WO2024128172A1 - Work assistance system for construction machine - Google Patents

Work assistance system for construction machine Download PDF

Info

Publication number
WO2024128172A1
WO2024128172A1 PCT/JP2023/044156 JP2023044156W WO2024128172A1 WO 2024128172 A1 WO2024128172 A1 WO 2024128172A1 JP 2023044156 W JP2023044156 W JP 2023044156W WO 2024128172 A1 WO2024128172 A1 WO 2024128172A1
Authority
WO
WIPO (PCT)
Prior art keywords
boom
blade
offset
bucket
tip
Prior art date
Application number
PCT/JP2023/044156
Other languages
French (fr)
Japanese (ja)
Inventor
康 黄
Original Assignee
日本精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本精機株式会社 filed Critical 日本精機株式会社
Publication of WO2024128172A1 publication Critical patent/WO2024128172A1/en

Links

Images

Definitions

  • This disclosure relates to a work support system for construction machinery.
  • Patent Document 1 discloses a work support system for construction machinery that has a work implement connected to a boom, arm, and attachment.
  • Construction machinery may be equipped with a plate (called a "blade”) for pushing and clearing soil and sand, or for leveling the soil.
  • a blade for pushing and clearing soil and sand, or for leveling the soil.
  • the operator's operation may cause the work machine attachment to interfere with the blade.
  • the present disclosure therefore aims to provide a function in a work assistance system for construction machinery that suppresses operations that cause an attachment to interfere with the blade.
  • the present invention provides a work support system for a construction machine, the work support system for a construction machine comprising: an operating unit on which an operator rides; a working machine configured by connecting a boom, an arm, and an attachment and operated by the operator; a support body that supports the operating unit and the working machine; a traveling device that supports the support body so that it can travel; and a blade that is provided on the front side of the traveling device, the work support system comprising: a plurality of detection devices, a collection device, and a mobile terminal, the plurality of detection devices each comprising an attitude sensor, a wireless communication unit, a battery, and a magnetic member, and are detachably installed on each of the boom, the arm, and the attachment by being fixed by the magnetic force of the magnetic member, the collection device comprising an attitude sensor, a wireless communication unit, and a control unit, and a front
  • the operation unit or the support is installed, and transmits to the mobile terminal the posture information collected by wireless communication from each of the multiple detection devices and the posture information detected by
  • the position registration means may register the position of the tip of the blade.
  • the construction machine work support system may be configured such that the boom has an offset boom mechanism including a first boom supported on the support body so as to be swingable up and down, and a second boom supported on the tip of the first boom so as to be swingable left and right, the detection device installed on the boom is installed on each of the first boom and the second boom, and the control unit of the mobile terminal includes an offset correction means for correcting the length information and attitude information of the boom based on the detected attitude information of the first boom and the second boom.
  • the offset boom mechanism is capable of offsetting between a left maximum offset position in which the second boom has swung from a non-offset position to a left maximum swing angle, and a right maximum offset position in which the second boom has swung from the non-offset position to a right maximum swing angle, a left maximum offset amount which is the horizontal movement distance from the non-offset position to the left maximum offset position, and a right maximum offset amount which is the horizontal movement distance from the non-offset position to the right maximum offset position may be different, and the offset correction means may perform correction processing using the left maximum offset amount and the right maximum offset amount which are registered in advance.
  • the detection device installed on the second boom may be installed at one end of the second boom in the longitudinal direction, and the one end of the longitudinal direction may be the end on the arm side.
  • This disclosure makes it possible to provide a work support system for construction machinery that can suppress (in other words, prevent) operations that cause the attachment to interfere with the blade.
  • FIG. 1 is a diagram showing a schematic configuration of a work support system for a construction machine according to an embodiment of the present invention
  • 2 is a block diagram showing a configuration of a work support system for the construction machine shown in FIG. 1
  • FIG. FIG. 13 is a diagram showing a guidance screen of the mobile terminal.
  • FIG. FIG. 13 is a diagram showing a side image request screen of the mobile terminal.
  • FIG. 13 is a diagram showing a location registration screen of the portable terminal.
  • FIG. 13 is a diagram showing feature points of a hydraulic excavator for which location registration is performed.
  • 1A is a target construction surface setting screen of a mobile terminal and its explanatory diagram
  • FIG. 1B is an equation for determining the coordinates of the target construction surface.
  • FIG. 1A is a target construction surface setting screen of a mobile terminal and its explanatory diagram
  • FIG. 1B is an equation for determining the coordinates of the target construction surface.
  • FIG. 11 is an explanatory diagram of parameters used to calculate the coordinates of the tip position of the bucket.
  • FIG. 4 is an explanatory diagram of parameters used in calculating a vehicle inclination angle.
  • 11 is a diagram for explaining a case in which the bucket interferes with the blade when the support body rotates.
  • FIG. 11A and 11B are diagrams illustrating a state in which the bucket does not interfere with the blade even when the support body rotates.
  • FIG. 13 is a side view of the offset boom showing parameters used for offset correction.
  • FIG. 11 is a plan view of the offset boom showing parameters used for offset correction.
  • the construction machine work assistance system 1 (also simply referred to as "work assistance system 1") of this embodiment shown in Figures 1 and 2 uses the machine guidance function of a hydraulic excavator 2, which is a construction machine, to assist the work of an operator who operates the hydraulic excavator 2.
  • Construction machines to which the work assistance system 1 can be applied are not limited to excavators such as the hydraulic excavator 2, but may also be loading and unloading machines such as rotary forks and crawler cranes.
  • the hydraulic excavator 2 includes an operating unit 3, a work machine 4, a support body 5, a traveling device 6, and a blade 7.
  • the operation unit 3 is a riding space for an operator who operates the hydraulic excavator 2.
  • the hydraulic excavator 2 is available in a cab specification in which the entire operation unit 3 is covered with a cab 31, and a canopy specification in which only the upper part of the operation unit 3 is covered with a canopy (not shown), and the work support system 1 of this embodiment can be applied to either specification.
  • the work machine 4 is composed of a boom 41, an arm 42, and a bucket 43 connected in sequence, and is operated by an operator.
  • the boom 41 is connected to the front end of the support body 5 via a boom pin 41a so that it can swing up and down, and swings in response to the hydraulic extension and retraction action of a boom cylinder (not shown) provided between the support body 5 and the boom 41.
  • the arm 42 is connected to the tip of the boom 41 via an arm pin 42a so that it can swing back and forth and up and down, and swings in response to the hydraulic extension and retraction action of an arm cylinder (not shown) provided between the boom 41 and the arm 42.
  • the bucket 43 is connected to the tip of the arm 42 via a bucket pin (attachment pin) 43a so that it can swing back and forth and up and down, and swings in response to the hydraulic extension and retraction of a bucket cylinder (not shown) provided between the arm 42 and the bucket 43.
  • a bucket pin attachment pin
  • the bucket 43 is a type of attachment that is removably attached to the tip of the arm 42, and can be replaced with other attachments depending on the type of work.
  • attachments include a grapple for gripping wood, a breaker for crushing concrete blocks, and a skeleton bucket for sieving work.
  • the work support system 1 of this embodiment is not limited to excavation work using a bucket 43, but can also be applied to work using other attachments.
  • the support body 5 supports the operating unit 3 and the work machine 4.
  • the traveling device 6 supports the support body 5 so that it can rotate and travel.
  • a wheel type having wheels (not shown) is also known as the traveling device 6, but the work support system 1 of this embodiment can be applied to either the crawler type or the wheel type.
  • the blade 7 is a plate that is attached to the front side of the traveling device 6 and is used to push, remove, and level soil and sand.
  • the hydraulic excavator 2 is available in a non-offset boom specification in which the boom 41 cannot be offset in the left-right direction, and an offset specification in which the boom 41 can be offset in the left-right direction.
  • a non-offset boom specification in which the boom 41 cannot be offset in the left-right direction
  • an offset specification in which the boom 41 can be offset in the left-right direction.
  • the work support system 1 includes multiple detection devices 11A, 11B, and 11C, a collection device 12, a mobile terminal 13, and a display 14.
  • the detection devices 11A, 11B, and 11C are installed on the boom 41, the arm 42, and the bucket 43, respectively.
  • the detection devices 11A, 11B, and 11C each include a posture sensor 111, a wireless communication unit 112, a control unit 113, a battery 114, a case 115, and a magnetic member 116.
  • the attitude sensor 111 detects the attitude of the installation location.
  • an IMU Inertial Measurement Unit
  • IMU Inertial Measurement Unit
  • the wireless communication unit 112 performs wireless communication with the collection device 12.
  • Bluetooth registered trademark
  • the wireless communication unit 112 performs wireless communication with the collection device 12.
  • the control unit 113 acquires posture information from the posture sensor 111 and transmits the acquired posture information to the collection device 12 via the wireless communication unit 112.
  • the battery 114 supplies power to the attitude sensor 111, the wireless communication unit 112, and the control unit 113.
  • detection devices 11A, 11B, and 11C can be easily installed at the desired mounting location without having to take the trouble of wiring a power supply cable or a data communication cable to the work machine 4.
  • the work assistance system 1 of this embodiment can easily add machine guidance functions to existing construction machines or update the machine guidance functions.
  • the case 115 houses the attitude sensor 111, the wireless communication unit 112, the control unit 113, and the battery 114.
  • the battery 114 may be housed in a case separate from the case 115, and may supply power to the detection devices 11A, 11B, and 11C via a cable.
  • the magnetic member 116 is, for example, a permanent magnet, and uses its magnetic force to fix the detection devices 11A, 11B, and 11C to the boom 41, arm 42, and bucket 43, which are made of metal.
  • the magnetic member 116 is provided on the bottom surface of the case 115, as shown in FIG. 3, for example, and uses its magnetic force to fix the bottom surface of the case 115 to the boom 41, arm 42, and bucket 43, respectively.
  • detection devices 11A, 11B, and 11C can be more easily installed at the desired mounting locations.
  • the collection device 12 is installed on the support 5.
  • the collection device 12 can be easily installed on the floor of the operation unit 3.
  • the collection device 12 includes a posture sensor 121, a wireless communication unit 122, and a control unit 123.
  • the attitude sensor 121 detects the attitude of the support body 5.
  • an IMU sensor that detects three-dimensional acceleration and angular velocity is used as the attitude sensor 121.
  • the wireless communication unit 122 performs wireless communication with the detection devices 11A, 11B, and 11C and the mobile terminal 13.
  • Bluetooth registered trademark
  • the wireless communication unit 122 performs wireless communication with the detection devices 11A, 11B, and 11C and the mobile terminal 13.
  • Bluetooth registered trademark
  • the control unit 123 transmits the posture information of the work machine 4 collected from the detection devices 11A, 11B, and 11C and the posture information of the support body 5 detected by the posture sensor 121 to the mobile terminal 13 via the wireless communication unit 122.
  • the control unit 123 receives a posture information request signal from the mobile terminal 13, it collects the posture information of the work machine 4 detected by the detection devices 11A, 11B, and 11C.
  • the control unit 123 transmits the posture information of the work machine 4 collected from the detection devices 11A, 11B, and 11C and the posture information of the support body 5 detected by its own posture sensor 121 to the mobile terminal 13.
  • the control unit 123 acquires notification information from the mobile terminal 13, it outputs the acquired notification information to the display 14.
  • the mobile terminal 13 is a so-called smartphone or tablet terminal, and functions as a machine guidance terminal by executing application software related to the work assistance system 1.
  • the application software related to the work assistance system 1 is upgraded as appropriate.
  • the mobile terminal 13 can update its machine guidance function to the latest version by installing an upgraded version of the application software.
  • the mobile terminal 13 includes an imaging unit 131, a wireless communication unit 132, a display unit 133, and a control unit 134.
  • the imaging unit 131 captures still images and videos. In this embodiment, it is used to capture a side image of the hydraulic excavator 2.
  • the side image is an image of the characteristic points of the hydraulic excavator 2, which will be described later.
  • the side image is, for example, an image of the exterior of the hydraulic excavator 2 captured from the side, and includes in the captured image range at least the boom 41, the arm 42, and the bucket 43, which is a type of attachment that is detachably attached to the tip of the arm 42.
  • the side image may be an image in which the entire hydraulic excavator 2 fits into a single image, or may be multiple images capturing individual characteristic points of the hydraulic excavator 2.
  • the wireless communication unit 132 performs wireless communication at least with the collection device 12.
  • Bluetooth registered trademark
  • the wireless communication unit 132 performs wireless communication at least with the collection device 12.
  • Bluetooth registered trademark
  • the display unit 133 is configured as a touch screen with a display function and a touch input function, and is used to display the guidance screen G1 shown in FIG. 4 and to input a position on the position registration screen G3 (see FIG. 7) described later.
  • the control unit 134 calculates the distance between the tip of the bucket 43 and the target construction surface D based on the multiple pieces of attitude information received from the collection device 12, and displays the calculated distance on the display unit 133, as shown in FIG. 4.
  • the guidance screen G1 shown in FIG. 4 includes a first display area G101 that displays the distance in the height direction between the tip of the bucket 43 and the target construction surface D as a numerical value, as well as second to sixth display areas G102 to G106 that display various calculation results.
  • the second display area G102 displays the heightwise position of the bucket 43 relative to the machine body (i.e., the hydraulic excavator 2) as a numerical value.
  • the third display area G103 displays specific operation guidance for the work machine 4. In FIG. 4, displays related to raising and lowering the boom and arm are arranged vertically.
  • the fourth display area G104 displays the current side posture of the hydraulic excavator 2 as an image (figure).
  • the fifth display area G105 displays the position of the target construction surface D relative to the machine body as an image (figure).
  • the sixth display area G106 displays the distance in the heightwise direction between the tip of the bucket 43 and the target construction surface D as a bar graph. Note that a guidance stop button (no symbol) may be arranged at the very bottom of the guidance screen G1 shown in FIG. 4.
  • the control unit 134 also transmits the calculated distance between the tip of the bucket 43 and the target construction surface D to the display 14 via the collection device 12, and causes the display 14 to display the calculated distance.
  • the method for calculating the distance between the tip of the bucket 43 and the target construction surface D will be described later.
  • the display 14 is installed in the operation section 3 of the hydraulic excavator 2, and displays the distance between the tip of the bucket 43 and the target construction surface D, which is calculated by the mobile terminal 13.
  • the display 14 in this embodiment is configured with a segment-type LED display section.
  • the display 14 is formed by arranging rectangular segment LEDs in two rows L1 and L2 in the vertical direction at regular intervals.
  • the height of the target construction surface D can be displayed by the segment LEDs in the left row L1
  • the distance along the height direction from the target construction surface D to the tip of the bucket 43 can be displayed by the segment LEDs in the right row L2.
  • the display 14 may display the distance between the tip of the bucket 43 and the target construction surface D as a numerical value.
  • the display 14 may be omitted by installing the mobile terminal 13 in a position visible to the operator and using the guidance screen G1 of the mobile terminal 13 as the display 14.
  • the mobile terminal 13 has multiple functional configurations realized by the cooperation of hardware and software.
  • the multiple functional configurations include a side image display means, a position registration means, a parameter calculation means, a target construction surface setting means, a tip coordinate calculation means, a distance calculation means, and a guidance screen display means.
  • the side image display means, the position registration means, the parameter calculation means, and the target construction surface setting means are functional configurations for performing advance settings prior to work.
  • the tip coordinate calculation means, the distance calculation means, and the guidance screen display means are functional configurations for displaying guidance during work.
  • the side image display means displays the side image of the hydraulic excavator 2 captured by the imaging unit 131 on the display unit 133.
  • a message requesting a side image of the hydraulic excavator 2 such as "Please take a photo that captures the entire vehicle,” is displayed (for example, in the white portion at the top end of the side image request screen G2), and the captured side image of the hydraulic excavator 2 is displayed on the screen.
  • the position registration means registers the positions of the characteristic points of the hydraulic excavator 2 and the installation positions of the attitude sensors 111, 121 (detection devices 11A, 11B, 11C and collection device 12) in response to touch operations on the side image displayed on the display unit 133. For example, on the position registration screen G3 shown in FIG. 7, a message indicating the next position to be touched, such as "Please select the arm pin," is displayed (for example, in the white portion at the top of the position registration screen G3), and the touched position coordinates are obtained.
  • the characteristic points of the hydraulic excavator 2 requesting position registration include the first to sixth points P1 to P6, and the installation positions of the attitude sensors 111, 121 include the seventh to tenth points P7 to P10.
  • the first point P1 is defined as the position of the boom pin 41a (see FIG. 1), the second point P2 as the position of the arm pin 42a (see FIG. 1), the third point P3 as the position of the bucket pin 43a (see FIG. 1), and the fourth point P4 as the tip position of the bucket 43.
  • the fifth point P5 is defined as the front end position of the traveling device 6 that comes into contact with the ground, and the sixth point P6 as the rear end position of the traveling device 6 that comes into contact with the ground.
  • the seventh point P7 is defined as the position of the detection device 11A installed on the boom 41
  • the eighth point P8 is defined as the position of the detection device 11B installed on the arm 42
  • the ninth point P9 is defined as the position of the detection device 11C installed on the bucket 43.
  • the tenth point P10 is defined as the position where the collection device 12 is installed.
  • the position registration means assumes, for example, an X-Y orthogonal coordinate system (called the "vehicle body coordinate system") with the ground contact rear end position (sixth point P6) of the traveling device 6 as the origin, the horizontal direction along the length of the hydraulic excavator 2 (in other words, the traveling direction of the traveling device 6, the front-to-rear direction) as the X axis, and the height direction of the hydraulic excavator 2 (i.e. the vertical direction) as the Y axis.
  • the position registration means registers the input position information of the first to tenth points P1 to P10 as coordinate data in the vehicle body coordinate system.
  • the position registration means may register not only the installation positions of the detection devices 11A, 11B, 11C and the collection device 12, but also the installation directions.
  • the parameter calculation means calculates various parameters for obtaining the coordinates of the tip position of the bucket 43 based on the position information registered by the position registration means. As shown in FIG. 10, the various parameters calculated include the ground-to-boom pin length H, boom length E, arm length F, bucket length G, etc.
  • the ground-to-boom pin length H is the straight-line distance connecting the rear end position of the traveling device 6 on the ground (sixth point P6) and the position of the boom pin 41a (first point P1) in the vehicle body coordinate system.
  • the boom length E is the straight-line distance connecting the position of the boom pin 41a (first point P1) and the position of the arm pin 42a (second point P2) in the vehicle body coordinate system.
  • the arm length F is the straight-line distance connecting the position of the arm pin 42a (second point P2) and the position of the bucket pin 43a (third point P3) in the vehicle body coordinate system.
  • the bucket length G is the straight-line distance connecting the position of the bucket pin 43a (third point P3) and the tip position of the bucket 43 (fourth point P4).
  • the target construction surface setting means enables the advance setting of the target construction surface D.
  • the target construction surface setting means of this embodiment requests the input of the start position coordinates (a1, b1), end position coordinates (a2, b2) of the target construction surface D, and the target angle of the bucket 43 on the target construction surface setting screen G4 shown in FIG. 9(a). That is, the target construction surface setting screen G4 displays the start position X coordinate input field G401, start position Y coordinate input field G402, end position X coordinate input field G403, end position Y coordinate input field G404, and bucket target angle input field G405 of the target construction surface D.
  • the target construction surface setting screen G4 also displays a numeric keypad G406 for inputting numerical values into each input field, and a guidance start button G407 for starting the guidance display.
  • the target construction surface setting means generates an equation (see FIG. 9(b)) for determining the Y coordinate of the target construction surface D at any X coordinate within the target construction surface D based on the input coordinate data.
  • the Y coordinate i.e., the height position
  • the tip coordinate calculation means calculates the coordinates of the tip position of the bucket 43 based on the position information registered by the position registration means, the input information input in advance, and the attitude information detected by the multiple attitude sensors 111, 121. As shown in Figures 10 and 11, the tip coordinate calculation means of this embodiment calculates the coordinates of the tip position of the bucket 43 using the lengths H, E, F, and G (also referred to as "length information") described above and the angles ⁇ 1 to ⁇ 4 calculated based on the detection values of the attitude sensors 111 and 121.
  • Angle ⁇ 1 is a swing angle of the boom 41 with respect to the horizontal direction (in other words, with the horizontal direction as a reference), and is calculated based on the detection value of the attitude sensor 111 provided in the detection device 11A.
  • Angle ⁇ 2 is a swing angle of the arm 42 with respect to the horizontal direction, and is calculated based on the detection value of the attitude sensor 111 provided in the detection device 11B.
  • Angle ⁇ 3 is a swing angle of the bucket 43 with respect to the horizontal direction, and is calculated based on the detection value of the attitude sensor 111 provided in the detection device 11C.
  • Angle ⁇ 4 is an inclination angle of the machine body (i.e., the hydraulic excavator 2) with respect to the horizontal direction, and is calculated as the sum of angle ⁇ 4 calculated based on the detection value of the attitude sensor 121 provided in the collection device 12 and angle ⁇ 40 input in advance, as shown in FIG.
  • the angle ⁇ 40 is a fixed value formed by a straight line connecting the rear end position of the traveling device 6 that has come into contact with the ground and the position of the boom pin 41a, and the ground contact surface of the traveling device 6, and is obtained from a catalog of the hydraulic excavator 2 or the like and input in advance as a specification of the hydraulic excavator 2.
