环功率控制工作点P0,1计算得到发送功率PA。对于CG PUSCH和CSI-RS的同时传输,UE的发送功率基于第二个开环功率参数集的开环功率控制工作点P0,2计算得到发送功率PB,且PA<PB
需要说明的是,如果网络配置UE按照最小的发送功率发送UL信号,那么UE可以按照PA发送CG PUSCH。
可选地,本申请实施例中,上述步骤202具体可以通过下述的步骤202e或步骤202f实现。
步骤202e、在UE在一个时间单元同时发送上行信号和接收下行信号的情况下,对于动态授权(dynamic Grant)指示的重复发送,UE根据网络侧设备配置的x个开环功率参数集的参数,确定上行信号的发送功率。
其中,x为大于1的整数。
步骤202f、在UE在一个时间单元同时发送上行信号和接收下行信号的情况下,对于CG PUSCH重复发送,UE根据网络侧设备配置的y个开环功率参数集的参数,确定上行信号的发送功率。
其中,y为大于1的整数。
可以理解,对于动态授权指示的PUSCH重复发送,网络侧设备配置x个开环功率参数集,该x个开环功率参数集(例如至少包括下述第三开环功率参数集和第四开环功率参 数集)的参数P0如下:
(a)对于没有同时传输的PUSCH,UE根据第三开环功率参数集的参数P0,A确定PUSCH的发送功率;
(b)对于同时传输的PUSCH,UE根据第四开环功率参数集的参数P0,B确定PUSCH的发送功率。
可以理解,对于CG PUSCH重复发送,网络侧设备配置y个开环功率参数集,该y个开环功率参数集(例如至少包括下述第五开环功率参数集和第六开环功率参数集)的参数P0如下:
(c)对于没有同时传输的PUSCH,UE根据第五开环功率参数集的参数P0,m确定PUSCH的发送功率;
(d)对于同时传输的PUSCH,UE根据第六开环功率参数集的参数P0,n确定PUSCH的发送功率。
可选地,本申请实施例中,上述第三开环功率参数集与第五开环功率参数集可以相同。
可选地,本申请实施例中,上述第一开环功率参数集至第六开环功率参数集仅用于表示功率控制是基于不同的开环功率参数集的参数确定的。
示例性地,如图8所示,对于没有同时传输的PUSCH,部分CG PUSCH的发送功率基于第一个开环功率参数集的开环功率控制工作点P0,1计算得到,部分CG PUSCH的发送功率基于第二个开环功率参数集的开环功率控制工作点P0,2计算得到。
可选地,本申请实施例中,对于动态调度的PUSCH重复发送,由UE根据第一指示域和网络侧设备配置的开环功率参数集的参数,确定上行信号的发送功率。其中,第一指示域用于指示UE在一个时间单元同时发送上行信号和接收下行信号时的开环功率参数集。
可选地,本申请实施例中,对于动态调度的PUSCH重复,可以在调度下行控制信息(Downlink Control Information,DCI)中引入开环功率参数集指示域(即上述的第一指示域)。
示例性地,如下述表2所示,网络侧设备可以配置不同信号的组合所应用的参数集。
表2
在上述表2中,参数集1:用于CG PUSCH和SPS PDSCH;参数集2:用于CG PUSCH和CSI-RS;…;参数集n:用于CG PUSCH和PDCCH。
可选地,参数集1-n也可以配置为其他UL信号和DL信号的组合。
可选地,本申请实施例中,上述每个开环功率参数集可以包含多个P0值。
可选地,本申请实施例中,当SRS资源指示(SRS resource indicator,SRI)存在时, 上述方法可以使用DCI中的开环功率参数集指示域(Open-loop power control parameter set indication)并使用1比特(bit),同时基于上述表2进行指示。
可选地,本申请实施例中,如果SRI不存在时,可由高层参数,例如olpc-ParameterSetDCI-0-1或者olpc-ParameterSetDCI-0-2,确定DCI中1比特或2比特开环功率参数集指示域,同时基于上述表2进行指示或基于表2扩展。
