WO2024090343A1 - Work assisting system - Google Patents

Work assisting system Download PDF

Info

Publication number
WO2024090343A1
WO2024090343A1 PCT/JP2023/037988 JP2023037988W WO2024090343A1 WO 2024090343 A1 WO2024090343 A1 WO 2024090343A1 JP 2023037988 W JP2023037988 W JP 2023037988W WO 2024090343 A1 WO2024090343 A1 WO 2024090343A1
Authority
WO
WIPO (PCT)
Prior art keywords
boom
offset
mobile terminal
unit
bucket
Prior art date
Application number
PCT/JP2023/037988
Other languages
French (fr)
Japanese (ja)
Inventor
正倫 鈴木
Original Assignee
日本精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本精機株式会社 filed Critical 日本精機株式会社
Publication of WO2024090343A1 publication Critical patent/WO2024090343A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/30Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices

Definitions

  • This disclosure relates to a work support system.
  • ICT construction machines Conventionally, construction machines incorporating a machine guidance function (so-called ICT construction machines) have been provided.
  • machine guidance is a technology that uses measurement technologies such as a total station (TS), a global navigation satellite system (GNSS), etc. to provide the operator with information on the construction target value and support the operation of the construction machine.
  • TS total station
  • GNSS global navigation satellite system
  • Patent Document 1 proposes a scheme to enable accurate grasping of the inclination, etc., of the construction machinery.
  • the present disclosure therefore aims to provide a work assistance system that can easily and flexibly introduce machine guidance functions and further upgrade the machine guidance functions as necessary.
  • a work support system for a construction machine comprising: an operating unit on which an operator rides; a working machine operated by the operator, which is configured by connecting a boom, an arm, and an attachment; a support body that supports the operating unit and the working machine; and a traveling device that supports the support body so that the support body can be traveled;
  • the system comprises a plurality of detection devices, a collection device, and a mobile terminal; each of the plurality of detection devices comprises an attitude sensor, a wireless communication unit, a battery, and a magnetic member, and is installed on each of the boom, the arm, and the attachment by fixing them using the magnetic force of the magnetic member;
  • the collection device comprises an attitude sensor, a wireless communication unit, and a control unit, is installed on the operating unit or the support body, and transmits a plurality of attitude information collected from the plurality of detection devices via wireless communication and attitude information detected by its own attitude sensor to the mobile terminal;
  • the mobile terminal comprises an imaging unit, a wireless communication unit, a display unit, and
  • the display unit of the mobile terminal is a touch screen
  • the control unit of the mobile terminal is characterized by having a side image display means for displaying a side image of the construction machine captured by the imaging unit on the display unit, and a position registration means for registering the positions of the characteristic points of the construction machine and the installation position of the attitude sensor in response to a touch operation on the side image displayed on the display unit.
  • control unit of the mobile terminal is characterized by comprising: a tip coordinate calculation means for calculating tip coordinates of the attachment based on registered position information of the position registration means or pre-input information and attitude information detected by the plurality of attitude sensors; and a distance calculation means for calculating a distance between the attachment and the target construction surface based on the calculated tip coordinates and the coordinates of the target construction surface that have been set in advance.
  • the boom has an offset boom mechanism including a first boom supported on the support so as to be able to swing up and down, and a second boom supported on the tip of the first boom so as to be able to swing left and right, the detection device installed on the boom is installed on each of the first boom and the second boom, and the control unit of the mobile terminal is characterized in that it includes an offset correction means for correcting the length information and attitude information of the boom based on the detected attitude information of the first boom and the second boom.
  • the offset boom mechanism is capable of offsetting between a left maximum offset position in which the second boom has swung from a non-offset position to a left maximum swing angle and a right maximum offset position in which the second boom has swung from the non-offset position to a right maximum swing angle, a left maximum offset amount which is the horizontal movement distance from the non-offset position to the left maximum offset position, and a right maximum offset amount which is the horizontal movement distance from the non-offset position to the right maximum offset position, which is different, and the offset correction means performs correction processing using the left maximum offset amount and the right maximum offset amount which are registered in advance.
  • the detection device installed on the second boom is installed at one end of the second boom in the length direction, and the one end in the length direction is the end on the arm side.
  • This disclosure makes it possible to provide a work assistance system that can easily and flexibly introduce machine guidance functions and further upgrade the machine guidance functions as needed.
  • FIG. 1 is a diagram showing a schematic configuration of a work support system according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing a configuration of the work support system shown in FIG. 1 .
  • FIG. FIG. 13 is a diagram showing a guidance screen of the mobile terminal.
  • FIG. FIG. 13 is a diagram showing a side image request screen of the mobile terminal.
  • FIG. 13 is a diagram showing a location registration screen of the portable terminal.
  • FIG. 13 is a diagram showing characteristic points of a hydraulic excavator for which location registration is performed.
  • 1A is a target construction surface setting screen of a mobile terminal and its explanatory diagram
  • FIG. 1B is an equation for determining the coordinates of the target construction surface.
  • FIG. 1A is a target construction surface setting screen of a mobile terminal and its explanatory diagram
  • FIG. 1B is an equation for determining the coordinates of the target construction surface.
  • FIG. 11 is an explanatory diagram of parameters used in calculating the bucket tip coordinates.
  • FIG. 4 is an explanatory diagram of parameters used in calculating a vehicle tilt angle.
  • FIG. 11 is a side view of the offset boom showing parameters used for offset correction.
  • FIG. 11 is a plan view of the offset boom showing parameters used for offset correction.
  • the work assistance system 1 of this embodiment shown in Figures 1 and 2 assists the operator in the work of operating a hydraulic excavator 2, which is a construction machine, by using the machine guidance function.
  • Construction machines to which the work assistance system 1 can be applied are not limited to excavators such as the hydraulic excavator 2, but may also be loading and unloading machines such as rotary forks and crawler cranes.
  • the hydraulic excavator 2 includes an operating unit 3, a work machine 4, a support body 5, and a traveling device 6.
  • the operation unit 3 is a riding space for an operator who operates the hydraulic excavator 2.
  • the hydraulic excavator 2 is available in a cab specification in which the entire operation unit 3 is covered with a cab 31, and a canopy specification in which only the upper part of the operation unit 3 is covered with a canopy (not shown), and the work support system 1 of this embodiment can be applied to either specification.
  • the work machine 4 is configured by sequentially connecting a boom 41, an arm 42, and a bucket 43, and is operated by an operator.
  • the boom 41 is connected to the front end of the support body 5 via a boom pin 41a so as to be able to swing up and down, and swings in response to the hydraulic extension and retraction of a boom cylinder (not shown) provided between the support body 5 and the boom 41.
  • the arm 42 is connected to the tip of the boom 41 via an arm pin 42a so as to be able to swing back and forth and up and down, and swings in response to the hydraulic extension and retraction of an arm cylinder (not shown) provided between the boom 41 and the arm 42.
  • the bucket 43 is connected to the tip of the arm 42 via a bucket pin (attachment pin) 43a so as to be able to swing back and forth and up and down, and swings in response to the hydraulic extension and retraction of a bucket cylinder (not shown) provided between the arm 42 and the bucket 43.
  • a bucket pin attachment pin
  • the bucket 43 is a type of attachment that is removably attached to the tip of the arm 42, and can be replaced with other attachments depending on the type of work.
  • attachments include a grapple for gripping wood, a breaker for crushing concrete blocks, and a skeleton bucket for sieving work.
  • the work support system 1 of this embodiment is not limited to excavation work using a bucket 43, but can also be applied to work using other attachments.
  • the support body 5 supports the operation unit 3 and the work machine 4.
  • the traveling device 6 supports the support body 5 so that it can turn and travel.
  • a wheel type having wheels (not shown) is also known as the traveling device 6, but the work support system 1 of this embodiment can be applied to either the crawler type or the wheel type.
  • the hydraulic excavator 2 is available in a non-offset boom specification in which the boom 41 cannot be offset in the left-right direction, and an offset specification in which the boom 41 can be offset in the left-right direction.
  • a non-offset boom specification in which the boom 41 cannot be offset in the left-right direction
  • an offset specification in which the boom 41 can be offset in the left-right direction.
  • the work support system 1 includes multiple detection devices 11A, 11B, and 11C, a collection device 12, a mobile terminal 13, and a display 14.
  • the detection devices 11A, 11B, and 11C are respectively installed on the boom 41, the arm 42, and the bucket 43.
  • the detection devices 11A, 11B, and 11C each include a posture sensor 111, a wireless communication unit 112, a control unit 113, a battery 114, a case 115, and a magnetic member 116.
  • the attitude sensor 111 detects the attitude of the installation location.
  • the attitude sensor 111 is an IMU (Inertial Measurement Unit) sensor that detects three-dimensional acceleration and angular velocity.
  • IMU Inertial Measurement Unit
  • the wireless communication unit 112 performs wireless communication with the collection device 12.
  • BLUETOOTH registered trademark
  • the control unit 113 acquires posture information from the posture sensor 111 and transmits the acquired posture information to the collection device 12 via the wireless communication unit 112.
  • the battery 114 supplies power to the attitude sensor 111, the wireless communication unit 112, and the control unit 113.
  • detection devices 11A, 11B, and 11C can be easily installed at the desired mounting location without having to take the trouble of wiring a power supply cable or a data communication cable to the work machine 4.
  • the work assistance system 1 of this embodiment can easily add machine guidance functions to existing construction machines or update the machine guidance functions.
  • the case 115 houses the attitude sensor 111, the wireless communication unit 112, the control unit 113, and the battery 114.
  • the battery 114 may be housed in a case separate from the case 115, and may supply power to the detection devices 11A, 11B, and 11C via a cable.
  • the magnetic member 116 is, for example, a permanent magnet, and its magnetic force fixes the detection devices 11A, 11B, and 11C to the boom 41, arm 42, and bucket 43, which are made of metal.
  • the magnetic member 116 is provided on the bottom surface of the case 115, and its magnetic force fixes the bottom surface of the case 115 to the boom 41, arm 42, and bucket 43, respectively.
  • detection devices 11A, 11B, and 11C can be more easily installed at the desired mounting locations.
  • the collection device 12 is installed on the support 5.
  • the collection device 12 can be easily installed on the floor of the operation unit 3.
  • the collection device 12 includes a posture sensor 121, a wireless communication unit 122, and a control unit 123.
  • the attitude sensor 121 detects the attitude of the support body 5.
  • an IMU sensor that detects three-dimensional acceleration and angular velocity is used as the attitude sensor 121.
  • the wireless communication unit 122 performs wireless communication with the detection devices 11A, 11B, and 11C and the mobile terminal 13.
  • BLUETOOTH registered trademark
  • the wireless communication unit 122 performs wireless communication with the detection devices 11A, 11B, and 11C and the mobile terminal 13.
  • BLUETOOTH registered trademark
  • the control unit 123 transmits the posture information of the work machine 4 collected from the detection devices 11A, 11B, and 11C and the posture information of the support body 5 detected by the posture sensor 121 to the mobile terminal 13 via the wireless communication unit 122.
  • the control unit 123 receives a posture information request signal from the mobile terminal 13, it collects the posture information of the work machine 4 detected by the detection devices 11A, 11B, and 11C.
  • the control unit 123 transmits the posture information of the work machine 4 collected from the detection devices 11A, 11B, and 11C and the posture information of the support body 5 detected by its own posture sensor 121 to the mobile terminal 13.
  • the control unit 123 acquires notification information from the mobile terminal 13, it outputs the acquired notification information to the display 14.
  • the mobile terminal 13 is a so-called smartphone or tablet terminal, and functions as a machine guidance terminal by executing application software related to this work assistance system 1.
  • the application software related to the work assistance system 1 is upgraded as appropriate.
  • the mobile terminal 13 can update its machine guidance function to the latest version by installing an upgraded version of the application software.
  • the mobile terminal 13 includes an imaging unit 131, a wireless communication unit 132, a display unit 133, and a control unit 134.
  • the imaging unit 131 captures still images and videos. In this embodiment, it is used to capture a side image of the hydraulic excavator 2.
  • the side image is an image of the characteristic points of the hydraulic excavator 2, which will be described later.
  • the side image is, for example, an image of the exterior of the hydraulic excavator 2 captured from the side, and includes in the captured range the boom 41, the arm 42, and the bucket 43, which is a type of attachment that is detachably attached to the tip of the arm 42.
  • the side image may be an image in which the entire hydraulic excavator 2 fits in a single image, or it may be a plurality of images in which individual characteristic points of the hydraulic excavator 2 are captured.
  • the wireless communication unit 132 performs wireless communication at least with the collection device 12.
  • BLUETOOTH registered trademark
  • the wireless communication unit 132 performs wireless communication at least with the collection device 12.
  • BLUETOOTH registered trademark
  • the display unit 133 is configured as a touch screen with a display function and a touch input function, and is used to display the guidance screen G1 shown in FIG. 4 and to input a position on the position registration screen G3 (see FIG. 7) described later.
  • the control unit 134 calculates the distance between the bucket 43 and the target construction surface D based on the multiple posture information received from the collection device 12, and displays the calculated distance on the display unit 133 as shown in FIG. 4.
  • the guidance screen G1 shown in FIG. 4 includes a first display area G101 that displays the heightwise distance between the tip of the bucket 43 and the target construction surface D as a numerical value, as well as second to sixth display areas G102 to G106 that display various calculation results.
  • the second display area G102 displays the heightwise position of the bucket 43 relative to the machine body as a numerical value.
