WO2024128303A1 - Heat dissipating structure and method for manufacturing same - Google Patents

Heat dissipating structure and method for manufacturing same Download PDF

Info

Publication number
WO2024128303A1
WO2024128303A1 PCT/JP2023/044968 JP2023044968W WO2024128303A1 WO 2024128303 A1 WO2024128303 A1 WO 2024128303A1 JP 2023044968 W JP2023044968 W JP 2023044968W WO 2024128303 A1 WO2024128303 A1 WO 2024128303A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat dissipation
dissipation structure
fins
base
fin
Prior art date
Application number
PCT/JP2023/044968
Other languages
French (fr)
Japanese (ja)
Inventor
洋平 岩垣
淳一 中野
才司 上津原
Original Assignee
日本発條株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本発條株式会社 filed Critical 日本発條株式会社
Publication of WO2024128303A1 publication Critical patent/WO2024128303A1/en

Links

Images

Definitions

  • One embodiment of the present invention relates to a heat dissipation structure having a cooling function. Also, one embodiment of the present invention relates to a method for manufacturing a heat dissipation structure having a cooling function.
  • Patent Document 1 discloses a cylindrical motor case provided with multiple fins. This motor case is manufactured by extruding aluminum.
  • one embodiment of the present invention has an object to provide a heat dissipation structure with a novel structure. Another object of one embodiment of the present invention is to provide a method for manufacturing a heat dissipation structure with a novel structure.
  • the heat dissipation structure includes a cylindrical body having a curved outer peripheral surface and a number of fins arranged on the outer peripheral surface, each of the fins including a base joined to the outer peripheral surface and a main body connected to the base and extending in a first direction away from the outer peripheral surface, and when viewed in cross section from a second direction in which the cylindrical axis of the cylindrical body extends, the width of the base is greater than the width of the main body.
  • It may include a weld bead region between the outer periphery and the base.
  • the outer peripheral surface and the base may be joined by solid-state diffusion bonding.
  • the base and main body may be formed from a single plate-like member.
  • each of the fins may have an L-shape.
  • the end of the base may include a notch.
  • each of the fins may have a U-shape.
  • the plurality of fins may include a first fin and a second fin, and the first fin and the second fin may be arranged in the second direction.
  • the first fin and the second fin may be arranged in a staggered manner in the second direction.
  • the base may include a smooth surface that is joined to the outer periphery.
  • the joining surface of the base that is joined to the outer peripheral surface may be curved to match the shape of the outer peripheral surface.
  • each of the fins may have a T-shape.
  • a first fin and a second fin that are adjacent to each other among the multiple fins may be arranged such that the end of the base of the first fin faces the end of the base of the second fin.
  • the heat dissipation structure includes a cylindrical body having a curved outer peripheral surface and a number of fins arranged on the outer peripheral surface, each of the fins including a base portion joined to the outer peripheral surface and a number of main body portions connected to the base portion and extending in a first direction away from the outer peripheral surface, and when viewed in cross section from a second direction in which the cylindrical axis of the cylindrical body extends, the width of the base portion is greater than the width of one of the main body portions included in the number of main body portions.
  • the width of one base portion is greater than twice the width of one of the body portions included in the plurality of body portions, and in a cross-sectional view, each of the plurality of fins may have a U-shape.
  • the plurality of body portions may be arranged in a staggered pattern in the second direction.
  • the material of the multiple fins may be the same as the material of the cylindrical body.
  • a method for manufacturing a heat dissipation structure includes fixing the position of a cylindrical body including a curved outer peripheral surface, placing a base of a fin including a base and a main body portion connected to the base on the outer peripheral surface, and joining the base to the outer peripheral surface using welding, whereby the width of the base is greater than the width of the main body portion when viewed in cross section from the direction in which the cylindrical axis of the cylindrical body extends.
  • the welding may be one of laser welding, arc welding, and electron beam welding.
  • a laser light, an arc, or an electron beam may be applied to at least the base.
  • a laser beam, an arc, or an electron beam may be irradiated onto the inner surface of the cylindrical body.
  • a laser light, an arc, or an electron beam may be applied to at least one of the upper and lower surfaces.
  • the method for manufacturing the heat dissipation structure may further include processing fins including a base and a main body from a single plate-like member.
  • the method for manufacturing the heat dissipation structure may further include processing the joining surface of the base that is joined to the outer peripheral surface into a curved shape that matches the shape of the outer peripheral surface.
  • the fin may have an L-shape.
  • the fins may have a T-shape.
  • the material of the fins may be the same as the material of the cylindrical body.
  • At least one of the surface, end, and side of the main body may include at least one shaped portion selected from a groove, a recess, and a protrusion.
  • the heat dissipation structure according to one embodiment of the present invention is manufactured by welding together a cylindrical body and fins that are processed as separate parts.
  • the shapes of the cylindrical body and fins are not complex and are easy to form. Furthermore, even for fins with complex shapes, the processing method is not limited, and the fins can be mass-produced by applying an inexpensive processing method. Therefore, a heat dissipation structure in which a cylindrical body and fins are joined can reduce manufacturing costs. Furthermore, it is possible to increase the length of the fins and arrange them at narrow intervals, which increases the surface area and improves heat dissipation.
  • FIG. 2 is a schematic perspective view showing a configuration of fins of a heat dissipation structure according to one embodiment of the present invention.
  • 2 is a schematic cross-sectional view showing the arrangement of fins of a heat dissipation structure according to one embodiment of the present invention;
  • FIG. 2 is a schematic cross-sectional view showing a configuration of a fin of a heat dissipation structure according to one embodiment of the present invention.
  • FIG. 2 is a schematic perspective view showing a configuration of fins of a heat dissipation structure according to one embodiment of the present invention.
  • FIG. 2 is a schematic perspective view showing a configuration of fins of a heat dissipation structure according to one embodiment of the present invention.
  • 1 is a schematic perspective view showing a configuration of a heat dissipation structure according to one embodiment of the present invention
  • 1 is a schematic perspective view showing a configuration of a heat dissipation structure according to one embodiment of the present invention
  • 1 is a schematic perspective view showing a configuration of a heat dissipation structure according to one embodiment of the present invention
  • 1 is a schematic perspective view showing a configuration of a heat dissipation structure according to one embodiment of the present invention
  • 1 is a schematic top view showing a configuration of a heat dissipation structure according to an embodiment of the present invention
  • 1 is a schematic perspective view showing a configuration of a heat dissipation structure according to one embodiment of the present invention
  • 5A to 5C are cross-sectional views showing a method for manufacturing a heat dissipation structure according to one embodiment of the present invention.
  • FIG. 5A to 5C are cross-sectional views showing a method for manufacturing a heat dissipation structure according to one embodiment of the present invention.
  • 1 is a schematic top view showing a configuration of a heat dissipation structure according to an embodiment of the present invention
  • FIG. 2 is a schematic perspective view showing a configuration of fins of a heat dissipation structure according to one embodiment of the present invention.
  • 2 is a schematic cross-sectional view showing a configuration of a fin of a heat dissipation structure according to one embodiment of the present 2 is a schematic cross-sectional view showing a configuration of a fin of a heat dissipation structure according to one embodiment of the present invention.
  • FIG. 2 is a schematic perspective view showing a configuration of fins of a heat dissipation structure according to one embodiment of the present invention.
  • FIG. 2 is a schematic perspective view showing a configuration of fins of a heat dissipation structure according to one embodiment of the present invention.
  • 1 is a schematic top view showing a configuration of a heat dissipation structure according to an embodiment of the present invention;
  • 1 is a schematic perspective view showing a configuration of a corrugated fin of a heat dissipation structure according to one embodiment of the present invention;
  • 1 is a schematic cross-sectional view showing a configuration of a corrugated fin of a heat dissipation structure according to one embodiment of the present invention.
  • 1 is a schematic plan view showing a configuration of a corrugated fin of a heat dissipation structure according to an embodiment of the present invention
  • 1 is a schematic plan view showing a configuration of a corrugated fin of a heat dissipation structure according to an embodiment of the present invention
  • the same reference numeral is used to collectively represent multiple identical or similar components, and when each of these multiple components is to be distinguished from the others, a capital alphabet is added to the reference numeral.
  • the same reference numeral is used, followed by a hyphen and a natural number.
  • FIGS. 1A and 1B are schematic perspective and top views, respectively, showing the configuration of a heat dissipation structure 100 according to one embodiment of the present invention.
  • the heat dissipation structure 100 includes a cylindrical body 102 and a plurality of fins 104.
  • the plurality of fins 104 are disposed on the curved outer peripheral surface of the cylindrical body 102 and extend in a direction away from the outer peripheral surface.
  • a flow path for circulating a refrigerant for cooling the heat dissipation structure 100 may be provided inside (i.e., on the inner peripheral surface side of the cylindrical body 102) or outside (i.e., outside the plurality of fins 104) of the heat dissipation structure 100.
  • each of the plurality of fins 104 is disposed parallel to the z direction on the outer peripheral surface of the cylindrical body 102, and extends radially from the outer peripheral surface of the cylindrical body 102 in a predetermined direction in the xy plane.
  • the surface of the cylindrical body 102 includes an upper surface and a lower surface that connect the inner and outer surfaces, in addition to the inner and outer surfaces. Since the upper and lower surfaces have the same configuration, in the following, when the upper and lower surfaces are not particularly distinguished from each other, the upper or lower surface may be simply referred to as a side surface.
  • Various electric motors are housed on the inner surface side of the cylindrical body 102. Therefore, the cylindrical body 102 functions as a housing that protects the electric motors. In addition, the cylindrical body 102 can absorb heat radiated from the electric motors housed on the inner surface side of the cylindrical body 102.
  • the cylindrical body 102 has a circular ring shape (here, the cross-sectional view of the cylindrical body 102 is the same as the top view shown in FIG. 1B, so the cross-sectional view of the cylindrical body 102 is omitted.).
  • the cross-sectional shape of the cylindrical body 102 is not limited to this.
  • the cross-sectional shape of the cylindrical body 102 is appropriately selected according to the type or size of the electric motor housed on the inner peripheral side of the cylindrical body 102.
  • the size of the cylindrical body 102 (outer diameter and length in the z direction) is also appropriately selected according to the type or size of the electric motor.
  • the outer diameter may be 200 mm or more and 500 mm or less, and the length in the z direction may be 30 mm or more and 300 mm or less.
  • the aspect ratio (outer diameter/length) of the cylindrical body 102 may be, for example, 1 or more and 20 or less.
  • the thickness of the cylindrical body 102 (the distance between the inner peripheral surface and the outer peripheral surface) is also appropriately selected according to the strength required for the heat dissipation structure 100, and is, for example, in the range of 1 mm or more and 20 mm or less, but is not limited thereto.
  • the fins 104 are connected to the cylindrical body 102 and can dissipate heat conducted from the cylindrical body 102 to the outside. That is, the fins 104 function as a heat sink.
  • the thickness and height of the fins 104 (the length in the direction in which the fins 104 extend from the outer circumferential surface of the cylindrical body 102), the number of fins 104, and the spacing between the fins 104 are appropriately selected according to the cooling efficiency required of the heat dissipation structure 100.
  • the thickness of the fins 104 may be in the range of 0.5 mm to 5 mm, and the height may be in the range of 30 mm to 90 mm.
  • the spacing between the fins 104 is, for example, 1 mm to 20 mm, but is not limited to this.
  • the multiple fins 104 are arranged at equal intervals over the entire outer circumferential surface of the cylindrical body 102.
  • the arrangement of the multiple fins 104 is not limited to this.
  • the multiple fins 104 may be arranged at irregular intervals over the outer circumferential surface of the cylindrical body 102, or may be arranged on only a portion of the outer circumferential surface of the cylindrical body 102.
  • the length of the fins 104 in the z direction is the same as the length of the cylindrical body 102 in the z direction.
  • the length of the fins 104 is not limited to this.
  • the length of the fins 104 in the z direction may be greater or smaller than the length of the cylindrical body 102 in the z direction.
  • the material of the fins 104 may be the same as or different from the material of the cylindrical body 102. However, in order to maintain the mechanical strength of the heat dissipation structure 100, it is preferable that the material of the fins 104 is the same as the material of the cylindrical body 102.
  • An aluminum alloy can be used as the material of each of the cylindrical body 102 and the fins 104.
  • the aluminum alloy is an alloy containing aluminum, zinc, magnesium, and copper, such as A7072, A7050, A7075, and A7N01, or an alloy of aluminum and magnesium containing silicon, such as A6061, A6063, and A6N01.
  • Figures 2A and 2B are schematic perspective and cross-sectional views, respectively, showing the configuration of the fins 104 of the heat dissipation structure 100 according to one embodiment of the present invention. Specifically, Figure 2B is a cross-sectional view of the fins 104 cut along line A1-A2 shown in Figure 2A.
  • the fin 104 includes a base 104-1 having a first width w1 in a first direction d1 and a main body 104-2 extending in a second direction d2 intersecting the first direction d1.
  • each of the first direction d1 and the second direction d2 is a direction in the xy plane, and the second direction d2 corresponds to the direction in which the fin 104 extends from the outer peripheral surface of the cylindrical body 102.
  • the base 104-1 includes a bent portion CR1, and the main body 104-2 is connected to the base 104-1 via the bent portion CR1.
  • the fin 104 has a structure in which one plate-shaped member is bent, and in a cross-sectional view, each of the base 104-1 and the main body 104-2 includes one end. That is, in a cross-sectional view, the fin 104 has an L-shape.
  • the angle between the first direction d1 and the second direction d2 is preferably, for example, approximately 90°, but is not limited to this.
  • the angle between the first direction d1 and the second direction d2 may be 45° or more and 135° or less.
  • the connection between the base 104-1 and the main body 104-2 can be a structure in which two members are joined, other than a structure in which one plate-like member is bent, and does not necessarily have to include the bent portion CR1.
  • the processing method of the fin 104 is not particularly limited, but the fin 104 can be processed, for example, by press punching or by bending a plate-shaped member. Since the fin 104 has a simple shape, an inexpensive processing method can be adopted for processing the fin 104.
  • the fin 104 can also be formed by joining the plate-shaped members constituting the base 104-1 and the main body 104-2. When joining two plate-shaped members, the base 104-1 of the fin 104 does not need to include the bent portion CR1, and the plate-shaped member constituting the main body 104-2 can be connected onto the plate-shaped member constituting the base 104-1.
  • the joining of the base 104-1 and the main body 104-2 can be performed, for example, by laser welding, arc welding, electron beam welding, solid-state diffusion bonding, brazing, or the like.
  • brazing filler that can be used include alloys containing silver, copper, and zinc, alloys containing copper and zinc, copper containing a small amount of phosphorus, alloys containing aluminum, alloys containing titanium, copper, and nickel, alloys containing titanium, zirconium, and copper, and alloys containing titanium, zirconium, copper, and nickel.
  • the first width w1 of the base 104-1 in the first direction d1 is larger than the second width w2 (thickness of the fins 104) of the main body 104-2 in the first direction d1.
  • the first width w1 of the base 104-1 is equal to or smaller than the second width w2 of the main body 104-2 plus the spacing between the fins 104.
  • the first width w1 of the base 104-1 is 1.1 to 10 times, preferably 1.2 to 5 times, and more preferably 1.5 to 2 times the second width w2 of the main body 104-2.
  • the base 104-1 is joined to the cylindrical body 102 by welding.
  • the first width w1 of the base 104-1 connected to the main body 104-2 is larger than the second width w2 of the main body 104-2, so the bonding area between the base 104-1 and the cylindrical body 102 is increased compared to a configuration in which the main body 104-2 is directly bonded to the cylindrical body 102. Therefore, in the heat dissipation structure 100, the bonding strength between the cylindrical body 102 and the base 104-1 of the fin 104 is improved.
  • Figures 1A and 1B show a configuration in which the end of the base 104-1 of one fin 104 is spaced apart from the bent portion CR1 of the base 104-1 of the other fin 104 in two adjacent fins 104.
  • a configuration in which the base 104-1 of one fin 104 is in contact with the bent portion CR1 of the other fin 104 is also applicable as the configuration of the heat dissipation structure 100.
  • the base 104-1 of one fin 104 and the bent portion CR1 of the other fin 104 may be joined.
  • FIG. 3 is a flowchart showing a method for manufacturing a heat dissipation structure 100 according to one embodiment of the present invention. Also, each of FIGS. 4A and 4B is a schematic cross-sectional view showing a method for manufacturing a heat dissipation structure 100 according to one embodiment of the present invention.
  • FIG. 3 shows steps S100 to S120, the method for manufacturing the heat dissipation structure 100 is not limited to this.
  • the heat dissipation structure 100 may be manufactured by a manufacturing method including additional steps.
  • step S100 the position of the cylindrical body 102 is fixed.
  • the position of the cylindrical body 102 needs to be fixed so that the fins 104 can be placed on the outer circumferential surface in step S110, which will be described later.
  • the cylindrical body 102 is placed on a stage and its position is fixed.
  • the cylindrical body 102 may be fixed by suction or by magnetic force.
  • the cylindrical body 102 may also be fixed by being grasped. If the cylindrical body 102 is fixed by being grasped, the cylindrical body 102 does not need to be placed on a stage.
  • step S110 the fins 104 are placed on the outer circumferential surface of the cylindrical body 102 (see FIG. 4A).
  • the fins 104 are placed so that the joining surface of the base 104-1 (the surface facing the outer circumferential surface of the cylindrical body 102) is in contact with the outer circumferential surface of the cylindrical body 102.
  • the joining surface of the base 104-1 is a smooth surface without protrusions or the like so that the entire joining surface is joined to the outer circumferential surface of the cylindrical body 102.
  • the fins 104 placed on the outer circumferential surface of the cylindrical body 102 are fixed.
  • step S120 the laser light is scanned in the z direction while irradiating the base 104-1 (see FIG. 4B).
  • the laser light is irradiated from the outer peripheral surface side of the cylindrical body 102. This bonds the base 104-1 of the fin 104 to the outer peripheral surface of the cylindrical body 102.
  • step S120 is a laser welding step for bonding the fin 104 to the cylindrical body 102.
  • the laser light for example, an yttrium-aluminum-garnet (YAG) laser having a wavelength of 1064 nm, or a fiber laser having a wavelength of 1070 nm, can be used.
  • YAG yttrium-aluminum-garnet
  • Laser light processed into a linear pattern using an optical element can also be used.
  • a weld bead may be formed in the portion where the laser welding was performed in step S120.
  • a weld bead region may be included between the base 104-1 and the outer circumferential surface of the cylindrical body 102.
  • a post-weld heat treatment of the heat dissipation structure 100 may be performed.
  • the post-weld heat treatment can reduce residual stress due to the joining of the tubular body 102 and the fins 104.
  • the post-weld heat treatment also improves the ductility, toughness, and corrosion resistance of the heat dissipation structure 100.
  • the post-weld heat treatment is, for example, but is not limited to, a solution treatment or an aging treatment, or a solution aging treatment that is a combination of these treatments.
  • the post-weld heat treatment is appropriately selected depending on the materials of the tubular body 102 and the fins 104.
  • a weld bead removal process may be performed in the weld bead area formed by welding.
  • the weld bead can be removed, for example, by cutting.
  • the welding for joining the fins 104 to the cylindrical body 102 is not limited to laser welding.
  • arc welding or electron beam welding can also be used.
  • Laser welding, arc welding, and electron beam welding are so-called fusion welding, but solid-state diffusion bonding or brazing can also be used.
  • Fig. 5A is a schematic perspective view showing the configuration of the fins 104A of the heat dissipation structure 100A according to one embodiment of the present invention.