可选地,本申请实施例中,对于UE侧同时收发的SRS的功率控制,可以在高层参数SRS-Config中增加开环功率参数集。对于SRS的调度DCI可以增加开环功率控制参数集指示域,指示同时收发的开环功率参数集(P0-SRS-AlphaSet-FD)的开环功率工作点P0及路损补偿因子(alpha)并根据P0及alpha计算SRS的发送功率。
可选地,本申请实施例中,对于半静态配置的CG PUSCH,网络侧设备可以配置多个开环功率控制参数集,例如参数集1:用于CG PUSCH和SPS PDSCH,参数集2:用于CG PUSCH和CSI-RS,…,参数集n:用于CG PUSCH和PDCCH。
可选地,本申请实施例中,上述步骤202具体可以通过下述的步骤202g或步骤202h实现。
步骤202g、在UE在一个时间单元同时发送上行信号和接收下行信号的情况下,对于动态授权指示的物理上行控制信道(Physical Uplink Control Channel,PUCCH)重复发送,UE根据网络侧设备配置的z个开环功率参数集的参数,确定上行信号的发送功率。
其中,z为大于1的整数。
步骤202h、在UE在一个时间单元同时发送上行信号和接收下行信号的情况下,对于配置的PUCCH重复发送,UE根据网络侧设备配置的k个开环功率参数集的参数,确定上行信号的发送功率。
其中,k为大于1的整数。
可以理解,对于动态授权指示的PUCCH重复发送,网络侧设备配置z个开环功率参数集,该z个开环功率参数集(例如至少包括下述第七开环功率参数集和第八开环功率参数集)的参数P0如下:
(e)对于没有同时传输的PUCCH,UE根据第七开环功率参数集的参数P0,k确定PUCCH的发送功率;
(f)对于同时传输的PUCCH,UE根据第八开环功率参数集的参数P0,l确定PUCCH的发送功率。
可以理解,对于配置的PUCCH重复发送,网络侧设备配置k个开环功率参数集,该k个开环功率参数集(例如至少包括下述第九开环功率参数集和第十开环功率参数集)的参数P0如下:
(g)对于没有同时传输的PUCCH,UE根据第九开环功率参数集的参数P0,p确定PUCCH的发送功率;
(h)对于同时传输的PUCCH,UE根据第十开环功率参数集的参数P0,q确定PUCCH 的发送功率。
可选地,本申请实施例中,对于PUCCH的调度DCI,由UE根据第二指示域和网络侧设备配置的开环功率参数集的参数,确定上行信号的发送功率。其中,第二指示域用于指示UE在一个时间单元同时发送上行信号和接收下行信号时的开环功率参数集的开环功率控制工作点。
可以理解,对于PUCCH的调度DCI可以增加开环功率控制指示域(即上述的第二指示域),指示同时收发的开环功率参数集(P0-Set-FD)的开环功率控制工作点P0(P0-PUCCH-Value),并根据P0计算PUCCH的发送功率。
可选地,本申请实施例中,结合图2,如图9所示,上述步骤202具体可以通过下述的步骤202i实现。
步骤202i、在UE在一个时间单元同时发送上行信号和接收下行信号的情况下,UE根据网络侧设备配置的开环功率参数集的参数和功率回退值,确定上行信号的发送功率。
本申请实施例中,上述功率回退值为网络侧设备为UE在一个时间单元同时发送上行信号和接收下行信号的信号组合所配置的功率回退值。
可以理解,网络可以配置给UE一个功率回退值(power backoff),对于不同的同时收发信号的组合,可以配置不同的功率回退值。
可选地,本申请实施例中,对于UE同时收发,UE确定发送功率等于UE计算的发送功率减去功率回退值。对于UE只进行UL发送,UE可以根据现有方法计算发送功率。
可选地,本申请实施例中,在NR中,对于PUSCH的功率控制基于下述公式计算:
(1)UE在一个服务小区(serving cell)c的载波f的激活UL BWP上传输一个PUSCH,使用参数集配置索引j和PUSCH功率控制调节状态索引l,在PUSCH传输时机i确定PUSCH发送功率PPUSCH,b,f,c(i,j,qd,l)为:
PCMAX,f,c(i)是在PUSCH传输时机i,服务小区c的载波f上UE被配置的最大输出功率。
PO-PUSCH,b,f,c(j)是由下列分量之和组成的参数,即
和PO_UE_PUSCH,b,f,c(j)where j∈{0,1,...,J-1}.
