WO2024128143A1 - Electric power storage device - Google Patents

Electric power storage device Download PDF

Info

Publication number
WO2024128143A1
WO2024128143A1 PCT/JP2023/043931 JP2023043931W WO2024128143A1 WO 2024128143 A1 WO2024128143 A1 WO 2024128143A1 JP 2023043931 W JP2023043931 W JP 2023043931W WO 2024128143 A1 WO2024128143 A1 WO 2024128143A1
Authority
WO
WIPO (PCT)
Prior art keywords
busbar
joint
energy storage
storage device
axis direction
Prior art date
Application number
PCT/JP2023/043931
Other languages
French (fr)
Japanese (ja)
Inventor
尚之 北村
Original Assignee
株式会社Gsユアサ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Gsユアサ filed Critical 株式会社Gsユアサ
Publication of WO2024128143A1 publication Critical patent/WO2024128143A1/en

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electricity storage device.
  • Patent Document 1 discloses a battery module.
  • the battery module includes a housing, a number of cells housed in the housing in a row and having electrode terminals, and bus bars that electrically connect the electrode terminals of the cells to the electrode terminals of the other cells.
  • the bus bar is connected to each of the electrode terminals of two adjacent cells by laser welding.
  • stress will concentrate at the connection between the electrode terminal of the other cell and the bus bar, which may result in a malfunction at the connection.
  • the present invention was developed by the inventors with a new focus on the above-mentioned problems, and aims to provide an energy storage device with improved reliability of the busbar joints.
  • the energy storage device comprises an energy storage element having a terminal, and a bus bar having a joint joined to one surface of the terminal in a first direction, the bus bar having a protrusion protruding to one or the other side in the first direction, and an edge of the joint on one side in the second direction is located within the range in which the protrusion is formed in a second direction intersecting the first direction.
  • the present invention provides an energy storage device with improved reliability of busbar joints.
  • FIG. 1 is a perspective view showing the appearance of the electricity storage device according to the first embodiment.
  • FIG. 2 is an exploded perspective view of the electricity storage device according to the first embodiment.
  • FIG. 3 is an enlarged perspective view showing a portion of the bus bar and two energy storage elements according to the first embodiment.
  • FIG. 4 is a perspective view of the bus bar according to the first embodiment as viewed from the negative Z-axis direction.
  • FIG. 5 is an enlarged perspective view showing a convex portion and a concave portion of the bus bar according to the first embodiment.
  • FIG. 6 is a plan view illustrating a schematic positional relationship between the protruding portion area of the bus bar and the edge of the joint portion according to the first embodiment.
  • FIG. 7 is a simplified cross-sectional view taken along line VII-VII in FIG.
  • FIG. 8 is a cross-sectional view showing a cross section of a bus bar and a terminal according to a first modification of the first embodiment in a simplified manner.
  • FIG. 9 is a cross-sectional view showing a cross section of a bus bar and a terminal according to the second modification of the first embodiment in a simplified manner.
  • FIG. 10 is an enlarged perspective view showing a convex portion and a concave portion of a bus bar according to the second embodiment.
  • FIG. 11 is a cross-sectional view showing a cross section of a bus bar and a terminal according to the second embodiment in a simplified manner.
  • FIG. 12 is a plan view illustrating a schematic positional relationship between the convex portion area of the bus bar and the edge of the joint portion according to the first modification of the second embodiment.
  • FIG. 13 is a plan view illustrating a schematic positional relationship between the convex portion area of the bus bar and the edge of the joint portion according to the second modification of the second embodiment.
  • FIG. 14 is a plan view illustrating a schematic positional relationship between the convex portion area of the bus bar and the edge of the joint portion according to the third modification of the second embodiment.
  • FIG. 15 is a cross-sectional view showing a simplified cross section of a bus bar and a terminal joined to the terminal by using a nut.
  • An energy storage device comprises an energy storage element having a terminal, and a bus bar having a joint joined to a surface on one side in a first direction of the terminal, the bus bar having a protrusion protruding to one side or the other side in the first direction, and an edge of the joint on one side in the second direction is located within an area in which the protrusion is formed in a second direction intersecting the first direction.
  • one edge of the joint in the second direction is located in the area where the protrusion in the second direction of the busbar is formed.
  • the busbar may have a contact surface that is in contact with the surface of the terminal, and the joint may be formed at a position that is included in the contact surface when viewed from the first direction.
  • the busbar has a contact surface around the joint that contacts the terminal, so the busbar can contact the terminal over a relatively wide surface. This improves the stability of the busbar's position relative to the terminal.
  • the busbar may have a recess formed on the back side of the protrusion, the recess having an inner bottom surface facing the first direction and an inner side surface surrounding the inner bottom surface from at least two directions, and the joint may be formed at a position spaced apart from the inner side surface when viewed from the first direction.
  • a recess is formed on the back side of the protrusion of the busbar.
  • the protrusion and recess of the busbar form a shape that bulges out in the thickness direction in part of the busbar. This reduces the weight of the busbar. Since the joint is positioned away from the inner surface, stress is relieved at a position away from the edge of the joint. This more reliably reduces the effect of stress on the edge of the joint.