  • Fig. 5B is a schematic cross-sectional view showing the arrangement of the fins 104A of the heat dissipation structure 100A according to one embodiment of the present invention.
  • the base 104A-1 of the fin 104A includes a notch 104A-1a in which a corner of the end portion is cut out along the z direction.
  • the size of the notch 104A-1a is not particularly limited.
  • the cross-sectional shape of the notch 104A-1a may be linear as shown in FIG. 5B, or may be curved (not shown).
  • two adjacent fins 104A are arranged so that they overlap.
  • the fins 104 are arranged so that the bent portion CR1 of the base 104A-1 of one of the two adjacent fins 104 is located on the notch portion 104A-1a of the base 104A-1 of the other of the two adjacent fins 104.
  • the base 104A-1 of the fin 104A includes the notch portion 104A-1a, the fin 104 adjacent to the fin 104A can be arranged so that it overlaps. Therefore, in the heat dissipation structure 100A, the spacing between the fins 104A can be made smaller.
  • FIG. 6 is a schematic cross-sectional view showing the configuration of a fin 104B of a heat dissipation structure 100B according to one embodiment of the present invention.
  • the joint surface of the base 104B-1 of the fin 104B (the surface facing the outer peripheral surface of the cylindrical body 102) is curved to match the shape of the outer peripheral surface of the cylindrical body 102 (see region B in FIG. 6).
  • the joint surface of the base 104B-1 is a curved, smooth surface. Therefore, when the fin 104B is placed on the outer peripheral surface of the cylindrical body 102, the contact area between the outer peripheral surface of the cylindrical body 102 and the base 104B-1 increases. In other words, the gap between the base 104B-1 and the outer peripheral surface of the cylindrical body 102 becomes smaller. Therefore, in the heat dissipation structure 100B, welding defects in welding are reduced, and the joint strength between the cylindrical body 102 and the base 104B-1 of the fin 104B is further improved.
  • ⁇ Modification 3> 7A and 7B are schematic cross-sectional views showing the configuration of a fin 104C of a heat dissipation structure 100C according to one embodiment of the present invention.
  • the fin 104C includes a base 104C-1 having a first width w1 in a first direction d1 and a body 104C-2 extending in a second direction d2 intersecting the first direction d1.
  • the body 104C-2 is connected to the upper surface (the surface opposite to the joint surface) of the base 104C-1.
  • the base 104C-1 includes two ends in the first direction d1, and the body 104C-2 includes one end in the second direction d2. That is, in a cross-sectional view, the fin 104C has a T-shape.
  • the angle between the first direction d1 and the second direction d2 is preferably, for example, approximately 90°, but is not limited to this.
  • the angle between the first direction d1 and the second direction d2 may be 45° or more and 135° or less.
  • the fins 104C can be formed, for example, by extrusion molding or by joining the plate-like members that make up the base 104C-1 and the main body 104C-2.
  • the fin 104C may have a configuration in which the body portions 104-2 of two fins 104 (i.e., fins 104 having an L-shaped cross section) are joined together to form a T-shaped cross section.
  • the base portion 104C-1 of the fin 104C includes two base portions 104-1
  • the body portion 104C-2 of the fin 104C includes two body portions 104-2. Note that a weld bead region may be included between the two body portions 104-2.
  • the bonding area between the base 104C-1 and the cylindrical body 102 is increased compared to a configuration in which the main body 104C-2 is directly bonded to the cylindrical body 102.
  • the bonding strength between the cylindrical body 102 and the base 104C-1 of the fin 104C is improved in the heat dissipation structure 100C as well.
  • FIG. 8A and 8B are schematic top views showing the arrangement of the fins 104 of a heat dissipation structure 100D according to an embodiment of the present invention. Specifically, FIG. 8B is an enlarged top view of a region D in FIG. 8A.
  • the ends of the bases 104-1 of two adjacent fins 104 are arranged on the outer circumferential surface of the cylindrical body 102 so that they face each other, or the bent portions CR1 of the bases 104-1 of two adjacent fins 104 face each other.
  • the two adjacent fins 104 are arranged symmetrically so that they face in opposite directions.
  • the fins 104 are arranged regularly so that every other fin faces the same direction, but the arrangement of the fins 104 in the heat dissipation structure 100D is not limited to this.
  • the heat dissipation structure 100D may include at least one pair of adjacent fins arranged symmetrically so that the fins face in opposite directions.
  • the heat dissipation structure 100D also improves the bonding strength between the cylindrical body 102 and the base 104-1 of the fin 104.
  • the ends of two adjacent bases 104-1 may be joined together.
  • FIGS. 9A to 9C are schematic perspective view showing the configuration of a fin 104E of a heat dissipation structure 100E according to one embodiment of the present invention.
  • Figure 9A shows a fin 104E in which a groove 104E-2a is formed on the surface of the main body 104E-2.
  • Figure 9B shows a fin 104E in which a recess 104E-2b is formed on the surface of the main body 104E-2.
  • Figure 9C shows a fin 104E in which a convex portion 104E-2c is formed on the surface of the main body 104E-2.
  • the number or size of each of the grooves 104E-2a, recesses 104E-2b, and convex portions 104E-2c is selected appropriately and is not particularly limited.
  • each of the grooves 104E-2a, recesses 104E-2b, and convex portions 104E-2c is, for example, rectangular, semicircular, or semi-elliptical, but is not limited to these.
  • the grooves 104E-2a, the recesses 104E-2b, and the protrusions 104E-2c can be formed not only on one surface of the main body 104E-2, but also on both surfaces of the main body 104E-2.
  • the fins 104E can be configured by combining multiple shaped portions selected from the grooves 104E-2a, the recesses 104E-2b, and the protrusions 104E-2c.
  • the surface area of the main body 104E-2 is increased. This improves the heat dissipation characteristics of the fins 104E, and improves the cooling efficiency of the heat dissipation structure 100E.
  • the fins 104E can be configured such that unevenly shaped portions are formed not only on the surface of the main body 104E-2, but also on the ends or sides of the main body 104E-2.
  • the shaped portions formed on the main body 104E-2 of the heat dissipation structure 100E are not particularly limited.
  • the cylindrical body 102 and the fins 104E are processed and joined as separate parts. Therefore, compared to the fins of the heat dissipation structure manufactured by integrally forming the cylindrical body and the fins, it is possible to form various shaped portions on the fins 104E.
  • the processing method of the fins 104E is not particularly limited, but for example, the fins 104E can be manufactured using a processing method such as forging, casting, metal additive manufacturing, or cutting, or a combination of these.
  • FIG. 10A to 11 and 13 is a schematic perspective view showing the configuration of a heat dissipation structure 100 according to one embodiment of the present invention.
  • Fig. 12 is a top view showing a schematic configuration of a heat dissipation structure 100 according to one embodiment of the present invention.
  • Figs. 10 to 13 shows a part of the configuration of the heat dissipation structure 100.
  • the multiple fins 104 may be arranged so that each base 104-1 is not parallel to the z direction, but is inclined from the z direction. Also, as shown in FIG. 10B, the multiple fins 104 may be arranged so that they form multiple rows in the z direction on the outer peripheral surface of the cylindrical body 102. Although not shown, the fins 104 may form a staggered arrangement on the outer peripheral surface of the cylindrical body 102. Note that the surface shape of the main body 104-2 of each fin 104 is not limited to a rectangle. For example, as shown in FIG. 11A, the outline of the main body 104-2 may be formed of straight lines and curves or only curves.
  • the outline of the base 104-1 may also be formed of straight lines and curves or only curves.
  • each of the base 104-1 and the main body 104-2 may be bent.
  • the main body 104-2 of each fin 104 may have a branched structure. By providing each fin 104 with a branched structure, the area of the fin 104 is increased, enabling more efficient cooling. Also, as shown in FIG. 13, multiple main body parts 104-2 may be connected to one base part 104-1.
  • FIG. 14 is a cross-sectional view showing a method for manufacturing the heat dissipation structure 100 according to one embodiment of the present invention.
  • FIG. 14 shows a modified example of the laser welding in step S120 of FIG. 3.
  • the laser light is irradiated onto the inner peripheral surface of the cylindrical body 102.
  • the laser light is not blocked by the fins 104 and can be scanned freely, making it easier to control the laser light.
  • Laser welding from the inner circumferential surface side of the cylindrical body 102 can be performed even after multiple fins 104 have been joined onto the outer circumferential surface of the cylindrical body 102. For example, if poor welding of the fins 104 is confirmed, laser light can be irradiated from the inner circumferential surface side of the cylindrical body 102 to improve the poor welding of the fins 104. In this case, the manufacturing yield of the heat dissipation structure 100 is improved, and the manufacturing cost of the heat dissipation structure 100 can be reduced.
  • ⁇ Modification 8> 15 is a cross-sectional view showing a method for manufacturing the heat dissipation structure 100 according to an embodiment of the present invention.
  • a partial cross-sectional view of the heat dissipation structure 100 is cut so as not to include the main body portion 104-2, but for convenience, the main body portion 104-2 is shown by a dotted line.
  • FIG. 15 shows the steps of laser welding.
  • laser light is irradiated from the z direction.
  • the laser light is irradiated to the base 104-1 of the fin 104 from the upper and lower sides of the cylindrical body 102.
  • the base 104-1 of the fin 104 can be joined to the cylindrical body 102 on the upper and lower surfaces of the cylindrical body 102.
  • the laser light is scanned in the first direction d1 at least by the first width w1 of the base 104-1.
  • step S120 may be performed before the laser welding of step S120 or after the laser welding of step S120.
  • the base 104-1 of the fin 104 is not joined to the entire outer peripheral surface of the cylindrical body 102, but is joined to the cylindrical body 102 only near the upper and lower surfaces of the cylindrical body 102.
  • the base 104-1 of the fin 104 is temporarily joined to the outer peripheral surface of the cylindrical body 102, and is fully joined by performing the laser welding of step S120.
  • step S120 is performed after the laser welding of step S120, it is possible to perform joining that fills the gap between the base 104-1 of the fin 104 and the outer peripheral surface of the cylindrical body 102 near the upper and lower surfaces of the cylindrical body 102.
  • the bonding strength between the base 104-1 of the fin 104 and the outer peripheral surface of the cylindrical body 102 is improved. Therefore, the mechanical strength of the heat dissipation structure 100 is improved.
  • the heat dissipation structure 100 is manufactured by welding together the cylindrical body 102 and the fins 104, which are processed as separate parts.
  • the shapes of the cylindrical body 102 and the fins 104 are not complex, and they are easy to process.
  • the processing method of the fins 104 is not limited, and they can be mass-produced by applying an inexpensive processing method. Therefore, the manufacturing cost can be reduced for the heat dissipation structure 100 in which the cylindrical body 102 and the fins 104 are joined together.
  • the heat dissipation structure 100 contains an aluminum alloy such as A7075 or A6061. Therefore, the heat dissipation structure 100 is not only able to achieve high cooling efficiency due to the high thermal conductivity of aluminum, but is also lightweight and strong. This enables application to heat dissipation structures that require high reliability, such as motors that generate propulsive power for aircraft.
  • the heat dissipation structure 100 according to one embodiment of the present invention can also be suitably used as a heat-dissipating structure for various vehicles, such as unmanned aerial vehicles such as drones and electric vehicles, which require lightweight design.
  • Second Embodiment 16 to 17B a heat dissipation structure 200 according to an embodiment of the present invention will be described.
  • the configuration of the heat dissipation structure 200 is similar to the configuration of the heat dissipation structure 100 described in the first embodiment, the description of the configuration may be omitted.
  • FIG. 16 is a schematic top view showing the configuration of a heat dissipation structure 200 according to one embodiment of the present invention.
  • the heat dissipation structure 200 includes a cylindrical body 202 and a plurality of fins 204.
  • the plurality of fins 204 are arranged on the curved outer peripheral surface of the cylindrical body 202 and extend in a direction away from the outer peripheral surface. That is, each of the plurality of fins 204 is arranged parallel to the z-axis direction on the outer peripheral surface of the cylindrical body 202 and extends radially from the outer peripheral surface of the cylindrical body 102 in a predetermined direction in the xy plane.
  • the plurality of fins 204 are arranged at equal intervals over the entire outer peripheral surface of the cylindrical body 202. However, the arrangement of the plurality of fins 204 is not limited to this.
  • the plurality of fins 204 may be arranged at irregular intervals on the outer peripheral surface of the cylindrical body 202, or may be arranged on a part of the outer peripheral surface of the cylindrical body 202.
  • FIG. 17A and 17B are schematic perspective and cross-sectional views, respectively, showing the configuration of fins 204 of a heat dissipation structure 200 according to one embodiment of the present invention.
  • FIG. 17B is a cross-sectional view of fins 204 cut along line B1-B2 shown in FIG. 17A.
  • the fin 204 includes a base 204-1 having a first width w1 in a first direction d1 and two main body portions 204-2 extending in a second direction d2.
  • the base 204-1 includes two bent portions CR1, and each of the two main body portions 204-2 is connected to the base 204-1 via the bent portions CR1.
  • the two main body portions 204-2 are connected to the base 204-1 so as to face each other in a substantially parallel manner.
  • the fin 204 has a structure in which both ends of a single plate-like member are bent, and has a U-shape in cross section.
  • the lengths of the two main body portions 204-2 in the d2 direction may be the same or different.
  • the base 204-1 of the fin 204 can be joined to the outer peripheral surface of the cylindrical body 202 by irradiating laser light from the inside of the U-shape of the fin 204, i.e., between the two main body portions 204-2, toward the base 204-1. Therefore, in a cross-sectional view, the first width w1 of the base 204-1 in the first direction d1 is greater than twice the second width (thickness of the fin 204) in the first direction d1 of the main body portion 204-2.
  • the first width w1 of the base 204-1 is 2.1 times or more and 20 times or less, preferably 2.2 times or more and 10 times or less, and more preferably 2.5 times or more and 5 times or less, of the second width w2 of the main body portion 204-2.
  • the first width w1 of the base 204-1 connected to the main body 204-2 is larger than the second width w2 of the main body 204-2, so the joint area between the base 204-1 and the cylindrical body 202 is increased compared to a configuration in which the main body 204-2 is directly joined to the cylindrical body 202.
  • the joint strength between the cylindrical body 202 and the base 204-1 of the fin 204 is improved.
  • two main bodies 204-2 are arranged on the cylindrical body 202 by joining one base 204-1, the number of laser welding operations in the heat dissipation structure 200 can be reduced.
  • FIG. 18 is a schematic cross-sectional view showing the configuration of a fin 204A of a heat dissipation structure 200A according to one embodiment of the present invention.
  • the two main body parts 204-2 connected to one base part 204-1 face each other, but the two main body parts 204-2 are not parallel to each other. Specifically, the distance between the two main body parts 204-2 increases with increasing distance from the base part 204-1. In the fin 204A, the space inside the U-shape of the fin 204A increases, making it easier to irradiate laser light from between the two main body parts 204-2 toward the base part 204-1.
  • FIG. 19 is a schematic perspective view showing the configuration of a fin 204B of a heat dissipation structure 200B according to one embodiment of the present invention.
  • the fin 204B of the heat dissipation structure 200B multiple main body parts 204-2 are connected to one base part 204-1.
  • the fin 204B has a U-shape in a plan view seen from the z direction.
  • the multiple main body parts 204-2 are arranged at a distance from each other along the z direction.
  • the arrangement of the multiple main body parts 204-2 at one end side and the other end side of the base 204-1 is the same.
  • the multiple main body parts 204-2 are connected to the base 204-1 at equal intervals.
  • the surface area of the main body parts 204-2 is increased by arranging the multiple main body parts 204-2. This improves the heat dissipation characteristics of the fin 204B, and improves the cooling efficiency of the heat dissipation structure 200B.
  • FIG. 20 is a schematic perspective view showing the configuration of a fin 204C of a heat dissipation structure 200C according to one embodiment of the present invention.
  • the fin 204C of the heat dissipation structure 200C multiple body parts 204-2 are connected to one base part 204-1.
  • the fin 204C has a U-shape in a plan view seen from the z direction.
  • the multiple body parts 204-2 are arranged at a distance from each other along the z direction.
  • the multiple body parts 204-2 are arranged in a staggered pattern on the base part 204-1 and connected to the base part 204-1.
  • the surface area of the body parts 204-2 is increased by arranging the multiple body parts 204-2. This improves the heat dissipation characteristics of the fin 204C and improves the cooling efficiency of the heat dissipation structure 200C.
  • the heat dissipation structure 200 can be manufactured by welding together the cylindrical body 202 and the fins 204, which are processed as separate parts.
  • the shapes of the cylindrical body 202 and the fins 204 are not complicated, and they are easy to process. Therefore, the heat dissipation structure 200 in which the cylindrical body 202 and the fins 204 are joined together can reduce manufacturing costs.
  • a heat dissipation structure 300 according to an embodiment of the present invention will be described.
  • the configuration of the heat dissipation structure 300 is similar to the configuration of the heat dissipation structure 100 described in the first embodiment or the heat dissipation structure 200 described in the second embodiment, the description of the configuration may be omitted.
  • FIG. 21 is a schematic top view showing the configuration of a heat dissipation structure 300 according to one embodiment of the present invention.
  • the heat dissipation structure 300 includes a cylindrical body 302 and a corrugated fin 306.
  • the corrugated fin 306 is disposed on the outer peripheral surface of the cylindrical body 302.
  • the number of corrugated fins 306 is not particularly limited.
  • the heat dissipation structure 300 includes one or more corrugated fins 306.
  • the multiple corrugated fins 306 may be disposed at equal intervals on the outer peripheral surface of the cylindrical body 302, or may be disposed at irregular intervals, or may be disposed on a portion of the outer peripheral surface of the cylindrical body 302.
  • FIG. 22A and 22B are schematic perspective and cross-sectional views, respectively, showing the configuration of a corrugated fin 306 of a heat dissipation structure 300 according to one embodiment of the present invention.
  • FIG. 22B is a cross-sectional view of the corrugated fin 306 cut along line C1-C2 shown in FIG. 22A.
  • the corrugated fin 306 includes multiple base portions 306-1, multiple main body portions 306-2, and multiple connection portions 306-3.
  • the base portion 306-1 includes two bend portions CR1
  • the connection portion 306-3 includes two bend portions CR2.
  • the main body portion 306-2 is connected to the base portion 306-1 via the bend portion CR1 at one end, and to the connection portion 306-3 via the bend portion CR2 at the other end.
  • the connection portion 306-3 is not provided at the end of the corrugated fin 306.
  • the corrugated fin 306 has a structure in which a single plate-shaped member is bent to include multiple mountain shapes and valley shapes, and has a wave shape in a cross-sectional view.
  • the base 306-1 of the corrugated fin 306 can be joined to the outer peripheral surface of the cylindrical body 302 by irradiating laser light from between the two main body parts 306-2 that form the corrugated fin valley shape toward the base part 306-1.
  • the corrugated fin 306 has two adjacent main body parts 306-2 connected via a connecting part 306-3, which makes it easy to align the main body part 306-2 on the outer peripheral surface of the cylindrical body 302 during laser welding.
  • FIG. 23A and 23B are schematic plan views showing a configuration of a corrugated fin 306A of a heat dissipation structure 300A according to one embodiment of the present invention.
  • FIG. 23A and Fig. 23B shows a plan view of two adjacent main body portions 306-2.
  • a plurality of openings OP are provided in the main body portion 306-2.
  • the plurality of openings OP are arranged in the z-axis direction, and each of the plurality of openings OP has a substantially rectangular shape with a long side along the second direction d2.
  • the arrangement of the openings OP provided in two adjacent main body portions 306-2 is the same. Therefore, in the corrugated fin 306A shown in FIG. 23A, the openings OP provided in the two main body portions 306-2 overlap.
  • the arrangement of the openings OP is different in the two adjacent main body portions 306-2.
  • the plurality of openings OP are provided in the main body portion 306-2 such that one opening of the other of the two adjacent main body portions 306-2 is located between two openings OP of one of the two adjacent main body portions 306-2.
  • the number of openings OP may differ between two adjacent main body portions 306-2.
  • the heat dissipation structure 300 can be manufactured by welding together the cylindrical body 302 and the corrugated fins 306, which are processed as separate parts.
  • the shapes of the cylindrical body 302 and the corrugated fins 306 are not complex, and they are easy to process. Therefore, the heat dissipation structure 300 in which the cylindrical body 302 and the corrugated fins 306 are joined together can reduce manufacturing costs.