  • the tip coordinate calculation means calculates the X and Y coordinates of the tip position of the bucket 43 in the vehicle body coordinate system using the various parameters described above and the following equations.
  • X H cos( ⁇ 4) + Ecos( ⁇ 1) + F cos( ⁇ 2) + G cos( ⁇ 3)
  • Y H sin( ⁇ 4) + E sin( ⁇ 1) + F sin( ⁇ 2) + G sin( ⁇ 3)
  • the distance calculation means calculates the distance in the height direction between the tip of the bucket 43 and the target construction surface D based on the coordinates of the tip position of the bucket 43 calculated by the tip coordinate calculation means and the coordinates of the target construction surface D that have been set in advance. For example, the distance calculation means substitutes the X coordinate of the tip position of the bucket 43 calculated by the tip coordinate calculation means into the equation shown in FIG. 9(b) to obtain the Y coordinate of the target construction surface D corresponding to the X coordinate of the tip position of the bucket 43, and then calculates the difference between the obtained Y coordinate and the Y coordinate of the tip position of the bucket 43 calculated by the tip coordinate calculation means. This allows the distance in the height direction between the tip of the bucket 43 and the target construction surface D to be found.
  • the guidance screen display means displays the guidance screen G1 shown in FIG. 4 on the display unit 133.
  • the guidance screen display means then displays the distance along the height direction between the tip of the bucket 43 and the target construction surface D as a numerical value in the first display area G101 of the guidance screen G1, and displays the distance along the height direction between the tip of the bucket 43 and the target construction surface D as a bar graph in the sixth display area G106.
  • the imaging range is adjusted to include at least the boom 41, arm 42, and bucket 43 as well as the blade 7, and a side image of the exterior of the hydraulic excavator 2 is captured by the imaging unit 131 of the mobile terminal 13.
  • the position coordinates acquired by the position registration means via the display function and touch input function of the display unit 133 of the mobile terminal 13 further include the eleventh and twelfth points P11 and P12 as characteristic points of the blade 7 of the hydraulic excavator 2 (see FIG. 8).
  • the eleventh point P11 is defined as the upper end position of the blade 7
  • the twelfth point P12 is defined as the lower end position of the blade 7.
  • the position registration means then registers the position information of the eleventh and twelfth points P11 and P12 as well as the position information of the first to tenth points P1 to P10 related to the hydraulic excavator 2 input via the display unit 133 as coordinate data in the vehicle body coordinate system.
  • the parameter calculation means selects the upper end position (11th point P11) or the lower end position (12th point P12) of the blade 7 that is farthest in the horizontal direction (X-axis direction) from the rear end position of the running gear 6 that is in contact with the ground (6th point P6), which is the origin of the vehicle body coordinate system, and identifies it as the most forward position of the blade 7.
  • the distance calculation means calculates the horizontal distance in the fore-aft direction between the tip of the bucket 43 and the most extreme position of the blade 7 based on the coordinates of the tip position of the bucket 43 calculated by the tip coordinate calculation means and the coordinates of the most extreme position of the blade 7 identified by the parameter calculation means.
  • the distance calculation means calculates, for example, the difference between the X coordinate of the tip position of the bucket 43 calculated by the tip coordinate calculation means and the X coordinate of the most extreme position of the blade 7 identified by the parameter calculation means. This allows the horizontal distance in the fore-aft direction between the tip of the bucket 43 and the most extreme position of the blade 7 to be found.
  • the guidance screen display means notifies the user that the bucket 43 is approaching the blade 7 when the horizontal distance in the fore-aft direction between the tip of the bucket 43 and the most extreme position of the blade 7 calculated by the distance calculation means becomes less than a predetermined threshold (referred to as the "horizontal distance threshold").
  • This notification may be made by at least one of the following: displaying text such as "Caution: Blade interference! on the guidance screen G1 (for example, in the white portion at the bottom end of the guidance screen G1 shown in FIG. 4); changing the color of the attachment (bucket 43) of the hydraulic excavator 2 displayed in the fourth display area G104 of the guidance screen G1 to a warning color such as yellow or red; and outputting a sound such as an electronic sound or voice.
  • the smaller the horizontal distance in the fore-aft direction between the tip of the bucket 43 and the most extreme position of the blade 7, the stronger the degree of attention may be called by, for example, increasing the sound pressure of the notification sound or changing the type of notification sound.
  • the horizontal distance threshold is not limited to a specific value, but is set to an appropriate value while taking into consideration that the tip of the bucket 43 can be ensured not to interfere with the blade 7. It is preferable that the horizontal distance threshold is determined based on the size of the construction machine to which the work assistance system 1 is applied, and the calculation accuracy of the tip position of the bucket 43 calculated by the tip coordinate calculation means.
  • the horizontal distance threshold small since precise operation is possible.
  • the horizontal distance threshold is set to twice that, that is, 10 cm (specifically, the magnitude of the X coordinate in the vehicle body coordinate system that corresponds to the actual length is set).
  • the horizontal distance threshold when applying this to a hydraulic excavator classified as a large excavator of 30 tons or more, it is preferable to set the horizontal distance threshold to a large value since precise operation is more difficult than with a mini excavator. In this case, it is preferable to set the horizontal distance threshold in the range of 50 to 100 cm, taking into consideration the operational resolution of the bucket 43. As a specific example, if the calculation accuracy of the tip coordinate calculation means is 5 cm and the operational resolution of the bucket 43 is 20 cm, then the horizontal distance threshold is set to 50 cm, which is double the sum of these, 25 cm.
  • the lower end position (12th point P12) farthest from the rear end position of the traveling device 6 on the ground is specified as the most forward position of the blade 7 in the position coordinates acquired by the position registration means.
  • this is not limited to this configuration, and for example, if it is clear which of the upper and lower parts of the blade 7 protrudes further forward, only one of the upper and lower end positions of the blade 7 that is farther horizontally in the fore-and-aft direction from the rear end position of the traveling device 6 on the ground (sixth point P6) may be input and registered. Also, if a part of the blade 7 other than the upper and lower parts protrudes further forward, that part may be input and registered.
  • the blade 7 is movable, the upper end position (eleventh point P11) and the lower end position (twelfth point P12) of the blade 7 may be acquired, registered, and selected while the blade 7 is in various positions and postures, or the part of the blade 7 that protrudes most forward may be acquired, registered, and selected.
  • the blade 7 is movable if, for example, the blade 7 can swing, rotate, tilt, etc.
  • the position registration means of the mobile terminal 13 acquires and registers position information of the first to tenth points P1 to P10 related to the hydraulic excavator 2 input via the display unit 133, as well as position information of the bucket 43 when it is approaching the blade 7.
  • the position registration means registers the posture information in a state where the operator rotates the support body 5 and operates the work machine 4 to move the bucket 43 to a position approaching the right end of the blade 7 (particularly, the part of the right end of the blade 7 that protrudes most forward) as the first approach posture information.
  • the first approach posture information is posture information of the work machine 4 collected from the detection devices 11A, 11B, 11C and transmitted from the collection device 12, and posture information of the support body 5 detected by the posture sensor 121 and transmitted from the collection device 12.
  • the position registration means further registers, as second approaching posture information, posture information in a state in which the operator rotates the support body 5 and operates the work machine 4 to move the bucket 43 to a position approaching the left end of the blade 7 (particularly, the part of the left end of the blade 7 that protrudes most forward).
  • the second approaching posture information is posture information of the work machine 4 collected from the detection devices 11A, 11B, and 11C and transmitted from the collection device 12, and posture information of the support body 5 detected by the posture sensor 121 and transmitted from the collection device 12.
  • the second approach posture information may be automatically generated from the first approach posture information and registered, or only one of the two may be registered.
  • the position registration means further registers, as third approach posture information, posture information in a state in which the operator rotates the support body 5 and operates the work machine 4 to move the bucket 43 to a position approaching the center in the left-right direction of the blade 7 (particularly, the part of the center in the left-right direction of the blade 7 that protrudes most forward).
  • the third approach posture information is posture information of the work machine 4 collected from the detection devices 11A, 11B, and 11C and transmitted from the collection device 12, and posture information of the support body 5 detected by the posture sensor 121 and transmitted from the collection device 12.
  • These registered first to third approach posture information correspond to the degree of separation between the tip of the bucket 43 and the center of the blade 7 in the left-right direction, which is required to suppress and prevent interference between the bucket 43 and the blade 7. That is, the position registration means registers multiple sets of posture information when the bucket 43 is approaching the blade 7, with the support body 5 (and therefore the work machine 4) rotated to multiple angles that are different from each other.
  • the bucket 43 when the bucket 43 is in front of the blade 7 (i.e., in front of the center of the blade 7 in the left-right direction) or near the front, even if there is a sufficient distance between the blade 7 (reference symbol 43_f1 in the figure), if the support body 5 rotates with the posture of the work implement 4 remaining the same, the bucket 43 may interfere with the right end or near the right end or the left end or near the left end of the blade 7 (reference symbol 43_c1 in the figure).
  • the parameter calculation means calculates the position of the bucket 43 in front of or near the front of the blade 7 (reference number 43_f2 in the figure) in the position of the work machine 4 where the bucket 43 does not interfere with the right end or near the right end or the left end or near the left end of the blade 7 even if the support body 5 rotates while the position of the work machine 4 remains the same, as shown in FIG. 13, from the first approaching position information and the second approaching position information.
  • the position of the bucket 43 in front of or near the front of the blade 7 where the bucket 43 does not interfere with the blade 7 even if the support body 5 rotates while the position of the work machine 4 remains the same, calculated in this way, is referred to as the "swing interference avoidance position".
  • the position registration means may register the approach posture information during the first turn and the approach posture information during the second turn as follows. After the operator moves the bucket 43 to the blade approach position during right turn indicated by reference symbol 43_c2 in FIG. 13, the position registration means rotates the support body 5 while keeping the posture of the work implement 4 unchanged to a position near the front of the blade 7 indicated by reference symbol 43_f2 in FIG. 13, and registers the posture information at this near-front position as the approach posture information during the first turn.
  • the position registration means also registers the approach posture information during the second turn as follows. After the operator moves the bucket 43 to the blade approach position during left turn indicated by reference symbol 43_c2 in FIG. 13, the support body 5 rotates while keeping the posture of the work implement 4 unchanged to a position near the front of the blade 7 indicated by reference symbol 43_f2 in FIG. 13, and registers the posture information at this near-front position as the approach posture information during the second turn.
  • the parameter calculation means selects, from the first approach posture information during turning and the second approach posture information during turning, the one that is farther along the horizontal direction in the fore-and-aft direction from the rear end position of the running device 6 on the ground (i.e., the sixth point P6, the origin of the vehicle body coordinate system), i.e., the one that is farther along the X-axis direction and has a larger X coordinate, and registers this as the interference avoidance position during turning.
  • the distance calculation means calculates the horizontal distance in the fore-aft direction between the tip of the bucket 43 and the turning interference avoidance position (referred to as the "turning interference avoidance distance") based on the coordinates of the tip position of the bucket 43 calculated by the tip coordinate calculation means and the coordinates of the turning interference avoidance position calculated or selected by the parameter calculation means.
  • the distance calculation means calculates, for example, the difference between the X coordinate of the tip position of the bucket 43 calculated by the tip coordinate calculation means and the X coordinate of the turning interference avoidance position calculated or selected by the parameter calculation means. This determines the horizontal distance in the fore-aft direction between the tip of the bucket 43 and the turning interference avoidance position (i.e., the turning interference avoidance distance).
  • the distance calculation means further calculates the horizontal distance in the fore-aft direction between the tip of the bucket 43 and the third approach attitude information (referred to as the "forward interference avoidance distance") based on the coordinates of the tip position of the bucket 43 calculated by the tip coordinate calculation means and the coordinates of the third approach attitude information registered by the position registration means.
  • the distance calculation means calculates, for example, the difference between the X coordinate of the tip position of the bucket 43 calculated by the tip coordinate calculation means and the X coordinate of the third approach attitude information registered by the position registration means. This determines the horizontal distance in the fore-aft direction between the tip of the bucket 43 and the third approach attitude information (i.e., the forward interference avoidance distance). Note that the turning interference avoidance distance is smaller than the forward interference avoidance distance.
  • the guidance screen display means When the swing interference avoidance distance calculated by the distance calculation means falls below a predetermined threshold (referred to as the "swing distance threshold"), the guidance screen display means notifies the user that if the support body 5 is rotated while maintaining the current posture of the work implement 4, the bucket 43 will come close to the blade 7.
  • This notification is referred to as the "first notification.”
  • the first notification may be performed by at least one of the following: displaying text such as "Caution: Blade interference during swing! on the guidance screen G1 (for example, in the white portion at the bottom end of the guidance screen G1 shown in FIG. 4); changing the color of the attachment (bucket 43) of the hydraulic excavator 2 displayed in the fourth display area G104 of the guidance screen G1 to a warning color such as yellow; and outputting a sound such as an electronic sound or voice.
  • the turning distance threshold is not limited to a specific value, but is set appropriately, taking into consideration that it is possible to ensure that the tip of the bucket 43 does not interfere with the blade 7 when the support body 5 turns.
  • the turning distance threshold may be set to any value within a range of about 5 to 50 cm (specifically, the magnitude of the X coordinate in the vehicle body coordinate system that corresponds to the actual length).
  • the guidance screen display means further notifies that the current state (in other words, the state in which the support body 5 is not rotating) of the bucket 43 is approaching the blade 7 when the forward interference avoidance distance calculated by the distance calculation means falls below a predetermined threshold (referred to as the "forward distance threshold”).
  • This notification is referred to as the "second notification.”
  • the second notification may be performed by at least one of the following: displaying text such as "Caution: Blade Interference! on the guidance screen G1 (for example, in the white portion at the bottom end of the guidance screen G1 shown in FIG.
  • the forward distance threshold is not limited to a specific value, but is set to an appropriate value while taking into consideration that a state can be ensured in which the tip of the bucket 43 does not interfere with the blade 7.
  • the forward distance threshold may be set to any value in the range of about 5 to 50 cm (specifically, the magnitude of the X coordinate in the vehicle body coordinate system that corresponds to the actual length).
  • the turning distance threshold and the forward distance threshold may be set to the same value, or may be set to different values.
  • the second notification be more alert (in other words, more warning) than the first notification; for example, it is preferable that the first notification not output a sound (or not be accompanied by sound output) and the second notification output a sound (or be accompanied by sound output).
  • the start of a rotation motion or a rotation operation of the support 5 can be detected by the attitude sensor 111 of the detection devices 11A, 11B, and 11C or the attitude sensor 121 of the collection device 12, or by monitoring the operation of the operator in the operation unit 3, or by other mechanisms, a notification is not issued simply because the rotation interference avoidance distance becomes less than the rotation distance threshold, but a first notification may be issued when the start of a rotation motion or a rotation operation of the support 5 is detected in a state in which the rotation interference avoidance distance is less than the rotation distance threshold.
  • the first notification is a sound output (or accompanied by the output of a sound).
  • the content and type of the notification when the rotation interference avoidance distance becomes less than the rotation distance threshold may be different from the content and type of the notification when the start of rotation (or the start of a rotation operation) of the support 5 is detected in a state in which the rotation interference avoidance distance is less than the rotation distance threshold.
  • the posture information relating to the ends in the left-right direction of the blade 7 i.e., the positions for avoiding interference during turning
  • the posture information relating to the center part in the left-right direction of the blade 7 i.e., the third approach posture information
  • the distance calculation means calculates the interference avoidance distance during turning and the forward interference avoidance distance.
  • this configuration is not limited, and only one of the posture information relating to the ends in the left-right direction of the blade 7 (i.e., the positions for avoiding interference during turning) and the posture information relating to the center part in the left-right direction of the blade 7 (i.e., the third approach posture information) may be registered.
  • the blade 7 may be placed in various positions and postures while posture information relating to the ends of the blade 7 in the left-right direction (i.e., positions for avoiding interference during turning) and posture information relating to the center of the blade 7 in the left-right direction (i.e., third approach posture information) may be registered.
  • the mobile terminal 13 has an offset correction means as a functional configuration.
  • the offset correction means executes offset correction when the work support system 1 is applied to a hydraulic excavator 2B with an offset boom.
  • the hydraulic excavator 2B with an offset boom will be described.
  • the same reference numerals as those in the hydraulic excavator 2 with a non-offset boom may be used to refer to the description of the hydraulic excavator 2 with a non-offset boom.
  • the boom 41B of the work machine 4B provided on the hydraulic excavator 2B with offset boom has an offset boom mechanism.
  • the offset boom mechanism includes a first boom 411 supported on the support 5 so as to be able to swing up and down, and a second boom 412 supported on the tip of the first boom 411 so as to be able to swing left and right.
  • the second boom 412 has a parallel link mechanism that translates the arm 42 left and right in response to the left and right swing, and is swung left and right in response to the hydraulic extension and contraction operation of the offset cylinder 413 provided between the first boom 411 and the second boom 412, and is capable of offset operation.
  • the boom length E and boom angle ⁇ 1 in the vehicle body coordinate system change in response to the left and right swing of the second boom 412, so that an error occurs in the coordinates of the tip position of the bucket 43 calculated by the tip coordinate calculation means.
  • the offset correction is a process for suppressing such errors. First, an overview of the offset correction will be explained, and then the specific process content of the offset correction will be explained.
  • two detectors 11A1, 11A2 are prepared for boom installation and installed on the first boom 411 and second boom 412, respectively.
  • the detector 11A2 is installed on the second boom 412 at one end of the length of the second boom 412, it is desirable that it be the end on the arm 42 side. In this way, the amount of displacement of the detector 11A2 accompanying left and right swinging of the second boom 412 is larger than when it is installed at the end on the first boom 411 side, and therefore the accuracy of detecting the attitude of the second boom 412 by the detector 11A2 can be improved.
  • the offset correction means corrects the length information and attitude information of the boom 41B based on the attitude information of the first boom 411 and the second boom 412 detected by the detection devices 11A1 and 11A2. As a result, even if the boom length E and boom angle ⁇ 1 in the vehicle body coordinate system change in response to the left-right swing of the second boom 412, the tip coordinate calculation means can accurately calculate the coordinates of the tip position of the bucket 43 by using the corrected boom length E and boom angle ⁇ 1.
  • the offset boom mechanism has a left maximum offset posture in which the second boom 412 has swung from the non-offset posture to the left maximum swing angle, and a right maximum offset posture in which the second boom 412 has swung from the non-offset posture to the right maximum swing angle.
  • the left maximum offset amount X which is the horizontal movement distance from the non-offset posture to the left maximum offset posture
  • the offset correction means performs correction processing using the left maximum offset amount X and right maximum offset amount Y, which are registered in advance.
  • the left maximum offset amount X and right maximum offset amount Y are usually listed in a catalog for the hydraulic excavator 2B, and can be easily obtained and registered in advance.
  • the left and right swing fulcrum position of the second boom 412 on the first boom 411 side is A
  • the left and right swing fulcrum position of the second boom 412 on the arm 42 side is B
  • the position of the arm pin 42a is C
  • the position of the boom pin 41a is Z.
  • the length of the line segment AB is ab
  • the length of the line segment AC is ac
  • the length of the line segment BC is bc
  • the length of the line segment AZ is az
  • the length of the line segment CZ is cz (corresponding to the length E to be corrected).
  • the initial length of the line segment AB when not offset is ab0
  • the initial length of the line segment CZ when not offset is cz0
  • the angle between the line segment AB and the line segment AZ is ⁇
  • the angle between the line segment AB and the line segment BC is ⁇
  • the angle between the line segment AB and the line segment AC is ⁇
  • the angle between the line segment AZ and the line segment CZ is ⁇ .
  • the maximum offset movable angle of the second boom 412 is yaw0
  • the maximum right swing angle of the second boom 412 is ⁇
  • the maximum left swing angle of the second boom 412 is yaw0- ⁇ . Note that yaw0 can be obtained as the output yaw when the second boom 412 is offset to the maximum left offset position after the output yaw of the detection device 11A2 is reset to zero when the second boom 412 is in the maximum right offset position.
  • ab0 Y / sin( ⁇ )
  • b c and ⁇ are known values that are set in advance and are fixed values.
  • az and ⁇ are known values that are set in advance and are fixed values.

