WO2024131631A1 - 屈曲约束支撑结构及其制备方法 - Google Patents

屈曲约束支撑结构及其制备方法 Download PDF

Info

Publication number
WO2024131631A1
WO2024131631A1 PCT/CN2023/138792 CN2023138792W WO2024131631A1 WO 2024131631 A1 WO2024131631 A1 WO 2024131631A1 CN 2023138792 W CN2023138792 W CN 2023138792W WO 2024131631 A1 WO2024131631 A1 WO 2024131631A1
Authority
WO
WIPO (PCT)
Prior art keywords
sleeve
plate
energy
support plate
inner core
Prior art date
Application number
PCT/CN2023/138792
Other languages
English (en)
French (fr)
Inventor
周仁弘毅
姚钊
孙凯
陈振明
肖蒙
江磊
Original Assignee
中建钢构股份有限公司
中建钢构四川有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中建钢构股份有限公司, 中建钢构四川有限公司 filed Critical 中建钢构股份有限公司
Publication of WO2024131631A1 publication Critical patent/WO2024131631A1/zh

Links

Definitions

  • the present application relates to the technical field of energy-consuming supports for building materials, and in particular to a buckling-restrained support structure and a preparation method thereof.
  • Buckling restrained braces can effectively prevent damage to the main structure caused by medium and large earthquakes.
  • Traditional buckling braces are composed of inner cores, restraint units, and anti-slip restraint mechanisms.
  • the inner core is hinged to the frame node, and only provides axial support in micro-earthquakes and small earthquakes, while consuming seismic energy through the yielding of rods in medium and large earthquakes.
  • the size of the restraint units of conventional buckling restrained braces continues to increase, resulting in more and more consumables.
  • buckling braces designed based on high bearing capacity requirements cannot provide energy dissipation under wind-induced vibrations or micro-earthquakes and small earthquakes, which means that in most cases they are no different from ordinary steel braces, which goes against the original intention of combining support bearing and yielding energy dissipation.
  • the present application aims to solve at least one of the technical problems existing in the prior art. To this end, the present application proposes a buckling restrained support structure, which can realize a buckling restrained support with multiple yield levels and ensure the stability of the support.
  • the present application also proposes a method for preparing the above-mentioned buckling restraint support structure.
  • a first energy consuming section comprising a sleeve and an inner core, wherein the inner core is located in the sleeve;
  • a second energy consuming section wherein the second energy consuming section is arranged outside at least one end of the first energy consuming section, and the second energy consuming section includes a plurality of energy consuming components;
  • each energy-absorbing component is arranged along the circumference of the sleeve and connected to the sleeve, and each energy-absorbing component includes a support plate, the support plate and the sleeve are arranged at intervals, and the support plate is provided with a plurality of openings, and the openings are arranged in sequence at intervals along the axial direction of the sleeve.
  • the buckling restrained support structure includes a first energy absorbing section and a second energy absorbing section, wherein the second energy absorbing section is connected to the outer side of at least one end of the first energy absorbing section.
  • the inner core is an H-shaped steel, which includes an upper flange, a lower flange and a web, the upper flange and the lower flange are respectively connected to both sides of the web in the width direction, and the cross-section of the web is wavy.
  • the energy consumption component further includes a connecting member, wherein the connecting member includes a first connecting member.
  • the first connecting part is connected to the sleeve
  • the second connecting part is connected to the support plate
  • the connecting member connects the sleeve and the support plate and supports the support plate so that there is a gap between the support plate and the sleeve.
  • the flexure restraint support structure also includes a first limit plate and a second limit plate, the first limit plate is arranged at the end of the sleeve and abuts the second energy absorbing section and the inner core along the axial direction of the sleeve, the second limit plate is arranged on the sleeve and abuts the second energy absorbing section along the axial direction of the sleeve, the first limit plate and the second limit plate work together to limit the movement of the second energy absorbing section in the axial direction of the sleeve.
  • the buckling restraint support structure further includes a filling portion, and the filling portion is disposed in the cavity between the sleeve and the inner core.
  • the inner core further includes a limit block, and the limit block is arranged in the middle of the inner core in the length direction.
  • the support plate includes a first plate and a second plate, the first plate and the second plate are spliced together, a plurality of first grooves are arranged at intervals on one side of the first plate, a plurality of second grooves are arranged at intervals on one side of the second plate, and the first grooves and the second grooves correspond to each other to form a plurality of openings.
  • a method for preparing a buckling-restrained support structure according to a second aspect of the present application is used to prepare the buckling-restrained support structure, comprising:
  • the energy dissipation assembly is installed on the outer side of at least one end of the sleeve along the circumference of the sleeve, the energy dissipation assembly includes a connecting member and a support plate, the connecting member includes a first connecting portion and a second connecting portion, the first connecting portion is connected to the sleeve, the second connecting portion is connected to the support plate, the connecting member connects the sleeve and the support plate and supports the support plate, so that there is a gap between the support plate and the sleeve;
  • Connecting sections are installed at both ends of the sleeve.
  • the step of preparing the energy-consuming component includes:
  • the support plate and the connecting member are connected to form the energy dissipation component.
  • the step of pouring the filling portion into the casing includes:
