WO2024131638A1 - 一种城市地下管网空间冗余度分析方法 - Google Patents

一种城市地下管网空间冗余度分析方法 Download PDF

Info

Publication number
WO2024131638A1
WO2024131638A1 PCT/CN2023/138838 CN2023138838W WO2024131638A1 WO 2024131638 A1 WO2024131638 A1 WO 2024131638A1 CN 2023138838 W CN2023138838 W CN 2023138838W WO 2024131638 A1 WO2024131638 A1 WO 2024131638A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe section
pipe
target
expansion
target expansion
Prior art date
Application number
PCT/CN2023/138838
Other languages
English (en)
French (fr)
Inventor
张建清
刘佳明
苏婷
曾靖
马圣敏
徐涛
李屹
肖家豪
刘晓葳
吴家阳
Original Assignee
长江勘测规划设计研究有限责任公司
长江地球物理探测(武汉)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长江勘测规划设计研究有限责任公司, 长江地球物理探测(武汉)有限公司 filed Critical 长江勘测规划设计研究有限责任公司
Publication of WO2024131638A1 publication Critical patent/WO2024131638A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/11Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0637Strategic management or analysis, e.g. setting a goal or target of an organisation; Planning actions based on goals; Analysis or evaluation of effectiveness of goals
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • G06Q50/26Government or public services
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/60Planning or developing urban green infrastructure