Landscapes

  • Operation Control Of Excavators (AREA)
  • Component Parts Of Construction Machinery (AREA)

Abstract

The present invention provides, in a work assistance system for a construction machine, a function for suppressing an operation in which an attachment interferes with a blade. The present invention comprises a plurality of detection devices 11A, 11B, 11C, a collection device 12, and a mobile terminal 13. The plurality of detection devices 11A, 11B, 11C are each provided with an orientation sensor 111 and a wireless communication unit 112. The collection device 12 is provided with an orientation sensor 121 and a wireless communication unit 122 and transmits, to the mobile terminal 13, orientation information which is collected via wireless communication with the plurality of detection devices 11A, 11B, 11C and orientation information which is detected by the orientation sensor 121 of the collection device 12. The mobile terminal 13 calculates the distance between a blade 7 and an attachment 43 of a hydraulic shovel 2 on the basis of the orientation information received from the collection device 12, and provides notification of proximity of the attachment 43 and the blade 7 on the basis of the calculated distance.

Description

建設機械の作業支援システムConstruction machinery work support system
 本開示は、建設機械の作業支援システムに関する。 This disclosure relates to a work support system for construction machinery.
 ブーム、アーム、及びアタッチメントを連結した作業機を備えた建設機械の作業支援システムが、特許文献1に開示されている。 Patent Document 1 discloses a work support system for construction machinery that has a work implement connected to a boom, arm, and attachment.
国際公開第2021/251463号International Publication No. 2021/251463
 建設機械は、土砂を押して排除したり均したりするための板(「排土板」と称する)を備える場合がある。このような建設機械においては、オペレータの操作によって作業機のアタッチメントが排土板と干渉する場合がある。 Construction machinery may be equipped with a plate (called a "blade") for pushing and clearing soil and sand, or for leveling the soil. In such construction machinery, the operator's operation may cause the work machine attachment to interfere with the blade.
 そこで、本開示は、建設機械の作業支援システムにおいて、アタッチメントが排土板と干渉する操作を抑制する機能を提供することを目的とする。 The present disclosure therefore aims to provide a function in a work assistance system for construction machinery that suppresses operations that cause an attachment to interfere with the blade.
 1つの側面では、本発明に係る建設機械の作業支援システムは、オペレータが乗車する操作部と、ブーム、アーム、及びアタッチメントを連結して構成されて前記オペレータによって操作される作業機と、前記操作部及び前記作業機を支持する支持体と、前記支持体を走行可能に支持する走行装置と、前記走行装置の前面側に設けられる排土板と、を備えた建設機械の作業支援システムであって、複数の検出装置、収集装置、及び携帯端末を備え、複数の前記検出装置は、それぞれ、姿勢センサ、無線通信部、バッテリ、及び磁性部材を備え、前記ブーム、前記アーム、及び前記アタッチメントのそれぞれに、前記磁性部材の磁力による固定によって着脱可能に設置され、前記収集装置は、姿勢センサ、無線通信部、及び制御部を備え、前記操作部又は前記支持体に設置され、複数の前記検出装置各々から無線通信により収集した姿勢情報と、自身の前記姿勢センサが検出した姿勢情報と、を前記携帯端末へと送信し、前記携帯端末は、撮像部、無線通信部、タッチスクリーン、及び制御部を備え、前記携帯端末の前記制御部は、前記撮像部で撮像された前記建設機械の側面画像を前記タッチスクリーンに表示させる側面画像表示手段と、前記タッチスクリーンに表示された前記側面画像のタッチ操作に応じて、前記排土板の位置を登録する位置登録手段と、を備え、前記収集装置から受信した前記姿勢情報に基づいて前記アタッチメントと前記排土板との間の距離を算出し、算出した前記距離に基づいて前記アタッチメントと前記排土板との接近を通知する、ようにしてもよい。 In one aspect, the present invention provides a work support system for a construction machine, the work support system for a construction machine comprising: an operating unit on which an operator rides; a working machine configured by connecting a boom, an arm, and an attachment and operated by the operator; a support body that supports the operating unit and the working machine; a traveling device that supports the support body so that it can travel; and a blade that is provided on the front side of the traveling device, the work support system comprising: a plurality of detection devices, a collection device, and a mobile terminal, the plurality of detection devices each comprising an attitude sensor, a wireless communication unit, a battery, and a magnetic member, and are detachably installed on each of the boom, the arm, and the attachment by being fixed by the magnetic force of the magnetic member, the collection device comprising an attitude sensor, a wireless communication unit, and a control unit, and a front The operation unit or the support is installed, and transmits to the mobile terminal the posture information collected by wireless communication from each of the multiple detection devices and the posture information detected by its own posture sensor, the mobile terminal includes an imaging unit, a wireless communication unit, a touch screen, and a control unit, the control unit of the mobile terminal includes a side image display means for displaying on the touch screen a side image of the construction machine captured by the imaging unit, and a position registration means for registering the position of the blade in response to a touch operation on the side image displayed on the touch screen, and calculates the distance between the attachment and the blade based on the posture information received from the collection device, and notifies the approach of the attachment and the blade based on the calculated distance.
 本発明に係る建設機械の作業支援システムは、前記位置登録手段は、前記排土板の先端の位置を登録する、ようにしてもよい。 In the construction machine work support system according to the present invention, the position registration means may register the position of the tip of the blade.
 本発明に係る建設機械の作業支援システムは、前記ブームは、前記支持体に上下揺動可能に支持される第1ブームと、前記第1ブームの先端部に左右揺動可能に支持される第2ブームと、を備えたオフセットブーム機構を有し、前記ブームに設置される前記検出装置は、前記第1ブーム及び前記第2ブームのそれぞれに設置され、前記携帯端末の前記制御部は、検出した前記第1ブーム及び前記第2ブームの姿勢情報に基づいて、前記ブームの長さ情報及び姿勢情報を補正するオフセット補正手段を備える、ようにしてもよい。 The construction machine work support system according to the present invention may be configured such that the boom has an offset boom mechanism including a first boom supported on the support body so as to be swingable up and down, and a second boom supported on the tip of the first boom so as to be swingable left and right, the detection device installed on the boom is installed on each of the first boom and the second boom, and the control unit of the mobile terminal includes an offset correction means for correcting the length information and attitude information of the boom based on the detected attitude information of the first boom and the second boom.
 本発明に係る建設機械の作業支援システムは、前記オフセットブーム機構は、前記第2ブームが非オフセット姿勢から左側最大揺動角まで揺動した左側最大オフセット姿勢と、前記第2ブームが前記非オフセット姿勢から右側最大揺動角まで揺動した右側最大オフセット姿勢との間でオフセット動作可能であり、前記非オフセット姿勢から前記左側最大オフセット姿勢への水平移動距離である左側最大オフセット量と、前記非オフセット姿勢から前記右側最大オフセット姿勢への水平移動距離である右側最大オフセット量とが相違し、前記オフセット補正手段は、予め登録される前記左側最大オフセット量及び前記右側最大オフセット量を用いて補正処理を行う、ようにしてもよい。 In the construction machine work support system according to the present invention, the offset boom mechanism is capable of offsetting between a left maximum offset position in which the second boom has swung from a non-offset position to a left maximum swing angle, and a right maximum offset position in which the second boom has swung from the non-offset position to a right maximum swing angle, a left maximum offset amount which is the horizontal movement distance from the non-offset position to the left maximum offset position, and a right maximum offset amount which is the horizontal movement distance from the non-offset position to the right maximum offset position may be different, and the offset correction means may perform correction processing using the left maximum offset amount and the right maximum offset amount which are registered in advance.
 本発明に係る建設機械の作業支援システムは、前記第2ブームに設置される前記検出装置は、前記第2ブームの長さ方向の一端部に設置され、前記長さ方向の一端部は、前記アームの側の端部である、ようにしてもよい。  In the construction machine work support system according to the present invention, the detection device installed on the second boom may be installed at one end of the second boom in the longitudinal direction, and the one end of the longitudinal direction may be the end on the arm side.
 本開示によれば、アタッチメントが排土板と干渉する操作を抑制する(言い換えると、防止する)ことができる建設機械の作業支援システムを提供することが可能となる。 This disclosure makes it possible to provide a work support system for construction machinery that can suppress (in other words, prevent) operations that cause the attachment to interfere with the blade.
本発明の実施例に係る建設機械の作業支援システムの概略構成を示す図である。1 is a diagram showing a schematic configuration of a work support system for a construction machine according to an embodiment of the present invention; 図1の建設機械の作業支援システムの構成を示すブロック図である。2 is a block diagram showing a configuration of a work support system for the construction machine shown in FIG. 1 . 検出装置の斜視図である。FIG. 携帯端末のガイダンス画面を示す図である。FIG. 13 is a diagram showing a guidance screen of the mobile terminal. 表示器を示す図である。FIG. 携帯端末の側面画像要求画面を示す図である。FIG. 13 is a diagram showing a side image request screen of the mobile terminal. 携帯端末の位置登録画面を示す図である。FIG. 13 is a diagram showing a location registration screen of the portable terminal. 位置登録を行う油圧ショベルの特徴点を示す図である。FIG. 13 is a diagram showing feature points of a hydraulic excavator for which location registration is performed. (a)は携帯端末の目標施工面設定画面及びその説明図、(b)は目標施工面の座標を求める方程式である。1A is a target construction surface setting screen of a mobile terminal and its explanatory diagram, and FIG. 1B is an equation for determining the coordinates of the target construction surface. バケットの先端位置の座標の算出に用いるパラメータの説明図である。FIG. 11 is an explanatory diagram of parameters used to calculate the coordinates of the tip position of the bucket. 車両傾斜角度の算出に用いるパラメータの説明図である。FIG. 4 is an explanatory diagram of parameters used in calculating a vehicle inclination angle. 支持体が旋回するとバケットが排土板と干渉する場合があることを説明する図である。11 is a diagram for explaining a case in which the bucket interferes with the blade when the support body rotates. FIG. 支持体が旋回してもバケットが排土板と干渉しない状況を説明する図である。11A and 11B are diagrams illustrating a state in which the bucket does not interfere with the blade even when the support body rotates. オフセット補正に用いるパラメータを示すオフセットブームの側面図である。FIG. 13 is a side view of the offset boom showing parameters used for offset correction. オフセット補正に用いるパラメータを示すオフセットブームの平面図である。FIG. 11 is a plan view of the offset boom showing parameters used for offset correction.
 以下、添付図面を参照しながら本発明の実施例について詳細に説明する。 The following describes in detail an embodiment of the present invention with reference to the attached drawings.
[建設機械] 図1及び図2に示す本実施例の建設機械の作業支援システム1(単に「作業支援システム1」とも称する)は、建設機械である油圧ショベル2において、マシンガイダンスの機能により、油圧ショベル2を操作するオペレータの作業を支援する。作業支援システム1を適用可能な建設機械は、油圧ショベル2などの掘削機に限らず、ロータリーフォークやクローラクレーンなどの荷役機械であってもよい。 [Construction Machinery] The construction machine work assistance system 1 (also simply referred to as "work assistance system 1") of this embodiment shown in Figures 1 and 2 uses the machine guidance function of a hydraulic excavator 2, which is a construction machine, to assist the work of an operator who operates the hydraulic excavator 2. Construction machines to which the work assistance system 1 can be applied are not limited to excavators such as the hydraulic excavator 2, but may also be loading and unloading machines such as rotary forks and crawler cranes.
 図1に示すように、油圧ショベル2は、操作部3、作業機4、支持体5、走行装置6、及び排土板7を備える。 As shown in FIG. 1, the hydraulic excavator 2 includes an operating unit 3, a work machine 4, a support body 5, a traveling device 6, and a blade 7.
 操作部3は、油圧ショベル2を操作するオペレータの乗車空間である。油圧ショベル2には、操作部3全体をキャブ31で覆うキャブ仕様と、操作部3の上方のみをキャノピ(図示せず)で覆うキャノピ仕様とがあり、いずれの仕様でも本実施例の作業支援システム1を適用できる。 The operation unit 3 is a riding space for an operator who operates the hydraulic excavator 2. The hydraulic excavator 2 is available in a cab specification in which the entire operation unit 3 is covered with a cab 31, and a canopy specification in which only the upper part of the operation unit 3 is covered with a canopy (not shown), and the work support system 1 of this embodiment can be applied to either specification.
 作業機4は、ブーム41、アーム42、及びバケット43を順次連結して構成され、オペレータによって操作される。 The work machine 4 is composed of a boom 41, an arm 42, and a bucket 43 connected in sequence, and is operated by an operator.
 ブーム41は、支持体5の前端部にブームピン41aを介して上下揺動可能に連結され、支持体5とブーム41との間に設けられるブームシリンダ(図示せず)の油圧伸縮動作に応じて揺動する。 The boom 41 is connected to the front end of the support body 5 via a boom pin 41a so that it can swing up and down, and swings in response to the hydraulic extension and retraction action of a boom cylinder (not shown) provided between the support body 5 and the boom 41.
 アーム42は、ブーム41の先端部にアームピン42aを介して前後及び上下揺動可能に連結され、ブーム41とアーム42との間に設けられるアームシリンダ(図示せず)の油圧伸縮動作に応じて揺動する。 The arm 42 is connected to the tip of the boom 41 via an arm pin 42a so that it can swing back and forth and up and down, and swings in response to the hydraulic extension and retraction action of an arm cylinder (not shown) provided between the boom 41 and the arm 42.
 バケット43は、アーム42の先端部にバケットピン(アタッチメントピン)43aを介して前後及び上下揺動可能に連結され、アーム42とバケット43との間に設けられるバケットシリンダ(図示せず)の油圧伸縮動作に応じて揺動する。 The bucket 43 is connected to the tip of the arm 42 via a bucket pin (attachment pin) 43a so that it can swing back and forth and up and down, and swings in response to the hydraulic extension and retraction of a bucket cylinder (not shown) provided between the arm 42 and the bucket 43.
 バケット43は、アーム42の先端部に着脱可能に装着されるアタッチメントの一種であり、作業の種類に応じて他のアタッチメントに交換することができる。アタッチメントとしては、例えば、木材などを把持するグラップル、コンクリート塊などを破砕するブレーカ、ふるい作業を行うスケルトンバケットなどがある。本実施例の作業支援システム1は、バケット43を装着した掘削作業に限らず、他のアタッチメントを装着した作業にも適用できる。 The bucket 43 is a type of attachment that is removably attached to the tip of the arm 42, and can be replaced with other attachments depending on the type of work. Examples of attachments include a grapple for gripping wood, a breaker for crushing concrete blocks, and a skeleton bucket for sieving work. The work support system 1 of this embodiment is not limited to excavation work using a bucket 43, but can also be applied to work using other attachments.
 支持体5は、操作部3及び作業機4を支持する。 The support body 5 supports the operating unit 3 and the work machine 4.
 走行装置6は、支持体5を旋回可能、かつ走行可能に支持する。走行装置6には、図1に示すようにクローラ61を備えるクローラ式の他に、車輪(図示せず)を備えるホイール式が知られているが、本実施例の作業支援システム1は、クローラ式、ホイール式のいずれにも適用できる。 The traveling device 6 supports the support body 5 so that it can rotate and travel. As shown in FIG. 1, in addition to the crawler type having crawlers 61, a wheel type having wheels (not shown) is also known as the traveling device 6, but the work support system 1 of this embodiment can be applied to either the crawler type or the wheel type.
 排土板7は、走行装置6の前面側に設けられて、土砂を押して排除したり均したりするための板である。 The blade 7 is a plate that is attached to the front side of the traveling device 6 and is used to push, remove, and level soil and sand.
 ここで、油圧ショベル2には、ブーム41を左右方向にオフセット不能な非オフセットブーム仕様と、ブーム41を左右方向にオフセット可能なオフセット仕様とがある。以下、非オフセットブーム仕様に適合した作業支援システム1について説明した後、オフセットブーム仕様に適用するためのオフセット補正機能について説明する。 Here, the hydraulic excavator 2 is available in a non-offset boom specification in which the boom 41 cannot be offset in the left-right direction, and an offset specification in which the boom 41 can be offset in the left-right direction. Below, we will first explain the work support system 1 that is compatible with the non-offset boom specification, and then explain the offset correction function for application to the offset boom specification.
[作業支援システムの構成] 図1及び図2に示すように、作業支援システム1は、複数の検出装置11A、11B、11C、収集装置12、携帯端末13、及び表示器14を備える。 [Configuration of the work support system] As shown in Figures 1 and 2, the work support system 1 includes multiple detection devices 11A, 11B, and 11C, a collection device 12, a mobile terminal 13, and a display 14.
 図1に示すように、検出装置11A、11B、11Cは、ブーム41、アーム42、及びバケット43のそれぞれに設置される。図2及び図3に示すように、検出装置11A、11B、11Cは、それぞれ、姿勢センサ111、無線通信部112、制御部113、バッテリ114、ケース115、及び磁性部材116を備える。 As shown in FIG. 1, the detection devices 11A, 11B, and 11C are installed on the boom 41, the arm 42, and the bucket 43, respectively. As shown in FIG. 2 and FIG. 3, the detection devices 11A, 11B, and 11C each include a posture sensor 111, a wireless communication unit 112, a control unit 113, a battery 114, a case 115, and a magnetic member 116.
 姿勢センサ111は、設置箇所の姿勢を検出する。姿勢センサ111には、例えば、3次元の加速度、角速度を検出するIMU(INERTIAL MEASUREMENT UNIT)センサが適用される。 The attitude sensor 111 detects the attitude of the installation location. For example, an IMU (Inertial Measurement Unit) sensor that detects three-dimensional acceleration and angular velocity is used as the attitude sensor 111.
 無線通信部112は、収集装置12と無線通信を行う。無線通信部112の無線通信方式には、例えば、Bluetooth(登録商標)が適用される。 The wireless communication unit 112 performs wireless communication with the collection device 12. For example, Bluetooth (registered trademark) is used as the wireless communication method of the wireless communication unit 112.
 制御部113は、姿勢センサ111から姿勢情報を取得し、取得した姿勢情報を無線通信部112を介して収集装置12へと送信する。 The control unit 113 acquires posture information from the posture sensor 111 and transmits the acquired posture information to the collection device 12 via the wireless communication unit 112.
 バッテリ114は、姿勢センサ111、無線通信部112、及び制御部113に電源供給を行う。このような検出装置11A、11B、11Cによれば、電源供給用のケーブルや、データ通信用のケーブルをわざわざ作業機4に配索することなく、所望する取り付け箇所に簡易に設置できる。これにより、本実施例の作業支援システム1は、容易に既存の建設機械にマシンガイダンスの機能を追加したり、マシンガイダンスの機能を更新したりすることができる。 The battery 114 supplies power to the attitude sensor 111, the wireless communication unit 112, and the control unit 113. Such detection devices 11A, 11B, and 11C can be easily installed at the desired mounting location without having to take the trouble of wiring a power supply cable or a data communication cable to the work machine 4. As a result, the work assistance system 1 of this embodiment can easily add machine guidance functions to existing construction machines or update the machine guidance functions.
 ケース115は、姿勢センサ111、無線通信部112、制御部113、及びバッテリ114を収容する。なお、バッテリ114は、ケース115と別体のケースに収容し、ケーブルを介して検出装置11A、11B、11Cに電源供給を行うようにしてもよい。 The case 115 houses the attitude sensor 111, the wireless communication unit 112, the control unit 113, and the battery 114. The battery 114 may be housed in a case separate from the case 115, and may supply power to the detection devices 11A, 11B, and 11C via a cable.
 磁性部材116は、例えば、永久磁石であり、その磁力によって金属製であるブーム41、アーム42、及びバケット43のそれぞれに検出装置11A、11B、11Cを固定させる。磁性部材116は、例えば、図3に示すように、ケース115の底面部に設けられ、その磁力によりケース115の底面部をブーム41、アーム42、及びバケット43のそれぞれに固定させる。このような検出装置11A、11B、11Cによれば、所望する取り付け箇所に対して、より簡易に設置できる。 The magnetic member 116 is, for example, a permanent magnet, and uses its magnetic force to fix the detection devices 11A, 11B, and 11C to the boom 41, arm 42, and bucket 43, which are made of metal. The magnetic member 116 is provided on the bottom surface of the case 115, as shown in FIG. 3, for example, and uses its magnetic force to fix the bottom surface of the case 115 to the boom 41, arm 42, and bucket 43, respectively. Such detection devices 11A, 11B, and 11C can be more easily installed at the desired mounting locations.
 図1に示すように、収集装置12は、支持体5に設置される。例えば、操作部3の床部であれば、収集装置12を容易に設置できる。収集装置12は、図2に示すように、姿勢センサ121、無線通信部122、及び制御部123を備える。 As shown in FIG. 1, the collection device 12 is installed on the support 5. For example, the collection device 12 can be easily installed on the floor of the operation unit 3. As shown in FIG. 2, the collection device 12 includes a posture sensor 121, a wireless communication unit 122, and a control unit 123.
 姿勢センサ121は、支持体5の姿勢を検出する。姿勢センサ121には、例えば、3次元の加速度、角速度を検出するIMUセンサが適用される。 The attitude sensor 121 detects the attitude of the support body 5. For example, an IMU sensor that detects three-dimensional acceleration and angular velocity is used as the attitude sensor 121.
 無線通信部122は、検出装置11A、11B、11C並びに携帯端末13と無線通信を行う。無線通信部122の無線通信方式には、例えば、Bluetooth(登録商標)が適用される。 The wireless communication unit 122 performs wireless communication with the detection devices 11A, 11B, and 11C and the mobile terminal 13. For example, Bluetooth (registered trademark) is used as the wireless communication method of the wireless communication unit 122.
 制御部123は、検出装置11A、11B、11Cから収集した作業機4の姿勢情報と、姿勢センサ121が検出した支持体5の姿勢情報と、を無線通信部122を介して携帯端末13へと送信する。例えば、本実施例の制御部123は、携帯端末13から姿勢情報の要求信号を受信すると、検出装置11A、11B、11Cで検出した作業機4の姿勢情報を収集する。その後、制御部123は、検出装置11A、11B、11Cから収集した作業機4の姿勢情報と、自身の姿勢センサ121で検出した支持体5の姿勢情報を携帯端末13へと送信する。また、制御部123は、携帯端末13から通知情報を取得すると、取得した通知情報を表示器14に出力する。 The control unit 123 transmits the posture information of the work machine 4 collected from the detection devices 11A, 11B, and 11C and the posture information of the support body 5 detected by the posture sensor 121 to the mobile terminal 13 via the wireless communication unit 122. For example, in this embodiment, when the control unit 123 receives a posture information request signal from the mobile terminal 13, it collects the posture information of the work machine 4 detected by the detection devices 11A, 11B, and 11C. The control unit 123 then transmits the posture information of the work machine 4 collected from the detection devices 11A, 11B, and 11C and the posture information of the support body 5 detected by its own posture sensor 121 to the mobile terminal 13. In addition, when the control unit 123 acquires notification information from the mobile terminal 13, it outputs the acquired notification information to the display 14.