(2)对于动态调度PUSCH:由高层参p0-NominalWithGrant提供,或者如果p0-NominalWithGrant没提供,PO_UE_PUSC,Hb,f,c(j)集由高层参数p0-PUSCH-AlphaSetId指示P0-PUSCH-AlphaSet中p0集提供。
αb,f,c(j)由高层参数p0-PUSCH-AlphaSetId指示的P0-PUSCH-AlphaSet中的alpha集提供。
(3)对于配置的grant的PUSCH,j=1:
由高层参数p0-NominalWithoutGrant提供,或者如果p0-NominalWithoutGrant没提供,PO_UE_PUSC,Hb,f,c(1)由高层参数ConfiguredGrantConfig中的p0-PUSCH-Alpha中获得的p0提供。ConfiguredGrantConfig提供一个索引P0-PUSCH-AlphaSetId指向服务小区的载波的UL BWP的P0-PUSCH-AlphaSet参数。
αb,f,c(1)由高层参数ConfiguredGrantConfig中p0-PUSCH-Alpha中的alpha提供。ConfiguredGrantConfig提供一个索引P0-PUSCH-AlphaSetId指向服务小区的载波的UL BWP的P0-PUSCH-AlphaSet参数。
(4)对于PUCCH:UE在一个主小区(primary cell)c的载波f的激活UL BWP上传输一个PUCCH,使用PUCCH功率控制调节状态索引l,在PUCCH传输时机i确定PUSCH发送功率为:
PCMAX,f,c(i)是在PUCCH传输时机i,主小区c的载波f上UE被配置的最大输出功率。
PO_PUCCHb,,f,c(qu)是下列分量之和组成的,即由p0-nominal提供,或者如果p0-nominal没提供,那么dBm i,对于主小区c的载波,如果提供for carrier f of primary cell c and,if provided,a component由主小区c的载波f的P0-PUCCH参数的p0-PUCCH-Value提供,其中0≤qu<Qu.Qu为maxNrofPUCCH-P0-PerSet提供的PO_UE_PUCCH集的大小。PO_UE_PUCCH值的集合由p0-Set提供。如果没提供p0-Set给UE,PO_UE_PUCCH(qu)=0,0≤qu<Qu。开环功率控制参数集及开环功率控制工作点分别为p0-Set及p0-PUCCH-Value。
(5)对于SRS:UE在一个服务小区c的载波f的激活UL BWP上基于SRS-ResourceSet配置传输一个SRS,使用SRS功率控制调节状态索引l,在SRS传输时机i确定SRS发送功率:
PCMAX,f,c(i)是在SRS传输时机i,服务小区c的载波f上UE被配置的最大输出功率。
PO_SRS,b,f,c(qs)由服务小区c的载波f的激活UL BWP的p0提供。SRS资源集qs由参数SRS-ResourceSet和SRS-ResourceSetId提供。
αSRS,b,f,c(qs)由服务小区c的载波f的激活UL BWP的alpha和SRS resource set qs参数提供。
本申请实施例提供一种发送功率确定方法,UE可以根据UE在一个时域单元是否同时进行上行发送和下行接收,以及网络侧设备配置的开环功率参数集的参数,确定上行信号的发送功率,该开环功率参数集的参数至少包括开环功率控制工作点。本方案中,由于UE可以结合UE在一个时域单元是否同时进行上行发送和下行接收,以及网络配置的开环功率控制工作点,确定UE发送上行信号的发送功率,即通过控制上行信号的发送功率, 以降低在UE侧同时进行上行发送与下行接收时的自干扰强度,从而提升系统资源利用率并降低信号的传输时延。
本申请实施例提供的发送功率确定方法,执行主体还可以为发送功率确定装置。本申请实施例中以UE执行发送功率确定方法为例,说明本申请实施例提供的发送功率确定装置。
图10出了本申请实施例中涉及的发送功率确定装置的一种可能的结构示意图,该发送功率确定装置应用于UE。如图10所示,发送功率确定装置70可以包括:确定模块71。
其中,确定模块71,用于根据第一信息和网络侧设备配置的开环功率参数集的参数,确定上行信号的发送功率;其中,第一信息用于表征UE在一个时域单元是否同时进行上行发送和下行接收;开环功率参数集的参数至少包括开环功率控制工作点。
本申请实施例提供一种发送功率确定装置,发送功率确定装置可以结合UE在一个时域单元是否同时进行上行发送和下行接收,以及网络配置的开环功率控制工作点,确定UE发送上行信号的发送功率,即通过控制上行信号的发送功率,以降低在UE侧同时进行上行发送与下行接收时的自干扰强度,从而提升系统资源利用率并降低信号的传输时延。