  • the inner surface may include a first inner surface and a second inner surface, the first inner surface may be located on one side of the edge of the joint in the second direction, and the second inner surface may face a third direction that intersects the first direction and the second direction.
  • the recess is made up of at least three inner surfaces (one inner bottom surface and two inner side surfaces) that face in different directions, so the rigidity-improving effect of the protrusions and recesses can be more reliably achieved.
  • the recess may have an opening at the end on the other side in the second direction that opens toward the other side in the second direction.
  • the energy storage device described in (5) above allows the protrusions to be formed by a simple processing method, such as pressing the end of the bus bar in the second direction.
  • the convex portion may be formed at a position that does not overlap the joint portion when viewed from the first direction.
  • the joints and the protrusions are formed at different positions, so there is a high degree of freedom in terms of the position, shape, and size of the protrusions. This makes it easy to form protrusions suitable for protecting the joints, etc.
  • the range in which the convex portion is formed in the second direction may include the entire area of the joint in the second direction.
  • the convex portion is formed over a wide area including the entire area of the joint in the second direction. This improves the rigidity of the busbar over a wider area. This more reliably suppresses stress concentration at the edge on one side of the joint in the second direction.
  • the joint may be surrounded by the protrusion when viewed from the first direction.
  • a convex portion is formed so as to surround the joint, which further enhances the effect of improving the rigidity of the joint. This more reliably suppresses stress concentration at the edge on one side of the joint in the second direction.
  • the busbar may have a recess formed on the rear side of the protrusion.
  • the protrusions and recesses of the busbar cause a portion of the busbar to bulge in the thickness direction. This reduces the weight of the busbar.
  • the direction in which a pair of terminals of a storage element are arranged, or the direction in which the short sides of the storage element face each other is defined as the X-axis direction.
  • the direction in which a pair of long sides of a storage element face each other, or the direction in which multiple storage elements are arranged, is defined as the Y-axis direction.
  • the direction in which the bus bar and the storage element to which it is connected are arranged, or the up-down direction, is defined as the Z-axis direction.
  • These X-axis, Y-axis, and Z-axis directions intersect with each other (orthogonal in the embodiment).
  • the Z-axis direction may not be the up-down direction, but for ease of explanation, the following explanation will be given assuming that the Z-axis direction is the up-down direction.
  • the positive X-axis direction refers to the direction of the arrow on the X-axis
  • the negative X-axis direction refers to the opposite direction to the positive X-axis direction.
  • the Y-axis and Z-axis directions When simply referring to the "X-axis direction,” it means either or both directions parallel to the X-axis. The same applies to terms related to the Y-axis and Z-axis.
  • Expressions indicating relative directions or attitudes, such as parallel and perpendicular, also include cases where the direction or attitude is not strictly that.
  • Two directions that are perpendicular do not only mean that the two directions are completely perpendicular, but also mean that the two directions are substantially perpendicular, that is, that there is a difference of about a few percent.
  • X-axis direction it means both directions or either one of the directions parallel to the X-axis.
  • Y-axis and Z-axis In the following explanation, when we say “insulation,” it means “electrical insulation.”
  • Fig. 1 is an external perspective view of the energy storage device 1 according to the first embodiment.
  • Fig. 2 is an exploded perspective view of the energy storage device 1 according to the first embodiment.
  • the energy storage device 1 may include an exterior body that houses a plurality of energy storage elements 100, a bus bar holder that holds a plurality of bus bars 50, electrical equipment, and the like. However, illustration and description of these components will be omitted.
  • the power storage device 1 is a device that can charge electricity from an external source and discharge electricity to the outside.
  • the power storage device 1 is a battery module (battery pack) used for power storage or power supply.
  • the power storage device 1 is used as a battery for driving or starting the engine of a moving object such as an automobile, motorcycle, watercraft, ship, snowmobile, agricultural machine, construction machine, automatic guided vehicle (AGV), or electric railway vehicle.
  • a moving object such as an automobile, motorcycle, watercraft, ship, snowmobile, agricultural machine, construction machine, automatic guided vehicle (AGV), or electric railway vehicle.
  • Examples of the above automobiles include electric vehicles (EVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and fossil fuel (gasoline, diesel, liquefied natural gas, etc.) vehicles.
  • Examples of the above electric railway vehicles include electric trains, monorails, linear motor cars, and hybrid electric trains equipped with both a diesel engine and an electric motor.
  • the power storage device 1 can also be used as a stationary
  • the energy storage device 1 includes an energy storage element unit 101 including one or more energy storage elements 100, and a bus bar 50 connected to the energy storage elements 100.
  • the energy storage element unit 101 is a group of energy storage elements 100 including one or more energy storage elements 100.
  • the energy storage element unit 101 according to this embodiment includes eight energy storage elements 100. The eight energy storage elements 100 are aligned in the Y-axis direction.
  • the energy storage element unit 101 may include a spacer or holder (not shown) arranged along the energy storage elements 100.
  • the energy storage element unit 101 may include a restraining member (not shown) that restrains the multiple energy storage elements 100 in the alignment direction.