  • Another of the first limiting plates is installed at the other end of the sleeve.
  • FIG1 is a schematic diagram of a buckling restraint support structure according to an embodiment of the present application.
  • Fig. 2 is a left side view of Fig. 1;
  • Fig. 3 is a cross-sectional view taken along the line A-A in Fig. 2;
  • Fig. 4 is a cross-sectional view taken along line B-B in Fig. 2;
  • FIG5 is a schematic diagram of an inner core in another embodiment of the present application.
  • FIG6 is a schematic diagram of an energy-consuming component in another embodiment of the present application.
  • FIG7 is a schematic diagram of a support plate in another embodiment of the present application.
  • FIG8 is a schematic flow chart of a method for preparing a buckling restrained support structure in another embodiment of the present application.
  • FIG9 is a schematic diagram of a process for preparing an energy-consuming component in another embodiment of the present application.
  • FIG. 10 is a schematic diagram of the process of pouring and filling the part in another embodiment of the present application.
  • Reference numerals Casing 100; Inner core 200, upper flange 210, web 220, lower flange 230, limit block 240; Energy dissipation component 300, support plate 310, first plate 311, second plate 312, connecting member 320; A first limiting plate 400; A second limiting plate 500; Filling portion 600.
  • the present application proposes a buckling restrained support structure and a preparation method thereof, wherein the buckling restrained support structure is suitable for performing multi-order yielding energy-absorbing support on the main structure of the building to ensure the stability of the support.
  • the buckling restrained support structure proposed in the present application includes a first energy-absorbing section and a second energy-absorbing section, the yield strength of the material of the second energy-absorbing section is less than that of the first energy-absorbing section, when there is slight shaking, the second energy-absorbing section performs yielding energy-absorbing to ensure the stability of the main structure, and in the case of severe shaking (such as a large earthquake), the second energy-absorbing section first performs yielding energy-absorbing, and when the second energy-absorbing section fails, the first energy-absorbing section performs yielding energy-absorbing support to form a multi-order yielding energy-absorbing support, thereby ensuring the stability of the support.
  • the buckling restraint support structure includes a first energy absorbing section and a second energy absorbing section
  • the first energy absorbing section includes a sleeve 100 and an inner core 200
  • the inner core 200 and the sleeve 100 have corresponding lengths
  • the inner core 200 is placed inside the sleeve 100
  • the second energy absorbing section is arranged outside at least one end of the first energy absorbing section
  • the second energy absorbing section includes a plurality of energy absorbing components 300
  • the plurality of energy absorbing components 300 are arranged along the circumference of the sleeve 100
  • the sleeve 100 shown in the figure is rectangular
  • the energy absorbing components 300 are arranged in four, which are respectively arranged around the sleeve 100
  • each energy absorbing component 300 includes a support plate 310, the support plate 310 and the sleeve 100 are arranged at intervals, the support plate 310 has a plurality of openings, and the plurality of
  • the support plate 310 on the energy dissipation component 300 is provided with a plurality of openings and its material strength is less than that of the inner core 200, the yield strength of the first energy dissipation section is greater than the yield strength of the second energy dissipation section.
  • the second energy dissipation section will be the first to yield and consume energy, consuming energy to ensure the stability of the main structure.
  • the second energy dissipation section When a medium/large earthquake causes the main body of the building to shake more violently, the second energy dissipation section will still be the first to yield and consume energy, until the support plate 310 breaks and the second energy dissipation section fails, and the first energy dissipation section enters the yield stage and consumes earthquake energy, thereby realizing multi-order yield energy dissipation support through a multi-order energy dissipation mechanism to achieve more stable support for the main body of the building.
  • the inner core 200 is an H-shaped steel
  • the H-shaped steel includes an upper flange 210, a web 220 and a lower flange 230.
  • the cross-sectional shape of the web 220 is wavy, and the upper flange 210 and the lower flange 230 are respectively connected to the two ends of the web 220 in the width direction (to ensure the stability of the connection, generally welded).
  • the shape of the inner core 200 is not limited, as long as it can play a supporting effect and have a yield strength greater than the support plate 310.
  • the H-shaped steel proposed in this embodiment is used as the inner core 200.
  • the H-shaped steel itself has good stability and can provide a good supporting effect.
  • the shape of the web 220 is set to be wavy, which can make the H-shaped steel have a higher stability coefficient, better overall stability, and a smaller thickness under the same bearing capacity.
  • the wavy web 220 H-shaped steel is used as the inner core.
  • the support can not only significantly improve the yield bearing capacity, but also effectively reduce the cross-sectional area of the constraint unit, save space for the main structure, reduce the amount of steel used in the product, and reduce its own weight.
  • the energy dissipation assembly 300 also includes a connector 320, which connects the support plate 310 to the casing 100.
  • the connector 320 includes a first connecting portion and a second connecting portion. The first connecting portion is connected to the casing 100, and the second connecting portion is connected to the side of the support plate 310.
  • the two connectors 320 are connected together to a support plate 310 so that there is a gap between the support plate 310 and the casing 100. It should be noted that in order to achieve multi-order yield support, a certain gap is required between the support plate 310 and the casing 100 to avoid the casing 100 interfering with the yield energy dissipation process of the support plate 310.