  • the third display area G103 displays specific operation guidance for the work machine 4. In FIG. 4, displays related to the raising and lowering of the boom and arm are arranged above and below.
  • the fourth display area G104 displays the current side posture of the hydraulic excavator 2 as an image
  • the fifth display area G105 displays the position of the target construction surface D relative to the machine body as an image
  • the sixth display area G106 displays the heightwise distance between the tip of the bucket 43 and the target construction surface D as a bar graph.
  • a guidance stop button (no symbol) may be located at the very bottom of the guidance screen G1 shown in FIG. 4.
  • the control unit 134 also transmits the calculated distance between the bucket 43 and the target construction surface D to the display 14 via the collection device 12, and causes the display 14 to display the calculated distance.
  • the method for calculating the distance between the bucket 43 and the target construction surface D will be described later.
  • the display 14 is installed in the operation section 3 of the hydraulic excavator 2 and displays the distance between the bucket 43 and the target construction surface D calculated by the mobile terminal 13.
  • the display 14 in this embodiment is configured with a segment-type LED display section.
  • the display 14 is formed by arranging rectangular segment LEDs in two rows L1 and L2 in the vertical direction at regular intervals.
  • the height of the target construction surface D can be displayed by the segment LEDs in the left row L1
  • the height distance from the target construction surface D to the tip of the bucket 43 can be displayed by the segment LEDs in the right row L2.
  • the display 14 may display the distance between the bucket 43 and the target construction surface D as a numerical value.
  • the mobile terminal 13 may be installed in a position visible to the operator, and the guidance screen G1 of the mobile terminal 13 may be used as the display 14, so that the display 14 may be omitted.
  • the mobile terminal 13 has multiple functional configurations realized by the cooperation of hardware and software.
  • the multiple functional configurations include a side image display means, a position registration means, a parameter calculation means, a target construction surface setting means, a tip coordinate calculation means, a distance calculation means, and a guidance screen display means.
  • the side image display means, the position registration means, the parameter calculation means, and the target construction surface setting means are functional configurations for performing advance settings prior to work.
  • the tip coordinate calculation means, the distance calculation means, and the guidance screen display means are functional configurations for displaying guidance during work.
  • the side image display means displays the side image of the hydraulic excavator 2 captured by the imaging unit 131 on the display unit 133.
  • a message requesting a side image of the hydraulic excavator 2 "Please take a photo so that the entire vehicle is visible,” is displayed (for example, in the white area in FIG. 6), and the captured side image of the hydraulic excavator 2 is displayed on the screen.
  • the position registration means registers the positions of the characteristic points of the hydraulic excavator 2 and the installation positions of the attitude sensors 111, 121 (detection devices 11A, 11B, 11C and collection device 12) in response to touch operations on the side image displayed on the display unit 133. For example, on the position registration screen G3 shown in FIG. 7, a message "Please select the arm pin" indicating the next position to be touched is displayed (for example, in the white area in FIG. 7), and the touched position coordinates are obtained.
  • the characteristic points of the hydraulic excavator 2 that require position registration include the first to sixth points P1 to P6, and the installation positions of the attitude sensors 111 and 121 include the seventh to tenth points P7 to P10.
  • the first point P1 is defined as the position of the boom pin 41a (see FIG. 1)
  • the second point P2 is defined as the position of the arm pin 42a (see FIG. 1)
  • the third point P3 is defined as the position of the bucket pin 43a (see FIG. 1)
  • the fourth point P4 is defined as the tip position of the bucket 43.
  • the fifth point P5 is defined as the ground front end position of the traveling device 6
  • the sixth point P6 is defined as the ground rear end position of the traveling device 6.
  • the seventh point P7 is defined as the position of the detector 11A installed on the boom 41
  • the eighth point P8 is defined as the position of the detector 11B installed on the arm 42
  • the ninth point P9 is defined as the position of the detector 11C installed on the bucket 43.
  • the tenth point P10 is defined as the position where the collecting device 12 is installed.
  • the position registration means assumes, for example, an XY coordinate system (hereinafter referred to as the vehicle body coordinate system) with the rear end position of the traveling device 6 that comes into contact with the ground (sixth point P6) as the origin, the length direction of the hydraulic excavator 2 as the X axis, and the height direction of the hydraulic excavator 2 as the Y axis.
  • the position registration means then registers the input position information of the first to tenth points P1 to P10 as coordinate data in the vehicle body coordinate system.
  • the position registration means may register not only the installation positions of the detection devices 11A, 11B, 11C and the collection device 12, but also the installation directions.
  • the parameter calculation means calculates various parameters for acquiring bucket tip coordinates based on the position information registered by the position registration means.
  • the various parameters to be calculated include the ground-to-boom pin length H, the boom length E, the arm length F, the bucket length G, and the like.
  • the ground-to-boom pin length H is the straight-line distance connecting the ground rear end position (sixth point P6) of the traveling device 6 and the position of the boom pin 41a (first point P1) in the vehicle coordinate system.
  • the boom length E is the straight-line distance connecting the position of the boom pin 41a (first point P1) and the position of the arm pin 42a (second point P2) in the vehicle coordinate system.
  • the arm length F is the straight-line distance connecting the position of the arm pin 42a (second point P2) and the position of the bucket pin 43a (third point P3) in the vehicle coordinate system.
  • the bucket length G is the straight-line distance connecting the position of the bucket pin 43a (third point P3) and the tip position of the bucket 43 (fourth point P4).
  • the target construction surface setting means enables the advance setting of the target construction surface D.
  • the target construction surface setting means of this embodiment requests the input of the start position coordinates (a1, b1), end position coordinates (a2, b2) and the target angle of the bucket 43 of the target construction surface D on the target construction surface setting screen G4 shown in FIG. 9(a). That is, the target construction surface setting screen G4 displays the start position X coordinate input field G401, the start position Y coordinate input field G402, the end position X coordinate input field G403, the end position Y coordinate input field G404 and the bucket target angle input field G405 of the target construction surface D.
  • the target construction surface setting screen G4 also displays a numeric keypad G406 for inputting numerical values into each input field and a guidance start button G407 for starting the guidance display.
  • the target construction surface setting means generates an equation (see FIG. 9(b)) that determines the Y coordinate from the X coordinate of the target construction surface D based on the input coordinate data. According to such an equation, after calculating the X coordinate (front-to-rear position) of the bucket tip in the vehicle body coordinate system, the Y coordinate (height position) of the target construction surface D corresponding to the X coordinate of the bucket tip can be obtained by substituting this X coordinate into the above equation.
  • the tip coordinate calculation means calculates the tip coordinates of the bucket 43 based on the registered position information of the position registration means, the input information input in advance, and the attitude information detected by the plurality of attitude sensors 111 and 121. As shown in Figs. 10 and 11, the tip coordinate calculation means of this embodiment calculates the tip coordinates of the bucket 43 using the length information H, E, F, and G described above and the angle information ⁇ 1 to ⁇ 4 calculated based on the detection values of the attitude sensors 111 and 121.
  • the angle ⁇ 1 is the swing angle of the boom 41 based on the horizontal and is calculated based on the detection value of the attitude sensor 111 provided in the detection device 11A.
  • the angle ⁇ 2 is the swing angle of the arm 42 based on the horizontal and is calculated based on the detection value of the attitude sensor 111 provided in the detection device 11B.
  • the angle ⁇ 3 is the swing angle of the bucket 43 based on the horizontal and is calculated based on the detection value of the attitude sensor 111 provided in the detection device 11C. 11, is calculated from an angle ⁇ 4 calculated based on the detection value of an attitude sensor 121 provided in the collection device 12 and an angle ⁇ 4 0 input in advance.
  • angle ⁇ 4 0 is a fixed value formed by a straight line connecting the ground rear end position of the traveling device 6 and the position of the boom pin 41a, and the ground contact surface of the traveling device 6, and is obtained from a catalog of the hydraulic excavator 2 or the like and input in advance.
  • the tip coordinate calculation means calculates the X and Y coordinates of the bucket tip position in the vehicle body coordinate system using the various parameters described above and the following equations.
  • X H cos( ⁇ 4) + Ecos( ⁇ 1) + F cos( ⁇ 2) + G cos( ⁇ 3)
  • Y H sin( ⁇ 4) + E sin( ⁇ 1) + F sin( ⁇ 2) + G sin( ⁇ 3)
  • the distance calculation means calculates the heightwise distance between the tip of the bucket 43 and the target construction surface D based on the calculated tip coordinate of the bucket 43 and the preset coordinate of the target construction surface D. For example, the distance calculation means substitutes the calculated tip X coordinate of the bucket 43 into the equation shown in FIG. 9(b) to obtain the Y coordinate of the target construction surface D corresponding to the tip X coordinate of the bucket 43, and then calculates the difference between this Y coordinate and the tip Y coordinate of the bucket 43. This determines the heightwise distance between the tip of the bucket 43 and the target construction surface D.
  • the guidance screen display means displays the guidance screen G1 shown in FIG. 4 on the display unit 133.
  • the guidance screen display means then displays the heightwise distance between the tip of the bucket 43 and the target construction surface D as a numerical value in the first display area G101 of the guidance screen G1, and displays the heightwise distance between the tip of the bucket 43 and the target construction surface D as a bar graph in the sixth display area G106.
  • the mobile terminal 13 has an offset correction means as a functional configuration.
  • the offset correction means executes offset correction when the work support system 1 is applied to a hydraulic excavator 2B with an offset boom.
  • the hydraulic excavator 2B with an offset boom will be described.
  • the same reference numerals as those in the hydraulic excavator 2 with a non-offset boom may be used to refer to the description of the hydraulic excavator 2 with a non-offset boom.
  • the boom 41B of the work machine 4B provided on the hydraulic excavator 2B with offset boom has an offset boom mechanism.
  • the offset boom mechanism includes a first boom 411 supported on the support body 5 so as to be able to swing up and down, and a second boom 412 supported on the tip of the first boom 411 so as to be able to swing left and right.
  • the second boom 412 has a parallel link mechanism that translates the arm 42 left and right in response to the left and right swinging, and is swung left and right in response to the hydraulic extension and retraction of the offset cylinder 413 provided between the first boom 411 and the second boom 412.
  • the boom length E and boom angle ⁇ 1 in the vehicle body coordinate system change in response to the left and right swinging of the second boom 412, so that an error occurs in the tip coordinate of the bucket 43 calculated by the tip coordinate calculation means.
  • the offset correction is a process for suppressing such errors. First, an overview of the offset correction will be explained, and then the specific process content of the offset correction will be explained.
  • two detectors 11A1, 11A2 are prepared for boom installation and installed on the first boom 411 and second boom 412, respectively.
  • the detector 11A2 is installed on the second boom 412 at one end of the length of the second boom 412, it is desirable that it be the end on the arm 42 side. In this way, the amount of displacement of the detector 11A2 accompanying left and right swinging of the second boom 412 becomes larger compared to when it is installed at the end on the first boom 411 side, and therefore the accuracy of detecting the attitude of the second boom 412 by the detector 11A2 can be improved.
  • the offset correction means corrects the length information and attitude information of the boom 41B based on the attitude information of the first boom 411 and the second boom 412 detected by the detection devices 11A1 and 11A2. As a result, even if the boom length E and boom angle ⁇ 1 in the vehicle body coordinate system change in response to the left-right swing of the second boom 412, the tip coordinate calculation means can accurately calculate the tip coordinate of the bucket 43 by using the corrected boom length E and boom angle ⁇ 1.
  • the offset boom mechanism has a left maximum offset posture in which the second boom 412 has swung from the non-offset posture to the left maximum swing angle, and a right maximum offset posture in which the second boom 412 has swung from the non-offset posture to the right maximum swing angle.
  • the left maximum offset amount X which is the horizontal movement distance from the non-offset posture to the left maximum offset posture
  • the offset correction means performs correction processing using the left maximum offset amount X and right maximum offset amount Y, which are registered in advance.
  • the left maximum offset amount X and right maximum offset amount Y are usually listed in a catalog for the hydraulic excavator 2B, and can be easily obtained and registered in advance.
  • the left and right swing fulcrum position of the second boom 412 on the first boom 411 side is A
  • the left and right swing fulcrum position of the second boom 412 on the arm 42 side is B
  • the position of the arm pin 42a is C
  • the position of the boom pin 41a is Z.
  • the length of the line segment AB is ab
  • the length of the line segment AC is ac
  • the length of the line segment BC is bc
  • the length of the line segment AZ is az
  • the length of the line segment CZ is cz (corresponding to the length E to be corrected).
  • the initial length of the line segment AB when not offset is ab0
  • the initial length of the line segment CZ when not offset is cz0
  • the angle between the line segment AB and the line segment AZ is ⁇
  • the angle between the line segment AB and the line segment BC is ⁇
  • the angle between the line segment AB and the line segment AC is ⁇
  • the angle between the line segment AZ and the line segment CZ is ⁇ .
  • the maximum offset movable angle of the second boom 412 is yaw0
  • the maximum right swing angle of the second boom 412 is ⁇
  • the maximum left swing angle of the second boom 412 is yaw0- ⁇ . Note that yaw0 can be obtained as the output yaw when the second boom 412 is offset to the maximum left offset position after the output yaw of the detection device 11a2 is reset to zero when the second boom 412 is in the maximum right offset position.
  • ac ⁇ ( ab2 + bc2 - 2 x ab x bc x cos( ⁇ ))
  • b c and ⁇ are known values that are set in advance and are fixed values.
  • is the sine law of ⁇ ABC.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Operation Control Of Excavators (AREA)
  • Component Parts Of Construction Machinery (AREA)