Definitions

  • the invention relates to the technical field of urban underground space planning and design, and more specifically to a method for analyzing the spatial redundancy of an urban underground pipe network.
  • This method only considers whether there is a direct cross collision between the pipelines, and ignores the situation of soft collision between the two pipelines, that is, there is no actual collision but the distance between the pipelines is less than the minimum distance required in the design rules. This may endanger the safety of the pipeline and lead to insufficient inspection and maintenance space.
  • the purpose of the present invention is to provide a method for analyzing the spatial redundancy of urban underground pipe networks.
  • the method is a method for analyzing (calculating) the spatial redundancy of urban underground pipe networks based on spatial geometry.
  • the method analyzes and evaluates the spatial redundancy of underground pipe networks in the study area, and proposes a quantitative index, namely, the spatial redundancy value.
  • the value reflects the possibility of pipe network reconstruction and expansion, so as to judge whether the pipe can be expanded to the target design pipe diameter.
  • the redundancy value of a pipe when the redundancy value of a pipe is 0, That is, the pipeline space redundancy is zero and cannot be expanded; when the value is 1, the pipeline space redundancy is sufficient and can be expanded to the target expansion diameter; when the value is between 0 and 1, the pipeline space redundancy is not sufficient and can be appropriately expanded, but cannot be expanded to the target expansion diameter; through the method of the present invention, the redundancy of the underground pipeline network in the study area can be analyzed and evaluated, the problem that the redundancy of the underground space is difficult to quantify and evaluate is solved, and the design of waterlogging prevention and control projects is supported to be more scientific and efficient.
  • the technical solution of the present invention is: a method for analyzing spatial redundancy of urban underground pipe networks, characterized in that it comprises the following steps:
  • Step 1 Basic information collection
  • the basic data of the spatial distribution of underground pipe networks in the study area include the coordinates of the starting point, the elevation of the starting point, the buried depth and the pipe diameter, etc.;
  • Step 2 Pre-judge the impact of pipe expansion and determine the pipe sections that will be affected by expansion
  • step 2 If the current considered pipe section does not affect the expansion of the target expansion pipe section, repeat step 2 to change other considered pipe sections in the area to make a pre-judgment of the expansion impact;
  • Step 3 Calculate the horizontal and vertical distances between the centerline segments of the pipe segment
  • Step 4 Calculate the redundancy of the target expansion pipe section.
  • step 2 the specific method for pre-judging the impact of pipe section expansion is:
  • Step 21 Select a target expansion pipe section in the target area, and set a target expansion pipe diameter for the target expansion pipe section;
  • Step 22 Select any other pipe section in the target area as the current pipe section to be considered, and make a preliminary judgment on the impact of capacity expansion based on the spatial distribution data; the preliminary judgment method is:
  • Two cubic bounding boxes are set to enclose the target expansion pipe section and the current considered pipe section respectively; if the two bounding boxes do not intersect, the current considered pipe section will not affect the expansion of the target expansion pipe section; if the two bounding boxes intersect, the current considered pipe section may affect the expansion of the target expansion pipe section; that is, if any of the following six conditions is not met, the current considered pipe section may affect the expansion of the target expansion pipe section; the six conditions are shown in the following formulas: max(x 3 ,x 4 )+Diam(K) ⁇ min(x 1 ,x 2 )-h 0 (K)-Dmax(L) min(x 3 ,x 4 )-Diam(K)>max(x 1 ,x 2 )+h 0 (K)+Dmax(L) max(y 3 ,y 4 )+Diam(K) ⁇ min(y 1 ,y 2 )-h 0 (K)-Dmax(L) min(y 3 ,y 4 )-Diam(K
  • P 1 : (x 1 , y 1 , z 1 ) and P 2 : (x 2 , y 2 , z 2 ) are the center line segments of the target expansion pipe section L respectively.
  • the starting and ending point coordinates of Q 1 : (x 3 , y 3 , z 3 ) and Q 2 : (x 4 , y 4 , z 4 ) are the center line segments of the pipe segment K currently under consideration.
  • the starting and ending point coordinates of h 0 (K) and v 0 (K) are the minimum horizontal clearance and minimum vertical clearance between the target expansion pipe section and the current considered pipe section specified in relevant standards or regulations, respectively;
  • Dmax (L) is the target expansion pipe diameter of the target expansion pipe section L;
  • Diam (K) is the actual pipe diameter of the current considered pipe section K;
  • Step 23 If the current pipe section under consideration will affect the expansion of the target expansion pipe section after pre-judgment, proceed to step 3;
  • step 22 is repeated.
  • step 3 the specific method for calculating the horizontal distance and vertical distance between the center line segments of the pipe segment is:
  • Step 31 Determine the spatial geometric relationship of the centerline segment of the pipe segment
  • the spatial geometric relationship variables A and B between the two are calculated as follows:
  • the two center line segments are in a spatial non-coplanar relationship. At this time, it is determined whether the common perpendicular endpoints of the two center line segments are on the two center line segments; if so, proceed to step 33; if not, proceed to step 32;
  • ⁇ ⁇ is the operator of vector length
  • d X , d Y , d Z are the components of vector d in the X, Y, and Z axis directions respectively
  • the target vector d is the vector with the shortest length in the set F:
  • the set F can be obtained as follows:
  • ⁇ ⁇ is the operator symbol of vector length; the operator ⁇ represents the dot product operation of two vectors;
  • Step 33 At this time, the calculation formulas for the horizontal distance l H and the vertical distance l V between the two center line segments are:
  • represents the absolute value of variable B
  • ⁇ ⁇ is the operator symbol of vector length
  • a X , A Y , and A Z are the components of vector A in the X, Y, and Z axis directions respectively.
  • step 4 the specific method for calculating the redundancy of the target expansion pipe section is:
  • Step 41 According to the minimum clearance requirement between the target expansion pipe section L and the current considered pipe section K specified in the relevant standards or regulations, the maximum pipe diameter D L (K) that can be expanded by the target expansion pipe section is calculated.
  • h 0 (K) and v 0 (K) are the minimum horizontal clearance and minimum vertical clearance between the target expansion pipe section and the current considered pipe section specified in relevant standards or regulations, respectively;
  • Diam(L) and Diam(K) are the actual pipe diameters of the target expansion pipe section L and the current considered pipe section K, respectively;
  • the operators max() and min() represent taking the maximum value and taking the minimum value, respectively;
  • l H and l V are the horizontal distance and vertical distance between the center line segment of the target expansion pipe section and the center line segment of the current considered pipe section, respectively;
  • Step 42 Traverse all the considered pipe sections that will affect the expansion of the target expansion pipe section to calculate the redundancy of the target expansion pipe section.
  • the formula is as follows:
  • Diam(L) is the actual diameter of the target expansion pipe section L
  • redn(L) is the total redundancy of the target expansion pipe section
  • D L (K) is the maximum diameter that can be expanded in the target expansion pipe section
  • Dmax(L) is the target expansion pipe diameter of the target expansion pipe section L.
  • the present invention innovatively provides a spatial redundancy analysis method for urban underground pipe networks based on spatial geometry.
  • the innovative features and beneficial effects of the method specifically include:
  • the present invention combines engineering practice and relevant design rules to propose a geometry-based urban underground drainage network spatial redundancy method; in view of the problem that the minimum distance between pipes is not considered in the existing pipe network collision analysis, the present invention proposes a geometry-based urban underground drainage network spatial redundancy analysis method; the method proposed in the present invention can analyze and evaluate the spatial redundancy of the underground pipe network in the study area, and proposes a quantitative indicator, namely the spatial redundancy value, the value of which reflects the possibility of pipe network reconstruction and expansion, and can provide a more scientific and efficient basis for the design of waterlogging prevention and control projects; it solves the problem that the underground space redundancy is difficult to quantify and evaluate;
  • the present invention proposes a spatial redundancy analysis method for underground drainage pipe networks, which can provide algorithm support for intelligent analysis of urban underground space in smart city management and construction; using the spatial redundancy calculation method in the present invention, spatial redundancy calculation can be performed for the pipe to be expanded and the target design pipe diameter: when the value is 0, that is, the spatial redundancy of the pipe is zero, and expansion is impossible; when the value is 1, that is, the spatial redundancy of the pipe is sufficient, and it can be expanded to the target expansion pipe diameter; when the value is between 0 and 1, that is, the spatial redundancy of the pipe is not sufficient, and appropriate expansion can be carried out, but it cannot be expanded to the target expansion pipe diameter.
