WO2024128826A1 - Operation method related to relay selection or reselection based on qos in wireless communication system - Google Patents

Operation method related to relay selection or reselection based on qos in wireless communication system Download PDF

Info

Publication number
WO2024128826A1
WO2024128826A1 PCT/KR2023/020646 KR2023020646W WO2024128826A1 WO 2024128826 A1 WO2024128826 A1 WO 2024128826A1 KR 2023020646 W KR2023020646 W KR 2023020646W WO 2024128826 A1 WO2024128826 A1 WO 2024128826A1
Authority
WO
WIPO (PCT)
Prior art keywords
relay
message
qos
remote
link
Prior art date
Application number
PCT/KR2023/020646
Other languages
French (fr)
Korean (ko)
Inventor
백서영
이영대
박기원
이승민
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of WO2024128826A1 publication Critical patent/WO2024128826A1/en

Links

Images

Definitions

  • the following description is about a wireless communication system, and more specifically, an operating method and device related to selecting/reselecting a relay UE based on Quality of Service (QoS) in a UE-to-UE relay or UE to network relay.
  • QoS Quality of Service
  • 5G In wireless communication systems, various RATs (Radio Access Technologies) such as LTE, LTE-A, and WiFi are used, and 5G is also included.
  • the three key requirements areas for 5G are (1) Enhanced Mobile Broadband (eMBB) area, (2) Massive Machine Type Communication (mMTC) area, and (3) Ultra-Reliable and Includes the area of ultra-reliable and low latency communications (URLLC).
  • eMBB Enhanced Mobile Broadband
  • mMTC Massive Machine Type Communication
  • URLLC ultra-Reliable and Includes the area of ultra-reliable and low latency communications
  • KPI Key Performance Indicator
  • eMBB goes far beyond basic mobile Internet access and covers rich interactive tasks, media and entertainment applications in the cloud or augmented reality.
  • Data is one of the key drivers of 5G, and we may not see dedicated voice services for the first time in the 5G era.
  • voice is expected to be processed simply as an application using the data connection provided by the communication system.
  • the main reasons for the increased traffic volume are the increase in content size and the number of applications requiring high data rates.
  • Streaming services audio and video
  • interactive video and mobile Internet connections will become more prevalent as more devices are connected to the Internet. Many of these applications require always-on connectivity to push real-time information and notifications to users.
  • Cloud storage and applications are rapidly increasing mobile communication platforms, and this can apply to both work and entertainment.
  • cloud storage is a particular use case driving growth in uplink data rates.
  • 5G will also be used for remote work in the cloud and will require much lower end-to-end latency to maintain a good user experience when tactile interfaces are used.
  • Entertainment for example, cloud gaming and video streaming are other key factors driving increased demand for mobile broadband capabilities. Entertainment is essential on smartphones and tablets anywhere, including high mobility environments such as trains, cars and planes.
  • Another use case is augmented reality for entertainment and information retrieval.
  • augmented reality requires very low latency and instantaneous amounts of data.
  • URLLC includes new services that will transform industries through ultra-reliable/available low-latency links, such as remote control of critical infrastructure and self-driving vehicles. Levels of reliability and latency are essential for smart grid control, industrial automation, robotics, and drone control and coordination.
  • 5G can complement fiber-to-the-home (FTTH) and cable-based broadband (or DOCSIS) as a means of delivering streams rated at hundreds of megabits per second to gigabits per second. These high speeds are required to deliver TV at resolutions above 4K (6K, 8K and beyond) as well as virtual and augmented reality.
  • Virtual Reality (VR) and Augmented Reality (AR) applications include nearly immersive sporting events. Certain applications may require special network settings. For example, in the case of VR games, gaming companies may need to integrate core servers with a network operator's edge network servers to minimize latency.
  • Automotive is expected to be an important new driver for 5G, with many use cases for mobile communications for vehicles. For example, entertainment for passengers requires simultaneous, high capacity and high mobility mobile broadband. That's because future users will continue to expect high-quality connections regardless of their location and speed.
  • Another use case in the automotive sector is augmented reality dashboards. It identifies objects in the dark and superimposes information telling the driver about the object's distance and movement on top of what the driver is seeing through the front window.
  • wireless modules will enable communication between vehicles, information exchange between vehicles and supporting infrastructure, and information exchange between cars and other connected devices (eg, devices accompanied by pedestrians).
  • Safety systems can reduce the risk of accidents by guiding drivers through alternative courses of action to help them drive safer.
  • the next step will be remotely controlled or self-driven vehicles.
  • Smart cities and smart homes will be embedded with high-density wireless sensor networks.
  • a distributed network of intelligent sensors will identify conditions for cost-effective and energy-efficient maintenance of a city or home.
  • a similar setup can be done for each household.
  • Temperature sensors, window and heating controllers, burglar alarms and home appliances are all connected wirelessly. Many of these sensors typically have low data rates, low power, and low cost.
  • real-time HD video may be required in certain types of devices for surveillance, for example.
  • a smart grid interconnects these sensors using digital information and communications technologies to collect and act on information. This information can include the behavior of suppliers and consumers, allowing smart grids to improve the efficiency, reliability, economics, sustainability of production and distribution of fuels such as electricity in an automated manner. Smart grid can also be viewed as another low-latency sensor network.
  • the health sector has many applications that can benefit from mobile communications.
  • Communications systems can support telemedicine, providing clinical care in remote locations. This can help reduce the barrier of distance and improve access to health services that are consistently unavailable in remote rural areas. It is also used to save lives in critical care and emergency situations.
  • Mobile communication-based wireless sensor networks can provide remote monitoring and sensors for parameters such as heart rate and blood pressure.
  • Wireless and mobile communications are becoming increasingly important in industrial applications. Wiring is expensive to install and maintain. Therefore, the possibility of replacing cables with reconfigurable wireless links is an attractive opportunity for many industries. However, achieving this requires that wireless connections operate with similar latency, reliability and capacity as cables, and that their management be simplified. Low latency and very low error probability are new requirements needed for 5G connectivity.
  • Logistics and freight tracking are important examples of mobile communications that enable inventory and tracking of packages anywhere using location-based information systems. Use cases in logistics and cargo tracking typically require low data rates but require wide range and reliable location information.
  • a wireless communication system is a multiple access system that supports communication with multiple users by sharing available system resources (eg, bandwidth, transmission power, etc.).
  • multiple access systems include code division multiple access (CDMA) systems, frequency division multiple access (FDMA) systems, time division multiple access (TDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, and single carrier frequency (SC-FDMA) systems. division multiple access) system, MC-FDMA (multi carrier frequency division multiple access) system, etc.
  • SL refers to a communication method that establishes a direct link between terminals (User Equipment, UE) and directly exchanges voice or data between terminals without going through a base station (BS).
  • UE User Equipment
  • BS base station
  • SL is being considered as a way to solve the burden on base stations due to rapidly increasing data traffic.
  • V2X vehicle-to-everything refers to a communication technology that exchanges information with other vehicles, pedestrians, and objects with built infrastructure through wired/wireless communication.
  • V2X can be divided into four types: vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), vehicle-to-network (V2N), and vehicle-to-pedestrian (V2P).
  • V2X communication may be provided through the PC5 interface and/or the Uu interface.
  • next-generation wireless access technology that takes these into consideration may be referred to as new radio access technology (RAT) or new radio (NR).
  • RAT new radio access technology
  • NR new radio
  • Figure 1 is a diagram for comparing and explaining V2X communication based on RAT before NR and V2X communication based on NR.
  • V2X communication in RAT before NR, a method of providing safety service based on V2X messages such as BSM (Basic Safety Message), CAM (Cooperative Awareness Message), and DENM (Decentralized Environmental Notification Message) This was mainly discussed.
  • V2X messages may include location information, dynamic information, attribute information, etc.
  • a terminal may transmit a periodic message type CAM and/or an event triggered message type DENM to another terminal.
  • CAM may include basic vehicle information such as vehicle dynamic state information such as direction and speed, vehicle static data such as dimensions, external lighting conditions, route history, etc.
  • the terminal may broadcast CAM, and the latency of the CAM may be less than 100ms.
  • the terminal can generate a DENM and transmit it to another terminal.
  • all vehicles within the transmission range of the terminal can receive CAM and/or DENM.
  • DENM may have higher priority than CAM.
  • V2X scenarios have been presented in NR.
  • various V2X scenarios may include vehicle platooning, advanced driving, extended sensors, remote driving, etc.
  • vehicles can dynamically form groups and move together. For example, to perform platoon operations based on vehicle platooning, vehicles belonging to the group may receive periodic data from the lead vehicle. For example, vehicles belonging to the group may use periodic data to reduce or widen the gap between vehicles.
  • vehicles may become semi-automated or fully automated. For example, each vehicle may adjust its trajectories or maneuvers based on data obtained from local sensors of nearby vehicles and/or nearby logical entities. Additionally, for example, each vehicle may share driving intentions with nearby vehicles.
  • raw data or processed data acquired through local sensors, or live video data can be used to collect terminals of vehicles, logical entities, and pedestrians. /or can be interchanged between V2X application servers. Therefore, for example, a vehicle can perceive an environment that is better than what it can sense using its own sensors.
  • a remote driver or V2X application can operate or control the remote vehicle.
  • cloud computing-based driving can be used to operate or control the remote vehicle.
  • access to a cloud-based back-end service platform may be considered for remote driving.
  • the present disclosure deals with contents related to an operating method and apparatus related to selecting/reselecting a relay UE based on a threshold value individually set according to QoS.
  • a method of operating a first UE related to relay UE (User Equipment) selection in a wireless communication system includes: the first UE selecting a relay UE from among one or more candidate relay UEs; The first UE establishes a PC5 link with the selected relay UE based on the absence of a PC5 link with the selected relay UE; and the first UE transmitting a message through the relay UE, and the selection of the relay UE is based on the Quality of Service (QoS) of the message transmitted by the first UE.
  • QoS Quality of Service
  • a first UE involved in relay UE (User Equipment) selection in a wireless communication system includes at least one processor; and at least one computer memory operably coupled to the at least one processor and storing instructions that, when executed, cause the at least one processor to perform operations, the operations comprising: one or more candidate relay UEs; Select relay UE among; Establishing a PC5 link with the selected relay UE based on the absence of a PC5 link with the selected relay UE; and transmitting a message through the relay UE, wherein selection of the relay UE is based on the Quality of Service (QoS) of the message transmitted by the first UE.
  • QoS Quality of Service
  • One embodiment provides a non-volatile computer-readable storage medium storing at least one computer program including instructions that, when executed by at least one processor, cause the at least one processor to perform operations for the first UE.
  • the operations include: selecting a relay UE among one or more candidate relay UEs; Establishing a PC5 link with the selected relay UE based on the absence of a PC5 link with the selected relay UE; and transmitting a message through the relay UE, wherein selection of the relay UE is based on Quality of Service (QoS) of the message transmitted by the first UE.
  • QoS Quality of Service
  • the selected relay UE may have a signal strength greater than or equal to a predetermined threshold.
  • the predetermined threshold may be individually set according to the QoS of each message.
  • the predetermined threshold may be a threshold value for each PFI (PC5 QoS Flow Identifier) or PQI (PC5 QoS Identifier) of the service.
  • the predetermined threshold may be indicated through a System Information Block (SIB).
  • SIB System Information Block
  • the predetermined threshold may be a preset value.
  • the signal strength may be either SL-RSRP (Sidelink Reference Signals Received Power) or SD-RSRP (Sidelink Discovery Reference Signals Received Power) between the first UE and the relay UE.
  • SL-RSRP Systemlink Reference Signals Received Power
  • SD-RSRP Systemlink Discovery Reference Signals Received Power
  • the first UE may include a required threshold that can satisfy its QoS requirements when transmitting a discovery message.
  • the measured signal strength values of the candidate relay UEs may exceed the request threshold included in the discovery message.
  • the method includes: the first UE transmits a discovery solicitation message;
  • the first UE may further include receiving a discovery response broadcast by one or more candidate relay UEs.
  • the first UE can establish an end-to-end PC5 link with the second UE.
  • the first UE can establish an indirect link with the base station through the relay UE.
  • a remote UE can select a relay UE that matches the required QoS of a service it wants to transmit through a U2U relay.
  • Figure 1 is a diagram for comparing and explaining V2X communication based on RAT before NR and V2X communication based on NR.
  • FIG. 2 shows the structure of an LTE system according to an embodiment of the present disclosure.
  • FIG. 3 shows a radio protocol architecture for a user plane and a control plane, according to an embodiment of the present disclosure.
  • Figure 4 shows the structure of an NR system according to an embodiment of the present disclosure.
  • Figure 5 shows functional division between NG-RAN and 5GC, according to an embodiment of the present disclosure.
  • Figure 6 shows the structure of a radio frame of NR to which the embodiment(s) can be applied.
  • Figure 7 shows the slot structure of an NR frame according to an embodiment of the present disclosure.
  • Figure 8 shows a radio protocol architecture for SL communication, according to an embodiment of the present disclosure.
  • Figure 9 shows a radio protocol architecture for SL communication, according to an embodiment of the present disclosure.
  • Figure 10 shows a synchronization source or synchronization reference of V2X, according to an embodiment of the present disclosure.
  • Figure 11 shows a procedure in which a terminal performs V2X or SL communication depending on the transmission mode, according to an embodiment of the present disclosure.
  • Figure 12 shows a procedure in which a terminal performs path switching, according to an embodiment of the present disclosure.
  • FIG. 13 illustrates direct to indirect path conversion.
  • Figures 14 and 15 are diagrams for explaining UE-to-UE Relay Selection.
  • Figures 16 to 18 are diagrams for explaining Layer-2 UE-to-UE Relaying.
  • Figures 19 and 20 are diagrams for explaining QoS.
  • Figure 21 is a diagram for explaining an embodiment.
  • 22 to 28 are diagrams illustrating various devices to which the embodiment(s) can be applied.
  • “/” and “,” should be interpreted as indicating “and/or.”
  • “A/B” can mean “A and/or B.”
  • “A, B” may mean “A and/or B.”
  • “A/B/C” may mean “at least one of A, B and/or C.”
  • “A, B, C” may mean “at least one of A, B and/or C.”
  • “or” should be interpreted as indicating “and/or.”
  • “A or B” may include “only A,” “only B,” and/or “both A and B.”
  • “or” should be interpreted as indicating “additionally or alternatively.”
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA can be implemented with wireless technologies such as universal terrestrial radio access (UTRA) or CDMA2000.
  • TDMA may be implemented with wireless technologies such as global system for mobile communications (GSM)/general packet radio service (GPRS)/enhanced data rates for GSM evolution (EDGE).
  • GSM global system for mobile communications
  • GPRS general packet radio service
  • EDGE enhanced data rates for GSM evolution
  • OFDMA can be implemented with wireless technologies such as Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, and evolved UTRA (E-UTRA).
  • IEEE Institute of Electrical and Electronics Engineers
  • Wi-Fi Wi-Fi
  • WiMAX IEEE 802.16
  • E-UTRA evolved UTRA
  • IEEE 802.16m is an evolution of IEEE 802.16e and provides backward compatibility with systems based on IEEE 802.16e.
  • UTRA is part of the universal mobile telecommunications system (UMTS).
  • 3GPP (3rd generation partnership project) LTE (long term evolution) is a part of E-UMTS (evolved UMTS) that uses E-UTRA (evolved-UMTS terrestrial radio access), employing OFDMA in the downlink and SC in the uplink.
  • -Adopt FDMA LTE-A (advanced) is the evolution of 3GPP LTE.
  • 5G NR is a successor technology to LTE-A and is a new clean-slate mobile communication system with characteristics such as high performance, low latency, and high availability.
  • 5G NR can utilize all available spectrum resources, including low-frequency bands below 1 GHz, mid-frequency bands between 1 GHz and 10 GHz, and high-frequency (millimeter wave) bands above 24 GHz.
  • LTE-A or 5G NR is mainly described, but the technical idea according to an embodiment of the present disclosure is not limited thereto.
  • FIG. 2 shows the structure of an LTE system according to an embodiment of the present disclosure. This may be called an Evolved-UMTS Terrestrial Radio Access Network (E-UTRAN), or a Long Term Evolution (LTE)/LTE-A system.
  • E-UTRAN Evolved-UMTS Terrestrial Radio Access Network
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution
  • E-UTRAN includes a base station 20 that provides a control plane and a user plane to the terminal 10.
  • the terminal 10 may be fixed or mobile, and may be called by other terms such as MS (Mobile Station), UT (User Terminal), SS (Subscriber Station), MT (Mobile Terminal), and wireless device.
  • the base station 20 refers to a fixed station that communicates with the terminal 10, and may be called other terms such as evolved-NodeB (eNB), base transceiver system (BTS), or access point.
  • eNB evolved-NodeB
  • BTS base transceiver system
  • Base stations 20 may be connected to each other through an X2 interface.
  • the base station 20 is connected to an Evolved Packet Core (EPC) 30 through the S1 interface, and more specifically, to a Mobility Management Entity (MME) through S1-MME and to a Serving Gateway (S-GW) through S1-U.
  • EPC Evolved Packet Core
  • MME Mobility Management Entity
  • S-GW Serving Gateway
  • the EPC 30 is composed of MME, S-GW, and P-GW (Packet Data Network-Gateway).
  • the MME has information about the terminal's connection information or terminal capabilities, and this information is mainly used for terminal mobility management.
  • S-GW is a gateway with E-UTRAN as an endpoint
  • P-GW is a gateway with PDN (Packet Date Network) as an endpoint.
  • the layers of the Radio Interface Protocol between the terminal and the network are based on the lower three layers of the Open System Interconnection (OSI) standard model, which is widely known in communication systems: L1 (layer 1), It can be divided into L2 (second layer) and L3 (third layer).
  • OSI Open System Interconnection
  • the physical layer belonging to the first layer provides information transfer service using a physical channel
  • the RRC (Radio Resource Control) layer located in the third layer provides radio resources between the terminal and the network. plays a role in controlling.
  • the RRC layer exchanges RRC messages between the terminal and the base station.
  • FIG. 3(a) shows a radio protocol architecture for a user plane, according to an embodiment of the present disclosure.
  • FIG. 3(b) shows a wireless protocol structure for a control plane, according to an embodiment of the present disclosure.
  • the user plane is a protocol stack for transmitting user data
  • the control plane is a protocol stack for transmitting control signals.
  • the physical layer provides information transmission services to upper layers using a physical channel.
  • the physical layer is connected to the upper layer, the MAC (Medium Access Control) layer, through a transport channel.
  • Data moves between the MAC layer and the physical layer through a transport channel. Transmission channels are classified according to how and with what characteristics data is transmitted through the wireless interface.
  • the physical channel can be modulated using OFDM (Orthogonal Frequency Division Multiplexing) and uses time and frequency as radio resources.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the MAC layer provides services to the radio link control (RLC) layer, an upper layer, through a logical channel.
  • the MAC layer provides a mapping function from multiple logical channels to multiple transport channels. Additionally, the MAC layer provides a logical channel multiplexing function by mapping multiple logical channels to a single transport channel.
  • the MAC sublayer provides data transmission services on logical channels.
  • the RLC layer performs concatenation, segmentation, and reassembly of RLC Serving Data Units (SDUs).
  • SDUs RLC Serving Data Units
  • TM Transparent Mode
  • UM Unacknowledged Mode
  • AM automatic repeat request
  • the Radio Resource Control (RRC) layer is defined only in the control plane.
  • the RRC layer is responsible for controlling logical channels, transport channels, and physical channels in relation to configuration, re-configuration, and release of radio bearers.
  • RB refers to a logical path provided by the first layer (physical layer or PHY layer) and the second layer (MAC layer, RLC layer, PDCP (Packet Data Convergence Protocol) layer) for data transfer between the terminal and the network.
  • MAC layer physical layer or PHY layer
  • RLC layer Radio Link Control
  • PDCP Packet Data Convergence Protocol
  • the functions of the PDCP layer in the user plane include forwarding, header compression, and ciphering of user data.
  • the functions of the PDCP layer in the control plane include forwarding and encryption/integrity protection of control plane data.
  • Setting an RB means the process of defining the characteristics of the wireless protocol layer and channel and setting each specific parameter and operation method to provide a specific service.
  • RB can be further divided into SRB (Signaling Radio Bearer) and DRB (Data Radio Bearer).
  • SRB is used as a path to transmit RRC messages in the control plane
  • DRB is used as a path to transmit user data in the user plane.
  • the UE If an RRC connection is established between the RRC layer of the UE and the RRC layer of the E-UTRAN, the UE is in the RRC_CONNECTED state. Otherwise, it is in the RRC_IDLE state.
  • the RRC_INACTIVE state has been additionally defined, and a UE in the RRC_INACTIVE state can release the connection with the base station while maintaining the connection with the core network.
  • Downlink transmission channels that transmit data from the network to the terminal include a BCH (Broadcast Channel) that transmits system information and a downlink SCH (Shared Channel) that transmits user traffic or control messages.
  • BCH Broadcast Channel
  • SCH Shared Channel
  • uplink transmission channels that transmit data from the terminal to the network include RACH (Random Access Channel), which transmits initial control messages, and uplink SCH (Shared Channel), which transmits user traffic or control messages.
  • Logical channels located above the transmission channel and mapped to the transmission channel include BCCH (Broadcast Control Channel), PCCH (Paging Control Channel), CCCH (Common Control Channel), MCCH (Multicast Control Channel), and MTCH (Multicast Traffic). Channel), etc.
  • BCCH Broadcast Control Channel
  • PCCH Paging Control Channel
  • CCCH Common Control Channel
  • MCCH Multicast Control Channel
  • MTCH Multicast Traffic. Channel
  • a physical channel consists of several OFDM symbols in the time domain and several sub-carriers in the frequency domain.
  • One sub-frame consists of a plurality of OFDM symbols in the time domain.
  • a resource block is a resource allocation unit and consists of a plurality of OFDM symbols and a plurality of sub-carriers. Additionally, each subframe may use specific subcarriers of specific OFDM symbols (e.g., the first OFDM symbol) of the subframe for the Physical Downlink Control Channel (PDCCH), that is, the L1/L2 control channel.
  • PDCCH Physical Downlink Control Channel
  • TTI Transmission Time Interval
  • Figure 4 shows the structure of an NR system according to an embodiment of the present disclosure.
  • NG-RAN Next Generation - Radio Access Network
  • gNB next generation-Node B
  • eNB next generation-Node B
  • Figure 4 illustrates a case including only gNB.
  • gNB and eNB are connected to each other through the Xn interface.
  • gNB and eNB are connected through the 5G Core Network (5GC) and NG interface. More specifically, it is connected to the access and mobility management function (AMF) through the NG-C interface, and to the user plane function (UPF) through the NG-U interface.
  • AMF access and mobility management function
  • UPF user plane function
  • Figure 5 shows functional division between NG-RAN and 5GC, according to an embodiment of the present disclosure.
  • gNB performs inter-cell radio resource management (Inter Cell RRM), radio bearer management (RB control), connection mobility control, radio admission control, and measurement configuration and provision.
  • Functions such as (Measurement configuration & Provision) and dynamic resource allocation can be provided.
  • AMF can provide functions such as NAS (Non Access Stratum) security and idle state mobility processing.
  • UPF can provide functions such as mobility anchoring and PDU (Protocol Data Unit) processing.
  • SMF Session Management Function
  • Figure 6 shows the structure of a radio frame of NR to which the embodiment(s) can be applied.
  • NR can use radio frames in uplink and downlink transmission.
  • a wireless frame has a length of 10ms and can be defined as two 5ms half-frames (HF).
  • a half-frame may include five 1ms subframes (Subframe, SF).
  • a subframe may be divided into one or more slots, and the number of slots within a subframe may be determined according to subcarrier spacing (SCS).
  • SCS subcarrier spacing
  • Each slot may contain 12 or 14 OFDM(A) symbols depending on the cyclic prefix (CP).
  • each slot may contain 14 symbols.
  • each slot can contain 12 symbols.
  • the symbol may include an OFDM symbol (or CP-OFDM symbol) and an SC-FDMA symbol (or DFT-s-OFDM symbol).
  • Table 1 below shows the number of symbols per slot ( ⁇ ) according to the SCS setting ( ⁇ ) when normal CP is used. ), number of slots per frame ( ) and the number of slots per subframe ( ) is exemplified.
  • Table 2 illustrates the number of symbols per slot, the number of slots per frame, and the number of slots per subframe according to the SCS when the extended CP is used.
  • OFDM(A) numerology eg, SCS, CP length, etc.
  • OFDM(A) numerology eg, SCS, CP length, etc.
  • the (absolute time) interval of time resources e.g., subframes, slots, or TTI
  • TU Time Unit
  • multiple numerologies or SCSs can be supported to support various 5G services. For example, if SCS is 15kHz, a wide area in traditional cellular bands can be supported, and if SCS is 30kHz/60kHz, dense-urban, lower latency latency) and wider carrier bandwidth may be supported. For SCS of 60 kHz or higher, bandwidths greater than 24.25 GHz can be supported to overcome phase noise.
  • the NR frequency band can be defined as two types of frequency ranges.
  • the two types of frequency ranges may be FR1 and FR2.
  • the values of the frequency range may be changed, for example, the frequency ranges of the two types may be as shown in Table 3 below.
  • FR1 can mean “sub 6GHz range”
  • FR2 can mean “above 6GHz range” and can be called millimeter wave (mmW).
  • mmW millimeter wave
  • FR1 may include a band of 410 MHz to 7125 MHz as shown in Table 4 below. That is, FR1 may include a frequency band of 6GHz (or 5850, 5900, 5925 MHz, etc.). For example, the frequency band above 6 GHz (or 5850, 5900, 5925 MHz, etc.) included within FR1 may include an unlicensed band. Unlicensed bands can be used for a variety of purposes, for example, for communications for vehicles (e.g., autonomous driving).
  • Figure 7 shows the slot structure of an NR frame according to an embodiment of the present disclosure.
  • a slot includes a plurality of symbols in the time domain.
  • one slot may include 14 symbols, but in the case of extended CP, one slot may include 12 symbols.
  • one slot may include 7 symbols, but in the case of extended CP, one slot may include 6 symbols.
  • a carrier wave includes a plurality of subcarriers in the frequency domain.
  • a Resource Block (RB) may be defined as a plurality (eg, 12) consecutive subcarriers in the frequency domain.
  • BWP (Bandwidth Part) can be defined as a plurality of consecutive (P)RB ((Physical) Resource Blocks) in the frequency domain and can correspond to one numerology (e.g. SCS, CP length, etc.) there is.
  • a carrier wave may include up to N (e.g., 5) BWPs. Data communication can be performed through an activated BWP.
  • Each element may be referred to as a Resource Element (RE) in the resource grid, and one complex symbol may be mapped.
  • RE Resource Element
  • the wireless interface between the terminal and the terminal or the wireless interface between the terminal and the network may be composed of an L1 layer, an L2 layer, and an L3 layer.
  • the L1 layer may refer to a physical layer.
  • the L2 layer may mean at least one of the MAC layer, RLC layer, PDCP layer, and SDAP layer.
  • the L3 layer may mean the RRC layer.
  • V2X or SL (sidelink) communication will be described.
  • Figure 8 shows a radio protocol architecture for SL communication, according to an embodiment of the present disclosure. Specifically, Figure 8(a) shows the user plane protocol stack of LTE, and Figure 8(b) shows the control plane protocol stack of LTE.
  • Figure 9 shows a radio protocol architecture for SL communication, according to an embodiment of the present disclosure. Specifically, Figure 9(a) shows the user plane protocol stack of NR, and Figure 9(b) shows the control plane protocol stack of NR.
  • Figure 10 shows a synchronization source or synchronization reference of V2X, according to an embodiment of the present disclosure.
  • the terminal in V2X, is directly synchronized to GNSS (global navigation satellite systems), or indirectly synchronized to GNSS through a terminal (within network coverage or outside network coverage) that is directly synchronized to GNSS. You can. If GNSS is set as the synchronization source, the terminal can calculate the DFN and subframe number using Coordinated Universal Time (UTC) and a (pre)set Direct Frame Number (DFN) offset.
  • UTC Coordinated Universal Time
  • DFN Direct Frame Number
  • the terminal may be synchronized directly to the base station or to another terminal that is time/frequency synchronized to the base station.
  • the base station may be an eNB or gNB.
  • the terminal may receive synchronization information provided by the base station and be directly synchronized to the base station. Afterwards, the terminal can provide synchronization information to other nearby terminals.
  • the base station timing is set as a synchronization standard, the terminal is connected to a cell associated with that frequency (if within cell coverage at the frequency), primary cell, or serving cell (if outside cell coverage at the frequency) for synchronization and downlink measurements. ) can be followed.
  • a base station may provide synchronization settings for the carrier used for V2X or SL communication.
  • the terminal can follow the synchronization settings received from the base station. If the terminal does not detect any cells in the carrier used for V2X or SL communication and does not receive synchronization settings from the serving cell, the terminal may follow preset synchronization settings.
  • the terminal may be synchronized to another terminal that has not obtained synchronization information directly or indirectly from the base station or GNSS.
  • Synchronization source and preference can be set in advance to the terminal.
  • the synchronization source and preference can be set through a control message provided by the base station.
  • SL synchronization source may be associated with a synchronization priority.
  • the relationship between synchronization source and synchronization priority can be defined as Table 5 or Table 6.
  • Table 5 or Table 6 is only an example, and the relationship between synchronization source and synchronization priority can be defined in various forms.
  • P0 may mean the highest priority
  • P6 may mean the lowest priority
  • the base station may include at least one of a gNB or an eNB.
  • Whether to use GNSS-based synchronization or base station-based synchronization can be set (in advance).
  • the terminal In single-carrier operation, the terminal can derive its transmission timing from the available synchronization reference with the highest priority.
  • SLSS Sidelink Synchronization Signal
  • SLSS is a SL-specific sequence and may include Primary Sidelink Synchronization Signal (PSSS) and Secondary Sidelink Synchronization Signal (SSSS).
  • PSSS Primary Sidelink Synchronization Signal
  • SSSS Secondary Sidelink Synchronization Signal
  • the PSSS may be referred to as S-PSS (Sidelink Primary Synchronization Signal), and the SSSS may be referred to as S-SSS (Sidelink Secondary Synchronization Signal).
  • S-PSS Systemlink Primary Synchronization Signal
  • S-SSS Sidelink Secondary Synchronization Signal
  • length-127 M-sequences can be used for S-PSS
  • length-127 Gold sequences can be used for S-SSS.
  • the terminal can detect the first signal and obtain synchronization using S-PSS.
  • the terminal can obtain detailed synchronization using S-PSS and S-SSS and detect the synchronization signal ID.
  • PSBCH Physical Sidelink Broadcast Channel
  • PSBCH Physical Sidelink Broadcast Channel
  • the basic information includes SLSS-related information, duplex mode (DM), TDD UL/DL (Time Division Duplex Uplink/Downlink) configuration, resource pool-related information, type of application related to SLSS, This may be subframe offset, broadcast information, etc.
  • the payload size of PSBCH may be 56 bits, including a CRC of 24 bits.
  • S-PSS, S-SSS, and PSBCH may be included in a block format that supports periodic transmission (e.g., SL Synchronization Signal (SS)/PSBCH block, hereinafter referred to as Sidelink-Synchronization Signal Block (S-SSB)).
  • the S-SSB may have the same numerology (i.e., SCS and CP length) as the PSCCH (Physical Sidelink Control Channel)/PSSCH (Physical Sidelink Shared Channel) in the carrier, and the transmission bandwidth is (pre-set) SL BWP (Sidelink BWP).
  • the bandwidth of S-SSB may be 11 RB (Resource Block).
  • PSBCH may span 11 RB.
  • the frequency position of the S-SSB can be set (in advance). Therefore, the UE does not need to perform hypothesis detection at the frequency to discover the S-SSB in the carrier.
  • the transmitting terminal may transmit one or more S-SSBs to the receiving terminal within one S-SSB transmission period according to the SCS.
  • the number of S-SSBs that the transmitting terminal transmits to the receiving terminal within one S-SSB transmission period may be pre-configured or configured for the transmitting terminal.
  • the S-SSB transmission period may be 160ms.
  • an S-SSB transmission period of 160ms can be supported.
  • the transmitting terminal can transmit one or two S-SSBs to the receiving terminal within one S-SSB transmission period.
  • the transmitting terminal can transmit one or two S-SSBs to the receiving terminal within one S-SSB transmission period.
  • the transmitting terminal can transmit 1, 2, or 4 S-SSBs to the receiving terminal within one S-SSB transmission cycle.
  • Figure 11 shows a procedure in which a terminal performs V2X or SL communication depending on the transmission mode, according to an embodiment of the present disclosure.
  • the embodiment of FIG. 11 may be combined with various embodiments of the present disclosure.
  • the transmission mode may be referred to as a mode or resource allocation mode.
  • the transmission mode in LTE may be referred to as the LTE transmission mode
  • the transmission mode in NR may be referred to as the NR resource allocation mode.
  • Figure 11 (a) shows terminal operations related to LTE transmission mode 1 or LTE transmission mode 3.
  • Figure 11 (a) shows UE operations related to NR resource allocation mode 1.
  • LTE transmission mode 1 can be applied to general SL communication
  • LTE transmission mode 3 can be applied to V2X communication.
  • Figure 11 (b) shows terminal operations related to LTE transmission mode 2 or LTE transmission mode 4.
  • Figure 11(b) shows UE operations related to NR resource allocation mode 2.
  • the base station may schedule SL resources to be used by the terminal for SL transmission.
  • the base station may transmit information related to SL resources and/or information related to UL resources to the first terminal.
  • the UL resources may include PUCCH resources and/or PUSCH resources.
  • the UL resource may be a resource for reporting SL HARQ feedback to the base station.
  • the first terminal may receive information related to dynamic grant (DG) resources and/or information related to configured grant (CG) resources from the base station.
  • CG resources may include CG Type 1 resources or CG Type 2 resources.
  • the DG resource may be a resource that the base station configures/allocates to the first terminal through downlink control information (DCI).
  • the CG resource may be a (periodic) resource that the base station configures/allocates to the first terminal through a DCI and/or RRC message.
  • the base station may transmit an RRC message containing information related to the CG resource to the first terminal.
  • the base station may transmit an RRC message containing information related to the CG resource to the first terminal, and the base station may send a DCI related to activation or release of the CG resource. It can be transmitted to the first terminal.
  • the first terminal may transmit a PSCCH (eg, Sidelink Control Information (SCI) or 1st-stage SCI) to the second terminal based on the resource scheduling.
  • a PSCCH eg., Sidelink Control Information (SCI) or 1st-stage SCI
  • the first terminal may transmit a PSSCH (e.g., 2nd-stage SCI, MAC PDU, data, etc.) related to the PSCCH to the second terminal.
  • the first terminal may receive the PSFCH related to the PSCCH/PSSCH from the second terminal.
  • HARQ feedback information eg, NACK information or ACK information
  • the first terminal may transmit/report HARQ feedback information to the base station through PUCCH or PUSCH.
  • the HARQ feedback information reported to the base station may be information that the first terminal generates based on HARQ feedback information received from the second terminal.
  • the HARQ feedback information reported to the base station may be information that the first terminal generates based on preset rules.
  • the DCI may be a DCI for scheduling of SL.
  • the format of the DCI may be DCI format 3_0 or DCI format 3_1. Table 7 shows an example of DCI for scheduling SL.
  • the terminal can determine the SL transmission resource within the SL resource set by the base station/network or within the preset SL resource.
  • the set SL resource or preset SL resource may be a resource pool.
  • the terminal can autonomously select or schedule resources for SL transmission.
  • the terminal can self-select a resource within a set resource pool and perform SL communication.
  • the terminal may perform sensing and resource (re)selection procedures to select resources on its own within the selection window.
  • the sensing may be performed on a subchannel basis.
  • the first terminal that has selected a resource within the resource pool may transmit a PSCCH (eg, Sidelink Control Information (SCI) or 1st-stage SCI) to the second terminal using the resource.
  • a PSCCH eg, Sidelink Control Information (SCI) or 1st-stage SCI
  • the first terminal may transmit a PSSCH (e.g., 2nd-stage SCI, MAC PDU, data, etc.) related to the PSCCH to the second terminal.
  • the first terminal may receive the PSFCH related to the PSCCH/PSSCH from the second terminal.
  • the first terminal may transmit an SCI to the second terminal on the PSCCH.
  • the first terminal may transmit two consecutive SCIs (eg, 2-stage SCI) on the PSCCH and/or PSSCH to the second terminal.
  • the second terminal can decode two consecutive SCIs (eg, 2-stage SCI) to receive PSSCH from the first terminal.
  • the SCI transmitted on the PSCCH may be referred to as 1st SCI, 1st SCI, 1st-stage SCI, or 1st-stage SCI format
  • the SCI transmitted on the PSSCH may be referred to as 2nd SCI, 2nd SCI, 2nd-stage SCI, or It can be called the 2nd-stage SCI format
  • the 1st-stage SCI format may include SCI format 1-A
  • the 2nd-stage SCI format may include SCI format 2-A and/or SCI format 2-B.
  • Table 8 shows an example of the 1st-stage SCI format.
  • Table 9 shows an example of the 2nd-stage SCI format.
  • the first terminal can receive PSFCH based on Table 10.
  • the first terminal and the second terminal may determine PSFCH resources based on Table 10, and the second terminal may transmit HARQ feedback to the first terminal using the PSFCH resource.
  • the first terminal may transmit SL HARQ feedback to the base station through PUCCH and/or PUSCH, based on Table 11.
  • Table 12 below shows disclosure related to selection and reselection of sidelink relay UE in 3GPP TS 36.331.
  • the disclosure content in Table 12 is used as the prior art of this disclosure, and related necessary details refer to 3GPP TS 36.331.
  • Figure 12 shows the connection management captured in the TR document (3GPP TR 38.836) related to Rel-17 NR SL and the procedure for path switching from direct to indirect.
  • the remote UE needs to establish its own PDU session/DRB with the network before user plane data transmission.
  • the PC5-RRC aspect of Rel-16 NR V2X's PC5 unicast link setup procedure involves L2 UE-to-Network relaying between the remote UE and the relay UE before the remote UE establishes a Uu RRC connection with the network through the relay UE. It can be reused to establish a secure unicast link.
  • the PC5 L2 configuration for transmission between the remote UE and the UE-to-Network Relay UE is defined in the standard. It can be based on the RLC/MAC configuration. Establishment of Uu SRB1/SRB2 and DRB of remote UE follows the legacy Uu configuration procedure for L2 UE-to-Network Relay.
  • the high-level connection establishment procedure shown in Figure 12 applies to L2 UE-to-Network Relay.
  • step S1200 the Remote and Relay UE can perform a discovery procedure and establish a PC5-RRC connection in step S1201 based on the existing Rel-16 procedure.
  • the remote UE may transmit the first RRC message (i.e., RRCSetupRequest) for connection establishment with the gNB through the Relay UE using the basic L2 configuration of PC5.
  • the gNB responds to the remote UE with an RRCSetup message (S1203).
  • RRCSetup delivery to the remote UE uses the default configuration of PC5. If the Relay UE has not started in RRC_CONNECTED, it must perform its own connection setup upon receiving a message about PC5's default L2 configuration. At this stage, details for the relay UE to deliver the RRCSetupRequest/RRCSetup message to the remote UE can be discussed in the WI stage.
  • step S1204 gNB and Relay UE perform a relay channel setup procedure through Uu.
  • the Relay/Remote UE sets up an RLC channel to relay SRB1 to the remote UE through PC5. This step prepares the relay channel for SRB1.
  • a remote UE SRB1 message (e.g., RRCSetupComplete message) is transmitted to the gNB via the relay UE using the SRB1 relay channel via PC5. And the remote UE is connected to RRC through Uu.
  • step S1206 the remote UE and gNB set security according to the legacy procedure and the security message is delivered through the relay UE.
  • the gNB sets up an additional RLC channel between the gNB and the Relay UE for traffic relay.
  • the Relay/Remote UE sets up an additional RLC channel between the Remote UE and Relay UE for traffic relay.
  • gNB sends RRCReconfiguration to the remote UE through the relay UE to configure relay SRB2/DRB.
  • the remote UE sends RRCReconfigurationComplete as a response to the gNB through the Relay UE.
  • the RRC reconfiguration and RRC disconnection procedures can reuse legacy RRC procedures with the message content/configuration design left to the WI stage.
  • RRC connection reset and RRC connection resumption procedures can reuse existing RRC procedures as a baseline by considering the connection establishment procedure of the above L2 UE-to-Network Relay to handle relay-specific parts along with message content/configuration design. there is. Message content/configuration may be defined later.
  • Figure 13 illustrates direct to indirect path conversion.
  • the procedure in FIG. 13 can be used when a remote UE switches to an indirect relay UE.
  • the remote UE measures/discovers a candidate relay UE and then reports one or several candidate relay UEs.
  • Remote UEs can filter out appropriate relay UEs that meet higher layer criteria when reporting.
  • the report may include the relay UE's ID and SL RSRP information, where details regarding PC5 measurements may be determined later.
  • step S1302 the gNB decides to switch to the target relay UE and the target (re)configuration is optionally sent to the relay UE.
  • the RRC reconfiguration message for the remote UE may include the ID of the target relay UE, target Uu, and PC5 configuration.
  • step S1305 the remote UE establishes a PC5 connection with the target relay UE if the connection has not yet been established.
  • step S1306 the remote UE feeds back RRCReconfigurationComplete to the gNB via the target path using the target configuration provided in RRCReconfiguration.
  • step S1307 the data path is switched.
  • Tables 13 to 16 are 3GPP technical reports related to UE-to-UE Relay Selection and are used as prior art in the present disclosure.
  • Table 14 Fig. 14, Fig. 16 in Table 16. 15 corresponds to Figures 14 and 15, respectively.
  • UE-to-UE relay discovery and selection is integrated into Model B direct discovery procedure.
  • a new field is proposed to be added in the Direct Communication Request or the Solicitation message to indicate whether relays can be used in the communication.
  • the field can be called relay_indication.
  • a UE wants to broadcast a Direct Communication Request or a Solicitation message, it indicates in the message whether a UE-to-UE relay could be used. For Release 17, it is assumed that the value of the indication is restricted to single hop.
  • a UE-to-UE relay When a UE-to-UE relay receives a Direct Communication Request or a Solicitation message with the relay_indication set, then it shall decide whether to forward the message (ie modify the message and broadcast it in its proximity), according to eg Relay Service Code if there is any, Application ID, authorization policy (eg relay for specific ProSe Service), the current traffic load of the relay, the radio conditions between the source UE and the relay UE, etc. It may exist a situation where multiple UE-to-UE relays can be used to reach the target UE or the target UE may also directly receive the Direct Communication Request or Solicitation message from the source UE.
  • eg Relay Service Code if there is any, Application ID, authorization policy (eg relay for specific ProSe Service), the current traffic load of the relay, the radio conditions between the source UE and the relay UE, etc. It may exist a situation where multiple UE-to-UE relays can be used to reach the target UE or the target UE may also
  • the target UE may choose which one to reply according to eg signal strength, local policy (eg traffic load of the UE-to-UE relays), Relay Service Code if there is any or operator policies (eg always prefer direct communication or only use some specific UE-to-UE relays).
  • the source UE may receive the responses from multiple UE-to-UE relays and may also from the target UE directly, the source UE chooses the communication path according to eg signal strength or operator policies (eg always prefer direct communication or only use some specific UE-to-UE relays).
  • UE-to-UE relay discovery and selection is integrated into the unicast link establishment procedure (Alternative 1)
  • Fig 14 illustrates the procedure of the proposed method. 0.
  • UEs are authorized to use the service provided by the UE-to-UE relays.
  • UE-to-UE relays are authorized to provide service of relaying traffic among UEs.
  • the authorization and the parameter provisioning can use solutions for KI#8, eg Sol#36.
  • the authorization can be done when UEs/relays are registered to the network.
  • Security related parameters may be provisioned so that a UE and a relay can verify the authorization with each other if needed. 1.
  • UE-1 wants to establish unicast communication with UE-2 and the communication can be either through direct link with UE-2 or via a UE-to-UE relay. Then UE-1 broadcasts Direct Communication Request with relay_indication enabled. The message will be received by relay-1, relay-2. The message may also be received by UE-2 if it is in the proximity of UE-1.
  • UE-1 includes source UE info, target UE info, Application ID, as well as Relay Service Code if there is any. If UE-1 does not want relay to be involved in the communication, then it will made relay_indication disabled.
  • the data type of relay_indication can be determined in Stage 3. Details of Direct Communication Request/Accept messages will be determined in stage 3. 2.
  • Relay-1 and relay-2 decide to participate in the procedure.
  • a relay broadcasts the Direct Communication Request message, it includes source UE info, target UE info and Relay UE info (eg Relay UE ID) in the message and use Relay's L2 address as the source Layer-2 ID.
  • the Relay maintains association between the source UE information (eg source UE L2 ID) and the new Direct Communication Request.
  • UE-2 receives the Direct Communication Requests from relay-1 and relay-2.
  • UE-2 may also receive Direct Communication Request message directly from the UE-1 if the UE-2 is in the communication range of UE-1.
  • UE-2 chooses relay-1 and replies with Direct Communication Accept message.
  • UE-2 directly receives the Direct Communication Request from UE-1, it may choose to setup a direct communication link by sending the Direct Communication Accept message directly to UE-1.
  • a UE-to-UE relay retrieves the source UE information stored in step 2 and sends the Direct Communication Accept message to the source UE with its Relay UE info added in the message.
  • UE-1 and UE-2 have respectively setup the PC5 links with the chosen UE-to-UE relay.
  • NOTE 2 The security establishment between the UE1 and Relay-1, and between Relay-1 and UE-2 are performed before the Relay-1 and UE-2 send Direct Communication Accept message. Details of the authentication/security establishment procedure are determined by SA WG3. The security establishment procedure can be skipped if there already exists a PC5 link between the source (or target) UE and the relay which can be used for relaying the traffic. 5.
  • UE-1 receives the Direct Communication Accept message from relay-1.
  • UE-1 chooses path according to eg policies (eg always choose direct path if it is possible), signal strength, etc.
  • UE-1 receives Direct Communication Accept / Response message request accept directly from UE-2, it may choose to setup a direct PC5 L2 link with UE-2 as described in clause 6.3.3 of TS 23.287 [5], then step 6 is skipped. 6a.
  • UE-1 and UE-2 finish setting up the communication link via the chosen UE-to-UE relay.
  • the link setup information may vary depending on the type of relay, eg L2 or L3 relaying. Then UE-1 and UE-2 can communicate via the relay.
  • the addresses can be either assigned by the relay or by the UE itself (eg link-local IP address) as defined in clause 6.3.3 of TS 23.287 [5]. 6b.
  • the source and target UE can setup an end-to-end PC5 link via the relay.
  • UE-1 sends a unicast E2E Direct Communication Request message to UE-2 via the Relay-1, and UE-2 responds with a unicast E2E Direct Communication Accept message to UE-1 via the Relay-1.
  • Relay-1 transfers the messages based on the identity information of UE-1/UE-2 in the Adaptation Layer.
  • UE-to-UE relay discovery and selection is integrated into Model B direct discovery procedure (Alternative 2) Depicted in Fig 15 is the procedure for UE-UE Relay discovery Model B, and the discovery/selection procedure is separated from hop by hop and end-to-end link establishment.
  • UE-1 broadcasts discovery solicitation message carrying UE-1 info, target UE info (UE-2), Application ID, Relay Service Code if any, the UE-1 can also indicate relay_indication enabled.
  • the candidate Relay UE-R broadcasts discovery solicitation carrying UE-1 info, UE-R info, Target UE info.
  • the Relay UE-R uses Relay's L2 address as the source Layer-2 ID.
  • the target UE-2 responds the discovery message.
  • UE-2 receives discovery solicitation message in step 1, then UE-2 responds discovery response in step 3b with UE-1 info, UE-2 info. If not and UE-2 receives discovery solicitation in step 2, then UE-2 responds discovery response message in step 3a with UE-1 info, UE-R info, UE-2 info. 4. On reception of discovery response in step 3a, UE-R sends discovery response with UE-1 info, UE-R info, UE-2 info. If more than one candidate Relay UEs responding discovery response message, UE-1 can select one Relay UE based on eg implementation or link qualification. 5. The source and target UE may need to setup PC5 links with the relay before communicating with each other.
  • Step 5a can be skipped if there already exists a PC5 link between the UE-1 and UE-R which can be used for relaying.
  • Step 5b can be skipped if there already exists a PC5 link between the UE-2 and UE-R which can be used for relaying.
  • 6a Same as step 6a described in clause 6.8.2.1. 6b.
  • the E2E unicast Direct Communication Request message is sent from UE1 to the selected Relay via the per-hop link (established in steps 5a) and the Adaptation layer info identifying the peer UE (UE3 ) as the destination.
  • the UE-to-UE Relay transfers the E2E messages based on the identity information of peer UE in the Adaptation Layer.