Abstract

Provided is a work assisting system that can be easily and flexibly introduced. The work assisting system is provided with a plurality of detection devices 11A–11C, a collection device 12, and a mobile terminal 13. Each of the plurality of detection devices 11A–11C is provided with an orientation sensor 111 and a magnetic member 116, and is installed on a boom 41, arm 42, and bucket 43 of a hydraulic excavator 2 by means of the magnetic force of the magnetic member 16. The collection device 12 is provided with an orientation sensor 121 and is installed on an operation unit 3 or a support body 5 of the hydraulic excavator 2, and the collection device 12 transmits, to the mobile terminal 13, multiple pieces of orientation information collected from the plurality of detection devices 11A–11C by wireless communication and orientation information detected by the orientation sensor 121. The mobile terminal 13 is provided with a display unit 133 and a control unit 134, and the mobile terminal 13 calculates the distance between the bucket 43 and a target construction surface D on the basis of the multiple pieces of orientation information received from the collection device 12, and causes the display unit 133 to display the calculated distance.

Description

作業支援システムWork Support System
 本開示は、作業支援システムに関する。 This disclosure relates to a work support system.
 従来、マシンガイダンスの機能を組み込んだ建設機械(いわゆるICT建機である)が提供されている。
 ここでマシンガイダンスは、トータルステーション(TS:Total Station)、GNSS(Global Navigation Satellite System)等の計測技術を利用して、施工目標値までの情報をオペレータに提供して建設機械の操作をサポートする技術である。このマシンガイダンスによれば、オペレータの作業を適切に支援して、作業効率、安全性、作業精度を向上することができる。
 このようなICT建機に関して、特許文献1には、建設機械の傾き等を精度良く把握できるようにする工夫が提案されている。
Conventionally, construction machines incorporating a machine guidance function (so-called ICT construction machines) have been provided.
Here, machine guidance is a technology that uses measurement technologies such as a total station (TS), a global navigation satellite system (GNSS), etc. to provide the operator with information on the construction target value and support the operation of the construction machine. This machine guidance can appropriately support the operator's work, improving work efficiency, safety, and work accuracy.
Regarding such ICT construction machinery, Patent Document 1 proposes a scheme to enable accurate grasping of the inclination, etc., of the construction machinery.
特開2019-105160号公報JP 2019-105160 A
 ところで建設機械にあっては、簡易かつ柔軟にマシンガイダンスの機能を導入し、さらには必要に応じてマシンガイダンスの機能をバージョンアップできることが望まれる。
 しかしながら従来の建設機械においては、簡易かつ柔軟にマシンガイダンスの機能を導入し、さらには必要に応じてマシンガイダンスの機能をバージョンアップすることが困難な問題があった。
Incidentally, in the case of construction machinery, it is desirable to be able to easily and flexibly introduce machine guidance functions and, further, to be able to upgrade the machine guidance functions as necessary.
However, with conventional construction machinery, there was a problem in that it was difficult to easily and flexibly introduce machine guidance functions and, further, to upgrade the machine guidance functions as required.
 そこで、本開示は、簡易かつ柔軟にマシンガイダンスの機能を導入し、さらには必要に応じてマシンガイダンスの機能をバージョンアップすることができる作業支援システムの提供を目的とする。 The present disclosure therefore aims to provide a work assistance system that can easily and flexibly introduce machine guidance functions and further upgrade the machine guidance functions as necessary.
 1つの側面では、以下のような解決手段を提供する。
 (1)オペレータが乗車する操作部と、ブーム、アーム及びアタッチメントを連結して構成され、前記オペレータによって操作される作業機と、前記操作部及び前記作業機を支持する支持体と、前記支持体を走行可能に支持する走行装置と、を備えた建設機械の作業支援システムであって、複数の検出装置、収集装置及び携帯端末を備え、複数の前記検出装置は、それぞれ、姿勢センサ、無線通信部、バッテリ及び磁性部材を備え、前記ブーム、前記アーム及び前記アタッチメントのそれぞれに、前記磁性部材の磁力による固定によって設置され、前記収集装置は、姿勢センサ、無線通信部及び制御部を備え、前記操作部又は前記支持体に設置され、複数の前記検出装置から無線通信により収集した複数の姿勢情報と、自身の前記姿勢センサが検出した姿勢情報を前記携帯端末に送信し、前記携帯端末は、撮像部、無線通信部、表示部及び制御部を備え、前記収集装置から受信した複数の前記姿勢情報に基づいて前記アタッチメントと目標施工面との距離を算出し、算出した前記距離を前記表示部に表示させることを特徴とする。
In one aspect, the following solution is provided.
(1) A work support system for a construction machine comprising: an operating unit on which an operator rides; a working machine operated by the operator, which is configured by connecting a boom, an arm, and an attachment; a support body that supports the operating unit and the working machine; and a traveling device that supports the support body so that the support body can be traveled; the system comprises a plurality of detection devices, a collection device, and a mobile terminal; each of the plurality of detection devices comprises an attitude sensor, a wireless communication unit, a battery, and a magnetic member, and is installed on each of the boom, the arm, and the attachment by fixing them using the magnetic force of the magnetic member; the collection device comprises an attitude sensor, a wireless communication unit, and a control unit, is installed on the operating unit or the support body, and transmits a plurality of attitude information collected from the plurality of detection devices via wireless communication and attitude information detected by its own attitude sensor to the mobile terminal; the mobile terminal comprises an imaging unit, a wireless communication unit, a display unit, and a control unit, and calculates a distance between the attachment and a target construction surface based on the plurality of attitude information received from the collection device, and displays the calculated distance on the display unit.
 (2)上記(1)の構成において、前記携帯端末の前記表示部は、タッチスクリーンであり、前記携帯端末の前記制御部は、前記撮像部で撮像された前記建設機械の側面画像を前記表示部に表示させる側面画像表示手段と、前記表示部に表示された前記側面画像のタッチ操作に応じて、前記建設機械の特徴点の位置、及び前記姿勢センサの設置位置を登録する位置登録手段と、を備えることを特徴とする。 (2) In the configuration of (1) above, the display unit of the mobile terminal is a touch screen, and the control unit of the mobile terminal is characterized by having a side image display means for displaying a side image of the construction machine captured by the imaging unit on the display unit, and a position registration means for registering the positions of the characteristic points of the construction machine and the installation position of the attitude sensor in response to a touch operation on the side image displayed on the display unit.
 (3)上記(2)の構成において、前記携帯端末の前記制御部は、前記位置登録手段の登録位置情報、又はあらかじめ入力された入力情報と、複数の前記姿勢センサが検出した姿勢情報とに基づいて、前記アタッチメントの先端座標を算出する先端座標算出手段と、算出した前記先端座標、及びあらかじめ設定された前記目標施工面の座標に基づいて、前記アタッチメントと前記目標施工面との距離を算出する距離算出手段と、を備えることを特徴とする。 (3) In the configuration of (2) above, the control unit of the mobile terminal is characterized by comprising: a tip coordinate calculation means for calculating tip coordinates of the attachment based on registered position information of the position registration means or pre-input information and attitude information detected by the plurality of attitude sensors; and a distance calculation means for calculating a distance between the attachment and the target construction surface based on the calculated tip coordinates and the coordinates of the target construction surface that have been set in advance.
 (4)上記(3)の構成において、前記ブームは、前記支持体に上下揺動可能に支持される第1ブームと、前記第1ブームの先端部に左右揺動可能に支持される第2ブームと、を備えたオフセットブーム機構を有し、前記ブームに設置される前記検出装置は、前記第1ブーム及び前記第2ブームのそれぞれに設置され、前記携帯端末の前記制御部は、検出した前記第1ブーム及び前記第2ブームの姿勢情報に基づいて、前記ブームの長さ情報及び姿勢情報を補正するオフセット補正手段を備えることを特徴とする。 (4) In the configuration of (3) above, the boom has an offset boom mechanism including a first boom supported on the support so as to be able to swing up and down, and a second boom supported on the tip of the first boom so as to be able to swing left and right, the detection device installed on the boom is installed on each of the first boom and the second boom, and the control unit of the mobile terminal is characterized in that it includes an offset correction means for correcting the length information and attitude information of the boom based on the detected attitude information of the first boom and the second boom.
 (5)上記(4)の構成において、前記オフセットブーム機構は、前記第2ブームが非オフセット姿勢から左側最大揺動角まで揺動した左側最大オフセット姿勢と、前記第2ブームが前記非オフセット姿勢から右側最大揺動角まで揺動した右側最大オフセット姿勢との間でオフセット動作可能であり、前記非オフセット姿勢から前記左側最大オフセット姿勢への水平移動距離である左側最大オフセット量と、前記非オフセット姿勢から前記右側最大オフセット姿勢への水平移動距離である右側最大オフセット量とが相違し、前記オフセット補正手段は、あらかじめ登録される前記左側最大オフセット量及び前記右側最大オフセット量を用いて補正処理を行うことを特徴とする。 (5) In the configuration of (4) above, the offset boom mechanism is capable of offsetting between a left maximum offset position in which the second boom has swung from a non-offset position to a left maximum swing angle and a right maximum offset position in which the second boom has swung from the non-offset position to a right maximum swing angle, a left maximum offset amount which is the horizontal movement distance from the non-offset position to the left maximum offset position, and a right maximum offset amount which is the horizontal movement distance from the non-offset position to the right maximum offset position, which is different, and the offset correction means performs correction processing using the left maximum offset amount and the right maximum offset amount which are registered in advance.
 (6)上記(4)の構成において、前記第2ブームに設置される前記検出装置は、前記第2ブームの長さ方向の一端部に設置され、前記長さ方向の一端部は、前記アーム側の端部であることを特徴とする。 (6) In the configuration of (4) above, the detection device installed on the second boom is installed at one end of the second boom in the length direction, and the one end in the length direction is the end on the arm side.
 本開示によれば、簡易かつ柔軟にマシンガイダンスの機能を導入し、さらには必要に応じてマシンガイダンスの機能をバージョンアップすることができる作業支援システムの提供が可能となる。 This disclosure makes it possible to provide a work assistance system that can easily and flexibly introduce machine guidance functions and further upgrade the machine guidance functions as needed.
本発明の実施例に係る作業支援システムの概略構成を示す図である。1 is a diagram showing a schematic configuration of a work support system according to an embodiment of the present invention. 図1の作業支援システムの構成を示すブロック図である。FIG. 2 is a block diagram showing a configuration of the work support system shown in FIG. 1 . 検出装置の斜視図である。FIG. 携帯端末のガイダンス画面を示す図である。FIG. 13 is a diagram showing a guidance screen of the mobile terminal. 表示器を示す図である。FIG. 携帯端末の側面画像要求画面を示す図である。FIG. 13 is a diagram showing a side image request screen of the mobile terminal. 携帯端末の位置登録画面を示す図である。FIG. 13 is a diagram showing a location registration screen of the portable terminal. 位置登録を行う油圧ショベルの特徴点を示す図である。FIG. 13 is a diagram showing characteristic points of a hydraulic excavator for which location registration is performed. (a)は携帯端末の目標施工面設定画面及びその説明図、(b)は目標施工面の座標を求める方程式である。1A is a target construction surface setting screen of a mobile terminal and its explanatory diagram, and FIG. 1B is an equation for determining the coordinates of the target construction surface. バケット先端座標の算出に用いるパラメータの説明図である。FIG. 11 is an explanatory diagram of parameters used in calculating the bucket tip coordinates. 車両傾斜角度の算出に用いるパラメータの説明図である。FIG. 4 is an explanatory diagram of parameters used in calculating a vehicle tilt angle. オフセット補正に用いるパラメータを示すオフセットブームの側面図である。FIG. 11 is a side view of the offset boom showing parameters used for offset correction. オフセット補正に用いるパラメータを示すオフセットブームの平面図である。FIG. 11 is a plan view of the offset boom showing parameters used for offset correction.
 以下、添付図面を参照しながら本発明の実施例について詳細に説明する。 The following describes in detail an embodiment of the present invention with reference to the attached drawings.
[建設機械] 図1及び図2に示す本実施例の作業支援システム1は、建設機械である油圧ショベル2において、マシンガイダンスの機能により油圧ショベル2を操作するオペレータの作業を支援する。作業支援システム1を適用可能な建設機械は、油圧ショベル2などの掘削機に限らず、ロータリーフォークやクローラクレーンなどの荷役機械であってもよい。 [Construction Machinery] The work assistance system 1 of this embodiment shown in Figures 1 and 2 assists the operator in the work of operating a hydraulic excavator 2, which is a construction machine, by using the machine guidance function. Construction machines to which the work assistance system 1 can be applied are not limited to excavators such as the hydraulic excavator 2, but may also be loading and unloading machines such as rotary forks and crawler cranes.
 図1に示すように、油圧ショベル2は、操作部3、作業機4、支持体5及び走行装置6を備える。 As shown in FIG. 1, the hydraulic excavator 2 includes an operating unit 3, a work machine 4, a support body 5, and a traveling device 6.