  • This method is used to determine whether the pipe can be expanded to the target design pipe diameter, and accordingly replace the pipe with a diameter that is too small with a pipe with a corresponding larger diameter, thereby solving the urban waterlogging problem caused by the drainage system being unable to carry the rainfall due to the small pipe diameter.
  • Fig. 1 is a process flow chart of the present invention.
  • FIG. 2 is a three-dimensional spatial schematic diagram of three pipe segments in this embodiment of the present invention.
  • a method for analyzing spatial redundancy of an urban underground pipe network comprises the following steps:
  • Step 1 Basic information collection
  • the basic data of the spatial distribution of underground pipe networks in the study area include the coordinates of the starting point, the elevation of the starting point, the buried depth and the pipe diameter, etc.;
  • Step 2 Pre-judge the impact of pipe expansion and determine the pipe sections that will be affected by expansion
  • step 2 If the current considered pipe section does not affect the expansion of the target expansion pipe section, repeat step 2 to change other considered pipe sections in the area to make a pre-judgment of the expansion impact;
  • Step 3 Calculate the horizontal and vertical distances between the centerline segments of the pipe segment
  • Step 4 Calculate the redundancy of the target expansion pipe section.
  • step 2 the specific method for pre-judging the impact of pipe section expansion is:
  • Step 21 Select a target expansion pipe section in the target area, and set a target expansion pipe diameter for the target expansion pipe section;
  • Step 22 Select any other pipe section in the target area as the current pipe section to be considered, and make a preliminary judgment on the impact of capacity expansion based on the spatial distribution data; the preliminary judgment method is:
  • P 1 : (x 1 , y 1 , z 1 ) and P 2 : (x 2 , y 2 , z 2 ) are the center line segments of the target expansion pipe section L respectively.
  • the starting and ending point coordinates of Q 1 : (x 3 , y 3 , z 3 ) and Q 2 : (x 4 , y 4 , z 4 ) are the center line segments of the pipe segment K currently under consideration.
  • h 0 (K) and v 0 (K) are the minimum horizontal clearance and minimum vertical clearance between the target expansion pipe section and the current considered pipe section specified in the relevant standards or regulations;
  • Dmax (L) is the target expansion pipe diameter of the target expansion pipe section L;
  • Diam (K) is the actual pipe diameter of the current considered pipe section K;
  • Step 23 If the current pipe section under consideration will affect the expansion of the target expansion pipe section after pre-judgment, proceed to step 3;
  • step 22 is repeated.
  • step 3 the specific method for calculating the horizontal distance and vertical distance between the centerline segments of the pipe segment is:
  • Step 31 Determine the spatial geometric relationship of the centerline segment of the pipe segment
  • the spatial geometric relationship variables A and B between the two are calculated as follows:
  • the two center line segments are in a spatial non-coplanar relationship. At this time, it is determined whether the common perpendicular endpoints of the two center line segments are on the two center line segments; if so, proceed to step 33; if not, proceed to step 32;
  • ⁇ ⁇ is the operator of vector length
  • d X , d Y , d Z are the components of vector d in the X, Y, and Z axis directions respectively
  • the target vector d is the vector with the shortest length in the set F:
  • the set F can be obtained as follows:
  • ⁇ ⁇ is the operator symbol of vector length; the operator ⁇ represents the dot product operation of two vectors;
  • Step 33 At this time, the calculation formulas for the horizontal distance l H and the vertical distance l V between the two center line segments are:
  • represents the absolute value of variable B
  • ⁇ ⁇ is the operator symbol of vector length
  • a X , A Y , and A Z are the components of vector A in the X, Y, and Z axis directions respectively.
  • step 4 the specific method for calculating the redundancy of the target expansion pipe section is:
  • Step 41 According to the minimum clearance requirement between the target expansion pipe section L and the current considered pipe section K specified in the relevant standards or regulations, the maximum pipe diameter D L (K) that can be expanded by the target expansion pipe section is calculated.
  • h 0 (K) and v 0 (K) are the minimum horizontal clearance and minimum vertical clearance between the target expansion pipe section and the current considered pipe section specified in relevant standards or regulations, respectively;
  • Diam(L) and Diam(K) are the actual pipe diameters of the target expansion pipe section L and the current considered pipe section K, respectively;
  • the operators max() and min() represent taking the maximum value and taking the minimum value, respectively;
  • l H and l V are the horizontal distance and vertical distance between the center line segment of the target expansion pipe section and the center line segment of the current considered pipe section, respectively;
  • Step 42 Traverse all the considered pipe sections that will affect the expansion of the target expansion pipe section to calculate the redundancy of the target expansion pipe section.
  • the formula is as follows:
  • Diam(L) is the actual diameter of the target expansion pipe section L
  • redn(L) is the total redundancy of the target expansion pipe section
  • D L (K) is the maximum diameter that can be expanded in the target expansion pipe section
  • Dmax(L) is the target expansion pipe diameter of the target expansion pipe section L.
  • the specific method for calculating the redundancy of the target expansion pipe section also includes: traversing all pipe sections in the target area and calculating the redundancy of the corresponding pipe sections, so as to perform redundancy analysis on the space and obtain the maximum redundancy, minimum redundancy, mean redundancy and other values in the area.
  • the present invention is now described in detail by taking the application of the present invention to the spatial redundancy analysis of the underground drainage network in a certain urban project area as an example, which can also provide guidance for the application of the present invention to the spatial redundancy analysis of the underground network in other urban projects.
  • This embodiment uses the method of the present invention to perform spatial redundancy analysis on the underground drainage network in a certain urban project area.
  • the specific method is as follows:
  • the method of the present invention is used to process the real data of the drainage network, and the target expansion pipe section L is selected, and the starting and ending points of the center line segment of L are P 1 and P 2 respectively.
  • the target expansion pipe section L is selected, and the starting and ending points of the center line segment of L are P 1 and P 2 respectively.
  • there are two pipe sections that will affect the expansion of the target expansion pipe section L namely: K and M.
  • the starting and ending points of the center line segment of K are Q 1 and Q 2 respectively, and the starting and ending points of the center line segment of M are Q 3 and Q 4 respectively.
  • the spatial distribution data of the three pipe sections, including the starting point coordinates, the end point coordinates, the pipe diameter, etc., are shown in Table 1 below.
  • pipe segment K is selected as the pipe segment currently under consideration, and relevant variable data can be obtained by using step 3 (calculating the horizontal distance and vertical distance between the centerline segments of the pipe segments) and step 41 (calculating the maximum pipe diameter D L (K) that can be expanded by the target expansion pipe segment according to the minimum clearance requirement between the target expansion pipe segment L and the currently considered pipe segment K specified in the relevant standards or regulations), as shown in Table 2 below.
  • step 3 select pipe segment M as the currently considered pipe segment
  • step 41 calculation of the maximum pipe diameter D L (M) that can be expanded by the target expansion pipe segment according to the minimum clearance requirement between the target expansion pipe segment L and the currently considered pipe segment M specified in the relevant standards or regulations
  • step 42 (traversing all the considered pipe sections that will affect the expansion of the target expansion pipe section, that is, calculating the redundancy of the target expansion pipe section), the spatial redundancy value of the pipe section L when different target pipe diameters are selected can be obtained, as shown in Table 4 below.
  • 0.5 meters is finally selected as the expansion pipe diameter to expand the pipe section L.
  • the spatial three-dimensional schematic diagram of the three pipe segments is shown in Figure 2.
  • the cylinder shown in L represents pipe segment L; the cylinder shown in K represents pipe segment K; and the cylinder shown in M represents pipe segment M.
  • 0.5 meters is selected as the expansion pipe diameter.
  • the pipe section L can be replaced smoothly without collision. Through collision detection, it is found that the distance between the newly replaced pipe and other pipes is greater than or equal to the minimum distance required by the standard, and meets the urban waterlogging discharge needs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Strategic Management (AREA)
  • Economics (AREA)
  • Educational Administration (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Tourism & Hospitality (AREA)
  • Marketing (AREA)
  • Operations Research (AREA)
  • Mathematical Physics (AREA)
  • General Business, Economics & Management (AREA)
  • Development Economics (AREA)
  • Mathematical Optimization (AREA)
  • Data Mining & Analysis (AREA)
  • Mathematical Analysis (AREA)
  • Game Theory and Decision Science (AREA)
  • Quality & Reliability (AREA)
  • Pure & Applied Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Computational Mathematics (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • Algebra (AREA)
  • Human Computer Interaction (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Pipeline Systems (AREA)