  • the initiator (UE1) knows the Adaptation layer info identifying the peer UE (UE3) after a discovery procedure. UE3 responds with E2E unicast Direct Communication Accept message in the same way.
  • UE1 For the Layer 2 UE-to-UE Relay case, whether step5b is performed before step 6b or triggered during step 6b will be decided at normative phase.
  • UE 2 How Relay-1 can transfer the messages based on the identity information of UE-1/UE-2 in the Adaptation Layer requires cooperation with RAN2 during the normative phase. 6.8.3 Impacts on services, entities and interfaces UE impacts to support new Relay related functions.
  • Table 17 is a 3GPP 23.700-33 document related to Layer-2 UE-to-UE Relaying and is used as prior art for the present disclosure.
  • Figure 6.30.2.1.1-1, Figure 6.30.2.1.2-1, and Figure 6.30.2.1.2-1 correspond to Figures 17, 18, and 19, respectively.
  • the Announcement message may include the Type of Discovery Message, User Info ID of the UE-to-UE Relay, RSC, and User Info ID of the proximity UEs.
  • the Source Layer-2 ID of the Announcement message is self-assigned by the UE-to-UE Relay, and the Destination Layer-2 ID is selected based on the ProSe policy. 6.30.2.1.2 Procedure for UE-to-UE Relay discovery with Model B Depicted in figure 6.30.2.1.2-1 is the procedure for UE-to-UE Relay discovery with Model B. 1.
  • the Source UE broadcasts a Solicitation message.
  • the Solicitation message may include the Type of Discovery Message, User Info ID of Source UE, User Info ID of Target UE, and RSC.
  • the Source Layer-2 ID of the Announcement message is self-assigned by the Source UE, and the Destination Layer-2 ID is selected based on the ProSe policy.
  • a candidate UE-to-UE Relay eg, UE-to-UE Relay 1 and UE-to-UE Relay 2 broadcasts a Solicitation message carrying the User Info ID of Source UE, User Info ID of Target UE, User Info ID of the UE-to-UE Relay, and the RSC.
  • the Source Layer-2 ID of the Announcement message is self-assigned by the candidate UE-to-UE Relay, and the Destination Layer-2 ID is selected based on the ProSe policy. 3.
  • the Target UE chooses UE-to-UE Relay 1 from the candidate UE-to-UE Relays based on, eg signal strength.
  • the Target UE responds to UE-to-UE Relay 1.
  • 4. UE-to-UE Relay 1 responds to the Source UE. 6.30.2.2
  • Procedures for Layer-2 UE-to-UE Relay connection establishment Depicted in figure 6.30.2.2-1 is the procedure for Layer-2 UE-to-UE Relay connection establishment. 1.
  • Service authorisation and policy provisioning is performed for the Source UE, Target UE and UE-to-UE Relay as described in the solutions for KI#6. 2.
  • UE-to-UE Relay discovery is performed as described in clause 6.30.2.1. 3.
  • the Source UE and Target UE may need to setup or modify the PC5 link with UE-to-UE Relay. If there is no PC5 link between the Source UE and the UE-to-UE Relay that can be used for relaying, eg based on RSC, then a new PC5 link needs to be setup in step 3a by the Source UE, otherwise the existing link can be modified by the Source UE to support communication between the Source and Target UEs.
  • User Info ID of Target UE is included in the Direct Communication Request message or Link Modification Request message.
  • the Target User Info for the Target UE is obtained from the discovery procedure performed in step 2.
  • a new PC5 link needs to be setup in step 3b by the UE-to-UE Relay , otherwise the existing link can be modified by the UE-to-UE Relay to support communication between the Source and Target UEs.
  • the destination Layer-2 ID may be broadcast or unicast Layer-2 ID and the Source Layer-2 ID is self-assigned by the Source UE or the UE- to-UE Relay. When a unicast destination Layer-2 ID is used, it is obtained during the discovery procedure performed in step 2.
  • the Source UE sends a Direct Communication Request message to initiate the unicast Layer-2 link establishment procedure with the Target UE.
  • the Direct Communication Request message includes User Info ID of Source UE, User Info ID of Target UE, QoS Info (PFI and PC5 QoS parameters) and RSC.
  • the Direct Communication Request message is sent over the PC5 link with the UE-to-UE Relay.
  • the Source Layer-2 ID and the Destination Layer-2 ID of the PC5 link setup or modified in step 3a are used.
  • the UE-to-UE Relay forwards the Direct Communication Request message towards the Target UE, and the Direct Communication Request message is sent over the PC5 link with the Target UE.
  • the Source Layer-2 ID and the Destination Layer-2 ID of the PC5 link setup or modified in step 3b are used. 5.
  • the Target UE triggers the security procedure with Source UE. 6.
  • the Target UE sends a Direct Communication Accept message to the Source UE.
  • the Direct Communication Accept message includes User Info ID of Source UE, User Info ID of Target UE, QoS Info (PFI and PC5 QoS parameters) and RSC.
  • the end-to-end QoS flow is established between Source UE and Target UE.
  • the data is transferred between the Source UE and the Target UE via the UE-to-UE Relay.
  • How the PC5-S messages in steps 4-6 and the data in step 7 are forwarded by the UE-to-UE Relay is to be determined by RAN2, such as based on an Adaptation layer.
  • Tables 19 to 21 are 3GPP 23.287 documents for QoS handling and are used as prior art for this disclosure.
  • Figure 5.4.1.1.1-1 corresponds to Figure 19
  • Figure 5.4.1.1.3-1 corresponds to Figure 20.
  • a PC5 QoS Flow is associated with a PC5 QoS Rule and the PC5 QoS parameters as defined in clause 5.4.2.
  • a set of standardized PC5 5QIs (PQI) are defined in clause 5.4.4.
  • the UE may be configured with a set of default PC5 QoS parameters to use for the V2X service types, as defined in clause 5.1.2.1.
  • Per-flow QoS model for PC5 QoS management shall be applied.
  • Figure 5.4.1.1.1-1 illustrates an example mapping of Per-flow QoS model for NR PC5.
  • V2X packets may require different QoS treatments.
  • the V2X packets shall be sent from the V2X layer to the Access Stratum layer within PC5 QoS Flows identified by different PFIs.
  • a Range parameter is associated with the QoS parameters for the V2X communication.
  • the Range may be provided by V2X application layer or use a default value mapped from the V2X service type based on configuration as defined in clause 5.1.2.1.
  • the Range indicates the minimum distance that the QoS parameters need to be fulfilled.
  • the Range parameter is passed to AS layer together with the QoS parameters for dynamic control.
  • - NR based PC5 supports three communication modes, ie broadcast, groupcast, and unicast.
  • the QoS handling of these different modes are described in clauses 5.4.1.2 to 5.4.1.4.
  • the UE may handle traffic using broadcast, groupcast, and unicast mode communication by taking all their priorities, eg indicated by PQIs, into account as described in clause 5.4.3.3.
  • standardized PQI values are applied by the UE, as there is no signaling over PC5 reference point for these cases.
  • the UE-PC5-AMBR for NR based PC5 applies to all types of communication modes, and is used by NG-RAN for capping the UE's NR based PC5 transmission in the resources management.
  • the UE-PC5-AMBR shall be set to the sum of the aggregate maximum bit rate of all types of communication (ie unicast, groupcast and broadcast modes) over PC5 reference point.
  • the UE derives PC5 QoS parameters defined in clause 5.4.2 as below: - If the application layer provides the V2X Application Requirements for the V2X service type (eg priority requirement, reliability requirement, delay requirement, range requirement), the V2X layer determines the PC5 QoS parameters based on the V2X Application Requirements; -Otherwise, the V2X layer determines the PC5 QoS parameters based on the mapping of the V2X service type to PC5 QoS parameters defined in clause 5.1.2.1.
  • NOTE 1 Details of V2X Application Requirements for the V2X service type is up to implementation and out of scope of this specification.
  • the UE After deriving the PC5 QoS parameters, the UE performs the following: - If there is no existing PC5 QoS Flow that fulfills the derived PC5 QoS parameters: - The UE creates a new PC5 QoS Flow for the derived PC5 QoS parameters; and - The UE then assigns a PFI and derives PC5 QoS Rule for this PC5 QoS Flow. -Otherwise, the UE updates the PC5 Packet Filter Set in the PC5 QoS Rule for such PC5 QoS Flow. NOTE 2: It is expected that the application layer is capable of differentiating traffic from different V2X services that is transported within the same PC5 QoS Flow.
  • the PC5 QoS Flow is the finest granularity of QoS differentiation in the same destination identified by Destination Layer-2 ID.
  • User Plane traffic with the same PFI receives the same traffic forwarding treatment (eg scheduling, admission threshold).
  • the PFI is unique within a same destination.
  • PC5 QoS Flows based on PC5 QoS Rules
  • the UE maintains the PC5 QoS Context and PC5 QoS Rule(s) for each PC5 QoS Flow identified by a PC5 QoS Flow Identifier (PFI) per destination identified by Destination Layer-2 ID.
  • PFI PC5 QoS Flow Identifier
  • the following information is maintained in the V2X layer of the UE: -
  • a PC5 QoS Context includes the following information: -PFI; - PC5 QoS parameters (ie PQI and conditionally other parameters such as MFBR/GFBR, Range, etc.) as defined in clause 5.4.2; and - the V2X service type(s).
  • Each PC5 QoS Rule contains the following information: -PFI; - a PC5 Packet Filter Set as defined in clause 5.4.1.1.4; and - a precedence value.
  • the precedence value determines the order in which the PC5 QoS Rules are evaluated.
  • the PC5 QoS Rule with lower precedence value is evaluated before those with the higher precedence values.
  • How to set the precedence value is up to UE implementation.
  • the UE When the UE releases the PFI, the UE removes the corresponding PC5 QoS Context and PC5 QoS Rule(s) for the destination.
  • the Unicast Link Profile defined in clause 5.2.1.4 contains additional information mapped from PFI for unicast operation.
  • the V2X layer provides information for PC5 QoS operations per destination (eg identified by Destination Layer-2 ID) to AS layer for Per-flow QoS model operations as below: 1) To add a new PC5 QoS Flow or to modify any existing PC5 QoS Flow, the V2X layer provides the following information for the PC5 QoS Flow to AS layer.
  • the V2X layer provides the following information for the PC5 QoS Flow to AS layer. - the PFI; and - source/destination Layer-2 IDs for broadcast and groupcast mode communication, or the PC5 Link Identifier for unicast.
  • the V2X layer also provides the communication mode (eg broadcast, groupcast, unicast) and radio frequencies to the AS layer for the PC5 operation. The radio frequencies are determined based on the V2X service type.
  • FIG.4.1.1.3-1 illustrated an example of the classification and marking of user plane traffic using the PC5 QoS Rules, and the mapping of PC5 QoS Flows to radio resources at access stratum layer.
  • Figure 5.4.1.1.3-1 for a given pair of source and destination Layer-2 IDs, there can be multiple radio bearers, each corresponding to a different PC5 QoS level.
  • the AS layer can determine the mapping of multiple PC5 QoS Flows to the same radio bearer based on the information provided. For broadcast and groupcast mode communication, the L2 link goes to all UEs in proximity identified by the destination Layer-2 ID.
  • the involvement of gNB to support U2U relay specific operation is minimized, and accordingly, the discovery configuration is also pre-configuration for OoC UE and SIB for IDLE/INACTIVE UE. It was only agreed upon to use it. (119bis agreement: RAN2 will strive to simplify the gNB involvement in U2U-relay-specific operation as compared to the U2N case. - 120 agreement: RAN2 to agree that in U2U relay, OOC UEs obtain discovery configuration from pre-configuration and IDLE/ INACTIVE UEs obtain discovery configuration from SIB.) However, even for CONNECTED UEs, it has not yet been agreed whether to receive discovery configuration through RRC dedicated message.
  • the remote UE can configure the threshold necessary to select a relay UE suitable for the QoS requirements of the remote UE through an RRC dedicated message, in the case of a U2U relay UE, the remote UE's We propose a method to configure thresholds suitable for QoS requirements.
  • the first UE may select a relay UE from one or more candidate relay UEs (S2101 in FIG. 21).
  • the first UE may establish a PC5 link with the selected relay UE based on the absence of a PC5 link with the selected relay UE (S2102).
  • the first UE may transmit a message through the relay UE (S2103).
  • selection of the relay UE may be based on the Quality of Service (QoS) of the message transmitted by the first UE.
  • the selected relay UE may have a signal strength greater than a predetermined threshold, and the predetermined threshold may be individually set according to the QoS of each message.
  • the predetermined threshold may be a threshold value for each PFI (PC5 QoS Flow Identifier) or PQI (PC5 QoS Identifier) of the service.
  • the predetermined threshold value may be indicated through a System Information Block (SIB), or may be a preset value.
  • SIB System Information Block
  • the signal strength may be either SL-RSRP (Sidelink Reference Signals Received Power) or SD-RSRP (Sidelink Discovery Reference Signals Received Power) between the first UE and the relay UE.
  • the remote UE determines the signal strength between the remote UE and the relay UE (e.g., SL-RSRP, SD-RSRP).
  • the relay UE e.g., SL-RSRP, SD-RSRP
  • Relay UEs that are above a set threshold are considered candidate relay UEs for (re)selection.
  • the threshold applied by the remote UE when selecting the relay UE is the threshold of the signal strength value (e.g., SD-RSRP, SL-RSRP) based on the QoS (Quality of Service) value (of the message) to be transmitted. You can set different values. The value set at this time can be achieved through SIB/pre-configuration.
  • the SD/SL-RSRP threshold for each PFI (PC5 QoS Flow Identifier) (group) (or for each PQI (PC5 QoS Identifier)) of the service that the remote UE wants to transmit through U2U is set to SIB/pre-configuration.
  • the remote UE may select a candidate relay UE by determining the threshold based on the most critical PQI (and/or PFI) value among the PQI (and/or PFI) of the service to be transmitted through the U2U relay.
  • the most critical PQI (and/or PFI) value can be determined using a combination of one or more of the following methods.
  • the remote UE may set the value with the smallest (and/or largest) priority level among several PQIs (and/or PFIs) (assuming that the smaller the priority, the higher the priority) as the critical PQI.
  • the remote UE may set the value with the smallest (and/or largest) packet delay budget (smallest latency) among several PQIs (and/or PFIs) as the critical PQI.
  • the remote UE may determine the PQI (and/or PFI) value with the smallest (and/or largest) error rate among several packet error rates as the critical PQI.
  • the critical PQI value may be a value determined by the upper layer of the remote UE and notified to the AS layer.
  • the signal strength refers to the signal strength between the source remote UE and the relay UE in the case of UE-to-UE relay operation, and/or the signal strength between the relay UE and the target remote UE, and in the case of U2N relay operation, the signal strength between the remote UE and the relay UE. Alternatively, it refers to the signal strength between the relay UE and the base station.
  • the first UE may transmit a discovery message including a required threshold that can satisfy its QoS requirements.
  • a remote UE transmits a discovery message (e.g., solicitation message)
  • the relay UEs that receive it relay in order for the remote UE to transmit a service to satisfy certain QoS requirements. I don't know if it's looking for UE. Therefore, when transmitting a discovery message, the remote UE may transmit a discovery message including a required threshold (eg, SD-RSRP, SL-RSRP threshold) that can satisfy its QoS requirements.
  • This threshold may be a value passed from the upper layer to the AS layer. Alternatively, it may be a threshold value determined (and/or estimated) through SIB/pre-configuration, depending on the PQI value received by the remote UE from the upper layer.
  • the relay UE that received this may be set to respond only when the signal strength value measured from the remote UE exceeds the required threshold included in the discovery message. That is, the measured signal strength values of the candidate relay UEs exceed the required threshold included in the discovery message.
  • the remote UE since only relay UEs that satisfy the QoS requirements of the service that the remote UE wishes to transmit are expected to respond to the remote UE's request to find a relay UE, the remote UE must select a relay candidate that can satisfy the QoS of the service that the remote UE wishes to transmit. An appropriate relay UE can be selected from among the UEs.
  • the relay UE sends a discovery message including the ID of the surrounding (target) remote UE and the SL signal strength (e.g., SL-RSRP, SD-RSRP) between the (target) remote UE and the relay UE. Can be transmitted.
  • the (source) remote UE that received this has a signal strength that satisfies the QoS of the service it wants to transmit/receive through the U2U relay UE, and only if there is a (target) remote UE connected to the relay UE, the corresponding relay UE You can select .
  • the threshold can be set using the DCR message. Specifically, the (source) remote UE may transmit a DCR message indicating U2U relay enable indication for U2U relay operation. At this time, the (source) remote UE may transmit the corresponding message including the threshold required to satisfy the required QoS of the service to be transmitted during U2U relay operation.
  • the relay UE that received the DCR message can forward the received DCR message only if the signal strength between the (source) remote UE and the relay UE satisfies the threshold included in the message.
  • the (target) remote UE that received this can respond to the relay UE with a DCA message only when the signal strength between the relay UE and the (target) remote UE exceeds the threshold included in the forwarded DCR message.
  • these DCA messages may also contain the same threshold values.
  • the threshold included in the DCR message can be applied when forwarding the DCA message.
  • the relay UE that received the DCA message transmits the DCA message to the (source) remote UE only when the signal strength between the relay UE and the (target) remote UE exceeds the threshold.
  • the (source) remote UE that received this may select the corresponding relay UE only if the signal strength between itself and the relay UE is greater than or equal to the threshold set by the remote UE and included in the DCR message.
  • the (source) remote UE can infer that it can satisfy the QoS of the service it wants to transmit through U2U operation when it selects the corresponding relay UE.
  • relay reselection is performed while the source remote UE is connected to the target remote UE through a direct link, or when the source remote UE is connected to the target remote UE through an indirect link through a relay UE.
  • the source remote UE and/or target remote UE may set a threshold for relay selection and reselection to the other UE with an SL-RRC message (e.g., RRCReconfigurationSidelink). If a threshold is set for relay selection/reselection from the peer UE, the remote UE selects the relay UE by applying the set threshold when selecting/reselecting the relay UE for U2U operation with the corresponding peer UE. You can.
  • the target remote UE/relay UE may transmit a PC5-S (e.g., DCR, DCA) message including the measurement value of SL during the U2U relay selection/reselection process (i.e., even if there is no measurement configuration) .
  • a PC5-S e.g., DCR, DCA
  • the source remote UE broadcasts a discovery message (or DCR message), and the relay UE that forwards it can forward it by including the RSRP/RSRQ/SINR value of the first hop when transmitting the discovery message (or DCR message). there is.
  • the target remote UE transmits a response to a discovery message, a DCA message, etc., the signal strength value measured through the DCR message may be included and transmitted.
  • a DCR/discovery message is received through a direct path, it includes the signal strength value of the direct path, and if it is received through an indirect path, it includes the signal strength value of the second hop through a DCA message (and/or discovery response message). Can be transmitted. Additionally, when the target remote UE transmits a response to the discovery message/DCA message, etc. through the relay UE, the relay UE may transmit the signal strength values of the first hop and second hop to the source remote UE. Alternatively, only the smaller value (and/or larger value) of the signal strength of the first hop and the second hop may be transmitted. Additionally, the relay UE may compare the value received from the target remote UE with the signal strength value of the second hop measured by the relay UE and transmit a smaller (and/or larger value).
  • a separate threshold may be set for non-standardized PQI values. .
  • priority, reliability, PDB, etc. for non-standardized services can be additionally set and an appropriate threshold can be selected by performing a best match on the terminal.
  • the remote UE can select a relay UE that matches the required QoS of the service it wants to transmit through the U2U relay.
  • remote UE for U2U operation may mean both source remote UE and target remote UE unless there is a special technology.
  • the threshold value may be set separately for SL-RSRP and SD-RSRP.
  • the discovery message described above can also be replaced with a DCR (PC5-S) message.
  • the threshold value described above may be an actual threshold value, but may also be replaced with an index value representing the threshold value.
  • the remote UE can activate both the direct path and the indirect path through the relay UE, and at this time, the connection between the remote UE and the relay UE can be an ideal link, unlike the existing SL-relay.
  • operations that can occur when the link between the remote UE and the relay UE is an ideal link are described.
  • the applicable signal strength threshold between the remote UE and relay UE may be different from that when using an existing PC5 connection.
  • the threshold that can be an ideal link can be a separate value from the threshold applied for the connection between the remote UE and relay UE in existing Rel-17 U2N communication. If the signal strength between the remote UE and the relay UE is greater than a set threshold (in a specific range), it can be operated assuming this as an ideal path. Alternatively, if the upper layer of the remote UE and/or relay UE indicates that it is connected to an ideal path, it may be regarded as an ideal path and operate regardless of the set threshold.
  • the remote UE and/or relay UE may report the peer UE to the base station as the preferred UE.
  • reporting on the signal strength between the remote UE and relay UE may be omitted.
  • the base station that received the report may not set discovery-related information to the remote UE and/or relay UE.
  • these remote UEs and/or relay UEs may not request discovery-related information (eg, discovery resource pool) from the base station.
  • the remote UE and relay UE are not yet connected by an ideal path, but the threshold corresponding to the idea path is satisfied, or the upper layer of the relay UE and/or remote UE connects the peer remote UE and/or relay UE to the ideal path.
  • the remote UE can report a relay UE capable of an ideal path as the preferred UE.
  • candidate relay UEs that can be connected to the ideal path may be separately indicated and reported.
  • candidate relay UEs that can be connected to the ideal path may be placed at the top of the reporting list. This is because the base station is expected to select the Preferred relay UE reported by the remote UE and inform the remote UE of this, unless there is a special reason.
  • the remote UE and/or relay UE's discover message for establishing an ideal link may have a different format from the general U2N relay(/non-relay) discovery message.
  • the discovery message may include an indication that it is for establishing an ideal link, and a special destination ID for the ideal link may be used.
  • a discovery message for an ideal link may use a special bearer ID/logical channel ID, etc. for this purpose.
  • the remote UE and/or relay UE is a UE capable of multipath operation, it may indicate that multipath operation is possible in the discovery message. Additionally, a separate Uu/SL threshold value may be set for UEs capable of multipath operation.
  • the destination address included in the SUI An indication indicating that it is connected by an ideal link may be included.
  • L2-layer L2-layer address assigned to the ideal link and that the base station is connected to the ideal ink through this.
  • the gNB that has received the SUI containing the corresponding indication or has received a specific destination address will not set configuration related to transmission of the discovery message to the remote UE and/or relay UE that reported it, or will not allocate a resource pool related to transmission of the discovery message. It may be possible.
  • the gNB provides (existing) support for operation between the remote UE and the relay UE (e.g., Resource grant allocation, etc.) may not be performed. Meanwhile, this indication can be replaced by setting the signal strength between the reporting remote UE and the relay UE to a max value (or setting it to a determined value) and reporting.
  • the remote UE and/or relay UE is a UE capable of multipath operation, it may indicate that multipath operation is possible in the discovery message. Additionally, a separate Uu/SL threshold value may be set for UEs capable of multipath operation.
  • a relay UE and/or a remote UE connected by an ideal link may indicate through SUI its own L2 ID, the other party's (destination) L2 ID, and that it is connected to the destination UE (/ID) by an ideal link.
  • the gNB that receives this indication may not perform configuration related to local ID, bearer mapping, etc. to the relay UE and/or remote UE. Alternatively, only the configuration for 1:1 mapping between SL and Uu links can be set in the relay UE.
  • a terminal that has a preferred UE requests the base station (discovery resource pool) ) Report preferred UE information, and the base station may set restriced discovery measurement if there is a preferred UE.
  • the base station may set the measurement configure to be rougher than the typical U2N relay case and instruct the UE to establish a connection with the preferred UE reported by the UE if only basic conditions are met.
  • Criteria for setting a preferred relay UE may be set separately. For example, if a UE operating on a direct link encounters a special situation such as an increase in data amount/latency/reduction in remaining power, the setting/selection of the preferred relay UE may be triggered. If a UE that has criteria for setting a preferred relay UE satisfies the condition (e.g., Uu/SL threshold condition), it sends the signal strength and other information (e.g., layer 2-2) of the candidate relay UE to the base station. You can immediately establish a connection with the Preferred relay UE without reporting the ID).
  • the condition e.g., Uu/SL threshold condition
  • the remote(/relay) UE After establishing a connection, the remote(/relay) UE provides information about the other UE to the base station (e.g., the layer2-ID of the other UE and notifies that it has established a connection with the preferred UE for multi-path connection). You can also report it.
  • the base station e.g., the layer2-ID of the other UE and notifies that it has established a connection with the preferred UE for multi-path connection. You can also report it.
  • the base station informs the remote UE of the discovery resource pool/discovery configuration information used by the Preferred relay UE (/Preferred relay UE may be limited to RRC CONNECTED cases).
  • a remote UE can enable a fast relay connection with a relay UE.
  • the base station can inform the remote UE of DRX information for the discovery message so that it can quickly establish a connection with the preferred relay UE.
  • the base station can store the information of the preffered UE and reuse it during relay connection. For example, when connected by an ideal link, when the IDLE/INACTIVE remote UE requests resume, the base station may also perform an operation to retrieve the context of the remote UE and the relay UE connected by the ideal link. Or, conversely, when the relay UE requests resume, the base station may also retrieve the context of the remote UE connected to the relay UE via an ideal link.
  • the remote UE may notify the base station of this.
  • the base station can refer to this to reset the masurement config of the remote UE or refer to it when considering HO.
  • Figure 22 illustrates a communication system 1 to which this disclosure applies.
  • the communication system 1 applied to the present disclosure includes a wireless device, a base station, and a network.
  • a wireless device refers to a device that performs communication using wireless access technology (e.g., 5G NR (New RAT), LTE (Long Term Evolution)) and may be referred to as a communication/wireless/5G device.
  • wireless devices include robots (100a), vehicles (100b-1, 100b-2), XR (eXtended Reality) devices (100c), hand-held devices (100d), and home appliances (100e). ), IoT (Internet of Thing) device (100f), and AI device/server (400).
  • vehicles may include vehicles equipped with wireless communication functions, autonomous vehicles, vehicles capable of inter-vehicle communication, etc.
  • the vehicle may include an Unmanned Aerial Vehicle (UAV) (eg, a drone).
  • UAV Unmanned Aerial Vehicle
  • XR devices include AR (Augmented Reality)/VR (Virtual Reality)/MR (Mixed Reality) devices, HMD (Head-Mounted Device), HUD (Head-Up Display) installed in vehicles, televisions, smartphones, It can be implemented in the form of computers, wearable devices, home appliances, digital signage, vehicles, robots, etc.
  • Portable devices may include smartphones, smart pads, wearable devices (e.g., smartwatches, smart glasses), and computers (e.g., laptops, etc.).
  • Home appliances may include TVs, refrigerators, washing machines, etc.
  • IoT devices may include sensors, smart meters, etc.
  • a base station and network may also be implemented as wireless devices, and a specific wireless device 200a may operate as a base station/network node for other wireless devices.
  • Wireless devices 100a to 100f may be connected to the network 300 through the base station 200.
  • AI Artificial Intelligence
  • the network 300 may be configured using a 3G network, 4G (eg, LTE) network, or 5G (eg, NR) network.
  • Wireless devices 100a to 100f may communicate with each other through the base station 200/network 300, but may also communicate directly (e.g. sidelink communication) without going through the base station/network.
  • vehicles 100b-1 and 100b-2 may communicate directly (e.g.
  • V2V Vehicle to Vehicle
  • V2X Vehicle to everything
  • an IoT device eg, sensor
  • another IoT device eg, sensor
  • another wireless device 100a to 100f
  • Wireless communication/connection may be established between wireless devices (100a to 100f)/base station (200) and base station (200)/base station (200).
  • wireless communication/connection includes various wireless connections such as uplink/downlink communication (150a), sidelink communication (150b) (or D2D communication), and inter-base station communication (150c) (e.g. relay, IAB (Integrated Access Backhaul)).
  • This can be achieved through technology (e.g., 5G NR) through wireless communication/connection (150a, 150b, 150c), where a wireless device and a base station/wireless device, and a base station and a base station can transmit/receive wireless signals to each other.
  • the wireless communication/connection 150a, 150b, and 150c can transmit/receive signals through various physical channels, based on the various proposals of the present disclosure.
  • various signal processing processes e.g., channel encoding/decoding, modulation/demodulation, resource mapping/demapping, etc.
  • resource allocation processes etc. may be performed.
  • the first wireless device 100 and the second wireless device 200 can transmit and receive wireless signals through various wireless access technologies (eg, LTE, NR).
  • ⁇ first wireless device 100, second wireless device 200 ⁇ refers to ⁇ wireless device 100x, base station 200 ⁇ and/or ⁇ wireless device 100x, wireless device 100x) in FIG. 22. ⁇ can be responded to.
  • the first wireless device 100 includes one or more processors 102 and one or more memories 104, and may further include one or more transceivers 106 and/or one or more antennas 108.
  • Processor 102 controls memory 104 and/or transceiver 106 and may be configured to implement the descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed herein.
  • the processor 102 may process information in the memory 104 to generate first information/signal and then transmit a wireless signal including the first information/signal through the transceiver 106.
  • the processor 102 may receive a wireless signal including the second information/signal through the transceiver 106 and then store information obtained from signal processing of the second information/signal in the memory 104.
  • the memory 104 may be connected to the processor 102 and may store various information related to the operation of the processor 102. For example, memory 104 may perform some or all of the processes controlled by processor 102 or instructions for performing the descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed herein. Software code containing them can be stored.
  • the processor 102 and memory 104 may be part of a communication modem/circuit/chip designed to implement wireless communication technology (eg, LTE, NR).
  • Transceiver 106 may be coupled to processor 102 and may transmit and/or receive wireless signals via one or more antennas 108. Transceiver 106 may include a transmitter and/or receiver. The transceiver 106 can be used interchangeably with an RF (Radio Frequency) unit.
  • a wireless device may mean a communication modem/circuit/chip.
  • the second wireless device 200 includes one or more processors 202, one or more memories 204, and may further include one or more transceivers 206 and/or one or more antennas 208.
  • Processor 202 controls memory 204 and/or transceiver 206 and may be configured to implement the descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed herein.
  • the processor 202 may process the information in the memory 204 to generate third information/signal and then transmit a wireless signal including the third information/signal through the transceiver 206.
  • the processor 202 may receive a wireless signal including the fourth information/signal through the transceiver 206 and then store information obtained from signal processing of the fourth information/signal in the memory 204.
  • the memory 204 may be connected to the processor 202 and may store various information related to the operation of the processor 202. For example, memory 204 may perform some or all of the processes controlled by processor 202 or instructions for performing the descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed herein. Software code containing them can be stored.
  • the processor 202 and memory 204 may be part of a communication modem/circuit/chip designed to implement wireless communication technology (eg, LTE, NR).
  • Transceiver 206 may be coupled to processor 202 and may transmit and/or receive wireless signals via one or more antennas 208. Transceiver 206 may include a transmitter and/or receiver. Transceiver 206 may be used interchangeably with an RF unit.
  • a wireless device may mean a communication modem/circuit/chip.
  • one or more protocol layers may be implemented by one or more processors 102, 202.
  • one or more processors 102, 202 may implement one or more layers (e.g., functional layers such as PHY, MAC, RLC, PDCP, RRC, SDAP).
  • One or more processors 102, 202 may generate one or more Protocol Data Units (PDUs) and/or one or more Service Data Units (SDUs) according to the descriptions, functions, procedures, suggestions, methods and/or operational flow charts disclosed herein. can be created.
  • PDUs Protocol Data Units
  • SDUs Service Data Units
  • One or more processors 102, 202 may generate messages, control information, data or information according to the descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed herein.
  • One or more processors 102, 202 generate signals (e.g., baseband signals) containing PDUs, SDUs, messages, control information, data or information according to the functions, procedures, suggestions and/or methods disclosed herein. , can be provided to one or more transceivers (106, 206).
  • One or more processors 102, 202 may receive signals (e.g., baseband signals) from one or more transceivers 106, 206, and the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed herein.
  • PDU, SDU, message, control information, data or information can be obtained.
  • One or more processors 102, 202 may be referred to as a controller, microcontroller, microprocessor, or microcomputer.
  • One or more processors 102, 202 may be implemented by hardware, firmware, software, or a combination thereof.
  • ASICs Application Specific Integrated Circuits
  • DSPs Digital Signal Processors
  • DSPDs Digital Signal Processing Devices
  • PLDs Programmable Logic Devices
  • FPGAs Field Programmable Gate Arrays
  • the descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed in this document may be implemented using firmware or software, and the firmware or software may be implemented to include modules, procedures, functions, etc.
  • Firmware or software configured to perform the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed in this document may be included in one or more processors (102, 202) or stored in one or more memories (104, 204). It may be driven by the above processors 102 and 202.
  • the descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed in this document may be implemented using firmware or software in the form of codes, instructions and/or sets of instructions.
  • One or more memories 104, 204 may be connected to one or more processors 102, 202 and may store various types of data, signals, messages, information, programs, codes, instructions, and/or instructions.
  • One or more memories 104, 204 may consist of ROM, RAM, EPROM, flash memory, hard drives, registers, cache memory, computer readable storage media, and/or combinations thereof.
  • One or more memories 104, 204 may be located internal to and/or external to one or more processors 102, 202. Additionally, one or more memories 104, 204 may be connected to one or more processors 102, 202 through various technologies, such as wired or wireless connections.
  • One or more transceivers 106, 206 may transmit user data, control information, wireless signals/channels, etc. mentioned in the methods and/or operation flowcharts of this document to one or more other devices.
  • One or more transceivers 106, 206 may receive user data, control information, wireless signals/channels, etc. referred to in the descriptions, functions, procedures, suggestions, methods and/or operational flow charts, etc. disclosed herein from one or more other devices. there is.
  • one or more transceivers 106 and 206 may be connected to one or more processors 102 and 202 and may transmit and receive wireless signals.
  • one or more processors 102, 202 may control one or more transceivers 106, 206 to transmit user data, control information, or wireless signals to one or more other devices. Additionally, one or more processors 102, 202 may control one or more transceivers 106, 206 to receive user data, control information, or wireless signals from one or more other devices. In addition, one or more transceivers (106, 206) may be connected to one or more antennas (108, 208), and one or more transceivers (106, 206) may perform the description and functions disclosed in this document through one or more antennas (108, 208). , may be set to transmit and receive user data, control information, wireless signals/channels, etc.
  • one or more antennas may be multiple physical antennas or multiple logical antennas (eg, antenna ports).
  • One or more transceivers (106, 206) process the received user data, control information, wireless signals/channels, etc. using one or more processors (102, 202), and convert the received wireless signals/channels, etc. from the RF band signal. It can be converted to a baseband signal.
  • One or more transceivers (106, 206) may convert user data, control information, wireless signals/channels, etc. processed using one or more processors (102, 202) from baseband signals to RF band signals.
  • one or more transceivers 106, 206 may comprise (analog) oscillators and/or filters.
  • Figure 24 illustrates a vehicle or autonomous vehicle to which this disclosure applies.
  • a vehicle or autonomous vehicle can be implemented as a mobile robot, vehicle, train, manned/unmanned aerial vehicle (AV), ship, etc.
  • AV manned/unmanned aerial vehicle
  • the vehicle or autonomous vehicle 100 includes an antenna unit 108, a communication unit 110, a control unit 120, a drive unit 140a, a power supply unit 140b, a sensor unit 140c, and an autonomous driving unit. It may include a portion 140d.
  • the antenna unit 108 may be configured as part of the communication unit 110.
  • the communication unit 110 may transmit and receive signals (e.g., data, control signals, etc.) with external devices such as other vehicles, base stations (e.g. base stations, road side units, etc.), and servers.
  • the control unit 120 may perform various operations by controlling elements of the vehicle or autonomous vehicle 100.
  • the control unit 120 may include an Electronic Control Unit (ECU).
  • the driving unit 140a can drive the vehicle or autonomous vehicle 100 on the ground.
  • the driving unit 140a may include an engine, motor, power train, wheels, brakes, steering device, etc.
  • the power supply unit 140b supplies power to the vehicle or autonomous vehicle 100 and may include a wired/wireless charging circuit, a battery, etc.
  • the sensor unit 140c can obtain vehicle status, surrounding environment information, user information, etc.
  • the sensor unit 140c includes an inertial measurement unit (IMU) sensor, a collision sensor, a wheel sensor, a speed sensor, an inclination sensor, a weight sensor, a heading sensor, a position module, and a vehicle forward sensor. / May include a reverse sensor, battery sensor, fuel sensor, tire sensor, steering sensor, temperature sensor, humidity sensor, ultrasonic sensor, illuminance sensor, pedal position sensor, etc.
  • the autonomous driving unit 140d includes technology to maintain the driving lane, technology to automatically adjust speed such as adaptive cruise control, technology to automatically drive along a set route, and technology to automatically set the route and drive when the destination is set. Technology, etc. can be implemented.
  • the communication unit 110 may receive map data, traffic information data, etc. from an external server.
  • the autonomous driving unit 140d may create an autonomous driving route and driving plan based on the acquired data.
  • the control unit 120 may control the driving unit 140a so that the vehicle or autonomous vehicle 100 moves along the autonomous driving path according to the driving plan (e.g., speed/direction control).
  • the communication unit 110 may acquire the latest traffic information data from an external server irregularly/periodically and obtain surrounding traffic information data from surrounding vehicles.
  • the sensor unit 140c can obtain vehicle status and surrounding environment information.
  • the autonomous driving unit 140d may update the autonomous driving route and driving plan based on newly acquired data/information.
  • the communication unit 110 may transmit information about vehicle location, autonomous driving route, driving plan, etc. to an external server.
  • An external server can predict traffic information data in advance using AI technology, etc., based on information collected from vehicles or self-driving vehicles, and provide the predicted traffic information data to the vehicles or self-driving vehicles.
  • Vehicles can also be implemented as transportation, trains, airplanes, ships, etc.
  • the vehicle 100 may include a communication unit 110, a control unit 120, a memory unit 130, an input/output unit 140a, and a position measurement unit 140b.
  • the communication unit 110 may transmit and receive signals (eg, data, control signals, etc.) with other vehicles or external devices such as a base station.
  • the control unit 120 can control components of the vehicle 100 to perform various operations.
  • the memory unit 130 may store data/parameters/programs/codes/commands that support various functions of the vehicle 100.
  • the input/output unit 140a may output an AR/VR object based on the information in the memory unit 130.
  • the input/output unit 140a may include a HUD.
  • the location measuring unit 140b may obtain location information of the vehicle 100.
  • the location information may include absolute location information of the vehicle 100, location information within the driving line, acceleration information, and location information with surrounding vehicles.
  • the location measuring unit 140b may include GPS and various sensors.
  • the communication unit 110 of the vehicle 100 may receive map information, traffic information, etc. from an external server and store them in the memory unit 130.
  • the location measurement unit 140b may acquire vehicle location information through GPS and various sensors and store it in the memory unit 130.
  • the control unit 120 creates a virtual object based on map information, traffic information, and vehicle location information, and the input/output unit 140a can display the generated virtual object on the window of the vehicle (1410, 1420).
  • the control unit 120 may determine whether the vehicle 100 is operating normally within the driving line based on vehicle location information. If the vehicle 100 deviates from the driving line abnormally, the control unit 120 may display a warning on the window of the vehicle through the input/output unit 140a. Additionally, the control unit 120 may broadcast a warning message regarding driving abnormalities to surrounding vehicles through the communication unit 110. Depending on the situation, the control unit 120 may transmit location information of the vehicle and information about driving/vehicle abnormalities to the relevant organizations through the communication unit 110.
  • Figure 26 illustrates an XR device applied to the present disclosure.
  • XR devices can be implemented as HMDs, HUDs (Head-Up Displays) installed in vehicles, televisions, smartphones, computers, wearable devices, home appliances, digital signage, vehicles, robots, etc.
  • HMDs High-D Displays
  • HUDs Head-Up Displays
  • the XR device 100a may include a communication unit 110, a control unit 120, a memory unit 130, an input/output unit 140a, a sensor unit 140b, and a power supply unit 140c. .
  • the communication unit 110 may transmit and receive signals (eg, media data, control signals, etc.) with external devices such as other wireless devices, mobile devices, or media servers.
  • Media data may include video, images, sound, etc.
  • the control unit 120 may perform various operations by controlling the components of the XR device 100a.
  • the control unit 120 may be configured to control and/or perform procedures such as video/image acquisition, (video/image) encoding, and metadata generation and processing.
  • the memory unit 130 may store data/parameters/programs/codes/commands necessary for driving the XR device 100a/creating an XR object.
  • the input/output unit 140a may obtain control information, data, etc. from the outside and output the generated XR object.
  • the input/output unit 140a may include a camera, microphone, user input unit, display unit, speaker, and/or haptic module.
  • the sensor unit 140b can obtain XR device status, surrounding environment information, user information, etc.
  • the sensor unit 140b may include a proximity sensor, an illumination sensor, an acceleration sensor, a magnetic sensor, a gyro sensor, an inertial sensor, an RGB sensor, an IR sensor, a fingerprint recognition sensor, an ultrasonic sensor, an optical sensor, a microphone, and/or a radar.
  • the power supply unit 140c supplies power to the XR device 100a and may include a wired/wireless charging circuit, a battery, etc.
  • the memory unit 130 of the XR device 100a may include information (eg, data, etc.) necessary for creating an XR object (eg, AR/VR/MR object).
  • the input/output unit 140a can obtain a command to operate the XR device 100a from the user, and the control unit 120 can drive the XR device 100a according to the user's driving command. For example, when a user tries to watch a movie, news, etc. through the XR device 100a, the control unit 120 sends content request information to another device (e.g., mobile device 100b) or It can be transmitted to a media server.
  • another device e.g., mobile device 100b
  • It can be transmitted to a media server.
  • the communication unit 130 may download/stream content such as movies and news from another device (eg, the mobile device 100b) or a media server to the memory unit 130.
  • the control unit 120 controls and/or performs procedures such as video/image acquisition, (video/image) encoding, and metadata creation/processing for the content, and acquires it through the input/output unit 140a/sensor unit 140b.
  • XR objects can be created/output based on information about the surrounding space or real objects.
  • the XR device 100a is wirelessly connected to the mobile device 100b through the communication unit 110, and the operation of the XR device 100a can be controlled by the mobile device 100b.
  • the mobile device 100b may operate as a controller for the XR device 100a.
  • the XR device 100a may obtain 3D location information of the mobile device 100b, then generate and output an XR object corresponding to the mobile device 100b.
  • Figure 27 illustrates a robot to which this disclosure is applied.
  • Robots can be classified into industrial, medical, household, military, etc. depending on the purpose or field of use.
  • the robot 100 may include a communication unit 110, a control unit 120, a memory unit 130, an input/output unit 140a, a sensor unit 140b, and a driver 140c.
  • the communication unit 110 may transmit and receive signals (e.g., driving information, control signals, etc.) with external devices such as other wireless devices, other robots, or control servers.
  • the control unit 120 can control the components of the robot 100 to perform various operations.
  • the memory unit 130 may store data/parameters/programs/codes/commands that support various functions of the robot 100.
  • the input/output unit 140a may obtain information from the outside of the robot 100 and output the information to the outside of the robot 100.
  • the input/output unit 140a may include a camera, microphone, user input unit, display unit, speaker, and/or haptic module.
  • the sensor unit 140b can obtain internal information of the robot 100, surrounding environment information, user information, etc.
  • the sensor unit 140b may include a proximity sensor, an illumination sensor, an acceleration sensor, a magnetic sensor, a gyro sensor, an inertial sensor, an IR sensor, a fingerprint recognition sensor, an ultrasonic sensor, an optical sensor, a microphone, a radar, etc.
  • the driving unit 140c can perform various physical operations such as moving robot joints. Additionally, the driving unit 140c can cause the robot 100 to run on the ground or fly in the air.
  • the driving unit 140c may include an actuator, motor, wheel, brake, propeller, etc.
  • FIG 28 illustrates an AI device applied to this disclosure.
  • AI devices are fixed or mobile devices such as TVs, projectors, smartphones, PCs, laptops, digital broadcasting terminals, tablet PCs, wearable devices, set-top boxes (STBs), radios, washing machines, refrigerators, digital signage, robots, vehicles, etc. It can be implemented with available devices, etc.
  • the AI device 100 includes a communication unit 110, a control unit 120, a memory unit 130, an input/output unit (140a/140b), a learning processor unit 140c, and a sensor unit 140d. may include.
  • the communication unit 110 uses wired and wireless communication technology to communicate with wired and wireless signals (e.g., sensor information) with external devices such as other AI devices (e.g., 100x, 200, 400 in Figure 22) or AI servers (e.g., 400 in Figure 22). , user input, learning model, control signal, etc.) can be transmitted and received. To this end, the communication unit 110 may transmit information in the memory unit 130 to an external device or transmit a signal received from an external device to the memory unit 130.
  • wired and wireless signals e.g., sensor information
  • external devices e.g., 100x, 200, 400 in Figure 22
  • AI servers e.g., 400 in Figure 22
  • the control unit 120 may determine at least one executable operation of the AI device 100 based on information determined or generated using a data analysis algorithm or a machine learning algorithm. And, the control unit 120 can control the components of the AI device 100 to perform the determined operation. For example, the control unit 120 may request, search, receive, or utilize data from the learning processor unit 140c or the memory unit 130, and may select at least one operation that is predicted or determined to be desirable among the executable operations. Components of the AI device 100 can be controlled to execute operations. In addition, the control unit 120 collects history information including the user's feedback on the operation content or operation of the AI device 100 and stores it in the memory unit 130 or the learning processor unit 140c, or the AI server ( It can be transmitted to an external device such as Figure 22, 400). The collected historical information can be used to update the learning model.
  • the memory unit 130 can store data supporting various functions of the AI device 100.
  • the memory unit 130 may store data obtained from the input unit 140a, data obtained from the communication unit 110, output data from the learning processor unit 140c, and data obtained from the sensing unit 140. Additionally, the memory unit 130 may store control information and/or software codes necessary for operation/execution of the control unit 120.
  • the input unit 140a can obtain various types of data from outside the AI device 100.
  • the input unit 140a may obtain training data for model learning and input data to which the learning model will be applied.
  • the input unit 140a may include a camera, a microphone, and/or a user input unit.
  • the output unit 140b may generate output related to vision, hearing, or tactile sensation.
  • the output unit 140b may include a display unit, a speaker, and/or a haptic module.
  • the sensing unit 140 may obtain at least one of internal information of the AI device 100, surrounding environment information of the AI device 100, and user information using various sensors.
  • the sensing unit 140 may include a proximity sensor, an illumination sensor, an acceleration sensor, a magnetic sensor, a gyro sensor, an inertial sensor, an RGB sensor, an IR sensor, a fingerprint recognition sensor, an ultrasonic sensor, an optical sensor, a microphone, and/or a radar. there is.
  • the learning processor unit 140c can train a model composed of an artificial neural network using training data.
  • the learning processor unit 140c may perform AI processing together with the learning processor unit of the AI server (FIG. 22, 400).
  • the learning processor unit 140c may process information received from an external device through the communication unit 110 and/or information stored in the memory unit 130. Additionally, the output value of the learning processor unit 140c may be transmitted to an external device through the communication unit 110 and/or stored in the memory unit 130.
  • Embodiments as described above can be applied to various mobile communication systems.