  • the support plate 310 is supported by the connector 320, and the support plate 310 is connected to the casing 100, so that the support plate 310 and the casing 100 can be easily connected with a gap between the two, thereby achieving multi-order yield support.
  • the buckling restrained support structure further includes a first limit plate 400 and a second limit plate 500.
  • the first limit plate 400 is disposed at both ends of the sleeve 100 and is connected to the sleeve 100 and the inner core 200. It can abut the second energy absorbing section and the inner core 200 along the axial direction of the sleeve 100 to prevent the inner core 200 from shaking.
  • the second limit plate 500 is disposed on the sleeve 100 and can abut the second energy absorbing section along the axial direction of the sleeve 100.
  • the first limit plate 400 and the second limit plate 500 work together to limit the movement of the second energy absorbing section in the axial direction of the sleeve 100.
  • the first limit plate 400 and the second limit plate 500 can limit each energy absorbing component 300 to ensure that the energy absorbing component 300 does not undergo rigid displacement and can only consume energy through yield deformation, thereby ensuring that the buckling restrained support structure can achieve multi-order yield energy absorbing support and ensure its stability in supporting the main body of the building.
  • the inner core 200 also includes a limit block 240, which is arranged in the middle of the inner core 200 in the length direction. It should be noted that in actual applications, the cavity between the sleeve 100 and the inner core 200 needs to be poured with a filling part 600, which is generally concrete. The filling part 600 is located between the sleeve 100 and the inner core 200. The inner core 200 is subjected to axial pressure.
  • the filling part 600 and the sleeve 100 constrain the lateral displacement of the inner core 200 to prevent the inner core 200 from buckling, so that the inner core 200 can yield in its entire cross section under the action of axial pressure, thereby obtaining a tensile and compressive symmetrical force-bearing performance.
  • a non-bonding material is generally provided on the inner core 200 to isolate the effect of the axial force on the concrete, so as to achieve a better anti-buckling constraint effect.
  • a limit block 240 is provided on the inner core 200 to prevent the concrete from sliding relative to the inner core 200 due to the effect of gravity, thereby ensuring the use of the buckling restraint support structure.
  • the inner core 200 shown in the figure is a corrugated web 220H steel.
  • two limit blocks 240 are provided, which are respectively provided in the middle of the upper flange 210 and the lower flange 230, which can better prevent the concrete from sliding, thereby further ensuring that the buckling restraint support structure can achieve multi-order yield support and provide more stable support for the building main body.
  • the support plate 310 is formed by splicing two plates, and the support plate 310 includes a first plate 311 and a second plate 312.
  • the dotted line in the figure is the splicing position of the first plate 311 and the second plate 312.
  • a plurality of first grooves are arranged at intervals on one side of the first plate 311, and a second groove corresponding to the first groove is arranged on one side of the second plate 312.
  • the first plate 311 and the second plate 312 are spliced, and each first groove corresponds to each second groove to form a plurality of openings.
  • the first plate 311 and the second plate 312 are connected to form the support plate 310 having a plurality of openings.
  • the first plate 311 and the second plate 312 are spliced.
  • the support plate 310 can not only reduce the processing difficulty, but also reduce the waste of materials.
  • the method for preparing the buckling restrained support structure according to the second embodiment of the present application comprises:
  • the lengths of the sleeve 100 and the H-shaped steel correspond to each other.
  • the H-shaped steel includes an upper flange 210, a web 220 and a lower flange 230.
  • the upper flange 210 and the lower flange 230 are respectively connected to both sides of the web 220 in the width direction.
  • the cross-sectional shape of the web 220 is wavy.
  • An energy dissipation assembly 300 is installed on the outer side of at least one end of the casing 100 along the circumference of the casing 100.
  • the energy dissipation assembly 300 includes a connecting member 320 and a support plate 310.
  • the connecting member 320 includes a first connecting portion and a second connecting portion. The first connecting portion is connected to the casing 100, and the second connecting portion is connected to the support plate 310.
  • the connecting member 320 connects the casing 100 and the support plate 310 and is used to support the support plate 310 so that there is a gap between the support plate 310 and the casing 100.
  • the filling part 600 is poured into the cavity between the casing 100 and the H-shaped steel.
  • the connecting section is installed at both ends of the sleeve 100 and is connected to the building main body through the connecting section.
  • the connecting section generally adopts a cross-shaped structure, that is, the structural stability is improved by adding reinforcing ribs to keep it in an elastic stress state.
  • the steps of preparing the energy consumption component 300 include:
  • a fold line cut is performed along the central axis of the metal plate to form two plates, namely a first plate 311 and a second plate 312 .
  • the fold line cut provides the first plate 311 with a plurality of first grooves and the second plate 312 with a plurality of second grooves.
  • the first plate 311 and the second plate 312 are staggeredly connected, and the first groove and the second groove correspond to each other to form a plurality of openings, which are then cut according to requirements to form a plurality of support plates 310 .
  • connection parts of the two connection members 320 are respectively connected to two sides of the support plate 310 to form the energy dissipation assembly 300 .
  • the step of pouring the filling portion 600 includes:

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

本申请公开了一种屈曲约束支撑结构及其制备方法,其中屈曲约束支撑结构包括:第一耗能段,第一耗能段包括套管和内芯,内芯位于套管之中;第二耗能段,第二耗能段设置于第一耗能段至少一端的外侧,第二耗能段包括多个耗能组件;其中,各耗能组件沿着套管的周向设置且连接于套管,每个耗能组件均包括支撑板,支撑板和套管间隔设置且支撑板上设有多个开孔,各开孔沿着套管的轴线方向依次间隔排列。本申请的屈曲约束支撑结构能够实现多阶屈服耗能,从而对建筑主体进行更加稳定的支撑。

Description

屈曲约束支撑结构及其制备方法
本申请要求在2022年12月22日提交中国专利局、申请号为202211654366.1、发明名称为“屈曲约束支撑结构及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及建筑材料耗能支撑技术领域,特别涉及屈曲约束支撑结构及其制备方法。
背景技术
屈曲约束支撑能有效防止中震及大震作用对主体结构的损伤,传统的屈曲支撑由内芯、约束单元、防滑约束机制组成。其中内芯与框架节点铰接,微型地震和小型地震下仅提供轴向支撑作用,在中震及大震作用时则通过杆件屈服消耗地震能量;但是通常的屈曲约束支撑的约束单元尺寸不断增大,导致耗材越来越多;同时,根据高承载力需求而设计的屈曲支撑无法在风致振动或微型地震和小型地震条件下提供耗能作用,也即大部分情况与普通钢支撑无异,这与兼具支撑承载与屈服耗能的初衷相违背。
发明内容
本申请旨在至少解决现有技术中存在的技术问题之一。为此,本申请提出一种屈曲约束支撑结构,能够实现多阶屈服的屈曲约束支撑,保证支撑的稳定性。
本申请还提出一种制备上述屈曲约束支撑结构的制备方法。
根据本申请的第一方面实施例的屈曲约束支撑结构,包括:
第一耗能段,所述第一耗能段包括套管和内芯,所述内芯位于所述套管之中;
第二耗能段,所述第二耗能段设置于所述第一耗能段至少一端的外侧,所述第二耗能段包括多个耗能组件;
其中,各所述耗能组件沿着所述套管的周向设置且连接于所述套管,每个耗能组件均包括支撑板,所述支撑板和所述套管间隔设置且所述支撑板上设有多个开孔,各所述开孔沿着所述套管的轴线方向依次间隔排列。
根据本申请实施例的屈曲约束支撑结构,至少具有如下有益效果:
屈曲约束支撑结构包括第一耗能段和第二耗能段,第二耗能段连接在第一耗能段的至少一端的外侧,屈曲约束支撑结构对建筑主体结构进行支撑时,在轻微晃动的情况下,通过第二耗能段进行耗能,在大型地震等情况下,通过第一耗能段进行耗能支撑,从而实现多阶屈服的屈曲约束支撑,保证支撑的稳定性。
在本申请的其他实施例中,所述内芯为H型钢,所述H型钢包括上翼缘、下翼缘和腹板,所述上翼缘和所述下翼缘分别连接于所述腹板的宽度方向的两侧,所述腹板的横截面为波浪形。
在本申请的其他实施例中,所述耗能组件还包括连接件,所述连接件包括第一连接 部和第二连接部,所述第一连接部连接于所述套管,所述第二连接部连接于所述支撑板,所述连接件连接所述套管和所述支撑板且支撑所述支撑板,以使所述支撑板和所述套管之间具有间隙。
在本申请的其他实施例中,所述屈曲约束支撑结构还包括第一限位板和第二限位板,所述第一限位板设于所述套管的端部且沿着所述套管的轴线方向抵持所述第二耗能段和所述内芯,所述第二限位板设于所述套管之上且沿着所述套管的轴线方向抵持所述第二耗能段,所述第一限位板和所述第二限位板共同作用以限制所述第二耗能段在所述套管轴线方向上的移动。
在本申请的其他实施例中,所述屈曲约束支撑结构还包括填充部,所述填充部设于所述套管和所述内芯之间的空腔。
在本申请的其他实施例中,所述内芯还包括限位块,所述限位块设于所述内芯的长度方向上的中部。
在本申请的其他实施例中,所述支撑板包括第一板和第二板,所述第一板和所述第二板拼接连接,所述第一板的一侧上间隔设置有多个第一凹槽,所述第二板的一侧上间隔设置有多个第二凹槽,所述第一凹槽和所述第二凹槽相对应,以形成多个所述开孔。
根据本申请的第二方面实施例的屈曲约束支撑结构的制备方法,用于制备上述的屈曲约束支撑结构,包括:
准备套管和H型钢,所述H型钢的腹板的截面形状为波浪形;
将所述H型钢置于所述套管之中;
制备耗能组件;
在所述套管的至少一端的外侧沿着所述套管的周向安装所述耗能组件,所述耗能组件包括连接件和支撑板,所述连接件包括第一连接部和第二连接部,所述第一连接部连接于所述套管,所述第二连接部连接于所述支撑板,所述连接件连接所述套管和所述支撑板且支撑所述支撑板,以使所述支撑板和所述套管之间具有间隙;
将填充部浇筑至所述套管内;
所述套管两端安装连接段。
在本申请的其他实施例中,所述制备耗能组件步骤包括:
准备金属板材和所述连接件;
沿着所述金属板材的中轴线进行折线切割;
将切割完成的两块板错位拼接,切割多余部分形成具有开孔的所述支撑板;
将所述支撑板和所述连接件进行连接形成所述耗能组件。
在本申请的其他实施例中,所述将填充部浇筑至套管内步骤包括:
准备两个第一限位板;
将一个所述第一限位板安装于所述套管一端;
浇筑所述填充部至所述套管内;