Abstract

一种城市地下管网空间冗余度分析方法,包括如下步骤,步骤一:基础资料收集;步骤二:管段扩容影响预判断、确定影响扩容管段;进行目标扩容管段选取并对当前考虑管段进行扩容影响预判断;若当前考虑管段不影响目标扩容管段的扩容,则重复步骤二,换取区域内其它考虑管段进行扩容影响预判断;若当前考虑管段影响目标扩容管段的扩容,则进入下一步骤;步骤三:管段中心线段间的水平距离和垂直距离计算;步骤四:目标扩容管段冗余度计算。该方法解决了地下空间冗余程度难以量化与评估的问题;具有对研究区域内地下管网的空间冗余程度进行分析量化与评估,反映管网改扩建的可能性,便于内涝防治工程更加科学、高效的设计的优点。

Description

一种城市地下管网空间冗余度分析方法 技术领域
本发明涉及城市地下空间规划设计技术领域,更具体地说它是一种城市地下管网空间冗余度分析方法。
背景技术
近年来,受强降雨的影响,许多城市频繁发生内涝灾害,严重影响到人民生命财产安全。“海绵城市内涝防治系统的功能探析”从自然因素和人为因素两方面对城市内涝形成原因进行分析,自然因素主要是气候和城市地形因素导致了内涝的形成,而人为因素则主要是因为城市排水系统建设不完善,导致强降雨发生时,排水系统无法承载过重的负荷。同时,提出了建设海绵城市以及应积极优化排水系统的想法。而“系统思维下的北方城市内涝问题及防治对策”也认为极端降水超过城市雨水系统排水能力才是导致城市内涝发生的根本原因。同时,强调了城市内涝灾害应急管理信息化平台的建设可以有效降低城市内涝风险。
城市内涝防治有两个重要方法:一是完善排水系统;二是智慧城市管理建设。两者都需要对城市地下管网空间的冗余度进行分析。目前国内外相关文献还鲜有该方面的研究。大多数相关研究者主要对管道的碰撞分析进行了研究。如“基于几何的三维地下供水管网碰撞分析”研究了基于几何的管道碰撞分析算法,并建立了三维地下供水管网碰撞分析系统原型。碰撞分析与冗余度分析类似,但碰撞分析的目的是在管网初步设计时,对管道布设位置的合理性进行判断,该方法只考虑了管道间是否发生了直接交叉碰撞,忽略了两管道发生软碰撞的情况,即实际并没有碰撞但管道间的距离小于设计规则中要求满足的最小距离,这样有可能危害管道安全,以及导致检修维修空间不足的问题。
针对由于管道管径过小,导致排水系统无法承载降雨量而引发的城市内涝问题,常采用将管径过小的管道更换为管径更大的管道的方式,而现有技术难以判断管道是否可以扩容到目标设计管径。
因此,开发一种能解决地下空间冗余程度难以量化与评估的问题的城市地下管网空间冗余度分析方法很有必要。
发明内容
本发明的目的是为了提供一种城市地下管网空间冗余度分析方法,为一种基于空间几何的城市地下管网空间冗余度分析(计算)方法,对研究区域内地下管网的空间冗余程度进行分析与评估,并且提出了一个量化的指标,即空间冗余度数值,数值大小反应了管网改扩建的可能性,从而判断管道是否可以扩容到目标设计管径,如:当某管道冗余度数值为0时, 即该管道空间冗余程度为零,无法进行扩容;当数值为1时,即该管道空间冗余程度充足,可扩容至目标扩容管径;当数值为0到1之间时,即该管道空间冗余程度不太充足,可进行适当扩容,但无法扩容至目标扩容管径;通过本发明方法,可对研究区域内地下管网的冗余程度进行分析与评估,解决地下空间冗余程度难以量化与评估的问题,支持内涝防治工程设计更加科学、高效。
为了实现上述目的,本发明的技术方案为:一种城市地下管网空间冗余度分析方法,其特征在于:包括如下步骤,
步骤一:基础资料收集;
收集整理研究区域内地下管网的空间分布数据基础资料,并划分子区域,选取目标区域进行冗余度分析;研究区域内地下管网的空间分布数据基础资料包括起始点坐标、起始点高程、埋深及管径等;
步骤二:管段扩容影响预判断、确定影响扩容管段;
进行目标扩容管段选取并对当前考虑管段进行扩容影响预判断;
若当前考虑管段不影响目标扩容管段的扩容,则重复步骤二,换取区域内其它考虑管段进行扩容影响预判断;
步骤三:管段中心线段间的水平距离和垂直距离计算;
步骤四:目标扩容管段冗余度计算。
在上述技术方案中,在步骤二中,管段扩容影响预判断的具体方法为:
步骤21:选取目标区域内的目标扩容管段,设置目标扩容管段的目标扩容管径;
步骤22:任选目标区域内其它任一管段作为当前考虑管段,根据空间分布数据进行扩容影响的预判断;预判断方法为:
设置两个立方体包围盒分别包围目标扩容管段和当前考虑管段;如果两个包围盒不相交,则当前考虑管段不会影响目标扩容管段的扩容;如果两个包围盒相交,则当前考虑管段可能会影响目标扩容管段的扩容;即如果不满足以下六个条件中的任意一条,则该当前考虑管段可能会影响目标扩容管段的扩容;六个条件分别为如下式所示:
max(x3,x4)+Diam(K)<min(x1,x2)-h0(K)-Dmax(L)
min(x3,x4)-Diam(K)>max(x1,x2)+h0(K)+Dmax(L)
max(y3,y4)+Diam(K)<min(y1,y2)-h0(K)-Dmax(L)
min(y3,y4)-Diam(K)>max(y1,y2)+h0(K)+Dmax(L)
max(z3,z4)+Diam(K)<min(z1,z2)-v0(K)-Dmax(L)
min(z3,z4)-Diam(K)>max(z1,z2)+v0(K)+Dmax(L)
其中,P1:(x1,y1,z1)、P2:(x2,y2,z2)分别为目标扩容管段L的中心线段的起止点坐标;Q1:(x3,y3,z3)、Q2:(x4,y4,z4)分别为当前考虑管段K的中心线段的起止点坐标; h0(K)、v0(K)分别为相关标准或规程中规定的目标扩容管段与当前考虑管段之间的最小水平净距和最小垂直净距;Dmax(L)为目标扩容管段L的目标扩容管径;Diam(K)为当前考虑管段K的实际管径;
步骤23:若当前考虑管段经过预判断后,会影响目标扩容管段的扩容,则进入步骤三;
若当前考虑管段不会影响扩容,则换取目标区域内其它考虑管段,重复步骤22。
在上述技术方案中,在步骤三中,管段中心线段间的水平距离和垂直距离计算的具体方法为:
步骤31:管段中心线段空间几何关系确定;
根据目标扩容管段的中心线段和当前考虑管段的中心线段的起止点坐标,计算二者的空间几何关系变量A、B如下:

其中,分别表示从点P1到点P2、点Q1到点Q2、坐标原点O到点P1、点O到点P2形成的向量;运算符×和·表示两向量的叉乘运算和点乘运算;
若A=0,则目标扩容管段L的中心线段和当前考虑管段K的中心线段平行,进入步骤32;
如果A≠0且B=0,则两中心线相交,进入步骤32;
如果A≠0且B≠0,则两中心线段属于空间异面关系,此时判断两中心线段的公垂线端点是否在两个中心线段上;若在,在进入步骤33;若不在,则进入步骤32;
步骤32:此时,两中心线段间的水平距离lH和垂直距离LV计算公式分别为:

lV=‖dZ
其中,‖ ‖为向量长度的运算符号;dX、dY、dZ分别是向量d在X、Y、Z轴方向的分量;目标向量d为集合F中拥有最短长度的向量:
而集合F可由下式获得:
其中,变量λ0∈[0,1]、λ1∈[0,1]、μ0∈[0,1]、μ1∈[0,1]分别表示0≤λ0≤1、0≤λ1≤1、0≤μ0≤1、0≤μ1≤1;变量λ0、λ1、μ0、μ1可由下式获得:

其中,‖ ‖为向量长度的运算符号;运算符·表示两向量的点乘运算;
步骤33:此时,两中心线段间的水平距离lH和垂直距离lV计算公式分别为:

其中,|B|表示变量B的绝对值大小;‖ ‖为向量长度的运算符号;AX、AY、AZ分别是向量A在X、Y、Z轴方向的分量。
在上述技术方案中,在步骤四中,目标扩容管段冗余度计算的具体方法为:
步骤41:根据相关标准或规程中规定的目标扩容管段L与当前考虑管段K之间的最小净距需求,计算目标扩容管段可扩容的最大管径DL(K),计算公式为:
DL(K)=max(min(lH-h0(K)-Diam(K),lV-v0(K)-Diam(K)),Diam(L))
其中,h0(K)、v0(K)分别为相关标准或规程中规定的目标扩容管段与当前考虑管段之间的最小水平净距和最小垂直净距;Diam(L)、Diam(K)分别为目标扩容管段L和当前考虑管段K的实际管径;运算符max()、min()分别表示取最大值和取最小值;lH和lV分别为目标扩容管段的中心线段和当前考虑管段的中心线段之间的水平距离和垂直距离;
步骤42:遍历所有会影响目标扩容管段扩容的考虑管段,即可计算目标扩容管段的冗余度,公式如下:
其中,为所有考虑管段的集合;表示管段K取自集合Diam(L)为目标扩容管段L的实际管径;redn(L)为目标扩容管段的总冗余度;DL(K)为目标扩容管段可扩容的最大管径;Dmax(L)为目标扩容管段L的目标扩容管径。
本发明创新性提供一种基于空间几何的城市地下管网空间冗余度分析方法,本方法的创新点与有益效果具体包括:
(1)本发明结合工程实际,以及相关设计规则,提出了一种基于几何的城市地下排水管网空间冗余度方法;针对现有管网碰撞分析中未考虑管道间应满足的最小距离的问题,本发明提出了基于几何的城市地下排水管网空间冗余度分析方法;本发明所提方法能对研究区域内地下管网的空间冗余程度进行分析与评估,并且提出了一个量化的指标,即空间冗余度数值,数值大小反应了管网改扩建的可能性,可为内涝防治工程的设计提供更科学、高效的依据;解决了地下空间冗余程度难以量化与评估的问题;
(2)针对城市内涝防治的问题,本发明提出了一种地下排水管网空间冗余度分析方法,可为智慧城市管理建设中城市地下空间智能化分析提供算法支持;利用本发明中的空间冗余度计算方法,可针对待扩容的管道和目标设计管径进行空间冗余度计算:当数值为0时,即该管道空间冗余程度为零,无法进行扩容;当数值为1时,即该管道空间冗余程度充足,可扩容至目标扩容管径;当数值为0到1之间时,即该管道空间冗余程度不太充足,可进行适当扩容,但无法扩容至目标扩容管径,通过该方法判断管道是否可以扩容到目标设计管径,据此将管径过小的管道更换为相应的管径更大的管道的方式,从而解决由于管道管径过小,导致排水系统无法承载降雨量而引发的城市内涝问题。
附图说明
图1为本发明的工艺流程图。
图2为本发明本实施例中三根管段的空间三维示意图。
具体实施方式
下面结合附图详细说明本发明的实施情况,但它们并不构成对本发明的限定,仅作举例而已。同时通过说明使本发明的优点更加清楚和容易理解。
参阅附图可知:一种城市地下管网空间冗余度分析方法,包括如下步骤,
步骤一:基础资料收集;
收集整理研究区域内地下管网的空间分布数据基础资料,并划分子区域,选取目标区域进行冗余度分析;研究区域内地下管网的空间分布数据基础资料包括起始点坐标、起始点高程、埋深及管径等;
步骤二:管段扩容影响预判断、确定影响扩容管段;
进行目标扩容管段选取并对当前考虑管段进行扩容影响预判断;
若当前考虑管段不影响目标扩容管段的扩容,则重复步骤二,换取区域内其它考虑管段进行扩容影响预判断;
步骤三:管段中心线段间的水平距离和垂直距离计算;
步骤四:目标扩容管段冗余度计算。
更进一步地,在步骤二中,管段扩容影响预判断的具体方法为:
步骤21:选取目标区域内的目标扩容管段,设置目标扩容管段的目标扩容管径;
步骤22:任选目标区域内其它任一管段作为当前考虑管段,根据空间分布数据进行扩容影响的预判断;预判断方法为:
设置两个立方体包围盒分别包围目标扩容管段和当前考虑管段;如果两个包围盒不相交,则当前考虑管段不会影响目标扩容管段的扩容;如果两个包围盒相交,则当前考虑管段可能 会影响目标扩容管段的扩容;即如果不满足以下六个条件中的任意一条,则该当前考虑管段可能会影响目标扩容管段的扩容;六个条件分别为如下公式(1)-(6):
max(x3,x4)+Diam(K)<min(x1,x2)-h0(K)-Dmax(L) (1)
min(x3,x4)-Diam(K)>max(x1,x2)+h0(K)+Dmax(L) (2)
max(y3,y4)+Diam(K)<min(y1,y2)-h0(K)-Dmax(L) (3)
min(y3,y4)-Diam(K)>max(y1,y2)+h0(K)+Dmax(L) (4)
max(z3,z4)+Diam(K)<min(z1,z2)-v0(K)-Dmax(L) (5)
min(z3,z4)-Diam(K)>max(z1,z2)+v0(K)+Dmax(L) (6)
其中,P1:(x1,y1,z1)、P2:(x2,y2,z2)分别为目标扩容管段L的中心线段的起止点坐标;Q1:(x3,y3,z3)、Q2:(x4,y4,z4)分别为当前考虑管段K的中心线段的起止点坐标;h0(K)、v0(K)分别为相关标准或规程中规定的目标扩容管段与当前考虑管段之间的最小水平净距和最小垂直净距;Dmax(L)为目标扩容管段L的目标扩容管径;Diam(K)为当前考虑管段K的实际管径;
步骤23:若当前考虑管段经过预判断后,会影响目标扩容管段的扩容,则进入步骤三;
若当前考虑管段不会影响扩容,则换取目标区域内其它考虑管段,重复步骤22。
更进一步地,在步骤三中,管段中心线段间的水平距离和垂直距离计算的具体方法为:
步骤31:管段中心线段空间几何关系确定;
根据目标扩容管段的中心线段和当前考虑管段的中心线段的起止点坐标,计算二者的空间几何关系变量A、B如下:

其中,分别表示从点P1到点P2、点Q1到点Q2、坐标原点O到点P1、点O到点P2形成的向量;运算符×和·表示两向量的叉乘运算和点乘运算;
若A=0,则目标扩容管段L的中心线段和当前考虑管段K的中心线段平行,进入步骤32;
如果A≠0且B=0,则两中心线相交,进入步骤32;
如果A≠0且B≠0,则两中心线段属于空间异面关系,此时判断两中心线段的公垂线端点是否在两个中心线段上;若在,在进入步骤33;若不在,则进入步骤32;
步骤32:此时,两中心线段间的水平距离lH和垂直距离lV计算公式分别为:

lV=‖dZ
其中,‖ ‖为向量长度的运算符号;dX、dY、dZ分别是向量d在X、Y、Z轴方向的分量;目标向量d为集合F中拥有最短长度的向量:
而集合F可由下式获得:
其中,变量λ0∈[0,1]、λ1∈[0,1]、μ0∈[0,1]、μ1∈[0,1]分别表示0≤λ0≤1、0≤λ1≤1、0≤μ0≤1、0≤μ1≤1;变量λ0、λ1、μ0、μ1可由下面四式获得:

其中,‖ ‖为向量长度的运算符号;运算符·表示两向量的点乘运算;
步骤33:此时,两中心线段间的水平距离lH和垂直距离lV计算公式分别为:

其中,|B|表示变量B的绝对值大小;‖ ‖为向量长度的运算符号;AX、AY、AZ分别是向量A在X、Y、Z轴方向的分量。
更进一步地,在步骤四中,目标扩容管段冗余度计算的具体方法为:
步骤41:根据相关标准或规程中规定的目标扩容管段L与当前考虑管段K之间的最小净距需求,计算目标扩容管段可扩容的最大管径DL(K),计算公式为:
DL(K)=max(min(lH-h0(K)-Diam(K),lV-v0(K)-Diam(K)),Diam(L))
其中,h0(K)、v0(K)分别为相关标准或规程中规定的目标扩容管段与当前考虑管段之间的最小水平净距和最小垂直净距;Diam(L)、Diam(K)分别为目标扩容管段L和当前考虑管段K的实际管径;运算符max()、min()分别表示取最大值和取最小值;lH和lV分别为目标扩容管段的中心线段和当前考虑管段的中心线段之间的水平距离和垂直距离;
步骤42:遍历所有会影响目标扩容管段扩容的考虑管段,即可计算目标扩容管段的冗余度,公式如下:
其中,为所有考虑管段的集合;表示管段K取自集合Diam(L)为目标扩容管段L的实际管径;redn(L)为目标扩容管段的总冗余度;DL(K)为目标扩容管段可扩容的最大管径;Dmax(L)为目标扩容管段L的目标扩容管径。
在步骤四中,目标扩容管段冗余度计算的具体方法还包括:遍历目标区域中的所有管段并求取相应管段的冗余度,即可对空间进行冗余度分析,获得区域内的最大冗余度、最小冗余度、均值冗余度等数值。
实施例
现以本发明试用于某城市项目区域的地下排水管网进行空间冗余度分析为实施例对本发明进行详细说明,对本发明应用于其它城市项目的地下管网空间冗余度分析同样具有指导作用。
本实施例中,某城市项目区域中,由于地下排水管网中的某处管道发生破损,且该管道的管径过小,无法满足现在城市内涝排放需求,因此,需要将该管道更换成大管径的新管道,以满足现在城市内涝排放需求。目前的做法是按照该管道的原尺寸更换同等尺寸的管道,或准备一些不同管径的管道进行反复试验,尚未发现有效的管网空间冗余度分析方法,确定该管道的最佳扩容尺寸。
本实施例采用本发明方法对某城市项目区域的地下排水管网进行空间冗余度分析,具体方法如下:
利用本发明中的方法对排水管网真实数据进行处理,选取目标扩容管段L,L的中心线段起止点分别为P1和P2。经过预判断后,会影响目标扩容管段L扩容的管段有两根,分别为:K和M。K的中心线段起止点分别为Q1和Q2,M的中心线段起止点分别为Q3和Q4。三根管段的空间分布数据,包括起点坐标、终点坐标、管径等,如下表1所示。
表1三根管段的空间分布数据

首先选取管段K为当前考虑管段,利用本发明中的方法的步骤三(管段中心线段间的水平距离和垂直距离计算)和步骤41(根据相关标准或规程中规定的目标扩容管段L与当前考虑管段K之间的最小净距需求,计算目标扩容管段可扩容的最大管径DL(K))可得相关变量数据,如下表2所示。
表2管段K的相关变量数据
再选取管段M为当前考虑管段,利用本发明中的方法的步骤三(管段中心线段间的水平距离和垂直距离计算)和步骤41(根据相关标准或规程中规定的目标扩容管段L与当前考虑管段M之间的最小净距需求,计算目标扩容管段可扩容的最大管径DL(M))可得相关变量数据,如下表3所示。
表3管段M的相关变量数据
再根据步骤42(遍历所有会影响目标扩容管段扩容的考虑管段,即计算目标扩容管段的冗余度)可求得选取不同目标管径时,管段L的空间冗余度数值,如下表4所示。
表4管段L的空间冗余度数值
本实施例最终选取0.5米作为扩容管径,进行管段L的扩建处理。
三根管段的空间三维示意图如图2所示,L所示的圆柱体表示管段L;K所示的圆柱体表示管段K;M所示的圆柱体表示管段M。参考《室外排水设计标准》(GB50014-2021)相关规定可知,两根排水管道间的水平距离没有要求,所以图2中只标注了管段间的垂直距离。
验证试验
本实施例选取0.5米作为扩容管径,选用该扩容管径的管道,可无碰撞、顺利地更换管段L,且通过碰撞检测发现新更换管道与其他管道间的距离均大于等于标准所要求的最小距离,且满足城市内涝排放需求。
其它未说明的部分均属于现有技术。