 携帯端末13は、いわゆるスマートフォンやタブレット端末であり、作業支援システム1に係るアプリケーションソフトウェアの実行により、マシンガイダンス端末として機能する。作業支援システム1に係るアプリケーションソフトウェアは、適宜バージョンアップされる。携帯端末13は、バージョンアップ版のアプリケーションソフトウェアを導入することで、マシンガイダンス機能を最新のものに更新できる。図2に示すように、携帯端末13は、撮像部131、無線通信部132、表示部133、及び制御部134を備える。 The mobile terminal 13 is a so-called smartphone or tablet terminal, and functions as a machine guidance terminal by executing application software related to the work assistance system 1. The application software related to the work assistance system 1 is upgraded as appropriate. The mobile terminal 13 can update its machine guidance function to the latest version by installing an upgraded version of the application software. As shown in FIG. 2, the mobile terminal 13 includes an imaging unit 131, a wireless communication unit 132, a display unit 133, and a control unit 134.
 撮像部131は、静止画像や動画を撮影する。本実施例では、油圧ショベル2の側面画像の撮影に使用される。側面画像は、後述する油圧ショベル2の特徴点の箇所を撮像したものである。側面画像は、例えば、油圧ショベル2の外観を側面から撮像した画像であり、少なくとも、ブーム41、アーム42、及び、アーム42の先端部に着脱可能に装着されるアタッチメントの一種であるバケット43を撮像範囲に含むものである。側面画像は、油圧ショベル2の全体が1枚の画像に収まるように撮像されたものであってもよく、油圧ショベル2の個々の特徴点の箇所を撮像した複数の画像であってもよい。 The imaging unit 131 captures still images and videos. In this embodiment, it is used to capture a side image of the hydraulic excavator 2. The side image is an image of the characteristic points of the hydraulic excavator 2, which will be described later. The side image is, for example, an image of the exterior of the hydraulic excavator 2 captured from the side, and includes in the captured image range at least the boom 41, the arm 42, and the bucket 43, which is a type of attachment that is detachably attached to the tip of the arm 42. The side image may be an image in which the entire hydraulic excavator 2 fits into a single image, or may be multiple images capturing individual characteristic points of the hydraulic excavator 2.
 無線通信部132は、少なくとも収集装置12と無線通信を行う。無線通信部132の無線通信方式には、例えば、Bluetooth(登録商標)が適用される。 The wireless communication unit 132 performs wireless communication at least with the collection device 12. For example, Bluetooth (registered trademark) is used as the wireless communication method of the wireless communication unit 132.
 表示部133は、表示機能及びタッチ入力機能を備えたタッチスクリーンで構成され、図4に示すガイダンス画面G1などの表示や、後述する位置登録画面G3(図7参照)における位置入力に使用される。 The display unit 133 is configured as a touch screen with a display function and a touch input function, and is used to display the guidance screen G1 shown in FIG. 4 and to input a position on the position registration screen G3 (see FIG. 7) described later.
 制御部134は、収集装置12から受信した複数の姿勢情報に基づいてバケット43の先端と目標施工面Dとの間の距離を算出し、図4に示すように、算出した距離を表示部133に表示させる。例えば、図4に示すガイダンス画面G1には、バケット43の先端と目標施工面Dとの間の高さ方向に沿う距離を数値で表示する第1表示領域G101の他に、様々な算出結果を表示する第2~第6の表示領域G102~G106が含まれる。 The control unit 134 calculates the distance between the tip of the bucket 43 and the target construction surface D based on the multiple pieces of attitude information received from the collection device 12, and displays the calculated distance on the display unit 133, as shown in FIG. 4. For example, the guidance screen G1 shown in FIG. 4 includes a first display area G101 that displays the distance in the height direction between the tip of the bucket 43 and the target construction surface D as a numerical value, as well as second to sixth display areas G102 to G106 that display various calculation results.
 第2表示領域G102には、機体(即ち、油圧ショベル2)に対するバケット43の高さ方向の位置が数値で表示される。第3表示領域G103には、作業機4の具体的な操作ガイダンスが表示される。図4では、ブームとアームの上げ下げに関する表示が上下に配置されている。第4表示領域G104には、現在の油圧ショベル2の側面姿勢が画像(図形)で表示される。第5表示領域G105には、機体に対する目標施工面Dの位置が画像(図形)で表示される。第6表示領域G106には、バケット43の先端と目標施工面Dとの間の高さ方向に沿う距離が棒グラフのように表示される。なお、図4に示すガイダンス画面G1には、最も下側に、ガイダンス停止ボタン(符号なし)が配置されてもよい。 The second display area G102 displays the heightwise position of the bucket 43 relative to the machine body (i.e., the hydraulic excavator 2) as a numerical value. The third display area G103 displays specific operation guidance for the work machine 4. In FIG. 4, displays related to raising and lowering the boom and arm are arranged vertically. The fourth display area G104 displays the current side posture of the hydraulic excavator 2 as an image (figure). The fifth display area G105 displays the position of the target construction surface D relative to the machine body as an image (figure). The sixth display area G106 displays the distance in the heightwise direction between the tip of the bucket 43 and the target construction surface D as a bar graph. Note that a guidance stop button (no symbol) may be arranged at the very bottom of the guidance screen G1 shown in FIG. 4.
 また、制御部134は、算出したバケット43の先端と目標施工面Dとの間の距離を収集装置12を介して表示器14へと送信し、算出した距離を表示器14において表示させる。なお、バケット43の先端と目標施工面Dとの間の距離の算出方法は後述する。 The control unit 134 also transmits the calculated distance between the tip of the bucket 43 and the target construction surface D to the display 14 via the collection device 12, and causes the display 14 to display the calculated distance. The method for calculating the distance between the tip of the bucket 43 and the target construction surface D will be described later.
 表示器14は、油圧ショベル2の操作部3に設置され、携帯端末13で算出されたバケット43の先端と目標施工面Dとの間の距離を表示する。本実施例の表示器14は、図5に示すように、セグメント方式のLED表示部により構成される。表示器14は、具体的には、矩形形状のセグメントLEDが2列L1、L2に縦方向に順次一定間隔で配置されて形成される。このような表示器14によれば、例えば、目標施工面Dの高さを左列L1のセグメントLEDで表示し、目標施工面Dからバケット43の先端までの高さ方向に沿う距離を右列L2のセグメントLEDで表示することができる。表示器14は、或いは、バケット43の先端と目標施工面Dとの間の距離を数値で表示してもよい。 The display 14 is installed in the operation section 3 of the hydraulic excavator 2, and displays the distance between the tip of the bucket 43 and the target construction surface D, which is calculated by the mobile terminal 13. As shown in FIG. 5, the display 14 in this embodiment is configured with a segment-type LED display section. Specifically, the display 14 is formed by arranging rectangular segment LEDs in two rows L1 and L2 in the vertical direction at regular intervals. With such a display 14, for example, the height of the target construction surface D can be displayed by the segment LEDs in the left row L1, and the distance along the height direction from the target construction surface D to the tip of the bucket 43 can be displayed by the segment LEDs in the right row L2. Alternatively, the display 14 may display the distance between the tip of the bucket 43 and the target construction surface D as a numerical value.
 なお、オペレータから視認可能な位置に携帯端末13が設置されて、携帯端末13のガイダンス画面G1を表示器14に兼用することで、表示器14が省略されるようにしてもよい。 In addition, the display 14 may be omitted by installing the mobile terminal 13 in a position visible to the operator and using the guidance screen G1 of the mobile terminal 13 as the display 14.
[携帯端末の機能構成] 次に、携帯端末13の機能構成について、図6~図11を参照して説明する。 [Functional configuration of mobile terminal] Next, the functional configuration of mobile terminal 13 will be explained with reference to Figures 6 to 11.
 携帯端末13は、ハードウェアとソフトウェアとの協働により実現される複数の機能構成を備える。複数の機能構成には、側面画像表示手段、位置登録手段、パラメータ算出手段、目標施工面設定手段、先端座標算出手段、距離算出手段、及びガイダンス画面表示手段が含まれる。ここで、側面画像表示手段、位置登録手段、パラメータ算出手段、及び目標施工面設定手段は、作業に先立って事前設定を行うための機能構成である。また、先端座標算出手段、距離算出手段、及びガイダンス画面表示手段は、作業中にガイダンス表示を行うための機能構成である。 The mobile terminal 13 has multiple functional configurations realized by the cooperation of hardware and software. The multiple functional configurations include a side image display means, a position registration means, a parameter calculation means, a target construction surface setting means, a tip coordinate calculation means, a distance calculation means, and a guidance screen display means. Here, the side image display means, the position registration means, the parameter calculation means, and the target construction surface setting means are functional configurations for performing advance settings prior to work. Also, the tip coordinate calculation means, the distance calculation means, and the guidance screen display means are functional configurations for displaying guidance during work.
 側面画像表示手段は、撮像部131で撮像された油圧ショベル2の側面画像を表示部133に表示させる。例えば、図6に示す側面画像要求画面G2において、油圧ショベル2の側面画像を要求するメッセージである、例えば「車両全体が映るように写真を撮影してください」を(例えば側面画像要求画面G2の上端部の白抜き部分内に)表示し、撮影された油圧ショベル2の側面画像を画面に表示させる。 The side image display means displays the side image of the hydraulic excavator 2 captured by the imaging unit 131 on the display unit 133. For example, on the side image request screen G2 shown in FIG. 6, a message requesting a side image of the hydraulic excavator 2, such as "Please take a photo that captures the entire vehicle," is displayed (for example, in the white portion at the top end of the side image request screen G2), and the captured side image of the hydraulic excavator 2 is displayed on the screen.
 位置登録手段は、表示部133に表示された側面画像のタッチ操作に応じて、油圧ショベル2の特徴点の位置や、姿勢センサ111、121(検出装置11A、11B、11C、並びに収集装置12)の設置位置を登録する。例えば、図7に示す位置登録画面G3において、次にタッチ操作すべき位置を示すメッセージである、例えば「アームピンを選択してください」を(例えば位置登録画面G3の上端部の白抜き部分内に)表示し、タッチ操作された位置座標を取得する。 The position registration means registers the positions of the characteristic points of the hydraulic excavator 2 and the installation positions of the attitude sensors 111, 121 ( detection devices 11A, 11B, 11C and collection device 12) in response to touch operations on the side image displayed on the display unit 133. For example, on the position registration screen G3 shown in FIG. 7, a message indicating the next position to be touched, such as "Please select the arm pin," is displayed (for example, in the white portion at the top of the position registration screen G3), and the touched position coordinates are obtained.
 図8に示すように、位置登録を要求する油圧ショベル2の特徴点には第1~第6ポイントP1~P6が含まれ、姿勢センサ111、121の設置位置には第7~第10ポイントP7~P10が含まれる。 As shown in FIG. 8, the characteristic points of the hydraulic excavator 2 requesting position registration include the first to sixth points P1 to P6, and the installation positions of the attitude sensors 111, 121 include the seventh to tenth points P7 to P10.
 例えば、第1ポイントP1はブームピン41a(図1参照)の位置、第2ポイントP2はアームピン42a(図1参照)の位置、第3ポイントP3はバケットピン43a(図1参照)の位置、第4ポイントP4はバケット43の先端位置と定義される。また、第5ポイントP5は走行装置6の接地前端位置、第6ポイントP6は走行装置6の接地後端位置と定義される。 For example, the first point P1 is defined as the position of the boom pin 41a (see FIG. 1), the second point P2 as the position of the arm pin 42a (see FIG. 1), the third point P3 as the position of the bucket pin 43a (see FIG. 1), and the fourth point P4 as the tip position of the bucket 43. The fifth point P5 is defined as the front end position of the traveling device 6 that comes into contact with the ground, and the sixth point P6 as the rear end position of the traveling device 6 that comes into contact with the ground.
 また、第7ポイントP7はブーム41に設置される検出装置11Aの位置、第8ポイントP8はアーム42に設置される検出装置11Bの位置、第9ポイントP9はバケット43に設置される検出装置11Cの位置と定義される。また、第10ポイントP10は収集装置12が設置される位置と定義される。 The seventh point P7 is defined as the position of the detection device 11A installed on the boom 41, the eighth point P8 is defined as the position of the detection device 11B installed on the arm 42, and the ninth point P9 is defined as the position of the detection device 11C installed on the bucket 43. The tenth point P10 is defined as the position where the collection device 12 is installed.
 位置登録手段は、例えば、走行装置6の接地後端位置(第6ポイントP6)を原点、油圧ショベル2の長さ方向(言い換えると、走行装置6の進行方向、前後方向)に沿う水平方向をX軸、油圧ショベル2の高さ方向(即ち、鉛直方向)をY軸とするX軸-Y軸直交座標系(「車体座標系」と称する)を想定する。そして、位置登録手段は、入力された第1~第10ポイントP1~P10の位置情報を車体座標系の座標データとして登録する。なお、位置登録手段は、検出装置11A、11B、11C並びに収集装置12の設置位置だけでなく、設置方向を登録するようにしてもよい。 The position registration means assumes, for example, an X-Y orthogonal coordinate system (called the "vehicle body coordinate system") with the ground contact rear end position (sixth point P6) of the traveling device 6 as the origin, the horizontal direction along the length of the hydraulic excavator 2 (in other words, the traveling direction of the traveling device 6, the front-to-rear direction) as the X axis, and the height direction of the hydraulic excavator 2 (i.e. the vertical direction) as the Y axis. The position registration means then registers the input position information of the first to tenth points P1 to P10 as coordinate data in the vehicle body coordinate system. Note that the position registration means may register not only the installation positions of the detection devices 11A, 11B, 11C and the collection device 12, but also the installation directions.
 パラメータ算出手段は、位置登録手段によって登録された位置情報に基づいて、バケット43の先端位置の座標を取得するための各種パラメータを算出する。図10に示すように、算出する各種パラメータには、地面-ブームピン長さH、ブーム長さE、アーム長さF、バケット長さGなどが含まれる。 The parameter calculation means calculates various parameters for obtaining the coordinates of the tip position of the bucket 43 based on the position information registered by the position registration means. As shown in FIG. 10, the various parameters calculated include the ground-to-boom pin length H, boom length E, arm length F, bucket length G, etc.
 地面-ブームピン長さHは、車体座標系において、走行装置6の接地後端位置(第6ポイントP6)とブームピン41aの位置(第1ポイントP1)とを結ぶ直線距離である。ブーム長さEは、車体座標系において、ブームピン41aの位置(第1ポイントP1)とアームピン42aの位置(第2ポイントP2)とを結ぶ直線距離である。アーム長さFは、車体座標系において、アームピン42aの位置(第2ポイントP2)とバケットピン43aの位置(第3ポイントP3)とを結ぶ直線距離である。バケット長さGは、バケットピン43aの位置(第3ポイントP3)とバケット43の先端位置(第4ポイントP4)とを結ぶ直線距離である。 The ground-to-boom pin length H is the straight-line distance connecting the rear end position of the traveling device 6 on the ground (sixth point P6) and the position of the boom pin 41a (first point P1) in the vehicle body coordinate system. The boom length E is the straight-line distance connecting the position of the boom pin 41a (first point P1) and the position of the arm pin 42a (second point P2) in the vehicle body coordinate system. The arm length F is the straight-line distance connecting the position of the arm pin 42a (second point P2) and the position of the bucket pin 43a (third point P3) in the vehicle body coordinate system. The bucket length G is the straight-line distance connecting the position of the bucket pin 43a (third point P3) and the tip position of the bucket 43 (fourth point P4).
 目標施工面設定手段は、目標施工面Dの事前設定を可能にする。本実施例の目標施工面設定手段は、図9の(a)に示す目標施工面設定画面G4において、目標施工面Dの開始位置座標(a1,b1)、終了位置座標(a2,b2)、及びバケット43の目標角度の入力を求める。つまり、目標施工面設定画面G4には、目標施工面Dの開始位置X座標入力欄G401と、開始位置Y座標入力欄G402と、終了位置X座標入力欄G403と、終了位置Y座標入力欄G404と、バケット目標角度入力欄G405とが表示される。また、目標施工面設定画面G4には、各入力欄に数値入力を行うためのテンキーパッドG406や、ガイダンス表示の開始操作を行うためのガイダンス開始ボタンG407も表示される。 The target construction surface setting means enables the advance setting of the target construction surface D. The target construction surface setting means of this embodiment requests the input of the start position coordinates (a1, b1), end position coordinates (a2, b2) of the target construction surface D, and the target angle of the bucket 43 on the target construction surface setting screen G4 shown in FIG. 9(a). That is, the target construction surface setting screen G4 displays the start position X coordinate input field G401, start position Y coordinate input field G402, end position X coordinate input field G403, end position Y coordinate input field G404, and bucket target angle input field G405 of the target construction surface D. The target construction surface setting screen G4 also displays a numeric keypad G406 for inputting numerical values into each input field, and a guidance start button G407 for starting the guidance display.
 目標施工面設定手段は、入力された座標データに基づいて、目標施工面D内の任意のX座標から当該任意のX座標における目標施工面DのY座標を求める方程式(図9の(b)参照)を生成する。このような方程式によれば、車体座標系において、バケット43の先端位置のX座標(即ち、前後位置)を算出した後、このX座標を上記の方程式に代入することで、バケット43の先端位置のX座標に対応する目標施工面DのY座標(即ち、高さ位置)が得られる。 The target construction surface setting means generates an equation (see FIG. 9(b)) for determining the Y coordinate of the target construction surface D at any X coordinate within the target construction surface D based on the input coordinate data. According to such an equation, after calculating the X coordinate (i.e., the fore-aft position) of the tip position of the bucket 43 in the vehicle body coordinate system, the Y coordinate (i.e., the height position) of the target construction surface D corresponding to the X coordinate of the tip position of the bucket 43 is obtained by substituting this X coordinate into the above equation.
 先端座標算出手段は、位置登録手段によって登録された位置情報と、予め入力された入力情報と、複数の姿勢センサ111、121が検出した姿勢情報とに基づいて、バケット43の先端位置の座標を算出する。本実施形態の先端座標算出手段は、図10及び図11に示すように、前述した長さH、E、F、G(「長さ情報」とも称する)と、姿勢センサ111、121の検出値に基づいて算出される角度θ1~θ4とを用いて、バケット43の先端位置の座標を算出する。 The tip coordinate calculation means calculates the coordinates of the tip position of the bucket 43 based on the position information registered by the position registration means, the input information input in advance, and the attitude information detected by the multiple attitude sensors 111, 121. As shown in Figures 10 and 11, the tip coordinate calculation means of this embodiment calculates the coordinates of the tip position of the bucket 43 using the lengths H, E, F, and G (also referred to as "length information") described above and the angles θ1 to θ4 calculated based on the detection values of the attitude sensors 111 and 121.
 角度θ1は、水平方向に対する(言い換えると、水平方向を基準とする)ブーム41の揺動角であり、検出装置11Aに設けられる姿勢センサ111の検出値に基づいて算出される。角度θ2は、水平方向に対するアーム42の揺動角であり、検出装置11Bに設けられる姿勢センサ111の検出値に基づいて算出される。角度θ3は、水平方向に対するバケット43の揺動角であり、検出装置11Cに設けられる姿勢センサ111の検出値に基づいて算出される。角度θ4は、水平方向に対する機体(即ち、油圧ショベル2)の傾斜角であり、図11に示すように、収集装置12に設けられる姿勢センサ121の検出値に基づいて算出される角度Δθ4と、予め入力された角度θ4との和として算出される。なお、角度θ4は、走行装置6の接地後端位置とブームピン41aの位置とを結ぶ直線と、走行装置6の接地面とがなす固定値であり、油圧ショベル2の仕様として、油圧ショベル2のカタログなどから取得して事前に入力される。 Angle θ1 is a swing angle of the boom 41 with respect to the horizontal direction (in other words, with the horizontal direction as a reference), and is calculated based on the detection value of the attitude sensor 111 provided in the detection device 11A. Angle θ2 is a swing angle of the arm 42 with respect to the horizontal direction, and is calculated based on the detection value of the attitude sensor 111 provided in the detection device 11B. Angle θ3 is a swing angle of the bucket 43 with respect to the horizontal direction, and is calculated based on the detection value of the attitude sensor 111 provided in the detection device 11C. Angle θ4 is an inclination angle of the machine body (i.e., the hydraulic excavator 2) with respect to the horizontal direction, and is calculated as the sum of angle Δθ4 calculated based on the detection value of the attitude sensor 121 provided in the collection device 12 and angle θ40 input in advance, as shown in FIG. The angle θ40 is a fixed value formed by a straight line connecting the rear end position of the traveling device 6 that has come into contact with the ground and the position of the boom pin 41a, and the ground contact surface of the traveling device 6, and is obtained from a catalog of the hydraulic excavator 2 or the like and input in advance as a specification of the hydraulic excavator 2.
 先端座標算出手段は、上記の各種パラメータ及び下記の式を用いて、車体座標系におけるバケット43の先端位置のX座標及びY座標を算出する。
 X=Hcos(θ4)+Ecos(θ1)+Fcos(θ2)+Gcos(θ3)
 Y=Hsin(θ4)+Esin(θ1)+Fsin(θ2)+Gsin(θ3)
The tip coordinate calculation means calculates the X and Y coordinates of the tip position of the bucket 43 in the vehicle body coordinate system using the various parameters described above and the following equations.
X = H cos(θ4) + Ecos(θ1) + F cos(θ2) + G cos(θ3)
Y = H sin(θ4) + E sin(θ1) + F sin(θ2) + G sin(θ3)
 距離算出手段は、先端座標算出手段によって算出されたバケット43の先端位置の座標、及び予め設定された目標施工面Dの座標に基づいて、バケット43の先端と目標施工面Dとの間の高さ方向に沿う距離を算出する。距離算出手段は、例えば、先端座標算出手段によって算出されたバケット43の先端位置のX座標を図9の(b)に示す方程式に代入して、バケット43の先端位置のX座標に対応する目標施工面DのY座標を取得した後、取得したY座標と先端座標算出手段によって算出されたバケット43の先端位置のY座標との差を算出する。これにより、バケット43の先端と目標施工面Dとの間の高さ方向に沿う距離が求められる。 The distance calculation means calculates the distance in the height direction between the tip of the bucket 43 and the target construction surface D based on the coordinates of the tip position of the bucket 43 calculated by the tip coordinate calculation means and the coordinates of the target construction surface D that have been set in advance. For example, the distance calculation means substitutes the X coordinate of the tip position of the bucket 43 calculated by the tip coordinate calculation means into the equation shown in FIG. 9(b) to obtain the Y coordinate of the target construction surface D corresponding to the X coordinate of the tip position of the bucket 43, and then calculates the difference between the obtained Y coordinate and the Y coordinate of the tip position of the bucket 43 calculated by the tip coordinate calculation means. This allows the distance in the height direction between the tip of the bucket 43 and the target construction surface D to be found.