在一种可能的实现方式中,上述确定模块71,具体用于:
在UE在一个时间单元仅发送上行信号的情况下,根据网络侧设备配置的第一开环功率参数集的参数,确定上行信号的发送功率;
或者,
在UE在一个时间单元同时发送上行信号和接收下行信号的情况下,根据网络侧设备配置的第二开环功率参数集的参数,确定上行信号的发送功率。
在一种可能的实现方式中,上述确定模块71,具体用于在UE在一个时间单元同时发送上行信号和接收下行信号的情况下,若UE根据开环功率参数集的参数确定的发送功率大于网络侧设备配置的最大发送功率,则将最大发送功率确定为上行信号的发送功率。
在一种可能的实现方式中,上述确定模块71,具体用于在UE在一个时间单元同时发送上行信号和接收下行信号的情况下,若UE的一个上行信号与至少一个下行信号时域重叠,则根据网络侧设备配置的发送功率顺序,从多个发送功率中确定上行信号的发送功率;其中,多个发送功率为根据网络侧设备为一个上行信号和至少一个下行信号配置的多个开环功率参数集的参数确定。
在一种可能的实现方式中,上述确定模块71,具体用于:
在UE在一个时间单元同时发送上行信号和接收下行信号的情况下,对于动态授权指示的PUSCH重复发送,根据网络侧设备配置的x个开环功率参数集的参数,确定上行信号的发送功率,x为大于1的整数;
或者,
在UE在一个时间单元同时发送上行信号和接收下行信号的情况下,对于CG PUSCH重复发送,根据网络侧设备配置的y个开环功率参数集的参数,确定上行信号的发送功率, y为大于1的整数。
在一种可能的实现方式中,对于动态调度的PUSCH重复发送,由UE根据第一指示域和网络侧设备配置的开环功率参数集的参数,确定上行信号的发送功率;其中,第一指示域用于指示UE在一个时间单元同时发送上行信号和接收下行信号时的开环功率参数集。
在一种可能的实现方式中,上述确定模块71,具体用于:
在UE在一个时间单元同时发送上行信号和接收下行信号的情况下,对于动态授权指示的PUCCH重复发送,根据网络侧设备配置的z个开环功率参数集的参数,确定上行信号的发送功率,z为大于1的整数;
或者,
在UE在一个时间单元同时发送上行信号和接收下行信号的情况下,对于配置的PUCCH重复发送,根据网络侧设备配置的k个开环功率参数集的参数,确定上行信号的发送功率,k为大于1的整数。
在一种可能的实现方式中,对于PUCCH的调度DCI,由UE根据第二指示域和网络侧设备配置的开环功率参数集的参数,确定上行信号的发送功率;其中,第二指示域用于指示UE在一个时间单元同时发送上行信号和接收下行信号时的开环功率参数集的开环功率控制工作点。
在一种可能的实现方式中,上述确定模块71,具体用于在UE在一个时间单元同时发送上行信号和接收下行信号的情况下,根据网络侧设备配置的开环功率参数集的参数和功率回退值,确定上行信号的发送功率;其中,功率回退值为网络侧设备为UE在一个时间单元同时发送上行信号和接收下行信号的信号组合所配置的功率回退值。
本申请实施例提供的发送功率确定装置能够实现上述方法实施例中UE实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例中的发送功率确定装置可以是UE,例如具有操作系统的UE,也可以是UE中的部件,例如集成电路或芯片。该UE可以是终端,也可以为除终端之外的其他设备。示例性的,UE可以包括但不限于上述所列举的UE 11的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
可选地,如图11所示,本申请实施例还提供一种通信设备5000,包括处理器5001和存储器5002,存储器5002上存储有可在所述处理器5001上运行的程序或指令,例如,该通信设备5000为UE时,该程序或指令被处理器5001执行时实现上述UE侧方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种UE,包括处理器和通信接口,处理器用于根据第一信息和网络侧设备配置的开环功率参数集的参数,确定上行信号的发送功率;其中,第一信息用于表征UE在一个时域单元是否同时进行上行发送和下行接收;开环功率参数集的参数至少包括开环功率控制工作点。该UE实施例与上述UE侧方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该UE实施例中,且能达到相同的技术效果。
具体地,图12为实现本申请实施例的一种UE的硬件结构示意图。