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

This heat dissipating structure includes a tubular body including a curved outer peripheral surface, and a plurality of fins arranged on the outer peripheral surface, wherein: each of the plurality of fins includes a base portion joined to the outer peripheral surface, and a main body portion which is connected to the base portion and which extends in a first direction moving away from the outer peripheral surface; and in a cross-sectional view from a second direction in which an axis of a tubular shape of the tubular body extends, a width of the base portion is greater than a width of the main body portion. A welding bead region may be included between the outer peripheral surface and the base portion. The base portion and the main body portion may be formed from one plate-shaped member. Each of the plurality of fins may have an L-shape in the cross-sectional view.

Description

放熱構造体およびその製造方法Heat dissipation structure and manufacturing method thereof
 本発明の一実施形態は、冷却機能を有する放熱構造体に関する。また、本発明の一実施形態は、冷却機能を有する放熱構造体の製造方法に関する。 One embodiment of the present invention relates to a heat dissipation structure having a cooling function. Also, one embodiment of the present invention relates to a method for manufacturing a heat dissipation structure having a cooling function.
 モータやインバータ、ポンプ、コンプレッサなどの電動機は、駆動時に発熱するため、電動機を収容するケースに放熱用のフィンが取り付けられることがある。例えば特許文献1には、複数のフィンが設けられた円筒状の電動機用ケースが開示されている。この電動機用ケースは、アルミニウムを押出成形することによって製造される。 Electric motors such as motors, inverters, pumps, and compressors generate heat when in operation, so fins for heat dissipation are sometimes attached to the case that houses the motor. For example, Patent Document 1 discloses a cylindrical motor case provided with multiple fins. This motor case is manufactured by extruding aluminum.
特開2019-22250号公報JP 2019-22250 A
 近年、放熱構造体の放熱性を向上させ、機械的強度を維持しつつ、放熱構造体の製造コストのさらなる削減が要望されている。 In recent years, there has been a demand for further reductions in the manufacturing costs of heat dissipation structures while improving their heat dissipation properties and maintaining their mechanical strength.
 本発明の一実施形態は、上記問題に鑑み、新規な構造を備える放熱構造体を提供することを目的の一つとする。また、本発明の一実施形態は、新規な構造を有する放熱構造体の製造方法を提供することを目的の一つとする。 In view of the above problems, one embodiment of the present invention has an object to provide a heat dissipation structure with a novel structure. Another object of one embodiment of the present invention is to provide a method for manufacturing a heat dissipation structure with a novel structure.
 本発明の一実施形態に係る放熱構造体は、湾曲する外周面を含む筒状体と、外周面の上に配置された複数のフィンと、を含み、複数のフィンの各々は、外周面と接合される基部と、基部と接続され、外周面から離れる第1の方向に延在する本体部と、を含み、筒状体の筒状の軸が延伸する第2の方向からの断面視において、基部の幅は、本体部の幅よりも大きい。 The heat dissipation structure according to one embodiment of the present invention includes a cylindrical body having a curved outer peripheral surface and a number of fins arranged on the outer peripheral surface, each of the fins including a base joined to the outer peripheral surface and a main body connected to the base and extending in a first direction away from the outer peripheral surface, and when viewed in cross section from a second direction in which the cylindrical axis of the cylindrical body extends, the width of the base is greater than the width of the main body.
 外周面と基部との間に溶接ビード領域を含んでいてもよい。 It may include a weld bead region between the outer periphery and the base.
 外周面と基部とは、固相拡散接合によって接合されていてもよい。 The outer peripheral surface and the base may be joined by solid-state diffusion bonding.
 基部と本体部とは、1つの板状部材から形成されていてもよい。 The base and main body may be formed from a single plate-like member.
 断面視において、複数のフィンの各々は、L字形状を有していてもよい。基部の端部は、切欠き部を含んでいてもよい。 In cross-sectional view, each of the fins may have an L-shape. The end of the base may include a notch.
 断面視において、複数のフィンの各々は、U字形状を有していてもよい。 In cross-sectional view, each of the fins may have a U-shape.
 複数のフィンは、第1のフィンおよび第2のフィンを含み、第1のフィンおよび第2のフィンは、第2の方向に配置されていてもよい。第1のフィンおよび第2のフィンは、第2の方向に千鳥状に配置されていてもよい。 The plurality of fins may include a first fin and a second fin, and the first fin and the second fin may be arranged in the second direction. The first fin and the second fin may be arranged in a staggered manner in the second direction.
 基部は、外周面と接合される平滑面を含んでいてもよい。 The base may include a smooth surface that is joined to the outer periphery.
 外周面と接合される基部の接合面は、外周面の形状に合わせて湾曲していていてもよい。 The joining surface of the base that is joined to the outer peripheral surface may be curved to match the shape of the outer peripheral surface.
 断面視において、複数のフィンの各々は、T字形状を有していてもよい。 In cross-sectional view, each of the fins may have a T-shape.
 複数のフィンのうちの互いに隣接する第1のフィンおよび第2のフィンは、第1のフィンの基部の端部と第2のフィンの基部の端部とが対向するように配置されていてもよい。 A first fin and a second fin that are adjacent to each other among the multiple fins may be arranged such that the end of the base of the first fin faces the end of the base of the second fin.
 本発明の一実施形態に係る放熱構造体は、湾曲する外周面を含む筒状体と、外周面の上に配置された複数のフィンと、を含み、複数のフィンの各々は、外周面と接合される1つの基部と、1つの基部と接続され、外周面から離れる第1の方向に延在する複数の本体部と、を含み、筒状体の筒状の軸が延伸する第2の方向からの断面視において、1つの基部の幅は、複数の本体部に含まれる1つの本体部の幅よりも大きい。 The heat dissipation structure according to one embodiment of the present invention includes a cylindrical body having a curved outer peripheral surface and a number of fins arranged on the outer peripheral surface, each of the fins including a base portion joined to the outer peripheral surface and a number of main body portions connected to the base portion and extending in a first direction away from the outer peripheral surface, and when viewed in cross section from a second direction in which the cylindrical axis of the cylindrical body extends, the width of the base portion is greater than the width of one of the main body portions included in the number of main body portions.
 断面視において、1つの基部の幅は、複数の本体部に含まれる1つの本体部の幅の2倍よりも大きく、断面視において、複数のフィンの各々は、U字形状を有してもよい。複数の本体部は、前記第2の方向に千鳥状に配置されていてもよい。 In a cross-sectional view, the width of one base portion is greater than twice the width of one of the body portions included in the plurality of body portions, and in a cross-sectional view, each of the plurality of fins may have a U-shape. The plurality of body portions may be arranged in a staggered pattern in the second direction.
 複数のフィンの材料は、筒状体の材料と同一であってもよい。 The material of the multiple fins may be the same as the material of the cylindrical body.
 本発明の一実施形態に係る放熱構造体の製造方法は、湾曲する外周面を含む筒状体の位置を固定し、基部および基部と接続される本体部を含むフィンの基部を、外周面の上に配置し、溶接を用いて基部を外周面に接合すること、を含み、筒状体の筒状の軸が延伸する方向からの断面視において、基部の幅は、本体部の幅よりも大きい。 A method for manufacturing a heat dissipation structure according to one embodiment of the present invention includes fixing the position of a cylindrical body including a curved outer peripheral surface, placing a base of a fin including a base and a main body portion connected to the base on the outer peripheral surface, and joining the base to the outer peripheral surface using welding, whereby the width of the base is greater than the width of the main body portion when viewed in cross section from the direction in which the cylindrical axis of the cylindrical body extends.
 溶接は、レーザ溶接、アーク溶接、および電子ビーム溶接のうちの1つであってもよい。 The welding may be one of laser welding, arc welding, and electron beam welding.
 溶接において、レーザ光、アーク、または電子ビームは、少なくとも基部に照射されてもよい。 In welding, a laser light, an arc, or an electron beam may be applied to at least the base.
 溶接において、レーザ光、アーク、または電子ビームは、筒状体の内周面に照射されてもよい。 In welding, a laser beam, an arc, or an electron beam may be irradiated onto the inner surface of the cylindrical body.
 溶接において、レーザ光、アーク、または電子ビームは、上面および下面の少なくとも1つに照射されてもよい。 In welding, a laser light, an arc, or an electron beam may be applied to at least one of the upper and lower surfaces.
 放熱構造体の製造方法は、さらに、1つの板状部材から基部および本体部を含むフィンを加工してもよい。 The method for manufacturing the heat dissipation structure may further include processing fins including a base and a main body from a single plate-like member.
 放熱構造体の製造方法は、さらに、外周面と接合される基部の接合面を、外周面の形状に合わせた湾曲状に加工してもよい。 The method for manufacturing the heat dissipation structure may further include processing the joining surface of the base that is joined to the outer peripheral surface into a curved shape that matches the shape of the outer peripheral surface.
 断面視において、フィンは、L字形状を有してもよい。 In cross section, the fin may have an L-shape.
 断面視において、フィンは、T字形状を有していてもよい。 In cross section, the fins may have a T-shape.
 フィンの材料は、筒状体の材料と同一であってもよい。 The material of the fins may be the same as the material of the cylindrical body.
 本体部の表面、端部、および側部の少なくとも1つは、溝部、凹部、および凸部から選ばれる少なくとも1つの形状部を含んでいてもよい。 At least one of the surface, end, and side of the main body may include at least one shaped portion selected from a groove, a recess, and a protrusion.
 本発明の一実施形態に係る放熱構造体は、別々の部品として加工される筒状体およびフィンを、溶接を用いて接合し、製造される。筒状体およびフィンのそれぞれの形状は複雑でなく、形成が容易である。また、複雑な形状を有するフィンであっても、加工方法が限定されることなく、フィンは、安価なコストの加工方法を適用して大量に生産することが可能である。そのため、筒状体とフィンとが接合された放熱構造体は、製造コストを削減することができる。また、フィンの長さを長くすること、および狭い間隔で配置することが可能となるため、表面積が増加し、放熱性が向上する。 The heat dissipation structure according to one embodiment of the present invention is manufactured by welding together a cylindrical body and fins that are processed as separate parts. The shapes of the cylindrical body and fins are not complex and are easy to form. Furthermore, even for fins with complex shapes, the processing method is not limited, and the fins can be mass-produced by applying an inexpensive processing method. Therefore, a heat dissipation structure in which a cylindrical body and fins are joined can reduce manufacturing costs. Furthermore, it is possible to increase the length of the fins and arrange them at narrow intervals, which increases the surface area and improves heat dissipation.
本発明の一実施形態に係る放熱構造体の構成を示す模式的な斜視図である。1 is a schematic perspective view showing a configuration of a heat dissipation structure according to one embodiment of the present invention; 本発明の一実施形態に係る放熱構造体の構成を示す模式的な上面図である。1 is a schematic top view showing a configuration of a heat dissipation structure according to an embodiment of the present invention; 本発明の一実施形態に係る放熱構造体のフィンの構成を示す模式的な斜視図である。FIG. 2 is a schematic perspective view showing a configuration of fins of a heat dissipation structure according to one embodiment of the present invention. 本発明の一実施形態に係る放熱構造体のフィンの構成を示す模式的な断面図である。2 is a schematic cross-sectional view showing a configuration of a fin of a heat dissipation structure according to one embodiment of the present invention. FIG. 本発明の一実施形態に係る放熱構造体の製造方法を示すフローチャートである。4 is a flowchart showing a method for manufacturing a heat dissipation structure according to one embodiment of the present invention. 本発明の一実施形態に係る放熱構造体の製造方法を示す断面図である。5A to 5C are cross-sectional views showing a method for manufacturing a heat dissipation structure according to one embodiment of the present invention. 本発明の一実施形態に係る放熱構造体の製造方法を示す断面図である。5A to 5C are cross-sectional views showing a method for manufacturing a heat dissipation structure according to one embodiment of the present invention. 本発明の一実施形態に係る放熱構造体のフィンの構成を示す模式的な斜視図である。FIG. 2 is a schematic perspective view showing a configuration of fins of a heat dissipation structure according to one embodiment of the present invention. 本発明の一実施形態に係る放熱構造体のフィンの配置構成を示す模式的な断面図である。2 is a schematic cross-sectional view showing the arrangement of fins of a heat dissipation structure according to one embodiment of the present invention; FIG. 本発明の一実施形態に係る放熱構造体のフィンの構成を示す模式的な断面図である。2 is a schematic cross-sectional view showing a configuration of a fin of a heat dissipation structure according to one embodiment of the present invention. FIG. 本発明の一実施形態に係る放熱構造体のフィンの構成を示す模式的な断面図である。2 is a schematic cross-sectional view showing a configuration of a fin of a heat dissipation structure according to one embodiment of the present invention. FIG. 本発明の一実施形態に係る放熱構造体のフィンの構成を示す模式的な断面図である。2 is a schematic cross-sectional view showing a configuration of a fin of a heat dissipation structure according to one embodiment of the present invention. FIG. 本発明の一実施形態に係る放熱構造体のフィンの配置構成を示す模式的な上面図である。FIG. 2 is a schematic top view showing the arrangement of fins of a heat dissipation structure according to one embodiment of the present invention. 本発明の一実施形態に係る放熱構造体のフィンの配置構成を示す模式的な上面図である。FIG. 2 is a schematic top view showing the arrangement of fins of a heat dissipation structure according to one embodiment of the present invention. 本発明の一実施形態に係る放熱構造体のフィンの構成を示す模式的な斜視図である。FIG. 2 is a schematic perspective view showing a configuration of fins of a heat dissipation structure according to one embodiment of the present invention. 本発明の一実施形態に係る放熱構造体のフィンの構成を示す模式的な斜視図である。FIG. 2 is a schematic perspective view showing a configuration of fins of a heat dissipation structure according to one embodiment of the present invention. 本発明の一実施形態に係る放熱構造体のフィンの構成を示す模式的な斜視図である。FIG. 2 is a schematic perspective view showing a configuration of fins of a heat dissipation structure according to one embodiment of the present invention. 本発明の一実施形態に係る放熱構造体の構成を示す模式的な斜視図である。1 is a schematic perspective view showing a configuration of a heat dissipation structure according to one embodiment of the present invention; 本発明の一実施形態に係る放熱構造体の構成を示す模式的な斜視図である。1 is a schematic perspective view showing a configuration of a heat dissipation structure according to one embodiment of the present invention; 本発明の一実施形態に係る放熱構造体の構成を示す模式的な斜視図である。1 is a schematic perspective view showing a configuration of a heat dissipation structure according to one embodiment of the present invention; 本発明の一実施形態に係る放熱構造体の構成を示す模式的な斜視図である。1 is a schematic perspective view showing a configuration of a heat dissipation structure according to one embodiment of the present invention; 本発明の一実施形態に係る放熱構造体の構成を示す模式的な上面図である。1 is a schematic top view showing a configuration of a heat dissipation structure according to an embodiment of the present invention; 本発明の一実施形態に係る放熱構造体の構成を示す模式的な斜視図である。1 is a schematic perspective view showing a configuration of a heat dissipation structure according to one embodiment of the present invention; 本発明の一実施形態に係る放熱構造体の製造方法を示す断面図である。5A to 5C are cross-sectional views showing a method for manufacturing a heat dissipation structure according to one embodiment of the present invention. 本発明の一実施形態に係る放熱構造体の製造方法を示す断面図である。5A to 5C are cross-sectional views showing a method for manufacturing a heat dissipation structure according to one embodiment of the present invention. 本発明の一実施形態に係る放熱構造体の構成を示す模式的な上面図である。1 is a schematic top view showing a configuration of a heat dissipation structure according to an embodiment of the present invention; 本発明の一実施形態に係る放熱構造体のフィンの構成を示す模式的な斜視図である。FIG. 2 is a schematic perspective view showing a configuration of fins of a heat dissipation structure according to one embodiment of the present invention. 本発明の一実施形態に係る放熱構造体のフィンの構成を示す模式的な断面図である。2 is a schematic cross-sectional view showing a configuration of a fin of a heat dissipation structure according to one embodiment of the present 本発明の一実施形態に係る放熱構造体のフィンの構成を示す模式的な断面図である。2 is a schematic cross-sectional view showing a configuration of a fin of a heat dissipation structure according to one embodiment of the present invention. FIG. 本発明の一実施形態に係る放熱構造体のフィンの構成を示す模式的な斜視図である。FIG. 2 is a schematic perspective view showing a configuration of fins of a heat dissipation structure according to one embodiment of the present invention. 本発明の一実施形態に係る放熱構造体のフィンの構成を示す模式的な斜視図である。FIG. 2 is a schematic perspective view showing a configuration of fins of a heat dissipation structure according to one embodiment of the present invention. 本発明の一実施形態に係る放熱構造体の構成を示す模式的な上面図である。1 is a schematic top view showing a configuration of a heat dissipation structure according to an embodiment of the present invention; 本発明の一実施形態に係る放熱構造体のコルゲートフィンの構成を示す模式的な斜視図である。1 is a schematic perspective view showing a configuration of a corrugated fin of a heat dissipation structure according to one embodiment of the present invention; 本発明の一実施形態に係る放熱構造体のコルゲートフィンの構成を示す模式的な断面図である。1 is a schematic cross-sectional view showing a configuration of a corrugated fin of a heat dissipation structure according to one embodiment of the present invention. 本発明の一実施形態に係る放熱構造体のコルゲートフィンの構成を示す模式的な平面図である。1 is a schematic plan view showing a configuration of a corrugated fin of a heat dissipation structure according to an embodiment of the present invention; 本発明の一実施形態に係る放熱構造体のコルゲートフィンの構成を示す模式的な平面図である。1 is a schematic plan view showing a configuration of a corrugated fin of a heat dissipation structure according to an embodiment of the present invention;
 以下、本出願で開示される発明の各実施形態について、図面を参照し説明する。但し、本発明は、その要旨を逸脱しない範囲において様々な形態で実施することができ、以下に例示する実施形態の記載内容に限定して解釈されるものではない。 Each embodiment of the invention disclosed in this application will be described below with reference to the drawings. However, the present invention can be embodied in various forms without departing from the gist of the invention, and should not be interpreted as being limited to the description of the embodiments exemplified below.
 図面は、説明をより明確にするため、実際の態様に比べ、各部の幅、厚さ、形状等について模式的に表される場合があるが、あくまで一例であって、本発明の解釈を限定するものではない。また、本明細書および図面において、既出の図に関して説明したものと同様の機能を備えた要素には、同一の符号を付して、重複する説明を省略することがある。 In order to make the explanation clearer, the drawings may show the width, thickness, shape, etc. of each part in a schematic manner compared to the actual embodiment, but this is merely an example and does not limit the interpretation of the present invention. Furthermore, in this specification and drawings, elements with similar functions to those explained in the previous figures may be given the same reference numerals and duplicate explanations may be omitted.
 本明細書および図面において、同一または類似する複数の構成を総じて表記する際には同一の符号を用い、これら複数の構成のそれぞれを区別して表記する際には、さらに大文字のアルファベットを添えて表記する。一つの構成のうちの複数の部分をそれぞれ区別して表記する際には、同一の符号を用い、さらにハイフンと自然数を用いる。 In this specification and drawings, the same reference numeral is used to collectively represent multiple identical or similar components, and when each of these multiple components is to be distinguished from the others, a capital alphabet is added to the reference numeral. When multiple parts of a single component are to be distinguished from each other, the same reference numeral is used, followed by a hyphen and a natural number.
<第1実施形態>
 図1A~図4Bを参照して、本発明の一実施形態に係る放熱構造体100およびその製造方法について説明する。
First Embodiment
A heat dissipation structure 100 according to an embodiment of the present invention and a method for manufacturing the same will be described with reference to FIGS. 1A to 4B.
[1.放熱構造体100の構成]
 図1A~図2Bを参照して、本発明の一実施形態に係る放熱構造体100の構成について説明する。
[1. Configuration of heat dissipation structure 100]
The configuration of a heat dissipation structure 100 according to one embodiment of the present invention will be described with reference to FIGS. 1A to 2B.
 図1Aおよび図1Bは、それぞれ、本発明の一実施形態に係る放熱構造体100の構成を示す模式的な斜視図および上面図である。 FIGS. 1A and 1B are schematic perspective and top views, respectively, showing the configuration of a heat dissipation structure 100 according to one embodiment of the present invention.
 図1Aおよび図1Bに示すように、放熱構造体100は、筒状体102および複数のフィン104を含む。複数のフィン104は、筒状体102の湾曲する外周面の上に配置され、外周面から離れる方向に延在している。図示しないが、放熱構造体100の内部(すなわち、筒状体102の内周面側)または外部(すなわち、複数のフィン104の外側)に放熱構造体100を冷却するための冷媒を冷却するための冷媒を還流するための流路を設けてもよい。以下では、筒状体102の筒状の軸が延伸している方向をz方向とし、z方向に垂直であり、互いに直交する方向をx方向およびy方向として説明する。したがって、複数のフィン104の各々は、筒状体102の外周面においてz方向に平行に配置され、筒状体102の外周面からxy面内の所定の方向に放射状に延在している。 1A and 1B, the heat dissipation structure 100 includes a cylindrical body 102 and a plurality of fins 104. The plurality of fins 104 are disposed on the curved outer peripheral surface of the cylindrical body 102 and extend in a direction away from the outer peripheral surface. Although not shown, a flow path for circulating a refrigerant for cooling the heat dissipation structure 100 may be provided inside (i.e., on the inner peripheral surface side of the cylindrical body 102) or outside (i.e., outside the plurality of fins 104) of the heat dissipation structure 100. In the following description, the direction in which the cylindrical axis of the cylindrical body 102 extends is defined as the z direction, and directions perpendicular to the z direction and perpendicular to each other are defined as the x direction and the y direction. Therefore, each of the plurality of fins 104 is disposed parallel to the z direction on the outer peripheral surface of the cylindrical body 102, and extends radially from the outer peripheral surface of the cylindrical body 102 in a predetermined direction in the xy plane.