 ガイダンス画面表示手段は、図4に示すガイダンス画面G1を表示部133に表示させる。そして、ガイダンス画面表示手段は、ガイダンス画面G1の第1表示領域G101において、バケット43の先端と目標施工面Dとの間の高さ方向に沿う距離を数値で表示させるとともに、第6表示領域G106において、バケット43の先端と目標施工面Dとの間の高さ方向に沿う距離を棒グラフ状に表示させる。 The guidance screen display means displays the guidance screen G1 shown in FIG. 4 on the display unit 133. The guidance screen display means then displays the distance along the height direction between the tip of the bucket 43 and the target construction surface D as a numerical value in the first display area G101 of the guidance screen G1, and displays the distance along the height direction between the tip of the bucket 43 and the target construction surface D as a bar graph in the sixth display area G106.
(排土板への干渉抑制機能/実施例1)
 次に、排土板7への干渉を抑制する機能の構成態様の例について説明する。
(Function for suppressing interference with blade/Example 1)
Next, an example of a configuration for suppressing interference with the blade 7 will be described.
 この形態では、撮像範囲に、少なくとも、ブーム41、アーム42、及びバケット43に加えて排土板7も含まれるように調整されたうえで、携帯端末13の撮像部131によって油圧ショベル2の外観の側面画像が撮像される。 In this embodiment, the imaging range is adjusted to include at least the boom 41, arm 42, and bucket 43 as well as the blade 7, and a side image of the exterior of the hydraulic excavator 2 is captured by the imaging unit 131 of the mobile terminal 13.
 また、携帯端末13の表示部133の表示機能及びタッチ入力機能を介して位置登録手段によって取得される位置座標に、油圧ショベル2のうちの特に排土板7の特徴点として第11及び第12ポイントP11、P12が更に含まれる(図8参照)。 In addition, the position coordinates acquired by the position registration means via the display function and touch input function of the display unit 133 of the mobile terminal 13 further include the eleventh and twelfth points P11 and P12 as characteristic points of the blade 7 of the hydraulic excavator 2 (see FIG. 8).
 第11ポイントP11は排土板7の上側先端位置、第12ポイントP12は排土板7の下側先端位置と定義される。そして、位置登録手段は、表示部133を介して入力された、油圧ショベル2に関する第1~第10ポイントP1~P10の位置情報に加えて第11及び第12ポイントP11、P12の位置情報も車体座標系の座標データとして登録する。 The eleventh point P11 is defined as the upper end position of the blade 7, and the twelfth point P12 is defined as the lower end position of the blade 7. The position registration means then registers the position information of the eleventh and twelfth points P11 and P12 as well as the position information of the first to tenth points P1 to P10 related to the hydraulic excavator 2 input via the display unit 133 as coordinate data in the vehicle body coordinate system.
 パラメータ算出手段は、排土板7の上側先端位置(第11ポイントP11)と下側先端位置(第12ポイントP12)のうち、車体座標系の原点である走行装置6の接地後端位置(第6ポイントP6)から水平方向(X軸方向)に沿って遠い方を選択し、排土板7の最先端位置として特定する。 The parameter calculation means selects the upper end position (11th point P11) or the lower end position (12th point P12) of the blade 7 that is farthest in the horizontal direction (X-axis direction) from the rear end position of the running gear 6 that is in contact with the ground (6th point P6), which is the origin of the vehicle body coordinate system, and identifies it as the most forward position of the blade 7.
 距離算出手段は、先端座標算出手段によって算出されたバケット43の先端位置の座標、及びパラメータ算出手段によって特定された排土板7の最先端位置の座標に基づいて、バケット43の先端と排土板7の最先端位置との間の前後方向における水平方向に沿う距離を算出する。距離算出手段は、例えば、先端座標算出手段によって算出されたバケット43の先端位置のX座標と、パラメータ算出手段によって特定された排土板7の最先端位置のX座標との差を算出する。これにより、バケット43の先端と排土板7の最先端位置との間の前後方向における水平方向に沿う距離が求められる。 The distance calculation means calculates the horizontal distance in the fore-aft direction between the tip of the bucket 43 and the most extreme position of the blade 7 based on the coordinates of the tip position of the bucket 43 calculated by the tip coordinate calculation means and the coordinates of the most extreme position of the blade 7 identified by the parameter calculation means. The distance calculation means calculates, for example, the difference between the X coordinate of the tip position of the bucket 43 calculated by the tip coordinate calculation means and the X coordinate of the most extreme position of the blade 7 identified by the parameter calculation means. This allows the horizontal distance in the fore-aft direction between the tip of the bucket 43 and the most extreme position of the blade 7 to be found.
 ガイダンス画面表示手段は、距離算出手段によって算出されたバケット43の先端と排土板7の最先端位置との間の前後方向における水平方向に沿う距離が所定の閾値(「水平方向距離閾値」と称する)未満となったときに、バケット43が排土板7に接近している状態であることを通知する。この通知は、例えば、ガイダンス画面G1に「排土板干渉注意!」などの文字を(例えば図4に示すガイダンス画面G1の下端部の白抜き部分内に)表示することと、ガイダンス画面G1の第4表示領域G104に表示されている油圧ショベル2のアタッチメント(バケット43)の色を黄色や赤色などの警告色に変更することと、電子音や音声などの音を出力することと、のうちの少なくとも1つによって行われるようにしてよい。音を出力する場合には、バケット43の先端と排土板7の最先端位置との間の前後方向における水平方向に沿う距離が小さくなるほど、例えば通知音の音圧を大きくしたり通知音の種類を変えたりして、注意喚起の度合いを強める通知であるようにしてもよい。 The guidance screen display means notifies the user that the bucket 43 is approaching the blade 7 when the horizontal distance in the fore-aft direction between the tip of the bucket 43 and the most extreme position of the blade 7 calculated by the distance calculation means becomes less than a predetermined threshold (referred to as the "horizontal distance threshold"). This notification may be made by at least one of the following: displaying text such as "Caution: Blade interference!" on the guidance screen G1 (for example, in the white portion at the bottom end of the guidance screen G1 shown in FIG. 4); changing the color of the attachment (bucket 43) of the hydraulic excavator 2 displayed in the fourth display area G104 of the guidance screen G1 to a warning color such as yellow or red; and outputting a sound such as an electronic sound or voice. When a sound is output, the smaller the horizontal distance in the fore-aft direction between the tip of the bucket 43 and the most extreme position of the blade 7, the stronger the degree of attention may be called by, for example, increasing the sound pressure of the notification sound or changing the type of notification sound.
 水平方向距離閾値は、特定の値に限定されるものではなく、バケット43の先端が排土板7と干渉しない状態が確保され得ることが考慮されるなどしたうえで、適当な値に適宜設定される。水平方向距離閾値は、作業支援システム1を適用する建設機械の大きさ、及び、先端座標算出手段によって算出されたバケット43の先端位置の算出精度、に基づいて定めることが好ましい。 The horizontal distance threshold is not limited to a specific value, but is set to an appropriate value while taking into consideration that the tip of the bucket 43 can be ensured not to interfere with the blade 7. It is preferable that the horizontal distance threshold is determined based on the size of the construction machine to which the work assistance system 1 is applied, and the calculation accuracy of the tip position of the bucket 43 calculated by the tip coordinate calculation means.
 例えば、小型な2t未満のミニショベルに分類される油圧ショベルに適用する場合は、精密な操作が可能であることから水平方向距離閾値を小さく設定することが好ましい。この場合は、水平方向距離閾値を5~50cmの範囲で設定することが好ましい。具体例としては、先端座標算出手段の算出精度が5cmであった場合、その倍である10cmを水平方向距離閾値として設定する(具体的には、現実の長さに対応する、車体座標系におけるX座標の大きさを設定する)。 For example, when applying to a hydraulic excavator classified as a small mini-excavator of less than 2 tons, it is preferable to set the horizontal distance threshold small since precise operation is possible. In this case, it is preferable to set the horizontal distance threshold in the range of 5 to 50 cm. As a specific example, if the calculation accuracy of the tip coordinate calculation means is 5 cm, the horizontal distance threshold is set to twice that, that is, 10 cm (specifically, the magnitude of the X coordinate in the vehicle body coordinate system that corresponds to the actual length is set).
 また、大型な30t以上の大型ショベルに分類される油圧ショベルに適用する場合は、ミニショベルに比べ精密な操作は困難であることから水平方向距離閾値を大きく設定することが好ましい。この場合は、バケット43の操作分解能も考慮して水平方向距離閾値を50~100cmの範囲で設定することが好ましい。具体例としては、先端座標算出手段の算出精度が5cmであり、バケット43の操作分解能が20cmであった場合、これらを加算した25cmの倍の50cmを水平方向距離閾値として設定する。 Furthermore, when applying this to a hydraulic excavator classified as a large excavator of 30 tons or more, it is preferable to set the horizontal distance threshold to a large value since precise operation is more difficult than with a mini excavator. In this case, it is preferable to set the horizontal distance threshold in the range of 50 to 100 cm, taking into consideration the operational resolution of the bucket 43. As a specific example, if the calculation accuracy of the tip coordinate calculation means is 5 cm and the operational resolution of the bucket 43 is 20 cm, then the horizontal distance threshold is set to 50 cm, which is double the sum of these, 25 cm.
 なお、上述の例では、位置登録手段によって取得される位置座標に、走行装置6の接地後端位置(第6ポイントP6)から遠い下側先端位置(第12ポイントP12)を排土板7の最先端位置として特定されるようにしている。しかしながら、この構成に限定されるものではなく、例えば、排土板7の上側部分と下側部分とのうちのどちらが前方へとより張り出しているかが明らかである場合などには、排土板7の上側先端位置と下側先端位置とのうち、走行装置6の接地後端位置(第6ポイントP6)から前後方向において水平方向に沿って遠いほうの一方のみが入力されて登録されるようにしてもよい。また、排土板7の上側部分や下側部分以外の部分が前方へとより張り出している場合には、その部分が入力されて登録されるようにしてもよい。 In the above example, the lower end position (12th point P12) farthest from the rear end position of the traveling device 6 on the ground (sixth point P6) is specified as the most forward position of the blade 7 in the position coordinates acquired by the position registration means. However, this is not limited to this configuration, and for example, if it is clear which of the upper and lower parts of the blade 7 protrudes further forward, only one of the upper and lower end positions of the blade 7 that is farther horizontally in the fore-and-aft direction from the rear end position of the traveling device 6 on the ground (sixth point P6) may be input and registered. Also, if a part of the blade 7 other than the upper and lower parts protrudes further forward, that part may be input and registered.
 また、排土板7が可動式である場合には、排土板7を様々な位置、姿勢にしながら排土板7の上側先端位置(第11ポイントP11)と下側先端位置(第12ポイントP12)とが取得され登録されて選択されるようにしたり、排土板7のうち前方へと最も張り出す部分が取得され登録されて選択されるようにしたりしてもよい。排土板7が可動式であるとは、例えば、排土板7が、揺動、回動、傾動などする場合である。 In addition, if the blade 7 is movable, the upper end position (eleventh point P11) and the lower end position (twelfth point P12) of the blade 7 may be acquired, registered, and selected while the blade 7 is in various positions and postures, or the part of the blade 7 that protrudes most forward may be acquired, registered, and selected. The blade 7 is movable if, for example, the blade 7 can swing, rotate, tilt, etc.
(排土板への干渉抑制機能/実施例2)
 続いて、排土板7への干渉を抑制する機能の構成態様の他の例について説明する。
(Function for suppressing interference with blade/Example 2)
Next, another example of the configuration of the function of suppressing interference with the blade 7 will be described.
 この形態では、携帯端末13の位置登録手段は、表示部133を介して入力された、油圧ショベル2に関する第1~第10ポイントP1~P10の位置情報に加えて、バケット43が排土板7に接近した状態での位置情報を取得して登録する。 In this embodiment, the position registration means of the mobile terminal 13 acquires and registers position information of the first to tenth points P1 to P10 related to the hydraulic excavator 2 input via the display unit 133, as well as position information of the bucket 43 when it is approaching the blade 7.
 位置登録手段は、具体的には、オペレータが支持体5を旋回させるとともに作業機4を操作してバケット43を排土板7の右端部(特に、排土板7の右端部のうち前方へと最も張り出す部分)に接近する位置へと移動させた状態での姿勢情報を第1接近姿勢情報として登録する。第1接近姿勢情報は、検出装置11A、11B、11Cから収集されて収集装置12から送信された作業機4の姿勢情報と、姿勢センサ121によって検出されて収集装置12から送信された支持体5の姿勢情報である。 Specifically, the position registration means registers the posture information in a state where the operator rotates the support body 5 and operates the work machine 4 to move the bucket 43 to a position approaching the right end of the blade 7 (particularly, the part of the right end of the blade 7 that protrudes most forward) as the first approach posture information. The first approach posture information is posture information of the work machine 4 collected from the detection devices 11A, 11B, 11C and transmitted from the collection device 12, and posture information of the support body 5 detected by the posture sensor 121 and transmitted from the collection device 12.
 位置登録手段は、さらに、オペレータが支持体5を旋回させるとともに作業機4を操作してバケット43を排土板7の左端部(特に、排土板7の左端部のうち前方へと最も張り出す部分)に接近する位置へと移動させた状態での姿勢情報を第2接近姿勢情報として登録する。第2接近姿勢情報は、検出装置11A、11B、11Cから収集されて収集装置12から送信された作業機4の姿勢情報と、姿勢センサ121によって検出されて収集装置12から送信された支持体5の姿勢情報である。 The position registration means further registers, as second approaching posture information, posture information in a state in which the operator rotates the support body 5 and operates the work machine 4 to move the bucket 43 to a position approaching the left end of the blade 7 (particularly, the part of the left end of the blade 7 that protrudes most forward). The second approaching posture information is posture information of the work machine 4 collected from the detection devices 11A, 11B, and 11C and transmitted from the collection device 12, and posture information of the support body 5 detected by the posture sensor 121 and transmitted from the collection device 12.
 なお、油圧ショベル2の構造が左右対称である場合などには、第1接近姿勢情報から第2接近姿勢情報を自動で生成して登録するようにしたり、どちらか一方のみを登録するようにしたりしてもよい。 In addition, in cases where the structure of the hydraulic excavator 2 is symmetrical, the second approach posture information may be automatically generated from the first approach posture information and registered, or only one of the two may be registered.
 位置登録手段は、さらに、オペレータが支持体5を旋回させるとともに作業機4を操作してバケット43を排土板7の左右方向における中央部(特に、排土板7の左右方向における中央部のうち前方へと最も張り出す部分)に接近する位置へと移動させた状態での姿勢情報を第3接近姿勢情報として登録する。第3接近姿勢情報は、検出装置11A、11B、11Cから収集されて収集装置12から送信された作業機4の姿勢情報と、姿勢センサ121によって検出されて収集装置12から送信された支持体5の姿勢情報である。 The position registration means further registers, as third approach posture information, posture information in a state in which the operator rotates the support body 5 and operates the work machine 4 to move the bucket 43 to a position approaching the center in the left-right direction of the blade 7 (particularly, the part of the center in the left-right direction of the blade 7 that protrudes most forward). The third approach posture information is posture information of the work machine 4 collected from the detection devices 11A, 11B, and 11C and transmitted from the collection device 12, and posture information of the support body 5 detected by the posture sensor 121 and transmitted from the collection device 12.
 これら登録された第1乃至第3接近姿勢情報は、バケット43と排土板7との干渉を抑制、防止するために必要とされる、バケット43の先端と排土板7の左右方向における中央部との間の離隔の程度に対応する。位置登録手段は、すなわち、排土板7にバケット43を接近させた状態での姿勢情報を、支持体5(延いては、作業機4)を相互に異なる複数の角度に旋回させた状態において複数組登録する。 These registered first to third approach posture information correspond to the degree of separation between the tip of the bucket 43 and the center of the blade 7 in the left-right direction, which is required to suppress and prevent interference between the bucket 43 and the blade 7. That is, the position registration means registers multiple sets of posture information when the bucket 43 is approaching the blade 7, with the support body 5 (and therefore the work machine 4) rotated to multiple angles that are different from each other.
 ここで、図12に示すように、バケット43が排土板7の正面(即ち、排土板7の左右方向における中央部の前方)若しくは正面付近にあるときは排土板7との間の距離に余裕があっても(図中の符号43_f1)、作業機4の姿勢はそのままで支持体5が旋回すると、バケット43が排土板7の右端部若しくは右端部付近や左端部若しくは左端部付近と干渉する場合がある(図中の符号43_c1)。 As shown in FIG. 12, when the bucket 43 is in front of the blade 7 (i.e., in front of the center of the blade 7 in the left-right direction) or near the front, even if there is a sufficient distance between the blade 7 (reference symbol 43_f1 in the figure), if the support body 5 rotates with the posture of the work implement 4 remaining the same, the bucket 43 may interfere with the right end or near the right end or the left end or near the left end of the blade 7 (reference symbol 43_c1 in the figure).
 そこで、パラメータ算出手段は、第1接近姿勢情報と第2接近姿勢情報とから、図13に示すように、作業機4の姿勢はそのままで支持体5が旋回してもバケット43が排土板7の右端部若しくは右端部付近や左端部若しくは左端部付近と干渉しない作業機4の姿勢での(図中の符号43_c2;第1接近姿勢情報や第2接近姿勢情報に対応する位置)、排土板7の正面若しくは正面付近におけるバケット43の位置を算出する(図中の符号43_f2)。これによって算出される、作業機4の姿勢はそのままで支持体5が旋回しても排土板7と干渉しない、排土板7の正面若しくは正面付近におけるバケット43の位置のことを「旋回時干渉回避位置」と称する。 The parameter calculation means calculates the position of the bucket 43 in front of or near the front of the blade 7 (reference number 43_f2 in the figure) in the position of the work machine 4 where the bucket 43 does not interfere with the right end or near the right end or the left end or near the left end of the blade 7 even if the support body 5 rotates while the position of the work machine 4 remains the same, as shown in FIG. 13, from the first approaching position information and the second approaching position information. The position of the bucket 43 in front of or near the front of the blade 7 where the bucket 43 does not interfere with the blade 7 even if the support body 5 rotates while the position of the work machine 4 remains the same, calculated in this way, is referred to as the "swing interference avoidance position".
 なお、位置登録手段は、以下のように第1旋回時接近姿勢情報と第2旋回時接近姿勢情報を登録してもよい。位置登録手段は、オペレータが図13中の符号43_c2で示す右旋回時の排土板接近位置にバケット43を移動させた後、続いて、作業機4の姿勢はそのままで支持体5を旋回させて図13中の符号43_f2で示す排土板7の正面付近位置へと移動させ、この正面付近位置における姿勢情報を第1旋回時接近姿勢情報として登録する。また、位置登録手段は、オペレータが図13中の符号43_c2に示す左旋回時の排土板接近位置にバケット43を移動させた後、続いて、作業機4の姿勢はそのままで支持体5を旋回させて図13中の符号43_f2で示す排土板7の正面付近位置へと移動させ、この正面付近位置における姿勢情報を第2旋回時接近姿勢情報として登録する。 The position registration means may register the approach posture information during the first turn and the approach posture information during the second turn as follows. After the operator moves the bucket 43 to the blade approach position during right turn indicated by reference symbol 43_c2 in FIG. 13, the position registration means rotates the support body 5 while keeping the posture of the work implement 4 unchanged to a position near the front of the blade 7 indicated by reference symbol 43_f2 in FIG. 13, and registers the posture information at this near-front position as the approach posture information during the first turn. The position registration means also registers the approach posture information during the second turn as follows. After the operator moves the bucket 43 to the blade approach position during left turn indicated by reference symbol 43_c2 in FIG. 13, the support body 5 rotates while keeping the posture of the work implement 4 unchanged to a position near the front of the blade 7 indicated by reference symbol 43_f2 in FIG. 13, and registers the posture information at this near-front position as the approach posture information during the second turn.
 この場合、パラメータ算出手段は、第1旋回時接近姿勢情報と第2旋回時接近姿勢情報とのうち、走行装置6の接地後端位置(即ち、第6ポイントP6であり、車体座標系の原点)から前後方向において水平方向に沿って遠いほう、即ち、X軸方向に沿って遠いほうであり、X座標が大きいほうを選択して旋回時干渉回避位置として登録する。 In this case, the parameter calculation means selects, from the first approach posture information during turning and the second approach posture information during turning, the one that is farther along the horizontal direction in the fore-and-aft direction from the rear end position of the running device 6 on the ground (i.e., the sixth point P6, the origin of the vehicle body coordinate system), i.e., the one that is farther along the X-axis direction and has a larger X coordinate, and registers this as the interference avoidance position during turning.
 距離算出手段は、先端座標算出手段によって算出されたバケット43の先端位置の座標、及びパラメータ算出手段によって算出又は選択された旋回時干渉回避位置の座標に基づいて、バケット43の先端と旋回時干渉回避位置との間の前後方向における水平方向に沿う距離(「旋回時干渉回避距離」と称する)を算出する。距離算出手段は、例えば、先端座標算出手段によって算出されたバケット43の先端位置のX座標と、パラメータ算出手段によって算出又は選択された旋回時干渉回避位置のX座標との差を算出する。これにより、バケット43の先端と旋回時干渉回避位置との間の前後方向における水平方向に沿う距離(即ち、旋回時干渉回避距離)が求められる。 The distance calculation means calculates the horizontal distance in the fore-aft direction between the tip of the bucket 43 and the turning interference avoidance position (referred to as the "turning interference avoidance distance") based on the coordinates of the tip position of the bucket 43 calculated by the tip coordinate calculation means and the coordinates of the turning interference avoidance position calculated or selected by the parameter calculation means. The distance calculation means calculates, for example, the difference between the X coordinate of the tip position of the bucket 43 calculated by the tip coordinate calculation means and the X coordinate of the turning interference avoidance position calculated or selected by the parameter calculation means. This determines the horizontal distance in the fore-aft direction between the tip of the bucket 43 and the turning interference avoidance position (i.e., the turning interference avoidance distance).
 距離算出手段は、さらに、先端座標算出手段によって算出されたバケット43の先端位置の座標、及び位置登録手段によって登録された第3接近姿勢情報の座標に基づいて、バケット43の先端と第3接近姿勢情報との間の前後方向における水平方向に沿う距離(「前方干渉回避距離」と称する)を算出する。距離算出手段は、例えば、先端座標算出手段によって算出されたバケット43の先端位置のX座標と、位置登録手段によって登録された第3接近姿勢情報のX座標との差を算出する。これにより、バケット43の先端と第3接近姿勢情報との間の前後方向における水平方向に沿う距離(即ち、前方干渉回避距離)が求められる。なお、旋回時干渉回避距離のほうが前方干渉回避距離よりも小さい。 The distance calculation means further calculates the horizontal distance in the fore-aft direction between the tip of the bucket 43 and the third approach attitude information (referred to as the "forward interference avoidance distance") based on the coordinates of the tip position of the bucket 43 calculated by the tip coordinate calculation means and the coordinates of the third approach attitude information registered by the position registration means. The distance calculation means calculates, for example, the difference between the X coordinate of the tip position of the bucket 43 calculated by the tip coordinate calculation means and the X coordinate of the third approach attitude information registered by the position registration means. This determines the horizontal distance in the fore-aft direction between the tip of the bucket 43 and the third approach attitude information (i.e., the forward interference avoidance distance). Note that the turning interference avoidance distance is smaller than the forward interference avoidance distance.