该UE 7000包括但不限于:射频单元7001、网络模块7002、音频输出单元7003、输入单元7004、传感器7005、显示单元7006、用户输入单元7007、接口单元7008、存储器7009以及处理器7010等中的至少部分部件。
本领域技术人员可以理解,UE 7000还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器7010逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图12中示出的UE结构并不构成对UE的限定,UE可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元7004可以包括图形处理单元(Graphics Processing Unit,GPU)70041和麦克风70042,图形处理器70041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元7006可包括显示面板70061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板70061。用户输入单元7007包括触控面板70071以及其他输入设备70072中的至少一种。触控面板70071,也称为触摸屏。触控面板70071可包括触摸检测装置和触摸控制器两个部分。其他输入设备70072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元7001接收来自网络侧设备的下行数据后,可以传输给处理器7010进行处理;另外,射频单元7001可以向网络侧设备发送上行数据。通常,射频单元7001包括但不限于天线、放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器7009可用于存储软件程序或指令以及各种数据。存储器7009可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器7009可以包括易失性存储器或非易失性存储器,或者,存储器7009可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器7009包括但不限于这些和任意其它适合类型的存储器。
处理器7010可包括一个或多个处理单元;可选的,处理器7010集成应用处理器和调 制解调处理器,其中,应用处理器主要处理涉及操作系统、用户界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器7010中。
其中,处理器7010,用于根据第一信息和网络侧设备配置的开环功率参数集的参数,确定上行信号的发送功率;其中,第一信息用于表征UE在一个时域单元是否同时进行上行发送和下行接收;开环功率参数集的参数至少包括开环功率控制工作点。
本申请实施例提供一种UE,UE可以结合UE在一个时域单元是否同时进行上行发送和下行接收,以及网络配置的开环功率控制工作点,确定UE发送上行信号的发送功率,即通过控制上行信号的发送功率,以降低在UE侧同时进行上行发送与下行接收时的自干扰强度,从而提升系统资源利用率并降低信号的传输时延。
本申请实施例提供的UE能够实现上述方法实施例中UE实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述发送功率确定方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的通信设备中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例另提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现上述方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (20)

  1. 一种发送功率确定方法,包括:
    用户设备UE根据第一信息和网络侧设备配置的开环功率参数集的参数,确定上行信号的发送功率;
    其中,所述第一信息用于表征所述UE在一个时域单元是否同时进行上行发送和下行接收;所述开环功率参数集的参数至少包括开环功率控制工作点。
  2. 根据权利要求1所述的方法,其中,所述UE根据第一信息和网络侧设备配置的开环功率参数集的参数,确定上行信号的发送功率,包括:
    在所述UE在一个时间单元仅发送上行信号的情况下,所述UE根据网络侧设备配置的第一开环功率参数集的参数,确定上行信号的发送功率;
    或者,