 操作部3は、油圧ショベル2を操作するオペレータの乗車空間である。油圧ショベル2には、操作部3全体をキャブ31で覆うキャブ仕様と、操作部3の上方のみをキャノピ(図示せず)で覆うキャノピ仕様とがあり、いずれの仕様でも本実施例の作業支援システム1を適用できる。 The operation unit 3 is a riding space for an operator who operates the hydraulic excavator 2. The hydraulic excavator 2 is available in a cab specification in which the entire operation unit 3 is covered with a cab 31, and a canopy specification in which only the upper part of the operation unit 3 is covered with a canopy (not shown), and the work support system 1 of this embodiment can be applied to either specification.
 作業機4は、ブーム41、アーム42及びバケット43を順次連結して構成され、オペレータによって操作される。ブーム41は、支持体5の前端部にブームピン41aを介して上下揺動可能に連結され、支持体5とブーム41との間に設けられるブームシリンダ(図示せず)の油圧伸縮動作に応じて揺動する。アーム42は、ブーム41の先端部にアームピン42aを介して前後及び上下揺動可能に連結され、ブーム41とアーム42との間に設けられるアームシリンダ(図示せず)の油圧伸縮動作に応じて揺動する。バケット43は、アーム42の先端部にバケットピン(アタッチメントピン)43aを介して前後及び上下揺動可能に連結され、アーム42とバケット43との間に設けられるバケットシリンダ(図示せず)の油圧伸縮動作に応じて揺動する。 The work machine 4 is configured by sequentially connecting a boom 41, an arm 42, and a bucket 43, and is operated by an operator. The boom 41 is connected to the front end of the support body 5 via a boom pin 41a so as to be able to swing up and down, and swings in response to the hydraulic extension and retraction of a boom cylinder (not shown) provided between the support body 5 and the boom 41. The arm 42 is connected to the tip of the boom 41 via an arm pin 42a so as to be able to swing back and forth and up and down, and swings in response to the hydraulic extension and retraction of an arm cylinder (not shown) provided between the boom 41 and the arm 42. The bucket 43 is connected to the tip of the arm 42 via a bucket pin (attachment pin) 43a so as to be able to swing back and forth and up and down, and swings in response to the hydraulic extension and retraction of a bucket cylinder (not shown) provided between the arm 42 and the bucket 43.
 バケット43は、アーム42の先端部に着脱可能に装着されるアタッチメントの一種であり、作業の種類に応じて他のアタッチメントに交換することができる。アタッチメントとしては、例えば、木材などを把持するグラップル、コンクリート塊などを破砕するブレーカ、ふるい作業を行うスケルトンバケットなどがある。本実施例の作業支援システム1は、バケット43を装着した掘削作業に限らず、他のアタッチメントを装着した作業にも適用できる。 The bucket 43 is a type of attachment that is removably attached to the tip of the arm 42, and can be replaced with other attachments depending on the type of work. Examples of attachments include a grapple for gripping wood, a breaker for crushing concrete blocks, and a skeleton bucket for sieving work. The work support system 1 of this embodiment is not limited to excavation work using a bucket 43, but can also be applied to work using other attachments.
 支持体5は、操作部3及び作業機4を支持する。走行装置6は、支持体5を旋回可能、かつ走行可能に支持する。走行装置6には、図1に示すようにクローラ61を備えるクローラ式の他に、車輪(図示せず)を備えるホイール式が知られているが、本実施例の作業支援システム1は、クローラ式、ホイール式のいずれにも適用できる。 The support body 5 supports the operation unit 3 and the work machine 4. The traveling device 6 supports the support body 5 so that it can turn and travel. As shown in FIG. 1, in addition to the crawler type having crawlers 61, a wheel type having wheels (not shown) is also known as the traveling device 6, but the work support system 1 of this embodiment can be applied to either the crawler type or the wheel type.
 なお、油圧ショベル2には、ブーム41を左右方向にオフセット不能な非オフセットブーム仕様と、ブーム41を左右方向にオフセット可能なオフセット仕様とがある。以下、非オフセットブーム仕様に適合した作業支援システム1について説明した後、オフセットブーム仕様に適用するためのオフセット補正機能について説明する。 The hydraulic excavator 2 is available in a non-offset boom specification in which the boom 41 cannot be offset in the left-right direction, and an offset specification in which the boom 41 can be offset in the left-right direction. Below, we will first explain the work support system 1 that is compatible with the non-offset boom specification, and then explain the offset correction function for application to the offset boom specification.
[作業支援システムの構成] 図1及び図2に示すように、作業支援システム1は、複数の検出装置11A、11B、11C、収集装置12、携帯端末13及び表示器14を備える。 [Configuration of the work support system] As shown in Figures 1 and 2, the work support system 1 includes multiple detection devices 11A, 11B, and 11C, a collection device 12, a mobile terminal 13, and a display 14.
 図1に示すように、検出装置11A、11B、11Cは、ブーム41、アーム42及びバケット43にそれぞれ設置される。図2及び図3に示すように、検出装置11A、11B、11Cは、それぞれ、姿勢センサ111、無線通信部112、制御部113、バッテリ114、ケース115及び磁性部材116を備える。 As shown in FIG. 1, the detection devices 11A, 11B, and 11C are respectively installed on the boom 41, the arm 42, and the bucket 43. As shown in FIG. 2 and FIG. 3, the detection devices 11A, 11B, and 11C each include a posture sensor 111, a wireless communication unit 112, a control unit 113, a battery 114, a case 115, and a magnetic member 116.
 姿勢センサ111は、設置箇所の姿勢を検出する。例えば、姿勢センサ111には、3次元の加速度、角速度を検出するIMU(INERTIAL MEASUREMENT UNIT)センサが適用される。 The attitude sensor 111 detects the attitude of the installation location. For example, the attitude sensor 111 is an IMU (Inertial Measurement Unit) sensor that detects three-dimensional acceleration and angular velocity.
 無線通信部112は、収集装置12と無線通信を行う。例えば、無線通信部112の無線通信方式には、BLUETOOTH(登録商標)が適用される。 The wireless communication unit 112 performs wireless communication with the collection device 12. For example, BLUETOOTH (registered trademark) is applied as the wireless communication method of the wireless communication unit 112.
 制御部113は、姿勢センサ111から姿勢情報を取得し、取得した姿勢情報を無線通信部112を介して収集装置12に送信する。 The control unit 113 acquires posture information from the posture sensor 111 and transmits the acquired posture information to the collection device 12 via the wireless communication unit 112.
 バッテリ114は、姿勢センサ111、無線通信部112及び制御部113に電源供給を行う。このような検出装置11A、11B、11Cによれば、電源供給用のケーブルや、データ通信用のケーブルをわざわざ作業機4に配索することなく、所望する取り付け箇所に簡易に設置できる。これにより、本実施例の作業支援システム1は、容易に既存の建設機械にマシンガイダンスの機能を追加したり、マシンガイダンスの機能を更新したりすることができる。 The battery 114 supplies power to the attitude sensor 111, the wireless communication unit 112, and the control unit 113. Such detection devices 11A, 11B, and 11C can be easily installed at the desired mounting location without having to take the trouble of wiring a power supply cable or a data communication cable to the work machine 4. As a result, the work assistance system 1 of this embodiment can easily add machine guidance functions to existing construction machines or update the machine guidance functions.
 ケース115は、姿勢センサ111、無線通信部112、制御部113及びバッテリ114を収容する。なお、バッテリ114は、ケース115と別体のケースに収容し、ケーブルを介して検出装置11A、11B、11Cに電源供給を行うようにしてもよい。 The case 115 houses the attitude sensor 111, the wireless communication unit 112, the control unit 113, and the battery 114. The battery 114 may be housed in a case separate from the case 115, and may supply power to the detection devices 11A, 11B, and 11C via a cable.
 磁性部材116は、例えば、永久磁石であり、その磁力によって金属製であるブーム41、アーム42及びバケット43のそれぞれに検出装置11A、11B、11Cを固定させる。例えば、磁性部材116は、図3に示すように、ケース115の底面部に設けられ、その磁力によりケース115の底面部をブーム41、アーム42及びバケット43のそれぞれに固定させる。このような検出装置11A、11B、11Cによれば、所望する取り付け箇所に対して、より簡易に設置できる。 The magnetic member 116 is, for example, a permanent magnet, and its magnetic force fixes the detection devices 11A, 11B, and 11C to the boom 41, arm 42, and bucket 43, which are made of metal. For example, as shown in FIG. 3, the magnetic member 116 is provided on the bottom surface of the case 115, and its magnetic force fixes the bottom surface of the case 115 to the boom 41, arm 42, and bucket 43, respectively. Such detection devices 11A, 11B, and 11C can be more easily installed at the desired mounting locations.
 図1に示すように、収集装置12は、支持体5に設置される。例えば、操作部3の床部であれば、収集装置12を容易に設置できる。収集装置12は、図2に示すように、姿勢センサ121、無線通信部122及び制御部123を備える。 As shown in FIG. 1, the collection device 12 is installed on the support 5. For example, the collection device 12 can be easily installed on the floor of the operation unit 3. As shown in FIG. 2, the collection device 12 includes a posture sensor 121, a wireless communication unit 122, and a control unit 123.
 姿勢センサ121は、支持体5の姿勢を検出する。例えば、姿勢センサ121には、3次元の加速度、角速度を検出するIMUセンサが適用される。 The attitude sensor 121 detects the attitude of the support body 5. For example, an IMU sensor that detects three-dimensional acceleration and angular velocity is used as the attitude sensor 121.
 無線通信部122は、検出装置11A、11B、11C及び携帯端末13と無線通信を行う。例えば、無線通信部122の無線通信方式には、BLUETOOTH(登録商標)が適用される。 The wireless communication unit 122 performs wireless communication with the detection devices 11A, 11B, and 11C and the mobile terminal 13. For example, BLUETOOTH (registered trademark) is used as the wireless communication method of the wireless communication unit 122.
 制御部123は、検出装置11A、11B、11Cから収集した作業機4の姿勢情報と、姿勢センサ121が検出した支持体5の姿勢情報を無線通信部122を介して携帯端末13に送信する。例えば、本実施例の制御部123は、携帯端末13から姿勢情報の要求信号を受信すると、検出装置11A、11B、11Cで検出した作業機4の姿勢情報を収集する。その後、制御部123は、検出装置11A、11B、11Cから収集した作業機4の姿勢情報と、自らの姿勢センサ121で検出した支持体5の姿勢情報を携帯端末13に送信する。また、制御部123は、携帯端末13から通知情報を取得すると、取得した通知情報を表示器14に出力する。 The control unit 123 transmits the posture information of the work machine 4 collected from the detection devices 11A, 11B, and 11C and the posture information of the support body 5 detected by the posture sensor 121 to the mobile terminal 13 via the wireless communication unit 122. For example, in this embodiment, when the control unit 123 receives a posture information request signal from the mobile terminal 13, it collects the posture information of the work machine 4 detected by the detection devices 11A, 11B, and 11C. The control unit 123 then transmits the posture information of the work machine 4 collected from the detection devices 11A, 11B, and 11C and the posture information of the support body 5 detected by its own posture sensor 121 to the mobile terminal 13. Furthermore, when the control unit 123 acquires notification information from the mobile terminal 13, it outputs the acquired notification information to the display 14.
 携帯端末13は、いわゆるスマートフォンやタブレット端末であり、この作業支援システム1に係るアプリケーションソフトウェアの実行により、マシンガイダンス端末として機能する。作業支援システム1に係るアプリケーションソフトウェアは、適宜バージョンアップされる。携帯端末13は、バージョンアップ版のアプリケーションソフトウェアを導入することで、マシンガイダンス機能を最新のものに更新できる。図2に示すように、携帯端末13は、撮像部131、無線通信部132、表示部133及び制御部134を備える。 The mobile terminal 13 is a so-called smartphone or tablet terminal, and functions as a machine guidance terminal by executing application software related to this work assistance system 1. The application software related to the work assistance system 1 is upgraded as appropriate. The mobile terminal 13 can update its machine guidance function to the latest version by installing an upgraded version of the application software. As shown in FIG. 2, the mobile terminal 13 includes an imaging unit 131, a wireless communication unit 132, a display unit 133, and a control unit 134.
 撮像部131は、静止画像や動画を撮影する。本実施例では、油圧ショベル2の側面画像の撮影に使用される。側面画像は、後述する油圧ショベル2の特徴点の箇所を撮像したものである。側面画像は、例えば、油圧ショベル2の外観を側面から撮像した画像であり、ブーム41、アーム42、アーム42の先端部に着脱可能に装着されるアタッチメントの一種であるバケット43が撮像範囲に含むものである。また、側面画像は、油圧ショベル2の全体が1枚の画像に収まるように撮像されたものの他に、油圧ショベル2の個々の特徴点の箇所を撮像した複数の画像であってもよい。 The imaging unit 131 captures still images and videos. In this embodiment, it is used to capture a side image of the hydraulic excavator 2. The side image is an image of the characteristic points of the hydraulic excavator 2, which will be described later. The side image is, for example, an image of the exterior of the hydraulic excavator 2 captured from the side, and includes in the captured range the boom 41, the arm 42, and the bucket 43, which is a type of attachment that is detachably attached to the tip of the arm 42. The side image may be an image in which the entire hydraulic excavator 2 fits in a single image, or it may be a plurality of images in which individual characteristic points of the hydraulic excavator 2 are captured.
 無線通信部132は、少なくとも収集装置12と無線通信を行う。例えば、無線通信部132の無線通信方式には、BLUETOOTH(登録商標)が適用される。 The wireless communication unit 132 performs wireless communication at least with the collection device 12. For example, BLUETOOTH (registered trademark) is applied as the wireless communication method of the wireless communication unit 132.
 表示部133は、表示機能及びタッチ入力機能を備えたタッチスクリーンで構成され、図4に示すガイダンス画面G1などの表示や、後述する位置登録画面G3(図7参照)における位置入力に使用される。 The display unit 133 is configured as a touch screen with a display function and a touch input function, and is used to display the guidance screen G1 shown in FIG. 4 and to input a position on the position registration screen G3 (see FIG. 7) described later.