 ガイダンス画面表示手段は、距離算出手段によって算出された旋回時干渉回避距離が所定の閾値(「旋回時距離閾値」と称する)未満となったときに、現在の作業機4の姿勢のままで支持体5を旋回させるとバケット43が排土板7に接近した状態になることを通知する。この通知を「第1の通知」と称する。第1の通知は、例えば、ガイダンス画面G1に「旋回時排土板干渉注意!」などの文字を(例えば図4に示すガイダンス画面G1の下端部の白抜き部分内に)表示することと、ガイダンス画面G1の第4表示領域G104に表示されている油圧ショベル2のアタッチメント(バケット43)の色を黄色などの注意喚起色に変更することと、電子音や音声などの音を出力することと、のうちの少なくとも1つによって行われるようにしてよい。 When the swing interference avoidance distance calculated by the distance calculation means falls below a predetermined threshold (referred to as the "swing distance threshold"), the guidance screen display means notifies the user that if the support body 5 is rotated while maintaining the current posture of the work implement 4, the bucket 43 will come close to the blade 7. This notification is referred to as the "first notification." The first notification may be performed by at least one of the following: displaying text such as "Caution: Blade interference during swing!" on the guidance screen G1 (for example, in the white portion at the bottom end of the guidance screen G1 shown in FIG. 4); changing the color of the attachment (bucket 43) of the hydraulic excavator 2 displayed in the fourth display area G104 of the guidance screen G1 to a warning color such as yellow; and outputting a sound such as an electronic sound or voice.
 旋回時距離閾値は、特定の値に限定されるものではなく、特に支持体5が旋回したときにバケット43の先端が排土板7と干渉しない状態が確保され得ることが考慮されるなどしたうえで、適当な値に適宜設定される。旋回時距離閾値は、例えば、ミニショベルであれば5~50cm程度の範囲のうちのいずれかの値(具体的には、現実の長さに対応する、車体座標系におけるX座標の大きさ)に設定されてよい。 The turning distance threshold is not limited to a specific value, but is set appropriately, taking into consideration that it is possible to ensure that the tip of the bucket 43 does not interfere with the blade 7 when the support body 5 turns. For example, in the case of a mini excavator, the turning distance threshold may be set to any value within a range of about 5 to 50 cm (specifically, the magnitude of the X coordinate in the vehicle body coordinate system that corresponds to the actual length).
 ガイダンス画面表示手段は、さらに、距離算出手段によって算出された前方干渉回避距離が所定の閾値(「前方距離閾値」と称する)未満となったときに、現在の(言い換えると、支持体5を旋回させない状態での)バケット43が排土板7に接近している状態であることを通知する。この通知を「第2の通知」と称する。第2の通知は、例えば、ガイダンス画面G1に「排土板干渉注意!」などの文字を(例えば図4に示すガイダンス画面G1の下端部の白抜き部分内に)表示することと、ガイダンス画面G1の第4表示領域G104に表示されている油圧ショベル2のアタッチメント(バケット43)の色を赤色などの警告色(尚、第1の通知における注意喚起色とは異なる色)に変更することと、電子音や音声などの音を出力することと、のうちの少なくとも1つによって行われるようにしてよい。 The guidance screen display means further notifies that the current state (in other words, the state in which the support body 5 is not rotating) of the bucket 43 is approaching the blade 7 when the forward interference avoidance distance calculated by the distance calculation means falls below a predetermined threshold (referred to as the "forward distance threshold"). This notification is referred to as the "second notification." The second notification may be performed by at least one of the following: displaying text such as "Caution: Blade Interference!" on the guidance screen G1 (for example, in the white portion at the bottom end of the guidance screen G1 shown in FIG. 4); changing the color of the attachment (bucket 43) of the hydraulic excavator 2 displayed in the fourth display area G104 of the guidance screen G1 to a warning color such as red (note that this color is different from the attention-calling color in the first notification); and outputting a sound such as an electronic sound or voice.
 前方距離閾値は、特定の値に限定されるものではなく、バケット43の先端が排土板7と干渉しない状態が確保され得ることが考慮されるなどしたうえで、適当な値に適宜設定される。前方距離閾値は、例えば、ミニショベルであれば5~50cm程度の範囲のうちのいずれかの値(具体的には、現実の長さに対応する、車体座標系におけるX座標の大きさ)に設定されてよい。旋回時距離閾値と前方距離閾値とは、同じ値に設定されるようにしてもよく、或いは、相互に異なる値に設定されるようにしてもよい。 The forward distance threshold is not limited to a specific value, but is set to an appropriate value while taking into consideration that a state can be ensured in which the tip of the bucket 43 does not interfere with the blade 7. For example, in the case of a mini excavator, the forward distance threshold may be set to any value in the range of about 5 to 50 cm (specifically, the magnitude of the X coordinate in the vehicle body coordinate system that corresponds to the actual length). The turning distance threshold and the forward distance threshold may be set to the same value, or may be set to different values.
 なお、第2の通知のほうが第1の通知よりも注意喚起の度合いを強める(別言すると、高める)ようにすることが好ましく、例えば、第1の通知では音の出力を行わない(或いは、音の出力を伴わない)とともに第2の通知では音の出力を行う(或いは、音の出力を伴う)ようにしたりすることが好ましい。 It is preferable that the second notification be more alert (in other words, more warning) than the first notification; for example, it is preferable that the first notification not output a sound (or not be accompanied by sound output) and the second notification output a sound (or be accompanied by sound output).
 また、検出装置11A、11B、11Cの姿勢センサ111や収集装置12の姿勢センサ121によって、又は操作部3におけるオペレータの操作のモニターによって、或いは他の機序によって、支持体5の旋回動作や旋回操作の開始が検出可能である場合には、旋回時干渉回避距離が旋回時距離閾値未満となっただけでは通知は行われず、旋回時干渉回避距離が旋回時距離閾値未満となっている状態で支持体5の旋回動作や旋回操作の開始が検出されたときに第1の通知が行われるようにしてもよい。この場合の第1の通知は、音の出力を行う(或いは、音の出力を伴う)ことが好ましい。また、旋回時干渉回避距離が旋回時距離閾値未満となったときの通知の内容、種類と、旋回時干渉回避距離が旋回時距離閾値未満となっている状態で支持体5の旋回の開始(又は、旋回操作の開始)が検出されたときでの通知の内容、種類とが相互に異なるようにしてもよい。 In addition, if the start of a rotation motion or a rotation operation of the support 5 can be detected by the attitude sensor 111 of the detection devices 11A, 11B, and 11C or the attitude sensor 121 of the collection device 12, or by monitoring the operation of the operator in the operation unit 3, or by other mechanisms, a notification is not issued simply because the rotation interference avoidance distance becomes less than the rotation distance threshold, but a first notification may be issued when the start of a rotation motion or a rotation operation of the support 5 is detected in a state in which the rotation interference avoidance distance is less than the rotation distance threshold. In this case, it is preferable that the first notification is a sound output (or accompanied by the output of a sound). In addition, the content and type of the notification when the rotation interference avoidance distance becomes less than the rotation distance threshold may be different from the content and type of the notification when the start of rotation (or the start of a rotation operation) of the support 5 is detected in a state in which the rotation interference avoidance distance is less than the rotation distance threshold.
 なお、上述の例では、排土板7の左右方向における端部に係る姿勢情報(即ち、旋回時干渉回避位置)と排土板7の左右方向における中央部に係る姿勢情報(即ち、第3接近姿勢情報)とが登録されるようにして、距離算出手段が、旋回時干渉回避距離及び前方干渉回避距離を算出するようにしている。しかしながら、この構成に限定されるものではなく、排土板7の左右方向における端部に係る姿勢情報(即ち、旋回時干渉回避位置)と排土板7の左右方向における中央部に係る姿勢情報(即ち、第3接近姿勢情報)とのうちのどちらか一方のみが登録されるようにしてもよい。 In the above example, the posture information relating to the ends in the left-right direction of the blade 7 (i.e., the positions for avoiding interference during turning) and the posture information relating to the center part in the left-right direction of the blade 7 (i.e., the third approach posture information) are registered, and the distance calculation means calculates the interference avoidance distance during turning and the forward interference avoidance distance. However, this configuration is not limited, and only one of the posture information relating to the ends in the left-right direction of the blade 7 (i.e., the positions for avoiding interference during turning) and the posture information relating to the center part in the left-right direction of the blade 7 (i.e., the third approach posture information) may be registered.
 また、排土板7が可動式である場合には、排土板7を様々な位置、姿勢にしながら排土板7の左右方向における端部に係る姿勢情報(即ち、旋回時干渉回避位置)や排土板7の左右方向における中央部に係る姿勢情報(即ち、第3接近姿勢情報)が登録されるようにしてもよい。 In addition, if the blade 7 is movable, the blade 7 may be placed in various positions and postures while posture information relating to the ends of the blade 7 in the left-right direction (i.e., positions for avoiding interference during turning) and posture information relating to the center of the blade 7 in the left-right direction (i.e., third approach posture information) may be registered.
[オフセット補正] 次に、オフセット補正について、図14及び図15を参照して説明する。 [Offset correction] Next, offset correction will be explained with reference to Figures 14 and 15.
 携帯端末13は、機能構成としてオフセット補正手段を備える。オフセット補正手段は、作業支援システム1をオフセットブーム仕様の油圧ショベル2Bに適用する場合にオフセット補正を実行する。まず、オフセットブーム仕様の油圧ショベル2Bについて説明する。ただし、非オフセットブーム仕様の油圧ショベル2と共通の構成については、非オフセットブーム仕様の油圧ショベル2と同じ符号を用いることにより、非オフセットブーム仕様の油圧ショベル2の説明を援用する場合がある。 The mobile terminal 13 has an offset correction means as a functional configuration. The offset correction means executes offset correction when the work support system 1 is applied to a hydraulic excavator 2B with an offset boom. First, the hydraulic excavator 2B with an offset boom will be described. However, for configurations common to the hydraulic excavator 2 with a non-offset boom, the same reference numerals as those in the hydraulic excavator 2 with a non-offset boom may be used to refer to the description of the hydraulic excavator 2 with a non-offset boom.
 図14及び図15に示すように、オフセットブーム仕様の油圧ショベル2Bに設けられる作業機4Bのブーム41Bは、オフセットブーム機構を有する。オフセットブーム機構は、支持体5に上下揺動可能に支持される第1ブーム411と、第1ブーム411の先端部に左右揺動可能に支持される第2ブーム412とを備える。第2ブーム412は、その左右揺動に応じてアーム42を左右に平行移動させる平行リンク機構を有し、第1ブーム411と第2ブーム412との間に設けられるオフセットシリンダ413の油圧伸縮動作に応じて左右に揺動され、オフセット動作可能である。このようなオフセットブーム仕様の油圧ショベル2Bでは、第2ブーム412の左右揺動に応じて、車体座標系のブーム長さE及びブーム角度θ1が変化するため、先端座標算出手段によって算出されたバケット43の先端位置の座標に誤差が生じる。オフセット補正は、このような誤差を抑制するための処理であり、まず、オフセット補正の概要を説明した後、オフセット補正の具体的な処理内容を説明する。 As shown in Figs. 14 and 15, the boom 41B of the work machine 4B provided on the hydraulic excavator 2B with offset boom has an offset boom mechanism. The offset boom mechanism includes a first boom 411 supported on the support 5 so as to be able to swing up and down, and a second boom 412 supported on the tip of the first boom 411 so as to be able to swing left and right. The second boom 412 has a parallel link mechanism that translates the arm 42 left and right in response to the left and right swing, and is swung left and right in response to the hydraulic extension and contraction operation of the offset cylinder 413 provided between the first boom 411 and the second boom 412, and is capable of offset operation. In such an offset boom hydraulic excavator 2B, the boom length E and boom angle θ1 in the vehicle body coordinate system change in response to the left and right swing of the second boom 412, so that an error occurs in the coordinates of the tip position of the bucket 43 calculated by the tip coordinate calculation means. The offset correction is a process for suppressing such errors. First, an overview of the offset correction will be explained, and then the specific process content of the offset correction will be explained.
 オフセット補正を行う場合、ブーム設置用として2つの検出装置11A1、11A2を用意し、第1ブーム411及び第2ブーム412のそれぞれに設置する。第2ブーム412に設置される検出装置11A2は、第2ブーム412の長さ方向の一端部に設置する場合、アーム42側の端部であることが望ましい。このようにすると、第1ブーム411側の端部に設置する場合に比べて、第2ブーム412に左右揺動の伴う検出装置11A2の変位量が大きくなるので、検出装置11A2による第2ブーム412の姿勢検出精度を向上させることができる。 When performing offset correction, two detectors 11A1, 11A2 are prepared for boom installation and installed on the first boom 411 and second boom 412, respectively. When the detector 11A2 is installed on the second boom 412 at one end of the length of the second boom 412, it is desirable that it be the end on the arm 42 side. In this way, the amount of displacement of the detector 11A2 accompanying left and right swinging of the second boom 412 is larger than when it is installed at the end on the first boom 411 side, and therefore the accuracy of detecting the attitude of the second boom 412 by the detector 11A2 can be improved.
 オフセット補正手段は、検出装置11A1、11A2が検出した第1ブーム411及び第2ブーム412の姿勢情報に基づいて、ブーム41Bの長さ情報及び姿勢情報を補正する。これにより、先端座標算出手段は、第2ブーム412の左右揺動に応じて車体座標系のブーム長さE及びブーム角度θ1が変化したとしても、補正されたブーム長さE及びブーム角度θ1を用いることで、バケット43の先端位置の座標を精度良く算出することができる。 The offset correction means corrects the length information and attitude information of the boom 41B based on the attitude information of the first boom 411 and the second boom 412 detected by the detection devices 11A1 and 11A2. As a result, even if the boom length E and boom angle θ1 in the vehicle body coordinate system change in response to the left-right swing of the second boom 412, the tip coordinate calculation means can accurately calculate the coordinates of the tip position of the bucket 43 by using the corrected boom length E and boom angle θ1.
 ところで、オフセットブーム機構は、図15に示すように、第2ブーム412が非オフセット姿勢から左側最大揺動角まで揺動した左側最大オフセット姿勢と、第2ブーム412が非オフセット姿勢から右側最大揺動角まで揺動した右側最大オフセット姿勢とを有する。そして、非オフセット姿勢から左側最大オフセット姿勢への水平移動距離である左側最大オフセット量Xと、非オフセット姿勢から右側最大オフセット姿勢への水平移動距離である右側最大オフセット量Yとが相違している。オフセット補正手段は、予め登録される左側最大オフセット量X及び右側最大オフセット量Yを用いて補正処理を行う。左側最大オフセット量X及び右側最大オフセット量Yは、通常、油圧ショベル2Bのカタログなどに記載されており、容易に取得して事前登録を行うことができる。 As shown in FIG. 15, the offset boom mechanism has a left maximum offset posture in which the second boom 412 has swung from the non-offset posture to the left maximum swing angle, and a right maximum offset posture in which the second boom 412 has swung from the non-offset posture to the right maximum swing angle. The left maximum offset amount X, which is the horizontal movement distance from the non-offset posture to the left maximum offset posture, is different from the right maximum offset amount Y, which is the horizontal movement distance from the non-offset posture to the right maximum offset posture. The offset correction means performs correction processing using the left maximum offset amount X and right maximum offset amount Y, which are registered in advance. The left maximum offset amount X and right maximum offset amount Y are usually listed in a catalog for the hydraulic excavator 2B, and can be easily obtained and registered in advance.
 次に、オフセット補正の具体的な処理内容について、図14及び図15を参照して説明する。ただし、車体座標系において、第2ブーム412の第1ブーム411側の左右揺動支点位置をA、第2ブーム412のアーム42側の左右揺動支点位置をB、アームピン42aの位置をC、ブームピン41aの位置をZとする。また、線分ABの長さをab、線分ACの長さをac、線分BCの長さをbc、線分AZの長さをaz、線分CZの長さをcz(補正すべき長さEに相当)とする。また、非オフセット時の線分ABの初期長さをab0、非オフセット時の線分CZの初期長さをcz0とする。また、線分ABと線分AZとのなす角度をα、線分ABと線分BCとのなす角度をβ、線分ABと線分ACとのなす角度をγ、線分AZと線分CZとのなす角度をφとする。また、第2ブーム412のオフセット最大可動角度をyaw0、第2ブーム412の右側最大揺動角をθ、第2ブーム412の左側最大揺動角をyaw0-θとする。なお、yaw0は、第2ブーム412の右側最大オフセット姿勢で検出装置11A2の出力yawをゼロリセットした後、第2ブーム412を左側最大オフセット姿勢までオフセット動作させたときの出力yawとして取得することができる。 Next, the specific processing contents of the offset correction will be described with reference to Figures 14 and 15. However, in the vehicle body coordinate system, the left and right swing fulcrum position of the second boom 412 on the first boom 411 side is A, the left and right swing fulcrum position of the second boom 412 on the arm 42 side is B, the position of the arm pin 42a is C, and the position of the boom pin 41a is Z. Also, the length of the line segment AB is ab, the length of the line segment AC is ac, the length of the line segment BC is bc, the length of the line segment AZ is az, and the length of the line segment CZ is cz (corresponding to the length E to be corrected). Also, the initial length of the line segment AB when not offset is ab0, and the initial length of the line segment CZ when not offset is cz0. Also, the angle between the line segment AB and the line segment AZ is α, the angle between the line segment AB and the line segment BC is β, the angle between the line segment AB and the line segment AC is γ, and the angle between the line segment AZ and the line segment CZ is φ. In addition, the maximum offset movable angle of the second boom 412 is yaw0, the maximum right swing angle of the second boom 412 is θ, and the maximum left swing angle of the second boom 412 is yaw0-θ. Note that yaw0 can be obtained as the output yaw when the second boom 412 is offset to the maximum left offset position after the output yaw of the detection device 11A2 is reset to zero when the second boom 412 is in the maximum right offset position.
 余弦定理より Y=ab0×sin(θ)
 X=ab0×sin(yaw0-θ)
From the law of cosines, Y = ab0 × sin(θ)
X = ab0 × sin(yaw0 - θ)
 上2式からab0を消すと、
 X=Y/sin(θ)×sin(yaw0-θ)
  =Y/sin(θ)×(sin(yaw0)cos(θ)-cos(yaw0)sin(θ))
  =Ysin(yaw0)cos(θ)/sin(θ)-Ycos(yaw0)
  =Ysin(yaw0)(1/tan(θ))-Ycos(yaw0)
If we eliminate ab0 from the above two equations,
X = Y / sin(θ) × sin(yaw0-θ)
= Y / sin(θ) × (sin(yaw0)cos(θ) - cos(yaw0)sin(θ))
= Y sin(yaw0) cos(θ) / sin(θ) - Y cos(yaw0)
= Y sin(yaw0) (1/tan(θ)) - Y cos(yaw0)
 tan(θ)の形にして、
 X+Ycos(yaw0)=Ysin(yaw0)(1/tan(θ))
 tan(θ)=(Ysin(yaw0))/(X+Ycos(yaw0))
 θ=arctan(Ysin(yaw0)/(X+Ycos(yaw0)))
In the form of tan(θ),
X+Ycos(yaw0)=Ysin(yaw0)(1/tan(θ))
tan(θ)=(Y sin(yaw0))/(X+Y cos(yaw0))
θ=arctan(Y sin(yaw0)/(X+Y cos(yaw0))
 θが求まったので、ab0を求める。
 ab0=Y/sin(θ)
Now that θ has been found, ab0 is found.
ab0 = Y / sin(θ)
 第2ブーム412が右端からyawだけずれた時の長さabは、
 ab=ab0×cos(θ-yaw)
The length ab when the second boom 412 is shifted by yaw from the right end is
ab = ab0 x cos(θ-yaw)
 長さacは、△ABCの余弦定理より ac=ab+bc-2×ab×bc×cos(β)
 ac=√(ab+bc-2×ab×bc×cos(β))
 ただし、bc、βは事前設定される既知の値であり、かつ固定値である。
The length ac is calculated by the cosine law of △ABC as ac 2 = ab 2 + bc 2 - 2 x ab x bc x cos(β)
ac = √( ab2 + bc2 - 2 x ab x bc x cos(β))
Here, b c and β are known values that are set in advance and are fixed values.
 γは△ABCの正弦定理より bc/sin(γ)=ac/sin(β)
 sin(γ)=bc/acsin(β)
 γ=arcsin(bc/acsin(β))
γ is △ABC sine law: bc/sin(γ)=ac/sin(β)
sin(γ)=bc/acsin(β)
γ = arcsin(bc/acsin(β))
 ここで、ブームオフセットにより変化する長さはczなので、
 △ACZの余弦定理より、
 (1)点Bが線分ACより下にある場合、
  cz=ac+az-2×ac×az×cos(α+γ)
  cz=√(ac+az-2×ac×az×cos(α+γ))
 (2)点Bが線分ACより上にある場合、
  cz=ac+az-2×ac×az×cos(α-γ)
  cz=√(ac+az-2×ac×az×cos(α-γ))
  ただし、az、αは事前設定される既知の値であり、かつ固定値である。
Here, the length that changes due to the boom offset is cz, so
△From the ACZ cosine theorem,
(1) If point B is below line segment AC,
cz2 = ac2 + az2 - 2 x ac x az x cos(α + γ)
cz = √( ac2 + az2 - 2 x ac x az x cos(α + γ))
(2) If point B is on the line segment AC,
cz2 = ac2 + az2 - 2 x ac x az x cos(α-γ)
cz = √( ac2 + az2 - 2 x ac x az x cos(α-γ))
Here, az and α are known values that are set in advance and are fixed values.
 ブームオフセットによりC点が動くため、φが変化する。
 任意の状態のφは△AZCの正弦定理より、
 (1)点Bが線分ACより下にある場合、
  ac/sin(φ)=cz/sin(α+γ)
  sin(φ)=(ac/cz)sin(α+γ)
  φ=arcsin((ac/cz)sin(α+γ))
 (2)点Bが線分ACより上にある場合、
  ac/sin(φ)=cz/sin(α-γ)
  sin(φ)=(ac/cz)sin(α-γ)
  φ=arcsin((ac/cz)sin(α-γ))
Since point C moves due to the boom offset, φ changes.
By the sine theorem of △AZC, φ of any state is,
(1) If point B is below line segment AC,
ac/sin(φ)=cz/sin(α+γ)
sin(φ)=(ac/cz)sin(α+γ)
φ=arcsin((ac/cz)sin(α+γ))
(2) If point B is on the line segment AC,
ac/sin(φ)=cz/sin(α-γ)
sin(φ)=(ac/cz)sin(α-γ)
φ=arcsin((ac/cz)sin(α-γ))
 したがって、ブームオフセット時における補正後のブーム角度θ1は、非オフセット時のθ1をθ10、φをφ0とすると、下記の式で算出することができる。
 θ1=θ10-(φ0-φ)
Therefore, the corrected boom angle θ1 when the boom is offset can be calculated using the following formula, where θ1 when not offset is θ10 and φ is φ0.
θ1=θ10-(φ0-φ)
 以上、各実施例について詳述したが、特定の実施例に限定されるものではなく、特許請求の範囲に記載された範囲内において、種々の変形及び変更が可能である。また、前述した実施例の構成要素を全部又は複数を組み合わせることも可能である。 Although each embodiment has been described in detail above, it is not limited to a specific embodiment, and various modifications and changes are possible within the scope of the claims. It is also possible to combine all or some of the components of the above-mentioned embodiments.
1    建設機械の作業支援システム
11A  検出装置
11B  検出装置
11C  検出装置
111  姿勢センサ
112  無線通信部
113  制御部
114  バッテリ
115  ケース
116  磁性部材
12   収集装置
121  姿勢センサ
122  無線通信部
123  制御部
13   携帯端末
131  撮像部
132  無線通信部
133  表示部
134  制御部
14   表示器
2    油圧ショベル(非オフセットブーム仕様)
2B   油圧ショベル(オフセットブーム仕様)
3    操作部
4    作業機
4B   作業機(オフセットブーム仕様)
41   ブーム
41B  ブーム(オフセットブーム仕様)
411  第1ブーム
412  第2ブーム
413  オフセットシリンダ
41a  ブームピン
42   アーム
42a  アームピン
43   バケット(アタッチメント)
43a  バケットピン(アタッチメントピン)
5    支持体
6    走行装置
7    排土板
1 Construction machine work support system 11A Detection device 11B Detection device 11C Detection device 111 Attitude sensor 112 Wireless communication unit 113 Control unit 114 Battery 115 Case 116 Magnetic member 12 Collection device 121 Attitude sensor 122 Wireless communication unit 123 Control unit 13 Portable terminal 131 Imaging unit 132 Wireless communication unit 133 Display unit 134 Control unit 14 Display device 2 Hydraulic excavator (non-offset boom specification)
2B hydraulic excavator (offset boom specification)
3 Operation unit 4 Work machine 4B Work machine (offset boom specification)
41 Boom 41B Boom (offset boom specification)
411 First boom 412 Second boom 413 Offset cylinder 41a Boom pin 42 Arm 42a Arm pin 43 Bucket (attachment)
43a Bucket pin (attachment pin)
5 Support body 6 Travel device 7 Blade