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

An embodiment relates to an operation method of a first UE related to relay user equipment (UE) selection in a wireless communication system, the method comprising: selecting, by the first UE, a relay UE from among one or more candidate relay UEs; establishing, by the first UE, a PC5 link with the selected relay UE on the basis of absence of the PC5 link with the selected relay UE; and transmitting, by the first UE, a message through the relay UE, wherein the selection of the relay UE is based on a quality of service (QoS) of the message transmitted by the first UE.

Description

무선통신시스템에서 QOS에 기초한 릴레이 선택 또는 재선택에 관련된 동작 방법Operation method related to relay selection or reselection based on QOS in a wireless communication system
이하의 설명은 무선 통신 시스템에 대한 것으로, 보다 상세하게는 UE-to-UE relay 또는 UE to network relay에서 QoS(Quality of Service)에 기초하여 릴레이 UE를 선택/재선택하는 것에 관련된 동작 방법 및 장치이다. The following description is about a wireless communication system, and more specifically, an operating method and device related to selecting/reselecting a relay UE based on Quality of Service (QoS) in a UE-to-UE relay or UE to network relay. am.
무선 통신 시스템에서는 LTE, LTE-A, WiFi 등의 다양한 RAT(Radio Access Technology)이 사용되고 있으며, 5G 도 여기에 포함된다. 5G의 세 가지 주요 요구 사항 영역은 (1) 개선된 모바일 광대역 (Enhanced Mobile Broadband, eMBB) 영역, (2) 다량의 머신 타입 통신 (massive Machine Type Communication, mMTC) 영역 및 (3) 초-신뢰 및 저 지연 통신 (Ultra-reliable and Low Latency Communications, URLLC) 영역을 포함한다. 일부 사용 예(Use Case)는 최적화를 위해 다수의 영역들이 요구될 수 있고, 다른 사용 예는 단지 하나의 핵심 성능 지표 (Key Performance Indicator, KPI)에만 포커싱될 수 있다. 5G는 이러한 다양한 사용 예들을 유연하고 신뢰할 수 있는 방법으로 지원하는 것이다. In wireless communication systems, various RATs (Radio Access Technologies) such as LTE, LTE-A, and WiFi are used, and 5G is also included. The three key requirements areas for 5G are (1) Enhanced Mobile Broadband (eMBB) area, (2) Massive Machine Type Communication (mMTC) area, and (3) Ultra-Reliable and Includes the area of ultra-reliable and low latency communications (URLLC). Some use cases may require multiple areas for optimization, while others may focus on just one Key Performance Indicator (KPI). 5G supports these diverse use cases in a flexible and reliable way.
eMBB는 기본적인 모바일 인터넷 액세스를 훨씬 능가하게 하며, 풍부한 양방향 작업, 클라우드 또는 증강 현실에서 미디어 및 엔터테인먼트 애플리케이션을 커버한다. 데이터는 5G의 핵심 동력 중 하나이며, 5G 시대에서 처음으로 전용 음성 서비스를 볼 수 없을 수 있다. 5G에서, 음성은 단순히 통신 시스템에 의해 제공되는 데이터 연결을 사용하여 응용 프로그램으로서 처리될 것이 기대된다. 증가된 트래픽 양(volume)을 위한 주요 원인들은 콘텐츠 크기의 증가 및 높은 데이터 전송률을 요구하는 애플리케이션 수의 증가이다. 스트리밍 서비스 (오디오 및 비디오), 대화형 비디오 및 모바일 인터넷 연결은 더 많은 장치가 인터넷에 연결될수록 더 널리 사용될 것이다. 이러한 많은 응용 프로그램들은 사용자에게 실시간 정보 및 알림을 푸쉬하기 위해 항상 켜져 있는 연결성이 필요하다. 클라우드 스토리지 및 애플리케이션은 모바일 통신 플랫폼에서 급속히 증가하고 있으며, 이것은 업무 및 엔터테인먼트 모두에 적용될 수 있다. 그리고, 클라우드 스토리지는 상향링크 데이터 전송률의 성장을 견인하는 특별한 사용 예이다. 5G는 또한 클라우드의 원격 업무에도 사용되며, 촉각 인터페이스가 사용될 때 우수한 사용자 경험을 유지하도록 훨씬 더 낮은 단-대-단(end-to-end) 지연을 요구한다. 엔터테인먼트 예를 들어, 클라우드 게임 및 비디오 스트리밍은 모바일 광대역 능력에 대한 요구를 증가시키는 또 다른 핵심 요소이다. 엔터테인먼트는 기차, 차 및 비행기와 같은 높은 이동성 환경을 포함하는 어떤 곳에서든지 스마트폰 및 태블릿에서 필수적이다. 또 다른 사용 예는 엔터테인먼트를 위한 증강 현실 및 정보 검색이다. 여기서, 증강 현실은 매우 낮은 지연과 순간적인 데이터 양을 필요로 한다.eMBB goes far beyond basic mobile Internet access and covers rich interactive tasks, media and entertainment applications in the cloud or augmented reality. Data is one of the key drivers of 5G, and we may not see dedicated voice services for the first time in the 5G era. In 5G, voice is expected to be processed simply as an application using the data connection provided by the communication system. The main reasons for the increased traffic volume are the increase in content size and the number of applications requiring high data rates. Streaming services (audio and video), interactive video and mobile Internet connections will become more prevalent as more devices are connected to the Internet. Many of these applications require always-on connectivity to push real-time information and notifications to users. Cloud storage and applications are rapidly increasing mobile communication platforms, and this can apply to both work and entertainment. And cloud storage is a particular use case driving growth in uplink data rates. 5G will also be used for remote work in the cloud and will require much lower end-to-end latency to maintain a good user experience when tactile interfaces are used. Entertainment, for example, cloud gaming and video streaming are other key factors driving increased demand for mobile broadband capabilities. Entertainment is essential on smartphones and tablets anywhere, including high mobility environments such as trains, cars and planes. Another use case is augmented reality for entertainment and information retrieval. Here, augmented reality requires very low latency and instantaneous amounts of data.
또한, 가장 많이 예상되는 5G 사용 예 중 하나는 모든 분야에서 임베디드 센서를 원활하게 연결할 수 있는 기능 즉, mMTC에 관한 것이다. 2020년까지 잠재적인 IoT 장치들은 204 억 개에 이를 것으로 예측된다. 산업 IoT는 5G가 스마트 도시, 자산 추적(asset tracking), 스마트 유틸리티, 농업 및 보안 인프라를 가능하게 하는 주요 역할을 수행하는 영역 중 하나이다.Additionally, one of the most anticipated 5G use cases concerns the ability to seamlessly connect embedded sensors in any field, or mMTC. By 2020, the number of potential IoT devices is expected to reach 20.4 billion. Industrial IoT is one area where 5G will play a key role in enabling smart cities, asset tracking, smart utilities, agriculture and security infrastructure.
URLLC는 주요 인프라의 원격 제어 및 자체-구동 차량(self-driving vehicle)과 같은 초 신뢰 / 이용 가능한 지연이 적은 링크를 통해 산업을 변화시킬 새로운 서비스를 포함한다. 신뢰성과 지연의 수준은 스마트 그리드 제어, 산업 자동화, 로봇 공학, 드론 제어 및 조정에 필수적이다.URLLC includes new services that will transform industries through ultra-reliable/available low-latency links, such as remote control of critical infrastructure and self-driving vehicles. Levels of reliability and latency are essential for smart grid control, industrial automation, robotics, and drone control and coordination.
다음으로, 다수의 사용 예들에 대해 보다 구체적으로 살펴본다.Next, we look at a number of usage examples in more detail.
5G는 초당 수백 메가 비트에서 초당 기가 비트로 평가되는 스트림을 제공하는 수단으로 FTTH (fiber-to-the-home) 및 케이블 기반 광대역 (또는 DOCSIS)을 보완할 수 있다. 이러한 빠른 속도는 가상 현실과 증강 현실뿐 아니라 4K 이상(6K, 8K 및 그 이상)의 해상도로 TV를 전달하는데 요구된다. VR(Virtual Reality) 및 AR(Augmented Reality) 애플리케이션들은 거의 몰입형(immersive) 스포츠 경기를 포함한다. 특정 응용 프로그램은 특별한 네트워크 설정이 요구될 수 있다. 예를 들어, VR 게임의 경우, 게임 회사들이 지연을 최소화하기 위해 코어 서버를 네트워크 오퍼레이터의 에지 네트워크 서버와 통합해야 할 수 있다.5G can complement fiber-to-the-home (FTTH) and cable-based broadband (or DOCSIS) as a means of delivering streams rated at hundreds of megabits per second to gigabits per second. These high speeds are required to deliver TV at resolutions above 4K (6K, 8K and beyond) as well as virtual and augmented reality. Virtual Reality (VR) and Augmented Reality (AR) applications include nearly immersive sporting events. Certain applications may require special network settings. For example, in the case of VR games, gaming companies may need to integrate core servers with a network operator's edge network servers to minimize latency.
자동차(Automotive)는 차량에 대한 이동 통신을 위한 많은 사용 예들과 함께 5G에 있어 중요한 새로운 동력이 될 것으로 예상된다. 예를 들어, 승객을 위한 엔터테인먼트는 동시의 높은 용량과 높은 이동성 모바일 광대역을 요구한다. 그 이유는 미래의 사용자는 그들의 위치 및 속도와 관계 없이 고품질의 연결을 계속해서 기대하기 때문이다. 자동차 분야의 다른 활용 예는 증강 현실 대시보드이다. 이는 운전자가 앞면 창을 통해 보고 있는 것 위에 어둠 속에서 물체를 식별하고, 물체의 거리와 움직임에 대해 운전자에게 말해주는 정보를 겹쳐서 디스플레이 한다. 미래에, 무선 모듈은 차량들 간의 통신, 차량과 지원하는 인프라구조 사이에서 정보 교환 및 자동차와 다른 연결된 디바이스들(예를 들어, 보행자에 의해 수반되는 디바이스들) 사이에서 정보 교환을 가능하게 한다. 안전 시스템은 운전자가 보다 안전한 운전을 할 수 있도록 행동의 대체 코스들을 안내하여 사고의 위험을 낮출 수 있게 한다. 다음 단계는 원격 조종되거나 자체 운전 차량(self-driven vehicle)이 될 것이다. 이는 서로 다른 자체 운전 차량들 사이 및 자동차와 인프라 사이에서 매우 신뢰성이 있고, 매우 빠른 통신을 요구한다. 미래에, 자체 운전 차량이 모든 운전 활동을 수행하고, 운전자는 차량 자체가 식별할 수 없는 교통 이상에만 집중하도록 할 것이다. 자체 운전 차량의 기술적 요구 사항은 트래픽 안전을 사람이 달성할 수 없을 정도의 수준까지 증가하도록 초 저 지연과 초고속 신뢰성을 요구한다.Automotive is expected to be an important new driver for 5G, with many use cases for mobile communications for vehicles. For example, entertainment for passengers requires simultaneous, high capacity and high mobility mobile broadband. That's because future users will continue to expect high-quality connections regardless of their location and speed. Another use case in the automotive sector is augmented reality dashboards. It identifies objects in the dark and superimposes information telling the driver about the object's distance and movement on top of what the driver is seeing through the front window. In the future, wireless modules will enable communication between vehicles, information exchange between vehicles and supporting infrastructure, and information exchange between cars and other connected devices (eg, devices accompanied by pedestrians). Safety systems can reduce the risk of accidents by guiding drivers through alternative courses of action to help them drive safer. The next step will be remotely controlled or self-driven vehicles. This requires highly reliable and very fast communication between different self-driving vehicles and between cars and infrastructure. In the future, self-driving vehicles will perform all driving activities, leaving drivers to focus only on traffic abnormalities that the vehicles themselves cannot discern. The technical requirements of self-driving vehicles call for ultra-low latency and ultra-high reliability, increasing traffic safety to levels unachievable by humans.
스마트 사회(smart society)로서 언급되는 스마트 도시와 스마트 홈은 고밀도 무선 센서 네트워크로 임베디드될 것이다. 지능형 센서의 분산 네트워크는 도시 또는 집의 비용 및 에너지-효율적인 유지에 대한 조건을 식별할 것이다. 유사한 설정이 각 가정을 위해 수행될 수 있다. 온도 센서, 창 및 난방 컨트롤러, 도난 경보기 및 가전 제품들은 모두 무선으로 연결된다. 이러한 센서들 중 많은 것들이 전형적으로 낮은 데이터 전송 속도, 저전력 및 저비용이다. 하지만, 예를 들어, 실시간 HD 비디오는 감시를 위해 특정 타입의 장치에서 요구될 수 있다.Smart cities and smart homes, referred to as smart societies, will be embedded with high-density wireless sensor networks. A distributed network of intelligent sensors will identify conditions for cost-effective and energy-efficient maintenance of a city or home. A similar setup can be done for each household. Temperature sensors, window and heating controllers, burglar alarms and home appliances are all connected wirelessly. Many of these sensors typically have low data rates, low power, and low cost. However, real-time HD video may be required in certain types of devices for surveillance, for example.
열 또는 가스를 포함한 에너지의 소비 및 분배는 고도로 분산화되고 있어, 분산 센서 네트워크의 자동화된 제어가 요구된다. 스마트 그리드는 정보를 수집하고 이에 따라 행동하도록 디지털 정보 및 통신 기술을 사용하여 이런 센서들을 상호 연결한다. 이 정보는 공급 업체와 소비자의 행동을 포함할 수 있으므로, 스마트 그리드가 효율성, 신뢰성, 경제성, 생산의 지속 가능성 및 자동화된 방식으로 전기와 같은 연료들의 분배를 개선하도록 할 수 있다. 스마트 그리드는 지연이 적은 다른 센서 네트워크로 볼 수도 있다.Consumption and distribution of energy, including heat or gas, is highly decentralized, requiring automated control of distributed sensor networks. A smart grid interconnects these sensors using digital information and communications technologies to collect and act on information. This information can include the behavior of suppliers and consumers, allowing smart grids to improve the efficiency, reliability, economics, sustainability of production and distribution of fuels such as electricity in an automated manner. Smart grid can also be viewed as another low-latency sensor network.
건강 부문은 이동 통신의 혜택을 누릴 수 있는 많은 응용 프로그램을 보유하고 있다. 통신 시스템은 멀리 떨어진 곳에서 임상 진료를 제공하는 원격 진료를 지원할 수 있다. 이는 거리에 대한 장벽을 줄이는데 도움을 주고, 거리가 먼 농촌에서 지속적으로 이용하지 못하는 의료 서비스들로의 접근을 개선시킬 수 있다. 이는 또한 중요한 진료 및 응급 상황에서 생명을 구하기 위해 사용된다. 이동 통신 기반의 무선 센서 네트워크는 심박수 및 혈압과 같은 파라미터들에 대한 원격 모니터링 및 센서들을 제공할 수 있다.The health sector has many applications that can benefit from mobile communications. Communications systems can support telemedicine, providing clinical care in remote locations. This can help reduce the barrier of distance and improve access to health services that are consistently unavailable in remote rural areas. It is also used to save lives in critical care and emergency situations. Mobile communication-based wireless sensor networks can provide remote monitoring and sensors for parameters such as heart rate and blood pressure.
무선 및 모바일 통신은 산업 응용 분야에서 점차 중요해지고 있다. 배선은 설치 및 유지 비용이 높다. 따라서, 케이블을 재구성할 수 있는 무선 링크들로의 교체 가능성은 많은 산업 분야에서 매력적인 기회이다. 그러나, 이를 달성하는 것은 무선 연결이 케이블과 비슷한 지연, 신뢰성 및 용량으로 동작하는 것과, 그 관리가 단순화될 것이 요구된다. 낮은 지연과 매우 낮은 오류 확률은 5G로 연결될 필요가 있는 새로운 요구 사항이다.Wireless and mobile communications are becoming increasingly important in industrial applications. Wiring is expensive to install and maintain. Therefore, the possibility of replacing cables with reconfigurable wireless links is an attractive opportunity for many industries. However, achieving this requires that wireless connections operate with similar latency, reliability and capacity as cables, and that their management be simplified. Low latency and very low error probability are new requirements needed for 5G connectivity.
물류(logistics) 및 화물 추적(freight tracking)은 위치 기반 정보 시스템을 사용하여 어디에서든지 인벤토리(inventory) 및 패키지의 추적을 가능하게 하는 이동 통신에 대한 중요한 사용 예이다. 물류 및 화물 추적의 사용 예는 전형적으로 낮은 데이터 속도를 요구하지만 넓은 범위와 신뢰성 있는 위치 정보가 필요하다.Logistics and freight tracking are important examples of mobile communications that enable inventory and tracking of packages anywhere using location-based information systems. Use cases in logistics and cargo tracking typically require low data rates but require wide range and reliable location information.
무선 통신 시스템은 가용한 시스템 자원(예를 들어, 대역폭, 전송 전력 등)을 공유하여 다중 사용자와의 통신을 지원하는 다중 접속(multiple access) 시스템이다. 다중 접속 시스템의 예로는 CDMA(code division multiple access) 시스템, FDMA(frequency division multiple access) 시스템, TDMA(time division multiple access) 시스템, OFDMA(orthogonal frequency division multiple access) 시스템, SC-FDMA(single carrier frequency division multiple access) 시스템, MC-FDMA(multi carrier frequency division multiple access) 시스템 등이 있다.A wireless communication system is a multiple access system that supports communication with multiple users by sharing available system resources (eg, bandwidth, transmission power, etc.). Examples of multiple access systems include code division multiple access (CDMA) systems, frequency division multiple access (FDMA) systems, time division multiple access (TDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, and single carrier frequency (SC-FDMA) systems. division multiple access) system, MC-FDMA (multi carrier frequency division multiple access) system, etc.
사이드링크(sidelink, SL)란 단말(User Equipment, UE)들 간에 직접적인 링크를 설정하여, 기지국(Base Station, BS)을 거치지 않고, 단말 간에 음성 또는 데이터 등을 직접 주고 받는 통신 방식을 말한다. SL는 급속도로 증가하는 데이터 트래픽에 따른 기지국의 부담을 해결할 수 있는 하나의 방안으로서 고려되고 있다.Sidelink (SL) refers to a communication method that establishes a direct link between terminals (User Equipment, UE) and directly exchanges voice or data between terminals without going through a base station (BS). SL is being considered as a way to solve the burden on base stations due to rapidly increasing data traffic.
V2X(vehicle-to-everything)는 유/무선 통신을 통해 다른 차량, 보행자, 인프라가 구축된 사물 등과 정보를 교환하는 통신 기술을 의미한다. V2X는 V2V(vehicle-to-vehicle), V2I(vehicle-to-infrastructure), V2N(vehicle-to- network) 및 V2P(vehicle-to-pedestrian)와 같은 4 가지 유형으로 구분될 수 있다. V2X 통신은 PC5 인터페이스 및/또는 Uu 인터페이스를 통해 제공될 수 있다.V2X (vehicle-to-everything) refers to a communication technology that exchanges information with other vehicles, pedestrians, and objects with built infrastructure through wired/wireless communication. V2X can be divided into four types: vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), vehicle-to-network (V2N), and vehicle-to-pedestrian (V2P). V2X communication may be provided through the PC5 interface and/or the Uu interface.
한편, 더욱 많은 통신 기기들이 더욱 큰 통신 용량을 요구하게 됨에 따라, 기존의 무선 액세스 기술(Radio Access Technology, RAT)에 비해 향상된 모바일 광대역 (mobile broadband) 통신에 대한 필요성이 대두되고 있다. 이에 따라, 신뢰도(reliability) 및 지연(latency)에 민감한 서비스 또는 단말을 고려한 통신 시스템이 논의되고 있는데, 개선된 이동 광대역 통신, 매시브 MTC(Machine Type Communication), URLLC(Ultra-Reliable and Low Latency Communication) 등을 고려한 차세대 무선 접속 기술을 새로운 RAT(new radio access technology) 또는 NR(new radio)이라 칭할 수 있다. NR에서도 V2X(vehicle-to-everything) 통신이 지원될 수 있다.Meanwhile, as more communication devices require larger communication capacity, the need for improved mobile broadband communication compared to existing radio access technology (RAT) is emerging. Accordingly, communication systems that take into account services or terminals sensitive to reliability and latency are being discussed, including improved mobile broadband communication, massive MTC (Machine Type Communication), and URLLC (Ultra-Reliable and Low Latency Communication). The next-generation wireless access technology that takes these into consideration may be referred to as new radio access technology (RAT) or new radio (NR). V2X (vehicle-to-everything) communication may also be supported in NR.
도 1은 NR 이전의 RAT에 기반한 V2X 통신과 NR에 기반한 V2X 통신을 비교하여 설명하기 위한 도면이다.Figure 1 is a diagram for comparing and explaining V2X communication based on RAT before NR and V2X communication based on NR.
V2X 통신과 관련하여, NR 이전의 RAT에서는 BSM(Basic Safety Message), CAM(Cooperative Awareness Message), DENM(Decentralized Environmental Notification Message)과 같은 V2X 메시지를 기반으로, 안전 서비스(safety service)를 제공하는 방안이 주로 논의되었다. V2X 메시지는, 위치 정보, 동적 정보, 속성 정보 등을 포함할 수 있다. 예를 들어, 단말은 주기적인 메시지(periodic message) 타입의 CAM, 및/또는 이벤트 트리거 메시지(event triggered message) 타입의 DENM을 다른 단말에게 전송할 수 있다.Regarding V2X communication, in RAT before NR, a method of providing safety service based on V2X messages such as BSM (Basic Safety Message), CAM (Cooperative Awareness Message), and DENM (Decentralized Environmental Notification Message) This was mainly discussed. V2X messages may include location information, dynamic information, attribute information, etc. For example, a terminal may transmit a periodic message type CAM and/or an event triggered message type DENM to another terminal.
예를 들어, CAM은 방향 및 속도와 같은 차량의 동적 상태 정보, 치수와 같은 차량 정적 데이터, 외부 조명 상태, 경로 내역 등 기본 차량 정보를 포함할 수 있다. 예를 들어, 단말은 CAM을 방송할 수 있으며, CAM의 지연(latency)은 100ms보다 작을 수 있다. 예를 들어, 차량의 고장, 사고 등의 돌발적인 상황이 발행하는 경우, 단말은 DENM을 생성하여 다른 단말에게 전송할 수 있다. 예를 들어, 단말의 전송 범위 내에 있는 모든 차량은 CAM 및/또는 DENM을 수신할 수 있다. 이 경우, DENM은 CAM 보다 높은 우선 순위를 가질 수 있다.For example, CAM may include basic vehicle information such as vehicle dynamic state information such as direction and speed, vehicle static data such as dimensions, external lighting conditions, route history, etc. For example, the terminal may broadcast CAM, and the latency of the CAM may be less than 100ms. For example, when an unexpected situation such as a vehicle breakdown or accident occurs, the terminal can generate a DENM and transmit it to another terminal. For example, all vehicles within the transmission range of the terminal can receive CAM and/or DENM. In this case, DENM may have higher priority than CAM.
이후, V2X 통신과 관련하여, 다양한 V2X 시나리오들이 NR에서 제시되고 있다. 예를 들어, 다양한 V2X 시나리오들은, 차량 플래투닝(vehicle platooning), 향상된 드라이빙(advanced driving), 확장된 센서들(extended sensors), 리모트 드라이빙(remote driving) 등을 포함할 수 있다. Since then, with regard to V2X communication, various V2X scenarios have been presented in NR. For example, various V2X scenarios may include vehicle platooning, advanced driving, extended sensors, remote driving, etc.
예를 들어, 차량 플래투닝을 기반으로, 차량들은 동적으로 그룹을 형성하여 함께 이동할 수 있다. 예를 들어, 차량 플래투닝에 기반한 플라툰 동작들(platoon operations)을 수행하기 위해, 상기 그룹에 속하는 차량들은 선두 차량으로부터 주기적인 데이터를 수신할 수 있다. 예를 들어, 상기 그룹에 속하는 차량들은 주기적인 데이터를 이용하여, 차량들 사이의 간격을 줄이거나 넓힐 수 있다. For example, based on vehicle platooning, vehicles can dynamically form groups and move together. For example, to perform platoon operations based on vehicle platooning, vehicles belonging to the group may receive periodic data from the lead vehicle. For example, vehicles belonging to the group may use periodic data to reduce or widen the gap between vehicles.
예를 들어, 향상된 드라이빙을 기반으로, 차량은 반자동화 또는 완전 자동화될 수 있다. 예를 들어, 각 차량은 근접 차량 및/또는 근접 로지컬 엔티티(logical entity)의 로컬 센서(local sensor)에서 획득된 데이터를 기반으로, 궤도(trajectories) 또는 기동(maneuvers)을 조정할 수 있다. 또한, 예를 들어, 각 차량은 근접한 차량들과 드라이빙 인텐션(driving intention)을 상호 공유할 수 있다. For example, based on improved driving, vehicles may become semi-automated or fully automated. For example, each vehicle may adjust its trajectories or maneuvers based on data obtained from local sensors of nearby vehicles and/or nearby logical entities. Additionally, for example, each vehicle may share driving intentions with nearby vehicles.
예를 들어, 확장 센서들을 기반으로, 로컬 센서들을 통해 획득된 로 데이터(raw data) 또는 처리된 데이터(processed data), 또는 라이브 비디오 데이터(live video data)는 차량, 로지컬 엔티티, 보행자들의 단말 및/또는 V2X 응용 서버 간에 상호 교환될 수 있다. 따라서, 예를 들어, 차량은 자체 센서를 이용하여 감지할 수 있는 환경 보다 향상된 환경을 인식할 수 있다. For example, based on extended sensors, raw data or processed data acquired through local sensors, or live video data can be used to collect terminals of vehicles, logical entities, and pedestrians. /or can be interchanged between V2X application servers. Therefore, for example, a vehicle can perceive an environment that is better than what it can sense using its own sensors.
예를 들어, 리모트 드라이빙을 기반으로, 운전을 하지 못하는 사람 또는 위험한 환경에 위치한 리모트 차량을 위해, 리모트 드라이버 또는 V2X 애플리케이션은 상기 리모트 차량을 동작 또는 제어할 수 있다. 예를 들어, 대중 교통과 같이 경로를 예측할 수 있는 경우, 클라우드 컴퓨팅 기반의 드라이빙이 상기 리모트 차량의 동작 또는 제어에 이용될 수 있다. 또한, 예를 들어, 클라우드 기반의 백엔드 서비스 플랫폼(cloud-based back-end service platform)에 대한 액세스가 리모트 드라이빙을 위해 고려될 수 있다.For example, based on remote driving, for people who cannot drive or for remote vehicles located in dangerous environments, a remote driver or V2X application can operate or control the remote vehicle. For example, in cases where the route is predictable, such as public transportation, cloud computing-based driving can be used to operate or control the remote vehicle. Additionally, for example, access to a cloud-based back-end service platform may be considered for remote driving.
한편, 차량 플래투닝, 향상된 드라이빙, 확장된 센서들, 리모트 드라이빙 등 다양한 V2X 시나리오들에 대한 서비스 요구사항(service requirements)들을 구체화하는 방안이 NR에 기반한 V2X 통신에서 논의되고 있다.Meanwhile, ways to specify service requirements for various V2X scenarios such as vehicle platooning, enhanced driving, expanded sensors, and remote driving are being discussed in NR-based V2X communication.
본 개시는 QoS에 따라 개별적으로 설정되는 임계값에 기초하여 릴레이 UE를 선택/재선택하는 것에 관련된 동작 방법 및 장치에 관련된 내용들을 기술적 과제로 한다.The present disclosure deals with contents related to an operating method and apparatus related to selecting/reselecting a relay UE based on a threshold value individually set according to QoS.
일 실시예는, 무선통신시스템에서 릴레이 UE(User Equipment) 선택에 관련된 제1 UE의 동작 방법에 있어서, 상기 제1 UE가 하나 이상의 후보 릴레이 UE 중에서 릴레이 UE를 선택; 상기 제1 UE가, 상기 선택된 릴레이 UE와 PC5 link가 없는 것에 기초하여, 상기 선택된 릴레이 UE와 PC5 link를 수립; 및 상기 제1 UE가 상기 릴레이 UE를 통해 메시지를 전송을 포함하며, 상기 릴레이 UE의 선택은 상기 제1 UE가 전송하는 메시지의 QoS(Quality of Service)에 기초한 것인, 방법이다.In one embodiment, a method of operating a first UE related to relay UE (User Equipment) selection in a wireless communication system includes: the first UE selecting a relay UE from among one or more candidate relay UEs; The first UE establishes a PC5 link with the selected relay UE based on the absence of a PC5 link with the selected relay UE; and the first UE transmitting a message through the relay UE, and the selection of the relay UE is based on the Quality of Service (QoS) of the message transmitted by the first UE.
일 실시예는, 무선통신시스템에서 릴레이 UE(User Equipment) 선택에 관련된 제1 UE에 있어서, 적어도 하나의 프로세서; 및 상기 적어도 하나의 프로세서에 동작 가능하게 연결될 수 있고, 실행될 때 상기 적어도 하나의 프로세서로 하여금 동작들을 수행하게 하는 명령들을 저장하는 적어도 하나의 컴퓨터 메모리를 포함하며, 상기 동작들은, 하나 이상의 후보 릴레이 UE 중에서 릴레이 UE를 선택; 상기 선택된 릴레이 UE와 PC5 link가 없는 것에 기초하여, 상기 선택된 릴레이 UE와 PC5 link를 수립; 및 상기 릴레이 UE를 통해 메시지를 전송을 포함하며, 상기 릴레이 UE의 선택은 상기 제1 UE가 전송하는 메시지의 QoS(Quality of Service)에 기초한 것인, 제1 UE이다.In one embodiment, a first UE involved in relay UE (User Equipment) selection in a wireless communication system includes at least one processor; and at least one computer memory operably coupled to the at least one processor and storing instructions that, when executed, cause the at least one processor to perform operations, the operations comprising: one or more candidate relay UEs; Select relay UE among; Establishing a PC5 link with the selected relay UE based on the absence of a PC5 link with the selected relay UE; and transmitting a message through the relay UE, wherein selection of the relay UE is based on the Quality of Service (QoS) of the message transmitted by the first UE.
일 실시예는, 적어도 하나의 프로세서에 의해 실행될 때, 적어도 하나의 프로세서가 제1 UE를 위한 동작들을 수행하게 하는 명령을 포함하는 적어도 하나의 컴퓨터 프로그램을 저장하는 비휘발성 컴퓨터 판독 가능 저장 매체에 있어서, 상기 동작들은, 하나 이상의 후보 릴레이 UE 중에서 릴레이 UE를 선택; 상기 선택된 릴레이 UE와 PC5 link가 없는 것에 기초하여, 상기 선택된 릴레이 UE와 PC5 link를 수립; 및 상기 릴레이 UE를 통해 메시지를 전송을 포함하며, 상기 릴레이 UE의 선택은 상기 제1 UE가 전송하는 메시지의 QoS(Quality of Service)에 기초한 것인, 저장 매체이다.One embodiment provides a non-volatile computer-readable storage medium storing at least one computer program including instructions that, when executed by at least one processor, cause the at least one processor to perform operations for the first UE. , the operations include: selecting a relay UE among one or more candidate relay UEs; Establishing a PC5 link with the selected relay UE based on the absence of a PC5 link with the selected relay UE; and transmitting a message through the relay UE, wherein selection of the relay UE is based on Quality of Service (QoS) of the message transmitted by the first UE.
상기 선택된 릴레이 UE는 신호강도가 소정 임계값 이상인 것일 수 있다.The selected relay UE may have a signal strength greater than or equal to a predetermined threshold.
상기 소정 임계값은 각 메시지의 QoS에 따라 개별적으로 설정된 것일 수 있다.The predetermined threshold may be individually set according to the QoS of each message.
상기 소정 임계값은 서비스의 PFI (PC5 QoS Flow Identifier)별 또는 PQI (PC5 QoS Identifier)별 임계값일 수 있다.The predetermined threshold may be a threshold value for each PFI (PC5 QoS Flow Identifier) or PQI (PC5 QoS Identifier) of the service.
상기 소정 임계값은 SIB(System Information Block)을 통해 지시된 것일 수 있다.The predetermined threshold may be indicated through a System Information Block (SIB).
상기 소정 임계값은 미리 설정된 값일 수 있다.The predetermined threshold may be a preset value.
상기 신호강도는 상기 제1 UE와 상기 릴레이 UE 사이의 SL-RSRP(Sidelink Reference Signals Received Power) 또는 SD-RSRP(Sidelink Discovery Reference Signals Received Power)중 하나일 수 있다.The signal strength may be either SL-RSRP (Sidelink Reference Signals Received Power) or SD-RSRP (Sidelink Discovery Reference Signals Received Power) between the first UE and the relay UE.
상기 제1 UE는 디스커버리 메시지 전송 시 자신의 QoS requirement를 만족시킬 수 있는 요구(required) 임계값을 포함할 수 있다.The first UE may include a required threshold that can satisfy its QoS requirements when transmitting a discovery message.
상기 후보 릴레이 UE들은 측정한 신호 세기 값이 디스커버리 메시지에 포함되어 있는 상기 요구 임계값을 초과한 것일 수 있다.The measured signal strength values of the candidate relay UEs may exceed the request threshold included in the discovery message.
상기 방법은, 상기 제1 UE가 discovery solicitation message를 전송; 상기 제1 UE가 하나 이상의 후보 릴레이 UE가 브로드캐스트하는 discovery response를 수신을 더 포함할 수 있다.The method includes: the first UE transmits a discovery solicitation message; The first UE may further include receiving a discovery response broadcast by one or more candidate relay UEs.
상기 제1 UE는 제2 UE와 End-to-end PC5 link를 수립할 수 있다.The first UE can establish an end-to-end PC5 link with the second UE.
상기 제1 UE는 상기 릴레이 UE를 통해 기지국과 indirect link를 수립할 수 있다.The first UE can establish an indirect link with the base station through the relay UE.
일 실시예에 의하면, 리모트 UE가 자신이 U2U relay를 통해 전송하고자 하는 서비스의 required QoS에 맞는 릴레이 UE를 선택할 수 있다.According to one embodiment, a remote UE can select a relay UE that matches the required QoS of a service it wants to transmit through a U2U relay.
본 명세서에 첨부되는 도면은 실시예(들)에 대한 이해를 제공하기 위한 것으로서 다양한 실시형태들을 나타내고 명세서의 기재와 함께 원리를 설명하기 위한 것이다. The drawings attached to this specification are intended to provide an understanding of the embodiment(s), illustrate various embodiments, and explain the principles along with the description of the specification.
도 1은 NR 이전의 RAT에 기반한 V2X 통신과 NR에 기반한 V2X 통신을 비교하여 설명하기 위한 도면이다.Figure 1 is a diagram for comparing and explaining V2X communication based on RAT before NR and V2X communication based on NR.
도 2는 본 개시의 일 실시 예에 따른, LTE 시스템의 구조를 나타낸다.Figure 2 shows the structure of an LTE system according to an embodiment of the present disclosure.
도 3은 본 개시의 일 실시 예에 따른, 사용자 평면(user plane), 제어 평면(control plane)에 대한 무선 프로토콜 구조(radio protocol architecture)를 나타낸다. FIG. 3 shows a radio protocol architecture for a user plane and a control plane, according to an embodiment of the present disclosure.
도 4는 본 개시의 일 실시 예에 따른, NR 시스템의 구조를 나타낸다.Figure 4 shows the structure of an NR system according to an embodiment of the present disclosure.
도 5는 본 개시의 일 실시 예에 따른, NG-RAN과 5GC 간의 기능적 분할을 나타낸다.Figure 5 shows functional division between NG-RAN and 5GC, according to an embodiment of the present disclosure.
도 6은 실시예(들)이 적용될 수 있는 NR의 무선 프레임의 구조를 나타낸다.Figure 6 shows the structure of a radio frame of NR to which the embodiment(s) can be applied.
도 7은 본 개시의 일 실시 예에 따른, NR 프레임의 슬롯 구조를 나타낸다.Figure 7 shows the slot structure of an NR frame according to an embodiment of the present disclosure.
도 8은 본 개시의 일 실시 예에 따른, SL 통신을 위한 무선 프로토콜 구조(radio protocol architecture)를 나타낸다.Figure 8 shows a radio protocol architecture for SL communication, according to an embodiment of the present disclosure.
도 9는 본 개시의 일 실시 예에 따른, SL 통신을 위한 무선 프로토콜 구조(radio protocol architecture)를 나타낸다.Figure 9 shows a radio protocol architecture for SL communication, according to an embodiment of the present disclosure.
도 10은 본 개시의 일 실시 예에 따른, V2X의 동기화 소스 또는 동기화 기준(synchronization reference)을 나타낸다.Figure 10 shows a synchronization source or synchronization reference of V2X, according to an embodiment of the present disclosure.
도 11은 본 개시의 일 실시 예에 따라, 단말이 전송 모드에 따라 V2X 또는 SL 통신을 수행하는 절차를 나타낸다.Figure 11 shows a procedure in which a terminal performs V2X or SL communication depending on the transmission mode, according to an embodiment of the present disclosure.
도 12는 본 개시의 일 실시 예에 따라, 단말이 path switching을 수행하는 절차를 나타낸다.Figure 12 shows a procedure in which a terminal performs path switching, according to an embodiment of the present disclosure.
도 13은 direct to indirect path 전환을 예시한다.Figure 13 illustrates direct to indirect path conversion.
도 14 내지 도 15는 UE-to-UE Relay Selection를 설명하기 위한 도면이다.Figures 14 and 15 are diagrams for explaining UE-to-UE Relay Selection.
도 16 내지 도 18은 Layer-2 UE-to-UE Relaying 을 설명하기 위한 도면이다.Figures 16 to 18 are diagrams for explaining Layer-2 UE-to-UE Relaying.
도 19 내지 도 20은 QoS를 설명하기 위한 도면이다.Figures 19 and 20 are diagrams for explaining QoS.
도 21은 실시예를 설명하기 위한 도면이다.Figure 21 is a diagram for explaining an embodiment.
도 22 내지 도 28은 실시예(들)이 적용될 수 있는 다양한 장치를 설명하는 도면이다.22 to 28 are diagrams illustrating various devices to which the embodiment(s) can be applied.
본 개시의 다양한 실시 예에서, “/” 및 “,”는 “및/또는”을 나타내는 것으로 해석되어야 한다. 예를 들어, “A/B”는 “A 및/또는 B”를 의미할 수 있다. 나아가, “A, B”는 “A 및/또는 B”를 의미할 수 있다. 나아가, “A/B/C”는 “A, B 및/또는 C 중 적어도 어느 하나”를 의미할 수 있다. 나아가, “A, B, C”는 “A, B 및/또는 C 중 적어도 어느 하나”를 의미할 수 있다.In various embodiments of the present disclosure, “/” and “,” should be interpreted as indicating “and/or.” For example, “A/B” can mean “A and/or B.” Furthermore, “A, B” may mean “A and/or B.” Furthermore, “A/B/C” may mean “at least one of A, B and/or C.” Furthermore, “A, B, C” may mean “at least one of A, B and/or C.”
본 개시의 다양한 실시 예에서, “또는”은 “및/또는”을 나타내는 것으로 해석되어야 한다. 예를 들어, “A 또는 B”는 “오직 A”, “오직 B”, 및/또는 “A 및 B 모두”를 포함할 수 있다. 다시 말해, “또는”은 “부가적으로 또는 대안적으로”를 나타내는 것으로 해석되어야 한다.In various embodiments of the present disclosure, “or” should be interpreted as indicating “and/or.” For example, “A or B” may include “only A,” “only B,” and/or “both A and B.” In other words, “or” should be interpreted as indicating “additionally or alternatively.”
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access) 등과 같은 다양한 무선 통신 시스템에 사용될 수 있다. CDMA는 UTRA(universal terrestrial radio access)나 CDMA2000과 같은 무선 기술로 구현될 수 있다. TDMA는 GSM(global system for mobile communications)/GPRS(general packet radio service)/EDGE(enhanced data rates for GSM evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE(institute of electrical and electronics engineers) 802.11(Wi-Fi), IEEE 802.16(WiMAX), IEEE 802-20, E-UTRA(evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. IEEE 802.16m은 IEEE 802.16e의 진화로, IEEE 802.16e에 기반한 시스템과의 하위 호환성(backward compatibility)를 제공한다. UTRA는 UMTS(universal mobile telecommunications system)의 일부이다. 3GPP(3rd generation partnership project) LTE(long term evolution)은 E-UTRA(evolved-UMTS terrestrial radio access)를 사용하는 E-UMTS(evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(advanced)는 3GPP LTE의 진화이다. The following technologies include code division multiple access (CDMA), frequency division multiple access (FDMA), time division multiple access (TDMA), orthogonal frequency division multiple access (OFDMA), and single carrier frequency division multiple access (SC-FDMA). It can be used in various wireless communication systems. CDMA can be implemented with wireless technologies such as universal terrestrial radio access (UTRA) or CDMA2000. TDMA may be implemented with wireless technologies such as global system for mobile communications (GSM)/general packet radio service (GPRS)/enhanced data rates for GSM evolution (EDGE). OFDMA can be implemented with wireless technologies such as Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, and evolved UTRA (E-UTRA). IEEE 802.16m is an evolution of IEEE 802.16e and provides backward compatibility with systems based on IEEE 802.16e. UTRA is part of the universal mobile telecommunications system (UMTS). 3GPP (3rd generation partnership project) LTE (long term evolution) is a part of E-UMTS (evolved UMTS) that uses E-UTRA (evolved-UMTS terrestrial radio access), employing OFDMA in the downlink and SC in the uplink. -Adopt FDMA. LTE-A (advanced) is the evolution of 3GPP LTE.
5G NR은 LTE-A의 후속 기술로서, 고성능, 저지연, 고가용성 등의 특성을 가지는 새로운 Clean-slate 형태의 이동 통신 시스템이다. 5G NR은 1GHz 미만의 저주파 대역에서부터 1GHz~10GHz의 중간 주파 대역, 24GHz 이상의 고주파(밀리미터파) 대역 등 사용 가능한 모든 스펙트럼 자원을 활용할 수 있다.5G NR is a successor technology to LTE-A and is a new clean-slate mobile communication system with characteristics such as high performance, low latency, and high availability. 5G NR can utilize all available spectrum resources, including low-frequency bands below 1 GHz, mid-frequency bands between 1 GHz and 10 GHz, and high-frequency (millimeter wave) bands above 24 GHz.
설명을 명확하게 하기 위해, LTE-A 또는 5G NR을 위주로 기술하지만 본 개시의 일 실시 예에 따른 기술적 사상이 이에 제한되는 것은 아니다.For clarity of explanation, LTE-A or 5G NR is mainly described, but the technical idea according to an embodiment of the present disclosure is not limited thereto.
도 2는 본 개시의 일 실시 예에 따른, LTE 시스템의 구조를 나타낸다. 이는 E-UTRAN(Evolved-UMTS Terrestrial Radio Access Network), 또는 LTE(Long Term Evolution)/LTE-A 시스템이라고 불릴 수 있다.Figure 2 shows the structure of an LTE system according to an embodiment of the present disclosure. This may be called an Evolved-UMTS Terrestrial Radio Access Network (E-UTRAN), or a Long Term Evolution (LTE)/LTE-A system.
도 2를 참조하면, E-UTRAN은 단말(10)에게 제어 평면(control plane)과 사용자 평면(user plane)을 제공하는 기지국(20)을 포함한다. 단말(10)은 고정되거나 이동성을 가질 수 있으며, MS(Mobile Station), UT(User Terminal), SS(Subscriber Station), MT(Mobile Terminal), 무선기기(Wireless Device) 등 다른 용어로 불릴 수 있다. 기지국(20)은 단말(10)과 통신하는 고정된 지점(fixed station)을 말하며, eNB(evolved-NodeB), BTS(Base Transceiver System), 액세스 포인트(Access Point) 등 다른 용어로 불릴 수 있다.Referring to FIG. 2, E-UTRAN includes a base station 20 that provides a control plane and a user plane to the terminal 10. The terminal 10 may be fixed or mobile, and may be called by other terms such as MS (Mobile Station), UT (User Terminal), SS (Subscriber Station), MT (Mobile Terminal), and wireless device. . The base station 20 refers to a fixed station that communicates with the terminal 10, and may be called other terms such as evolved-NodeB (eNB), base transceiver system (BTS), or access point.
기지국(20)들은 X2 인터페이스를 통하여 서로 연결될 수 있다. 기지국(20)은 S1 인터페이스를 통해 EPC(Evolved Packet Core, 30), 보다 상세하게는 S1-MME를 통해 MME(Mobility Management Entity)와 S1-U를 통해 S-GW(Serving Gateway)와 연결된다. Base stations 20 may be connected to each other through an X2 interface. The base station 20 is connected to an Evolved Packet Core (EPC) 30 through the S1 interface, and more specifically, to a Mobility Management Entity (MME) through S1-MME and to a Serving Gateway (S-GW) through S1-U.
EPC(30)는 MME, S-GW 및 P-GW(Packet Data Network-Gateway)로 구성된다. MME는 단말의 접속 정보나 단말의 능력에 관한 정보를 가지고 있으며, 이러한 정보는 단말의 이동성 관리에 주로 사용된다. S-GW는 E-UTRAN을 종단점으로 갖는 게이트웨이이며, P-GW는 PDN(Packet Date Network)을 종단점으로 갖는 게이트웨이이다.The EPC 30 is composed of MME, S-GW, and P-GW (Packet Data Network-Gateway). The MME has information about the terminal's connection information or terminal capabilities, and this information is mainly used for terminal mobility management. S-GW is a gateway with E-UTRAN as an endpoint, and P-GW is a gateway with PDN (Packet Date Network) as an endpoint.
단말과 네트워크 사이의 무선인터페이스 프로토콜(Radio Interface Protocol)의 계층들은 통신시스템에서 널리 알려진 개방형 시스템간 상호접속(Open System Interconnection, OSI) 기준 모델의 하위 3개 계층을 바탕으로 L1 (제 1 계층), L2 (제 2 계층), L3(제 3 계층)로 구분될 수 있다. 이 중에서 제 1 계층에 속하는 물리 계층은 물리 채널(Physical Channel)을 이용한 정보전송서비스(Information Transfer Service)를 제공하며, 제 3 계층에 위치하는 RRC(Radio Resource Control) 계층은 단말과 네트워크 간에 무선 자원을 제어하는 역할을 수행한다. 이를 위해 RRC 계층은 단말과 기지국 간 RRC 메시지를 교환한다.The layers of the Radio Interface Protocol between the terminal and the network are based on the lower three layers of the Open System Interconnection (OSI) standard model, which is widely known in communication systems: L1 (layer 1), It can be divided into L2 (second layer) and L3 (third layer). Among these, the physical layer belonging to the first layer provides information transfer service using a physical channel, and the RRC (Radio Resource Control) layer located in the third layer provides radio resources between the terminal and the network. plays a role in controlling. For this purpose, the RRC layer exchanges RRC messages between the terminal and the base station.
도 3(a)는 본 개시의 일 실시 예에 따른, 사용자 평면(user plane)에 대한 무선 프로토콜 구조(radio protocol architecture)를 나타낸다. FIG. 3(a) shows a radio protocol architecture for a user plane, according to an embodiment of the present disclosure.
도 3(b)은 본 개시의 일 실시 예에 따른, 제어 평면(control plane)에 대한 무선 프로토콜 구조를 나타낸다. 사용자 평면은 사용자 데이터 전송을 위한 프로토콜 스택(protocol stack)이고, 제어 평면은 제어신호 전송을 위한 프로토콜 스택이다. FIG. 3(b) shows a wireless protocol structure for a control plane, according to an embodiment of the present disclosure. The user plane is a protocol stack for transmitting user data, and the control plane is a protocol stack for transmitting control signals.
도 3(a) 및 A3을 참조하면, 물리 계층(physical layer)은 물리 채널을 이용하여 상위 계층에게 정보 전송 서비스를 제공한다. 물리 계층은 상위 계층인 MAC(Medium Access Control) 계층과는 전송 채널(transport channel)을 통해 연결되어 있다. 전송 채널을 통해 MAC 계층과 물리 계층 사이로 데이터가 이동한다. 전송 채널은 무선 인터페이스를 통해 데이터가 어떻게 어떤 특징으로 전송되는가에 따라 분류된다.Referring to Figures 3(a) and A3, the physical layer provides information transmission services to upper layers using a physical channel. The physical layer is connected to the upper layer, the MAC (Medium Access Control) layer, through a transport channel. Data moves between the MAC layer and the physical layer through a transport channel. Transmission channels are classified according to how and with what characteristics data is transmitted through the wireless interface.
서로 다른 물리계층 사이, 즉 송신기와 수신기의 물리 계층 사이는 물리 채널을 통해 데이터가 이동한다. 상기 물리 채널은 OFDM(Orthogonal Frequency Division Multiplexing) 방식으로 변조될 수 있고, 시간과 주파수를 무선 자원으로 활용한다.Data moves between different physical layers, that is, between the physical layers of the transmitter and receiver, through physical channels. The physical channel can be modulated using OFDM (Orthogonal Frequency Division Multiplexing) and uses time and frequency as radio resources.
MAC 계층은 논리 채널(logical channel)을 통해 상위 계층인 RLC(radio link control) 계층에게 서비스를 제공한다. MAC 계층은 복수의 논리 채널에서 복수의 전송 채널로의 맵핑 기능을 제공한다. 또한, MAC 계층은 복수의 논리 채널에서 단수의 전송 채널로의 맵핑에 의한 논리 채널 다중화 기능을 제공한다. MAC 부 계층은 논리 채널상의 데이터 전송 서비스를 제공한다.The MAC layer provides services to the radio link control (RLC) layer, an upper layer, through a logical channel. The MAC layer provides a mapping function from multiple logical channels to multiple transport channels. Additionally, the MAC layer provides a logical channel multiplexing function by mapping multiple logical channels to a single transport channel. The MAC sublayer provides data transmission services on logical channels.
RLC 계층은 RLC SDU(Serving Data Unit)의 연결(concatenation), 분할(segmentation) 및 재결합(reassembly)을 수행한다. 무선 베어러(Radio Bearer, RB)가 요구하는 다양한 QoS(Quality of Service)를 보장하기 위해, RLC 계층은 투명모드(Transparent Mode, TM), 비확인 모드(Unacknowledged Mode, UM) 및 확인모드(Acknowledged Mode, AM)의 세 가지의 동작모드를 제공한다. AM RLC는 ARQ(automatic repeat request)를 통해 오류 정정을 제공한다. The RLC layer performs concatenation, segmentation, and reassembly of RLC Serving Data Units (SDUs). To ensure the various Quality of Service (QoS) required by the Radio Bearer (RB), the RLC layer operates in Transparent Mode (TM), Unacknowledged Mode (UM), and Acknowledged Mode. It provides three operation modes: , AM). AM RLC provides error correction through automatic repeat request (ARQ).
RRC(Radio Resource Control) 계층은 제어 평면에서만 정의된다. RRC 계층은 무선 베어러들의 설정(configuration), 재설정(re-configuration) 및 해제(release)와 관련되어 논리 채널, 전송 채널 및 물리 채널들의 제어를 담당한다. RB는 단말과 네트워크간의 데이터 전달을 위해 제 1 계층(physical 계층 또는 PHY 계층) 및 제 2 계층(MAC 계층, RLC 계층, PDCP(Packet Data Convergence Protocol) 계층)에 의해 제공되는 논리적 경로를 의미한다. The Radio Resource Control (RRC) layer is defined only in the control plane. The RRC layer is responsible for controlling logical channels, transport channels, and physical channels in relation to configuration, re-configuration, and release of radio bearers. RB refers to a logical path provided by the first layer (physical layer or PHY layer) and the second layer (MAC layer, RLC layer, PDCP (Packet Data Convergence Protocol) layer) for data transfer between the terminal and the network.
사용자 평면에서의 PDCP 계층의 기능은 사용자 데이터의 전달, 헤더 압축(header compression) 및 암호화(ciphering)를 포함한다. 제어 평면에서의 PDCP 계층의 기능은 제어 평면 데이터의 전달 및 암호화/무결성 보호(integrity protection)를 포함한다.The functions of the PDCP layer in the user plane include forwarding, header compression, and ciphering of user data. The functions of the PDCP layer in the control plane include forwarding and encryption/integrity protection of control plane data.
RB가 설정된다는 것은 특정 서비스를 제공하기 위해 무선 프로토콜 계층 및 채널의 특성을 규정하고, 각각의 구체적인 파라미터 및 동작 방법을 설정하는 과정을 의미한다. RB는 다시 SRB(Signaling Radio Bearer)와 DRB(Data Radio Bearer) 두 가지로 나누어 질 수 있다. SRB는 제어 평면에서 RRC 메시지를 전송하는 통로로 사용되며, DRB는 사용자 평면에서 사용자 데이터를 전송하는 통로로 사용된다.Setting an RB means the process of defining the characteristics of the wireless protocol layer and channel and setting each specific parameter and operation method to provide a specific service. RB can be further divided into SRB (Signaling Radio Bearer) and DRB (Data Radio Bearer). SRB is used as a path to transmit RRC messages in the control plane, and DRB is used as a path to transmit user data in the user plane.
단말의 RRC 계층과 E-UTRAN의 RRC 계층 사이에 RRC 연결(RRC connection)이 확립되면, 단말은 RRC_CONNECTED 상태에 있게 되고, 그렇지 못할 경우 RRC_IDLE 상태에 있게 된다. NR의 경우, RRC_INACTIVE 상태가 추가로 정의되었으며, RRC_INACTIVE 상태의 단말은 코어 네트워크와의 연결을 유지하는 반면 기지국과의 연결을 해지(release)할 수 있다.If an RRC connection is established between the RRC layer of the UE and the RRC layer of the E-UTRAN, the UE is in the RRC_CONNECTED state. Otherwise, it is in the RRC_IDLE state. For NR, the RRC_INACTIVE state has been additionally defined, and a UE in the RRC_INACTIVE state can release the connection with the base station while maintaining the connection with the core network.
네트워크에서 단말로 데이터를 전송하는 하향링크 전송 채널로는 시스템 정보를 전송하는 BCH(Broadcast Channel)과 그 이외에 사용자 트래픽이나 제어 메시지를 전송하는 하향링크 SCH(Shared Channel)이 있다. 하향링크 멀티캐스트 또는 브로드캐스트 서비스의 트래픽 또는 제어메시지의 경우 하향링크 SCH를 통해 전송될 수도 있고, 또는 별도의 하향링크 MCH(Multicast Channel)을 통해 전송될 수도 있다. 한편, 단말에서 네트워크로 데이터를 전송하는 상향링크 전송 채널로는 초기 제어메시지를 전송하는 RACH(Random Access Channel)와 그 이외에 사용자 트래픽이나 제어메시지를 전송하는 상향링크 SCH(Shared Channel)가 있다.Downlink transmission channels that transmit data from the network to the terminal include a BCH (Broadcast Channel) that transmits system information and a downlink SCH (Shared Channel) that transmits user traffic or control messages. In the case of downlink multicast or broadcast service traffic or control messages, they may be transmitted through the downlink SCH, or may be transmitted through a separate downlink MCH (Multicast Channel). Meanwhile, uplink transmission channels that transmit data from the terminal to the network include RACH (Random Access Channel), which transmits initial control messages, and uplink SCH (Shared Channel), which transmits user traffic or control messages.
전송 채널 상위에 있으며, 전송 채널에 맵핑되는 논리 채널(Logical Channel)로는 BCCH(Broadcast Control Channel), PCCH(Paging Control Channel), CCCH(Common Control Channel), MCCH(Multicast Control Channel), MTCH(Multicast Traffic Channel) 등이 있다.Logical channels located above the transmission channel and mapped to the transmission channel include BCCH (Broadcast Control Channel), PCCH (Paging Control Channel), CCCH (Common Control Channel), MCCH (Multicast Control Channel), and MTCH (Multicast Traffic). Channel), etc.
물리 채널(Physical Channel)은 시간 영역에서 여러 개의 OFDM 심벌과 주파수 영역에서 여러 개의 부반송파(sub-carrier)로 구성된다. 하나의 서브프레임(sub-frame)은 시간 영역에서 복수의 OFDM 심벌(symbol)들로 구성된다. 자원 블록은 자원 할당 단위로, 복수의 OFDM 심벌들과 복수의 부반송파(sub-carrier)들로 구성된다. 또한 각 서브프레임은 PDCCH(Physical Downlink Control Channel) 즉, L1/L2 제어 채널을 위해 해당 서브프레임의 특정 OFDM 심벌들(예, 첫 번째 OFDM 심볼)의 특정 부반송파들을 이용할 수 있다. TTI(Transmission Time Interval)는 서브프레임 전송의 단위시간이다.A physical channel consists of several OFDM symbols in the time domain and several sub-carriers in the frequency domain. One sub-frame consists of a plurality of OFDM symbols in the time domain. A resource block is a resource allocation unit and consists of a plurality of OFDM symbols and a plurality of sub-carriers. Additionally, each subframe may use specific subcarriers of specific OFDM symbols (e.g., the first OFDM symbol) of the subframe for the Physical Downlink Control Channel (PDCCH), that is, the L1/L2 control channel. TTI (Transmission Time Interval) is the unit time of subframe transmission.
도 4는 본 개시의 일 실시 예에 따른, NR 시스템의 구조를 나타낸다.Figure 4 shows the structure of an NR system according to an embodiment of the present disclosure.
도 4를 참조하면, NG-RAN(Next Generation - Radio Access Network)은 단말에게 사용자 평면 및 제어 평면 프로토콜 종단(termination)을 제공하는 gNB(next generation-Node B) 및/또는 eNB를 포함할 수 있다. 도 4에서는 gNB만을 포함하는 경우를 예시한다. gNB 및 eNB는 상호 간에 Xn 인터페이스로 연결되어 있다. gNB 및 eNB는 5세대 코어 네트워크(5G Core Network: 5GC)와 NG 인터페이스를 통해 연결되어 있다. 보다 구체적으로, AMF(access and mobility management function)과는 NG-C 인터페이스를 통해 연결되고, UPF(user plane function)과는 NG-U 인터페이스를 통해 연결된다. Referring to FIG. 4, NG-RAN (Next Generation - Radio Access Network) may include a next generation-Node B (gNB) and/or eNB that provide user plane and control plane protocol termination to the terminal. . Figure 4 illustrates a case including only gNB. gNB and eNB are connected to each other through the Xn interface. gNB and eNB are connected through the 5G Core Network (5GC) and NG interface. More specifically, it is connected to the access and mobility management function (AMF) through the NG-C interface, and to the user plane function (UPF) through the NG-U interface.
도 5는 본 개시의 일 실시 예에 따른, NG-RAN과 5GC 간의 기능적 분할을 나타낸다.Figure 5 shows functional division between NG-RAN and 5GC, according to an embodiment of the present disclosure.
도 5를 참조하면, gNB는 인터 셀 간의 무선 자원 관리(Inter Cell RRM), 무선 베어러 관리(RB control), 연결 이동성 제어(Connection Mobility Control), 무선 허용 제어(Radio Admission Control), 측정 설정 및 제공(Measurement configuration & Provision), 동적 자원 할당(dynamic resource allocation) 등의 기능을 제공할 수 있다. AMF는 NAS(Non Access Stratum) 보안, 아이들 상태 이동성 처리 등의 기능을 제공할 수 있다. UPF는 이동성 앵커링(Mobility Anchoring), PDU(Protocol Data Unit) 처리 등의 기능을 제공할 수 있다. SMF(Session Management Function)는 단말 IP(Internet Protocol) 주소 할당, PDU 세션 제어 등의 기능을 제공할 수 있다.Referring to FIG. 5, gNB performs inter-cell radio resource management (Inter Cell RRM), radio bearer management (RB control), connection mobility control, radio admission control, and measurement configuration and provision. Functions such as (Measurement configuration & Provision) and dynamic resource allocation can be provided. AMF can provide functions such as NAS (Non Access Stratum) security and idle state mobility processing. UPF can provide functions such as mobility anchoring and PDU (Protocol Data Unit) processing. SMF (Session Management Function) can provide functions such as terminal IP (Internet Protocol) address allocation and PDU session control.
도 6은 실시예(들)이 적용될 수 있는 NR의 무선 프레임의 구조를 나타낸다.Figure 6 shows the structure of a radio frame of NR to which the embodiment(s) can be applied.
도 6을 참조하면, NR에서 상향링크 및 하향링크 전송에서 무선 프레임을 사용할 수 있다. 무선 프레임은 10ms의 길이를 가지며, 2개의 5ms 하프-프레임(Half-Frame, HF)으로 정의될 수 있다. 하프-프레임은 5개의 1ms 서브프레임(Subframe, SF)을 포함할 수 있다. 서브프레임은 하나 이상의 슬롯으로 분할될 수 있으며, 서브프레임 내 슬롯 개수는 부반송파 간격(Subcarrier Spacing, SCS)에 따라 결정될 수 있다. 각 슬롯은 CP(cyclic prefix)에 따라 12개 또는 14개의 OFDM(A) 심볼을 포함할 수 있다. Referring to FIG. 6, NR can use radio frames in uplink and downlink transmission. A wireless frame has a length of 10ms and can be defined as two 5ms half-frames (HF). A half-frame may include five 1ms subframes (Subframe, SF). A subframe may be divided into one or more slots, and the number of slots within a subframe may be determined according to subcarrier spacing (SCS). Each slot may contain 12 or 14 OFDM(A) symbols depending on the cyclic prefix (CP).
노멀 CP(normal CP)가 사용되는 경우, 각 슬롯은 14개의 심볼을 포함할 수 있다. 확장 CP가 사용되는 경우, 각 슬롯은 12개의 심볼을 포함할 수 있다. 여기서, 심볼은 OFDM 심볼 (또는, CP-OFDM 심볼), SC-FDMA 심볼 (또는, DFT-s-OFDM 심볼)을 포함할 수 있다.When normal CP is used, each slot may contain 14 symbols. When extended CP is used, each slot can contain 12 symbols. Here, the symbol may include an OFDM symbol (or CP-OFDM symbol) and an SC-FDMA symbol (or DFT-s-OFDM symbol).
다음 표 1은 노멀 CP가 사용되는 경우, SCS 설정(μ)에 따라 슬롯 별 심볼의 개수(