另一所述第一限位板安装于所述套管另一端。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
下面结合附图和实施例对本申请做进一步的说明,其中:
图1为本申请一方面实施例中屈曲约束支撑结构的示意图;
图2为图一的左视图;
图3为图2中A-A向的剖视图;
图4为图2中B-B向的剖视图;
图5为本申请另一方面实施例中内芯的示意图;
图6为本申请另一方面实施例中耗能组件的示意图;
图7为本申请另一方面实施例中支撑板的示意图;
图8为本申请另一方面实施例中屈曲约束支撑结构的制备方法的流程示意图;
图9为本申请另一方面实施例中制备耗能组件的流程示意图;
图10为本申请另一方面实施例中浇筑填充部的流程示意图。
附图标记:
套管100;
内芯200、上翼缘210、腹板220、下翼缘230、限位块240;
耗能组件300、支撑板310、第一板311、第二板312、连接件320;
第一限位板400;
第二限位板500;
填充部600。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
在本申请的描述中,需要理解的是,涉及到方位描述,例如上、下、前、后、左、右等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
在本申请的描述中,若干的含义是一个以上,多个的含义是两个以上,大于、小于、超过等理解为不包括本数,以上、以下、以内等理解为包括本数。如果有描述到第一、第二只是用于区分技术特征为目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量或者隐含指明所指示的技术特征的先后关系。
在本申请的描述中,除非另有明确的限定,设置、安装、连接等词语应做广义理解, 所属技术领域技术人员可以结合技术方案的具体内容合理确定上述词语在本申请中的具体含义。
在本申请的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
本申请提出了一种屈曲约束支撑结构及其制备方法,其中屈曲约束支撑结构适用于对建筑主体结构进行多阶屈服的耗能支撑,确保支撑的稳定性。为了实现上述目的,本申请所提出的屈曲约束支撑结构包括第一耗能段和第二耗能段,第二耗能段材料的屈服强度小于第一耗能段,当轻微晃动情况下,第二耗能段进行屈服耗能,保证主体结构稳定,在剧烈晃动情况下(如大型地震),第二耗能段率先进行屈服耗能,当第二耗能段失效之后,第一耗能段进行屈服耗能支撑,形成多阶屈服耗能支撑,从而保证支撑的稳定性。以下结合附图具体描述本申请的实施例。
在一些实施例中,参照图1至图4,屈曲约束支撑结构包括第一耗能段和第二耗能段,第一耗能段包括套管100和内芯200,内芯200和套管100的长度相对应,内芯200置于套管100之内,第二耗能段设置于第一耗能段的至少一端的外侧,第二耗能段包括多个耗能组件300,多个耗能组件300沿着套管100的周向设置,图示套管100为矩形,耗能组件300则设置为四个,分别设于套管100的四周,每一个耗能组件300都包括有支撑板310,支撑板310和套管100之间间隔设置,支撑板310上有多个开孔,多个开孔沿着套管100的轴线方向依次间隔排列,需要说明的是,由于耗能组件300上的支撑板310上开设有多个开孔,且其材料强度小于内芯200,第一耗能段的屈服强度是大于第二耗能段的屈服强度的,当屈曲约束支撑结构对建筑主体结构进行支撑时,例如当风振或是微型/小型地震使建筑主体发生轻微晃动时,第二耗能段会率先发生屈服耗能,消耗能量,保证主体结构的稳定,当中型/大型地震使建筑主体发生较为剧烈的晃动时,第二耗能段仍率先发生屈服耗能,直到支撑板310断裂,第二耗能段失效,第一耗能段进入屈服阶段,消耗地震能量,从而通过多阶耗能机制,实现多阶屈服耗能支撑,以对建筑主体实现更为稳定的支撑。
在一些实施例中,参照图3至图5,内芯200为H型钢,H型钢包括上翼缘210、腹板220和下翼缘230,腹板220的截面形状为波浪形,上翼缘210和下翼缘230分别连接在腹板220的宽度方向上的两端(为了确保连接的稳定性,一般为焊接),需要说明的是,内芯200的形状不被限定,能够起到支撑效果且屈服强度大于支撑板310即可,本实施例所提出的H型钢作为内芯200,H型钢本身具有较好的稳定性,能够提供较好的支撑效果,并且将腹板220的形状设置为波浪形,能够使的H型钢稳定性系数更高,整体稳定性更好,相同承载力下厚度更小,采用波浪形腹板220H型钢作为内芯的屈曲 支撑不仅能显著提升屈服承载力,还可有效减小约束单元截面面积,为主体结构节省空间,降低产品用钢量,减轻自重。
在一些实施例中,参照图4和图6,耗能组件300还包括连接件320,连接件320将支撑板310连接在套管100之上,连接件320包括第一连接部和第二连接部,第一连接部连接在套管100之上,第二连接部连接支撑板310的侧面,两个连接件320共同连接并且一个支撑板310,以使支撑板310和套管100之间具有空隙,需要说明的是,为了实现多阶屈服支撑,支撑板310和套管100之间需要具有一定空隙,才能避免套管100对支撑板310的屈服耗能过程产生干扰,通过连接件320将支撑板310进行支撑,并且将支撑板310连接于套管100之上,能够简便的实现支撑板310和套管100连接且二者之间具有间隙,从而实现多阶屈服支撑。