 筒状体102の表面は、内周面および外周面以外に、内周面と外周面とを接続する上面および下面を含む。上面と下面とは同じ構成であるため、以下では、上面と下面とを特に区別しない場合には、上面または下面を単に側面という場合がある。筒状体102の内周面側には、様々な電動機が収容される。そのため、筒状体102は、電動機を保護するハウジングとして機能する。また、筒状体102は、筒状体102の内周面側に収容された電動機から放熱される熱を吸収することができる。z方向からの断面視において、筒状体102は、円環形状を有する(ここで、筒状体102の断面図は図1Bに示す上面図と同様であるため、筒状体102の断面図は省略する。)。但し、筒状体102の断面形状は、これに限られない。筒状体102の断面形状は、筒状体102の内周面側に収容される電動機の種類または大きさに応じて適宜選択される。また、筒状体102の大きさ(外径およびz方向の長さ)も、電動機の種類または大きさによって適宜選択される。例えば、外径は200mm以上500mm以下でもよく、z方向の長さは30mm以上300mm以下でもよい。筒状体102のアスペクト比(外径/長さ)は、例えば、1以上20以下でもよい。また、筒状体102の厚さ(内周面と外周面との間の距離)も放熱構造体100に要求される強度によって適宜選択され、例えば、1mm以上20mm以下の範囲であるが、これに限られない。 The surface of the cylindrical body 102 includes an upper surface and a lower surface that connect the inner and outer surfaces, in addition to the inner and outer surfaces. Since the upper and lower surfaces have the same configuration, in the following, when the upper and lower surfaces are not particularly distinguished from each other, the upper or lower surface may be simply referred to as a side surface. Various electric motors are housed on the inner surface side of the cylindrical body 102. Therefore, the cylindrical body 102 functions as a housing that protects the electric motors. In addition, the cylindrical body 102 can absorb heat radiated from the electric motors housed on the inner surface side of the cylindrical body 102. In a cross-sectional view from the z direction, the cylindrical body 102 has a circular ring shape (here, the cross-sectional view of the cylindrical body 102 is the same as the top view shown in FIG. 1B, so the cross-sectional view of the cylindrical body 102 is omitted.). However, the cross-sectional shape of the cylindrical body 102 is not limited to this. The cross-sectional shape of the cylindrical body 102 is appropriately selected according to the type or size of the electric motor housed on the inner peripheral side of the cylindrical body 102. The size of the cylindrical body 102 (outer diameter and length in the z direction) is also appropriately selected according to the type or size of the electric motor. For example, the outer diameter may be 200 mm or more and 500 mm or less, and the length in the z direction may be 30 mm or more and 300 mm or less. The aspect ratio (outer diameter/length) of the cylindrical body 102 may be, for example, 1 or more and 20 or less. The thickness of the cylindrical body 102 (the distance between the inner peripheral surface and the outer peripheral surface) is also appropriately selected according to the strength required for the heat dissipation structure 100, and is, for example, in the range of 1 mm or more and 20 mm or less, but is not limited thereto.
 フィン104は、筒状体102と接続され、筒状体102から伝導された熱を外部に放出することができる。すなわち、フィン104は、放熱板として機能する。フィン104の厚さおよび高さ(筒状体102の外周面からフィン104が延在する方向における長さ)、フィン104の数、ならびにフィン104の間隔は、放熱構造体100に要求される冷却効率に応じて適宜選択される。例えば、フィン104の厚さは0.5mm以上5mm以下の範囲でもよく、高さは30mm以上90mm以下でもよい。また、フィン104の間隔は、例えば、1mm以上20mm以下であるが、これに限られない。 The fins 104 are connected to the cylindrical body 102 and can dissipate heat conducted from the cylindrical body 102 to the outside. That is, the fins 104 function as a heat sink. The thickness and height of the fins 104 (the length in the direction in which the fins 104 extend from the outer circumferential surface of the cylindrical body 102), the number of fins 104, and the spacing between the fins 104 are appropriately selected according to the cooling efficiency required of the heat dissipation structure 100. For example, the thickness of the fins 104 may be in the range of 0.5 mm to 5 mm, and the height may be in the range of 30 mm to 90 mm. The spacing between the fins 104 is, for example, 1 mm to 20 mm, but is not limited to this.
 複数のフィン104は、筒状体102の外周面の上の全体にわたって等間隔に配置されている。但し、複数のフィン104の配置構成は、これに限られない。図示しないが、複数のフィン104は、筒状体102の外周面の上に不規則な間隔で配置されてもよく、筒状体102の外周面の一部に配置されてもよい。 The multiple fins 104 are arranged at equal intervals over the entire outer circumferential surface of the cylindrical body 102. However, the arrangement of the multiple fins 104 is not limited to this. Although not shown, the multiple fins 104 may be arranged at irregular intervals over the outer circumferential surface of the cylindrical body 102, or may be arranged on only a portion of the outer circumferential surface of the cylindrical body 102.
 フィン104のz方向における長さは、筒状体102のz方向における長さと同一である。但し、フィン104の長さは、これに限られない。図示しないが、フィン104のz方向における長さは、筒状体102のz方向における長さよりも大きくてもよく、小さくてもよい。 The length of the fins 104 in the z direction is the same as the length of the cylindrical body 102 in the z direction. However, the length of the fins 104 is not limited to this. Although not shown, the length of the fins 104 in the z direction may be greater or smaller than the length of the cylindrical body 102 in the z direction.
 フィン104の材料は、筒状体102の材料と同じであってもよく、異なっていてもよい。但し、放熱構造体100の機械的強度を維持するためには、フィン104の材料が、筒状体102の材料と同じであることが好ましい。筒状体102およびフィン104の各々の材料として、アルミニウム合金を用いることができる。例えば、アルミニウム合金は、A7072、A7050、A7075、およびA7N01などと称されるアルミニウム、亜鉛、マグネシウム、および銅を含む合金、またはA6061、A6063、およびA6N01などと称されるケイ素を含むアルミニウムおよびマグネシウムの合金である。但し、アルミニウム合金は、上記合金に限られず、A5052、A5056、A5083、およびA5454などと称されるアルミニウムおよびマグネシウムの合金、A4032およびA4043などと称されるケイ素を含むアルミニウム、A3003、A3005、およびA3105などと称されるアルミニウムおよびマンガンの合金であってもよい。アルミニウム合金を筒状体102およびフィン104に用いることで、アルミニウムの高い熱伝導率に起因し、放熱構造体100は高い放熱特性を示すことができる。 The material of the fins 104 may be the same as or different from the material of the cylindrical body 102. However, in order to maintain the mechanical strength of the heat dissipation structure 100, it is preferable that the material of the fins 104 is the same as the material of the cylindrical body 102. An aluminum alloy can be used as the material of each of the cylindrical body 102 and the fins 104. For example, the aluminum alloy is an alloy containing aluminum, zinc, magnesium, and copper, such as A7072, A7050, A7075, and A7N01, or an alloy of aluminum and magnesium containing silicon, such as A6061, A6063, and A6N01. However, the aluminum alloy is not limited to the above alloys, and may be an alloy of aluminum and magnesium called A5052, A5056, A5083, A5454, etc., an alloy of aluminum containing silicon called A4032, A4043, etc., or an alloy of aluminum and manganese called A3003, A3005, A3105, etc. By using an aluminum alloy for the cylindrical body 102 and the fins 104, the heat dissipation structure 100 can exhibit high heat dissipation characteristics due to the high thermal conductivity of aluminum.
 ここで、図2Aおよび図2Bを参照して、フィン104の構成についてさらに説明する。図2Aおよび図2Bは、それぞれ、本発明の一実施形態に係る放熱構造体100のフィン104の構成を示す模式的な斜視図および断面図である。具体的には、図2Bは、図2Aに示されるA1-A2線で切断されたフィン104の断面図である。 The configuration of the fins 104 will now be described further with reference to Figures 2A and 2B. Figures 2A and 2B are schematic perspective and cross-sectional views, respectively, showing the configuration of the fins 104 of the heat dissipation structure 100 according to one embodiment of the present invention. Specifically, Figure 2B is a cross-sectional view of the fins 104 cut along line A1-A2 shown in Figure 2A.
 図2Aおよび図2Bに示すように、フィン104は、第1の方向d1に第1の幅w1を有する基部104-1および第1の方向d1と交差する第2の方向d2に延在する本体部104-2を含む。ここで、第1の方向d1および第2の方向d2の各々はxy面内のいずれかの方向であり、第2の方向d2は筒状体102の外周面からフィン104が延在する方向に相当する。基部104-1は屈曲部CR1を含み、本体部104-2は、屈曲部CR1を介して基部104-1と接続されている。フィン104は、1つの板状部材が屈曲された構造を有し、断面視において、基部104-1および本体部104-2の各々は1つの端部を含む。すなわち、断面視において、フィン104は、L字形状を有する。第1の方向d1と第2の方向d2とのなす角は、例えば、略90°であることが好ましいが、これに限られない。例えば、第1の方向d1と第2の方向d2とのなす角は、45°以上135°以下でもよい。なお、基部104-1と本体部104-2との接続は一つの板状部材が屈曲された構造以外にも、2つの部材を接合した構造等を採用することができ、必ずしも屈曲部CR1を含まなくてもよい。 2A and 2B, the fin 104 includes a base 104-1 having a first width w1 in a first direction d1 and a main body 104-2 extending in a second direction d2 intersecting the first direction d1. Here, each of the first direction d1 and the second direction d2 is a direction in the xy plane, and the second direction d2 corresponds to the direction in which the fin 104 extends from the outer peripheral surface of the cylindrical body 102. The base 104-1 includes a bent portion CR1, and the main body 104-2 is connected to the base 104-1 via the bent portion CR1. The fin 104 has a structure in which one plate-shaped member is bent, and in a cross-sectional view, each of the base 104-1 and the main body 104-2 includes one end. That is, in a cross-sectional view, the fin 104 has an L-shape. The angle between the first direction d1 and the second direction d2 is preferably, for example, approximately 90°, but is not limited to this. For example, the angle between the first direction d1 and the second direction d2 may be 45° or more and 135° or less. Note that the connection between the base 104-1 and the main body 104-2 can be a structure in which two members are joined, other than a structure in which one plate-like member is bent, and does not necessarily have to include the bent portion CR1.
 フィン104の加工方法は特に限定されないが、フィン104は、例えば、プレス打ち抜きにより、または板状部材を折り曲げることにより、加工することができる。フィン104は単純な形状であるため、フィン104の加工には、安価な加工方法を採用することができる。また、フィン104は、基部104-1および本体部104-2のそれぞれを構成する板状部材を接合することにより、形成することもできる。2つの板状部材を接合する場合、フィン104は、基部104-1は屈曲部CR1を含まなくてもよく、基部104-1を構成する板状部材の上に、本体部104-2を構成する板状部材を接続することができる。基部104-1と本体部104-2との接合は、例えば、レーザ溶接、アーク溶接、電子ビーム溶接、固相拡散接合、またはろう付などを用いて行うことができる。ろう付用のろうとして、例えば、銀、銅、および亜鉛を含む合金、銅および亜鉛を含む合金、リンを微量含む銅、アルミニウムを含む合金、チタン、銅、およびニッケルを含む合金、チタン、ジルコニウム、および銅を含む合金、またはチタン、ジルコニウム、銅、およびニッケルを含む合金などを用いることができる。 The processing method of the fin 104 is not particularly limited, but the fin 104 can be processed, for example, by press punching or by bending a plate-shaped member. Since the fin 104 has a simple shape, an inexpensive processing method can be adopted for processing the fin 104. The fin 104 can also be formed by joining the plate-shaped members constituting the base 104-1 and the main body 104-2. When joining two plate-shaped members, the base 104-1 of the fin 104 does not need to include the bent portion CR1, and the plate-shaped member constituting the main body 104-2 can be connected onto the plate-shaped member constituting the base 104-1. The joining of the base 104-1 and the main body 104-2 can be performed, for example, by laser welding, arc welding, electron beam welding, solid-state diffusion bonding, brazing, or the like. Examples of brazing filler that can be used include alloys containing silver, copper, and zinc, alloys containing copper and zinc, copper containing a small amount of phosphorus, alloys containing aluminum, alloys containing titanium, copper, and nickel, alloys containing titanium, zirconium, and copper, and alloys containing titanium, zirconium, copper, and nickel.
 断面視において、基部104-1の第1の方向d1における第1の幅w1は、本体部104-2の第1の方向d1における第2の幅w2(フィン104の厚さ)よりも大きい。また、基部104-1の第1の幅w1は、本体部104-2の第2の幅w2にフィン104の間隔を加えた値以下である。例えば、基部104-1の第1の幅w1は、本体部104-2の第2の幅w2の1.1倍以上10倍以下であり、好ましくは1.2倍以上5倍以下であり、さらに好ましくは1.5倍以上2倍以下である。詳細は後述するが、基部104-1は、溶接を用いて、筒状体102と接合される。放熱構造体100では、本体部104-2に接続される基部104-1の第1の幅w1が本体部104-2の第2の幅w2よりも大きいため、本体部104-2を筒状体102に直接接合する構成に比べて、基部104-1と筒状体102との接合面積が増加する。そのため、放熱構造体100では、筒状体102とフィン104の基部104-1との間における接合強度が向上する。 In a cross-sectional view, the first width w1 of the base 104-1 in the first direction d1 is larger than the second width w2 (thickness of the fins 104) of the main body 104-2 in the first direction d1. The first width w1 of the base 104-1 is equal to or smaller than the second width w2 of the main body 104-2 plus the spacing between the fins 104. For example, the first width w1 of the base 104-1 is 1.1 to 10 times, preferably 1.2 to 5 times, and more preferably 1.5 to 2 times the second width w2 of the main body 104-2. As will be described in detail later, the base 104-1 is joined to the cylindrical body 102 by welding. In the heat dissipation structure 100, the first width w1 of the base 104-1 connected to the main body 104-2 is larger than the second width w2 of the main body 104-2, so the bonding area between the base 104-1 and the cylindrical body 102 is increased compared to a configuration in which the main body 104-2 is directly bonded to the cylindrical body 102. Therefore, in the heat dissipation structure 100, the bonding strength between the cylindrical body 102 and the base 104-1 of the fin 104 is improved.
 なお、図1Aおよび図1Bでは、隣接する2つのフィン104において、一方のフィン104の基部104-1の端部と他方のフィン104の基部104-1の屈曲部CR1とが離間している構成が図示されている。しかしながら、放熱構造体100の構成として、一方のフィン104の基部104-1と他方のフィン104の屈曲部CR1とが接する構成も適用可能である。この場合、方のフィン104の基部104-1と他方のフィン104の屈曲部CR1とが接合されていてもよい。 Note that Figures 1A and 1B show a configuration in which the end of the base 104-1 of one fin 104 is spaced apart from the bent portion CR1 of the base 104-1 of the other fin 104 in two adjacent fins 104. However, a configuration in which the base 104-1 of one fin 104 is in contact with the bent portion CR1 of the other fin 104 is also applicable as the configuration of the heat dissipation structure 100. In this case, the base 104-1 of one fin 104 and the bent portion CR1 of the other fin 104 may be joined.
[2.放熱構造体100の製造方法]
 図3~図4Bを参照して、本発明の一実施形態に係る放熱構造体100の製造方法について説明する。
2. Manufacturing method of heat dissipation structure 100
A method for manufacturing the heat dissipation structure 100 according to one embodiment of the present invention will be described with reference to FIGS. 3 to 4B.
 図3は、本発明の一実施形態に係る放熱構造体100の製造方法を示すフローチャートである。また、図4Aおよび図4Bの各々は、本発明の一実施形態に係る放熱構造体100製造方法を示す模式的な断面図である。以下では、図4Aおよび図4Bの断面図を参照しながら、図3のフローチャートのステップの順序に従って説明する。図3には、ステップS100~ステップS120が示されているが、放熱構造体100の製造方法は、これに限られない。放熱構造体100は、さらなるステップを含む製造方法によって製造されてもよい。 FIG. 3 is a flowchart showing a method for manufacturing a heat dissipation structure 100 according to one embodiment of the present invention. Also, each of FIGS. 4A and 4B is a schematic cross-sectional view showing a method for manufacturing a heat dissipation structure 100 according to one embodiment of the present invention. Below, a description will be given according to the order of the steps in the flowchart of FIG. 3 with reference to the cross-sectional views of FIG. 4A and FIG. 4B. Although FIG. 3 shows steps S100 to S120, the method for manufacturing the heat dissipation structure 100 is not limited to this. The heat dissipation structure 100 may be manufactured by a manufacturing method including additional steps.
 ステップS100では、筒状体102の位置を固定する。筒状体102は、後述するステップS110においてフィン104を外周面の上に配置することができるように位置が固定されていればよい。例えば、筒状体102は、ステージ上に設置されて位置が固定される。筒状体102は、吸着によって固定されてもよく、磁力によって固定されてもよい。また、筒状体102は、把持されることによって固定されてもよい。筒状体102が把持されることによって固定される場合には、筒状体102はステージ上に設置されなくてもよい。 In step S100, the position of the cylindrical body 102 is fixed. The position of the cylindrical body 102 needs to be fixed so that the fins 104 can be placed on the outer circumferential surface in step S110, which will be described later. For example, the cylindrical body 102 is placed on a stage and its position is fixed. The cylindrical body 102 may be fixed by suction or by magnetic force. The cylindrical body 102 may also be fixed by being grasped. If the cylindrical body 102 is fixed by being grasped, the cylindrical body 102 does not need to be placed on a stage.
 ステップS110では、筒状体102の外周面の上にフィン104を配置する(図4A参照)。フィン104は、基部104-1の接合面(筒状体102の外周面と対向する面)が筒状体102の外周面と接するように配置される。基部104-1の接合面は、接合面全体が筒状体102の外周面に接合されるように、突起などが設けられない平滑面であることが好ましい。また、筒状体102の外周面の上に配置されたフィン104は、固定されることが好ましい。 In step S110, the fins 104 are placed on the outer circumferential surface of the cylindrical body 102 (see FIG. 4A). The fins 104 are placed so that the joining surface of the base 104-1 (the surface facing the outer circumferential surface of the cylindrical body 102) is in contact with the outer circumferential surface of the cylindrical body 102. It is preferable that the joining surface of the base 104-1 is a smooth surface without protrusions or the like so that the entire joining surface is joined to the outer circumferential surface of the cylindrical body 102. It is also preferable that the fins 104 placed on the outer circumferential surface of the cylindrical body 102 are fixed.
 ステップS120では、基部104-1にレーザ光を照射しながら、レーザ光をz方向に走査する(図4B参照)。レーザ光は、筒状体102の外周面側から照射される。これにより、フィン104の基部104-1が筒状体102の外周面に接合される。すなわち、ステップS120は、フィン104を筒状体102に接合するレーザ溶接のステップである。レーザ光としては、例えば、1064nmの波長を有するイットリウム-アルミニウム-ガーネット(YAG)レーザ、または1070nmの波長を有するファイバレーザなどを用いることができる。また、光学素子を用いて線状パターンに加工されたレーザ光を用いてもよい。 In step S120, the laser light is scanned in the z direction while irradiating the base 104-1 (see FIG. 4B). The laser light is irradiated from the outer peripheral surface side of the cylindrical body 102. This bonds the base 104-1 of the fin 104 to the outer peripheral surface of the cylindrical body 102. In other words, step S120 is a laser welding step for bonding the fin 104 to the cylindrical body 102. As the laser light, for example, an yttrium-aluminum-garnet (YAG) laser having a wavelength of 1064 nm, or a fiber laser having a wavelength of 1070 nm, can be used. Laser light processed into a linear pattern using an optical element can also be used.
 なお、ステップS120のレーザ溶接が行われた部分には、溶接ビードが形成されていてもよい。例えば、基部104-1と筒状体102の外周面との間に溶接ビード領域が含まれていてもよい。 Note that a weld bead may be formed in the portion where the laser welding was performed in step S120. For example, a weld bead region may be included between the base 104-1 and the outer circumferential surface of the cylindrical body 102.
 ステップS100~ステップS120が繰り返されることにより、筒状体102の外周面の上に複数のフィン104が接合され、放熱構造体100が製造される。 By repeating steps S100 to S120, multiple fins 104 are bonded onto the outer circumferential surface of the cylindrical body 102, and the heat dissipation structure 100 is manufactured.
 さらなるステップとして、放熱構造体100の溶接後熱処理が行われてもよい。溶接後熱処理により、筒状体102とフィン104との接合による残留応力を低減することができる。また、溶接後熱処理により、放熱構造体100の延性、靱性、および耐食性などが向上する。溶接後熱処理は、例えば、溶体化処理もしくは時効処理またはこれらの処理を組み合わせた溶体化時効処理であるが、これらに限られない。溶接後熱処理は、筒状体102およびフィン104の各々の材料に応じて適宜選択される。 As a further step, a post-weld heat treatment of the heat dissipation structure 100 may be performed. The post-weld heat treatment can reduce residual stress due to the joining of the tubular body 102 and the fins 104. The post-weld heat treatment also improves the ductility, toughness, and corrosion resistance of the heat dissipation structure 100. The post-weld heat treatment is, for example, but is not limited to, a solution treatment or an aging treatment, or a solution aging treatment that is a combination of these treatments. The post-weld heat treatment is appropriately selected depending on the materials of the tubular body 102 and the fins 104.
 また、さらなるステップとして、溶接によって形成された溶接ビード領域における溶接ビードの除去処理が行われてもよい。溶接ビードは、例えば、切削などによって除去することができる。 As a further step, a weld bead removal process may be performed in the weld bead area formed by welding. The weld bead can be removed, for example, by cutting.
 なお、上記では、レーザ溶接を用いてフィン104を筒状体102に接合する構成を説明したが、フィン104を筒状体102に接合する溶接はレーザ溶接に限られない。例えば、レーザ溶接以外にも、アーク溶接または電子ビーム溶接などを用いることもできる。レーザ溶接、アーク溶接、および電子ビーム溶接は、いわゆる溶融溶接であるが、その他に、固相拡散接合またはろう付などを用いることもできる。 Note that, although the above describes a configuration in which the fins 104 are joined to the cylindrical body 102 using laser welding, the welding for joining the fins 104 to the cylindrical body 102 is not limited to laser welding. For example, in addition to laser welding, arc welding or electron beam welding can also be used. Laser welding, arc welding, and electron beam welding are so-called fusion welding, but solid-state diffusion bonding or brazing can also be used.
 本実施形態では、放熱構造体100の構成の様々な変形が可能である。以下では、図5A~図15を参照して、放熱構造体100のいくつかの変形例について説明する。なお、以下では、上述した構成と同様の構成については説明を省略する。 In this embodiment, various modifications of the configuration of the heat dissipation structure 100 are possible. Below, several modified examples of the heat dissipation structure 100 are described with reference to Figures 5A to 15. Note that, below, descriptions of configurations similar to those described above will be omitted.
<変形例1>
 図5Aは、本発明の一実施形態に係る放熱構造体100Aのフィン104Aの構成を示す模式的な斜視図である。また、図5Bは、本発明の一実施形態に係る放熱構造体100Aのフィン104Aの配置構成を示す模式的な断面図である。
<Modification 1>