Claims (2)

  1. 一种城市地下管网空间冗余度分析方法,其特征在于:包括如下步骤,
    步骤一:基础资料收集;
    收集整理研究区域内地下管网的空间分布数据基础资料,并划分子区域,选取目标区域进行冗余度分析;研究区域内地下管网的空间分布数据基础资料包括起始点坐标、起始点高程、埋深及管径;
    步骤二:管段扩容影响预判断、确定影响扩容管段;
    进行目标扩容管段选取并对当前考虑管段进行扩容影响预判断;
    若当前考虑管段不影响目标扩容管段的扩容,则重复步骤二,换取区域内其它考虑管段进行扩容影响预判断;
    在步骤二中,管段扩容影响预判断的具体方法为:
    步骤21:选取目标区域内的目标扩容管段,设置目标扩容管段的目标扩容管径;
    步骤22:任选目标区域内其它任一管段作为当前考虑管段,根据空间分布数据进行扩容影响的预判断;预判断方法为:
    设置两个立方体包围盒分别包围目标扩容管段和当前考虑管段;如果两个包围盒不相交,则当前考虑管段不影响目标扩容管段的扩容;如果两个包围盒相交,则当前考虑管段影响目标扩容管段的扩容;即如果不满足以下六个条件中的任意一条,则该当前考虑管段影响目标扩容管段的扩容;六个条件分别为如下所示:
    max(x3,x4)+Diam(K)<min(x1,x2)-h0(K)-Dmax(L)
    min(x3,x4)-Diam(K)>max(x1,x2)+h0(K)+Dmax(L)
    max(y3,y4)+Diam(K)<min(y1,y2)-h0(K)-Dmax(L)
    min(y3,y4)-Diam(K)>max(y1,y2)+h0(K)+Dmax(L)
    max(z3,z4)+Diam(K)<min(z1,z2)-v0(K)-Dmax(L)
    min(z3,z4)-Diam(K)>max(z1,z2)+v0(K)+Dmax(L)
    其中,P1:(x1,y1,z1)、P2:(x2,y2,z2)分别为目标扩容管段L的中心线段的起止点坐标;Q1:(x3,y3,z3)、Q2:(x4,y4,z4)分别为当前考虑管段K的中心线段的起止点坐标;h0(K)、v0(K)分别为相关标准或规程中规定的目标扩容管段与当前考虑管段之间的最小水平净距和最小垂直净距;Dmax(L)为目标扩容管段L的目标扩容管径;Diam(K)为当前考虑管段K的实际管径;
    步骤23:若当前考虑管段经过预判断后,影响目标扩容管段的扩容,则进入步骤三;
    若当前考虑管段不影响扩容,则换取目标区域内其它考虑管段,重复步骤22;
    步骤三:管段中心线段间的水平距离lH和垂直距离lV计算;
    步骤四:目标扩容管段冗余度计算;
    在步骤四中,目标扩容管段冗余度计算的具体方法为:
    步骤41:根据相关标准或规程中规定的目标扩容管段L与当前考虑管段K之间的最小净距需求,计算目标扩容管段可扩容的最大管径DL(K),计算公式为:
    DL(K)=max(min(lH-h0(K)-Diam(K),lV-v0(K)-Diam(K)),Diam(L))
    其中,h0(K)、v0(K)分别为相关标准或规程中规定的目标扩容管段与当前考虑管段之间的最小水平净距和最小垂直净距;Diam(L)、Diam(K)分别为目标扩容管段L和当前考虑管段K的实际管径;运算符max()、min()分别表示取最大值和取最小值;lH和lV分别为目标扩容管段的中心线段和当前考虑管段的中心线段之间的水平距离和垂直距离;
    步骤42:遍历所有影响目标扩容管段扩容的考虑管段,即计算目标扩容管段的冗余度,公式如下:
    其中,为所有考虑管段的集合;表示管段K取自集合Diam(L)为目标扩容管段L的实际管径;redn(L)为目标扩容管段的总冗余度;Dmax(L)为目标扩容管段L的目标扩容管径;DL(K)为目标扩容管段可扩容的最大管径。
  2. 根据权利要求1所述的城市地下管网空间冗余度分析方法,其特征在于:在步骤三中,管段中心线段间的水平距离和垂直距离计算的具体方法为:
    步骤31:管段中心线段空间几何关系确定;
    根据目标扩容管段的中心线段和当前考虑管段的中心线段的起止点坐标,计算二者的空间几何关系变量A、B如下:

    其中,分别表示从点P1到点P2、点Q1到点Q2、坐标原点O到点P1、点O到点P2形成的向量;运算符×和·表示两向量的叉乘运算和点乘运算;
    若A=0,则目标扩容管段L的中心线段和当前考虑管段K的中心线段平行,进入步骤32;
    如果A≠0且B=0,则两中心线相交,进入步骤32;
    如果A≠0且B≠0,则两中心线段属于空间异面关系,此时判断两中心线段的公垂线端点是否在两个中心线段上;若在,在进入步骤33;若不在,则进入步骤32;
    步骤32:此时,两中心线段间的水平距离lH和垂直距离lV计算公式分别为:

    lV=‖dZ
    其中,‖‖为向量长度的运算符号;dX、dY、dZ分别是向量d在X、Y、Z轴方向的分量;目标向量d为集合F中拥有最短长度的向量:
    而集合F由下式获得:
    其中,变量λ0∈[0,1]、λ1∈[0,1]、μ0∈[0,1]、μ1∈[0,1]分别表示0≤λ0≤1、0≤λ1≤1、0≤μ0≤1、0≤μ1≤1;变量λ0、λ1、μ0、μ1由下面四式获得:

    其中,‖‖为向量长度的运算符号;运算符·表示两向量的点乘运算;
    步骤33:此时,两中心线段间的水平距离lH和垂直距离lV计算公式分别为:

    其中,|B|表示变量B的绝对值大小;‖‖为向量长度的运算符号;AX、AY、AZ分别是向量A在X、Y、Z轴方向的分量。
PCT/CN2023/138838 2022-12-20 2023-12-14 一种城市地下管网空间冗余度分析方法 WO2024131638A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211641791.7 2022-12-20
CN202211641791.7A CN115829353B (zh) 2022-12-20 2022-12-20 一种城市地下管网空间冗余度分析方法