Claims (5)

  1.  オペレータが乗車する操作部と、
     ブーム、アーム、及びアタッチメントを連結して構成されて前記オペレータによって操作される作業機と、
     前記操作部及び前記作業機を支持する支持体と、
     前記支持体を走行可能に支持する走行装置と、
     前記走行装置の前面側に設けられる排土板と、を備えた建設機械の作業支援システムであって、
     複数の検出装置、収集装置、及び携帯端末を備え、
     複数の前記検出装置は、それぞれ、姿勢センサ、無線通信部、バッテリ、及び磁性部材を備え、前記ブーム、前記アーム、及び前記アタッチメントのそれぞれに、前記磁性部材の磁力による固定によって着脱可能に設置され、
     前記収集装置は、姿勢センサ、無線通信部、及び制御部を備え、前記操作部又は前記支持体に設置され、複数の前記検出装置各々から無線通信により収集した姿勢情報と、自身の前記姿勢センサが検出した姿勢情報と、を前記携帯端末へと送信し、
     前記携帯端末は、撮像部、無線通信部、タッチスクリーン、及び制御部を備え、
     前記携帯端末の前記制御部は、
     前記撮像部で撮像された前記建設機械の側面画像を前記タッチスクリーンに表示させる側面画像表示手段と、
     前記タッチスクリーンに表示された前記側面画像のタッチ操作に応じて、前記排土板の位置を登録する位置登録手段と、を備え、
     前記収集装置から受信した前記姿勢情報に基づいて前記アタッチメントと前記排土板との間の距離を算出し、算出した前記距離に基づいて前記アタッチメントと前記排土板との接近を通知する、建設機械の作業支援システム。
    An operation unit in which an operator rides;
    a work machine configured by connecting a boom, an arm, and an attachment and operated by the operator;
    A support body that supports the operating unit and the working machine;
    A traveling device that supports the support body so that the support body can travel;
    A work support system for a construction machine comprising: a blade provided on a front side of the traveling device,
    A method for detecting a plurality of detection devices, a collection device, and a mobile terminal,
    each of the plurality of detection devices includes a posture sensor, a wireless communication unit, a battery, and a magnetic member, and is detachably installed on the boom, the arm, and the attachment by being fixed by a magnetic force of the magnetic member;
    the collection device includes a posture sensor, a wireless communication unit, and a control unit, and is installed on the operation unit or the support body, and transmits posture information collected from each of the plurality of detection devices via wireless communication and posture information detected by the posture sensor of the collection device to the mobile terminal;
    the mobile terminal includes an imaging unit, a wireless communication unit, a touch screen, and a control unit;
    The control unit of the mobile terminal
    a side image display means for displaying a side image of the construction machine captured by the imaging unit on the touch screen;
    a position registration means for registering a position of the blade in response to a touch operation of the side image displayed on the touch screen,
    A construction machine work support system that calculates a distance between the attachment and the blade based on the posture information received from the collection device, and notifies of the approach of the attachment and the blade based on the calculated distance.
  2.  前記位置登録手段は、前記排土板の先端の位置を登録する、請求項1に記載の建設機械の作業支援システム。 The construction machine work support system according to claim 1, wherein the position registration means registers the position of the tip of the blade.
  3.  前記ブームは、前記支持体に上下揺動可能に支持される第1ブームと、前記第1ブームの先端部に左右揺動可能に支持される第2ブームと、を備えたオフセットブーム機構を有し、
     前記ブームに設置される前記検出装置は、前記第1ブーム及び前記第2ブームのそれぞれに設置され、
     前記携帯端末の前記制御部は、検出した前記第1ブーム及び前記第2ブームの姿勢情報に基づいて、前記ブームの長さ情報及び姿勢情報を補正するオフセット補正手段を備える、請求項1に記載の建設機械の作業支援システム。
    the boom has an offset boom mechanism including a first boom supported on the support body so as to be swingable up and down, and a second boom supported on a tip portion of the first boom so as to be swingable left and right,
    the detection device installed on the boom is installed on each of the first boom and the second boom,
    2. The construction machine work support system according to claim 1, wherein the control unit of the mobile terminal is provided with an offset correction means for correcting length information and attitude information of the boom based on the detected attitude information of the first boom and the second boom.
  4.  前記オフセットブーム機構は、前記第2ブームが非オフセット姿勢から左側最大揺動角まで揺動した左側最大オフセット姿勢と、前記第2ブームが前記非オフセット姿勢から右側最大揺動角まで揺動した右側最大オフセット姿勢との間でオフセット動作可能であり、前記非オフセット姿勢から前記左側最大オフセット姿勢への水平移動距離である左側最大オフセット量と、前記非オフセット姿勢から前記右側最大オフセット姿勢への水平移動距離である右側最大オフセット量とが相違し、
     前記オフセット補正手段は、予め登録される前記左側最大オフセット量及び前記右側最大オフセット量を用いて補正処理を行う、請求項3に記載の建設機械の作業支援システム。
    the offset boom mechanism is capable of offset operation between a left maximum offset position in which the second boom has swung from a non-offset position to a left maximum swing angle, and a right maximum offset position in which the second boom has swung from the non-offset position to a right maximum swing angle, and a left maximum offset amount which is a horizontal movement distance from the non-offset position to the left maximum offset position is different from a right maximum offset amount which is a horizontal movement distance from the non-offset position to the right maximum offset position,
    4. The work support system for a construction machine according to claim 3, wherein the offset correction means performs correction processing using the left maximum offset amount and the right maximum offset amount that are registered in advance.
  5.  前記第2ブームに設置される前記検出装置は、前記第2ブームの長さ方向の一端部に設置され、前記長さ方向の一端部は、前記アームの側の端部である、請求項3に記載の建設機械の作業支援システム。 The construction machine work support system according to claim 3, wherein the detection device installed on the second boom is installed at one end of the second boom in the length direction, and the one end of the length direction is the end on the arm side.
PCT/JP2023/044156 2022-12-12 2023-12-11 Work assistance system for construction machine WO2024128172A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022198084 2022-12-12
JP2022-198084 2022-12-12