 制御部134は、収集装置12から受信した複数の姿勢情報に基づいてバケット43と目標施工面Dとの距離を算出し、図4に示すように、算出した距離を表示部133に表示させる。例えば、図4に示すガイダンス画面G1には、バケット43の先端と目標施工面Dとの高さ方向の距離を数値で表示する第1表示領域G101の他に、様々な算出結果を表示する第2~第6の表示領域G102~G106が含まれる。第2表示領域G102には、機体に対するバケット43の高さ方向の位置を数値で表示する。第3表示領域G103には、作業機4の具体的な操作ガイダンスを表示する。図4では、ブームとアームの上げ下げに関する表示が上下に配置されている。第4表示領域G104には、現在の油圧ショベル2の側面姿勢を画像で表示し、第5表示領域G105には、機体に対する目標施工面Dの位置を画像で表示する。第6表示領域G106には、バケット43の先端と目標施工面Dとの高さ方向の距離を棒グラフのように表示する。なお、図4に示すガイダンス画面G1には、最も下側に、ガイダンス停止ボタン(符号なし)が配置されてもよい。 The control unit 134 calculates the distance between the bucket 43 and the target construction surface D based on the multiple posture information received from the collection device 12, and displays the calculated distance on the display unit 133 as shown in FIG. 4. For example, the guidance screen G1 shown in FIG. 4 includes a first display area G101 that displays the heightwise distance between the tip of the bucket 43 and the target construction surface D as a numerical value, as well as second to sixth display areas G102 to G106 that display various calculation results. The second display area G102 displays the heightwise position of the bucket 43 relative to the machine body as a numerical value. The third display area G103 displays specific operation guidance for the work machine 4. In FIG. 4, displays related to the raising and lowering of the boom and arm are arranged above and below. The fourth display area G104 displays the current side posture of the hydraulic excavator 2 as an image, and the fifth display area G105 displays the position of the target construction surface D relative to the machine body as an image. The sixth display area G106 displays the heightwise distance between the tip of the bucket 43 and the target construction surface D as a bar graph. In addition, a guidance stop button (no symbol) may be located at the very bottom of the guidance screen G1 shown in FIG. 4.
 また、制御部134は、算出したバケット43と目標施工面Dとの距離を収集装置12を介して表示器14に送信し、表示器14において算出した距離を表示させる。なお、バケット43と目標施工面Dとの距離の算出方法は後述する。 The control unit 134 also transmits the calculated distance between the bucket 43 and the target construction surface D to the display 14 via the collection device 12, and causes the display 14 to display the calculated distance. The method for calculating the distance between the bucket 43 and the target construction surface D will be described later.
 表示器14は、油圧ショベル2の操作部3に設置され、携帯端末13で算出されたバケット43と目標施工面Dとの距離を表示する。本実施例の表示器14は、図5に示すように、セグメント方式のLED表示部により構成される。具体的に表示器14は、矩形形状のセグメントLEDを2列L1、L2に縦方向に順次一定間隔で配置して形成される。このような表示器14によれば、例えば、目標施工面Dの高さを左列L1のセグメントLEDで表示し、目標施工面Dからバケット43の先端までの高さ方向の距離を右列L2のセグメントLEDで表示することができる。なお、表示器14は、バケット43と目標施工面Dとの距離を数値で表示してもよい。また、オペレータから視認可能な位置に携帯端末13を設置し、携帯端末13のガイダンス画面G1を表示器14に兼用することで、表示器14を省略してもよい。 The display 14 is installed in the operation section 3 of the hydraulic excavator 2 and displays the distance between the bucket 43 and the target construction surface D calculated by the mobile terminal 13. As shown in FIG. 5, the display 14 in this embodiment is configured with a segment-type LED display section. Specifically, the display 14 is formed by arranging rectangular segment LEDs in two rows L1 and L2 in the vertical direction at regular intervals. With such a display 14, for example, the height of the target construction surface D can be displayed by the segment LEDs in the left row L1, and the height distance from the target construction surface D to the tip of the bucket 43 can be displayed by the segment LEDs in the right row L2. The display 14 may display the distance between the bucket 43 and the target construction surface D as a numerical value. Also, the mobile terminal 13 may be installed in a position visible to the operator, and the guidance screen G1 of the mobile terminal 13 may be used as the display 14, so that the display 14 may be omitted.
[携帯端末の機能構成] つぎに、携帯端末13の機能構成について、図6~図11を参照して説明する。 [Functional configuration of mobile terminal] Next, the functional configuration of mobile terminal 13 will be explained with reference to Figures 6 to 11.
 携帯端末13は、ハードウェアとソフトウェアとの協働により実現される複数の機能構成を備える。複数の機能構成には、側面画像表示手段、位置登録手段、パラメータ算出手段、目標施工面設定手段、先端座標算出手段、距離算出手段及びガイダンス画面表示手段が含まれる。ここで、側面画像表示手段、位置登録手段、パラメータ算出手段及び目標施工面設定手段は、作業に先立って事前設定を行うための機能構成である。また、先端座標算出手段、距離算出手段及びガイダンス画面表示手段は、作業中にガイダンス表示を行うための機能構成である。 The mobile terminal 13 has multiple functional configurations realized by the cooperation of hardware and software. The multiple functional configurations include a side image display means, a position registration means, a parameter calculation means, a target construction surface setting means, a tip coordinate calculation means, a distance calculation means, and a guidance screen display means. Here, the side image display means, the position registration means, the parameter calculation means, and the target construction surface setting means are functional configurations for performing advance settings prior to work. Also, the tip coordinate calculation means, the distance calculation means, and the guidance screen display means are functional configurations for displaying guidance during work.
 側面画像表示手段は、撮像部131で撮像された油圧ショベル2の側面画像を表示部133に表示させる。例えば、図6に示す側面画像要求画面G2において、油圧ショベル2の側面画像を要求するメッセージ「車両全体が映るように写真を撮影してください」を(例えば図6の白抜き部分内に)表示し、撮影された油圧ショベル2の側面画像を画面に表示させる。 The side image display means displays the side image of the hydraulic excavator 2 captured by the imaging unit 131 on the display unit 133. For example, on the side image request screen G2 shown in FIG. 6, a message requesting a side image of the hydraulic excavator 2, "Please take a photo so that the entire vehicle is visible," is displayed (for example, in the white area in FIG. 6), and the captured side image of the hydraulic excavator 2 is displayed on the screen.
 位置登録手段は、表示部133に表示された側面画像のタッチ操作に応じて、油圧ショベル2の特徴点の位置や、姿勢センサ111、121(検出装置11A、11B、11C及び収集装置12)の設置位置を登録する。例えば、図7に示す位置登録画面G3において、つぎにタッチ操作すべき位置を示すメッセージ「アームピンを選択してください」を(例えば図7の白抜き部分内に)表示し、タッチ操作された位置座標を取得する。 The position registration means registers the positions of the characteristic points of the hydraulic excavator 2 and the installation positions of the attitude sensors 111, 121 ( detection devices 11A, 11B, 11C and collection device 12) in response to touch operations on the side image displayed on the display unit 133. For example, on the position registration screen G3 shown in FIG. 7, a message "Please select the arm pin" indicating the next position to be touched is displayed (for example, in the white area in FIG. 7), and the touched position coordinates are obtained.
 図8に示すように、位置登録を要求する油圧ショベル2の特徴点には、第1~第6ポイントP1~P6が含まれ、姿勢センサ111、121の設置位置には、第7~第10ポイントP7~P10が含まれる。例えば、第1ポイントP1はブームピン41a(図1参照)の位置、第2ポイントP2はアームピン42a(図1参照)の位置、第3ポイントP3はバケットピン43a(図1参照)の位置、第4ポイントP4はバケット43の先端位置と定義される。また、第5ポイントP5は走行装置6の接地前端位置、第6ポイントP6は走行装置6の接地後端位置と定義される。また、第7ポイントP7はブーム41に設置される検出装置11Aの位置、第8ポイントP8はアーム42に設置される検出装置11Bの位置、第9ポイントP9はバケット43に設置される検出装置11Cの位置と定義される。また、第10ポイントP10は収集装置12が設置される位置と定義される。 As shown in FIG. 8, the characteristic points of the hydraulic excavator 2 that require position registration include the first to sixth points P1 to P6, and the installation positions of the attitude sensors 111 and 121 include the seventh to tenth points P7 to P10. For example, the first point P1 is defined as the position of the boom pin 41a (see FIG. 1), the second point P2 is defined as the position of the arm pin 42a (see FIG. 1), the third point P3 is defined as the position of the bucket pin 43a (see FIG. 1), and the fourth point P4 is defined as the tip position of the bucket 43. The fifth point P5 is defined as the ground front end position of the traveling device 6, and the sixth point P6 is defined as the ground rear end position of the traveling device 6. The seventh point P7 is defined as the position of the detector 11A installed on the boom 41, the eighth point P8 is defined as the position of the detector 11B installed on the arm 42, and the ninth point P9 is defined as the position of the detector 11C installed on the bucket 43. The tenth point P10 is defined as the position where the collecting device 12 is installed.
 位置登録手段は、例えば、走行装置6の接地後端位置(第6ポイントP6)を原点、油圧ショベル2の長さ方向をX軸、油圧ショベル2の高さ方向をY軸とするXY座標(以下、車体座標系と称する)を想定する。そして、位置登録手段は、入力された第1~第10ポイントP1~P10の位置情報を車体座標系の座標データとして登録する。なお、位置登録手段は、検出装置11A、11B、11C及び収集装置12の設置位置だけでなく、設置方向を登録するようにしてもよい。 The position registration means assumes, for example, an XY coordinate system (hereinafter referred to as the vehicle body coordinate system) with the rear end position of the traveling device 6 that comes into contact with the ground (sixth point P6) as the origin, the length direction of the hydraulic excavator 2 as the X axis, and the height direction of the hydraulic excavator 2 as the Y axis. The position registration means then registers the input position information of the first to tenth points P1 to P10 as coordinate data in the vehicle body coordinate system. Note that the position registration means may register not only the installation positions of the detection devices 11A, 11B, 11C and the collection device 12, but also the installation directions.
 パラメータ算出手段は、位置登録手段によって登録された位置情報に基づいて、バケット先端座標を取得するための各種パラメータを算出する。図10に示すように、算出する各種パラメータには、地面-ブームピン長さH、ブーム長さE、アーム長さF、バケット長さGなどが含まれる。地面-ブームピン長さHは、車両座標系において、走行装置6の接地後端位置(第6ポイントP6)とブームピン41aの位置(第1ポイントP1)とを結ぶ直線距離である。ブーム長さEは、車両座標系において、ブームピン41aの位置(第1ポイントP1)とアームピン42aの位置(第2ポイントP2)を結ぶ直線距離である。アーム長さFは、車両座標系において、アームピン42aの位置(第2ポイントP2)とバケットピン43aの位置(第3ポイントP3)を結ぶ直線距離である。バケット長さGは、バケットピン43aの位置(第3ポイントP3)とバケット43の先端位置(第4ポイントP4)とを結ぶ直線距離である。 The parameter calculation means calculates various parameters for acquiring bucket tip coordinates based on the position information registered by the position registration means. As shown in FIG. 10, the various parameters to be calculated include the ground-to-boom pin length H, the boom length E, the arm length F, the bucket length G, and the like. The ground-to-boom pin length H is the straight-line distance connecting the ground rear end position (sixth point P6) of the traveling device 6 and the position of the boom pin 41a (first point P1) in the vehicle coordinate system. The boom length E is the straight-line distance connecting the position of the boom pin 41a (first point P1) and the position of the arm pin 42a (second point P2) in the vehicle coordinate system. The arm length F is the straight-line distance connecting the position of the arm pin 42a (second point P2) and the position of the bucket pin 43a (third point P3) in the vehicle coordinate system. The bucket length G is the straight-line distance connecting the position of the bucket pin 43a (third point P3) and the tip position of the bucket 43 (fourth point P4).
 目標施工面設定手段は、目標施工面Dの事前設定を可能にする。本実施例の目標施工面設定手段は、図9の(a)に示す目標施工面設定画面G4において、目標施工面Dの開始位置座標(a1,b1)、終了位置座標(a2,b2)及びバケット43の目標角度の入力を求める。つまり、目標施工面設定画面G4には、目標施工面Dの開始位置X座標入力欄G401と、開始位置Y座標入力欄G402と、終了位置X座標入力欄G403と、終了位置Y座標入力欄G404と、バケット目標角度入力欄G405とが表示される。また、目標施工面設定画面G4には、各入力欄に数値入力を行うためのテンキーパッドG406や、ガイダンス表示の開始操作を行うためのガイダンス開始ボタンG407も表示される。 The target construction surface setting means enables the advance setting of the target construction surface D. The target construction surface setting means of this embodiment requests the input of the start position coordinates (a1, b1), end position coordinates (a2, b2) and the target angle of the bucket 43 of the target construction surface D on the target construction surface setting screen G4 shown in FIG. 9(a). That is, the target construction surface setting screen G4 displays the start position X coordinate input field G401, the start position Y coordinate input field G402, the end position X coordinate input field G403, the end position Y coordinate input field G404 and the bucket target angle input field G405 of the target construction surface D. The target construction surface setting screen G4 also displays a numeric keypad G406 for inputting numerical values into each input field and a guidance start button G407 for starting the guidance display.
 目標施工面設定手段は、入力された座標データに基づいて、目標施工面DのX座標からY座標を求める方程式(図9の(b)参照)を生成する。このような方程式によれば、車体座標系において、バケット先端のX座標(前後位置)を算出した後、このX座標を上記の方程式に代入することで、バケット先端のX座標に対応する目標施工面DのY座標(高さ位置)が得られる。 The target construction surface setting means generates an equation (see FIG. 9(b)) that determines the Y coordinate from the X coordinate of the target construction surface D based on the input coordinate data. According to such an equation, after calculating the X coordinate (front-to-rear position) of the bucket tip in the vehicle body coordinate system, the Y coordinate (height position) of the target construction surface D corresponding to the X coordinate of the bucket tip can be obtained by substituting this X coordinate into the above equation.