Publications (1)

Publication Number Publication Date
WO2024131638A1 true WO2024131638A1 (zh) 2024-06-27

Family

ID=85517028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/138838 WO2024131638A1 (zh) 2022-12-20 2023-12-14 一种城市地下管网空间冗余度分析方法

Country Status (2)

Country Link
CN (1) CN115829353B (zh)
WO (1) WO2024131638A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115829353B (zh) * 2022-12-20 2023-12-05 长江勘测规划设计研究有限责任公司 一种城市地下管网空间冗余度分析方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010044659A (ko) * 2001-03-14 2001-06-05 김계현 지아이에스를 이용한 하수도 관망해석 시스템 및 방법
CN101710353A (zh) * 2009-12-03 2010-05-19 深圳先进技术研究院 基于三维虚拟城市的地下管网布设方法
CN110135083A (zh) * 2019-05-20 2019-08-16 成都同飞科技有限责任公司 一种自带空间属性的三维管网自动化构建方法
CN111047136A (zh) * 2019-11-05 2020-04-21 西安理工大学 一种海绵城市管网设施部署评估方法
CN114117707A (zh) * 2022-01-24 2022-03-01 中机国际工程设计研究院有限责任公司 基于城市降水空间分布特征的市政雨水管网规划设计系统
CN114266147A (zh) * 2021-12-14 2022-04-01 中国电建集团中南勘测设计研究院有限公司 一种地下管线分布分析方法及系统
CN115829353A (zh) * 2022-12-20 2023-03-21 长江勘测规划设计研究有限责任公司 一种城市地下管网空间冗余度分析方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010044659A (ko) * 2001-03-14 2001-06-05 김계현 지아이에스를 이용한 하수도 관망해석 시스템 및 방법
CN101710353A (zh) * 2009-12-03 2010-05-19 深圳先进技术研究院 基于三维虚拟城市的地下管网布设方法
CN110135083A (zh) * 2019-05-20 2019-08-16 成都同飞科技有限责任公司 一种自带空间属性的三维管网自动化构建方法
CN111047136A (zh) * 2019-11-05 2020-04-21 西安理工大学 一种海绵城市管网设施部署评估方法
CN114266147A (zh) * 2021-12-14 2022-04-01 中国电建集团中南勘测设计研究院有限公司 一种地下管线分布分析方法及系统
CN114117707A (zh) * 2022-01-24 2022-03-01 中机国际工程设计研究院有限责任公司 基于城市降水空间分布特征的市政雨水管网规划设计系统
CN115829353A (zh) * 2022-12-20 2023-03-21 长江勘测规划设计研究有限责任公司 一种城市地下管网空间冗余度分析方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GUO HENG-BO, NI LI-PING, JIANG XIN : " Study of Algorithm for Underground Space 3D Collision Detection Based on Axis-Aligned Bounding Boxes ", CHINESE JOURNAL OF UNDERGROUND SPACE AND ENGINEERING, vol. 6, no. 4, 1 January 2010 (2010-01-01), pages 707 - 710, XP093185338 *
LIAN, GUANGWEI; KOU, FUYOU; ZHAI, LIN; ZHAO, HUCHUAN: "Design and Implement the Algorithm of Pipeline Collision Analysis Based on ArcEngine", URBAN GEOTECHNICAL INVESTIGATION & SURVEYING, CN, no. 6, 31 December 2014 (2014-12-31), CN, pages 96 - 99, XP009555791, ISSN: 1672-8262 *
ZHANG, ZHUHAO; LI, LONG-FANG; DENG, XIAO-LI; MA, LEI: "Collision Analysis Research of the Urban Underground Pipeline Network Based on ArcEngine", GEOMATICS & SPATIAL INFORMATION TECHNOLOGY, CN, vol. 35, no. 11, 25 November 2012 (2012-11-25), CN , pages 130 - 132, 135, XP009555793, ISSN: 1672-5867 *

Also Published As

Publication number Publication date
CN115829353B (zh) 2023-12-05
CN115829353A (zh) 2023-03-21

Similar Documents

Publication Publication Date Title
WO2024131638A1 (zh) 一种城市地下管网空间冗余度分析方法
CN106683198B (zh) 一种综合管网的三维自动建模及调度渲染的方法
US11326977B2 (en) Efficient method for localizing leaks in water supply pipe network based on valve operations and online water metering
CN109784540B (zh) 一种基于dma分区的供水布局优化系统及优化方法
CN107886182B (zh) 油田集输系统优化设计方法及装置
CN108846089B (zh) 一种面向城市供水专业管线与综合管线的空间数据匹配方法
CN108959598A (zh) 基于gis的cad数据导入到swmm的方法
WO2021169773A1 (zh) 多阈值约束的轨道交通控制保护区空间信息提取分析方法
CN113076617B (zh) 一种城市供水管网结构与功能的可视化方法、系统、设备
CN109145413A (zh) 重力管线泵站收水范围分析方法及装置
CN107563101B (zh) 电厂综合管廊及管线布置方法
CN110362726B (zh) 一种城市地下排水管网数据补充完善方法及系统
CN114580126A (zh) 一种城市排水防涝系统的构建方法及构建系统
Iwanek et al. Fractal geometry in designing and operating water networks
CN116910951B (zh) 区域供热管网优化设计方法及其装置
Sitzenfrei et al. Modeling dynamic expansion of water distribution systems for new urban developments
WO2024148660A1 (zh) 一种基于有向拓扑网络的城市排水系统液位间接监测分析方法
CN104408218A (zh) 一种油气管道设计成果的可视化审查方法
He et al. Assistant design system of urban underground pipeline based on 3D virtual city
Son et al. Automatic 3D reconstruction of as-built pipeline based on curvature computations from laser-scanned data
CN103617314B (zh) 轨道交通车辆段室外三维综合管线设计中管线碰撞检测的方法
CN108959638B (zh) 一种面向城市燃气专业管线与综合管线的空间数据匹配方法
JP2886022B2 (ja) 管網解析データ生成方法
CN114428826B (zh) 面向城市电力专业管线与综合管线的空间数据匹配方法
Genger et al. Geospatial visual analytics for supporting decision making for underground utility integrated interventions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23905803

Country of ref document: EP

Kind code of ref document: A1