    在所述UE在一个时间单元同时发送上行信号和接收下行信号的情况下,所述UE根据网络侧设备配置的第二开环功率参数集的参数,确定上行信号的发送功率。
  3. 根据权利要求1或2所述的方法,其中,所述UE根据第一信息和网络侧设备配置的开环功率参数集的参数,确定上行信号的发送功率,包括:
    在所述UE在一个时间单元同时发送上行信号和接收下行信号的情况下,若所述UE根据所述开环功率参数集的参数确定的发送功率大于网络侧设备配置的最大发送功率,则所述UE将所述最大发送功率确定为上行信号的发送功率。
  4. 根据权利要求1所述的方法,其中,所述UE根据第一信息和网络侧设备配置的开环功率参数集的参数,确定上行信号的发送功率,包括:
    在所述UE在一个时间单元同时发送上行信号和接收下行信号的情况下,若所述UE的一个上行信号与至少一个下行信号时域重叠,则所述UE根据网络侧设备配置的发送功率顺序,从多个发送功率中确定上行信号的发送功率;
    其中,所述多个发送功率为根据网络侧设备为所述一个上行信号和所述至少一个下行信号配置的多个开环功率参数集的参数确定。
  5. 根据权利要求1所述的方法,其中,所述UE根据第一信息和网络侧设备配置的开环功率参数集的参数,确定上行信号的发送功率,包括:
    在所述UE在一个时间单元同时发送上行信号和接收下行信号的情况下,对于动态授权指示的物理上行共享信道PUSCH重复发送,所述UE根据网络侧设备配置的x个开环功率参数集的参数,确定上行信号的发送功率,x为大于1的整数;
    或者,
    在所述UE在一个时间单元同时发送上行信号和接收下行信号的情况下,对于配置授权物理上行共享信道CG PUSCH重复发送,所述UE根据网络侧设备配置的y个开环功率参数集的参数,确定上行信号的发送功率,y为大于1的整数。
  6. 根据权利要求5所述的方法,其中,对于动态调度的PUSCH重复发送,由所 述UE根据第一指示域和网络侧设备配置的开环功率参数集的参数,确定上行信号的发送功率;
    其中,所述第一指示域用于指示所述UE在一个时间单元同时发送上行信号和接收下行信号时的开环功率参数集。
  7. 根据权利要求1所述的方法,其中,所述UE根据第一信息和网络侧设备配置的开环功率参数集的参数,确定上行信号的发送功率,包括:
    在所述UE在一个时间单元同时发送上行信号和接收下行信号的情况下,对于动态授权指示的物理上行控制信道PUCCH重复发送,所述UE根据网络侧设备配置的z个开环功率参数集的参数,确定上行信号的发送功率,z为大于1的整数;
    或者,
    在所述UE在一个时间单元同时发送上行信号和接收下行信号的情况下,对于配置的PUCCH重复发送,所述UE根据网络侧设备配置的k个开环功率参数集的参数,确定上行信号的发送功率,k为大于1的整数。
  8. 根据权利要求7所述的方法,其中,对于所述PUCCH的调度下行控制信息DCI,由所述UE根据第二指示域和网络侧设备配置的开环功率参数集的参数,确定上行信号的发送功率;
    其中,所述第二指示域用于指示所述UE在一个时间单元同时发送上行信号和接收下行信号时的开环功率参数集的开环功率控制工作点。
  9. 根据权利要求1所述的方法,其中,所述UE根据第一信息和网络侧设备配置的开环功率参数集的参数,确定上行信号的发送功率,包括:
    在所述UE在一个时间单元同时发送上行信号和接收下行信号的情况下,所述UE根据网络侧设备配置的开环功率参数集的参数和功率回退值,确定上行信号的发送功率;
    其中,所述功率回退值为网络侧设备为所述UE在一个时间单元同时发送上行信号和接收下行信号的信号组合所配置的功率回退值。
  10. 一种发送功率确定装置,应用于用户设备UE,所述装置包括:确定模块;
    所述确定模块,用于根据第一信息和网络侧设备配置的开环功率参数集的参数,确定上行信号的发送功率;
    其中,所述第一信息用于表征所述UE在一个时域单元是否同时进行上行发送和下行接收;所述开环功率参数集的参数至少包括开环功率控制工作点。
  11. 根据权利要求10所述的装置,其中,所述确定模块,具体用于:
    在所述UE在一个时间单元仅发送上行信号的情况下,根据网络侧设备配置的第一开环功率参数集的参数,确定上行信号的发送功率;
    或者,
    在所述UE在一个时间单元同时发送上行信号和接收下行信号的情况下,根据网 络侧设备配置的第二开环功率参数集的参数,确定上行信号的发送功率。
  12. 根据权利要求10或11所述的装置,其中,所述确定模块,具体用于在所述UE在一个时间单元同时发送上行信号和接收下行信号的情况下,若所述UE根据所述开环功率参数集的参数确定的发送功率大于网络侧设备配置的最大发送功率,则将所述最大发送功率确定为上行信号的发送功率。