Figure PCTKR2023020646-appb-img-000001
), 프레임 별 슬롯의 개수(
Figure PCTKR2023020646-appb-img-000002
)와 서브프레임 별 슬롯의 개수(
Figure PCTKR2023020646-appb-img-000003
)를 예시한다.
Table 1 below shows the number of symbols per slot (μ) according to the SCS setting (μ) when normal CP is used.
Figure PCTKR2023020646-appb-img-000001
), number of slots per frame (
Figure PCTKR2023020646-appb-img-000002
) and the number of slots per subframe (
Figure PCTKR2023020646-appb-img-000003
) is exemplified.
Figure PCTKR2023020646-appb-img-000004
Figure PCTKR2023020646-appb-img-000004
표 2는 확장 CP가 사용되는 경우, SCS에 따라 슬롯 별 심볼의 개수, 프레임 별 슬롯의 개수와 서브프레임 별 슬롯의 개수를 예시한다.Table 2 illustrates the number of symbols per slot, the number of slots per frame, and the number of slots per subframe according to the SCS when the extended CP is used.
Figure PCTKR2023020646-appb-img-000005
Figure PCTKR2023020646-appb-img-000005
NR 시스템에서는 하나의 단말에게 병합되는 복수의 셀들간에 OFDM(A) 뉴머놀로지(numerology)(예, SCS, CP 길이 등)가 상이하게 설정될 수 있다. 이에 따라, 동일한 개수의 심볼로 구성된 시간 자원(예, 서브프레임, 슬롯 또는 TTI)(편의상, TU(Time Unit)로 통칭)의 (절대 시간) 구간이 병합된 셀들간에 상이하게 설정될 수 있다. In the NR system, OFDM(A) numerology (eg, SCS, CP length, etc.) may be set differently between multiple cells merged into one UE. Accordingly, the (absolute time) interval of time resources (e.g., subframes, slots, or TTI) (for convenience, collectively referred to as TU (Time Unit)) composed of the same number of symbols may be set differently between merged cells. .
NR에서, 다양한 5G 서비스들을 지원하기 위한 다수의 뉴머놀로지(numerology) 또는 SCS가 지원될 수 있다. 예를 들어, SCS가 15kHz인 경우, 전통적인 셀룰러 밴드들에서의 넓은 영역(wide area)이 지원될 수 있고, SCS가 30kHz/60kHz인 경우, 밀집한-도시(dense-urban), 더 낮은 지연(lower latency) 및 더 넓은 캐리어 대역폭(wider carrier bandwidth)이 지원될 수 있다. SCS가 60kHz 또는 그보다 높은 경우, 위상 잡음(phase noise)을 극복하기 위해 24.25GHz보다 큰 대역폭이 지원될 수 있다.In NR, multiple numerologies or SCSs can be supported to support various 5G services. For example, if SCS is 15kHz, a wide area in traditional cellular bands can be supported, and if SCS is 30kHz/60kHz, dense-urban, lower latency latency) and wider carrier bandwidth may be supported. For SCS of 60 kHz or higher, bandwidths greater than 24.25 GHz can be supported to overcome phase noise.
NR 주파수 밴드(frequency band)는 두 가지 타입의 주파수 범위(frequency range)로 정의될 수 있다. 상기 두 가지 타입의 주파수 범위는 FR1 및 FR2일 수 있다. 주파수 범위의 수치는 변경될 수 있으며, 예를 들어, 상기 두 가지 타입의 주파수 범위는 하기 표 3과 같을 수 있다. NR 시스템에서 사용되는 주파수 범위 중 FR1은 “sub 6GHz range”를 의미할 수 있고, FR2는 “above 6GHz range”를 의미할 수 있고 밀리미터 웨이브(millimeter wave, mmW)로 불릴 수 있다.The NR frequency band can be defined as two types of frequency ranges. The two types of frequency ranges may be FR1 and FR2. The values of the frequency range may be changed, for example, the frequency ranges of the two types may be as shown in Table 3 below. Among the frequency ranges used in the NR system, FR1 can mean “sub 6GHz range” and FR2 can mean “above 6GHz range” and can be called millimeter wave (mmW).
Figure PCTKR2023020646-appb-img-000006
Figure PCTKR2023020646-appb-img-000006
상술한 바와 같이, NR 시스템의 주파수 범위의 수치는 변경될 수 있다. 예를 들어, FR1은 하기 표 4와 같이 410MHz 내지 7125MHz의 대역을 포함할 수 있다. 즉, FR1은 6GHz (또는 5850, 5900, 5925 MHz 등) 이상의 주파수 대역을 포함할 수 있다. 예를 들어, FR1 내에서 포함되는 6GHz (또는 5850, 5900, 5925 MHz 등) 이상의 주파수 대역은 비면허 대역(unlicensed band)을 포함할 수 있다. 비면허 대역은 다양한 용도로 사용될 수 있고, 예를 들어 차량을 위한 통신(예를 들어, 자율주행)을 위해 사용될 수 있다.As described above, the numerical value of the frequency range of the NR system can be changed. For example, FR1 may include a band of 410 MHz to 7125 MHz as shown in Table 4 below. That is, FR1 may include a frequency band of 6GHz (or 5850, 5900, 5925 MHz, etc.). For example, the frequency band above 6 GHz (or 5850, 5900, 5925 MHz, etc.) included within FR1 may include an unlicensed band. Unlicensed bands can be used for a variety of purposes, for example, for communications for vehicles (e.g., autonomous driving).
Figure PCTKR2023020646-appb-img-000007
Figure PCTKR2023020646-appb-img-000007
도 7은 본 개시의 일 실시 예에 따른, NR 프레임의 슬롯 구조를 나타낸다.Figure 7 shows the slot structure of an NR frame according to an embodiment of the present disclosure.
도 7을 참조하면, 슬롯은 시간 영역에서 복수의 심볼들을 포함한다. 예를 들어, 노멀 CP의 경우 하나의 슬롯이 14개의 심볼을 포함하나, 확장 CP의 경우 하나의 슬롯이 12개의 심볼을 포함할 수 있다. 또는 노멀 CP의 경우 하나의 슬롯이 7개의 심볼을 포함하나, 확장 CP의 경우 하나의 슬롯이 6개의 심볼을 포함할 수 있다.Referring to FIG. 7, a slot includes a plurality of symbols in the time domain. For example, in the case of normal CP, one slot may include 14 symbols, but in the case of extended CP, one slot may include 12 symbols. Alternatively, in the case of normal CP, one slot may include 7 symbols, but in the case of extended CP, one slot may include 6 symbols.
반송파는 주파수 영역에서 복수의 부반송파들을 포함한다. RB(Resource Block)는 주파수 영역에서 복수(예를 들어, 12)의 연속한 부반송파로 정의될 수 있다. BWP(Bandwidth Part)는 주파수 영역에서 복수의 연속한 (P)RB((Physical) Resource Block)로 정의될 수 있으며, 하나의 뉴머놀로지(numerology)(예, SCS, CP 길이 등)에 대응될 수 있다. 반송파는 최대 N개(예를 들어, 5개)의 BWP를 포함할 수 있다. 데이터 통신은 활성화된 BWP를 통해서 수행될 수 있다. 각각의 요소는 자원 그리드에서 자원요소(Resource Element, RE)로 지칭될 수 있고, 하나의 복소 심볼이 맵핑될 수 있다.A carrier wave includes a plurality of subcarriers in the frequency domain. A Resource Block (RB) may be defined as a plurality (eg, 12) consecutive subcarriers in the frequency domain. BWP (Bandwidth Part) can be defined as a plurality of consecutive (P)RB ((Physical) Resource Blocks) in the frequency domain and can correspond to one numerology (e.g. SCS, CP length, etc.) there is. A carrier wave may include up to N (e.g., 5) BWPs. Data communication can be performed through an activated BWP. Each element may be referred to as a Resource Element (RE) in the resource grid, and one complex symbol may be mapped.
한편, 단말과 단말 간 무선 인터페이스 또는 단말과 네트워크 간 무선 인터페이스는 L1 계층, L2 계층 및 L3 계층으로 구성될 수 있다. 본 개시의 다양한 실시 예에서, L1 계층은 물리(physical) 계층을 의미할 수 있다. 또한, 예를 들어, L2 계층은 MAC 계층, RLC 계층, PDCP 계층 및 SDAP 계층 중 적어도 하나를 의미할 수 있다. 또한, 예를 들어, L3 계층은 RRC 계층을 의미할 수 있다.Meanwhile, the wireless interface between the terminal and the terminal or the wireless interface between the terminal and the network may be composed of an L1 layer, an L2 layer, and an L3 layer. In various embodiments of the present disclosure, the L1 layer may refer to a physical layer. Also, for example, the L2 layer may mean at least one of the MAC layer, RLC layer, PDCP layer, and SDAP layer. Also, for example, the L3 layer may mean the RRC layer.
이하, V2X 또는 SL(sidelink) 통신에 대하여 설명한다.Below, V2X or SL (sidelink) communication will be described.
도 8은 본 개시의 일 실시 예에 따른, SL 통신을 위한 무선 프로토콜 구조(radio protocol architecture)를 나타낸다. 구체적으로, 도 8의 (a)는 LTE의 사용자 평면 프로토콜 스택을 나타내고, 도 8의 (b)는 LTE의 제어 평면 프로토콜 스택을 나타낸다.Figure 8 shows a radio protocol architecture for SL communication, according to an embodiment of the present disclosure. Specifically, Figure 8(a) shows the user plane protocol stack of LTE, and Figure 8(b) shows the control plane protocol stack of LTE.
도 9는 본 개시의 일 실시 예에 따른, SL 통신을 위한 무선 프로토콜 구조(radio protocol architecture)를 나타낸다. 구체적으로, 도 9의 (a)는 NR의 사용자 평면 프로토콜 스택을 나타내고, 도 9의 (b)는 NR의 제어 평면 프로토콜 스택을 나타낸다.Figure 9 shows a radio protocol architecture for SL communication, according to an embodiment of the present disclosure. Specifically, Figure 9(a) shows the user plane protocol stack of NR, and Figure 9(b) shows the control plane protocol stack of NR.
도 10은 본 개시의 일 실시 예에 따른, V2X의 동기화 소스(synchronization source) 또는 동기화 기준(synchronization reference)을 나타낸다.Figure 10 shows a synchronization source or synchronization reference of V2X, according to an embodiment of the present disclosure.
도 10을 참조하면, V2X에서, 단말은 GNSS(global navigation satellite systems)에 직접적으로 동기화 되거나, 또는 GNSS에 직접적으로 동기화된 (네트워크 커버리지 내의 또는 네트워크 커버리지 밖의) 단말을 통해 비간접적으로 GNSS에 동기화 될 수 있다. GNSS가 동기화 소스로 설정된 경우, 단말은 UTC(Coordinated Universal Time) 및 (미리) 설정된 DFN(Direct Frame Number) 오프셋을 사용하여 DFN 및 서브프레임 번호를 계산할 수 있다. Referring to Figure 10, in V2X, the terminal is directly synchronized to GNSS (global navigation satellite systems), or indirectly synchronized to GNSS through a terminal (within network coverage or outside network coverage) that is directly synchronized to GNSS. You can. If GNSS is set as the synchronization source, the terminal can calculate the DFN and subframe number using Coordinated Universal Time (UTC) and a (pre)set Direct Frame Number (DFN) offset.
또는, 단말은 기지국에 직접 동기화되거나, 기지국에 시간/주파수 동기화된 다른 단말에게 동기화될 수 있다. 예를 들어, 상기 기지국은 eNB 또는 gNB일 수 있다. 예를 들어, 단말이 네트워크 커버리지 내에 있는 경우, 상기 단말은 기지국이 제공하는 동기화 정보를 수신하고, 상기 기지국에 직접 동기화될 수 있다. 그 후, 상기 단말은 동기화 정보를 인접한 다른 단말에게 제공할 수 있다. 기지국 타이밍이 동기화 기준으로 설정된 경우, 단말은 동기화 및 하향링크 측정을 위해 해당 주파수에 연관된 셀(상기 주파수에서 셀 커버리지 내에 있는 경우), 프라이머리 셀 또는 서빙 셀(상기 주파수에서 셀 커버리지 바깥에 있는 경우)을 따를 수 있다.Alternatively, the terminal may be synchronized directly to the base station or to another terminal that is time/frequency synchronized to the base station. For example, the base station may be an eNB or gNB. For example, if the terminal is within network coverage, the terminal may receive synchronization information provided by the base station and be directly synchronized to the base station. Afterwards, the terminal can provide synchronization information to other nearby terminals. When the base station timing is set as a synchronization standard, the terminal is connected to a cell associated with that frequency (if within cell coverage at the frequency), primary cell, or serving cell (if outside cell coverage at the frequency) for synchronization and downlink measurements. ) can be followed.
기지국(예를 들어, 서빙 셀)은 V2X 또는 SL 통신에 사용되는 반송파에 대한 동기화 설정을 제공할 수 있다. 이 경우, 단말은 상기 기지국으로부터 수신한 동기화 설정을 따를 수 있다. 만약, 단말이 상기 V2X 또는 SL 통신에 사용되는 반송파에서 어떤 셀도 검출하지 못했고, 서빙 셀로부터 동기화 설정도 수신하지 못했다면, 상기 단말은 미리 설정된 동기화 설정을 따를 수 있다.A base station (e.g., serving cell) may provide synchronization settings for the carrier used for V2X or SL communication. In this case, the terminal can follow the synchronization settings received from the base station. If the terminal does not detect any cells in the carrier used for V2X or SL communication and does not receive synchronization settings from the serving cell, the terminal may follow preset synchronization settings.
또는, 단말은 기지국이나 GNSS로부터 직접 또는 간접적으로 동기화 정보를 획득하지 못한 다른 단말에게 동기화될 수도 있다. 동기화 소스 및 선호도는 단말에게 미리 설정될 수 있다. 또는, 동기화 소스 및 선호도는 기지국에 의하여 제공되는 제어 메시지를 통해 설정될 수 있다.Alternatively, the terminal may be synchronized to another terminal that has not obtained synchronization information directly or indirectly from the base station or GNSS. Synchronization source and preference can be set in advance to the terminal. Alternatively, the synchronization source and preference can be set through a control message provided by the base station.
SL 동기화 소스는 동기화 우선 순위와 연관될 수 있다. 예를 들어, 동기화 소스와 동기화 우선 순위 사이의 관계는 표 5 또는 표 6과 같이 정의될 수 있다. 표 5 또는 표 6은 일 예에 불과하며, 동기화 소스와 동기화 우선 순위 사이의 관계는 다양한 형태로 정의될 수 있다.SL synchronization source may be associated with a synchronization priority. For example, the relationship between synchronization source and synchronization priority can be defined as Table 5 or Table 6. Table 5 or Table 6 is only an example, and the relationship between synchronization source and synchronization priority can be defined in various forms.
Figure PCTKR2023020646-appb-img-000008
Figure PCTKR2023020646-appb-img-000008
Figure PCTKR2023020646-appb-img-000009
Figure PCTKR2023020646-appb-img-000009
표 5 또는 표 6에서, P0가 가장 높은 우선 순위를 의미할 수 있고, P6이 가장 낮은 우선순위를 의미할 수 있다. 표 5 또는 표 6에서, 기지국은 gNB 또는 eNB 중 적어도 어느 하나를 포함할 수 있다.In Table 5 or Table 6, P0 may mean the highest priority, and P6 may mean the lowest priority. In Table 5 or Table 6, the base station may include at least one of a gNB or an eNB.
GNSS 기반의 동기화 또는 기지국 기반의 동기화를 사용할지 여부는 (미리) 설정될 수 있다. 싱글-캐리어 동작에서, 단말은 가장 높은 우선 순위를 가지는 이용 가능한 동기화 기준으로부터 상기 단말의 전송 타이밍을 유도할 수 있다.Whether to use GNSS-based synchronization or base station-based synchronization can be set (in advance). In single-carrier operation, the terminal can derive its transmission timing from the available synchronization reference with the highest priority.
이하, SL 동기 신호(Sidelink Synchronization Signal, SLSS) 및 동기화 정보에 대해 설명한다.Hereinafter, the Sidelink Synchronization Signal (SLSS) and synchronization information will be described.
SLSS는 SL 특정적인 시퀀스(sequence)로, PSSS(Primary Sidelink Synchronization Signal)와 SSSS(Secondary Sidelink Synchronization Signal)를 포함할 수 있다. 상기 PSSS는 S-PSS(Sidelink Primary Synchronization Signal)라고 칭할 수 있고, 상기 SSSS는 S-SSS(Sidelink Secondary Synchronization Signal)라고 칭할 수 있다. 예를 들어, 길이-127 M-시퀀스(length-127 M-sequences)가 S-PSS에 대하여 사용될 수 있고, 길이-127 골드-시퀀스(length-127 Gold sequences)가 S-SSS에 대하여 사용될 수 있다. 예를 들어, 단말은 S-PSS를 이용하여 최초 신호를 검출(signal detection)할 수 있고, 동기를 획득할 수 있다. 예를 들어, 단말은 S-PSS 및 S-SSS를 이용하여 세부 동기를 획득할 수 있고, 동기 신호 ID를 검출할 수 있다.SLSS is a SL-specific sequence and may include Primary Sidelink Synchronization Signal (PSSS) and Secondary Sidelink Synchronization Signal (SSSS). The PSSS may be referred to as S-PSS (Sidelink Primary Synchronization Signal), and the SSSS may be referred to as S-SSS (Sidelink Secondary Synchronization Signal). For example, length-127 M-sequences can be used for S-PSS, and length-127 Gold sequences can be used for S-SSS. . For example, the terminal can detect the first signal and obtain synchronization using S-PSS. For example, the terminal can obtain detailed synchronization using S-PSS and S-SSS and detect the synchronization signal ID.
PSBCH(Physical Sidelink Broadcast Channel)는 SL 신호 송수신 전에 단말이 가장 먼저 알아야 하는 기본이 되는 (시스템) 정보가 전송되는 (방송) 채널일 수 있다. 예를 들어, 상기 기본이 되는 정보는 SLSS에 관련된 정보, 듀플렉스 모드(Duplex Mode, DM), TDD UL/DL(Time Division Duplex Uplink/Downlink) 구성, 리소스 풀 관련 정보, SLSS에 관련된 애플리케이션의 종류, 서브프레임 오프셋, 방송 정보 등일 수 있다. 예를 들어, PSBCH 성능의 평가를 위해, NR V2X에서, PSBCH의 페이로드 크기는 24 비트의 CRC를 포함하여 56 비트일 수 있다.PSBCH (Physical Sidelink Broadcast Channel) may be a (broadcast) channel through which basic (system) information that the terminal needs to know first before transmitting and receiving SL signals is transmitted. For example, the basic information includes SLSS-related information, duplex mode (DM), TDD UL/DL (Time Division Duplex Uplink/Downlink) configuration, resource pool-related information, type of application related to SLSS, This may be subframe offset, broadcast information, etc. For example, for evaluation of PSBCH performance, in NR V2X, the payload size of PSBCH may be 56 bits, including a CRC of 24 bits.
S-PSS, S-SSS 및 PSBCH는 주기적 전송을 지원하는 블록 포맷(예를 들어, SL SS(Synchronization Signal)/PSBCH 블록, 이하 S-SSB(Sidelink-Synchronization Signal Block))에 포함될 수 있다. 상기 S-SSB는 캐리어 내의 PSCCH(Physical Sidelink Control Channel)/PSSCH(Physical Sidelink Shared Channel)와 동일한 뉴머놀로지(즉, SCS 및 CP 길이)를 가질 수 있고, 전송 대역폭은 (미리) 설정된 SL BWP(Sidelink BWP) 내에 있을 수 있다. 예를 들어, S-SSB의 대역폭은 11 RB(Resource Block)일 수 있다. 예를 들어, PSBCH는 11 RB에 걸쳐있을 수 있다. 그리고, S-SSB의 주파수 위치는 (미리) 설정될 수 있다. 따라서, 단말은 캐리어에서 S-SSB를 발견하기 위해 주파수에서 가설 검출(hypothesis detection)을 수행할 필요가 없다. S-PSS, S-SSS, and PSBCH may be included in a block format that supports periodic transmission (e.g., SL Synchronization Signal (SS)/PSBCH block, hereinafter referred to as Sidelink-Synchronization Signal Block (S-SSB)). The S-SSB may have the same numerology (i.e., SCS and CP length) as the PSCCH (Physical Sidelink Control Channel)/PSSCH (Physical Sidelink Shared Channel) in the carrier, and the transmission bandwidth is (pre-set) SL BWP (Sidelink BWP). For example, the bandwidth of S-SSB may be 11 RB (Resource Block). For example, PSBCH may span 11 RB. And, the frequency position of the S-SSB can be set (in advance). Therefore, the UE does not need to perform hypothesis detection at the frequency to discover the S-SSB in the carrier.
한편, NR SL 시스템에서, 서로 다른 SCS 및/또는 CP 길이를 가지는 복수의 뉴머놀로지가 지원될 수 있다. 이 때, SCS가 증가함에 따라서, 전송 단말이 S-SSB를 전송하는 시간 자원의 길이가 짧아질 수 있다. 이에 따라, S-SSB의 커버리지(coverage)가 감소할 수 있다. 따라서, S-SSB의 커버리지를 보장하기 위하여, 전송 단말은 SCS에 따라 하나의 S-SSB 전송 주기 내에서 하나 이상의 S-SSB를 수신 단말에게 전송할 수 있다. 예를 들어, 전송 단말이 하나의 S-SSB 전송 주기 내에서 수신 단말에게 전송하는 S-SSB의 개수는 전송 단말에게 사전에 설정되거나(pre-configured), 설정(configured)될 수 있다. 예를 들어, S-SSB 전송 주기는 160ms 일 수 있다. 예를 들어, 모든 SCS에 대하여, 160ms의 S-SSB 전송 주기가 지원될 수 있다. Meanwhile, in the NR SL system, multiple numerologies with different SCS and/or CP lengths may be supported. At this time, as the SCS increases, the length of time resources for the transmitting terminal to transmit the S-SSB may become shorter. Accordingly, the coverage of S-SSB may decrease. Therefore, to ensure coverage of the S-SSB, the transmitting terminal may transmit one or more S-SSBs to the receiving terminal within one S-SSB transmission period according to the SCS. For example, the number of S-SSBs that the transmitting terminal transmits to the receiving terminal within one S-SSB transmission period may be pre-configured or configured for the transmitting terminal. For example, the S-SSB transmission period may be 160ms. For example, for all SCS, an S-SSB transmission period of 160ms can be supported.
예를 들어, SCS가 FR1에서 15kHz인 경우, 전송 단말은 하나의 S-SSB 전송 주기 내에서 수신 단말에게 1개 또는 2개의 S-SSB를 전송할 수 있다. 예를 들어, SCS가 FR1에서 30kHz인 경우, 전송 단말은 하나의 S-SSB 전송 주기 내에서 수신 단말에게 1개 또는 2개의 S-SSB를 전송할 수 있다. 예를 들어, SCS가 FR1에서 60kHz인 경우, 전송 단말은 하나의 S-SSB 전송 주기 내에서 수신 단말에게 1개, 2개 또는 4개의 S-SSB를 전송할 수 있다.For example, when the SCS is 15 kHz in FR1, the transmitting terminal can transmit one or two S-SSBs to the receiving terminal within one S-SSB transmission period. For example, when the SCS is 30 kHz in FR1, the transmitting terminal can transmit one or two S-SSBs to the receiving terminal within one S-SSB transmission period. For example, when the SCS is 60 kHz in FR1, the transmitting terminal can transmit 1, 2, or 4 S-SSBs to the receiving terminal within one S-SSB transmission cycle.
도 11은 본 개시의 일 실시 예에 따라, 단말이 전송 모드에 따라 V2X 또는 SL 통신을 수행하는 절차를 나타낸다. 도 11의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다. 본 개시의 다양한 실시 예에서, 전송 모드는 모드 또는 자원 할당 모드라고 칭할 수 있다. 이하, 설명의 편의를 위해, LTE에서 전송 모드는 LTE 전송 모드라고 칭할 수 있고, NR에서 전송 모드는 NR 자원 할당 모드라고 칭할 수 있다.Figure 11 shows a procedure in which a terminal performs V2X or SL communication depending on the transmission mode, according to an embodiment of the present disclosure. The embodiment of FIG. 11 may be combined with various embodiments of the present disclosure. In various embodiments of the present disclosure, the transmission mode may be referred to as a mode or resource allocation mode. Hereinafter, for convenience of explanation, the transmission mode in LTE may be referred to as the LTE transmission mode, and the transmission mode in NR may be referred to as the NR resource allocation mode.
예를 들어, 도 11의 (a)는 LTE 전송 모드 1 또는 LTE 전송 모드 3과 관련된 단말 동작을 나타낸다. 또는, 예를 들어, 도 11의 (a)는 NR 자원 할당 모드 1과 관련된 단말 동작을 나타낸다. 예를 들어, LTE 전송 모드 1은 일반적인 SL 통신에 적용될 수 있고, LTE 전송 모드 3은 V2X 통신에 적용될 수 있다.For example, Figure 11 (a) shows terminal operations related to LTE transmission mode 1 or LTE transmission mode 3. Or, for example, Figure 11 (a) shows UE operations related to NR resource allocation mode 1. For example, LTE transmission mode 1 can be applied to general SL communication, and LTE transmission mode 3 can be applied to V2X communication.
예를 들어, 도 11의 (b)는 LTE 전송 모드 2 또는 LTE 전송 모드 4와 관련된 단말 동작을 나타낸다. 또는, 예를 들어, 도 11의 (b)는 NR 자원 할당 모드 2와 관련된 단말 동작을 나타낸다.For example, Figure 11 (b) shows terminal operations related to LTE transmission mode 2 or LTE transmission mode 4. Or, for example, Figure 11(b) shows UE operations related to NR resource allocation mode 2.
도 11의 (a)를 참조하면, LTE 전송 모드 1, LTE 전송 모드 3 또는 NR 자원 할당 모드 1에서, 기지국은 SL 전송을 위해 단말에 의해 사용될 SL 자원을 스케줄링할 수 있다. 예를 들어, 단계 S8000에서, 기지국은 제 1 단말에게 SL 자원과 관련된 정보 및/또는 UL 자원과 관련된 정보를 전송할 수 있다. 예를 들어, 상기 UL 자원은 PUCCH 자원 및/또는 PUSCH 자원을 포함할 수 있다. 예를 들어, 상기 UL 자원은 SL HARQ 피드백을 기지국에게 보고하기 위한 자원일 수 있다.Referring to (a) of FIG. 11, in LTE transmission mode 1, LTE transmission mode 3, or NR resource allocation mode 1, the base station may schedule SL resources to be used by the terminal for SL transmission. For example, in step S8000, the base station may transmit information related to SL resources and/or information related to UL resources to the first terminal. For example, the UL resources may include PUCCH resources and/or PUSCH resources. For example, the UL resource may be a resource for reporting SL HARQ feedback to the base station.
예를 들어, 제 1 단말은 DG(dynamic grant) 자원과 관련된 정보 및/또는 CG(configured grant) 자원과 관련된 정보를 기지국으로부터 수신할 수 있다. 예를 들어, CG 자원은 CG 타입 1 자원 또는 CG 타입 2 자원을 포함할 수 있다. 본 명세서에서, DG 자원은, 기지국이 DCI(downlink control information)를 통해서 제 1 단말에게 설정/할당하는 자원일 수 있다. 본 명세서에서, CG 자원은, 기지국이 DCI 및/또는 RRC 메시지를 통해서 제 1 단말에게 설정/할당하는 (주기적인) 자원일 수 있다. 예를 들어, CG 타입 1 자원의 경우, 기지국은 CG 자원과 관련된 정보를 포함하는 RRC 메시지를 제 1 단말에게 전송할 수 있다. 예를 들어, CG 타입 2 자원의 경우, 기지국은 CG 자원과 관련된 정보를 포함하는 RRC 메시지를 제 1 단말에게 전송할 수 있고, 기지국은 CG 자원의 활성화(activation) 또는 해제(release)와 관련된 DCI를 제 1 단말에게 전송할 수 있다.For example, the first terminal may receive information related to dynamic grant (DG) resources and/or information related to configured grant (CG) resources from the base station. For example, CG resources may include CG Type 1 resources or CG Type 2 resources. In this specification, the DG resource may be a resource that the base station configures/allocates to the first terminal through downlink control information (DCI). In this specification, the CG resource may be a (periodic) resource that the base station configures/allocates to the first terminal through a DCI and/or RRC message. For example, in the case of CG type 1 resources, the base station may transmit an RRC message containing information related to the CG resource to the first terminal. For example, in the case of CG type 2 resources, the base station may transmit an RRC message containing information related to the CG resource to the first terminal, and the base station may send a DCI related to activation or release of the CG resource. It can be transmitted to the first terminal.
단계 S8010에서, 제 1 단말은 상기 자원 스케줄링을 기반으로 PSCCH(예, SCI(Sidelink Control Information) 또는 1st-stage SCI)를 제 2 단말에게 전송할 수 있다. 단계 S8020에서, 제 1 단말은 상기 PSCCH와 관련된 PSSCH(예, 2nd-stage SCI, MAC PDU, 데이터 등)를 제 2 단말에게 전송할 수 있다. 단계 S8030에서, 제 1 단말은 PSCCH/PSSCH와 관련된 PSFCH를 제 2 단말로부터 수신할 수 있다. 예를 들어, HARQ 피드백 정보(예, NACK 정보 또는 ACK 정보)가 상기 PSFCH를 통해서 상기 제 2 단말로부터 수신될 수 있다. 단계 S8040에서, 제 1 단말은 HARQ 피드백 정보를 PUCCH 또는 PUSCH를 통해서 기지국에게 전송/보고할 수 있다. 예를 들어, 상기 기지국에게 보고되는 HARQ 피드백 정보는, 상기 제 1 단말이 상기 제 2 단말로부터 수신한 HARQ 피드백 정보를 기반으로 생성(generate)하는 정보일 수 있다. 예를 들어, 상기 기지국에게 보고되는 HARQ 피드백 정보는, 상기 제 1 단말이 사전에 설정된 규칙을 기반으로 생성(generate)하는 정보일 수 있다. 예를 들어, 상기 DCI는 SL의 스케줄링을 위한 DCI일 수 있다. 예를 들어, 상기 DCI의 포맷은 DCI 포맷 3_0 또는 DCI 포맷 3_1일 수 있다. 표 7은 SL의 스케줄링을 위한 DCI의 일 예를 나타낸다.In step S8010, the first terminal may transmit a PSCCH (eg, Sidelink Control Information (SCI) or 1st-stage SCI) to the second terminal based on the resource scheduling. In step S8020, the first terminal may transmit a PSSCH (e.g., 2nd-stage SCI, MAC PDU, data, etc.) related to the PSCCH to the second terminal. In step S8030, the first terminal may receive the PSFCH related to the PSCCH/PSSCH from the second terminal. For example, HARQ feedback information (eg, NACK information or ACK information) may be received from the second terminal through the PSFCH. In step S8040, the first terminal may transmit/report HARQ feedback information to the base station through PUCCH or PUSCH. For example, the HARQ feedback information reported to the base station may be information that the first terminal generates based on HARQ feedback information received from the second terminal. For example, the HARQ feedback information reported to the base station may be information that the first terminal generates based on preset rules. For example, the DCI may be a DCI for scheduling of SL. For example, the format of the DCI may be DCI format 3_0 or DCI format 3_1. Table 7 shows an example of DCI for scheduling SL.
Figure PCTKR2023020646-appb-img-000010
Figure PCTKR2023020646-appb-img-000010
도 11의 (b)를 참조하면, LTE 전송 모드 2, LTE 전송 모드 4 또는 NR 자원 할당 모드 2에서, 단말은 기지국/네트워크에 의해 설정된 SL 자원 또는 미리 설정된 SL 자원 내에서 SL 전송 자원을 결정할 수 있다. 예를 들어, 상기 설정된 SL 자원 또는 미리 설정된 SL 자원은 자원 풀일 수 있다. 예를 들어, 단말은 자율적으로 SL 전송을 위한 자원을 선택 또는 스케줄링할 수 있다. 예를 들어, 단말은 설정된 자원 풀 내에서 자원을 스스로 선택하여, SL 통신을 수행할 수 있다. 예를 들어, 단말은 센싱(sensing) 및 자원 (재)선택 절차를 수행하여, 선택 윈도우 내에서 스스로 자원을 선택할 수 있다. 예를 들어, 상기 센싱은 서브채널 단위로 수행될 수 있다. 예를 들어, 단계 S8010에서, 자원 풀 내에서 자원을 스스로 선택한 제 1 단말은 상기 자원을 사용하여 PSCCH(예, SCI(Sidelink Control Information) 또는 1st-stage SCI)를 제 2 단말에게 전송할 수 있다. 단계 S8020에서, 제 1 단말은 상기 PSCCH와 관련된 PSSCH(예, 2nd-stage SCI, MAC PDU, 데이터 등)를 제 2 단말에게 전송할 수 있다. 단계 S8030에서, 제 1 단말은 PSCCH/PSSCH와 관련된 PSFCH를 제 2 단말로부터 수신할 수 있다. Referring to (b) of FIG. 11, in LTE transmission mode 2, LTE transmission mode 4, or NR resource allocation mode 2, the terminal can determine the SL transmission resource within the SL resource set by the base station/network or within the preset SL resource. there is. For example, the set SL resource or preset SL resource may be a resource pool. For example, the terminal can autonomously select or schedule resources for SL transmission. For example, the terminal can self-select a resource within a set resource pool and perform SL communication. For example, the terminal may perform sensing and resource (re)selection procedures to select resources on its own within the selection window. For example, the sensing may be performed on a subchannel basis. For example, in step S8010, the first terminal that has selected a resource within the resource pool may transmit a PSCCH (eg, Sidelink Control Information (SCI) or 1st-stage SCI) to the second terminal using the resource. In step S8020, the first terminal may transmit a PSSCH (e.g., 2nd-stage SCI, MAC PDU, data, etc.) related to the PSCCH to the second terminal. In step S8030, the first terminal may receive the PSFCH related to the PSCCH/PSSCH from the second terminal.
도 11의 (a) 또는 (b)를 참조하면, 예를 들어, 제 1 단말은 PSCCH 상에서 SCI를 제 2 단말에게 전송할 수 있다. 또는, 예를 들어, 제 1 단말은 PSCCH 및/또는 PSSCH 상에서 두 개의 연속적인 SCI(예, 2-stage SCI)를 제 2 단말에게 전송할 수 있다. 이 경우, 제 2 단말은 PSSCH를 제 1 단말로부터 수신하기 위해 두 개의 연속적인 SCI(예, 2-stage SCI)를 디코딩할 수 있다. 본 명세서에서, PSCCH 상에서 전송되는 SCI는 1st SCI, 제 1 SCI, 1st-stage SCI 또는 1st-stage SCI 포맷이라고 칭할 수 있고, PSSCH 상에서 전송되는 SCI는 2nd SCI, 제 2 SCI, 2nd-stage SCI 또는 2nd-stage SCI 포맷이라고 칭할 수 있다. 예를 들어, 1st-stage SCI 포맷은 SCI 포맷 1-A를 포함할 수 있고, 2nd-stage SCI 포맷은 SCI 포맷 2-A 및/또는 SCI 포맷 2-B를 포함할 수 있다. 표 8은 1st-stage SCI 포맷의 일 예를 나타낸다.Referring to (a) or (b) of FIG. 11, for example, the first terminal may transmit an SCI to the second terminal on the PSCCH. Or, for example, the first terminal may transmit two consecutive SCIs (eg, 2-stage SCI) on the PSCCH and/or PSSCH to the second terminal. In this case, the second terminal can decode two consecutive SCIs (eg, 2-stage SCI) to receive PSSCH from the first terminal. In this specification, the SCI transmitted on the PSCCH may be referred to as 1st SCI, 1st SCI, 1st-stage SCI, or 1st-stage SCI format, and the SCI transmitted on the PSSCH may be referred to as 2nd SCI, 2nd SCI, 2nd-stage SCI, or It can be called the 2nd-stage SCI format. For example, the 1st-stage SCI format may include SCI format 1-A, and the 2nd-stage SCI format may include SCI format 2-A and/or SCI format 2-B. Table 8 shows an example of the 1st-stage SCI format.
Figure PCTKR2023020646-appb-img-000011
Figure PCTKR2023020646-appb-img-000011
표 9는 2nd-stage SCI 포맷의 일 예를 나타낸다.Table 9 shows an example of the 2nd-stage SCI format.
Figure PCTKR2023020646-appb-img-000012
Figure PCTKR2023020646-appb-img-000012
도 11의 (a) 또는 (b)를 참조하면, 단계 S8030에서, 제 1 단말은 표 10을 기반으로 PSFCH를 수신할 수 있다. 예를 들어, 제 1 단말 및 제 2 단말은 표 10을 기반으로 PSFCH 자원을 결정할 수 있고, 제 2 단말은 PSFCH 자원을 사용하여 HARQ 피드백을 제 1 단말에게 전송할 수 있다.Referring to (a) or (b) of FIG. 11, in step S8030, the first terminal can receive PSFCH based on Table 10. For example, the first terminal and the second terminal may determine PSFCH resources based on Table 10, and the second terminal may transmit HARQ feedback to the first terminal using the PSFCH resource.
Figure PCTKR2023020646-appb-img-000013
Figure PCTKR2023020646-appb-img-000013
도 11의 (a)를 참조하면, 단계 S8040에서, 제 1 단말은 표 11를 기반으로, PUCCH 및/또는 PUSCH를 통해서 SL HARQ 피드백을 기지국에게 전송할 수 있다.Referring to (a) of FIG. 11, in step S8040, the first terminal may transmit SL HARQ feedback to the base station through PUCCH and/or PUSCH, based on Table 11.
Figure PCTKR2023020646-appb-img-000014
Figure PCTKR2023020646-appb-img-000014
한편, 다음 표 12는 3GPP TS 36.331에서 사이드링크 릴레이 UE의 선택 및 재선택에 관련된 개시내용이다. 표 12의 개시 내용은 본 개시의 종래 기술로써 사용되며, 관련하여 필요한 세부 사항은 3GPP TS 36.331를 참조한다.Meanwhile, Table 12 below shows disclosure related to selection and reselection of sidelink relay UE in 3GPP TS 36.331. The disclosure content in Table 12 is used as the prior art of this disclosure, and related necessary details refer to 3GPP TS 36.331.
Figure PCTKR2023020646-appb-img-000015
Figure PCTKR2023020646-appb-img-000015
도 12는 Rel-17 NR SL에 관련한 TR 문서(3GPP TR 38.836)에 capture되어 있는 connection management와 direct에서 indirect로 path switching 시 procedure를 나타낸다. 리모트 UE는 사용자 평면 데이터 전송 전에 네트워크와 자체 PDU 세션/DRB를 설정할 필요가 있다. Figure 12 shows the connection management captured in the TR document (3GPP TR 38.836) related to Rel-17 NR SL and the procedure for path switching from direct to indirect. The remote UE needs to establish its own PDU session/DRB with the network before user plane data transmission.
Rel-16 NR V2X의 PC5-RRC 측면 PC5 유니캐스트 링크 설정 절차는, 리모트 UE가 릴레이 UE를 통해 네트워크와 Uu RRC connection을 수립하기 전에, 리모트 UE가 릴레이 UE사이에 L2 UE-to-Network relaying 를 위해 secure unicast link를 설정하는데 재사용될 수 있다. The PC5-RRC aspect of Rel-16 NR V2X's PC5 unicast link setup procedure involves L2 UE-to-Network relaying between the remote UE and the relay UE before the remote UE establishes a Uu RRC connection with the network through the relay UE. It can be reused to establish a secure unicast link.
in-coverage 및 out-of-coverage 모두에 대해 리모트 UE가 gNB와의 연결 설정을 위한 첫 번째 RRC 메시지를 시작하면, 리모트 UE와 UE-to-Network Relay UE 간의 전송을 위한 PC5 L2 구성은 표준에 정의된 RLC/MAC 구성에 기초할 수 있다. 리모트 UE의 Uu SRB1/SRB2 및 DRB의 수립은 L2 UE-to-Network Relay에 대한 레거시 Uu 구성 절차를 따른다.For both in-coverage and out-of-coverage, when the remote UE initiates the first RRC message for connection establishment with the gNB, the PC5 L2 configuration for transmission between the remote UE and the UE-to-Network Relay UE is defined in the standard. It can be based on the RLC/MAC configuration. Establishment of Uu SRB1/SRB2 and DRB of remote UE follows the legacy Uu configuration procedure for L2 UE-to-Network Relay.
도 12에 도시된 상위 수준 연결 설정 절차는 L2 UE-to-Network Relay에 적용된다.The high-level connection establishment procedure shown in Figure 12 applies to L2 UE-to-Network Relay.
단계 S1200에서 Remote and Relay UE는 탐색 절차를 수행하고 기존 Rel-16 절차를 기준으로 단계 S1201에서 PC5-RRC 연결을 설정할 수 있다In step S1200, the Remote and Relay UE can perform a discovery procedure and establish a PC5-RRC connection in step S1201 based on the existing Rel-16 procedure.
단계 S1202에서 리모트 UE는 PC5의 기본 L2 구성을 사용하여 Relay UE를 통해 gNB와의 연결 설정을 위한 첫 번째 RRC 메시지(즉, RRCSetupRequest)를 전송할 수 있다. gNB는 RRCSetup 메시지로 리모트 UE에 응답(S1203)한다. 리모트 UE로의 RRCSetup 전달은 PC5의 기본 구성을 사용한다. Relay UE가 RRC_CONNECTED에서 시작되지 않았다면 PC5의 기본 L2 구성에 대한 메시지 수신 시 자체 연결 설정을 수행해야 한다. 이 단계에서 Relay UE가 리모트 UE에 대한 RRCSetupRequest/RRCSetup 메시지를 전달하기 위한 세부사항은 WI 단계에서 논의될 수 있다.In step S1202, the remote UE may transmit the first RRC message (i.e., RRCSetupRequest) for connection establishment with the gNB through the Relay UE using the basic L2 configuration of PC5. The gNB responds to the remote UE with an RRCSetup message (S1203). RRCSetup delivery to the remote UE uses the default configuration of PC5. If the Relay UE has not started in RRC_CONNECTED, it must perform its own connection setup upon receiving a message about PC5's default L2 configuration. At this stage, details for the relay UE to deliver the RRCSetupRequest/RRCSetup message to the remote UE can be discussed in the WI stage.
단계 S1204에서 gNB와 Relay UE는 Uu를 통해 릴레이 채널 설정 절차를 수행한다. gNB의 구성에 따라 Relay/Remote UE는 PC5를 통해 리모트 UE로 SRB1을 릴레이하기 위한 RLC 채널을 설정한다. 이 단계는 SRB1에 대한 릴레이 채널을 준비한다.In step S1204, gNB and Relay UE perform a relay channel setup procedure through Uu. Depending on the configuration of the gNB, the Relay/Remote UE sets up an RLC channel to relay SRB1 to the remote UE through PC5. This step prepares the relay channel for SRB1.
단계 S1205에서, 리모트 UE SRB1 메시지(예: RRCSetupComplete 메시지)는 PC5를 통해 SRB1 릴레이 채널을 사용하여 릴레이 UE를 통해 gNB로 전송된다. 그리고 리모트 UE는 Uu를 통해 RRC 연결된다.In step S1205, a remote UE SRB1 message (e.g., RRCSetupComplete message) is transmitted to the gNB via the relay UE using the SRB1 relay channel via PC5. And the remote UE is connected to RRC through Uu.
단계 S1206에서, 리모트 UE와 gNB는 레거시 절차에 따라 보안을 설정하고 보안 메시지는 Relay UE를 통해 전달된다.In step S1206, the remote UE and gNB set security according to the legacy procedure and the security message is delivered through the relay UE.
단계 S1210에서, gNB는 트래픽 릴레이를 위해 gNB와 Relay UE 사이에 추가 RLC 채널을 설정한다. gNB의 구성에 따라 Relay/Remote UE는 트래픽 릴레이를 위해 리모트 UE와 Relay UE 사이에 추가 RLC 채널을 설정한다. gNB는 릴레이 SRB2/DRB를 설정하기 위해 릴레이 UE를 통해 리모트 UE에 RRCReconfiguration을 전송한다. 리모트 UE는 RRCReconfigurationComplete를 Relay UE를 통해 gNB에 응답으로 전송한다.In step S1210, the gNB sets up an additional RLC channel between the gNB and the Relay UE for traffic relay. Depending on the configuration of the gNB, the Relay/Remote UE sets up an additional RLC channel between the Remote UE and Relay UE for traffic relay. gNB sends RRCReconfiguration to the remote UE through the relay UE to configure relay SRB2/DRB. The remote UE sends RRCReconfigurationComplete as a response to the gNB through the Relay UE.
연결 설정 절차 외에 L2 UE-to-Network 릴레이의 경우:For L2 UE-to-Network relay, in addition to the connection setup procedure:
- RRC 재구성 및 RRC 연결 해제 절차는 WI 단계에 남겨진 메시지 내용/구성 설계와 함께 레거시 RRC 절차를 재사용할 수 있다.- The RRC reconfiguration and RRC disconnection procedures can reuse legacy RRC procedures with the message content/configuration design left to the WI stage.
- RRC 연결 재설정 및 RRC 연결 재개 절차는 메시지 내용/구성 설계와 함께 릴레이 특정 부분을 처리하기 위해 위의 L2 UE-to-Network Relay의 연결 설정 절차를 고려함으로써 기존 RRC 절차를 베이스라인으로 재사용할 수 있다. 메시지 컨텐트/구성은 추후 정의될 수 있다.- RRC connection reset and RRC connection resumption procedures can reuse existing RRC procedures as a baseline by considering the connection establishment procedure of the above L2 UE-to-Network Relay to handle relay-specific parts along with message content/configuration design. there is. Message content/configuration may be defined later.
도 13은 direct to indirect path 전환을 예시한다. L2 UE-to-Network Relay의 서비스 연속성을 위해 리모트 UE가 indirect Relay UE로 전환하는 경우 도 13의 절차가 사용될 수 있다.Figure 13 illustrates direct to indirect path conversion. For service continuity of L2 UE-to-Network Relay, the procedure in FIG. 13 can be used when a remote UE switches to an indirect relay UE.
도 13을 참조하면, 단계 S1301에서 리모트 UE는 후보 릴레이 UE를 측정/발견한 후 리모트 UE가 하나 또는 여러 개의 후보 릴레이 UE를 보고한다. 리모트 UE는 보고할 때 상위 계층 기준을 충족하는 적절한 릴레이 UE를 필터링할 수 있다. 보고에는 릴레이 UE의 ID 및 SL RSRP 정보가 포함될 수 있으며, 여기서 PC5 측정 관련 세부사항은 추후 결정될 수 있다. Referring to FIG. 13, in step S1301, the remote UE measures/discovers a candidate relay UE and then reports one or several candidate relay UEs. Remote UEs can filter out appropriate relay UEs that meet higher layer criteria when reporting. The report may include the relay UE's ID and SL RSRP information, where details regarding PC5 measurements may be determined later.
단계 S1302에서, gNB가 타겟 릴레이 UE로 전환하기로 결정하고 타겟 (재)구성((re)configuration)은 선택적으로 릴레이 UE로 전송된다.In step S1302, the gNB decides to switch to the target relay UE and the target (re)configuration is optionally sent to the relay UE.
단계 S1304에서, 리모트 UE에 대한 RRC 재구성 메시지는 타겟 릴레이 UE의 ID, 타겟 Uu 및 PC5 구성을 포함할 수 있다.In step S1304, the RRC reconfiguration message for the remote UE may include the ID of the target relay UE, target Uu, and PC5 configuration.
단계 S1305에서, 연결이 아직 설정되지 않은 경우 리모트 UE는 타겟 릴레이 UE와 PC5 연결을 설정한다.In step S1305, the remote UE establishes a PC5 connection with the target relay UE if the connection has not yet been established.
단계 S1306에서, 리모트 UE는 RRCReconfiguration에서 제공된 타겟 구성을 사용하여 대상 경로를 통해 gNB에 RRCReconfigurationComplete를 피드백한다.In step S1306, the remote UE feeds back RRCReconfigurationComplete to the gNB via the target path using the target configuration provided in RRCReconfiguration.
단계 S1307에서, 데이터 경로가 전환된다.In step S1307, the data path is switched.
표 13 내지 표 16은 UE-to-UE Relay Selection에 관련된 3GPP technical Report로써, 본 개시 내용의 종래기술로써 사용된다. 표 14에서 Fig. 14, 표 16에서 Fig. 15는 각각 도 14, 도 15에 해당한다.Tables 13 to 16 are 3GPP technical reports related to UE-to-UE Relay Selection and are used as prior art in the present disclosure. In Table 14, Fig. 14, Fig. 16 in Table 16. 15 corresponds to Figures 14 and 15, respectively.
6.8 Solution #8: UE-to-UE Relay Selection Without Relay Discovery
6.8.1 Description
When a source UE wants to communicate with a target UE, it will first try to find the target UE by either sending a Direct Communication Request or a Solicitation message with the target UE info. If the source UE cannot reach the target UE directly, it will try to discover a UE-to-UE relay to reach the target UE which may also trigger the relay to discover the target UE. To be more efficient, this solution tries to integrate target UE discovery and UE-to-UE relay discovery and selection together, including two alternatives:
- Alternative 1: UE-to-UE relay discovery and selection can be integrated into the unicast link establishment procedure as described in clause 6.3.3 of TS 23.287 [5].
- Alternative 2: UE-to-UE relay discovery and selection is integrated into Model B direct discovery procedure.
A new field is proposed to be added in the Direct Communication Request or the Solicitation message to indicate whether relays can be used in the communication. The field can be called relay_indication. When a UE wants to broadcast a Direct Communication Request or a Solicitation message, it indicates in the message whether a UE-to-UE relay could be used. For Release 17, it is assumed that the value of the indication is restricted to single hop.
When a UE-to-UE relay receives a Direct Communication Request or a Solicitation message with the relay_indication set, then it shall decide whether to forward the message (i.e. modify the message and broadcast it in its proximity), according to e.g. Relay Service Code if there is any, Application ID, authorization policy (e.g. relay for specific ProSe Service), the current traffic load of the relay, the radio conditions between the source UE and the relay UE, etc.
It may exist a situation where multiple UE-to-UE relays can be used to reach the target UE or the target UE may also directly receive the Direct Communication Request or Solicitation message from the source UE. The target UE may choose which one to reply according to e.g. signal strength, local policy (e.g. traffic load of the UE-to-UE relays), Relay Service Code if there is any or operator policies (e.g. always prefer direct communication or only use some specific UE-to-UE relays).
The source UE may receive the responses from multiple UE-to-UE relays and may also from the target UE directly, the source UE chooses the communication path according to e.g. signal strength or operator policies (e.g. always prefer direct communication or only use some specific UE-to-UE relays).
6.8 Solution #8: UE-to-UE Relay Selection Without Relay Discovery
6.8.1 Description
When a source UE wants to communicate with a target UE, it will first try to find the target UE by either sending a Direct Communication Request or a Solicitation message with the target UE info. If the source UE cannot reach the target UE directly, it will try to discover a UE-to-UE relay to reach the target UE which may also trigger the relay to discover the target UE. To be more efficient, this solution tries to integrate target UE discovery and UE-to-UE relay discovery and selection together, including two alternatives:
- Alternative 1: UE-to-UE relay discovery and selection can be integrated into the unicast link establishment procedure as described in clause 6.3.3 of TS 23.287 [5].
- Alternative 2: UE-to-UE relay discovery and selection is integrated into Model B direct discovery procedure.
A new field is proposed to be added in the Direct Communication Request or the Solicitation message to indicate whether relays can be used in the communication. The field can be called relay_indication. When a UE wants to broadcast a Direct Communication Request or a Solicitation message, it indicates in the message whether a UE-to-UE relay could be used. For Release 17, it is assumed that the value of the indication is restricted to single hop.
When a UE-to-UE relay receives a Direct Communication Request or a Solicitation message with the relay_indication set, then it shall decide whether to forward the message (ie modify the message and broadcast it in its proximity), according to eg Relay Service Code if there is any, Application ID, authorization policy (eg relay for specific ProSe Service), the current traffic load of the relay, the radio conditions between the source UE and the relay UE, etc.
It may exist a situation where multiple UE-to-UE relays can be used to reach the target UE or the target UE may also directly receive the Direct Communication Request or Solicitation message from the source UE. The target UE may choose which one to reply according to eg signal strength, local policy (eg traffic load of the UE-to-UE relays), Relay Service Code if there is any or operator policies (eg always prefer direct communication or only use some specific UE-to-UE relays).
The source UE may receive the responses from multiple UE-to-UE relays and may also from the target UE directly, the source UE chooses the communication path according to eg signal strength or operator policies (eg always prefer direct communication or only use some specific UE-to-UE relays).
6.8.2 Procedures
6.8.2.1 UE-to-UE relay discovery and selection is integrated into the unicast link establishment procedure (Alternative 1)
Fig 14 illustrates the procedure of the proposed method.
0. UEs are authorized to use the service provided by the UE-to-UE relays. UE-to-UE relays are authorized to provide service of relaying traffic among UEs. The authorization and the parameter provisioning can use solutions for KI#8, e.g. Sol#36. The authorization can be done when UEs/relays are registered to the network. Security related parameters may be provisioned so that a UE and a relay can verify the authorization with each other if needed.
1. UE-1 wants to establish unicast communication with UE-2 and the communication can be either through direct link with UE-2 or via a UE-to-UE relay. Then UE-1 broadcasts Direct Communication Request with relay_indication enabled. The message will be received by relay-1, relay-2. The message may also be received by UE-2 if it is in the proximity of UE-1. UE-1 includes source UE info, target UE info, Application ID, as well as Relay Service Code if there is any. If UE-1 does not want relay to be involved in the communication, then it will made relay_indication disabled.
NOTE 1: The data type of relay_indication can be determined in Stage 3. Details of Direct Communication Request/Accept messages will be determined in stage 3.
2. Relay-1 and relay-2 decide to participate in the procedure. They broadcast a new Direct Communication Request message in their proximity without relay_indication enabled. If a relay receives this message, it will just drop it. When a relay broadcasts the Direct Communication Request message, it includes source UE info, target UE info and Relay UE info (e.g. Relay UE ID) in the message and use Relay's L2 address as the source Layer-2 ID. The Relay maintains association between the source UE information (e.g. source UE L2 ID) and the new Direct Communication Request.
3. UE-2 receives the Direct Communication Requests from relay-1 and relay-2. UE-2 may also receive Direct Communication Request message directly from the UE-1 if the UE-2 is in the communication range of UE-1.
4. UE-2 chooses relay-1 and replies with Direct Communication Accept message. If UE-2 directly receives the Direct Communication Request from UE-1, it may choose to setup a direct communication link by sending the Direct Communication Accept message directly to UE-1. After receiving Direct Communication Accept, a UE-to-UE relay retrieves the source UE information stored in step 2 and sends the Direct Communication Accept message to the source UE with its Relay UE info added in the message.
6.8.2 Procedures
6.8.2.1 UE-to-UE relay discovery and selection is integrated into the unicast link establishment procedure (Alternative 1)
Fig 14 illustrates the procedure of the proposed method.
0. UEs are authorized to use the service provided by the UE-to-UE relays. UE-to-UE relays are authorized to provide service of relaying traffic among UEs. The authorization and the parameter provisioning can use solutions for KI#8, eg Sol#36. The authorization can be done when UEs/relays are registered to the network. Security related parameters may be provisioned so that a UE and a relay can verify the authorization with each other if needed.
1. UE-1 wants to establish unicast communication with UE-2 and the communication can be either through direct link with UE-2 or via a UE-to-UE relay. Then UE-1 broadcasts Direct Communication Request with relay_indication enabled. The message will be received by relay-1, relay-2. The message may also be received by UE-2 if it is in the proximity of UE-1. UE-1 includes source UE info, target UE info, Application ID, as well as Relay Service Code if there is any. If UE-1 does not want relay to be involved in the communication, then it will made relay_indication disabled.
NOTE 1: The data type of relay_indication can be determined in Stage 3. Details of Direct Communication Request/Accept messages will be determined in stage 3.
2. Relay-1 and relay-2 decide to participate in the procedure. They broadcast a new Direct Communication Request message in their proximity without relay_indication enabled. If a relay receives this message, it will just drop it. When a relay broadcasts the Direct Communication Request message, it includes source UE info, target UE info and Relay UE info (eg Relay UE ID) in the message and use Relay's L2 address as the source Layer-2 ID. The Relay maintains association between the source UE information (eg source UE L2 ID) and the new Direct Communication Request.
3. UE-2 receives the Direct Communication Requests from relay-1 and relay-2. UE-2 may also receive Direct Communication Request message directly from the UE-1 if the UE-2 is in the communication range of UE-1.
4. UE-2 chooses relay-1 and replies with Direct Communication Accept message. If UE-2 directly receives the Direct Communication Request from UE-1, it may choose to setup a direct communication link by sending the Direct Communication Accept message directly to UE-1. After receiving Direct Communication Accept, a UE-to-UE relay retrieves the source UE information stored in step 2 and sends the Direct Communication Accept message to the source UE with its Relay UE info added in the message.
After step 4, UE-1 and UE-2 have respectively setup the PC5 links with the chosen UE-to-UE relay.
NOTE 2: The security establishment between the UE1 and Relay-1, and between Relay-1 and UE-2 are performed before the Relay-1 and UE-2 send Direct Communication Accept message. Details of the authentication/ security establishment procedure are determined by SA WG3. The security establishment procedure can be skipped if there already exists a PC5 link between the source (or target) UE and the relay which can be used for relaying the traffic.
5. UE-1 receives the Direct Communication Accept message from relay-1. UE-1 chooses path according to e.g. policies (e.g. always choose direct path if it is possible), signal strength, etc. If UE-1 receives Direct Communication Accept / Response message request accept directly from UE-2, it may choose to setup a direct PC5 L2 link with UE-2 as described in clause 6.3.3 of TS 23.287 [5], then step 6 is skipped.
6a. For the L3 UE-to-UE Relay case, UE-1 and UE-2 finish setting up the communication link via the chosen UE-to-UE relay. The link setup information may vary depending on the type of relay, e.g. L2 or L3 relaying. Then UE-1 and UE-2 can communicate via the relay. Regarding IP address allocation for the source/remote UE, the addresses can be either assigned by the relay or by the UE itself (e.g. link-local IP address) as defined in clause 6.3.3 of TS 23.287 [5].
6b. For the Layer 2 UE-to-UE Relay case, the source and target UE can setup an end-to-end PC5 link via the relay. UE-1 sends a unicast E2E Direct Communication Request message to UE-2 via the Relay-1, and UE-2 responds with a unicast E2E Direct Communication Accept message to UE-1 via the Relay-1. Relay-1 transfers the messages based on the identity information of UE-1/UE-2 in the Adaptation Layer.
NOTE 3: How Relay-1 can transfer the messages based on the identity information of UE-1/UE-2 in the Adaptation Layer requires cooperation with RAN2 during the normative phase.
NOTE 4: In order to make a relay or path selection, the source UE can setup a timer after sending out the Direct Communication Request for collecting the corresponding response messages before making a decision. Similarly, the target UE can also setup a timer after receiving the first copy of the Direct Communication Request / message for collecting multiple copies of the message from different paths before making a decision.
NOTE 5: In the first time when a UE receives a message from a UE-to-UE relay, the UE needs to verify if the relay is authorized be a UE-to-UE relay. Similarly, the UE-to-UE relay may also need to verify if the UE is authorized to use the relay service. The verification details and the how to secure the communication between two UEs through a UE-to-UE relay is to be defined by SA WG3.