Publications (1)

Publication Number Publication Date
WO2024128172A1 true WO2024128172A1 (en) 2024-06-20

Family

ID=91484915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/044156 WO2024128172A1 (en) 2022-12-12 2023-12-11 Work assistance system for construction machine

Country Status (1)

Country Link
WO (1) WO2024128172A1 (en)

Similar Documents

Publication Publication Date Title
CN107407074B (en) Display system and engineering machinery
JP5841300B1 (en) Work machine calibration apparatus and work machine parameter calibration method
WO2016056676A1 (en) Work equipment and method of correcting work machine parameters for work equipment
US9745726B2 (en) Posture calculation device of working machinery, posture calculation device of excavator, and working machinery
CN110300827B (en) Construction machine
KR20130069743A (en) Hydraulic shovel calibration device and hydraulic shovel calibration method
CN103080426A (en) Calibration system and calibration method for hydraulic shovel
JPWO2019012651A1 (en) Hydraulic excavator and method of calibrating hydraulic excavator
CN113874862A (en) Construction machine
US20230257967A1 (en) Revolving work vehicle, and method for detecting position of working end of revolving work vehicle
CN113167054B (en) System comprising a working machine, method executed by a computer and data for learning
KR102479701B1 (en) work machine
JP2023041933A (en) Revolving work vehicle
WO2024128172A1 (en) Work assistance system for construction machine
WO2024128173A1 (en) Work support system for construction machinery
JP7207127B2 (en) Surrounding monitoring device for working machine
WO2024090343A1 (en) Work assisting system
WO2023002796A1 (en) System for setting operation range of excavation machine and method for controlling same
WO2024117108A1 (en) Work assisting system
CN115398066B (en) Construction method and construction system
WO2024117107A1 (en) Work assistance system
WO2023100620A1 (en) System and method for work machine, and work machine
CN117881849A (en) System, method, and program for controlling work machine
JP2023116909A (en) Work area setting system
JP2024004211A (en) Rotating work machine, and orientation detection method of rotating work machine