 先端座標算出手段は、位置登録手段の登録位置情報と、あらかじめ入力された入力情報と、複数の姿勢センサ111、121が検出した姿勢情報とに基づいて、バケット43の先端座標を算出する。本実施形態の先端座標算出手段は、図10及び図11に示すように、前述した長さ情報H、E、F、Gと、姿勢センサ111、121の検出値に基づいて算出される角度情報θ1~θ4とを用いて、バケット43の先端座標を算出する。角度θ1は、水平を基準とするブーム41の揺動角であり、検出装置11Aに設けられる姿勢センサ111の検出値に基づいて算出される。角度θ2は、水平を基準とするアーム42の揺動角であり、検出装置11Bに設けられる姿勢センサ111の検出値に基づいて算出される。角度θ3は、水平を基準とするバケット43の揺動角であり、検出装置11Cに設けられる姿勢センサ111の検出値に基づいて算出される。角度θ4は、水平を基準とする機体の傾斜角であり、図11に示すように、収集装置12に設けられる姿勢センサ121の検出値に基づいて算出される角度Δθ4と、あらかじめ入力された角度θ4とから算出される。なお、角度θ4は、走行装置6の接地後端位置とブームピン41aの位置を結ぶ直線と、走行装置6の接地面とがなす固定値であり、油圧ショベル2のカタログなどから取得して事前に入力される。 The tip coordinate calculation means calculates the tip coordinates of the bucket 43 based on the registered position information of the position registration means, the input information input in advance, and the attitude information detected by the plurality of attitude sensors 111 and 121. As shown in Figs. 10 and 11, the tip coordinate calculation means of this embodiment calculates the tip coordinates of the bucket 43 using the length information H, E, F, and G described above and the angle information θ1 to θ4 calculated based on the detection values of the attitude sensors 111 and 121. The angle θ1 is the swing angle of the boom 41 based on the horizontal and is calculated based on the detection value of the attitude sensor 111 provided in the detection device 11A. The angle θ2 is the swing angle of the arm 42 based on the horizontal and is calculated based on the detection value of the attitude sensor 111 provided in the detection device 11B. The angle θ3 is the swing angle of the bucket 43 based on the horizontal and is calculated based on the detection value of the attitude sensor 111 provided in the detection device 11C. 11, is calculated from an angle Δθ4 calculated based on the detection value of an attitude sensor 121 provided in the collection device 12 and an angle θ4 0 input in advance. Note that the angle θ4 0 is a fixed value formed by a straight line connecting the ground rear end position of the traveling device 6 and the position of the boom pin 41a, and the ground contact surface of the traveling device 6, and is obtained from a catalog of the hydraulic excavator 2 or the like and input in advance.
 先端座標算出手段は、上記の各種パラメータ及び下記に式を用いて、車体座標系におけるバケット先端位置のX座標及びY座標を算出する。
 X=Hcos(θ4)+Ecos(θ1)+Fcos(θ2)+Gcos(θ3)
 Y=Hsin(θ4)+Esin(θ1)+Fsin(θ2)+Gsin(θ3)
The tip coordinate calculation means calculates the X and Y coordinates of the bucket tip position in the vehicle body coordinate system using the various parameters described above and the following equations.
X = H cos(θ4) + Ecos(θ1) + F cos(θ2) + G cos(θ3)
Y = H sin(θ4) + E sin(θ1) + F sin(θ2) + G sin(θ3)
 距離算出手段は、算出したバケット43の先端座標、及びあらかじめ設定された目標施工面Dの座標に基づいて、バケット43の先端と目標施工面Dとの高さ方向の距離を算出する。例えば、距離算出手段は、算出したバケット43の先端X座標を図9の(b)に示す方程式に代入して、バケット43の先端X座標に対応する目標施工面DのY座標を取得した後、このY座標とバケット43の先端Y座標との差を算出する。これにより、バケット43の先端と目標施工面Dとの高さ方向の距離が求められる。 The distance calculation means calculates the heightwise distance between the tip of the bucket 43 and the target construction surface D based on the calculated tip coordinate of the bucket 43 and the preset coordinate of the target construction surface D. For example, the distance calculation means substitutes the calculated tip X coordinate of the bucket 43 into the equation shown in FIG. 9(b) to obtain the Y coordinate of the target construction surface D corresponding to the tip X coordinate of the bucket 43, and then calculates the difference between this Y coordinate and the tip Y coordinate of the bucket 43. This determines the heightwise distance between the tip of the bucket 43 and the target construction surface D.
 ガイダンス画面表示手段は、図4に示すガイダンス画面G1を表示部133に表示させる。そして、ガイダンス画面表示手段は、ガイダンス画面G1の第1表示領域G101において、バケット43の先端と目標施工面Dとの高さ方向の距離を数値で表示させるとともに、第6表示領域G106において、バケット43の先端と目標施工面Dとの高さ方向の距離を棒グラフ状に表示させる。 The guidance screen display means displays the guidance screen G1 shown in FIG. 4 on the display unit 133. The guidance screen display means then displays the heightwise distance between the tip of the bucket 43 and the target construction surface D as a numerical value in the first display area G101 of the guidance screen G1, and displays the heightwise distance between the tip of the bucket 43 and the target construction surface D as a bar graph in the sixth display area G106.
[オフセット補正] つぎに、オフセット補正について、図12及び図13を参照して説明する。 [Offset correction] Next, offset correction will be explained with reference to Figures 12 and 13.
 携帯端末13は、機能構成としてオフセット補正手段を備える。オフセット補正手段は、作業支援システム1をオフセットブーム仕様の油圧ショベル2Bに適用する場合にオフセット補正を実行する。まず、オフセットブーム仕様の油圧ショベル2Bについて説明する。ただし、非オフセットブーム仕様の油圧ショベル2と共通の構成については、非オフセットブーム仕様の油圧ショベル2と同じ符号を用いることにより、非オフセットブーム仕様の油圧ショベル2の説明を援用する場合がある。 The mobile terminal 13 has an offset correction means as a functional configuration. The offset correction means executes offset correction when the work support system 1 is applied to a hydraulic excavator 2B with an offset boom. First, the hydraulic excavator 2B with an offset boom will be described. However, for configurations common to the hydraulic excavator 2 with a non-offset boom, the same reference numerals as those in the hydraulic excavator 2 with a non-offset boom may be used to refer to the description of the hydraulic excavator 2 with a non-offset boom.
 図12及び図13に示すように、オフセットブーム仕様の油圧ショベル2Bに設けられる作業機4Bのブーム41Bは、オフセットブーム機構を有する。オフセットブーム機構は、支持体5に上下揺動可能に支持される第1ブーム411と、第1ブーム411の先端部に左右揺動可能に支持される第2ブーム412とを備える。第2ブーム412は、その左右揺動に応じてアーム42を左右に平行移動させる平行リンク機構を有し、第1ブーム411と第2ブーム412との間に設けられるオフセットシリンダ413の油圧伸縮動作に応じて左右に揺動される。このようなオフセットブーム仕様の油圧ショベル2Bでは、第2ブーム412の左右揺動に応じて、車体座標系のブーム長さE及びブーム角度θ1が変化するため、先端座標算出手段により算出したバケット43の先端座標に誤差が生じる。オフセット補正は、このような誤差を抑制するための処理であり、まず、オフセット補正の概要を説明した後、オフセット補正の具体的な処理内容を説明する。 As shown in Figs. 12 and 13, the boom 41B of the work machine 4B provided on the hydraulic excavator 2B with offset boom has an offset boom mechanism. The offset boom mechanism includes a first boom 411 supported on the support body 5 so as to be able to swing up and down, and a second boom 412 supported on the tip of the first boom 411 so as to be able to swing left and right. The second boom 412 has a parallel link mechanism that translates the arm 42 left and right in response to the left and right swinging, and is swung left and right in response to the hydraulic extension and retraction of the offset cylinder 413 provided between the first boom 411 and the second boom 412. In such an offset boom hydraulic excavator 2B, the boom length E and boom angle θ1 in the vehicle body coordinate system change in response to the left and right swinging of the second boom 412, so that an error occurs in the tip coordinate of the bucket 43 calculated by the tip coordinate calculation means. The offset correction is a process for suppressing such errors. First, an overview of the offset correction will be explained, and then the specific process content of the offset correction will be explained.
 オフセット補正を行う場合、ブーム設置用として2つの検出装置11A1、11A2を用意し、第1ブーム411及び第2ブーム412のそれぞれに設置する。第2ブーム412に設置される検出装置11A2は、第2ブーム412の長さ方向の一端部に設置する場合、アーム42側の端部であることが望ましい。このようにすると、第1ブーム411側の端部に設置する場合に比べて、第2ブーム412に左右揺動の伴う検出装置11A2の変位量が大きくなるので、検出装置11A2による第2ブーム412の姿勢検出精度を向上させることができる。 When performing offset correction, two detectors 11A1, 11A2 are prepared for boom installation and installed on the first boom 411 and second boom 412, respectively. When the detector 11A2 is installed on the second boom 412 at one end of the length of the second boom 412, it is desirable that it be the end on the arm 42 side. In this way, the amount of displacement of the detector 11A2 accompanying left and right swinging of the second boom 412 becomes larger compared to when it is installed at the end on the first boom 411 side, and therefore the accuracy of detecting the attitude of the second boom 412 by the detector 11A2 can be improved.
 オフセット補正手段は、検出装置11A1、11A2が検出した第1ブーム411及び第2ブーム412の姿勢情報に基づいて、ブーム41Bの長さ情報及び姿勢情報を補正する。これにより、先端座標算出手段は、第2ブーム412の左右揺動に応じて車体座標系のブーム長さE及びブーム角度θ1が変化したとしても、補正されたブーム長さE及びブーム角度θ1を用いることで、バケット43の先端座標を精度良く算出することができる。 The offset correction means corrects the length information and attitude information of the boom 41B based on the attitude information of the first boom 411 and the second boom 412 detected by the detection devices 11A1 and 11A2. As a result, even if the boom length E and boom angle θ1 in the vehicle body coordinate system change in response to the left-right swing of the second boom 412, the tip coordinate calculation means can accurately calculate the tip coordinate of the bucket 43 by using the corrected boom length E and boom angle θ1.
 ところで、オフセットブーム機構は、図13に示すように、第2ブーム412が非オフセット姿勢から左側最大揺動角まで揺動した左側最大オフセット姿勢と、第2ブーム412が非オフセット姿勢から右側最大揺動角まで揺動した右側最大オフセット姿勢とを有する。そして、非オフセット姿勢から左側最大オフセット姿勢への水平移動距離である左側最大オフセット量Xと、非オフセット姿勢から右側最大オフセット姿勢への水平移動距離である右側最大オフセット量Yとが相違している。オフセット補正手段は、あらかじめ登録される左側最大オフセット量X及び右側最大オフセット量Yを用いて補正処理を行う。左側最大オフセット量X及び右側最大オフセット量Yは、通常、油圧ショベル2Bのカタログなどに記載されており、容易に取得して事前登録を行うことができる。 As shown in FIG. 13, the offset boom mechanism has a left maximum offset posture in which the second boom 412 has swung from the non-offset posture to the left maximum swing angle, and a right maximum offset posture in which the second boom 412 has swung from the non-offset posture to the right maximum swing angle. The left maximum offset amount X, which is the horizontal movement distance from the non-offset posture to the left maximum offset posture, is different from the right maximum offset amount Y, which is the horizontal movement distance from the non-offset posture to the right maximum offset posture. The offset correction means performs correction processing using the left maximum offset amount X and right maximum offset amount Y, which are registered in advance. The left maximum offset amount X and right maximum offset amount Y are usually listed in a catalog for the hydraulic excavator 2B, and can be easily obtained and registered in advance.
 つぎに、オフセット補正の具体的な処理内容について、図12及び図13を参照して説明する。ただし、車体座標系において、第2ブーム412の第1ブーム411側の左右揺動支点位置をA、第2ブーム412のアーム42側の左右揺動支点位置をB、アームピン42aの位置をC、ブームピン41aの位置をZとする。また、線分ABの長さをab、線分ACの長さをac、線分BCの長さをbc、線分AZの長さをaz、線分CZの長さをcz(補正すべき長さEに相当)とする。また、非オフセット時の線分ABの初期長さをab0、非オフセット時の線分CZの初期長さをcz0とする。また、線分ABと線分AZとのなす角度をα、線分ABと線分BCとのなす角度をβ、線分ABと線分ACとのなす角度をγ、線分AZと線分CZとのなす角度をφとする。また、第2ブーム412のオフセット最大可動角度をyaw0、第2ブーム412の右側最大揺動角をθ、第2ブーム412の左側最大揺動角をyaw0-θとする。なお、yaw0は、第2ブーム412の右側最大オフセット姿勢で検出装置11a2の出力yawをゼロリセットした後、第2ブーム412を左側最大オフセット姿勢までオフセット動作させたときの出力yawとして取得することができる。 Next, the specific processing contents of the offset correction will be described with reference to Figures 12 and 13. However, in the vehicle body coordinate system, the left and right swing fulcrum position of the second boom 412 on the first boom 411 side is A, the left and right swing fulcrum position of the second boom 412 on the arm 42 side is B, the position of the arm pin 42a is C, and the position of the boom pin 41a is Z. Also, the length of the line segment AB is ab, the length of the line segment AC is ac, the length of the line segment BC is bc, the length of the line segment AZ is az, and the length of the line segment CZ is cz (corresponding to the length E to be corrected). Also, the initial length of the line segment AB when not offset is ab0, and the initial length of the line segment CZ when not offset is cz0. Also, the angle between the line segment AB and the line segment AZ is α, the angle between the line segment AB and the line segment BC is β, the angle between the line segment AB and the line segment AC is γ, and the angle between the line segment AZ and the line segment CZ is φ. In addition, the maximum offset movable angle of the second boom 412 is yaw0, the maximum right swing angle of the second boom 412 is θ, and the maximum left swing angle of the second boom 412 is yaw0-θ. Note that yaw0 can be obtained as the output yaw when the second boom 412 is offset to the maximum left offset position after the output yaw of the detection device 11a2 is reset to zero when the second boom 412 is in the maximum right offset position.
 余弦定理より
 