After step 4, UE-1 and UE-2 have respectively setup the PC5 links with the chosen UE-to-UE relay.
NOTE 2: The security establishment between the UE1 and Relay-1, and between Relay-1 and UE-2 are performed before the Relay-1 and UE-2 send Direct Communication Accept message. Details of the authentication/security establishment procedure are determined by SA WG3. The security establishment procedure can be skipped if there already exists a PC5 link between the source (or target) UE and the relay which can be used for relaying the traffic.
5. UE-1 receives the Direct Communication Accept message from relay-1. UE-1 chooses path according to eg policies (eg always choose direct path if it is possible), signal strength, etc. If UE-1 receives Direct Communication Accept / Response message request accept directly from UE-2, it may choose to setup a direct PC5 L2 link with UE-2 as described in clause 6.3.3 of TS 23.287 [5], then step 6 is skipped.
6a. For the L3 UE-to-UE Relay case, UE-1 and UE-2 finish setting up the communication link via the chosen UE-to-UE relay. The link setup information may vary depending on the type of relay, eg L2 or L3 relaying. Then UE-1 and UE-2 can communicate via the relay. Regarding IP address allocation for the source/remote UE, the addresses can be either assigned by the relay or by the UE itself (eg link-local IP address) as defined in clause 6.3.3 of TS 23.287 [5].
6b. For the Layer 2 UE-to-UE Relay case, the source and target UE can setup an end-to-end PC5 link via the relay. UE-1 sends a unicast E2E Direct Communication Request message to UE-2 via the Relay-1, and UE-2 responds with a unicast E2E Direct Communication Accept message to UE-1 via the Relay-1. Relay-1 transfers the messages based on the identity information of UE-1/UE-2 in the Adaptation Layer.
NOTE 3: How Relay-1 can transfer the messages based on the identity information of UE-1/UE-2 in the Adaptation Layer requires cooperation with RAN2 during the normative phase.
NOTE 4: In order to make a relay or path selection, the source UE can setup a timer after sending out the Direct Communication Request for collecting the corresponding response messages before making a decision. Similarly, the target UE can also setup a timer after receiving the first copy of the Direct Communication Request / message for collecting multiple copies of the message from different paths before making a decision.
NOTE 5: In the first time when a UE receives a message from a UE-to-UE relay, the UE needs to verify if the relay is authorized to be a UE-to-UE relay. Similarly, the UE-to-UE relay may also need to verify if the UE is authorized to use the relay service. The verification details and the how to secure the communication between two UEs through a UE-to-UE relay is to be defined by SA WG3.

6.8.2.2 UE-to-UE relay discovery and selection is integrated into Model B direct discovery procedure (Alternative 2)
Depicted in Fig 15 is the procedure for UE-UE Relay discovery Model B, and the discovery/selection procedure is separated from hop by hop and end-to-end link establishment.
1. UE-1 broadcasts discovery solicitation message carrying UE-1 info, target UE info (UE-2), Application ID, Relay Service Code if any, the UE-1 can also indicate relay_indication enabled.
2. On reception of discovery solicitation, the candidate Relay UE-R broadcasts discovery solicitation carrying UE-1 info, UE-R info, Target UE info. The Relay UE-R uses Relay's L2 address as the source Layer-2 ID.
3. The target UE-2 responds the discovery message. If the UE-2 receives discovery solicitation message in step 1, then UE-2 responds discovery response in step 3b with UE-1 info, UE-2 info. If not and UE-2 receives discovery solicitation in step 2, then UE-2 responds discovery response message in step 3a with UE-1 info, UE-R info, UE-2 info.
4. On reception of discovery response in step 3a, UE-R sends discovery response with UE-1 info, UE-R info, UE-2 info. If more than one candidate Relay UEs responding discovery response message, UE-1 can select one Relay UE based on e.g. implementation or link qualification.
5. The source and target UE may need to setup PC5 links with the relay before communicating with each other. Step 5a can be skipped if there already exists a PC5 link between the UE-1 and UE-R which can be used for relaying. Step 5b can be skipped if there already exists a PC5 link between the UE-2 and UE-R which can be used for relaying.
6a. Same as step 6a described in clause 6.8.2.1.
6b. For the Layer-2 UE-to-UE Relay, the E2E unicast Direct Communication Request message is sent from UE1 to the selected Relay via the per-hop link (established in steps 5a) and the Adaptation layer info identifying the peer UE (UE3) as the destination. The UE-to-UE Relay transfers the E2E messages based on the identity information of peer UE in the Adaptation Layer. The initiator (UE1) knows the Adaptation layer info identifying the peer UE (UE3) after a discovery procedure. UE3 responds with E2E unicast Direct Communication Accept message in the same way.
NOTE 1: For the Layer 2 UE-to-UE Relay case, whether step5b is performed before step 6b or triggered during step 6b will be decided at normative phase.
NOTE 2: How Relay-1 can transfer the messages based on the identity information of UE-1/UE-2 in the Adaptation Layer requires cooperation with RAN2 during the normative phase.