Fig. 5A is a schematic perspective view showing the configuration of the fins 104A of the heat dissipation structure 100A according to one embodiment of the present invention. Fig. 5B is a schematic cross-sectional view showing the arrangement of the fins 104A of the heat dissipation structure 100A according to one embodiment of the present invention.
 図5Aに示すように、フィン104Aの基部104A-1は、端部の角がz方向に沿って切り欠かれた切欠き部104A-1aを含む。切欠き部104A-1aの大きさは特に限定されない。また、切欠き部104A-1aの断面形状は、図5Bに示すような直線状であってもよく、曲線状(図示せず)であってもよい。 As shown in FIG. 5A, the base 104A-1 of the fin 104A includes a notch 104A-1a in which a corner of the end portion is cut out along the z direction. The size of the notch 104A-1a is not particularly limited. Furthermore, the cross-sectional shape of the notch 104A-1a may be linear as shown in FIG. 5B, or may be curved (not shown).
 図5Bでは、隣接する2つのフィン104Aが重畳するように配置されている。具体的には、隣接する2つのフィン104の一方の基部104A-1の切欠き部104A-1a上に、隣接する2つのフィン104の他方の基部104A-1の屈曲部CR1が位置するように、フィン104が配置されている。このように、フィン104Aの基部104A-1が切欠き部104A-1aを含むことにより、当該フィン104Aに隣接するフィン104を重畳して配置することができる。そのため、放熱構造体100Aでは、フィン104Aの間隔を小さくすることができる。 In FIG. 5B, two adjacent fins 104A are arranged so that they overlap. Specifically, the fins 104 are arranged so that the bent portion CR1 of the base 104A-1 of one of the two adjacent fins 104 is located on the notch portion 104A-1a of the base 104A-1 of the other of the two adjacent fins 104. In this way, since the base 104A-1 of the fin 104A includes the notch portion 104A-1a, the fin 104 adjacent to the fin 104A can be arranged so that it overlaps. Therefore, in the heat dissipation structure 100A, the spacing between the fins 104A can be made smaller.
<変形例2>
 図6は、本発明の一実施形態に係る放熱構造体100Bのフィン104Bの構成を示す模式的な断面図である。
<Modification 2>
FIG. 6 is a schematic cross-sectional view showing the configuration of a fin 104B of a heat dissipation structure 100B according to one embodiment of the present invention.
 図6に示すように、フィン104Bの基部104B-1の接合面(筒状体102の外周面と対向する面)は、筒状体102の外周面の形状に合わせて湾曲している(図6中の領域B参照)。すなわち、基部104B-1の接合面は、湾曲した平滑面である。そのため、フィン104Bを筒状体102の外周面の上に配置すると、筒状体102の外周面と基部104B-1との接触面積が増加する。換言すると、基部104B-1と筒状体102の外周面との間の間隙が小さくなる。そのため、放熱構造体100Bでは、溶接における溶接不良が低減されるとともに、筒状体102とフィン104Bの基部104B-1との間における接合強度がさらに向上する。 As shown in FIG. 6, the joint surface of the base 104B-1 of the fin 104B (the surface facing the outer peripheral surface of the cylindrical body 102) is curved to match the shape of the outer peripheral surface of the cylindrical body 102 (see region B in FIG. 6). In other words, the joint surface of the base 104B-1 is a curved, smooth surface. Therefore, when the fin 104B is placed on the outer peripheral surface of the cylindrical body 102, the contact area between the outer peripheral surface of the cylindrical body 102 and the base 104B-1 increases. In other words, the gap between the base 104B-1 and the outer peripheral surface of the cylindrical body 102 becomes smaller. Therefore, in the heat dissipation structure 100B, welding defects in welding are reduced, and the joint strength between the cylindrical body 102 and the base 104B-1 of the fin 104B is further improved.
<変形例3>
 図7Aおよび図7Bの各々は、本発明の一実施形態に係る放熱構造体100Cのフィン104Cの構成を示す模式的な断面図である。
<Modification 3>
7A and 7B are schematic cross-sectional views showing the configuration of a fin 104C of a heat dissipation structure 100C according to one embodiment of the present invention.
 図7Aに示すように、フィン104Cは、第1の方向d1に第1の幅w1を有する基部104C-1および第1の方向d1と交差する第2の方向d2に延在する本体部104C-2を含む。本体部104C-2は、基部104C-1の上面(接合面と反対の面)に接続されている。基部104C-1は第1の方向d1に2つの端部を含み、本体部104C-2は第2の方向d2に1つの端部を含む。すなわち、断面視において、フィン104Cは、T字形状を有する。第1の方向d1と第2の方向d2とのなす角は、例えば、略90°であることが好ましいが、これに限られない。例えば、第1の方向d1と第2の方向d2とのなす角は、45°以上135°以下でもよい。 As shown in FIG. 7A, the fin 104C includes a base 104C-1 having a first width w1 in a first direction d1 and a body 104C-2 extending in a second direction d2 intersecting the first direction d1. The body 104C-2 is connected to the upper surface (the surface opposite to the joint surface) of the base 104C-1. The base 104C-1 includes two ends in the first direction d1, and the body 104C-2 includes one end in the second direction d2. That is, in a cross-sectional view, the fin 104C has a T-shape. The angle between the first direction d1 and the second direction d2 is preferably, for example, approximately 90°, but is not limited to this. For example, the angle between the first direction d1 and the second direction d2 may be 45° or more and 135° or less.
 フィン104Cは、例えば、押出成形により、または基部104C-1および本体部104C-2のそれぞれを構成する板状部材を接合することにより、形成することができる。 The fins 104C can be formed, for example, by extrusion molding or by joining the plate-like members that make up the base 104C-1 and the main body 104C-2.
 また、図7Bに示すように、フィン104Cは、2枚のフィン104(すなわち、L字形状の断面を有するフィン104)の本体部104-2が接合され、断面がT字形状を有する構成であってもよい。この場合、フィン104Cの基部104C-1は2つの基部104-1を含み、フィン104Cの本体部104C-2は2つの本体部104-2を含む。なお、2つの本体部104-2の間には、溶接ビード領域が含まれていてもよい。 Also, as shown in FIG. 7B, the fin 104C may have a configuration in which the body portions 104-2 of two fins 104 (i.e., fins 104 having an L-shaped cross section) are joined together to form a T-shaped cross section. In this case, the base portion 104C-1 of the fin 104C includes two base portions 104-1, and the body portion 104C-2 of the fin 104C includes two body portions 104-2. Note that a weld bead region may be included between the two body portions 104-2.
 基部104C-1の第1の幅w1は、本体部104C-2の第2の幅w2よりも大きいため(図7A参照)、本体部104C-2を筒状体102に直接接合させる構成に比べて、基部104C-1と筒状体102との接合面積が増加する。そのため、放熱構造体100Cにおいても、筒状体102とフィン104Cの基部104C-1との間における接合強度が向上する。 Because the first width w1 of the base 104C-1 is larger than the second width w2 of the main body 104C-2 (see FIG. 7A), the bonding area between the base 104C-1 and the cylindrical body 102 is increased compared to a configuration in which the main body 104C-2 is directly bonded to the cylindrical body 102. As a result, the bonding strength between the cylindrical body 102 and the base 104C-1 of the fin 104C is improved in the heat dissipation structure 100C as well.
<変形例4>
 図8Aおよび図8Bの各々は、本発明の一実施形態に係る放熱構造体100Dのフィン104の配置構成を示す模式的な上面図である。具体的には、図8Bは、図8A中の領域Dが拡大された上面図である。
<Modification 4>
8A and 8B are schematic top views showing the arrangement of the fins 104 of a heat dissipation structure 100D according to an embodiment of the present invention. Specifically, FIG. 8B is an enlarged top view of a region D in FIG. 8A.
 図8Aおよび図8Bに示すように、放熱構造体100Dでは、筒状体102の外周面の上に、隣接する2つのフィン104の基部104-1の端部が互いに対向するように、または隣接する2つのフィン104の基部104-1の屈曲部CR1が互いに対向するように配置されている。換言すると、隣接する2つのフィン104は、互いの向きが逆となるように対称的に配置されている。 As shown in Figures 8A and 8B, in the heat dissipation structure 100D, the ends of the bases 104-1 of two adjacent fins 104 are arranged on the outer circumferential surface of the cylindrical body 102 so that they face each other, or the bent portions CR1 of the bases 104-1 of two adjacent fins 104 face each other. In other words, the two adjacent fins 104 are arranged symmetrically so that they face in opposite directions.
 なお、図8Aでは、フィン104が1つおきに同じ向きとなるように規則的に配置されているが、放熱構造体100Dにおけるフィン104の配置構成はこれに限られない。放熱構造体100Dでは、互いの向きが逆となるように対称的に配置された隣接する2つのフィンが1組でも含まれていればよい。放熱構造体100Dにおいても、筒状体102とフィン104の基部104-1との間における接合強度が向上する。 In FIG. 8A, the fins 104 are arranged regularly so that every other fin faces the same direction, but the arrangement of the fins 104 in the heat dissipation structure 100D is not limited to this. The heat dissipation structure 100D may include at least one pair of adjacent fins arranged symmetrically so that the fins face in opposite directions. The heat dissipation structure 100D also improves the bonding strength between the cylindrical body 102 and the base 104-1 of the fin 104.
 なお、放熱構造体100Dでは、隣接する2つの基部104-1の端部同士が接合されていてもよい。 In addition, in the heat dissipation structure 100D, the ends of two adjacent bases 104-1 may be joined together.
<変形例5>
 図9A~図9Cの各々は、本発明の一実施形態に係る放熱構造体100Eのフィン104Eの構成を示す模式的な斜視図である。
<Modification 5>
Each of FIGS. 9A to 9C is a schematic perspective view showing the configuration of a fin 104E of a heat dissipation structure 100E according to one embodiment of the present invention.
 図9Aには、本体部104E-2の表面に溝部104E-2aが形成されたフィン104Eが図示されている。図9Bには、本体部104E-2の表面に凹部104E-2bが形成されたフィン104Eが図示されている。図9Cには、本体部104E-2の表面に凸部104E-2cが形成されたフィン104Eが図示されている。溝部104E-2a、凹部104E-2b、および凸部104E-2cの各々の数または大きさは適宜選択され、特に限定されない。また、溝部104E-2a、凹部104E-2b、および凸部104E-2cの各々の断面形状は、例えば、矩形状、半円形状、または半楕円形状であるが、これらに限られない。また、溝部104E-2a、凹部104E-2b、および凸部104E-2cは、本体部104E-2の一表面だけでなく、本体部104E-2の両表面に形成することもできる。さらに、フィン104Eは、溝部104E-2a、凹部104E-2b、および凸部104E-2cから選ばれる複数の形状部が組み合わされた構成も可能である。このように、本体部104E-2の表面に様々な凹凸形状を有する形状部を形成することにより、本体部104E-2の表面積が増加する。そのため、フィン104Eの放熱特性が向上し、放熱構造体100Eの冷却効率が向上する。 Figure 9A shows a fin 104E in which a groove 104E-2a is formed on the surface of the main body 104E-2. Figure 9B shows a fin 104E in which a recess 104E-2b is formed on the surface of the main body 104E-2. Figure 9C shows a fin 104E in which a convex portion 104E-2c is formed on the surface of the main body 104E-2. The number or size of each of the grooves 104E-2a, recesses 104E-2b, and convex portions 104E-2c is selected appropriately and is not particularly limited. In addition, the cross-sectional shape of each of the grooves 104E-2a, recesses 104E-2b, and convex portions 104E-2c is, for example, rectangular, semicircular, or semi-elliptical, but is not limited to these. In addition, the grooves 104E-2a, the recesses 104E-2b, and the protrusions 104E-2c can be formed not only on one surface of the main body 104E-2, but also on both surfaces of the main body 104E-2. Furthermore, the fins 104E can be configured by combining multiple shaped portions selected from the grooves 104E-2a, the recesses 104E-2b, and the protrusions 104E-2c. In this way, by forming shaped portions having various uneven shapes on the surface of the main body 104E-2, the surface area of the main body 104E-2 is increased. This improves the heat dissipation characteristics of the fins 104E, and improves the cooling efficiency of the heat dissipation structure 100E.
 また、図示しないが、フィン104Eは、本体部104E-2の表面だけでなく、本体部104E-2の端部または側部に凹凸形状を有する形状部が形成される構成も可能である。放熱構造体100Eの本体部104E-2に形成される形状部は特に限定されない。放熱構造体100Eでは、筒状体102とフィン104Eとが別々の部品として加工され、接合される。そのため、筒状体とフィンとが一体形成されて製造される放熱構造体のフィンと比べて、フィン104Eに様々な形状部を形成することが可能である。フィン104Eの加工方法は特に限定されないが、例えば、フィン104Eは、鍛造、鋳造、金属積層造形、もしくは切削、またはこれらを組み合わせた加工方法を用いて、製造することができる。 Furthermore, although not shown, the fins 104E can be configured such that unevenly shaped portions are formed not only on the surface of the main body 104E-2, but also on the ends or sides of the main body 104E-2. The shaped portions formed on the main body 104E-2 of the heat dissipation structure 100E are not particularly limited. In the heat dissipation structure 100E, the cylindrical body 102 and the fins 104E are processed and joined as separate parts. Therefore, compared to the fins of the heat dissipation structure manufactured by integrally forming the cylindrical body and the fins, it is possible to form various shaped portions on the fins 104E. The processing method of the fins 104E is not particularly limited, but for example, the fins 104E can be manufactured using a processing method such as forging, casting, metal additive manufacturing, or cutting, or a combination of these.
<変形例6>
 図10A~図13を参照して、放熱構造体100のさらなる構造的な変形例について説明する。なお、図10A~図13の説明においては、放熱構造体100と構造的な違いがあるものの、便宜上、放熱構造体100と同じ符号を用いて説明する。
<Modification 6>
10A to 13, further structural modifications of the heat dissipation structure 100 will be described. In the description of Fig. 10A to 13, although there are structural differences from the heat dissipation structure 100, the same reference numerals as the heat dissipation structure 100 will be used for convenience.
 図10A~図11および図13の各々は、本発明の一実施形態に係る放熱構造体100の構成を示す模式的な斜視図である。また、図12は、本発明の一実施形態に係る放熱構造体100の構成を示す模式的な構成を示す上面図である。図10~図13の各々には、放熱構造体100の構成の一部が示されている。 Each of Figs. 10A to 11 and 13 is a schematic perspective view showing the configuration of a heat dissipation structure 100 according to one embodiment of the present invention. Also, Fig. 12 is a top view showing a schematic configuration of a heat dissipation structure 100 according to one embodiment of the present invention. Each of Figs. 10 to 13 shows a part of the configuration of the heat dissipation structure 100.
 図10Aに示すように、複数のフィン104は、各々の基部104-1がz方向と平行ではなく、z方向から傾くように配置してもよい。また、図10Bに示すように、筒状体102の外周面においてz方向に複数の列を形成するように、複数のフィン104を配置してもよい。図示しないが、フィン104は、筒状体102の外周面上で千鳥配列を形成してもよい。なお、各フィン104の本体部104-2の表面形状は四角形に限られない。例えば、図11Aに示すように、本体部104-2を構成する輪郭が、直線と曲線または曲線のみで形成されてもよい。この場合、基部104-1を構成する輪郭も、直線と曲線または曲線のみで形成されてもよい。また、図11Bに示すように、基部104-1および本体部104-2の各々が屈曲していてもよい。さらに、図12に示すように、各フィン104の本体部104-2は、分岐構造を有してもよい。分岐構造を各フィン104に付与することで、フィン104の面積が増大するため、より効率の高い冷却が可能となる。また、図13に示すように、1つの基部104-1に複数の本体部104-2が接続されていてもよい。 10A, the multiple fins 104 may be arranged so that each base 104-1 is not parallel to the z direction, but is inclined from the z direction. Also, as shown in FIG. 10B, the multiple fins 104 may be arranged so that they form multiple rows in the z direction on the outer peripheral surface of the cylindrical body 102. Although not shown, the fins 104 may form a staggered arrangement on the outer peripheral surface of the cylindrical body 102. Note that the surface shape of the main body 104-2 of each fin 104 is not limited to a rectangle. For example, as shown in FIG. 11A, the outline of the main body 104-2 may be formed of straight lines and curves or only curves. In this case, the outline of the base 104-1 may also be formed of straight lines and curves or only curves. Also, as shown in FIG. 11B, each of the base 104-1 and the main body 104-2 may be bent. Furthermore, as shown in FIG. 12, the main body 104-2 of each fin 104 may have a branched structure. By providing each fin 104 with a branched structure, the area of the fin 104 is increased, enabling more efficient cooling. Also, as shown in FIG. 13, multiple main body parts 104-2 may be connected to one base part 104-1.
<変形例7>
 図14は、本発明の一実施形態に係る放熱構造体100の製造方法を示す断面図である。
<Modification 7>
FIG. 14 is a cross-sectional view showing a method for manufacturing the heat dissipation structure 100 according to one embodiment of the present invention.
 図14には、図3のステップS120におけるレーザ溶接の変形例が示されている。図14に示すように、レーザ光は、筒状体102の内周面に照射されている。筒状体102の内周面側からレーザ光が照射される場合、フィン104によってレーザ光が遮蔽されることなく、レーザ光を自由に走査することができ、レーザ光の制御が容易となる。 FIG. 14 shows a modified example of the laser welding in step S120 of FIG. 3. As shown in FIG. 14, the laser light is irradiated onto the inner peripheral surface of the cylindrical body 102. When the laser light is irradiated from the inner peripheral surface side of the cylindrical body 102, the laser light is not blocked by the fins 104 and can be scanned freely, making it easier to control the laser light.
 筒状体102の内周面側からのレーザ溶接は、筒状体102の外周面の上に複数のフィン104が接合された後でも行うことができる。例えば、フィン104の溶接不良が確認された場合、筒状体102の内周面側からのレーザ光を照射し、フィン104の溶接不良を改善することができる。この場合、放熱構造体100の製造歩留りが向上するため、放熱構造体100の製造コストを削減することができる。 Laser welding from the inner circumferential surface side of the cylindrical body 102 can be performed even after multiple fins 104 have been joined onto the outer circumferential surface of the cylindrical body 102. For example, if poor welding of the fins 104 is confirmed, laser light can be irradiated from the inner circumferential surface side of the cylindrical body 102 to improve the poor welding of the fins 104. In this case, the manufacturing yield of the heat dissipation structure 100 is improved, and the manufacturing cost of the heat dissipation structure 100 can be reduced.
<変形例8>
 図15は、本発明の一実施形態に係る放熱構造体100の製造方法を示す断面図である。図15は、本体部104-2を含まないように切断された放熱構造体100の部分断面図であるが、便宜上、本体部104-2が点線で示されている。
<Modification 8>
15 is a cross-sectional view showing a method for manufacturing the heat dissipation structure 100 according to an embodiment of the present invention. In FIG. 15, a partial cross-sectional view of the heat dissipation structure 100 is cut so as not to include the main body portion 104-2, but for convenience, the main body portion 104-2 is shown by a dotted line.
 図15には、レーザ溶接のステップが示されている。図15に示すレーザ溶接では、z方向からレーザ光が照射される。具体的には、レーザ光は、筒状体102の上面側および下面側から、フィン104の基部104-1に照射される。このようにレーザ光を照射することにより、筒状体102の上面および下面において、フィン104の基部104-1を筒状体102に接合させることができる。レーザ光は、少なくとも基部104-1の第1の幅w1だけ第1の方向d1に走査されることが好ましい。 FIG. 15 shows the steps of laser welding. In the laser welding shown in FIG. 15, laser light is irradiated from the z direction. Specifically, the laser light is irradiated to the base 104-1 of the fin 104 from the upper and lower sides of the cylindrical body 102. By irradiating the laser light in this manner, the base 104-1 of the fin 104 can be joined to the cylindrical body 102 on the upper and lower surfaces of the cylindrical body 102. It is preferable that the laser light is scanned in the first direction d1 at least by the first width w1 of the base 104-1.
 図15に示すレーザ溶接では、筒状体102の上面および下面にレーザ光が照射されているが、2つのレーザ光が筒状体102の上面および下面に同時に照射されてもよく、1つのレーザ光が筒状体102の上面に照射された後に筒状体102の下面に照射されてもよい。また、筒状体102の上面および下面の一方のみにレーザ光が照射され、筒状体102の上面および下面の一方のみにおいてレーザ溶接が行われてもよい。 In the laser welding shown in FIG. 15, the upper and lower surfaces of the cylindrical body 102 are irradiated with laser light, but two laser beams may be irradiated simultaneously with the upper and lower surfaces of the cylindrical body 102, or one laser beam may be irradiated to the upper surface of the cylindrical body 102 and then irradiated to the lower surface of the cylindrical body 102. Also, the laser beam may be irradiated to only one of the upper and lower surfaces of the cylindrical body 102, and laser welding may be performed on only one of the upper and lower surfaces of the cylindrical body 102.
 図15に示すレーザ溶接は、ステップS120のレーザ溶接の前に行われてもよく、ステップS120のレーザ溶接の後に行われてもよい。図15に示すレーザ溶接がステップS120のレーザ溶接の前に行われる場合、フィン104の基部104-1は、筒状体102の外周面全体で接合されておらず、筒状体102の上面近傍および下面近傍においてのみ筒状体102に接合されている。この場合、フィン104の基部104-1は、筒状体102の外周面に仮接合された状態であり、ステップS120のレーザ溶接を行うことにより、本接合される。一方、図15に示すレーザ溶接がステップS120のレーザ溶接の後に行われる場合、筒状体102の上面近傍および下面近傍におけるフィン104の基部104-1と筒状体102の外周面との間の間隙を埋める接合が可能である。このように、ステップS120のレーザ溶接だけでなく、図15に示すレーザ溶接を行うことにより、フィン104の基部104-1と筒状体102の外周面との間の接合強度が向上する。したがって、放熱構造体100の機械的強度が向上する。 15 may be performed before the laser welding of step S120 or after the laser welding of step S120. When the laser welding of FIG. 15 is performed before the laser welding of step S120, the base 104-1 of the fin 104 is not joined to the entire outer peripheral surface of the cylindrical body 102, but is joined to the cylindrical body 102 only near the upper and lower surfaces of the cylindrical body 102. In this case, the base 104-1 of the fin 104 is temporarily joined to the outer peripheral surface of the cylindrical body 102, and is fully joined by performing the laser welding of step S120. On the other hand, when the laser welding of FIG. 15 is performed after the laser welding of step S120, it is possible to perform joining that fills the gap between the base 104-1 of the fin 104 and the outer peripheral surface of the cylindrical body 102 near the upper and lower surfaces of the cylindrical body 102. In this way, by performing not only the laser welding in step S120 but also the laser welding shown in FIG. 15, the bonding strength between the base 104-1 of the fin 104 and the outer peripheral surface of the cylindrical body 102 is improved. Therefore, the mechanical strength of the heat dissipation structure 100 is improved.
 以上説明したように、変形例も含め、本発明の一実施形態に係る放熱構造体100は、別々の部品として加工される筒状体102およびフィン104を、溶接を用いて接合し、製造される。筒状体102およびフィン104のそれぞれの形状は複雑でなく、加工が容易である。また、変形例で説明したように、フィン104が複雑な形状を有していても、フィン104は加工方法が限定されることなく、安価なコストの加工方法を適用して大量に生産することが可能である。そのため、筒状体102とフィン104とが接合された放熱構造体100では、製造コストを削減することができる。 As described above, the heat dissipation structure 100 according to one embodiment of the present invention, including the modified example, is manufactured by welding together the cylindrical body 102 and the fins 104, which are processed as separate parts. The shapes of the cylindrical body 102 and the fins 104 are not complex, and they are easy to process. Furthermore, as described in the modified example, even if the fins 104 have a complex shape, the processing method of the fins 104 is not limited, and they can be mass-produced by applying an inexpensive processing method. Therefore, the manufacturing cost can be reduced for the heat dissipation structure 100 in which the cylindrical body 102 and the fins 104 are joined together.