 Y=ab0×sin(θ)
 X=ab0×sin(yaw0-θ)
 
 上2式からab0を消すと、
 X=Y/sin(θ)×sin(yaw0-θ)
 =Y/sin(θ)×(sin(yaw0)cos(θ)-cos(yaw0)sin(θ))
 =Ysin(yaw0)cos(θ)/sin(θ)-Ycos(yaw0)
 =Ysin(yaw0)(1/(tan(θ)))-Ycos(yaw0)
 
 tan(θ)の形にして、
 
 X+Ycos(yaw0)=Ysin(yaw0)(1/(tan(θ)))
 tan(θ)=(Ysin(yaw0))/(X+Ycos(yaw0))
 θ=arctan(Ysin(yaw0)/(X+Ycos(yaw0)))
 
θが求まったので、ab0を求める。
 
 ab0=Y/sin(θ)
From the cosine theorem
Y = ab0 × sin(θ)
X = ab0 × sin(yaw0 - θ)

If we eliminate ab0 from the above two equations,
X=Y/sin(θ)×sin(yaw0−θ)
= Y / sin (θ) × (sin (yaw0) cos (θ) - cos (yaw0) sin (θ))
= Y sin(yaw0) cos(θ) / sin(θ) - Y cos(yaw0)
= Y sin(yaw0) (1/(tan(θ))) - Y cos(yaw0)

In the form of tan(θ),

X+Ycos(yaw0)=Ysin(yaw0)(1/(tan(θ)))
tan(θ)=(Y sin(yaw0))/(X+Y cos(yaw0))
θ=arctan(Y sin(yaw0)/(X+Y cos(yaw0)))

Now that θ has been found, ab0 is found.

ab0=Y/sin(θ)
 第2ブーム412が右端からyawだけずれた時の長さabは、
 
 ab=ab0×cos(θ-yaw)
 
 長さacは、△ABCの余弦定理より
 
 ac=ab+bc-2×ab×bc×cos(β)
 ac=√(ab+bc-2×ab×bc×cos(β))
 ただし、bc、βは事前設定される既知の値であり、かつ固定値である。
The length ab when the second boom 412 is shifted by yaw from the right end is

ab = ab0 × cos(θ-yaw)

The length ac is given by the cosine law of △ABC.
ac2 = ab2 + bc2 - 2 x ab x bc x cos(β)
ac = √( ab2 + bc2 - 2 x ab x bc x cos(β))
Here, b c and β are known values that are set in advance and are fixed values.
 γは△ABCの正弦定理より
 
 bc/sin(γ)=ac/sin(β)
 sin(γ)=bc/acsin(β)
 γ=arcsin(bc/acsin(β))
 
 ここで、ブームオフセットにより変化する長さはczなので、
 △ACZの余弦定理より
 
(1)点Bが線分ACより下にある場合、
 cz=ac+az-2×ac×az×cos(α+γ)
 cz=√(ac+az-2×ac×az×cos(α+γ))
 
(2)点Bが線分ACより上にある場合、
 cz=ac+az-2×ac×az×cos(α-γ)
 cz=√(ac+az-2×ac×az×cos(α-γ))
 ただし、az、αは事前設定される既知の値であり、かつ固定値である。
γ is the sine law of △ABC.
bc/sin(γ)=ac/sin(β)
sin(γ)=bc/acsin(β)
γ = arcsin(bc/acsin(β))

Here, the length that changes due to the boom offset is cz, so
△From ACZ cosine theorem
(1) If point B is below line segment AC,
cz2 = ac2 + az2 - 2 x ac x az x cos(α + γ)
cz = √( ac2 + az2 - 2 x ac x az x cos(α + γ))

(2) If point B is on the line segment AC,
cz2 = ac2 + az2 - 2 x ac x az x cos(α-γ)
cz = √( ac2 + az2 - 2 x ac x az x cos(α-γ))
Here, az and α are known values that are set in advance and are fixed values.
 ブームオフセットによりC点が動くため、φが変化する。
 任意の状態のφは△AZCの正弦定理より
 
(1)点Bが線分ACより下にある場合、
 ac/sin(φ)=cz/sin(α+γ)
 sin(φ)=(ac/cz)sin(α+γ)
 φ=arcsin((ac/cz)sin(α+γ))
 
(2)点Bが線分ACより上にある場合、
 ac/sin(φ)=cz/sin(α-γ)
 sin(φ)=(ac/cz)sin(α-γ)
 φ=arcsin((ac/cz)sin(α-γ))
 
 したがって、ブームオフセット時における補正後のブーム角度θ1は、非オフセット時のθ1をθ10、φをφ0とすると、下記の式で算出することができる。
 
 θ1=θ10-(φ0-φ)
Since point C moves due to the boom offset, φ changes.
Any state φ is △AZC sine theorem
(1) If point B is below line segment AC,
ac/sin(φ)=cz/sin(α+γ)
sin(φ)=(ac/cz)sin(α+γ)
φ=arcsin((ac/cz)sin(α+γ))

(2) If point B is on the line segment AC,
ac/sin(φ)=cz/sin(α-γ)
sin(φ)=(ac/cz)sin(α-γ)
φ=arcsin((ac/cz)sin(α-γ))

Therefore, the corrected boom angle θ1 when the boom is offset can be calculated using the following formula, where θ1 when not offset is θ10 and φ is φ0.