6.8.3 Impacts on services, entities and interfaces
UE impacts to support new Relay related functions.
6.8.2.2 UE-to-UE relay discovery and selection is integrated into Model B direct discovery procedure (Alternative 2)
Depicted in Fig 15 is the procedure for UE-UE Relay discovery Model B, and the discovery/selection procedure is separated from hop by hop and end-to-end link establishment.
1. UE-1 broadcasts discovery solicitation message carrying UE-1 info, target UE info (UE-2), Application ID, Relay Service Code if any, the UE-1 can also indicate relay_indication enabled.
2. On reception of discovery solicitation, the candidate Relay UE-R broadcasts discovery solicitation carrying UE-1 info, UE-R info, Target UE info. The Relay UE-R uses Relay's L2 address as the source Layer-2 ID.
3. The target UE-2 responds the discovery message. If the UE-2 receives discovery solicitation message in step 1, then UE-2 responds discovery response in step 3b with UE-1 info, UE-2 info. If not and UE-2 receives discovery solicitation in step 2, then UE-2 responds discovery response message in step 3a with UE-1 info, UE-R info, UE-2 info.
4. On reception of discovery response in step 3a, UE-R sends discovery response with UE-1 info, UE-R info, UE-2 info. If more than one candidate Relay UEs responding discovery response message, UE-1 can select one Relay UE based on eg implementation or link qualification.
5. The source and target UE may need to setup PC5 links with the relay before communicating with each other. Step 5a can be skipped if there already exists a PC5 link between the UE-1 and UE-R which can be used for relaying. Step 5b can be skipped if there already exists a PC5 link between the UE-2 and UE-R which can be used for relaying.
6a. Same as step 6a described in clause 6.8.2.1.
6b. For the Layer-2 UE-to-UE Relay, the E2E unicast Direct Communication Request message is sent from UE1 to the selected Relay via the per-hop link (established in steps 5a) and the Adaptation layer info identifying the peer UE (UE3 ) as the destination. The UE-to-UE Relay transfers the E2E messages based on the identity information of peer UE in the Adaptation Layer. The initiator (UE1) knows the Adaptation layer info identifying the peer UE (UE3) after a discovery procedure. UE3 responds with E2E unicast Direct Communication Accept message in the same way.
NOTE 1: For the Layer 2 UE-to-UE Relay case, whether step5b is performed before step 6b or triggered during step 6b will be decided at normative phase.
NOTE 2: How Relay-1 can transfer the messages based on the identity information of UE-1/UE-2 in the Adaptation Layer requires cooperation with RAN2 during the normative phase.

6.8.3 Impacts on services, entities and interfaces
UE impacts to support new Relay related functions.
표 17은 Layer-2 UE-to-UE Relaying 에 관련된 3GPP 23.700-33 문서로써, 본 개시 내용의 종래기술로써 사용된다. 표 17에서 Figure 6.30.2.1.1-1, Figure 6.30.2.1.2-1, Figure 6.30.2.1.2-1는 각각 도 17, 도 18, 도 19에 해당한다.Table 17 is a 3GPP 23.700-33 document related to Layer-2 UE-to-UE Relaying and is used as prior art for the present disclosure. In Table 17, Figure 6.30.2.1.1-1, Figure 6.30.2.1.2-1, and Figure 6.30.2.1.2-1 correspond to Figures 17, 18, and 19, respectively.
6.30 Solution #30: Layer-2 UE-to-UE Relaying
6.30.1 Description
The solution applies to Key Issue #1 "Support of UE-to-UE Relay", and is used for Layer-2 UE-to-UE Relay.
The solution proposes the procedure of Layer-2 UE-to-UE Relay discovery and connection establishment.
6.30.2 Procedures
6.30.2.1 Procedures for UE-to-UE Relay discovery
6.30.2.1.1 Procedure for UE-to-UE Relay discovery with Model A
Depicted in figure 6.30.2.1.1-1 is the procedure for UE-to-UE Relay discovery with Model A.
1. The UE-to-UE Relay has discovered other UEs in proximity via the direct discovery or direct communication procedures.
2. The UE-to-UE Relay sends an Announcement message. The Announcement message may include the Type of Discovery Message, User Info ID of the UE-to-UE Relay, RSC, and User Info ID of the proximity UEs.
The Source Layer-2 ID of the Announcement message is self-assigned by the UE-to-UE Relay, and the Destination Layer-2 ID is selected based on the ProSe policy.
6.30.2.1.2 Procedure for UE-to-UE Relay discovery with Model B
Depicted in figure 6.30.2.1.2-1 is the procedure for UE-to-UE Relay discovery with Model B.
1. The Source UE broadcasts a Solicitation message. The Solicitation message may include the Type of Discovery Message, User Info ID of Source UE, User Info ID of Target UE, and RSC.
The Source Layer-2 ID of the Announcement message is self-assigned by the Source UE, and the Destination Layer-2 ID is selected based on the ProSe policy.
2. On reception of the Solicitation message, a candidate UE-to-UE Relay (e.g., UE-to-UE Relay 1 and UE-to-UE Relay 2) broadcasts a Solicitation message carrying the User Info ID of Source UE, User Info ID of Target UE, User Info ID of the UE-to-UE Relay, and the RSC.
The Source Layer-2 ID of the Announcement message is self-assigned by the candidate UE-to-UE Relay, and the Destination Layer-2 ID is selected based on the ProSe policy.
3. The Target UE chooses UE-to-UE Relay 1 from the candidate UE-to-UE Relays based on, e.g. signal strength. The Target UE responds to UE-to-UE Relay 1.
4. UE-to-UE Relay 1 responds to the Source UE.
6.30.2.2 Procedures for Layer-2 UE-to-UE Relay connection establishment
Depicted in figure 6.30.2.2-1 is the procedure for Layer-2 UE-to-UE Relay connection establishment.
1. Service authorisation and policy provisioning is performed for the Source UE, Target UE and UE-to-UE Relay as described in the solutions for KI#6.
2. UE-to-UE Relay discovery is performed as described in clause 6.30.2.1.
3. The Source UE and Target UE may need to setup or modify the PC5 link with UE-to-UE Relay.
If there is no PC5 link between the Source UE and the UE-to-UE Relay that can be used for relaying, e.g. based on RSC, then a new PC5 link needs to be setup in step 3a by the Source UE, otherwise the existing link can be modified by the Source UE to support communication between the Source and Target UEs. User Info ID of Target UE is included in the Direct Communication Request message or Link Modification Request message. The Target User Info for the Target UE is obtained from the discovery procedure performed in step 2.
If there is no PC5 link between the UE-to-UE Relay and the Target UE that can be used for relaying, e.g. based on RSC, then a new PC5 link needs to be setup in step 3b by the UE-to-UE Relay, otherwise the existing link can be modified by the UE-to-UE Relay to support communication between the Source and Target UEs.
If a new PC5 link needs to be setup in either step 3a or step 3b the destination Layer-2 ID may be broadcast or unicast Layer-2 ID and the Source Layer-2 ID is self-assigned by the Source UE or the UE-to-UE Relay. When a unicast destination Layer-2 ID is used, it is obtained during the discovery procedure performed in step 2.
NOTE 1: RAN coordination on support of per-hop PC5 link sharing between the Source UE and UE-to-UE Relay, and UE-to-UE Relay and Target UE is needed.
4. The Source UE sends a Direct Communication Request message to initiate the unicast Layer-2 link establishment procedure with the Target UE. The Direct Communication Request message includes User Info ID of Source UE, User Info ID of Target UE, QoS Info (PFI and PC5 QoS parameters) and RSC.
The Direct Communication Request message is sent over the PC5 link with the UE-to-UE Relay. The Source Layer-2 ID and the Destination Layer-2 ID of the PC5 link setup or modified in step 3a are used.
The UE-to-UE Relay forwards the Direct Communication Request message towards the Target UE, and the Direct Communication Request message is sent over the PC5 link with the Target UE. The Source Layer-2 ID and the Destination Layer-2 ID of the PC5 link setup or modified in step 3b are used.
5. The Target UE triggers the security procedure with Source UE.
6. The Target UE sends a Direct Communication Accept message to the Source UE. The Direct Communication Accept message includes User Info ID of Source UE, User Info ID of Target UE, QoS Info (PFI and PC5 QoS parameters) and RSC.
NOTE 2: RAN WGs will define how the E2E QoS will be handled and split over the PC5 links.
7. The end-to-end QoS flow is established between Source UE and Target UE. The data is transferred between the Source UE and the Target UE via the UE-to-UE Relay.
Editor's note: How the PC5-S messages in steps 4-6 and the data in step 7 are forwarded by the UE-to-UE Relay is to be determined by RAN2, such as based on an Adaptation layer.
6.30 Solution #30: Layer-2 UE-to-UE Relaying
6.30.1 Description
The solution applies to Key Issue #1 "Support of UE-to-UE Relay", and is used for Layer-2 UE-to-UE Relay.
The solution proposes the procedure of Layer-2 UE-to-UE Relay discovery and connection establishment.
6.30.2 Procedures
6.30.2.1 Procedures for UE-to-UE Relay discovery
6.30.2.1.1 Procedure for UE-to-UE Relay discovery with Model A
Depicted in figure 6.30.2.1.1-1 is the procedure for UE-to-UE Relay discovery with Model A.
1. The UE-to-UE Relay has discovered other UEs in proximity via the direct discovery or direct communication procedures.
2. The UE-to-UE Relay sends an Announcement message. The Announcement message may include the Type of Discovery Message, User Info ID of the UE-to-UE Relay, RSC, and User Info ID of the proximity UEs.
The Source Layer-2 ID of the Announcement message is self-assigned by the UE-to-UE Relay, and the Destination Layer-2 ID is selected based on the ProSe policy.
6.30.2.1.2 Procedure for UE-to-UE Relay discovery with Model B
Depicted in figure 6.30.2.1.2-1 is the procedure for UE-to-UE Relay discovery with Model B.
1. The Source UE broadcasts a Solicitation message. The Solicitation message may include the Type of Discovery Message, User Info ID of Source UE, User Info ID of Target UE, and RSC.
The Source Layer-2 ID of the Announcement message is self-assigned by the Source UE, and the Destination Layer-2 ID is selected based on the ProSe policy.
2. On reception of the Solicitation message, a candidate UE-to-UE Relay (eg, UE-to-UE Relay 1 and UE-to-UE Relay 2) broadcasts a Solicitation message carrying the User Info ID of Source UE, User Info ID of Target UE, User Info ID of the UE-to-UE Relay, and the RSC.
The Source Layer-2 ID of the Announcement message is self-assigned by the candidate UE-to-UE Relay, and the Destination Layer-2 ID is selected based on the ProSe policy.
3. The Target UE chooses UE-to-UE Relay 1 from the candidate UE-to-UE Relays based on, eg signal strength. The Target UE responds to UE-to-UE Relay 1.
4. UE-to-UE Relay 1 responds to the Source UE.
6.30.2.2 Procedures for Layer-2 UE-to-UE Relay connection establishment
Depicted in figure 6.30.2.2-1 is the procedure for Layer-2 UE-to-UE Relay connection establishment.
1. Service authorisation and policy provisioning is performed for the Source UE, Target UE and UE-to-UE Relay as described in the solutions for KI#6.
2. UE-to-UE Relay discovery is performed as described in clause 6.30.2.1.
3. The Source UE and Target UE may need to setup or modify the PC5 link with UE-to-UE Relay.
If there is no PC5 link between the Source UE and the UE-to-UE Relay that can be used for relaying, eg based on RSC, then a new PC5 link needs to be setup in step 3a by the Source UE, otherwise the existing link can be modified by the Source UE to support communication between the Source and Target UEs. User Info ID of Target UE is included in the Direct Communication Request message or Link Modification Request message. The Target User Info for the Target UE is obtained from the discovery procedure performed in step 2.
If there is no PC5 link between the UE-to-UE Relay and the Target UE that can be used for relaying, eg based on RSC, then a new PC5 link needs to be setup in step 3b by the UE-to-UE Relay , otherwise the existing link can be modified by the UE-to-UE Relay to support communication between the Source and Target UEs.
If a new PC5 link needs to be setup in either step 3a or step 3b the destination Layer-2 ID may be broadcast or unicast Layer-2 ID and the Source Layer-2 ID is self-assigned by the Source UE or the UE- to-UE Relay. When a unicast destination Layer-2 ID is used, it is obtained during the discovery procedure performed in step 2.
NOTE 1: RAN coordination on support of per-hop PC5 link sharing between the Source UE and UE-to-UE Relay, and UE-to-UE Relay and Target UE is needed.
4. The Source UE sends a Direct Communication Request message to initiate the unicast Layer-2 link establishment procedure with the Target UE. The Direct Communication Request message includes User Info ID of Source UE, User Info ID of Target UE, QoS Info (PFI and PC5 QoS parameters) and RSC.
The Direct Communication Request message is sent over the PC5 link with the UE-to-UE Relay. The Source Layer-2 ID and the Destination Layer-2 ID of the PC5 link setup or modified in step 3a are used.
The UE-to-UE Relay forwards the Direct Communication Request message towards the Target UE, and the Direct Communication Request message is sent over the PC5 link with the Target UE. The Source Layer-2 ID and the Destination Layer-2 ID of the PC5 link setup or modified in step 3b are used.
5. The Target UE triggers the security procedure with Source UE.
6. The Target UE sends a Direct Communication Accept message to the Source UE. The Direct Communication Accept message includes User Info ID of Source UE, User Info ID of Target UE, QoS Info (PFI and PC5 QoS parameters) and RSC.
NOTE 2: RAN WGs will define how the E2E QoS will be handled and split over the PC5 links.
7. The end-to-end QoS flow is established between Source UE and Target UE. The data is transferred between the Source UE and the Target UE via the UE-to-UE Relay.
Editor's note: How the PC5-S messages in steps 4-6 and the data in step 7 are forwarded by the UE-to-UE Relay is to be determined by RAN2, such as based on an Adaptation layer.
다음 표 18은 ‘New Rel-18 WID on NR sidelink relay enhancements’로써 본 개시의 종래 기술에 해당한다.The following Table 18 is ‘New Rel-18 WID on NR sidelink relay enhancements’ and corresponds to the prior art of this disclosure.
1. Specify mechanisms to support single-hop Layer-2 and Layer-3 UE-to-UE relay (i.e., source UE -> relay UE -> destination UE) for unicast [RAN2, RAN3, RAN4].
A. Common part for Layer-2 and Layer-3 relay to be prioritized until RAN#98
i. Relay discovery and (re)selection [RAN2, RAN4]
ii. Signalling support for Relay and remote UE authorization if SA2 concludes it is needed [RAN3]
B. Layer-2 relay specific part
i. UE-to-UE relay adaptation layer design [RAN2]
ii. Control plane procedures [RAN2]
iii. QoS handling if needed, subject to SA2 progress [RAN2]
Note 1A: This work should take into account the forward compatibility for supporting more than one hop in a later release.
Note 1B: A remote UE is connected to only a single relay UE at a given time for a given destination UE.
1. Specify mechanisms to support single-hop Layer-2 and Layer-3 UE-to-UE relay (ie, source UE -> relay UE -> destination UE) for unicast [RAN2, RAN3, RAN4].
A. Common part for Layer-2 and Layer-3 relay to be prioritized until RAN#98
i. Relay discovery and (re)selection [RAN2, RAN4]
ii. Signalling support for Relay and remote UE authorization if SA2 concludes it is needed [RAN3]
B. Layer-2 relay specific part
i. UE-to-UE relay adaptation layer design [RAN2]
ii. Control plane procedures [RAN2]
iii. QoS handling if needed, subject to SA2 progress [RAN2]
Note 1A: This work should take into account the forward compatibility for supporting more than one hop in a later release.
Note 1B: A remote UE is connected to only a single relay UE at a given time for a given destination UE.
다음 표 19 내지 21은 QoS handling에 대한 3GPP 23.287 문서로써, 본 개시 내용의 종래기술로써 사용된다. 표 19 내지 21에서 Figure 5.4.1.1.1-1은 도 19, Figure 5.4.1.1.3-1은 도 20에 해당한다.The following Tables 19 to 21 are 3GPP 23.287 documents for QoS handling and are used as prior art for this disclosure. In Tables 19 to 21, Figure 5.4.1.1.1-1 corresponds to Figure 19, and Figure 5.4.1.1.3-1 corresponds to Figure 20.
5.4 QoS handling for V2X communication
5.4.1 QoS handling for V2X communication over PC5 reference point
5.4.1.1 QoS model
5.4.1.1.1 General overview
For LTE based PC5, the QoS handling is defined in TS 23.285 [8], based on ProSe Per-Packet Priority (PPPP) and ProSe Per-Packet Reliability (PPPR).
For NR based PC5, a QoS model similar to that defined in TS 23.501 [6] for Uu reference point is used, i.e. based on 5QIs, with additional parameter of Range as described in clauses 5.4.2, 5.4.3 and 5.4.4. For the V2X communication over NR based PC5 reference point, a PC5 QoS Flow is associated with a PC5 QoS Rule and the PC5 QoS parameters as defined in clause 5.4.2. A set of standardized PC5 5QIs (PQI) are defined in clause 5.4.4. The UE may be configured with a set of default PC5 QoS parameters to use for the V2X service types, as defined in clause 5.1.2.1. For NR based unicast, groupcast and broadcast mode communication over PC5, Per-flow QoS model for PC5 QoS management shall be applied. Figure 5.4.1.1.1-1 illustrates an example mapping of Per-flow QoS model for NR PC5. Details of PC5 QoS Rules and PFI related operations are described in clauses 5.4.1.1.2 and 5.4.1.1.3.
The following principles apply when the V2X communication is carried over PC5 reference point:
- Application layer may set the V2X Application Requirements for the V2X communication, using either TS 23.285 [8] defined PPPP and PPPR model or the PQI and Range model as described in clause 5.4.4. Depending on the type of PC5 reference point, i.e. LTE based or NR based, selected for the transmission, the UE may map the application layer provided V2X Application Requirements to the suitable QoS parameters to be passed to the lower layer. The mapping between the two QoS models is defined in clause 5.4.2. For V2X communication over NR based PC5, different V2X packets may require different QoS treatments. In that case, the V2X packets shall be sent from the V2X layer to the Access Stratum layer within PC5 QoS Flows identified by different PFIs.
- When groupcast mode of V2X communication over NR based PC5 is used, a Range parameter is associated with the QoS parameters for the V2X communication. The Range may be provided by V2X application layer or use a default value mapped from the V2X service type based on configuration as defined in clause 5.1.2.1. The Range indicates the minimum distance that the QoS parameters need to be fulfilled. The Range parameter is passed to AS layer together with the QoS parameters for dynamic control.
- NR based PC5 supports three communication modes, i.e. broadcast, groupcast, and unicast. The QoS handling of these different modes are described in clauses 5.4.1.2 to 5.4.1.4.
- The UE may handle traffic using broadcast, groupcast, and unicast mode communication by taking all their priorities, e.g. indicated by PQIs, into account as described in clause 5.4.3.3.
- For broadcast and groupcast modes of V2X communication over NR based PC5, standardized PQI values are applied by the UE, as there is no signalling over PC5 reference point for these cases.
- When network scheduled operation mode is used, the UE-PC5-AMBR for NR based PC5 applies to all types of communication modes, and is used by NG-RAN for capping the UE's NR based PC5 transmission in the resources management. The UE-PC5-AMBR shall be set to the sum of the aggregate maximum bit rate of all types of communication (i.e. unicast, groupcast and broadcast modes) over PC5 reference point.

5.4 QoS handling for V2X communication
5.4.1 QoS handling for V2X communication over PC5 reference point
5.4.1.1 QoS model
5.4.1.1.1 General overview
For LTE based PC5, the QoS handling is defined in TS 23.285 [8], based on ProSe Per-Packet Priority (PPPP) and ProSe Per-Packet Reliability (PPPR).
For NR based PC5, a QoS model similar to that defined in TS 23.501 [6] for Uu reference point is used, ie based on 5QIs, with additional parameter of Range as described in clauses 5.4.2, 5.4.3 and 5.4.4 . For the V2X communication over NR based PC5 reference point, a PC5 QoS Flow is associated with a PC5 QoS Rule and the PC5 QoS parameters as defined in clause 5.4.2. A set of standardized PC5 5QIs (PQI) are defined in clause 5.4.4. The UE may be configured with a set of default PC5 QoS parameters to use for the V2X service types, as defined in clause 5.1.2.1. For NR based unicast, groupcast and broadcast mode communication over PC5, Per-flow QoS model for PC5 QoS management shall be applied. Figure 5.4.1.1.1-1 illustrates an example mapping of Per-flow QoS model for NR PC5. Details of PC5 QoS Rules and PFI related operations are described in clauses 5.4.1.1.2 and 5.4.1.1.3.
The following principles apply when the V2X communication is carried over PC5 reference point:
- Application layer may set the V2X Application Requirements for the V2X communication, using either TS 23.285 [8] defined PPPP and PPPR model or the PQI and Range model as described in clause 5.4.4. Depending on the type of PC5 reference point, ie LTE based or NR based, selected for the transmission, the UE may map the application layer provided V2X Application Requirements to the suitable QoS parameters to be passed to the lower layer. The mapping between the two QoS models is defined in clause 5.4.2. For V2X communication over NR based PC5, different V2X packets may require different QoS treatments. In that case, the V2X packets shall be sent from the V2X layer to the Access Stratum layer within PC5 QoS Flows identified by different PFIs.
- When groupcast mode of V2X communication over NR based PC5 is used, a Range parameter is associated with the QoS parameters for the V2X communication. The Range may be provided by V2X application layer or use a default value mapped from the V2X service type based on configuration as defined in clause 5.1.2.1. The Range indicates the minimum distance that the QoS parameters need to be fulfilled. The Range parameter is passed to AS layer together with the QoS parameters for dynamic control.
- NR based PC5 supports three communication modes, ie broadcast, groupcast, and unicast. The QoS handling of these different modes are described in clauses 5.4.1.2 to 5.4.1.4.
- The UE may handle traffic using broadcast, groupcast, and unicast mode communication by taking all their priorities, eg indicated by PQIs, into account as described in clause 5.4.3.3.
- For broadcast and groupcast modes of V2X communication over NR based PC5, standardized PQI values are applied by the UE, as there is no signaling over PC5 reference point for these cases.
- When network scheduled operation mode is used, the UE-PC5-AMBR for NR based PC5 applies to all types of communication modes, and is used by NG-RAN for capping the UE's NR based PC5 transmission in the resources management. The UE-PC5-AMBR shall be set to the sum of the aggregate maximum bit rate of all types of communication (ie unicast, groupcast and broadcast modes) over PC5 reference point.

5.4.1.1.2 Deriving PC5 QoS parameters and assigning PFI for PC5 QoS Flow
The following description applies to for both network scheduled operation mode and UE autonomous resources selection mode.
When a service data packet or request from the V2X application layer is received, the UE determines if there is any existing PC5 QoS Flow matching the service data packet or request, i.e. based on the PC5 QoS Rules for the existing PC5 QoS Flow(s).
If there is no PC5 QoS Flow matching the service data packet or request, the UE derives PC5 QoS parameters defined in clause 5.4.2 as below:
- If the application layer provides the V2X Application Requirements for the V2X service type (e.g. priority requirement, reliability requirement, delay requirement, range requirement), the V2X layer determines the PC5 QoS parameters based on the V2X Application Requirements;
- Otherwise, the V2X layer determines the PC5 QoS parameters based on the mapping of the V2X service type to PC5 QoS parameters defined in clause 5.1.2.1.
NOTE 1: Details of V2X Application Requirements for the V2X service type is up to implementation and out of scope of this specification.
After deriving the PC5 QoS parameters, the UE performs the following:
- If there is no existing PC5 QoS Flow that fulfils the derived PC5 QoS parameters:
- The UE creates a new PC5 QoS Flow for the derived PC5 QoS parameters; and
- The UE then assigns a PFI and derives PC5 QoS Rule for this PC5 QoS Flow.
- Otherwise, the UE updates the PC5 Packet Filter Set in the PC5 QoS Rule for such PC5 QoS Flow.
NOTE 2: It is expected that the application layer is capable of differentiating traffic from different V2X services that is transported within the same PC5 QoS Flow.
For V2X communication over NR PC5 reference point, the PC5 QoS Flow is the finest granularity of QoS differentiation in the same destination identified by Destination Layer-2 ID. User Plane traffic with the same PFI receives the same traffic forwarding treatment (e.g. scheduling, admission threshold). The PFI is unique within a same destination.

5.4.1.1.2 Deriving PC5 QoS parameters and assigning PFI for PC5 QoS Flow
The following description applies to for both network scheduled operation mode and UE autonomous resources selection mode.
When a service data packet or request from the V2X application layer is received, the UE determines if there is any existing PC5 QoS Flow matching the service data packet or request, ie based on the PC5 QoS Rules for the existing PC5 QoS Flow(s) .
If there is no PC5 QoS Flow matching the service data packet or request, the UE derives PC5 QoS parameters defined in clause 5.4.2 as below:
- If the application layer provides the V2X Application Requirements for the V2X service type (eg priority requirement, reliability requirement, delay requirement, range requirement), the V2X layer determines the PC5 QoS parameters based on the V2X Application Requirements;
-Otherwise, the V2X layer determines the PC5 QoS parameters based on the mapping of the V2X service type to PC5 QoS parameters defined in clause 5.1.2.1.
NOTE 1: Details of V2X Application Requirements for the V2X service type is up to implementation and out of scope of this specification.
After deriving the PC5 QoS parameters, the UE performs the following:
- If there is no existing PC5 QoS Flow that fulfills the derived PC5 QoS parameters:
- The UE creates a new PC5 QoS Flow for the derived PC5 QoS parameters; and
- The UE then assigns a PFI and derives PC5 QoS Rule for this PC5 QoS Flow.
-Otherwise, the UE updates the PC5 Packet Filter Set in the PC5 QoS Rule for such PC5 QoS Flow.
NOTE 2: It is expected that the application layer is capable of differentiating traffic from different V2X services that is transported within the same PC5 QoS Flow.
For V2X communication over NR PC5 reference point, the PC5 QoS Flow is the finest granularity of QoS differentiation in the same destination identified by Destination Layer-2 ID. User Plane traffic with the same PFI receives the same traffic forwarding treatment (eg scheduling, admission threshold). The PFI is unique within a same destination.

5.4.1.1.3 Handling of PC5 QoS Flows based on PC5 QoS Rules
For each communication mode (e.g. broadcast, groupcast, unicast), the UE maintains the PC5 QoS Context and PC5 QoS Rule(s) for each PC5 QoS Flow identified by a PC5 QoS Flow Identifier (PFI) per destination identified by Destination Layer-2 ID.
The following information is maintained in the V2X layer of the UE:
- A PC5 QoS Context includes the following information:
- PFI;
- PC5 QoS parameters (i.e. PQI and conditionally other parameters such as MFBR/GFBR, Range, etc.) as defined in clause 5.4.2; and
- the V2X service type(s).
- One or more PC5 QoS Rule(s). Each PC5 QoS Rule contains the following information:
- PFI;
- a PC5 Packet Filter Set as defined in clause 5.4.1.1.4; and
- a precedence value. The precedence value determines the order in which the PC5 QoS Rules are evaluated. The PC5 QoS Rule with lower precedence value is evaluated before those with the higher precedence values.
NOTE: How to set the precedence value is up to UE implementation.
When the UE assigns a new PFI for V2X service type, the UE stores it with the corresponding PC5 QoS Context and PC5 QoS Rule(s) for the destination. When the UE releases the PFI, the UE removes the corresponding PC5 QoS Context and PC5 QoS Rule(s) for the destination. For unicast, the Unicast Link Profile defined in clause 5.2.1.4 contains additional information mapped from PFI for unicast operation.
The V2X layer provides information for PC5 QoS operations per destination (e.g. identified by Destination Layer-2 ID) to AS layer for Per-flow QoS model operations as below:
1) To add a new PC5 QoS Flow or to modify any existing PC5 QoS Flow, the V2X layer provides the following information for the PC5 QoS Flow to AS layer.
- the PFI;
- the corresponding PC5 QoS parameters; and
- source/destination Layer-2 IDs for broadcast and groupcast mode communication, or the PC5 Link Identifier for unicast.
2) To remove any existing PC5 QoS Flow, the V2X layer provides the following information for the PC5 QoS Flow to AS layer.
- the PFI; and
- source/destination Layer-2 IDs for broadcast and groupcast mode communication, or the PC5 Link Identifier for unicast.
In addition, the V2X layer also provides the communication mode (e.g. broadcast, groupcast, unicast) and radio frequencies to the AS layer for the PC5 operation. The radio frequencies are determined based on the V2X service type. The V2X layer ensures that V2X service types associated with different radio frequencies are classified into distinct PC5 QoS Flows.
Figure 5.4.1.1.3-1 illustrated an example of the classification and marking of user plane traffic using the PC5 QoS Rules, and the mapping of PC5 QoS Flows to radio resources at access stratum layer.
As illustrated in Figure 5.4.1.1.3-1, for a given pair of source and destination Layer-2 IDs, there can be multiple radio bearers, each corresponding to a different PC5 QoS level. The AS layer can determine the mapping of multiple PC5 QoS Flows to the same radio bearer based on the information provided. For broadcast and groupcast mode communication, the L2 link goes to all UEs in proximity identified by the destination Layer-2 ID.

5.4.1.1.3 Handling of PC5 QoS Flows based on PC5 QoS Rules
For each communication mode (eg broadcast, groupcast, unicast), the UE maintains the PC5 QoS Context and PC5 QoS Rule(s) for each PC5 QoS Flow identified by a PC5 QoS Flow Identifier (PFI) per destination identified by Destination Layer-2 ID.
The following information is maintained in the V2X layer of the UE:
- A PC5 QoS Context includes the following information:
-PFI;
- PC5 QoS parameters (ie PQI and conditionally other parameters such as MFBR/GFBR, Range, etc.) as defined in clause 5.4.2; and
- the V2X service type(s).
- One or more PC5 QoS Rule(s). Each PC5 QoS Rule contains the following information:
-PFI;
- a PC5 Packet Filter Set as defined in clause 5.4.1.1.4; and
- a precedence value. The precedence value determines the order in which the PC5 QoS Rules are evaluated. The PC5 QoS Rule with lower precedence value is evaluated before those with the higher precedence values.
NOTE: How to set the precedence value is up to UE implementation.
When the UE assigns a new PFI for V2X service type, the UE stores it with the corresponding PC5 QoS Context and PC5 QoS Rule(s) for the destination. When the UE releases the PFI, the UE removes the corresponding PC5 QoS Context and PC5 QoS Rule(s) for the destination. For unicast, the Unicast Link Profile defined in clause 5.2.1.4 contains additional information mapped from PFI for unicast operation.
The V2X layer provides information for PC5 QoS operations per destination (eg identified by Destination Layer-2 ID) to AS layer for Per-flow QoS model operations as below:
1) To add a new PC5 QoS Flow or to modify any existing PC5 QoS Flow, the V2X layer provides the following information for the PC5 QoS Flow to AS layer.
- the PFI;
- the corresponding PC5 QoS parameters; and
- source/destination Layer-2 IDs for broadcast and groupcast mode communication, or the PC5 Link Identifier for unicast.
2) To remove any existing PC5 QoS Flow, the V2X layer provides the following information for the PC5 QoS Flow to AS layer.
- the PFI; and
- source/destination Layer-2 IDs for broadcast and groupcast mode communication, or the PC5 Link Identifier for unicast.
In addition, the V2X layer also provides the communication mode (eg broadcast, groupcast, unicast) and radio frequencies to the AS layer for the PC5 operation. The radio frequencies are determined based on the V2X service type. The V2X layer ensures that V2X service types associated with different radio frequencies are classified into distinct PC5 QoS Flows.
Figure 5.4.1.1.3-1 illustrated an example of the classification and marking of user plane traffic using the PC5 QoS Rules, and the mapping of PC5 QoS Flows to radio resources at access stratum layer.
As illustrated in Figure 5.4.1.1.3-1, for a given pair of source and destination Layer-2 IDs, there can be multiple radio bearers, each corresponding to a different PC5 QoS level. The AS layer can determine the mapping of multiple PC5 QoS Flows to the same radio bearer based on the information provided. For broadcast and groupcast mode communication, the L2 link goes to all UEs in proximity identified by the destination Layer-2 ID.