 また、本発明の一実施形態に係る放熱構造体100は、A7075やA6061などのアルミニウム合金を含む。このため、放熱構造体100は、アルミニウムの高い熱伝導率に起因する高い冷却効率が達成できるだけでなく、軽量でありかつ強度が高い。このことは、例えば航空機の推進力を生みだすためのモータなどの高い信頼性が要求される放熱構造体への応用を可能にする。また、軽量化が要求されるドローンなどの無人航空機や電気自動車などの各種車両の能熱構造体としても本発明の一実施形態に係る放熱構造体100を好適に利用することができる。 The heat dissipation structure 100 according to one embodiment of the present invention contains an aluminum alloy such as A7075 or A6061. Therefore, the heat dissipation structure 100 is not only able to achieve high cooling efficiency due to the high thermal conductivity of aluminum, but is also lightweight and strong. This enables application to heat dissipation structures that require high reliability, such as motors that generate propulsive power for aircraft. The heat dissipation structure 100 according to one embodiment of the present invention can also be suitably used as a heat-dissipating structure for various vehicles, such as unmanned aerial vehicles such as drones and electric vehicles, which require lightweight design.
<第2実施形態>
 図16~図17Bを参照して、本発明の一実施形態に係る放熱構造体200について説明する。なお、放熱構造体200の構成が第1実施形態において説明した放熱構造体100の構成と同様であるとき、その構成の説明を省略する場合がある。
Second Embodiment
16 to 17B, a heat dissipation structure 200 according to an embodiment of the present invention will be described. When the configuration of the heat dissipation structure 200 is similar to the configuration of the heat dissipation structure 100 described in the first embodiment, the description of the configuration may be omitted.
 図16は、本発明の一実施形態に係る放熱構造体200の構成を示す模式的な上面図である。 FIG. 16 is a schematic top view showing the configuration of a heat dissipation structure 200 according to one embodiment of the present invention.
 図16に示すように、放熱構造体200は、筒状体202および複数のフィン204を含む。複数のフィン204は、筒状体202の湾曲する外周面の上に配置され、外周面から離れる方向に延在している。すなわち、複数のフィン204の各々は、筒状体202の外周面においてz軸方向に平行に配置され、筒状体102の外周面からxy面内の所定の方向に放射状に延在している。複数のフィン204は、筒状体202の外周面の上の全体にわたって等間隔に配置されている。但し、複数のフィン204の配置構成は、これに限られない。複数のフィン204は、筒状体202の外周面の上に不規則な間隔で配置されてもよく、筒状体202の外周面の一部に配置されてもよい。 16, the heat dissipation structure 200 includes a cylindrical body 202 and a plurality of fins 204. The plurality of fins 204 are arranged on the curved outer peripheral surface of the cylindrical body 202 and extend in a direction away from the outer peripheral surface. That is, each of the plurality of fins 204 is arranged parallel to the z-axis direction on the outer peripheral surface of the cylindrical body 202 and extends radially from the outer peripheral surface of the cylindrical body 102 in a predetermined direction in the xy plane. The plurality of fins 204 are arranged at equal intervals over the entire outer peripheral surface of the cylindrical body 202. However, the arrangement of the plurality of fins 204 is not limited to this. The plurality of fins 204 may be arranged at irregular intervals on the outer peripheral surface of the cylindrical body 202, or may be arranged on a part of the outer peripheral surface of the cylindrical body 202.
 図17Aおよび図17Bは、それぞれ、本発明の一実施形態に係る放熱構造体200のフィン204の構成を示す模式的な斜視図および断面図である。具体的には、図17Bは、図17Aに示されるB1-B2線で切断されたフィン204の断面図である。 17A and 17B are schematic perspective and cross-sectional views, respectively, showing the configuration of fins 204 of a heat dissipation structure 200 according to one embodiment of the present invention. Specifically, FIG. 17B is a cross-sectional view of fins 204 cut along line B1-B2 shown in FIG. 17A.
 図17Aおよび図17Bに示すように、フィン204は、第1の方向d1に第1の幅w1を有する基部204-1および第2の方向d2に延在する2つの本体部204-2を含む。基部204-1は2つの屈曲部CR1を含み、2つの本体部204-2の各々は、屈曲部CR1を介して基部204-1と接続されている。2つの本体部204-2は、略平行に互いが対向するように基部204-1と接続されている。フィン204は、1つの板状部材の両端が屈曲された構造を有し、断面視において、U字形状を有する。なお、2つの本体部204-2のd2方向における長さは、同じであってもよく、異なっていてもよい。 As shown in Figures 17A and 17B, the fin 204 includes a base 204-1 having a first width w1 in a first direction d1 and two main body portions 204-2 extending in a second direction d2. The base 204-1 includes two bent portions CR1, and each of the two main body portions 204-2 is connected to the base 204-1 via the bent portions CR1. The two main body portions 204-2 are connected to the base 204-1 so as to face each other in a substantially parallel manner. The fin 204 has a structure in which both ends of a single plate-like member are bent, and has a U-shape in cross section. The lengths of the two main body portions 204-2 in the d2 direction may be the same or different.
 放熱構造体200では、フィン204のU字形状の内側、すなわち、2つの本体部204-2の間から基部204-1に向かってレーザ光を照射することにより、フィン204の基部204-1を筒状体202の外周面に接合することができる。そのため、断面視において、基部204-1の第1の方向d1における第1の幅w1は、本体部204-2の第1の方向d1における第2の幅(フィン204の厚さ)の2倍よりも大きい。例えば、基部204-1の第1の幅w1は、本体部204-2の第2の幅w2の2.1倍以上20倍以下であり、好ましくは2.2倍以上10倍以下であり、さらに好ましくは2.5倍以上5倍以下である。放熱構造体200では、本体部204-2に接続される基部204-1の第1の幅w1が本体部204-2の第2の幅w2よりも大きいため、本体部204-2を筒状体202に直接接合する構成に比べて、基部204-1と筒状体202との接合面積が増加する。そのため、放熱構造体200では、筒状体202とフィン204の基部204-1との間における接合強度が向上する。また、1つの基部204-1の接合で2つの本体部204-2が筒状体202に配置されるため、放熱構造体200におけるレーザ溶接の回数を減らすことができる。 In the heat dissipation structure 200, the base 204-1 of the fin 204 can be joined to the outer peripheral surface of the cylindrical body 202 by irradiating laser light from the inside of the U-shape of the fin 204, i.e., between the two main body portions 204-2, toward the base 204-1. Therefore, in a cross-sectional view, the first width w1 of the base 204-1 in the first direction d1 is greater than twice the second width (thickness of the fin 204) in the first direction d1 of the main body portion 204-2. For example, the first width w1 of the base 204-1 is 2.1 times or more and 20 times or less, preferably 2.2 times or more and 10 times or less, and more preferably 2.5 times or more and 5 times or less, of the second width w2 of the main body portion 204-2. In the heat dissipation structure 200, the first width w1 of the base 204-1 connected to the main body 204-2 is larger than the second width w2 of the main body 204-2, so the joint area between the base 204-1 and the cylindrical body 202 is increased compared to a configuration in which the main body 204-2 is directly joined to the cylindrical body 202. Therefore, in the heat dissipation structure 200, the joint strength between the cylindrical body 202 and the base 204-1 of the fin 204 is improved. In addition, because two main bodies 204-2 are arranged on the cylindrical body 202 by joining one base 204-1, the number of laser welding operations in the heat dissipation structure 200 can be reduced.
 本実施形態では、放熱構造体200の構成の様々な変形が可能である。以下では、図18~図20を参照して、放熱構造体200のいくつかの変形例について説明する。なお、以下では、上述した構成と同様の構成については説明を省略する。 In this embodiment, various modifications of the configuration of the heat dissipation structure 200 are possible. Below, several modified examples of the heat dissipation structure 200 are described with reference to Figures 18 to 20. Note that the following description will be omitted for configurations similar to those described above.
<変形例1>
 図18は、本発明の一実施形態に係る放熱構造体200Aのフィン204Aの構成を示す模式的な断面図である。
<Modification 1>
FIG. 18 is a schematic cross-sectional view showing the configuration of a fin 204A of a heat dissipation structure 200A according to one embodiment of the present invention.
 図18に示すように、放熱構造体200Aのフィン204Aでは、1つの基部204-1に接続している2つの本体部204-2が対向しているが、2つの本体部204-2が互いに平行ではない。具体的には、2つの本体部204-2の間の距離が、基部204-1から離れるにしたがって大きくなる。フィン204Aでは、フィン204AのU字形状の内側の空間が広がることにより、2つの本体部204-2の間から基部204-1に向かってレーザ光を照射しやすくなる。 As shown in FIG. 18, in the fin 204A of the heat dissipation structure 200A, the two main body parts 204-2 connected to one base part 204-1 face each other, but the two main body parts 204-2 are not parallel to each other. Specifically, the distance between the two main body parts 204-2 increases with increasing distance from the base part 204-1. In the fin 204A, the space inside the U-shape of the fin 204A increases, making it easier to irradiate laser light from between the two main body parts 204-2 toward the base part 204-1.
<変形例2>
 図19は、本発明の一実施形態に係る放熱構造体200Bのフィン204Bの構成を示す模式的な斜視図である。
<Modification 2>
FIG. 19 is a schematic perspective view showing the configuration of a fin 204B of a heat dissipation structure 200B according to one embodiment of the present invention.
 図19に示すように、放熱構造体200Bのフィン204Bでは、1つの基部204-1に複数の本体部204-2が接続されている。フィン204Bは、z方向から眺めた平面視において、U字形状を有する。しかしながら、フィン204Bでは、z方向に沿って複数の本体部204-2が離間して配置されている。基部204-1の一端側および他端側における複数の本体部204-2の配置構成は同じである。基部204-1の一端側および他端側の各々において、複数の本体部204-2は等間隔に基部204-1に接続されている。フィン204Bでは、複数の本体部204-2が配置されることにより、本体部204-2の表面積が増加する。そのため、フィン204Bの放熱特性が向上し、放熱構造体200Bの冷却効率が向上する。 As shown in FIG. 19, in the fin 204B of the heat dissipation structure 200B, multiple main body parts 204-2 are connected to one base part 204-1. The fin 204B has a U-shape in a plan view seen from the z direction. However, in the fin 204B, the multiple main body parts 204-2 are arranged at a distance from each other along the z direction. The arrangement of the multiple main body parts 204-2 at one end side and the other end side of the base 204-1 is the same. At each of the one end side and the other end side of the base 204-1, the multiple main body parts 204-2 are connected to the base 204-1 at equal intervals. In the fin 204B, the surface area of the main body parts 204-2 is increased by arranging the multiple main body parts 204-2. This improves the heat dissipation characteristics of the fin 204B, and improves the cooling efficiency of the heat dissipation structure 200B.
<変形例3>
 図20は、本発明の一実施形態に係る放熱構造体200Cのフィン204Cの構成を示す模式的な斜視図である。
<Modification 3>
FIG. 20 is a schematic perspective view showing the configuration of a fin 204C of a heat dissipation structure 200C according to one embodiment of the present invention.
 図20に示すように、放熱構造体200Cのフィン204Cでは、1つの基部204-1に複数の本体部204-2が接続されている。フィン204Cは、z方向から眺めた平面視において、U字形状を有する。しかしながら、フィン204Cでは、z方向に沿って複数の本体部204-2が離間して配置されている。複数の本体部204-2は、基部204-1上に千鳥状に配置され、基部204-1と接続されている。フィン204Cでは、複数の本体部204-2が配置されることにより、本体部204-2の表面積が増加する。そのため、フィン204Cの放熱特性が向上し、放熱構造体200Cの冷却効率が向上する。 As shown in FIG. 20, in the fin 204C of the heat dissipation structure 200C, multiple body parts 204-2 are connected to one base part 204-1. The fin 204C has a U-shape in a plan view seen from the z direction. However, in the fin 204C, the multiple body parts 204-2 are arranged at a distance from each other along the z direction. The multiple body parts 204-2 are arranged in a staggered pattern on the base part 204-1 and connected to the base part 204-1. In the fin 204C, the surface area of the body parts 204-2 is increased by arranging the multiple body parts 204-2. This improves the heat dissipation characteristics of the fin 204C and improves the cooling efficiency of the heat dissipation structure 200C.
 以上説明したように、変形例も含め、本発明の一実施形態に係る放熱構造体200は、別々の部品として加工される筒状体202およびフィン204を、溶接を用いて接合し、製造することができる。筒状体202およびフィン204のそれぞれの形状は複雑でなく、加工が容易である。そのため、筒状体202とフィン204とが接合された放熱構造体200では、製造コストを削減することができる。 As described above, the heat dissipation structure 200 according to one embodiment of the present invention, including the modified examples, can be manufactured by welding together the cylindrical body 202 and the fins 204, which are processed as separate parts. The shapes of the cylindrical body 202 and the fins 204 are not complicated, and they are easy to process. Therefore, the heat dissipation structure 200 in which the cylindrical body 202 and the fins 204 are joined together can reduce manufacturing costs.
<第3実施形態>
 図21~図22Bを参照して、本発明の一実施形態に係る放熱構造体300について説明する。なお、放熱構造体300の構成が第1実施形態において説明した放熱構造体100または第2実施形態において説明した放熱構造体200の構成と同様であるとき、その構成の説明を省略する場合がある。
Third Embodiment
21 to 22B, a heat dissipation structure 300 according to an embodiment of the present invention will be described. When the configuration of the heat dissipation structure 300 is similar to the configuration of the heat dissipation structure 100 described in the first embodiment or the heat dissipation structure 200 described in the second embodiment, the description of the configuration may be omitted.
 図21は、本発明の一実施形態に係る放熱構造体300の構成を示す模式的な上面図である。 FIG. 21 is a schematic top view showing the configuration of a heat dissipation structure 300 according to one embodiment of the present invention.
 図21に示すように、放熱構造体300は、筒状体302およびコルゲートフィン306を含む。コルゲートフィン306は、筒状体302の外周面の上に配置されている。コルゲートフィン306の数は特に限定されない。放熱構造体300は、1つまたは複数のコルゲートフィン306を含む。放熱構造体300が複数のコルゲートフィン306を含むとき、複数のコルゲートフィン306は、筒状体302の外周面の上に等間隔で配置されてもよく、もしくは不規則な間隔で配置されてもよく、または筒状体302の外周面の一部に配置されてもよい。 21, the heat dissipation structure 300 includes a cylindrical body 302 and a corrugated fin 306. The corrugated fin 306 is disposed on the outer peripheral surface of the cylindrical body 302. The number of corrugated fins 306 is not particularly limited. The heat dissipation structure 300 includes one or more corrugated fins 306. When the heat dissipation structure 300 includes multiple corrugated fins 306, the multiple corrugated fins 306 may be disposed at equal intervals on the outer peripheral surface of the cylindrical body 302, or may be disposed at irregular intervals, or may be disposed on a portion of the outer peripheral surface of the cylindrical body 302.
 図22Aおよび図22Bは、それぞれ、本発明の一実施形態に係る放熱構造体300のコルゲートフィン306の構成を示す模式的な斜視図および断面図である。具体的には、図22Bは、図22Aに示されるC1-C2線で切断されたコルゲートフィン306の断面図である。 22A and 22B are schematic perspective and cross-sectional views, respectively, showing the configuration of a corrugated fin 306 of a heat dissipation structure 300 according to one embodiment of the present invention. Specifically, FIG. 22B is a cross-sectional view of the corrugated fin 306 cut along line C1-C2 shown in FIG. 22A.
 図22Aおよび図22Bに示すように、コルゲートフィン306は、複数の基部306-1、複数の本体部306-2、および複数の接続部306-3を含む。基部306-1は2つの屈曲部CR1を含み、接続部306-3は2つの屈曲部CR2を含む。本体部306-2は、一端側において屈曲部CR1を介して基部306-1と接続され、他端側において屈曲部CR2を介して接続部306-3と接続されている。但し、コルゲートフィン306の端部では、接続部306-3が設けられていない。コルゲートフィン306は、1つの板状部材が複数の山形状および谷形状を含むように折り曲げられた構造を有し、断面視において、波形状を有する。 As shown in Figures 22A and 22B, the corrugated fin 306 includes multiple base portions 306-1, multiple main body portions 306-2, and multiple connection portions 306-3. The base portion 306-1 includes two bend portions CR1, and the connection portion 306-3 includes two bend portions CR2. The main body portion 306-2 is connected to the base portion 306-1 via the bend portion CR1 at one end, and to the connection portion 306-3 via the bend portion CR2 at the other end. However, the connection portion 306-3 is not provided at the end of the corrugated fin 306. The corrugated fin 306 has a structure in which a single plate-shaped member is bent to include multiple mountain shapes and valley shapes, and has a wave shape in a cross-sectional view.
 放熱構造体300では、コルゲートフィン谷形状を形成する2つの本体部306-2の間から基部306-1に向かってレーザ光を照射することにより、コルゲートフィン306の基部306-1を筒状体302の外周面に接合することできる。コルゲートフィン306は、隣接する2つの本体部306-2が接続部306-3を介して接続されており、レーザ溶接において、筒状体302の外周面の上における本体部306-2の位置合わせが容易となる。 In the heat dissipation structure 300, the base 306-1 of the corrugated fin 306 can be joined to the outer peripheral surface of the cylindrical body 302 by irradiating laser light from between the two main body parts 306-2 that form the corrugated fin valley shape toward the base part 306-1. The corrugated fin 306 has two adjacent main body parts 306-2 connected via a connecting part 306-3, which makes it easy to align the main body part 306-2 on the outer peripheral surface of the cylindrical body 302 during laser welding.
 本実施形態では、放熱構造体300の構成の様々な変形が可能である。以下では、図23Aおよび図23Bを参照して、放熱構造体300の一変形例について説明する。なお、以下では、上述した構成と同様の構成については説明を省略する。 In this embodiment, various modifications of the configuration of the heat dissipation structure 300 are possible. Below, one modified example of the heat dissipation structure 300 is described with reference to Figures 23A and 23B. Note that, below, a description of the same configuration as that described above will be omitted.
<変形例>
 図23Aおよび図23Bは、本発明の一実施形態に係る放熱構造体300Aのコルゲートフィン306Aの構成を示す模式的な平面図である。図23Aおよび図23Bの各々には、隣接する2つの本体部306-2の平面図が示されている。
<Modification>
23A and 23B are schematic plan views showing a configuration of a corrugated fin 306A of a heat dissipation structure 300A according to one embodiment of the present invention. Each of Fig. 23A and Fig. 23B shows a plan view of two adjacent main body portions 306-2.
 図23Aおよび図23Bに示すように、コルゲートフィン306Aでは、本体部306-2に複数の開口OPが設けられている。複数の開口OPは、z軸方向に配置され、複数の開口OPの各々は、第2の方向d2に沿って長辺を有する略矩形状を有する。図23Aに示すコルゲートフィン306Aでは、隣接する2つの本体部306-2に設けられた開口OPの配置が同じである。そのため、図23Aに示すコルゲートフィン306Aでは、2つの本体部306-2に設けられた開口OPが重畳している。一方、図23Bに示すコルゲートフィン306Aでは、隣接する2つの本体部306-2において開口OPの配置が異なる。具体的には、隣接する2つの本体部306-2の一方の2つの開口OPの間に、隣接する2つの本体部306-2の他方の1つの開口が位置するように、本体部306-2に複数の開口OPが設けられている。図23Bに示すコルゲートフィン306では、複数の開口OPの数が、隣接する2つの本体部306-2間で異なっていてもよい。 23A and 23B, in the corrugated fin 306A, a plurality of openings OP are provided in the main body portion 306-2. The plurality of openings OP are arranged in the z-axis direction, and each of the plurality of openings OP has a substantially rectangular shape with a long side along the second direction d2. In the corrugated fin 306A shown in FIG. 23A, the arrangement of the openings OP provided in two adjacent main body portions 306-2 is the same. Therefore, in the corrugated fin 306A shown in FIG. 23A, the openings OP provided in the two main body portions 306-2 overlap. On the other hand, in the corrugated fin 306A shown in FIG. 23B, the arrangement of the openings OP is different in the two adjacent main body portions 306-2. Specifically, the plurality of openings OP are provided in the main body portion 306-2 such that one opening of the other of the two adjacent main body portions 306-2 is located between two openings OP of one of the two adjacent main body portions 306-2. In the corrugated fin 306 shown in FIG. 23B, the number of openings OP may differ between two adjacent main body portions 306-2.
 以上説明したように、変形例も含め、本発明の一実施形態に係る放熱構造体300は、別々の部品として加工される筒状体302およびコルゲートフィン306を、溶接を用いて接合し、製造することができる。筒状体302およびコルゲートフィン306のそれぞれの形状は複雑でなく、加工が容易である。そのため、筒状体302とコルゲートフィン306とが接合された放熱構造体300では、製造コストを削減することができる。 As described above, the heat dissipation structure 300 according to one embodiment of the present invention, including the modified examples, can be manufactured by welding together the cylindrical body 302 and the corrugated fins 306, which are processed as separate parts. The shapes of the cylindrical body 302 and the corrugated fins 306 are not complex, and they are easy to process. Therefore, the heat dissipation structure 300 in which the cylindrical body 302 and the corrugated fins 306 are joined together can reduce manufacturing costs.
 本発明の実施形態として上述した各実施形態は、相互に矛盾しない限りにおいて、適宜組み合わせて実施することができる。また、各実施形態を基にして、当業者が適宜構成要素の追加、削除若しくは設計変更を行ったものも、本発明の要旨を備えている限り、本発明の範囲に含まれる。 The above-mentioned embodiments of the present invention may be combined as appropriate to the extent that they are not mutually inconsistent. Furthermore, products in which a person skilled in the art appropriately adds or deletes components or modifies the design based on each embodiment are also included within the scope of the present invention as long as they incorporate the gist of the present invention.
 また、上述した各実施形態によりもたらされる作用効果とは異なる他の作用効果であっても、本明細書の記載から明らかなもの、または、当業者において容易に予測し得るものについては、当然に本発明によりもたらされるものと理解される。 Furthermore, even if there are other effects and advantages different from those brought about by the above-mentioned embodiments, if they are clear from the description in this specification or can be easily predicted by a person skilled in the art, they are naturally understood to be brought about by the present invention.
100、100A、100B、100C、100D、100E、200、200A、200B、200C、300、300A:放熱構造体、
102、202、302:筒状体、
104、104A、104B、104C、104E、204、204A、204B、204C:フィン、
104-1、104A-1、104B-1、104C-1、204-1:基部、
104-2、104C-2、104E-2、204-2:本体部、
104A-1a:切欠き部、
104E-2a:溝部、
104E-2b:凹部、
104E-2c:凸部、
306、306A:コルゲートフィン、
306-1:基部、
306-2:本体部、
306-3:接続部、
CR1、CR2:屈曲部、
OP:開口
100, 100A, 100B, 100C, 100D, 100E, 200, 200A, 200B, 200C, 300, 300A: heat dissipation structure,
102, 202, 302: cylindrical body,
104, 104A, 104B, 104C, 104E, 204, 204A, 204B, 204C: fins,
104-1, 104A-1, 104B-1, 104C-1, 204-1: base,
104-2, 104C-2, 104E-2, 204-2: main body,
104A-1a: notch portion,
104E-2a: groove portion,
104E-2b: recess,
104E-2c: convex portion,
306, 306A: Corrugated fin,
306-1: Base,
306-2: main body,
306-3: Connection part,
CR1, CR2: bending portion,
OP: Opening