在一些实施例中,参照图1和图2,屈曲约束支撑结构还包括第一限位板400和第二限位板500,第一限位板400设于套管100的两端,连接于套管100和内芯200,能够沿着套管100的轴线方向抵持第二耗能段和内芯200,防止内芯200的晃动,第二限位板500设在套管100之上,能够沿着套管100的轴线方向抵持第二耗能段,第一限位板400和第二限位板500共同作用以限制第二耗能段在套管100轴线方向上产生移动,当第二耗能段屈服耗能时,第一限位板400和第二限位板500能够对各耗能组件300进行限位,保证耗能组件300不会发生刚性位移,仅能够通过屈服变形耗能,从而保证本屈曲约束支撑结构能够实现多阶屈服耗能支撑,确保其对建筑主体支撑的稳定性。
在一些实施例中,参照图3和图5,内芯200还包括限位块240,限位块240设于内芯200长度方向上的中部,需要说明的是,实际应用中,套管100和内芯200之间的空腔需要浇筑填充部600,一般为混凝土,填充部600位于套管100和内芯200之间,内芯200承受轴向压力,填充部600和套管100对内芯200的横向位移进行约束,防止内芯200发生屈曲,使其能够在轴向压力作用下发生全截面屈服,从而获得拉压对称的受力性能。同时,内芯200上一般会设置无粘结材料,以隔离轴向力对混凝土的作用,以达到更好的防屈曲约束效果,内芯200上设置限位块240,能够防止混凝土因为重力的作用产生相对于内芯200的滑动,从而保证屈曲约束支撑结构的使用,图示内芯200为波浪形腹板220H型钢,为了更好的限制混凝土不产生相对滑动,限位块240设置为两个,分别设于上翼缘210和下翼缘230的中部,能够更好的防止混凝土产生滑动,从而进一步保证屈曲约束支撑结构能够实现多阶屈服支撑,对建筑主体进行更加稳定的支撑。
在一些实施例中,参照图7,支撑板310为两块板拼接而成,支撑板310包括第一板311和第二板312,图示虚线为第一板311和第二板312拼接处,第一板311的一侧上间隔设置有多个第一凹槽,第二板312的一侧设有和第一凹槽相对应的第二凹槽,第一板311和第二板312拼接,各第一凹槽和各第二凹槽对应,形成多个开孔,第一板311和第二板312连接以形成具有多个开孔的支撑板310,采用第一板311和第二板312拼 接形成支撑板310不仅能够降低加工难度,同时也能减少材料的浪费。
本申请第二实施例的屈曲约束支撑结构的制备方法,参照图8,包括:
S100:准备套管100和H型钢;
其中套管100和H型钢的长度相对应,H型钢包括上翼缘210、腹板220和下翼缘230,上翼缘210和下翼缘230分别连接在腹板220的宽度方向的两侧,腹板220的截面形状为波浪形。
S200:H型钢置于套管100之中;
S300:制备耗能组件300;
S400:安装耗能组件300;
在套管100的至少一端的外侧沿着套管100的周向安装耗能组件300,耗能组件300包括连接件320和支撑板310,连接件320包括第一连接部和第二连接部,第一连接部连接于套管100,第二连接部连接于支撑板310,连接件320连接套管100和支撑板310且用于支撑支撑板310,以使支撑板310和套管100之间具有间隙。
S500:浇筑填充部600;
将填充部600浇筑至套管100和H型钢之间的空腔内。
S600:安装连接段;
连接段安装于套管100的两端,通过连接段和建筑主体进行连接,连接段一般采用十字型构造,即通过增设加强筋板的方式提高结构稳定性,使之保持在弹性受力状态。
在一些实施例中,参照图9,制备耗能组件300的步骤包括:
S310:准备金属板和连接件320;
S320:切割金属板;
沿着金属板的中轴线进行折线切割,以形成两块板,也即第一板311和第二板312,折线切割使第一板311上具有多个第一凹槽,第二板312上具有多个第二凹槽。
S330:将第一板311和第二板312错位拼接形成支撑板310;
第一板311和第二板312错位连接,第一凹槽和第二凹槽相对应,形成多个开孔,然后根据需求切割,形成多个支撑板310。
S340:支撑板310和连接件320连接;
两个连接件320的第二连接部分别连接于支撑板310的两侧,以形成耗能组件300。
在一些实施例中,参照图10,浇筑填充部600的步骤包括:
S510:准备两个第一限位板400;
S520:在套管100一端安装第一限位板400;
S530:浇筑填充部600至套管100内;
从套管100未安装第一限位板400的一侧浇筑填充部600;
S540:在套管100另一端安装第一限位板400。
上面结合附图对本申请实施例作了详细说明,但是本申请限于上述实施例,在所属 技术领域普通技术人员所具备的知识范围内,还可以在不脱离本申请宗旨的前提下作出各种变化。此外,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。