한편, 3GPP agreement에서, U2U relay 동작에 있어서 U2U relay specific 동작을 지원하기 위한 gNB의 개입(involvement)을 최소화하고, 이에 따라 discovery configuration도 OoC UE의 경우 pre-configuration, IDLE/INACTIVE UE의 경우 SIB을 이용하는 것까지만 합의되었다. (119bis agreement: RAN2 will strive to simplify the gNB involvement in U2U-relay-specific operation as compared to the U2N case. - 120 agreement: RAN2 to agree that in U2U relay, OOC UEs obtain discovery configuration from pre-configuration and IDLE/INACTIVE UEs obtain discovery configuration from SIB.) 다만, CONNECTED UE라 하더라도 RRC dedicated message를 통해서 discovery configuration을 받을지 여부는 현재까지는 agree 되지 않았다. Meanwhile, in the 3GPP agreement, the involvement of gNB to support U2U relay specific operation is minimized, and accordingly, the discovery configuration is also pre-configuration for OoC UE and SIB for IDLE/INACTIVE UE. It was only agreed upon to use it. (119bis agreement: RAN2 will strive to simplify the gNB involvement in U2U-relay-specific operation as compared to the U2N case. - 120 agreement: RAN2 to agree that in U2U relay, OOC UEs obtain discovery configuration from pre-configuration and IDLE/ INACTIVE UEs obtain discovery configuration from SIB.) However, even for CONNECTED UEs, it has not yet been agreed whether to receive discovery configuration through RRC dedicated message.
이하 본 개시에서는 U2N 동작에서는 리모트 UE는 RRC dedicated message를 통해서 리모트 UE의 QoS requirement에 적합한 릴레이 UE를 선택하는데 필요한 임계값을 configure 받을 수 있다는 발명자의 가정에 기반하여, U2U 릴레이 UE의 경우 리모트 UE의 QoS requirement에 적합한 임계값을 configure 받는 방법에 대해서 제안한다.Hereinafter, in the present disclosure, based on the inventor's assumption that in U2N operation, the remote UE can configure the threshold necessary to select a relay UE suitable for the QoS requirements of the remote UE through an RRC dedicated message, in the case of a U2U relay UE, the remote UE's We propose a method to configure thresholds suitable for QoS requirements.
일 실시예에 의한 제1 UE는 하나 이상의 후보 릴레이 UE 중에서 릴레이 UE를 선택(도 21의 S2101)할 수 있다. 상기 제1 UE는, 상기 선택된 릴레이 UE와 PC5 link가 없는 것에 기초하여, 상기 선택된 릴레이 UE와 PC5 link를 수립(S2102)할 수 있다. 상기 제1 UE가 상기 릴레이 UE를 통해 메시지를 전송(S2103)할 수 있다.The first UE according to one embodiment may select a relay UE from one or more candidate relay UEs (S2101 in FIG. 21). The first UE may establish a PC5 link with the selected relay UE based on the absence of a PC5 link with the selected relay UE (S2102). The first UE may transmit a message through the relay UE (S2103).
여기서, 상기 릴레이 UE의 선택은 상기 제1 UE가 전송하는 메시지의 QoS(Quality of Service)에 기초한 것일 수 있다. 상기 선택된 릴레이 UE는 신호강도가 소정 임계값 이상인 것일 수 있는데, 상기 소정 임계값은 각 메시지의 QoS에 따라 개별적으로 설정된 것일 수 있다. 또는, 상기 소정 임계값은 서비스의 PFI (PC5 QoS Flow Identifier)별 또는 PQI (PC5 QoS Identifier)별 임계값일 수 있다. 이와 같은, 상기 소정 임계값은 SIB(System Information Block)을 통해 지시된 것, 또는, 미리 설정된 값일 수 있다. 상기 신호강도는 상기 제1 UE와 상기 릴레이 UE 사이의 SL-RSRP(Sidelink Reference Signals Received Power) 또는 SD-RSRP(Sidelink Discovery Reference Signals Received Power)중 하나일 수 있다.Here, selection of the relay UE may be based on the Quality of Service (QoS) of the message transmitted by the first UE. The selected relay UE may have a signal strength greater than a predetermined threshold, and the predetermined threshold may be individually set according to the QoS of each message. Alternatively, the predetermined threshold may be a threshold value for each PFI (PC5 QoS Flow Identifier) or PQI (PC5 QoS Identifier) of the service. As such, the predetermined threshold value may be indicated through a System Information Block (SIB), or may be a preset value. The signal strength may be either SL-RSRP (Sidelink Reference Signals Received Power) or SD-RSRP (Sidelink Discovery Reference Signals Received Power) between the first UE and the relay UE.
즉, (UE-to-UE relay 동작에서) 리모트 UE가 릴레이 UE를 선택/재선택하는 경우, 리모트 UE는 리모트 UE와 릴레이 UE간의 신호 세기가(예를 들어, SL-RSRP, SD-RSRP) 정해진 임계값 이상인 릴레이 UE를 (재) 선택을 위한 후보 릴레이 UE로 고려한다. 여기서, 리모트 UE가 릴레이 UE 선택 시 적용하는 임계값은 전송하고자 하는 (메시지의) QoS (Quality of Service) 값을 기준으로, 신호 세기 값(예를 들어, SD-RSRP, SL-RSRP)의 임계값을 다르게 설정할 수 있다. 이때 설정되는 값은 SIB/pre-configuration을 통해 이루어질 수 있다. That is, when the remote UE selects/reselects the relay UE (in UE-to-UE relay operation), the remote UE determines the signal strength between the remote UE and the relay UE (e.g., SL-RSRP, SD-RSRP). Relay UEs that are above a set threshold are considered candidate relay UEs for (re)selection. Here, the threshold applied by the remote UE when selecting the relay UE is the threshold of the signal strength value (e.g., SD-RSRP, SL-RSRP) based on the QoS (Quality of Service) value (of the message) to be transmitted. You can set different values. The value set at this time can be achieved through SIB/pre-configuration.
예를 들어, 리모트 UE가 U2U를 통해 전송하고자 하는 service의 PFI (PC5 QoS Flow Identifier) (group) 별(또는, PQI (PC5 QoS Identifier) 별) SD/SL-RSRP 임계값을 SIB/pre-configuration을 통해 제공하고, 리모트 UE는 U2U relay를 통해서 전송하고자 하는 service의 PQI(및/또는 PFI)중 가장 critical 한 PQI(및/또는 PFI) 값을 기준으로 임계값을 결정하여 후보 릴레이 UE를 선택할 수도 있다. 이 때 가장 critical 한 PQI(및/또는 PFI) 값은 다음 방법 중 하나 이상의 조합을 사용할 수 있다.For example, the SD/SL-RSRP threshold for each PFI (PC5 QoS Flow Identifier) (group) (or for each PQI (PC5 QoS Identifier)) of the service that the remote UE wants to transmit through U2U is set to SIB/pre-configuration. provided through , and the remote UE may select a candidate relay UE by determining the threshold based on the most critical PQI (and/or PFI) value among the PQI (and/or PFI) of the service to be transmitted through the U2U relay. there is. At this time, the most critical PQI (and/or PFI) value can be determined using a combination of one or more of the following methods.
1) 리모트 UE는 여러 PQI(및/또는 PFI)중 priority level이 가장 작은(및/또는 큰)(작을수록 높은 priority라 가정) 값을 critical 한 PQI로 정할 수 있다.1) The remote UE may set the value with the smallest (and/or largest) priority level among several PQIs (and/or PFIs) (assuming that the smaller the priority, the higher the priority) as the critical PQI.
2) 리모트 UE는 여러 PQI(및/또는 PFI)중 packet delay budget 값이 가장 작은(및/또는큰) 값(latency가 가장 작은 값)을 critical 한 PQI로 정할 수 있다.2) The remote UE may set the value with the smallest (and/or largest) packet delay budget (smallest latency) among several PQIs (and/or PFIs) as the critical PQI.
3) 리모트 UE는 여러 패킷 에러 레이트 중에 에러 레이트가 가장 작은(및/또는큰) 값을 갖는 PQI(및/또는 PFI) 값을 critical 한 PQI로 정할 수 있다. 3) The remote UE may determine the PQI (and/or PFI) value with the smallest (and/or largest) error rate among several packet error rates as the critical PQI.
4) critical 한 PQI 값은 리모트 UE의 상위 layer에서 정해져서 AS layer로 알려주는 값이 될 수도 있다. 4) The critical PQI value may be a value determined by the upper layer of the remote UE and notified to the AS layer.
상기 신호 세기는 UE-to-UE relay 동작의 경우 소스 리모트 UE와 릴레이 UE간의 신호 세기, 그리고/혹은 릴레이 UE와 타겟 리모트 UE간의 신호 세기를, U2N 릴레이 동작의 경우 리모트 UE와 릴레이 UE간의 신호 세기 또는 릴레이 UE와 기지국 사이의 신호세기를 의미한다. The signal strength refers to the signal strength between the source remote UE and the relay UE in the case of UE-to-UE relay operation, and/or the signal strength between the relay UE and the target remote UE, and in the case of U2N relay operation, the signal strength between the remote UE and the relay UE. Alternatively, it refers to the signal strength between the relay UE and the base station.
상기 제1 UE는 디스커버리 메시지 전송 시 자신의 QoS requirement를 만족시킬 수 있는 요구(required) 임계값을 포함시켜 전송할 수 있다. 구체적으로, Discovery model B와 관련하여, 리모트 UE가 디스커버리 메시지(예를 들어, solicitation message)를 전송하는 경우, 이를 수신한 릴레이 UE 들은 리모트 UE가 어떤 QoS requirement를 만족시키기 위한 service를 전송하기 위해서 릴레이 UE를 찾고 있는지 알 수 없다. 따라서 리모트 UE는 디스커버리 메시지 전송 시 자신의 QoS requirement를 만족시킬 수 있는 요구(required) 임계값(예를 들어, SD-RSRP, SL-RSRP 임계값)을 디스커버리 메시지에 포함하여 전송할 수도 있다. 이러한 임계값은 상위 layer로부터 AS layer로 전달된 값일 수 있다. 혹은, 리모트 UE가 상위 layer에서 받은 PQI 값에 따라, SIB/pre-configuration을 통하여 판단한(및/또는 추정한) 임계값이 될 수도 있다.When transmitting a discovery message, the first UE may transmit a discovery message including a required threshold that can satisfy its QoS requirements. Specifically, with respect to Discovery model B, when a remote UE transmits a discovery message (e.g., solicitation message), the relay UEs that receive it relay in order for the remote UE to transmit a service to satisfy certain QoS requirements. I don't know if it's looking for UE. Therefore, when transmitting a discovery message, the remote UE may transmit a discovery message including a required threshold (eg, SD-RSRP, SL-RSRP threshold) that can satisfy its QoS requirements. This threshold may be a value passed from the upper layer to the AS layer. Alternatively, it may be a threshold value determined (and/or estimated) through SIB/pre-configuration, depending on the PQI value received by the remote UE from the upper layer.
이를 수신한 릴레이 UE는 리모트 UE로부터 측정한 신호 세기 값이 디스커버리 메시지에 포함되어 있는 required 임계값을 초과하는 경우에만 응답을 하도록 설정될 수도 있다. 즉, 상기 후보 릴레이 UE들은 측정한 신호 세기 값이 디스커버리 메시지에 포함되어 있는 상기 요구 임계값을 초과한 것에 해당하는 것이다. 이러한 경우, 리모트 UE의 릴레이 UE를 찾는 요청에 리모트 UE가 전송하고자 하는 service의 QoS requirement를 만족하는 릴레이 UE만이 응답할 것으로 예상되므로, 리모트 UE는 전송하고자 하는 서비스의 QoS를 만족시킬 수 있는 후보 릴레이 UE 중에서 적당한 릴레이 UE를 선택할 수 있다. The relay UE that received this may be set to respond only when the signal strength value measured from the remote UE exceeds the required threshold included in the discovery message. That is, the measured signal strength values of the candidate relay UEs exceed the required threshold included in the discovery message. In this case, since only relay UEs that satisfy the QoS requirements of the service that the remote UE wishes to transmit are expected to respond to the remote UE's request to find a relay UE, the remote UE must select a relay candidate that can satisfy the QoS of the service that the remote UE wishes to transmit. An appropriate relay UE can be selected from among the UEs.
Discovery model A와 관련하여, 릴레이 UE는 주변 (타겟) 리모트 UE의 ID와 (타겟) 리모트 UE와 릴레이 UE간의 SL 신호 세기(예를 들어, SL-RSRP, SD-RSRP)를 포함하여 디스커버리 메시지를 전송할 수 있다. 이를 수신한 (소스) 리모트 UE는 자신이 U2U 릴레이 UE를 통하여 송/수신하고자 하는 service의 QoS를 만족하는 신호 세기를 갖고 릴레이 UE와 연결되어 있는 (타겟) 리모트 UE가 존재하는 경우에만 해당 릴레이 UE를 선택할 수 있다. Regarding discovery model A, the relay UE sends a discovery message including the ID of the surrounding (target) remote UE and the SL signal strength (e.g., SL-RSRP, SD-RSRP) between the (target) remote UE and the relay UE. Can be transmitted. The (source) remote UE that received this has a signal strength that satisfies the QoS of the service it wants to transmit/receive through the U2U relay UE, and only if there is a (target) remote UE connected to the relay UE, the corresponding relay UE You can select .
만약, 디스커버리가 PC5 unicast link 수립 절차에 통합되는 경우 DCR 메시지를 사용하여 임계값을 설정할 수 있다. 구체적으로, (소스) 리모트 UE는 U2U relay 동작을 위해서 U2U relay enable indication이 표시되어 있는 DCR 메시지를 전송할 수 있다. 이때, (소스) 리모트 UE는 해당 메시지에 U2U relay 동작 시 전송하려는 service의 required QoS를 만족시키기 위해 요구되는 임계값을 포함하여 전송할 수 있다. If discovery is integrated into the PC5 unicast link establishment procedure, the threshold can be set using the DCR message. Specifically, the (source) remote UE may transmit a DCR message indicating U2U relay enable indication for U2U relay operation. At this time, the (source) remote UE may transmit the corresponding message including the threshold required to satisfy the required QoS of the service to be transmitted during U2U relay operation.
해당 DCR 메시지를 수신한 릴레이 UE는 (소스) 리모트 UE와 릴레이 UE간의 신호 세기가 메시지에 포함되어 있는 임계값을 만족하는 경우에만 수신한 DCR 메시지를 포워딩 할 수 있다. 이를 수신한 (타겟) 리모트 UE는 릴레이 UE와 (타겟) 리모트 UE간의 신호 세기가 포워딩 된 DCR 메시지에 포함되어 있는 임계값을 초과하는 경우에만, 해당 릴레이 UE에 DCA 메시지로 응답할 수 있다. 또한 이러한 DCA 메시지에도 동일한 임계값이 포함될 수 있다. 혹은 DCA 메시지에 임계값이 포함되지 않는 경우에도 릴레이 UE는 DCR에 대한 DCA임을 알 수 있는 경우, DCR 메시지에 포함되어 있던 임계값을 DCA 메시지 포워딩 시 적용할 수 있다. DCA 메시지를 수신한 릴레이 UE는 릴레이 UE와 (타겟) 리모트 UE 사이의 신호 세기가 임계값을 초과하는 경우에만 DCA 메시지를 (소스) 리모트 UE에게 전송한다. 이를 수신한 (소스) 리모트 UE는 자신과 릴레이 UE간의 신호 세기가 자신이 설정하여 DCR 메시지에 포함했던 임계값 이상인 경우에만 해당 릴레이 UE를 선택할 수도 있다. 이 경우 (소스) 리모트 UE는 해당 릴레이 UE를 선택하는 경우 자신이 U2U 동작을 통하여 전송하고자 하는 서비스의 QoS를 만족시킬 수 있음을 짐작할 수 있다.The relay UE that received the DCR message can forward the received DCR message only if the signal strength between the (source) remote UE and the relay UE satisfies the threshold included in the message. The (target) remote UE that received this can respond to the relay UE with a DCA message only when the signal strength between the relay UE and the (target) remote UE exceeds the threshold included in the forwarded DCR message. Additionally, these DCA messages may also contain the same threshold values. Alternatively, even if the DCA message does not include a threshold, if the relay UE can know that it is a DCA for DCR, the threshold included in the DCR message can be applied when forwarding the DCA message. The relay UE that received the DCA message transmits the DCA message to the (source) remote UE only when the signal strength between the relay UE and the (target) remote UE exceeds the threshold. The (source) remote UE that received this may select the corresponding relay UE only if the signal strength between itself and the relay UE is greater than or equal to the threshold set by the remote UE and included in the DCR message. In this case, the (source) remote UE can infer that it can satisfy the QoS of the service it wants to transmit through U2U operation when it selects the corresponding relay UE.
또한, 소스 리모트 UE가 타겟 리모트 UE과 direct link로 연결되어 있는 상태에서 릴레이 선택/재선택을 하는 경우, 또는 소스 리모트 UE가 릴레이 UE를 통해 타겟 리모트 UE와 indirect link로 연결되어 있는 상태에서 relay reselection을 하는 경우, 소스 리모트 UE(및/또는 타겟 리모트 UE)는 SL-RRC 메시지(예를 들어, RRCReconfigurationSidelink)로 상대 UE에게 relay 선택, 재선택을 위한 임계값을 설정할 수 있다. 상대 peer UE로부터 릴레이 선택/재선택을 위한 임계값이 설정되어 있는 경우, 리모트 UE는 해당 peer UE와의 U2U 동작을 위한 릴레이 UE의 선택/재선택 시 설정되어 있는 임계값을 적용하여 릴레이 UE를 선택할 수 있다.Additionally, when relay selection/reselection is performed while the source remote UE is connected to the target remote UE through a direct link, or when the source remote UE is connected to the target remote UE through an indirect link through a relay UE, relay reselection is performed. In this case, the source remote UE (and/or target remote UE) may set a threshold for relay selection and reselection to the other UE with an SL-RRC message (e.g., RRCReconfigurationSidelink). If a threshold is set for relay selection/reselection from the peer UE, the remote UE selects the relay UE by applying the set threshold when selecting/reselecting the relay UE for U2U operation with the corresponding peer UE. You can.
또한, 타겟 리모트 UE/릴레이 UE가 U2U 릴레이 선택/재선택 과정에서 PC5-S(예를 들어, DCR, DCA) 메시지에 SL의 측정 값을 포함하여 전송할 수도 있다(즉, 측정 configuration이 없다 하더라도). 예를 들어, 소스 리모트 UE가 디스커버리 메시지(또는 DCR 메시지)를 브로드캐스트 하고, 이를 포워딩 하는 릴레이 UE는 첫번째 hop의 RSRP/RSRQ/SINR 값을 디스커버리 메시지(또는 DCR 메시지) 전송 시 포함하여 포워딩 할 수 있다. 또한 타겟 리모트 UE가 디스커버리 메시지에 대한 응답, DCA 메시지 등을 전송하는 경우 DCR 메시지를 통해 측정한 신호 세기 값을 포함하여 전송할 수 있다. DCR/디스커버리 메시지를 direct path를 통해서 받았다면, direct path의 신호 세기 값이 포함되고, indirect path를 통해서 받았다면, 두번째 hop의 신호 세기 값을 포함하여 DCA 메시지(및/또는 디스커버리 응답 메시지)를 통해서 전송할 수 있다. 또한 타겟 리모트 UE가 디스커버리 메시지에 대한 응답/DCA 메시지 등을 릴레이 UE를 통해서 전달하는 경우, 릴레이 UE는 첫번째 hop과 두번째 hop의 신호 세기 값을 포함하여 소스 리모트 UE로 전달할 수 있다. 또는 첫번째 hop과 두번째 hop의 신호 세기 중 더 작은 값(및/또는 큰 값) 만을 전달할 수도 있다. 또한 릴레이 UE는 타겟 리모트 UE로부터 받은 값과 자신이 측정한 두번째 hop의 신호 세기 값을 비교하여 더 작은(및/또는큰 값)을 전달할 수도 있다. Additionally, the target remote UE/relay UE may transmit a PC5-S (e.g., DCR, DCA) message including the measurement value of SL during the U2U relay selection/reselection process (i.e., even if there is no measurement configuration) . For example, the source remote UE broadcasts a discovery message (or DCR message), and the relay UE that forwards it can forward it by including the RSRP/RSRQ/SINR value of the first hop when transmitting the discovery message (or DCR message). there is. Additionally, when the target remote UE transmits a response to a discovery message, a DCA message, etc., the signal strength value measured through the DCR message may be included and transmitted. If a DCR/discovery message is received through a direct path, it includes the signal strength value of the direct path, and if it is received through an indirect path, it includes the signal strength value of the second hop through a DCA message (and/or discovery response message). Can be transmitted. Additionally, when the target remote UE transmits a response to the discovery message/DCA message, etc. through the relay UE, the relay UE may transmit the signal strength values of the first hop and second hop to the source remote UE. Alternatively, only the smaller value (and/or larger value) of the signal strength of the first hop and the second hop may be transmitted. Additionally, the relay UE may compare the value received from the target remote UE with the signal strength value of the second hop measured by the relay UE and transmit a smaller (and/or larger value).
상술한 바와 같이, SIB/pre-configuration을 통해서 PQI(및/또는 PFI) 값 별 릴레이 UE를 선택하는 신호 세기 임계값이 설정되는 경우 non-standardized PQI 값에 대해서는 별도의 임계값이 설정될 수 있다. 또는 non-standardized service에 대한 priority, reliability, PDB 등을 추가적으로 설정하고, 단말에게 best match를 하여 적절한 임계값을 선택하도록 할 수도 있다.As described above, when a signal strength threshold for selecting a relay UE for each PQI (and/or PFI) value is set through SIB/pre-configuration, a separate threshold may be set for non-standardized PQI values. . Alternatively, priority, reliability, PDB, etc. for non-standardized services can be additionally set and an appropriate threshold can be selected by performing a best match on the terminal.
상술한 실시예에 의할 경우, 리모트 UE가 자신이 U2U relay를 통해 전송하고자 하는 서비스의 required QoS에 맞는 릴레이 UE를 선택할 수 있다는 효과가 있다.According to the above-described embodiment, there is an effect that the remote UE can select a relay UE that matches the required QoS of the service it wants to transmit through the U2U relay.
상술한 내용에서 U2U 동작을 위한 리모트 UE는 특별한 기술이 없는 한 소스 리모트 UE, 타겟 리모트 UE 둘 다를 의미할 수 있다. 또한 상기 발명의 기술에서 임계값은 SL-RSRP와 SD-RSRP를 위한 값이 별도로 설정될 수도 있다. 또한 상기 기술한 디스커버리 메시지는 DCR(PC5-S) 메시지로도 대체 가능하다. 상기 설명한 임계값은 실제 임계값이 될 수도 있으나, 임계값을 나타내는 인덱스 값으로 대체될 수도 있다.In the above description, remote UE for U2U operation may mean both source remote UE and target remote UE unless there is a special technology. Additionally, in the technology of the above invention, the threshold value may be set separately for SL-RSRP and SD-RSRP. Additionally, the discovery message described above can also be replaced with a DCR (PC5-S) message. The threshold value described above may be an actual threshold value, but may also be replaced with an index value representing the threshold value.
한편, 리모트 UE는 direct path와 릴레이 UE를 통한 indirect path 둘 다를 activation 할 수 있으며, 이 때, 리모트 UE와 릴레이 UE 간의 connection은 기존 SL-relay 와는 다르게 ideal link가 될 수 있다. 이하에서는 리모트 UE와 릴레이 UE 사이의 link가 ideal link인 경우 발생할 수 있는 동작에 대해서 개시한다.Meanwhile, the remote UE can activate both the direct path and the indirect path through the relay UE, and at this time, the connection between the remote UE and the relay UE can be an ideal link, unlike the existing SL-relay. Below, operations that can occur when the link between the remote UE and the relay UE is an ideal link are described.
리모트 UE와 릴레이 UE가 ideal link를 사용하여 연결되는 경우 적용할 수 있는 리모트 UE와 릴레이 UE간의 신호 세기 threshold 는 기존 PC5 connection을 이용하는 경우와 다를 수 있다. 예를 들어, ideal link가 될 수 있는 threshold는 기존 Rel-17 U2N 통신에서 리모트 UE와 릴레이 UE 사이의 connection을 위해 적용되는 threshold 와는 별도의 값이 될 수 있다. 리모트 UE와 릴레이 UE간의 신호 세기가 정해진 threshold 보다 큰 경우(특정 범위에 속한 경우), 이를 ideal path로 가정하고 동작할 수 있다. 또는 리모트 UE 및/또는 릴레이 UE의 상위 layer에서 ideal path로 연결되었음을 indication 해 주는 경우, 정해진 threshold에 상관없이 ideal path로 간주하고 동작할 수도 있다. When the remote UE and relay UE are connected using an ideal link, the applicable signal strength threshold between the remote UE and relay UE may be different from that when using an existing PC5 connection. For example, the threshold that can be an ideal link can be a separate value from the threshold applied for the connection between the remote UE and relay UE in existing Rel-17 U2N communication. If the signal strength between the remote UE and the relay UE is greater than a set threshold (in a specific range), it can be operated assuming this as an ideal path. Alternatively, if the upper layer of the remote UE and/or relay UE indicates that it is connected to an ideal path, it may be regarded as an ideal path and operate regardless of the set threshold.
리모트 UE와 릴레이 UE가 ideal path로 연결된 경우, 리모트 UE 및/또는 릴레이 UE는 peer UE를 기지국에 preferred UE로 보고할 수 있다. Preferred UE로 보고하는 경우, 리모트 UE와 릴레이 UE 사이의 신호 세기에 대한 보고는 생략될 수 있다. 한편, 해당 보고를 받은 기지국은 리모트 UE 및/또는 릴레이 UE에 discovery 관련 정보를 설정하지 않을 수 있다. 혹은 이러한 리모트 UE 및/또는 릴레이 UE는 discovery 관련 정보(예를 들어, discovery resource pool)를 기지국에 요청하지 않을 수 있다.If the remote UE and relay UE are connected by an ideal path, the remote UE and/or relay UE may report the peer UE to the base station as the preferred UE. When reporting as a Preferred UE, reporting on the signal strength between the remote UE and relay UE may be omitted. Meanwhile, the base station that received the report may not set discovery-related information to the remote UE and/or relay UE. Alternatively, these remote UEs and/or relay UEs may not request discovery-related information (eg, discovery resource pool) from the base station.
리모트 UE와 릴레이 UE가 아직 ideal path로 연결되지는 않았으나, idea path에 해당하는 threshold를 만족한 경우, 혹은 릴레이 UE 및/또는 리모트 UE의 상위 layer가 peer 리모트 UE 및/또는 릴레이 UE를 ideal path로 연결 가능한 UE로 설정한 경우 리모트 UE는 ideal path가 가능한 릴레이 UE를 preferred UE로 보고할 수 있다. 혹은, 리모트 UE는 다른 후보 릴레이 UE와 이에 관련한 SL 신호 세기를 보고(SD-RSRP/SL-RSRP)할 때, ideal path로 연결 가능한 후보 릴레이 UE는 따로 indication 하여 보고할 수 있다. 또한 보고 시 ideal path로 연결 가능한 후보 릴레이 UE는 보고 list의 가장 윗쪽에 위치시킬 수도 있다. 이는 기지국이 특별한 이유가 없는 한 리모트 UE가 보고한 Preferred relay UE를 선택하여 이를 리모트 UE에게 알려주기를 기대하기 때문이다. If the remote UE and relay UE are not yet connected by an ideal path, but the threshold corresponding to the idea path is satisfied, or the upper layer of the relay UE and/or remote UE connects the peer remote UE and/or relay UE to the ideal path. When set as a connectable UE, the remote UE can report a relay UE capable of an ideal path as the preferred UE. Alternatively, when the remote UE reports other candidate relay UEs and the SL signal strength related thereto (SD-RSRP/SL-RSRP), candidate relay UEs that can be connected to the ideal path may be separately indicated and reported. Additionally, when reporting, candidate relay UEs that can be connected to the ideal path may be placed at the top of the reporting list. This is because the base station is expected to select the Preferred relay UE reported by the remote UE and inform the remote UE of this, unless there is a special reason.
리모트 UE 및/또는 릴레이 UE는 ideal link를 맺기 위한 discover message는 일반 U2N relay(/non-relay) 디스커버리 메시지와는 다른 format을 가질 수도 있다. 해당 디스커버리 메시지는 ideal link를 맺기 위함임을 알리는 indication이 포함될 수 있으며, ideal link를 위한 특별한 destination ID를 사용할 수도 있다. 또는 ideal link를 위한 디스커버리 메시지는 이를 위한 특별한 bearer ID/logical channel ID 등이 사용될 수도 있다. The remote UE and/or relay UE's discover message for establishing an ideal link may have a different format from the general U2N relay(/non-relay) discovery message. The discovery message may include an indication that it is for establishing an ideal link, and a special destination ID for the ideal link may be used. Alternatively, a discovery message for an ideal link may use a special bearer ID/logical channel ID, etc. for this purpose.
리모트 UE 및/또는 릴레이 UE는 mulipath 동작이 가능한 UE인 경우 디스커버리 메시지에 multipath 동작이 가능함을 indication 할 수도 있다. 또한 multipath 동작이 가능한 UE에 대해서는 별도의 Uu/SL threshold 값이 설정될 수도 있다.If the remote UE and/or relay UE is a UE capable of multipath operation, it may indicate that multipath operation is possible in the discovery message. Additionally, a separate Uu/SL threshold value may be set for UEs capable of multipath operation.
리모트 UE 및/또는 릴레이 UE가 SUI를 사용하여 자신과 연결되어 있는 destination L2 ID를 기지국에 보고하는 경우, 리모트 UE 및/또는 릴레이 UE가 ideal link로 연결되어 있는 경우, SUI에 포함되는 destniation address에는 ideal link로 연결되어 있음을 알릴 수 있는 indication이 포함될 수 있다. 또는 ideal link에 할당되는 특별한 destination (L2-layer) address가 존재하여 기지국이 이를 통하여 ideal ink로 연결되어 있음을 추정하는 것도 가능할 수 있다. 해당 indication이 포함된 SUI를 수신한, 혹은 특정 destination address를 수신한 gNB는 이를 보고한 리모트 UE 및/또는 릴레이 UE에 discovery 메시지 전송 관련 configuration을 설정하지 않거나, discovery 메시지 전송관련 resource pool을 할당하지 않을 수도 있다. 또는 리모트 UE와 릴레이 UE의 ideal link가 PC5-link외의 다른 link(예를 들어, 유선 link)일 수도 있으므로, gNB는 리모트 UE와 릴레이 UE 사이의 동작을 위한 (기존의) 지원(예를 들어, 자원 grant 할당 등)을 하지 않을 수도 있다. 한편 이러한 indication은 보고하는 리모트 UE와 릴레이 UE 사이의 신호세기를 max 값으로 설정(혹은 정해진 값으로 설정) 하여 보고함으로써 대체할 수도 있다.If the remote UE and/or relay UE reports to the base station the destination L2 ID connected to itself using SUI, and if the remote UE and/or relay UE are connected by an ideal link, the destination address included in the SUI An indication indicating that it is connected by an ideal link may be included. Alternatively, it may be possible to estimate that there is a special destination (L2-layer) address assigned to the ideal link and that the base station is connected to the ideal ink through this. The gNB that has received the SUI containing the corresponding indication or has received a specific destination address will not set configuration related to transmission of the discovery message to the remote UE and/or relay UE that reported it, or will not allocate a resource pool related to transmission of the discovery message. It may be possible. Alternatively, since the ideal link between the remote UE and the relay UE may be a link other than PC5-link (e.g., a wired link), the gNB provides (existing) support for operation between the remote UE and the relay UE (e.g., Resource grant allocation, etc.) may not be performed. Meanwhile, this indication can be replaced by setting the signal strength between the reporting remote UE and the relay UE to a max value (or setting it to a determined value) and reporting.
리모트 UE 및/또는 릴레이 UE는 mulipath 동작이 가능한 UE인 경우 디스커버리 메시지에 multipath 동작이 가능함을 indication 할 수도 있다. 또한 multipath 동작이 가능한 UE에 대해서는 별도의 Uu/SL threshold 값이 설정될 수도 있다.If the remote UE and/or relay UE is a UE capable of multipath operation, it may indicate that multipath operation is possible in the discovery message. Additionally, a separate Uu/SL threshold value may be set for UEs capable of multipath operation.
Ideal link로 연결되어 있는 릴레이 UE 및/또는 리모트 UE는 SUI로 자신의 L2 ID, 상대(목적지) L2 ID 및 해당 목적지 UE(/ID)와 ideal link로 연결되어 있음을 indication 할 수 있다. 이러한 indication을 수신한 gNB는 릴레이 UE 및/또는 리모트 UE에 local ID, bearer mapping 등에 관련된 configuration을 수행하지 않을 수 있다. 또는 릴레이 UE에 SL와 Uu link간의 1:1 mapping에 대한 configuration만 설정할 수도 있다.A relay UE and/or a remote UE connected by an ideal link may indicate through SUI its own L2 ID, the other party's (destination) L2 ID, and that it is connected to the destination UE (/ID) by an ideal link. The gNB that receives this indication may not perform configuration related to local ID, bearer mapping, etc. to the relay UE and/or remote UE. Alternatively, only the configuration for 1:1 mapping between SL and Uu links can be set in the relay UE.
Preferred UE를 가지고 있는 단말(여기서 가지고 있다 함은, preferred UE와 이미 ideal/SL로 연결되어 있거나, 연결 전이더라도 상위 layer에서 설정한 preferred UE가 존재하는 경우)은 기지국에 (discovery resource pool을 요청하면서) preferred UE 정보를 보고하고, 기지국은 preferred UE가 있는 경우 restriced discovery measurement를 설정할 수도 있다. 예를 들어, 기지국은 measurement configure를 일반적인 U2N relay 경우보다 rough 하게 설정하고, 기본적인 조건만 만족하면, UE가 보고한 preferred UE와 connection을 할 수 있도록 지시할 수도 있다. A terminal that has a preferred UE (here, it means that it is already connected to the preferred UE via ideal/SL or that the preferred UE set in the upper layer exists even before connection) requests the base station (discovery resource pool) ) Report preferred UE information, and the base station may set restriced discovery measurement if there is a preferred UE. For example, the base station may set the measurement configure to be rougher than the typical U2N relay case and instruct the UE to establish a connection with the preferred UE reported by the UE if only basic conditions are met.
Preferred relay UE를 설정할 수 있는 criteria가 따로 설정될 수도 있다. 예를 들어 direct link로 동작하던 UE가 데이터의 양의 증가/latency 증가/잔여 power 감소 등 특별한 상황이 되면, Preferred relay UE의 설정/선택이 triggering 될 수도 있다. Preferred relay UE를 설정할 수 있는 criteria가 설정되어 있는 UE는 해당 조건(예를 들어, Uu/SL threshold 조건)을 만족하면, 기지국에 후보 릴레이 UE의 신호 세기 및 기타 정보(예를 들어, layer 2-ID)를 보고함 없이 바로 Preferred relay UE와 connection을 맺을 수 있다. 이 경우, remote(/relay) UE는 connection을 맺은 후 기지국에 상대 UE에 대한 정보(예를 들어, 상대 UE의 layer2-ID 및 multi-path connection을 위하여 preferred UE와 connection을 맺었음을 알리는)를 보고할 수도 있다. Criteria for setting a preferred relay UE may be set separately. For example, if a UE operating on a direct link encounters a special situation such as an increase in data amount/latency/reduction in remaining power, the setting/selection of the preferred relay UE may be triggered. If a UE that has criteria for setting a preferred relay UE satisfies the condition (e.g., Uu/SL threshold condition), it sends the signal strength and other information (e.g., layer 2-2) of the candidate relay UE to the base station. You can immediately establish a connection with the Preferred relay UE without reporting the ID). In this case, after establishing a connection, the remote(/relay) UE provides information about the other UE to the base station (e.g., the layer2-ID of the other UE and notifies that it has established a connection with the preferred UE for multi-path connection). You can also report it.
리모트 UE가 기지국에 Preferred relay UE를 보고한 경우, 기지국은 Preferred relay UE(/Preferred relay UE가 RRC CONNECTED 경우로 한정될 수도 있음)가 사용하는 discovery resource pool/discovery configuration 정보 등을 리모트 UE에 알려주어 리모트 UE가 릴레이 UE와 빠른 relay connection을 가능하게 할 수 있다. 혹은, Preferred relay UE가 SL DRX 동작을 하고 있는 경우, 기지국은 디스커버리 메시지를 위한 DRX 정보를 리모트 UE에게 알려주어 Preferred relay UE와 빠른 connection을 맺을 수 있도록 할 수 있다.When the remote UE reports the Preferred relay UE to the base station, the base station informs the remote UE of the discovery resource pool/discovery configuration information used by the Preferred relay UE (/Preferred relay UE may be limited to RRC CONNECTED cases). A remote UE can enable a fast relay connection with a relay UE. Alternatively, if the preferred relay UE is performing SL DRX operation, the base station can inform the remote UE of DRX information for the discovery message so that it can quickly establish a connection with the preferred relay UE.
리모트 UE와 릴레이 UE가 ideal link로 연결되어 있는 경우, 기지국은 preffered UE의 정보를 저장하여 relay connection 시 재활용할 수 있다. 예를 들어, ideal link로 연결되어 있는 경우, IDLE/INACTIVE 리모트 UE가 resume을 요청하면, 기지국은 리모트 UE와 ideal link로 연결된 릴레이 UE의 context까지 함께 가져오는 동작을 수행할 수도 있다. 또는, 반대로 릴레이 UE가 resume을 요청하는 경우, 기지국은 릴레이 UE와 ideal link로 연결된 리모트 UE의 context까지 함께 가져올 수도 있다. If the remote UE and the relay UE are connected by an ideal link, the base station can store the information of the preffered UE and reuse it during relay connection. For example, when connected by an ideal link, when the IDLE/INACTIVE remote UE requests resume, the base station may also perform an operation to retrieve the context of the remote UE and the relay UE connected by the ideal link. Or, conversely, when the relay UE requests resume, the base station may also retrieve the context of the remote UE connected to the relay UE via an ideal link.
리모트 UE와 릴레이 UE가 더 이상 ldeal link를 유지하지 않는 경우(상위 layer에서 ideal UE release, ideal link를 유지하는데 요구되는 threshold/requirement를 만족하지 못하게 된 경우) 리모트 UE는 이를 기지국에 알릴 수도 있다. 기지국은 이를 참조하여 리모트 UE의 masurement config를 재설정 하거나, HO 고려시 참조할 수도 있다.If the remote UE and the relay UE no longer maintain the ldeal link (if the threshold/requirement required for maintaining the ideal UE release and ideal link in the upper layer is not satisfied), the remote UE may notify the base station of this. The base station can refer to this to reset the masurement config of the remote UE or refer to it when considering HO.
본 개시가 적용되는 통신 시스템 예Example of a communication system to which this disclosure applies
이로 제한되는 것은 아니지만, 본 문서에 개시된 본 개시의 다양한 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 기기들간에 무선 통신/연결(예, 5G)을 필요로 하는 다양한 분야에 적용될 수 있다.Although not limited thereto, the various descriptions, functions, procedures, suggestions, methods, and/or operation flowcharts of the present disclosure disclosed in this document can be applied to various fields requiring wireless communication/connection (e.g., 5G) between devices. there is.
이하, 도면을 참조하여 보다 구체적으로 예시한다. 이하의 도면/설명에서 동일한 도면 부호는 다르게 기술하지 않는 한, 동일하거나 대응되는 하드웨어 블록, 소프트웨어 블록 또는 기능 블록을 예시할 수 있다. Hereinafter, more detailed examples will be provided with reference to the drawings. In the following drawings/descriptions, identical reference numerals may illustrate identical or corresponding hardware blocks, software blocks, or functional blocks, unless otherwise indicated.
도 22는 본 개시에 적용되는 통신 시스템(1)을 예시한다.Figure 22 illustrates a communication system 1 to which this disclosure applies.
도 22를 참조하면, 본 개시에 적용되는 통신 시스템(1)은 무선 기기, 기지국 및 네트워크를 포함한다. 여기서, 무선 기기는 무선 접속 기술(예, 5G NR(New RAT), LTE(Long Term Evolution))을 이용하여 통신을 수행하는 기기를 의미하며, 통신/무선/5G 기기로 지칭될 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(100a), 차량(100b-1, 100b-2), XR(eXtended Reality) 기기(100c), 휴대 기기(Hand-held device)(100d), 가전(100e), IoT(Internet of Thing) 기기(100f), AI기기/서버(400)를 포함할 수 있다. 예를 들어, 차량은 무선 통신 기능이 구비된 차량, 자율 주행 차량, 차량간 통신을 수행할 수 있는 차량 등을 포함할 수 있다. 여기서, 차량은 UAV(Unmanned Aerial Vehicle)(예, 드론)를 포함할 수 있다. XR 기기는 AR(Augmented Reality)/VR(Virtual Reality)/MR(Mixed Reality) 기기를 포함하며, HMD(Head-Mounted Device), 차량에 구비된 HUD(Head-Up Display), 텔레비전, 스마트폰, 컴퓨터, 웨어러블 디바이스, 가전 기기, 디지털 사이니지(signage), 차량, 로봇 등의 형태로 구현될 수 있다. 휴대 기기는 스마트폰, 스마트패드, 웨어러블 기기(예, 스마트워치, 스마트글래스), 컴퓨터(예, 노트북 등) 등을 포함할 수 있다. 가전은 TV, 냉장고, 세탁기 등을 포함할 수 있다. IoT 기기는 센서, 스마트미터 등을 포함할 수 있다. 예를 들어, 기지국, 네트워크는 무선 기기로도 구현될 수 있으며, 특정 무선 기기(200a)는 다른 무선 기기에게 기지국/네트워크 노드로 동작할 수도 있다.Referring to FIG. 22, the communication system 1 applied to the present disclosure includes a wireless device, a base station, and a network. Here, a wireless device refers to a device that performs communication using wireless access technology (e.g., 5G NR (New RAT), LTE (Long Term Evolution)) and may be referred to as a communication/wireless/5G device. Although not limited thereto, wireless devices include robots (100a), vehicles (100b-1, 100b-2), XR (eXtended Reality) devices (100c), hand-held devices (100d), and home appliances (100e). ), IoT (Internet of Thing) device (100f), and AI device/server (400). For example, vehicles may include vehicles equipped with wireless communication functions, autonomous vehicles, vehicles capable of inter-vehicle communication, etc. Here, the vehicle may include an Unmanned Aerial Vehicle (UAV) (eg, a drone). XR devices include AR (Augmented Reality)/VR (Virtual Reality)/MR (Mixed Reality) devices, HMD (Head-Mounted Device), HUD (Head-Up Display) installed in vehicles, televisions, smartphones, It can be implemented in the form of computers, wearable devices, home appliances, digital signage, vehicles, robots, etc. Portable devices may include smartphones, smart pads, wearable devices (e.g., smartwatches, smart glasses), and computers (e.g., laptops, etc.). Home appliances may include TVs, refrigerators, washing machines, etc. IoT devices may include sensors, smart meters, etc. For example, a base station and network may also be implemented as wireless devices, and a specific wireless device 200a may operate as a base station/network node for other wireless devices.
무선 기기(100a~100f)는 기지국(200)을 통해 네트워크(300)와 연결될 수 있다. 무선 기기(100a~100f)에는 AI(Artificial Intelligence) 기술이 적용될 수 있으며, 무선 기기(100a~100f)는 네트워크(300)를 통해 AI 서버(400)와 연결될 수 있다. 네트워크(300)는 3G 네트워크, 4G(예, LTE) 네트워크 또는 5G(예, NR) 네트워크 등을 이용하여 구성될 수 있다. 무선 기기(100a~100f)는 기지국(200)/네트워크(300)를 통해 서로 통신할 수도 있지만, 기지국/네트워크를 통하지 않고 직접 통신(e.g. 사이드링크 통신(sidelink communication))할 수도 있다. 예를 들어, 차량들(100b-1, 100b-2)은 직접 통신(e.g. V2V(Vehicle to Vehicle)/V2X(Vehicle to everything) communication)을 할 수 있다. 또한, IoT 기기(예, 센서)는 다른 IoT 기기(예, 센서) 또는 다른 무선 기기(100a~100f)와 직접 통신을 할 수 있다. Wireless devices 100a to 100f may be connected to the network 300 through the base station 200. AI (Artificial Intelligence) technology may be applied to wireless devices (100a to 100f), and the wireless devices (100a to 100f) may be connected to the AI server 400 through the network 300. The network 300 may be configured using a 3G network, 4G (eg, LTE) network, or 5G (eg, NR) network. Wireless devices 100a to 100f may communicate with each other through the base station 200/network 300, but may also communicate directly (e.g. sidelink communication) without going through the base station/network. For example, vehicles 100b-1 and 100b-2 may communicate directly (e.g. V2V (Vehicle to Vehicle)/V2X (Vehicle to everything) communication). Additionally, an IoT device (eg, sensor) may communicate directly with another IoT device (eg, sensor) or another wireless device (100a to 100f).
무선 기기(100a~100f)/기지국(200), 기지국(200)/기지국(200) 간에는 무선 통신/연결(150a, 150b, 150c)이 이뤄질 수 있다. 여기서, 무선 통신/연결은 상향/하향링크 통신(150a)과 사이드링크 통신(150b)(또는, D2D 통신), 기지국간 통신(150c)(e.g. relay, IAB(Integrated Access Backhaul)과 같은 다양한 무선 접속 기술(예, 5G NR)을 통해 이뤄질 수 있다. 무선 통신/연결(150a, 150b, 150c)을 통해 무선 기기와 기지국/무선 기기, 기지국과 기지국은 서로 무선 신호를 송신/수신할 수 있다. 예를 들어, 무선 통신/연결(150a, 150b, 150c)은 다양한 물리 채널을 통해 신호를 송신/수신할 수 있다. 이를 위해, 본 개시의 다양한 제안들에 기반하여, 무선 신호의 송신/수신을 위한 다양한 구성정보 설정 과정, 다양한 신호 처리 과정(예, 채널 인코딩/디코딩, 변조/복조, 자원 매핑/디매핑 등), 자원 할당 과정 등 중 적어도 일부가 수행될 수 있다.Wireless communication/connection (150a, 150b, 150c) may be established between wireless devices (100a to 100f)/base station (200) and base station (200)/base station (200). Here, wireless communication/connection includes various wireless connections such as uplink/downlink communication (150a), sidelink communication (150b) (or D2D communication), and inter-base station communication (150c) (e.g. relay, IAB (Integrated Access Backhaul)). This can be achieved through technology (e.g., 5G NR) through wireless communication/connection (150a, 150b, 150c), where a wireless device and a base station/wireless device, and a base station and a base station can transmit/receive wireless signals to each other. For example, the wireless communication/ connection 150a, 150b, and 150c can transmit/receive signals through various physical channels, based on the various proposals of the present disclosure. At least some of various configuration information setting processes, various signal processing processes (e.g., channel encoding/decoding, modulation/demodulation, resource mapping/demapping, etc.), resource allocation processes, etc. may be performed.
본 개시가 적용되는 무선 기기 예Examples of wireless devices to which this disclosure applies
도 23는 본 개시에 적용될 수 있는 무선 기기를 예시한다.23 illustrates a wireless device to which the present disclosure can be applied.
도 23를 참조하면, 제1 무선 기기(100)와 제2 무선 기기(200)는 다양한 무선 접속 기술(예, LTE, NR)을 통해 무선 신호를 송수신할 수 있다. 여기서, {제1 무선 기기(100), 제2 무선 기기(200)}은 도 22의 {무선 기기(100x), 기지국(200)} 및/또는 {무선 기기(100x), 무선 기기(100x)}에 대응할 수 있다.Referring to FIG. 23, the first wireless device 100 and the second wireless device 200 can transmit and receive wireless signals through various wireless access technologies (eg, LTE, NR). Here, {first wireless device 100, second wireless device 200} refers to {wireless device 100x, base station 200} and/or {wireless device 100x, wireless device 100x) in FIG. 22. } can be responded to.
제1 무선 기기(100)는 하나 이상의 프로세서(102) 및 하나 이상의 메모리(104)를 포함하며, 추가적으로 하나 이상의 송수신기(106) 및/또는 하나 이상의 안테나(108)을 더 포함할 수 있다. 프로세서(102)는 메모리(104) 및/또는 송수신기(106)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(102)는 메모리(104) 내의 정보를 처리하여 제1 정보/신호를 생성한 뒤, 송수신기(106)을 통해 제1 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(102)는 송수신기(106)를 통해 제2 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제2 정보/신호의 신호 처리로부터 얻은 정보를 메모리(104)에 저장할 수 있다. 메모리(104)는 프로세서(102)와 연결될 수 있고, 프로세서(102)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(104)는 프로세서(102)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(102)와 메모리(104)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(106)는 프로세서(102)와 연결될 수 있고, 하나 이상의 안테나(108)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(106)는 송신기 및/또는 수신기를 포함할 수 있다. 송수신기(106)는 RF(Radio Frequency) 유닛과 혼용될 수 있다. 본 개시에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.The first wireless device 100 includes one or more processors 102 and one or more memories 104, and may further include one or more transceivers 106 and/or one or more antennas 108. Processor 102 controls memory 104 and/or transceiver 106 and may be configured to implement the descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed herein. For example, the processor 102 may process information in the memory 104 to generate first information/signal and then transmit a wireless signal including the first information/signal through the transceiver 106. Additionally, the processor 102 may receive a wireless signal including the second information/signal through the transceiver 106 and then store information obtained from signal processing of the second information/signal in the memory 104. The memory 104 may be connected to the processor 102 and may store various information related to the operation of the processor 102. For example, memory 104 may perform some or all of the processes controlled by processor 102 or instructions for performing the descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed herein. Software code containing them can be stored. Here, the processor 102 and memory 104 may be part of a communication modem/circuit/chip designed to implement wireless communication technology (eg, LTE, NR). Transceiver 106 may be coupled to processor 102 and may transmit and/or receive wireless signals via one or more antennas 108. Transceiver 106 may include a transmitter and/or receiver. The transceiver 106 can be used interchangeably with an RF (Radio Frequency) unit. In this disclosure, a wireless device may mean a communication modem/circuit/chip.
제2 무선 기기(200)는 하나 이상의 프로세서(202), 하나 이상의 메모리(204)를 포함하며, 추가적으로 하나 이상의 송수신기(206) 및/또는 하나 이상의 안테나(208)를 더 포함할 수 있다. 프로세서(202)는 메모리(204) 및/또는 송수신기(206)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(202)는 메모리(204) 내의 정보를 처리하여 제3 정보/신호를 생성한 뒤, 송수신기(206)를 통해 제3 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(202)는 송수신기(206)를 통해 제4 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제4 정보/신호의 신호 처리로부터 얻은 정보를 메모리(204)에 저장할 수 있다. 메모리(204)는 프로세서(202)와 연결될 수 있고, 프로세서(202)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(204)는 프로세서(202)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(202)와 메모리(204)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(206)는 프로세서(202)와 연결될 수 있고, 하나 이상의 안테나(208)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(206)는 송신기 및/또는 수신기를 포함할 수 있다 송수신기(206)는 RF 유닛과 혼용될 수 있다. 본 개시에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.The second wireless device 200 includes one or more processors 202, one or more memories 204, and may further include one or more transceivers 206 and/or one or more antennas 208. Processor 202 controls memory 204 and/or transceiver 206 and may be configured to implement the descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed herein. For example, the processor 202 may process the information in the memory 204 to generate third information/signal and then transmit a wireless signal including the third information/signal through the transceiver 206. Additionally, the processor 202 may receive a wireless signal including the fourth information/signal through the transceiver 206 and then store information obtained from signal processing of the fourth information/signal in the memory 204. The memory 204 may be connected to the processor 202 and may store various information related to the operation of the processor 202. For example, memory 204 may perform some or all of the processes controlled by processor 202 or instructions for performing the descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed herein. Software code containing them can be stored. Here, the processor 202 and memory 204 may be part of a communication modem/circuit/chip designed to implement wireless communication technology (eg, LTE, NR). Transceiver 206 may be coupled to processor 202 and may transmit and/or receive wireless signals via one or more antennas 208. Transceiver 206 may include a transmitter and/or receiver. Transceiver 206 may be used interchangeably with an RF unit. In this disclosure, a wireless device may mean a communication modem/circuit/chip.
이하, 무선 기기(100, 200)의 하드웨어 요소에 대해 보다 구체적으로 설명한다. 이로 제한되는 것은 아니지만, 하나 이상의 프로토콜 계층이 하나 이상의 프로세서(102, 202)에 의해 구현될 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 계층(예, PHY, MAC, RLC, PDCP, RRC, SDAP와 같은 기능적 계층)을 구현할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 하나 이상의 PDU(Protocol Data Unit) 및/또는 하나 이상의 SDU(Service Data Unit)를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 메시지, 제어정보, 데이터 또는 정보를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 기능, 절차, 제안 및/또는 방법에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 포함하는 신호(예, 베이스밴드 신호)를 생성하여, 하나 이상의 송수신기(106, 206)에게 제공할 수 있다. 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)로부터 신호(예, 베이스밴드 신호)를 수신할 수 있고, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 획득할 수 있다.Hereinafter, the hardware elements of the wireless devices 100 and 200 will be described in more detail. Although not limited thereto, one or more protocol layers may be implemented by one or more processors 102, 202. For example, one or more processors 102, 202 may implement one or more layers (e.g., functional layers such as PHY, MAC, RLC, PDCP, RRC, SDAP). One or more processors 102, 202 may generate one or more Protocol Data Units (PDUs) and/or one or more Service Data Units (SDUs) according to the descriptions, functions, procedures, suggestions, methods and/or operational flow charts disclosed herein. can be created. One or more processors 102, 202 may generate messages, control information, data or information according to the descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed herein. One or more processors 102, 202 generate signals (e.g., baseband signals) containing PDUs, SDUs, messages, control information, data or information according to the functions, procedures, suggestions and/or methods disclosed herein. , can be provided to one or more transceivers (106, 206). One or more processors 102, 202 may receive signals (e.g., baseband signals) from one or more transceivers 106, 206, and the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed herein. Depending on the device, PDU, SDU, message, control information, data or information can be obtained.
하나 이상의 프로세서(102, 202)는 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 또는 마이크로 컴퓨터로 지칭될 수 있다. 하나 이상의 프로세서(102, 202)는 하드웨어, 펌웨어, 소프트웨어, 또는 이들의 조합에 의해 구현될 수 있다. 일 예로, 하나 이상의 ASIC(Application Specific Integrated Circuit), 하나 이상의 DSP(Digital Signal Processor), 하나 이상의 DSPD(Digital Signal Processing Device), 하나 이상의 PLD(Programmable Logic Device) 또는 하나 이상의 FPGA(Field Programmable Gate Arrays)가 하나 이상의 프로세서(102, 202)에 포함될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있고, 펌웨어 또는 소프트웨어는 모듈, 절차, 기능 등을 포함하도록 구현될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 수행하도록 설정된 펌웨어 또는 소프트웨어는 하나 이상의 프로세서(102, 202)에 포함되거나, 하나 이상의 메모리(104, 204)에 저장되어 하나 이상의 프로세서(102, 202)에 의해 구동될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 코드, 명령어 및/또는 명령어의 집합 형태로 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있다. One or more processors 102, 202 may be referred to as a controller, microcontroller, microprocessor, or microcomputer. One or more processors 102, 202 may be implemented by hardware, firmware, software, or a combination thereof. As an example, one or more Application Specific Integrated Circuits (ASICs), one or more Digital Signal Processors (DSPs), one or more Digital Signal Processing Devices (DSPDs), one or more Programmable Logic Devices (PLDs), or one or more Field Programmable Gate Arrays (FPGAs) May be included in one or more processors 102 and 202. The descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed in this document may be implemented using firmware or software, and the firmware or software may be implemented to include modules, procedures, functions, etc. Firmware or software configured to perform the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed in this document may be included in one or more processors (102, 202) or stored in one or more memories (104, 204). It may be driven by the above processors 102 and 202. The descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed in this document may be implemented using firmware or software in the form of codes, instructions and/or sets of instructions.
하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 다양한 형태의 데이터, 신호, 메시지, 정보, 프로그램, 코드, 지시 및/또는 명령을 저장할 수 있다. 하나 이상의 메모리(104, 204)는 ROM, RAM, EPROM, 플래시 메모리, 하드 드라이브, 레지스터, 캐쉬 메모리, 컴퓨터 판독 저장 매체 및/또는 이들의 조합으로 구성될 수 있다. 하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)의 내부 및/또는 외부에 위치할 수 있다. 또한, 하나 이상의 메모리(104, 204)는 유선 또는 무선 연결과 같은 다양한 기술을 통해 하나 이상의 프로세서(102, 202)와 연결될 수 있다.One or more memories 104, 204 may be connected to one or more processors 102, 202 and may store various types of data, signals, messages, information, programs, codes, instructions, and/or instructions. One or more memories 104, 204 may consist of ROM, RAM, EPROM, flash memory, hard drives, registers, cache memory, computer readable storage media, and/or combinations thereof. One or more memories 104, 204 may be located internal to and/or external to one or more processors 102, 202. Additionally, one or more memories 104, 204 may be connected to one or more processors 102, 202 through various technologies, such as wired or wireless connections.
하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치에게 본 문서의 방법들 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 전송할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치로부터 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 수신할 수 있다. 예를 들어, 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 무선 신호를 송수신할 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치에게 사용자 데이터, 제어 정보 또는 무선 신호를 전송하도록 제어할 수 있다. 또한, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치로부터 사용자 데이터, 제어 정보 또는 무선 신호를 수신하도록 제어할 수 있다. 또한, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)와 연결될 수 있고, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)를 통해 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 송수신하도록 설정될 수 있다. 본 문서에서, 하나 이상의 안테나는 복수의 물리 안테나이거나, 복수의 논리 안테나(예, 안테나 포트)일 수 있다. 하나 이상의 송수신기(106, 206)는 수신된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 하나 이상의 프로세서(102, 202)를 이용하여 처리하기 위해, 수신된 무선 신호/채널 등을 RF 밴드 신호에서 베이스밴드 신호로 변환(Convert)할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)를 이용하여 처리된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 베이스밴드 신호에서 RF 밴드 신호로 변환할 수 있다. 이를 위하여, 하나 이상의 송수신기(106, 206)는 (아날로그) 오실레이터 및/또는 필터를 포함할 수 있다.One or more transceivers 106, 206 may transmit user data, control information, wireless signals/channels, etc. mentioned in the methods and/or operation flowcharts of this document to one or more other devices. One or more transceivers 106, 206 may receive user data, control information, wireless signals/channels, etc. referred to in the descriptions, functions, procedures, suggestions, methods and/or operational flow charts, etc. disclosed herein from one or more other devices. there is. For example, one or more transceivers 106 and 206 may be connected to one or more processors 102 and 202 and may transmit and receive wireless signals. For example, one or more processors 102, 202 may control one or more transceivers 106, 206 to transmit user data, control information, or wireless signals to one or more other devices. Additionally, one or more processors 102, 202 may control one or more transceivers 106, 206 to receive user data, control information, or wireless signals from one or more other devices. In addition, one or more transceivers (106, 206) may be connected to one or more antennas (108, 208), and one or more transceivers (106, 206) may perform the description and functions disclosed in this document through one or more antennas (108, 208). , may be set to transmit and receive user data, control information, wireless signals/channels, etc. mentioned in procedures, proposals, methods and/or operation flow charts, etc. In this document, one or more antennas may be multiple physical antennas or multiple logical antennas (eg, antenna ports). One or more transceivers (106, 206) process the received user data, control information, wireless signals/channels, etc. using one or more processors (102, 202), and convert the received wireless signals/channels, etc. from the RF band signal. It can be converted to a baseband signal. One or more transceivers (106, 206) may convert user data, control information, wireless signals/channels, etc. processed using one or more processors (102, 202) from baseband signals to RF band signals. For this purpose, one or more transceivers 106, 206 may comprise (analog) oscillators and/or filters.
본 개시가 적용되는 차량 또는 자율 주행 차량 예Examples of vehicles or autonomous vehicles to which this disclosure applies
도 24는 본 개시에 적용되는 차량 또는 자율 주행 차량을 예시한다. 차량 또는 자율 주행 차량은 이동형 로봇, 차량, 기차, 유/무인 비행체(Aerial Vehicle, AV), 선박 등으로 구현될 수 있다.Figure 24 illustrates a vehicle or autonomous vehicle to which this disclosure applies. A vehicle or autonomous vehicle can be implemented as a mobile robot, vehicle, train, manned/unmanned aerial vehicle (AV), ship, etc.
도 24를 참조하면, 차량 또는 자율 주행 차량(100)은 안테나부(108), 통신부(110), 제어부(120), 구동부(140a), 전원공급부(140b), 센서부(140c) 및 자율 주행부(140d)를 포함할 수 있다. 안테나부(108)는 통신부(110)의 일부로 구성될 수 있다. Referring to FIG. 24, the vehicle or autonomous vehicle 100 includes an antenna unit 108, a communication unit 110, a control unit 120, a drive unit 140a, a power supply unit 140b, a sensor unit 140c, and an autonomous driving unit. It may include a portion 140d. The antenna unit 108 may be configured as part of the communication unit 110.
통신부(110)는 다른 차량, 기지국(e.g. 기지국, 노변 기지국(Road Side unit) 등), 서버 등의 외부 기기들과 신호(예, 데이터, 제어 신호 등)를 송수신할 수 있다. 제어부(120)는 차량 또는 자율 주행 차량(100)의 요소들을 제어하여 다양한 동작을 수행할 수 있다. 제어부(120)는 ECU(Electronic Control Unit)를 포함할 수 있다. 구동부(140a)는 차량 또는 자율 주행 차량(100)을 지상에서 주행하게 할 수 있다. 구동부(140a)는 엔진, 모터, 파워 트레인, 바퀴, 브레이크, 조향 장치 등을 포함할 수 있다. 전원공급부(140b)는 차량 또는 자율 주행 차량(100)에게 전원을 공급하며, 유/무선 충전 회로, 배터리 등을 포함할 수 있다. 센서부(140c)는 차량 상태, 주변 환경 정보, 사용자 정보 등을 얻을 수 있다. 센서부(140c)는 IMU(inertial measurement unit) 센서, 충돌 센서, 휠 센서(wheel sensor), 속도 센서, 경사 센서, 중량 감지 센서, 헤딩 센서(heading sensor), 포지션 모듈(position module), 차량 전진/후진 센서, 배터리 센서, 연료 센서, 타이어 센서, 스티어링 센서, 온도 센서, 습도 센서, 초음파 센서, 조도 센서, 페달 포지션 센서 등을 포함할 수 있다. 자율 주행부(140d)는 주행중인 차선을 유지하는 기술, 어댑티브 크루즈 컨트롤과 같이 속도를 자동으로 조절하는 기술, 정해진 경로를 따라 자동으로 주행하는 기술, 목적지가 설정되면 자동으로 경로를 설정하여 주행하는 기술 등을 구현할 수 있다.The communication unit 110 may transmit and receive signals (e.g., data, control signals, etc.) with external devices such as other vehicles, base stations (e.g. base stations, road side units, etc.), and servers. The control unit 120 may perform various operations by controlling elements of the vehicle or autonomous vehicle 100. The control unit 120 may include an Electronic Control Unit (ECU). The driving unit 140a can drive the vehicle or autonomous vehicle 100 on the ground. The driving unit 140a may include an engine, motor, power train, wheels, brakes, steering device, etc. The power supply unit 140b supplies power to the vehicle or autonomous vehicle 100 and may include a wired/wireless charging circuit, a battery, etc. The sensor unit 140c can obtain vehicle status, surrounding environment information, user information, etc. The sensor unit 140c includes an inertial measurement unit (IMU) sensor, a collision sensor, a wheel sensor, a speed sensor, an inclination sensor, a weight sensor, a heading sensor, a position module, and a vehicle forward sensor. /May include a reverse sensor, battery sensor, fuel sensor, tire sensor, steering sensor, temperature sensor, humidity sensor, ultrasonic sensor, illuminance sensor, pedal position sensor, etc. The autonomous driving unit 140d includes technology to maintain the driving lane, technology to automatically adjust speed such as adaptive cruise control, technology to automatically drive along a set route, and technology to automatically set the route and drive when the destination is set. Technology, etc. can be implemented.
일 예로, 통신부(110)는 외부 서버로부터 지도 데이터, 교통 정보 데이터 등을 수신할 수 있다. 자율 주행부(140d)는 획득된 데이터를 기반으로 자율 주행 경로와 드라이빙 플랜을 생성할 수 있다. 제어부(120)는 드라이빙 플랜에 따라 차량 또는 자율 주행 차량(100)이 자율 주행 경로를 따라 이동하도록 구동부(140a)를 제어할 수 있다(예, 속도/방향 조절). 자율 주행 도중에 통신부(110)는 외부 서버로부터 최신 교통 정보 데이터를 비/주기적으로 획득하며, 주변 차량으로부터 주변 교통 정보 데이터를 획득할 수 있다. 또한, 자율 주행 도중에 센서부(140c)는 차량 상태, 주변 환경 정보를 획득할 수 있다. 자율 주행부(140d)는 새로 획득된 데이터/정보에 기반하여 자율 주행 경로와 드라이빙 플랜을 갱신할 수 있다. 통신부(110)는 차량 위치, 자율 주행 경로, 드라이빙 플랜 등에 관한 정보를 외부 서버로 전달할 수 있다. 외부 서버는 차량 또는 자율 주행 차량들로부터 수집된 정보에 기반하여, AI 기술 등을 이용하여 교통 정보 데이터를 미리 예측할 수 있고, 예측된 교통 정보 데이터를 차량 또는 자율 주행 차량들에게 제공할 수 있다.For example, the communication unit 110 may receive map data, traffic information data, etc. from an external server. The autonomous driving unit 140d may create an autonomous driving route and driving plan based on the acquired data. The control unit 120 may control the driving unit 140a so that the vehicle or autonomous vehicle 100 moves along the autonomous driving path according to the driving plan (e.g., speed/direction control). During autonomous driving, the communication unit 110 may acquire the latest traffic information data from an external server irregularly/periodically and obtain surrounding traffic information data from surrounding vehicles. Additionally, during autonomous driving, the sensor unit 140c can obtain vehicle status and surrounding environment information. The autonomous driving unit 140d may update the autonomous driving route and driving plan based on newly acquired data/information. The communication unit 110 may transmit information about vehicle location, autonomous driving route, driving plan, etc. to an external server. An external server can predict traffic information data in advance using AI technology, etc., based on information collected from vehicles or self-driving vehicles, and provide the predicted traffic information data to the vehicles or self-driving vehicles.
본 개시가 적용되는 AR/VR 및 차량 예AR/VR and vehicle examples to which this disclosure applies
도 25은 본 개시에 적용되는 차량을 예시한다. 차량은 운송수단, 기차, 비행체, 선박 등으로도 구현될 수 있다.25 illustrates a vehicle to which this disclosure applies. Vehicles can also be implemented as transportation, trains, airplanes, ships, etc.
도 25을 참조하면, 차량(100)은 통신부(110), 제어부(120), 메모리부(130), 입출력부(140a) 및 위치 측정부(140b)를 포함할 수 있다. Referring to FIG. 25, the vehicle 100 may include a communication unit 110, a control unit 120, a memory unit 130, an input/output unit 140a, and a position measurement unit 140b.
통신부(110)는 다른 차량, 또는 기지국 등의 외부 기기들과 신호(예, 데이터, 제어 신호 등)를 송수신할 수 있다. 제어부(120)는 차량(100)의 구성 요소들을 제어하여 다양한 동작을 수행할 수 있다. 메모리부(130)는 차량(100)의 다양한 기능을 지원하는 데이터/파라미터/프로그램/코드/명령을 저장할 수 있다. 입출력부(140a)는 메모리부(130) 내의 정보에 기반하여 AR/VR 오브젝트를 출력할 수 있다. 입출력부(140a)는 HUD를 포함할 수 있다. 위치 측정부(140b)는 차량(100)의 위치 정보를 획득할 수 있다. 위치 정보는 차량(100)의 절대 위치 정보, 주행선 내에서의 위치 정보, 가속도 정보, 주변 차량과의 위치 정보 등을 포함할 수 있다. 위치 측정부(140b)는 GPS 및 다양한 센서들을 포함할 수 있다.The communication unit 110 may transmit and receive signals (eg, data, control signals, etc.) with other vehicles or external devices such as a base station. The control unit 120 can control components of the vehicle 100 to perform various operations. The memory unit 130 may store data/parameters/programs/codes/commands that support various functions of the vehicle 100. The input/output unit 140a may output an AR/VR object based on the information in the memory unit 130. The input/output unit 140a may include a HUD. The location measuring unit 140b may obtain location information of the vehicle 100. The location information may include absolute location information of the vehicle 100, location information within the driving line, acceleration information, and location information with surrounding vehicles. The location measuring unit 140b may include GPS and various sensors.
일 예로, 차량(100)의 통신부(110)는 외부 서버로부터 지도 정보, 교통 정보 등을 수신하여 메모리부(130)에 저장할 수 있다. 위치 측정부(140b)는 GPS 및 다양한 센서를 통하여 차량 위치 정보를 획득하여 메모리부(130)에 저장할 수 있다. 제어부(120)는 지도 정보, 교통 정보 및 차량 위치 정보 등에 기반하여 가상 오브젝트를 생성하고, 입출력부(140a)는 생성된 가상 오브젝트를 차량 내 유리창에 표시할 수 있다(1410, 1420). 또한, 제어부(120)는 차량 위치 정보에 기반하여 차량(100)이 주행선 내에서 정상적으로 운행되고 있는지 판단할 수 있다. 차량(100)이 주행선을 비정상적으로 벗어나는 경우, 제어부(120)는 입출력부(140a)를 통해 차량 내 유리창에 경고를 표시할 수 있다. 또한, 제어부(120)는 통신부(110)를 통해 주변 차량들에게 주행 이상에 관한 경고 메세지를 방송할 수 있다. 상황에 따라, 제어부(120)는 통신부(110)를 통해 관계 기관에게 차량의 위치 정보와, 주행/차량 이상에 관한 정보를 전송할 수 있다. For example, the communication unit 110 of the vehicle 100 may receive map information, traffic information, etc. from an external server and store them in the memory unit 130. The location measurement unit 140b may acquire vehicle location information through GPS and various sensors and store it in the memory unit 130. The control unit 120 creates a virtual object based on map information, traffic information, and vehicle location information, and the input/output unit 140a can display the generated virtual object on the window of the vehicle (1410, 1420). Additionally, the control unit 120 may determine whether the vehicle 100 is operating normally within the driving line based on vehicle location information. If the vehicle 100 deviates from the driving line abnormally, the control unit 120 may display a warning on the window of the vehicle through the input/output unit 140a. Additionally, the control unit 120 may broadcast a warning message regarding driving abnormalities to surrounding vehicles through the communication unit 110. Depending on the situation, the control unit 120 may transmit location information of the vehicle and information about driving/vehicle abnormalities to the relevant organizations through the communication unit 110.
본 개시가 적용되는 XR 기기 예Examples of XR devices to which this disclosure applies
도 26은 본 개시에 적용되는 XR 기기를 예시한다. XR 기기는 HMD, 차량에 구비된 HUD(Head-Up Display), 텔레비전, 스마트폰, 컴퓨터, 웨어러블 디바이스, 가전 기기, 디지털 사이니지(signage), 차량, 로봇 등으로 구현될 수 있다.Figure 26 illustrates an XR device applied to the present disclosure. XR devices can be implemented as HMDs, HUDs (Head-Up Displays) installed in vehicles, televisions, smartphones, computers, wearable devices, home appliances, digital signage, vehicles, robots, etc.
도 26을 참조하면, XR 기기(100a)는 통신부(110), 제어부(120), 메모리부(130), 입출력부(140a), 센서부(140b) 및 전원공급부(140c)를 포함할 수 있다. Referring to FIG. 26, the XR device 100a may include a communication unit 110, a control unit 120, a memory unit 130, an input/output unit 140a, a sensor unit 140b, and a power supply unit 140c. .
통신부(110)는 다른 무선 기기, 휴대 기기, 또는 미디어 서버 등의 외부 기기들과 신호(예, 미디어 데이터, 제어 신호 등)를 송수신할 수 있다. 미디어 데이터는 영상, 이미지, 소리 등을 포함할 수 있다. 제어부(120)는 XR 기기(100a)의 구성 요소들을 제어하여 다양한 동작을 수행할 수 있다. 예를 들어, 제어부(120)는 비디오/이미지 획득, (비디오/이미지) 인코딩, 메타데이터 생성 및 처리 등의 절차를 제어 및/또는 수행하도록 구성될 수 있다. 메모리부(130)는 XR 기기(100a)의 구동/XR 오브젝트의 생성에 필요한 데이터/파라미터/프로그램/코드/명령을 저장할 수 있다. 입출력부(140a)는 외부로부터 제어 정보, 데이터 등을 획득하며, 생성된 XR 오브젝트를 출력할 수 있다. 입출력부(140a)는 카메라, 마이크로폰, 사용자 입력부, 디스플레이부, 스피커 및/또는 햅틱 모듈 등을 포함할 수 있다. 센서부(140b)는 XR 기기 상태, 주변 환경 정보, 사용자 정보 등을 얻을 수 있다. 센서부(140b)는 근접 센서, 조도 센서, 가속도 센서, 자기 센서, 자이로 센서, 관성 센서, RGB 센서, IR 센서, 지문 인식 센서, 초음파 센서, 광 센서, 마이크로폰 및/또는 레이더 등을 포함할 수 있다. 전원공급부(140c)는 XR 기기(100a)에게 전원을 공급하며, 유/무선 충전 회로, 배터리 등을 포함할 수 있다.The communication unit 110 may transmit and receive signals (eg, media data, control signals, etc.) with external devices such as other wireless devices, mobile devices, or media servers. Media data may include video, images, sound, etc. The control unit 120 may perform various operations by controlling the components of the XR device 100a. For example, the control unit 120 may be configured to control and/or perform procedures such as video/image acquisition, (video/image) encoding, and metadata generation and processing. The memory unit 130 may store data/parameters/programs/codes/commands necessary for driving the XR device 100a/creating an XR object. The input/output unit 140a may obtain control information, data, etc. from the outside and output the generated XR object. The input/output unit 140a may include a camera, microphone, user input unit, display unit, speaker, and/or haptic module. The sensor unit 140b can obtain XR device status, surrounding environment information, user information, etc. The sensor unit 140b may include a proximity sensor, an illumination sensor, an acceleration sensor, a magnetic sensor, a gyro sensor, an inertial sensor, an RGB sensor, an IR sensor, a fingerprint recognition sensor, an ultrasonic sensor, an optical sensor, a microphone, and/or a radar. there is. The power supply unit 140c supplies power to the XR device 100a and may include a wired/wireless charging circuit, a battery, etc.
일 예로, XR 기기(100a)의 메모리부(130)는 XR 오브젝트(예, AR/VR/MR 오브젝트)의 생성에 필요한 정보(예, 데이터 등)를 포함할 수 있다. 입출력부(140a)는 사용자로부터 XR 기기(100a)를 조작하는 명령을 회득할 수 있으며, 제어부(120)는 사용자의 구동 명령에 따라 XR 기기(100a)를 구동시킬 수 있다. 예를 들어, 사용자가 XR 기기(100a)를 통해 영화, 뉴스 등을 시청하려고 하는 경우, 제어부(120)는 통신부(130)를 통해 컨텐츠 요청 정보를 다른 기기(예, 휴대 기기(100b)) 또는 미디어 서버에 전송할 수 있다. 통신부(130)는 다른 기기(예, 휴대 기기(100b)) 또는 미디어 서버로부터 영화, 뉴스 등의 컨텐츠를 메모리부(130)로 다운로드/스트리밍 받을 수 있다. 제어부(120)는 컨텐츠에 대해 비디오/이미지 획득, (비디오/이미지) 인코딩, 메타데이터 생성/처리 등의 절차를 제어 및/또는 수행하며, 입출력부(140a)/센서부(140b)를 통해 획득한 주변 공간 또는 현실 오브젝트에 대한 정보에 기반하여 XR 오브젝트를 생성/출력할 수 있다.As an example, the memory unit 130 of the XR device 100a may include information (eg, data, etc.) necessary for creating an XR object (eg, AR/VR/MR object). The input/output unit 140a can obtain a command to operate the XR device 100a from the user, and the control unit 120 can drive the XR device 100a according to the user's driving command. For example, when a user tries to watch a movie, news, etc. through the XR device 100a, the control unit 120 sends content request information to another device (e.g., mobile device 100b) or It can be transmitted to a media server. The communication unit 130 may download/stream content such as movies and news from another device (eg, the mobile device 100b) or a media server to the memory unit 130. The control unit 120 controls and/or performs procedures such as video/image acquisition, (video/image) encoding, and metadata creation/processing for the content, and acquires it through the input/output unit 140a/sensor unit 140b. XR objects can be created/output based on information about the surrounding space or real objects.
또한, XR 기기(100a)는 통신부(110)를 통해 휴대 기기(100b)와 무선으로 연결되며, XR 기기(100a)의 동작은 휴대 기기(100b)에 의해 제어될 수 있다. 예를 들어, 휴대 기기(100b)는 XR 기기(100a)에 대한 콘트롤러로 동작할 수 있다. 이를 위해, XR 기기(100a)는 휴대 기기(100b)의 3차원 위치 정보를 획득한 뒤, 휴대 기기(100b)에 대응하는 XR 개체를 생성하여 출력할 수 있다. Additionally, the XR device 100a is wirelessly connected to the mobile device 100b through the communication unit 110, and the operation of the XR device 100a can be controlled by the mobile device 100b. For example, the mobile device 100b may operate as a controller for the XR device 100a. To this end, the XR device 100a may obtain 3D location information of the mobile device 100b, then generate and output an XR object corresponding to the mobile device 100b.
본 개시가 적용되는 로봇 예Robot example to which this disclosure applies
도 27은 본 개시에 적용되는 로봇을 예시한다. 로봇은 사용 목적이나 분야에 따라 산업용, 의료용, 가정용, 군사용 등으로 분류될 수 있다.Figure 27 illustrates a robot to which this disclosure is applied. Robots can be classified into industrial, medical, household, military, etc. depending on the purpose or field of use.
도 27을 참조하면, 로봇(100)은 통신부(110), 제어부(120), 메모리부(130), 입출력부(140a), 센서부(140b) 및 구동부(140c)를 포함할 수 있다. Referring to FIG. 27, the robot 100 may include a communication unit 110, a control unit 120, a memory unit 130, an input/output unit 140a, a sensor unit 140b, and a driver 140c.
통신부(110)는 다른 무선 기기, 다른 로봇, 또는 제어 서버 등의 외부 기기들과 신호(예, 구동 정보, 제어 신호 등)를 송수신할 수 있다. 제어부(120)는 로봇(100)의 구성 요소들을 제어하여 다양한 동작을 수행할 수 있다. 메모리부(130)는 로봇(100)의 다양한 기능을 지원하는 데이터/파라미터/프로그램/코드/명령을 저장할 수 있다. 입출력부(140a)는 로봇(100)의 외부로부터 정보를 획득하며, 로봇(100)의 외부로 정보를 출력할 수 있다. 입출력부(140a)는 카메라, 마이크로폰, 사용자 입력부, 디스플레이부, 스피커 및/또는 햅틱 모듈 등을 포함할 수 있다. 센서부(140b)는 로봇(100)의 내부 정보, 주변 환경 정보, 사용자 정보 등을 얻을 수 있다. 센서부(140b)는 근접 센서, 조도 센서, 가속도 센서, 자기 센서, 자이로 센서, 관성 센서, IR 센서, 지문 인식 센서, 초음파 센서, 광 센서, 마이크로폰, 레이더 등을 포함할 수 있다. 구동부(140c)는 로봇 관절을 움직이는 등의 다양한 물리적 동작을 수행할 수 있다. 또한, 구동부(140c)는 로봇(100)을 지상에서 주행하거나 공중에서 비행하게 할 수 있다. 구동부(140c)는 액츄에이터, 모터, 바퀴, 브레이크, 프로펠러 등을 포함할 수 있다.The communication unit 110 may transmit and receive signals (e.g., driving information, control signals, etc.) with external devices such as other wireless devices, other robots, or control servers. The control unit 120 can control the components of the robot 100 to perform various operations. The memory unit 130 may store data/parameters/programs/codes/commands that support various functions of the robot 100. The input/output unit 140a may obtain information from the outside of the robot 100 and output the information to the outside of the robot 100. The input/output unit 140a may include a camera, microphone, user input unit, display unit, speaker, and/or haptic module. The sensor unit 140b can obtain internal information of the robot 100, surrounding environment information, user information, etc. The sensor unit 140b may include a proximity sensor, an illumination sensor, an acceleration sensor, a magnetic sensor, a gyro sensor, an inertial sensor, an IR sensor, a fingerprint recognition sensor, an ultrasonic sensor, an optical sensor, a microphone, a radar, etc. The driving unit 140c can perform various physical operations such as moving robot joints. Additionally, the driving unit 140c can cause the robot 100 to run on the ground or fly in the air. The driving unit 140c may include an actuator, motor, wheel, brake, propeller, etc.
본 개시가 적용되는 AI 기기 예Examples of AI devices to which this disclosure applies
도 28은 본 개시에 적용되는 AI 기기를 예시한다. AI 기기는 TV, 프로젝터, 스마트폰, PC, 노트북, 디지털방송용 단말기, 태블릿 PC, 웨어러블 장치, 셋톱박스(STB), 라디오, 세탁기, 냉장고, 디지털 사이니지, 로봇, 차량 등과 같은, 고정형 기기 또는 이동 가능한 기기 등으로 구현될 수 있다.Figure 28 illustrates an AI device applied to this disclosure. AI devices are fixed or mobile devices such as TVs, projectors, smartphones, PCs, laptops, digital broadcasting terminals, tablet PCs, wearable devices, set-top boxes (STBs), radios, washing machines, refrigerators, digital signage, robots, vehicles, etc. It can be implemented with available devices, etc.
도 28을 참조하면, AI 기기(100)는 통신부(110), 제어부(120), 메모리부(130), 입/출력부(140a/140b), 러닝 프로세서부(140c) 및 센서부(140d)를 포함할 수 있다. Referring to FIG. 28, the AI device 100 includes a communication unit 110, a control unit 120, a memory unit 130, an input/output unit (140a/140b), a learning processor unit 140c, and a sensor unit 140d. may include.
통신부(110)는 유무선 통신 기술을 이용하여 다른 AI 기기(예, 도 22, 100x, 200, 400)나 AI 서버(예, 도 22의 400) 등의 외부 기기들과 유무선 신호(예, 센서 정보, 사용자 입력, 학습 모델, 제어 신호 등)를 송수신할 수 있다. 이를 위해, 통신부(110)는 메모리부(130) 내의 정보를 외부 기기로 전송하거나, 외부 기기로부터 수신된 신호를 메모리부(130)로 전달할 수 있다.The communication unit 110 uses wired and wireless communication technology to communicate with wired and wireless signals (e.g., sensor information) with external devices such as other AI devices (e.g., 100x, 200, 400 in Figure 22) or AI servers (e.g., 400 in Figure 22). , user input, learning model, control signal, etc.) can be transmitted and received. To this end, the communication unit 110 may transmit information in the memory unit 130 to an external device or transmit a signal received from an external device to the memory unit 130.
제어부(120)는 데이터 분석 알고리즘 또는 머신 러닝 알고리즘을 사용하여 결정되거나 생성된 정보에 기초하여, AI 기기(100)의 적어도 하나의 실행 가능한 동작을 결정할 수 있다. 그리고, 제어부(120)는 AI 기기(100)의 구성 요소들을 제어하여 결정된 동작을 수행할 수 있다. 예를 들어, 제어부(120)는 러닝 프로세서부(140c) 또는 메모리부(130)의 데이터를 요청, 검색, 수신 또는 활용할 수 있고, 적어도 하나의 실행 가능한 동작 중 예측되는 동작이나, 바람직한 것으로 판단되는 동작을 실행하도록 AI 기기(100)의 구성 요소들을 제어할 수 있다. 또한, 제어부(120)는 AI 장치(100)의 동작 내용이나 동작에 대한 사용자의 피드백 등을 포함하는 이력 정보를 수집하여 메모리부(130) 또는 러닝 프로세서부(140c)에 저장하거나, AI 서버(도 22, 400) 등의 외부 장치에 전송할 수 있다. 수집된 이력 정보는 학습 모델을 갱신하는데 이용될 수 있다.The control unit 120 may determine at least one executable operation of the AI device 100 based on information determined or generated using a data analysis algorithm or a machine learning algorithm. And, the control unit 120 can control the components of the AI device 100 to perform the determined operation. For example, the control unit 120 may request, search, receive, or utilize data from the learning processor unit 140c or the memory unit 130, and may select at least one operation that is predicted or determined to be desirable among the executable operations. Components of the AI device 100 can be controlled to execute operations. In addition, the control unit 120 collects history information including the user's feedback on the operation content or operation of the AI device 100 and stores it in the memory unit 130 or the learning processor unit 140c, or the AI server ( It can be transmitted to an external device such as Figure 22, 400). The collected historical information can be used to update the learning model.
메모리부(130)는 AI 기기(100)의 다양한 기능을 지원하는 데이터를 저장할 수 있다. 예를 들어, 메모리부(130)는 입력부(140a)로부터 얻은 데이터, 통신부(110)로부터 얻은 데이터, 러닝 프로세서부(140c)의 출력 데이터, 및 센싱부(140)로부터 얻은 데이터를 저장할 수 있다. 또한, 메모리부(130)는 제어부(120)의 동작/실행에 필요한 제어 정보 및/또는 소프트웨어 코드를 저장할 수 있다.The memory unit 130 can store data supporting various functions of the AI device 100. For example, the memory unit 130 may store data obtained from the input unit 140a, data obtained from the communication unit 110, output data from the learning processor unit 140c, and data obtained from the sensing unit 140. Additionally, the memory unit 130 may store control information and/or software codes necessary for operation/execution of the control unit 120.
입력부(140a)는 AI 기기(100)의 외부로부터 다양한 종류의 데이터를 획득할 수 있다. 예를 들어, 입력부(140a)는 모델 학습을 위한 학습 데이터, 및 학습 모델이 적용될 입력 데이터 등을 획득할 수 있다. 입력부(140a)는 카메라, 마이크로폰 및/또는 사용자 입력부 등을 포함할 수 있다. 출력부(140b)는 시각, 청각 또는 촉각 등과 관련된 출력을 발생시킬 수 있다. 출력부(140b)는 디스플레이부, 스피커 및/또는 햅틱 모듈 등을 포함할 수 있다. 센싱부(140)는 다양한 센서들을 이용하여 AI 기기(100)의 내부 정보, AI 기기(100)의 주변 환경 정보 및 사용자 정보 중 적어도 하나를 얻을 수 있다. 센싱부(140)는 근접 센서, 조도 센서, 가속도 센서, 자기 센서, 자이로 센서, 관성 센서, RGB 센서, IR 센서, 지문 인식 센서, 초음파 센서, 광 센서, 마이크로폰 및/또는 레이더 등을 포함할 수 있다.The input unit 140a can obtain various types of data from outside the AI device 100. For example, the input unit 140a may obtain training data for model learning and input data to which the learning model will be applied. The input unit 140a may include a camera, a microphone, and/or a user input unit. The output unit 140b may generate output related to vision, hearing, or tactile sensation. The output unit 140b may include a display unit, a speaker, and/or a haptic module. The sensing unit 140 may obtain at least one of internal information of the AI device 100, surrounding environment information of the AI device 100, and user information using various sensors. The sensing unit 140 may include a proximity sensor, an illumination sensor, an acceleration sensor, a magnetic sensor, a gyro sensor, an inertial sensor, an RGB sensor, an IR sensor, a fingerprint recognition sensor, an ultrasonic sensor, an optical sensor, a microphone, and/or a radar. there is.
러닝 프로세서부(140c)는 학습 데이터를 이용하여 인공 신경망으로 구성된 모델을 학습시킬 수 있다. 러닝 프로세서부(140c)는 AI 서버(도 22, 400)의 러닝 프로세서부와 함께 AI 프로세싱을 수행할 수 있다. 러닝 프로세서부(140c)는 통신부(110)를 통해 외부 기기로부터 수신된 정보, 및/또는 메모리부(130)에 저장된 정보를 처리할 수 있다. 또한, 러닝 프로세서부(140c)의 출력 값은 통신부(110)를 통해 외부 기기로 전송되거나/되고, 메모리부(130)에 저장될 수 있다.The learning processor unit 140c can train a model composed of an artificial neural network using training data. The learning processor unit 140c may perform AI processing together with the learning processor unit of the AI server (FIG. 22, 400). The learning processor unit 140c may process information received from an external device through the communication unit 110 and/or information stored in the memory unit 130. Additionally, the output value of the learning processor unit 140c may be transmitted to an external device through the communication unit 110 and/or stored in the memory unit 130.
상술한 바와 같은 실시형태들은 다양한 이동통신 시스템에 적용될 수 있다.Embodiments as described above can be applied to various mobile communication systems.