Claims (30)

  1.  湾曲する外周面を含む筒状体と、
     前記外周面の上に配置された複数のフィンと、を含み、
     前記複数のフィンの各々は、
      前記外周面と接合される基部と、
      前記基部と接続され、前記外周面から離れる第1の方向に延在する本体部と、を含み、
     前記筒状体の筒状の軸が延伸する第2の方向からの断面視において、前記基部の幅は、前記本体部の幅よりも大きい、放熱構造体。
    A cylindrical body including a curved outer circumferential surface;
    a plurality of fins disposed on the outer circumferential surface;
    Each of the plurality of fins is
    A base portion joined to the outer circumferential surface;
    a body portion connected to the base portion and extending in a first direction away from the outer circumferential surface;
    A heat dissipation structure, wherein when viewed in a cross-sectional view from a second direction in which a cylindrical axis of the cylindrical body extends, the width of the base is greater than the width of the main body.
  2.  前記外周面と前記基部との間に溶接ビード領域を含む、請求項1に記載の放熱構造体。 The heat dissipation structure of claim 1, including a weld bead region between the outer circumferential surface and the base.
  3.  前記外周面と前記基部とは、固相拡散接合によって接合されている、請求項1に記載の放熱構造体。 The heat dissipation structure according to claim 1, wherein the outer peripheral surface and the base are joined by solid-state diffusion bonding.
  4.  前記基部と前記本体部とは、1つの板状部材から形成される、請求項1に記載の放熱構造体。 The heat dissipation structure of claim 1, wherein the base and the main body are formed from a single plate-like member.
  5.  前記断面視において、前記複数のフィンの各々は、L字形状を有する、請求項1に記載の放熱構造体。 The heat dissipation structure of claim 1, wherein each of the fins has an L-shape in the cross-sectional view.
  6.  前記基部の端部は、切欠き部を含む、請求項5に記載の放熱構造体。 The heat dissipation structure according to claim 5, wherein the end of the base includes a notch.
  7.  前記断面視において、前記複数のフィンの各々は、U字形状を有する、請求項1に記載の放熱構造体。 The heat dissipation structure of claim 1, wherein each of the fins has a U-shape in the cross-sectional view.
  8.  前記複数のフィンは、第1のフィンおよび第2のフィンを含み、
     前記第1のフィンおよび前記第2のフィンは、前記第2の方向に配置されている、請求項1に記載の放熱構造体。
    the plurality of fins includes a first fin and a second fin;
    The heat dissipation structure of claim 1 , wherein the first fin and the second fin are disposed in the second direction.
  9.  前記第1のフィンおよび前記第2のフィンは、前記第2の方向に千鳥状に配置されている、請求項8に記載の放熱構造体。 The heat dissipation structure of claim 8, wherein the first fins and the second fins are arranged in a staggered pattern in the second direction.
  10.  前記基部は、前記外周面と接合される平滑面を含む、請求項1に記載の放熱構造体。 The heat dissipation structure of claim 1, wherein the base includes a smooth surface that is joined to the outer peripheral surface.
  11.  前記外周面と接合される前記基部の接合面は、前記外周面の形状に合わせて湾曲している、請求項1に記載の放熱構造体。 The heat dissipation structure according to claim 1, wherein the joint surface of the base that is joined to the outer peripheral surface is curved to match the shape of the outer peripheral surface.
  12.  前記断面視において、前記複数のフィンの各々は、T字形状を有する、請求項1に記載の放熱構造体。 The heat dissipation structure of claim 1, wherein each of the fins has a T-shape in the cross-sectional view.
  13.  前記複数のフィンのうちの互いに隣接する第1のフィンおよび第2のフィンは、前記第1のフィンの前記基部の端部と前記第2のフィンの前記基部の端部とが対向するように配置されている、請求項1に記載の放熱構造体。 The heat dissipation structure according to claim 1, wherein a first fin and a second fin that are adjacent to each other among the plurality of fins are arranged such that an end of the base of the first fin faces an end of the base of the second fin.
  14.  湾曲する外周面を含む筒状体と、
     前記外周面の上に配置された複数のフィンと、を含み、
     前記複数のフィンの各々は、
      前記外周面と接合される1つの基部と、
      前記1つの基部と接続され、前記外周面から離れる第1の方向に延在する複数の本体部と、を含み、
     前記筒状体の筒状の軸が延伸する第2の方向からの断面視において、前記1つの基部の幅は、前記複数の本体部に含まれる1つの本体部の幅よりも大きい、放熱構造体。
    A cylindrical body including a curved outer circumferential surface;
    a plurality of fins disposed on the outer circumferential surface;
    Each of the plurality of fins is
    A base portion joined to the outer circumferential surface;
    a plurality of body portions connected to the one base portion and extending in a first direction away from the outer circumferential surface;
    A heat dissipation structure, wherein when viewed in a cross-sectional view from a second direction in which the cylindrical axis of the cylindrical body extends, the width of the one base portion is greater than the width of one of the main body portions included in the multiple main body portions.
  15.  前記断面視において、前記複数のフィンの各々は、L字形状を有する、請求項14に記載の放熱構造体。 The heat dissipation structure of claim 14, wherein each of the fins has an L-shape in the cross-sectional view.
  16.  前記断面視において、前記1つの基部の幅は、前記複数の本体部に含まれる1つの本体部の幅の2倍よりも大きく、
     前記断面視において、前記複数のフィンの各々は、U字形状を有する、請求項14に記載の放熱構造体。
    In the cross-sectional view, a width of the one base portion is greater than twice the width of one of the main body portions included in the plurality of main body portions;
    The heat dissipation structure of claim 14 , wherein each of the plurality of fins has a U-shape in the cross-sectional view.
  17.  前記複数の本体部は、前記第2の方向に千鳥状に配置されている、請求項16に記載の放熱構造体。 The heat dissipation structure according to claim 16, wherein the plurality of main body portions are arranged in a staggered pattern in the second direction.
  18.  前記本体部の表面、端部、および側部の少なくとも1つは、溝部、凹部、および凸部から選ばれる少なくとも1つの形状部を含む、請求項1に記載の放熱構造体。 The heat dissipation structure of claim 1, wherein at least one of the surface, end, and side of the main body includes at least one shaped portion selected from a groove, a recess, and a protrusion.
  19.  前記複数のフィンの材料は、前記筒状体の材料と同一である、請求項1に記載の放熱構造体。 The heat dissipation structure of claim 1, wherein the material of the fins is the same as the material of the cylindrical body.
  20.  湾曲する外周面を含む筒状体の位置を固定し、
     基部および前記基部と接続される本体部を含むフィンの前記基部を、前記外周面の上に配置し、
     溶接を用いて前記基部を前記外周面に接合すること、を含み、
     前記筒状体の筒状の軸が延伸する方向からの断面視において、前記基部の幅は、前記本体部の幅よりも大きい、放熱構造体の製造方法。
    Fixing the position of the cylindrical body including the curved outer circumferential surface;
    a base of a fin including a base and a body portion connected to the base, the base being disposed on the outer circumferential surface;
    joining the base to the outer periphery using welding;
    A method for manufacturing a heat dissipation structure, wherein, when viewed in a cross-sectional view from a direction in which a cylindrical axis of the cylindrical body extends, the width of the base is larger than the width of the main body.
  21.  前記溶接は、レーザ溶接、アーク溶接、および電子ビーム溶接のうちの1つである、請求項20に記載の放熱構造体の製造方法。 The method for manufacturing a heat dissipation structure according to claim 20, wherein the welding is one of laser welding, arc welding, and electron beam welding.
  22.  前記溶接において、レーザ光、アーク、または電子ビームが、少なくとも前記基部に照射される、請求項20に記載の放熱構造体の製造方法。 The method for manufacturing a heat dissipation structure according to claim 20, wherein the welding is performed by irradiating at least the base with a laser beam, an arc, or an electron beam.
  23.  前記溶接において、レーザ光、アーク、または電子ビームが、前記筒状体の内周面に照射される、請求項20に記載の放熱構造体の製造方法。 The method for manufacturing a heat dissipation structure according to claim 20, wherein the welding is performed by irradiating the inner surface of the cylindrical body with a laser beam, an arc, or an electron beam.
  24.  前記溶接において、レーザ光、アーク、または電子ビームが、前記筒状体の上面および下面の少なくとも1つに照射される、請求項20に記載の放熱構造体の製造方法。 The method for manufacturing a heat dissipation structure according to claim 20, wherein the welding is performed by irradiating at least one of the upper and lower surfaces of the cylindrical body with a laser beam, an arc, or an electron beam.
  25.  さらに、1つの板状部材から前記基部および前記本体部を含む前記フィンを加工する、請求項20に記載の放熱構造体の製造方法。 The method for manufacturing a heat dissipation structure according to claim 20, further comprising processing the fins including the base and the main body from a single plate-like member.
  26.  さらに、前記外周面と接合される前記基部の接合面を、前記外周面の形状に合わせた湾曲状に加工する、請求項20に記載の放熱構造体の製造方法。 The method for manufacturing a heat dissipation structure according to claim 20, further comprising processing the joining surface of the base that is joined to the outer peripheral surface into a curved shape that matches the shape of the outer peripheral surface.
  27.  前記断面視において、前記フィンは、L字形状を有する、請求項20に記載の放熱構造体の製造方法。 The method for manufacturing a heat dissipation structure according to claim 20, wherein the fin has an L-shape in the cross-sectional view.
  28.  前記断面視において、前記フィンは、T字形状を有する、請求項20に記載の放熱構造体の製造方法。 The method for manufacturing a heat dissipation structure according to claim 20, wherein the fin has a T-shape in the cross-sectional view.
  29.  前記本体部の表面、端部、および側部の少なくとも1つは、溝部、凹部、および凸部から選ばれる少なくとも1つの形状部を含む、請求項20に記載の放熱構造体の製造方法。 The method for manufacturing a heat dissipation structure according to claim 20, wherein at least one of the surface, end, and side of the main body includes at least one shaped portion selected from a groove, a recess, and a protrusion.
  30.  前記フィンの材料は、前記筒状体の材料と同一である、請求項20に記載の放熱構造体の製造方法。
     