  13. 根据权利要求10所述的装置,其中,所述确定模块,具体用于在所述UE在一个时间单元同时发送上行信号和接收下行信号的情况下,若所述UE的一个上行信号与至少一个下行信号时域重叠,则根据网络侧设备配置的发送功率顺序,从多个发送功率中确定上行信号的发送功率;
    其中,所述多个发送功率为根据网络侧设备为所述一个上行信号和所述至少一个下行信号配置的多个开环功率参数集的参数确定。
  14. 根据权利要求10所述的装置,其中,所述确定模块,具体用于:
    在所述UE在一个时间单元同时发送上行信号和接收下行信号的情况下,对于动态授权指示的物理上行共享信道PUSCH重复发送,根据网络侧设备配置的x个开环功率参数集的参数,确定上行信号的发送功率,x为大于1的整数;
    或者,
    在所述UE在一个时间单元同时发送上行信号和接收下行信号的情况下,对于配置授权物理上行共享信道CG PUSCH重复发送,根据网络侧设备配置的y个开环功率参数集的参数,确定上行信号的发送功率,y为大于1的整数。
  15. 根据权利要求14所述的装置,其中,对于动态调度的PUSCH重复发送,由所述UE根据第一指示域和网络侧设备配置的开环功率参数集的参数,确定上行信号的发送功率;
    其中,所述第一指示域用于指示所述UE在一个时间单元同时发送上行信号和接收下行信号时的开环功率参数集。
  16. 根据权利要求10所述的装置,其中,所述确定模块,具体用于:
    在所述UE在一个时间单元同时发送上行信号和接收下行信号的情况下,对于动态授权指示的物理上行控制信道PUCCH重复发送,根据网络侧设备配置的z个开环功率参数集的参数,确定上行信号的发送功率,z为大于1的整数;
    或者,
    在所述UE在一个时间单元同时发送上行信号和接收下行信号的情况下,对于配置的PUCCH重复发送,根据网络侧设备配置的k个开环功率参数集的参数,确定上行信号的发送功率,k为大于1的整数。
  17. 根据权利要求16所述的装置,其中,对于所述PUCCH的调度下行控制信息DCI,由所述UE根据第二指示域和网络侧设备配置的开环功率参数集的参数,确定上行信号的发送功率;
    其中,所述第二指示域用于指示所述UE在一个时间单元同时发送上行信号和接收下行信号时的开环功率参数集的开环功率控制工作点。
  18. 根据权利要求10所述的装置,其中,所述确定模块,具体用于在所述UE在一个时间单元同时发送上行信号和接收下行信号的情况下,根据网络侧设备配置的开环功率参数集的参数和功率回退值,确定上行信号的发送功率;
    其中,所述功率回退值为网络侧设备为所述UE在一个时间单元同时发送上行信号和接收下行信号的信号组合所配置的功率回退值。
  19. 一种用户设备UE,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至9中任一项所述的发送功率确定方法的步骤。
  20. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至9中任一项所述的发送功率确定方法的步骤。
PCT/CN2023/139468 2022-12-23 2023-12-18 发送功率确定方法、装置、用户设备及存储介质 WO2024131718A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211667764.7A CN118250780A (zh) 2022-12-23 2022-12-23 发送功率确定方法、装置、用户设备及存储介质
CN202211667764.7 2022-12-23

Publications (1)

Publication Number Publication Date
WO2024131718A1 true WO2024131718A1 (zh) 2024-06-27

Family

ID=91561396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/139468 WO2024131718A1 (zh) 2022-12-23 2023-12-18 发送功率确定方法、装置、用户设备及存储介质

Country Status (2)

Country Link
CN (1) CN118250780A (zh)
WO (1) WO2024131718A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107925967A (zh) * 2015-09-01 2018-04-17 高通股份有限公司 用于在d2d/wan共存网络中的功率控制的方法和装置