Claims (14)

  1. 무선통신시스템에서 릴레이 UE(User Equipment) 선택에 관련된 제1 UE의 동작 방법에 있어서,In a method of operating a first UE related to relay UE (User Equipment) selection in a wireless communication system,
    상기 제1 UE가 하나 이상의 후보 릴레이 UE 중에서 릴레이 UE를 선택;The first UE selects a relay UE from one or more candidate relay UEs;
    상기 제1 UE가, 상기 선택된 릴레이 UE와 PC5 link가 없는 것에 기초하여, 상기 선택된 릴레이 UE와 PC5 link를 수립; 및The first UE establishes a PC5 link with the selected relay UE based on the absence of a PC5 link with the selected relay UE; and
    상기 제1 UE가 상기 릴레이 UE를 통해 메시지를 전송;The first UE transmits a message through the relay UE;
    을 포함하며,Includes,
    상기 릴레이 UE의 선택은 상기 제1 UE가 전송하는 메시지의 QoS(Quality of Service)에 기초한 것인, 방법.The method wherein the selection of the relay UE is based on the Quality of Service (QoS) of the message transmitted by the first UE.
  2. 제1항에 있어서,According to paragraph 1,
    상기 선택된 릴레이 UE는 신호강도가 소정 임계값 이상인 것인, 방법.The method wherein the selected relay UE has a signal strength greater than or equal to a predetermined threshold.
  3. 제2항에 있어서,According to paragraph 2,
    상기 소정 임계값은 각 메시지의 QoS에 따라 개별적으로 설정된 것인, 방법.The method wherein the predetermined threshold value is individually set according to the QoS of each message.
  4. 제2항에 있어서,According to paragraph 2,
    상기 소정 임계값은 서비스의 PFI (PC5 QoS Flow Identifier)별 또는 PQI (PC5 QoS Identifier)별 임계값인, 방법.The method wherein the predetermined threshold is a threshold value for each PFI (PC5 QoS Flow Identifier) or PQI (PC5 QoS Identifier) of the service.
  5. 제3항에 있어서,According to paragraph 3,
    상기 소정 임계값은 SIB(System Information Block)을 통해 지시된 것인, 방법.The method wherein the predetermined threshold value is indicated through a System Information Block (SIB).
  6. 제3항에 있어서,According to paragraph 3,
    상기 소정 임계값은 미리 설정된 값인, 방법.The method wherein the predetermined threshold is a preset value.
  7. 제3항에 있어서,According to paragraph 3,
    상기 신호강도는 상기 제1 UE와 상기 릴레이 UE 사이의 SL-RSRP(Sidelink Reference Signals Received Power) 또는 SD-RSRP(Sidelink Discovery Reference Signals Received Power)중 하나인, 방법.The signal strength is one of SL-RSRP (Sidelink Reference Signals Received Power) or SD-RSRP (Sidelink Discovery Reference Signals Received Power) between the first UE and the relay UE.
  8. 제1항에 있어서,According to paragraph 1,
    상기 제1 UE는 디스커버리 메시지 전송 시 자신의 QoS requirement를 만족시킬 수 있는 요구(required) 임계값을 포함하는, 방법.The method includes a required threshold that allows the first UE to satisfy its QoS requirements when transmitting a discovery message.
  9. 제8항에 있어서,According to clause 8,
    상기 후보 릴레이 UE들은 측정한 신호 세기 값이 디스커버리 메시지에 포함되어 있는 상기 요구 임계값을 초과한 것인, 방법.The method wherein the measured signal strength values of the candidate relay UEs exceed the request threshold included in the discovery message.
  10. 제1항에 있어서,According to paragraph 1,
    상기 방법은, The method is:
    상기 제1 UE가 discovery solicitation message를 전송;The first UE transmits a discovery solicitation message;
    상기 제1 UE가 하나 이상의 후보 릴레이 UE가 브로드캐스트하는 discovery response를 수신;The first UE receives a discovery response broadcast by one or more candidate relay UEs;
    을 더 포함하는, 방법.A method further comprising:
  11. 제1항에 있어서,According to paragraph 1,
    상기 제1 UE는 제2 UE와 End-to-end PC5 link를 수립하는, 방법.The first UE establishes an end-to-end PC5 link with the second UE.
  12. 제1항에 있어서,According to paragraph 1,
    상기 제1 UE는 상기 릴레이 UE를 통해 기지국과 indirect link를 수립하는, 방법.The first UE establishes an indirect link with the base station through the relay UE.
  13. 무선통신시스템에서 릴레이 UE(User Equipment) 선택에 관련된 제1 UE에 있어서,In the first UE involved in selecting a relay UE (User Equipment) in a wireless communication system,
    적어도 하나의 프로세서; 및at least one processor; and
    상기 적어도 하나의 프로세서에 동작 가능하게 연결될 수 있고, 실행될 때 상기 적어도 하나의 프로세서로 하여금 동작들을 수행하게 하는 명령들을 저장하는 적어도 하나의 컴퓨터 메모리를 포함하며,at least one computer memory operably coupled to the at least one processor and storing instructions that, when executed, cause the at least one processor to perform operations;
    상기 동작들은, The above operations are:
    하나 이상의 후보 릴레이 UE 중에서 릴레이 UE를 선택;Select a relay UE from one or more candidate relay UEs;
    상기 선택된 릴레이 UE와 PC5 link가 없는 것에 기초하여, 상기 선택된 릴레이 UE와 PC5 link를 수립; 및Establishing a PC5 link with the selected relay UE based on the absence of a PC5 link with the selected relay UE; and
    상기 릴레이 UE를 통해 메시지를 전송;Sending a message through the relay UE;
    을 포함하며,Includes,
    상기 릴레이 UE의 선택은 상기 제1 UE가 전송하는 메시지의 QoS(Quality of Service)에 기초한 것인, 제1 UE.The selection of the relay UE is based on the Quality of Service (QoS) of the message transmitted by the first UE.
  14. 적어도 하나의 프로세서에 의해 실행될 때, 적어도 하나의 프로세서가 제1 UE를 위한 동작들을 수행하게 하는 명령을 포함하는 적어도 하나의 컴퓨터 프로그램을 저장하는 비휘발성 컴퓨터 판독 가능 저장 매체에 있어서,1. A non-volatile computer-readable storage medium storing at least one computer program including instructions that, when executed by at least one processor, cause the at least one processor to perform operations for a first UE, comprising:
    상기 동작들은, The above operations are:
    하나 이상의 후보 릴레이 UE 중에서 릴레이 UE를 선택;Select a relay UE from one or more candidate relay UEs;
    상기 선택된 릴레이 UE와 PC5 link가 없는 것에 기초하여, 상기 선택된 릴레이 UE와 PC5 link를 수립; 및Establishing a PC5 link with the selected relay UE based on the absence of a PC5 link with the selected relay UE; and
    상기 릴레이 UE를 통해 메시지를 전송;Sending a message through the relay UE;
    을 포함하며,Includes,
    상기 릴레이 UE의 선택은 상기 제1 UE가 전송하는 메시지의 QoS(Quality of Service)에 기초한 것인, 저장 매체.Selection of the relay UE is based on the Quality of Service (QoS) of the message transmitted by the first UE.
PCT/KR2023/020646 2022-12-14 2023-12-14 Operation method related to relay selection or reselection based on qos in wireless communication system WO2024128826A1 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
KR20220175111 2022-12-14
KR10-2022-0175111 2022-12-14
KR20220183287 2022-12-23
KR10-2022-0183287 2022-12-23
KR20220185258 2022-12-27
KR10-2022-0185258 2022-12-27
KR20230019433 2023-02-14
KR10-2023-0019433 2023-02-14

Publications (1)

Publication Number Publication Date
WO2024128826A1 true WO2024128826A1 (en) 2024-06-20

Family

ID=91486137

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/020646 WO2024128826A1 (en) 2022-12-14 2023-12-14 Operation method related to relay selection or reselection based on qos in wireless communication system

Country Status (1)

Country Link
WO (1) WO2024128826A1 (en)

Similar Documents

Publication Publication Date Title
WO2021162506A1 (en) Ue operation method related to relay ue in wireless communication system
WO2021085908A1 (en) Method for as configuration-related operation of sidelink ue in wireless communication system
WO2021221448A1 (en) Operation method of relay ue related to relay establishment request in wireless communication system
WO2022025615A1 (en) Sidelink discovery-related operation method in wireless communication system
WO2022025665A1 (en) Operating method related to selection of relay ue in wireless communication system
WO2021206462A1 (en) Method for operating relay ue related to sidelink relay in wireless communication system
WO2021085909A1 (en) Method for operating ue related to pc5 unicast link release in wireless communication system
WO2023014157A1 (en) Method for operating remote ue related to path switching and measurement reporting in wireless communication system
WO2023287259A1 (en) Operation method related to handover in sidelink relay in wireless communication system
WO2022211580A1 (en) Relay ue selection method on basis of qos in wireless communication system
WO2024128826A1 (en) Operation method related to relay selection or reselection based on qos in wireless communication system
WO2024072139A1 (en) Operating method related to discovery and connection establishment for ue-to-ue relay in wireless communication system
WO2024029921A1 (en) Operation method of relay ue related to id configuration in ue-to-ue relay in wireless communication system
WO2024029982A1 (en) Operation method of relay ue related to preferred resources in ue-to-ue relay in wireless communication system
WO2024128717A1 (en) Operation method related to relay selection or reselection in ue-to-ue relay in wireless communication system
WO2023244090A1 (en) Method for operating ue related to link release of ue-to-ue relay in wireless communication system
WO2024128828A1 (en) Remote ue operation method related to reporting rlf in direct path or indirect path in wireless communication system
WO2024029967A1 (en) Operation method of target relay ue associated with end-to-end bearer configuration in ue-to-ue relay in wireless communication system
WO2024096476A1 (en) Method of operating source remote ue related to measurement reporting configuration of ue-to-ue relay in wireless communication system
WO2023244091A1 (en) Method for operating ue related to qos split in ue-to-ue relay in wireless communication system
WO2024029888A1 (en) Method for operating relay ue related to bearer configuration in ue-to-ue relay in wireless communication system
WO2023244070A1 (en) Method for operating ue related to direct path switching in ue-to-ue relay in wireless communication system
WO2023211090A1 (en) Method for operating relay ue that has received rrc reject in wireless communication system
WO2024025373A1 (en) Operating method of source base station, related to handover of remote ue in wireless communication system
WO2024025368A1 (en) Operation method of remote ue having ideal link connection in wireless communication system