    The method for manufacturing a heat dissipation structure according to claim 20 , wherein the material of the fins is the same as the material of the cylindrical body.
PCT/JP2023/044968 2022-12-16 2023-12-15 Heat dissipating structure and method for manufacturing same WO2024128303A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022201538 2022-12-16
JP2022-201538 2022-12-16

Publications (1)

Publication Number Publication Date
WO2024128303A1 true WO2024128303A1 (en) 2024-06-20

Family

ID=91485938

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/044968 WO2024128303A1 (en) 2022-12-16 2023-12-15 Heat dissipating structure and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2024128303A1 (en)

Similar Documents

Publication Publication Date Title
JP3964116B2 (en) Rotating electric machine stator
JP5259166B2 (en) Semiconductor laser device
WO2024128303A1 (en) Heat dissipating structure and method for manufacturing same
JP6019706B2 (en) Power module
JP2024086427A (en) Heat dissipation structure and manufacturing method thereof
JP7084329B2 (en) Coil joining method
JP2024086424A (en) Method for manufacturing heat dissipation structure
US20040252735A1 (en) Semiconductor laser device
WO2024128179A1 (en) Method for producing heat dissipation structure
JP2024086425A (en) Heat dissipation structure and manufacturing method thereof
RU2707968C1 (en) Rotor of rotary electric machine and method of stator coil manufacturing
JP7076630B2 (en) Semiconductor laser device manufacturing method
US20230373025A1 (en) Method for producing welded article
JP2024086426A (en) Method for manufacturing heat dissipation structure
JP2023154736A (en) Laser welding method and cooler
JP2016046176A (en) Weld joint, terminal with weld joint, method of manufacturing weld joint, and method of manufacturing terminal
JP7264768B2 (en) Joined structure manufacturing method and joined structure
JP2024043758A (en) Cooling device and manufacturing method for cooling device
JP7323740B2 (en) Electrolytic capacitor lead terminal and manufacturing method thereof
KR102665333B1 (en) Heat transfer module of motor controller for electric vehicle and its welding method
WO2016158068A1 (en) Semiconductor laser device and method for manufacturing same
JP7428589B2 (en) How to join structural members
WO2023223665A1 (en) Laser welding method, terminal connection structure, and power conversion device
US20230054903A1 (en) Joint structure of resin members, resin housing of electrical equipment, and laser welding method
US11195662B2 (en) Film capacitor with a film winding core having metallikon electrodes and busbars on its ends