θ1=θ10-(φ0-φ)
 以上、各実施例について詳述したが、特定の実施例に限定されるものではなく、特許請求の範囲に記載された範囲内において、種々の変形及び変更が可能である。また、前述した実施例の構成要素を全部又は複数を組み合わせることも可能である。 Although each embodiment has been described in detail above, it is not limited to a specific embodiment, and various modifications and changes are possible within the scope of the claims. It is also possible to combine all or some of the components of the above-mentioned embodiments.
1 作業支援システム11A 検出装置11B 検出装置11C 検出装置111 姿勢センサ112 無線通信部113 制御部114 バッテリ115 ケース116 磁性部材12 収集装置121 姿勢センサ122 無線通信部123 制御部13 携帯端末131 撮像部132 無線通信部133 表示部134 制御部14 表示器2、2B 油圧ショベル3 操作部4、4B 作業機41、41B ブーム411 第1ブーム412 第2ブーム413 オフセットシリンダ41a ブームピン42 アーム42a アームピン43 バケット(アタッチメント)43a バケットピン(アタッチメントピン)5 支持体6 走行装置 1 Work support system 11A Detector 11B Detector 11C Detector 111 Attitude sensor 112 Wireless communication unit 113 Control unit 114 Battery 115 Case 116 Magnetic member 12 Collector 121 Attitude sensor 122 Wireless communication unit 123 Control unit 13 Mobile terminal 131 Imaging unit 132 Wireless communication unit 133 Display unit 134 Control unit 14 Display 2, 2B Hydraulic excavator 3 Operation unit 4, 4B Work machine 41, 41B Boom 411 First boom 412 Second boom 413 Offset cylinder 41a Boom pin 42 Arm 42a Arm pin 43 Bucket (attachment) 43a Bucket pin (attachment pin) 5 Support 6 Travel device

Claims (6)

  1.  オペレータが乗車する操作部と、
     ブーム、アーム及びアタッチメントを連結して構成され、前記オペレータによって操作される作業機と、
     前記操作部及び前記作業機を支持する支持体と、
     前記支持体を走行可能に支持する走行装置と、を備えた建設機械の作業支援システムであって、
     複数の検出装置、収集装置及び携帯端末を備え、
     複数の前記検出装置は、それぞれ、姿勢センサ、無線通信部、バッテリ及び磁性部材を備え、前記ブーム、前記アーム及び前記アタッチメントのそれぞれに、前記磁性部材の磁力による固定によって設置され、
     前記収集装置は、姿勢センサ、無線通信部及び制御部を備え、前記操作部又は前記支持体に設置され、複数の前記検出装置から無線通信により収集した複数の姿勢情報と、自身の前記姿勢センサが検出した姿勢情報を前記携帯端末に送信し、
     前記携帯端末は、撮像部、無線通信部、表示部及び制御部を備え、前記収集装置から受信した複数の前記姿勢情報に基づいて前記アタッチメントと目標施工面との距離を算出し、算出した前記距離を前記表示部に表示させる、作業支援システム。
    An operation unit in which an operator rides;
    A work machine configured by connecting a boom, an arm, and an attachment and operated by the operator;
    A support body that supports the operating unit and the working machine;
    A work support system for a construction machine comprising:
    A plurality of detection devices, a collection device and a mobile terminal are provided,
    each of the plurality of detection devices includes a posture sensor, a wireless communication unit, a battery, and a magnetic member, and is installed on the boom, the arm, and the attachment by being fixed by the magnetic force of the magnetic member;
    the collection device includes a posture sensor, a wireless communication unit, and a control unit, is installed on the operation unit or the support, and transmits a plurality of posture information collected from a plurality of the detection devices via wireless communication and posture information detected by the posture sensor of the collection device to the mobile terminal;
    The mobile terminal is equipped with an imaging unit, a wireless communication unit, a display unit and a control unit, and calculates the distance between the attachment and a target construction surface based on the multiple pieces of posture information received from the collection device, and displays the calculated distance on the display unit.
  2.  前記携帯端末の前記表示部は、タッチスクリーンであり、
     前記携帯端末の前記制御部は、
     前記撮像部で撮像された前記建設機械の側面画像を前記表示部に表示させる側面画像表示手段と、
     前記表示部に表示された前記側面画像のタッチ操作に応じて、前記建設機械の特徴点の位置、及び前記姿勢センサの設置位置を登録する位置登録手段と、を備える、請求項1に記載の作業支援システム。
    the display unit of the mobile terminal is a touch screen,
    The control unit of the mobile terminal
    a side image display means for displaying on the display unit a side image of the construction machine captured by the imaging unit;
    2. The work support system according to claim 1, further comprising: a position registration means for registering the positions of the characteristic points of the construction machine and the installation position of the attitude sensor in response to a touch operation of the side image displayed on the display unit.
  3.  前記携帯端末の前記制御部は、
     前記位置登録手段の登録位置情報、又はあらかじめ入力された入力情報と、複数の前記姿勢センサが検出した姿勢情報とに基づいて、前記アタッチメントの先端座標を算出する先端座標算出手段と、
     算出した前記先端座標、及びあらかじめ設定された前記目標施工面の座標に基づいて、前記アタッチメントと前記目標施工面との距離を算出する距離算出手段と、を備える、請求項2に記載の作業支援システム。
    The control unit of the mobile terminal
    a tip coordinate calculation means for calculating a tip coordinate of the attachment based on registered position information of the position registration means or input information input in advance and attitude information detected by the plurality of attitude sensors;
    3. The work support system according to claim 2, further comprising: a distance calculation means for calculating a distance between the attachment and the target construction surface based on the calculated tip coordinates and preset coordinates of the target construction surface.
  4.  前記ブームは、前記支持体に上下揺動可能に支持される第1ブームと、前記第1ブームの先端部に左右揺動可能に支持される第2ブームと、を備えたオフセットブーム機構を有し、
     前記ブームに設置される前記検出装置は、前記第1ブーム及び前記第2ブームのそれぞれに設置され、
     前記携帯端末の前記制御部は、検出した前記第1ブーム及び前記第2ブームの姿勢情報に基づいて、前記ブームの長さ情報及び姿勢情報を補正するオフセット補正手段を備える、請求項3に記載の作業支援システム。
    the boom has an offset boom mechanism including a first boom supported on the support body so as to be swingable up and down, and a second boom supported on a tip portion of the first boom so as to be swingable left and right,
    the detection device installed on the boom is installed on each of the first boom and the second boom,
    4. The work support system according to claim 3, wherein the control unit of the mobile terminal includes an offset correction means for correcting length information and attitude information of the boom based on detected attitude information of the first boom and the second boom.
  5.  前記オフセットブーム機構は、前記第2ブームが非オフセット姿勢から左側最大揺動角まで揺動した左側最大オフセット姿勢と、前記第2ブームが前記非オフセット姿勢から右側最大揺動角まで揺動した右側最大オフセット姿勢との間でオフセット動作可能であり、前記非オフセット姿勢から前記左側最大オフセット姿勢への水平移動距離である左側最大オフセット量と、前記非オフセット姿勢から前記右側最大オフセット姿勢への水平移動距離である右側最大オフセット量とが相違し、
     前記オフセット補正手段は、あらかじめ登録される前記左側最大オフセット量及び前記右側最大オフセット量を用いて補正処理を行う、請求項4に記載の作業支援システム。
    the offset boom mechanism is capable of offset operation between a left maximum offset position in which the second boom has swung from a non-offset position to a left maximum swing angle, and a right maximum offset position in which the second boom has swung from the non-offset position to a right maximum swing angle, and a left maximum offset amount which is a horizontal movement distance from the non-offset position to the left maximum offset position is different from a right maximum offset amount which is a horizontal movement distance from the non-offset position to the right maximum offset position,
    The work support system according to claim 4 , wherein the offset correction means performs the correction process using the left maximum offset amount and the right maximum offset amount that are registered in advance.
  6.  前記第2ブームに設置される前記検出装置は、前記第2ブームの長さ方向の一端部に設置され、前記長さ方向の一端部は、前記アーム側の端部である、請求項4に記載の作業支援システム。 The work support system according to claim 4, wherein the detection device installed on the second boom is installed at one end of the second boom in the length direction, and the one end of the length direction is the end on the arm side.
PCT/JP2023/037988 2022-10-24 2023-10-20 Work assisting system WO2024090343A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022169640 2022-10-24
JP2022-169640 2022-10-24

Publications (1)

Publication Number Publication Date
WO2024090343A1 true WO2024090343A1 (en) 2024-05-02

Family

ID=90830836

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/037988 WO2024090343A1 (en) 2022-10-24 2023-10-20 Work assisting system

Country Status (1)

Country Link
WO (1) WO2024090343A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016158539A1 (en) * 2015-03-27 2016-10-06 住友建機株式会社 Shovel
JP2018071271A (en) * 2016-11-02 2018-05-10 コベルコ建機株式会社 Construction machine
JP2020093577A (en) * 2018-12-10 2020-06-18 水戸工業株式会社 Rotation position recognition device of traveling drive device and usage of the same
WO2021251463A1 (en) * 2020-06-11 2021-12-16 日本精機株式会社 Work assist system and work assist method
JP2022101440A (en) * 2020-12-24 2022-07-06 日本精機株式会社 Work support system, and detection device of work support system
JP2022114689A (en) * 2021-01-27 2022-08-08 日本精機株式会社 Setup method of work support system, setup program of work support system, and setup method of information collection system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016158539A1 (en) * 2015-03-27 2016-10-06 住友建機株式会社 Shovel
JP2018071271A (en) * 2016-11-02 2018-05-10 コベルコ建機株式会社 Construction machine
JP2020093577A (en) * 2018-12-10 2020-06-18 水戸工業株式会社 Rotation position recognition device of traveling drive device and usage of the same
WO2021251463A1 (en) * 2020-06-11 2021-12-16 日本精機株式会社 Work assist system and work assist method
JP2022101440A (en) * 2020-12-24 2022-07-06 日本精機株式会社 Work support system, and detection device of work support system
JP2022114689A (en) * 2021-01-27 2022-08-08 日本精機株式会社 Setup method of work support system, setup program of work support system, and setup method of information collection system

Similar Documents

Publication Publication Date Title
CN107407074B (en) Display system and engineering machinery
JP5823046B1 (en) Hydraulic excavator calibration system and calibration method
US9976286B2 (en) Work machine and correction method of working equipment parameter for work machine
JP5237408B2 (en) Hydraulic excavator calibration system and calibration method
KR101644409B1 (en) Mobile working machine comprising a position control device of a working arm and method for controlling the position of a working arm of a mobile working machine
CN103097614B (en) Hydraulic shovel calibration device and hydraulic shovel calibration method
JP5841300B1 (en) Work machine calibration apparatus and work machine parameter calibration method
KR20130069743A (en) Hydraulic shovel calibration device and hydraulic shovel calibration method
JPWO2019012651A1 (en) Hydraulic excavator and method of calibrating hydraulic excavator
US20230257967A1 (en) Revolving work vehicle, and method for detecting position of working end of revolving work vehicle
JPWO2019012650A1 (en) Calibration method for measuring jig and hydraulic excavator
KR102479701B1 (en) work machine
US11982071B2 (en) Display system of turning work vehicle
WO2024090343A1 (en) Work assisting system
JP2020002708A (en) Work machine
CN115398066B (en) Construction method and construction system
WO2023204197A1 (en) Work assisting system
WO2024090014A1 (en) Swing angle calibration method, attitude detection method, swing angle calibration system, and attitude detection system
JP2023088220A (en) Construction machine
JP2022128423A (en) System and method for acquiring shape data indicating shape of work device in work machine having work device
CN117836489A (en) System and method for controlling a work machine
CN117795165A (en) System and method for controlling a work machine
CN115867766A (en) Correction device and correction method