CN109600154A (zh) * 2017-09-30 2019-04-09 中兴通讯股份有限公司 参数获取方法及装置
CN110248402A (zh) * 2018-03-09 2019-09-17 华为技术有限公司 一种功率控制方法及设备
CN112738875A (zh) * 2019-10-14 2021-04-30 大唐移动通信设备有限公司 一种功率参数的确定方法、指示方法、终端和网络设备
WO2022030819A1 (ko) * 2020-08-07 2022-02-10 엘지전자 주식회사 무선 통신 시스템에서 상향링크 송수신 방법 및 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107925967A (zh) * 2015-09-01 2018-04-17 高通股份有限公司 用于在d2d/wan共存网络中的功率控制的方法和装置
CN109600154A (zh) * 2017-09-30 2019-04-09 中兴通讯股份有限公司 参数获取方法及装置
CN110248402A (zh) * 2018-03-09 2019-09-17 华为技术有限公司 一种功率控制方法及设备
CN112738875A (zh) * 2019-10-14 2021-04-30 大唐移动通信设备有限公司 一种功率参数的确定方法、指示方法、终端和网络设备
WO2022030819A1 (ko) * 2020-08-07 2022-02-10 엘지전자 주식회사 무선 통신 시스템에서 상향링크 송수신 방법 및 장치

Also Published As

Publication number Publication date
CN118250780A (zh) 2024-06-25

Similar Documents

Publication Publication Date Title
US20230362924A1 (en) Transmission processing method and related device
CN114501629B (zh) 资源配置方法、装置、设备及可读存储介质
US20240040511A1 (en) Uplink power determination method, terminal and non-transitory readable storage medium
WO2022213899A1 (zh) 上行信道传输方法、装置、终端及网络侧设备
WO2024131718A1 (zh) 发送功率确定方法、装置、用户设备及存储介质
CN116419409A (zh) 资源传输方向确定方法、装置及终端
CN116095838A (zh) 上行传输信息确定、上行传输以及上行传输配置的方法
WO2024140522A1 (zh) 通信方法、终端及网络侧设备
WO2024114515A2 (zh) 上行传输的发射功率确定方法、装置、终端及网络侧设备
WO2023198026A1 (zh) 发射功率确定方法、装置、终端、网络侧设备及存储介质
CN115412211B (zh) 上行传输时间窗的确定方法、装置、终端及网络侧设备
WO2024061261A1 (zh) 资源配置方法及装置、终端及网络侧设备
WO2024094015A1 (zh) 传输方法、ue及可读存储介质
WO2024027747A1 (zh) 数据传输处理方法、装置、终端及网络侧设备
WO2024022162A1 (zh) 信息配置方法、装置、终端、网络侧设备及可读存储介质
WO2024146482A1 (zh) 一种传输参数配置方法、装置及终端设备
WO2024140634A1 (zh) 传输方法、设备及可读存储介质
WO2024131719A1 (zh) 传输方法、装置及相关产品
WO2024104151A1 (zh) 预编码资源块组prg的确定、指示方法、装置和终端
WO2024067571A1 (zh) 灵活双工sbfd信息指示方法、终端及网络侧设备
WO2024099157A1 (zh) 上行子带处理方法、配置方法、装置、终端及网络侧设备
WO2024114490A1 (zh) 上行信道传输方法、装置、终端及网络侧设备
WO2024104152A1 (zh) 频域资源确定方法、终端及网络侧设备
WO2023151519A1 (zh) 功率控制pc参数的确定方法、装置及终端
WO2022188718A1 (zh) 上行传输处理方法及终端