Claims (10)

  1. 一种屈曲约束支撑结构,其特征在于,包括:
    第一耗能段,所述第一耗能段包括套管和内芯,所述内芯位于所述套管之中;
    第二耗能段,所述第二耗能段设置于所述第一耗能段至少一端的外侧,所述第二耗能段包括多个耗能组件;
    其中,各所述耗能组件沿着所述套管的周向设置且连接于所述套管,每个所述耗能组件均包括支撑板,所述支撑板和所述套管间隔设置且所述支撑板上设有多个开孔,各所述开孔沿着所述套管的轴线方向依次间隔排列。
  2. 根据权利要求1所述的屈曲约束支撑结构,其特征在于,所述内芯为H型钢,所述H型钢包括上翼缘、下翼缘和腹板,所述上翼缘和所述下翼缘分别连接于所述腹板的宽度方向的两侧,所述腹板的横截面为波浪形。
  3. 根据权利要求1所述的屈曲约束支撑结构,其特征在于,所述耗能组件还包括连接件,所述连接件包括第一连接部和第二连接部,所述第一连接部连接于所述套管,所述第二连接部连接于所述支撑板,所述连接件连接所述套管和所述支撑板且支撑所述支撑板,以使所述支撑板和所述套管之间具有间隙。
  4. 根据权利要求1所述的屈曲约束支撑结构,其特征在于,所述屈曲约束支撑结构还包括第一限位板和第二限位板,所述第一限位板设于所述套管的端部且沿着所述套管的轴线方向抵持所述第二耗能段和所述内芯,所述第二限位板设于所述套管之上且沿着所述套管的轴线方向抵持所述第二耗能段,所述第一限位板和所述第二限位板共同作用以限制所述第二耗能段在所述套管轴线方向上的移动。
  5. 根据权利要求1所述的屈曲约束支撑结构,其特征在于,所述屈曲约束支撑结构还包括填充部,所述填充部设于所述套管和所述内芯之间的空腔。
  6. 根据权利要求5所述的屈曲约束支撑结构,其特征在于,所述内芯还包括限位块,所述限位块设于所述内芯的长度方向上的中部。
  7. 根据权利要求1所述的屈曲约束支撑结构,其特征在于,所述支撑板包括第一板和第二板,所述第一板和所述第二板拼接连接,所述第一板的一侧上间隔设置有多个第一凹槽,所述第二板的一侧上间隔设置有多个第二凹槽,所述第一凹槽和所述第二凹槽相对应,以形成多个所述开孔。
  8. 一种屈曲约束支撑结构的制备方法,用于制备根据权利要求1-7中任一项所述的屈曲约束支撑结构,操作步骤如下:
    准备套管和H型钢,所述H型钢的腹板的截面形状为波浪形;
    将所述H型钢置于所述套管之中;
    制备耗能组件;
    在所述套管的至少一端的外侧沿着所述套管的周向安装所述耗能组件,所述耗能组件包括连接件和支撑板,所述连接件包括第一连接部和第二连接部,所述第一连接部连 接于所述套管,所述第二连接部连接于所述支撑板,所述连接件连接所述套管和所述支撑板且支撑所述支撑板,以使所述支撑板和所述套管之间具有间隙;
    将填充部浇筑至所述套管内;
    所述套管两端安装连接段。
  9. 根据权利要求8所述的制备方法,其特征在于,
    所述制备耗能组件步骤包括:
    准备金属板材和所述连接件;
    沿着所述金属板材的中轴线进行折线切割;
    将切割完成的两块板错位拼接,切割多余部分形成具有开孔的所述支撑板;
    将所述支撑板和所述连接件进行连接形成所述耗能组件。
  10. 根据权利要求8所述的制备方法,其特征在于,
    所述将填充部浇筑至套管内步骤包括:
    准备两个第一限位板;
    将一个所述第一限位板安装于所述套管一端;
    浇筑所述填充部至所述套管内;
    另一所述第一限位板安装于所述套管另一端。
PCT/CN2023/138792 2022-12-22 2023-12-14 屈曲约束支撑结构及其制备方法 WO2024131631A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211654366.1A CN115749376A (zh) 2022-12-22 2022-12-22 屈曲约束支撑结构及其制备方法
CN202211654366.1 2022-12-22

Publications (1)

Publication Number Publication Date
WO2024131631A1 true WO2024131631A1 (zh) 2024-06-27

Family

ID=85347240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/138792 WO2024131631A1 (zh) 2022-12-22 2023-12-14 屈曲约束支撑结构及其制备方法

Country Status (2)

Country Link
CN (1) CN115749376A (zh)
WO (1) WO2024131631A1 (zh)

Also Published As

Publication number Publication date
CN115749376A (zh) 2023-03-07

Similar Documents

Publication Publication Date Title
CN102116055B (zh) 一种消能减震机构
US8353134B2 (en) Grouted tubular energy-dissipation unit
WO2019019850A1 (zh) 含有l型耗能元件的屈曲约束支撑、建筑物及组装方法
WO2024131631A1 (zh) 屈曲约束支撑结构及其制备方法
CN201722811U (zh) 一种金属阻尼器
CN204919858U (zh) 一种防屈曲支撑构件
Gao et al. Experimental investigation on buckling‐restrained braces using mortar‐filled steel tubes with steel lining channels
CN113027213A (zh) 一种可装配式防屈曲耗能支撑
JP2021055511A (ja) トラス拘束式の座屈拘束ブレース
CN114856042B (zh) 具有隔热层的建筑物一体式模板及其施工方法
CN214090468U (zh) 一种装配式建筑整装式剪力墙
CN216041877U (zh) 一种防震预制件
CN106894537B (zh) 一种装配式隔墙约束防屈曲支撑构件及其安装方法
CN115199026B (zh) 一种装配式建筑模板
JP2000081085A (ja) 履歴型ダンパーを備えた構造部材
JP2007132524A (ja) 履歴型ダンパーを備えた構造部材
CN220848125U (zh) 一种耳叉式黏滞阻尼器
CN218205724U (zh) 一种建筑用骨架结构
CN110017017B (zh) 一种铝模板结构
CN219690768U (zh) 一种高差处梁加腋节点构造
CN216665181U (zh) 一种装配式的减震结构及可恢复功能的剪力墙
CN217439175U (zh) 一种刚性围护墙-柔性体系连接结构
JP2005344501A (ja) 型枠支保工兼用内外装材の施工方法
CN219316005U (zh) 具有抗震功能的钢结构
CN217105709U (zh) 一种方便拼接与拆卸的节能幕墙