  • the energy storage element unit 101 has terminals 120a and 120b (see FIG. 2) at both ends in the Y-axis direction. Terminals 120a and 120b are connected to conductive members (not shown). The energy storage element unit 101 charges with electricity from the outside and discharges electricity to the outside via these conductive members.
  • the energy storage element 100 is a secondary battery (single cell), and more specifically, a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery. As shown in FIG. 2, the energy storage element 100 has a flat rectangular parallelepiped (rectangular) container 110. An electrode body, a current collector, an electrolyte, and the like (not shown) are contained inside the container 110. As the electrode body, a wound type formed by winding an electrode plate and a separator, or a laminated type (stack type) formed by stacking a plurality of flat electrode plates is used. There is no particular limit to the type of electrolyte contained in the container 110 as long as it does not impair the performance of the energy storage element 100, and various types can be selected.
  • the energy storage element 100 may be a secondary battery other than a non-aqueous electrolyte secondary battery, or may be a capacitor.
  • the energy storage element 100 may be a primary battery.
  • the energy storage element 100 may be a battery using a solid electrolyte.
  • the shape of the energy storage element 100 is not limited to the above-mentioned rectangular shape, but may be other polygonal prism, cylindrical shape, elliptical cylinder shape, elongated cylinder shape, etc.
  • the container 110 is a rectangular parallelepiped case having a pair of long sides 110a, a pair of short sides 110b, a bottom surface 110d, and a terminal arrangement surface 110c.
  • a pair of terminals 120 and a gas exhaust valve 105 are provided on the terminal arrangement surface 110c.
  • the container 110 is structured so that the inside can be sealed by accommodating an electrode body or the like inside the container body that forms the parts other than the terminal arrangement surface 110c, and then welding the container body and the terminal arrangement surface 110c together.
  • the material of the container 110 is not particularly limited, but is preferably a weldable metal such as stainless steel, aluminum, aluminum alloy, iron, or plated steel sheet.
  • the terminal 120 is a terminal member electrically connected to the electrode body housed in the container 110.
  • the terminal 120 is provided protruding in the positive Z-axis direction from the terminal arrangement surface 110c.
  • the Z-axis direction is an example of a first direction.
  • the positive Z-axis direction is an example of one side of the first direction, and the negative Z-axis direction is an example of the other side of the first direction.
  • One of the pair of terminals 120 is electrically connected to the positive electrode of the electrode body, and the other is electrically connected to the negative electrode of the electrode body.
  • the terminal 120 is formed of a conductive material such as aluminum, an aluminum alloy, copper, or a copper alloy.
  • the bus bar 50 is a member electrically and mechanically connected to the terminal 120 of the energy storage element 100.
  • the bus bar 50 is formed of a metal such as aluminum, an aluminum alloy, copper, or a copper alloy.
  • one bus bar 50 is joined to the terminals 120 of two energy storage elements 100 adjacent to each other in the Y-axis direction. One of these two terminals 120 is a positive terminal, and the other terminal 120 is a negative terminal.
  • the energy storage device 1 includes seven bus bars 50, and eight energy storage elements 100 are connected in series by these seven bus bars 50.
  • the electrical connection mode of the multiple energy storage elements 100 is not limited to this.
  • the multiple energy storage elements 100 may include two or more energy storage elements 100 connected in parallel.
  • the bus bar 50 and the terminal 120 are joined by welding.
  • Laser welding is used as a method for welding the bus bar 50 and the terminal 120.
  • the welding method may be another method such as ultrasonic welding.
  • the number of storage elements 100 included in the storage element unit 101 is not limited to 8.
  • the number of storage elements 100 included in the storage element unit 101 may be any number between 1 and 7, or may be 9 or more.
  • the busbar 50 when focusing on one busbar 50, the busbar 50 is joined to the surface of the terminal 120 of each of the two energy storage elements 100 in the positive Z-axis direction.
  • stress is likely to concentrate at the joint of the busbar 50, which is the part where the busbar 50 is joined to the terminal 120.
  • the energy storage device 1 employs a configuration that can suppress stress concentration at the joint of the busbar 50.
  • the busbar 50 according to embodiment 1 and its surrounding configuration will be described below with reference to Figures 3 to 7.
  • FIG. 3 is an enlarged perspective view showing a part of the bus bar 50 and two energy storage elements 100 according to the first embodiment.
  • one bus bar 50 and two energy storage elements 100 connected to the bus bar 50 are illustrated, and the other energy storage elements 100 and other bus bars 50 are omitted.
  • one of the two energy storage elements 100 is referred to as the first energy storage element 100A and the other is referred to as the second energy storage element 100B, as shown in FIG. 3.
  • the manner of joining the bus bar 50 and the terminal 120 of the first energy storage element 100A and the manner of joining the bus bar 50 and the terminal 120 of the second energy storage element 100B are common. Therefore, hereinafter, the manner of joining the bus bar 50 and the terminal 120 of the first energy storage element 100A will be mainly described, and the manner of joining the bus bar 50 and the terminal 120 of the second energy storage element 100B will be omitted.
  • FIG. 4 is a perspective view of the busbar 50 according to the first embodiment as viewed from the negative Z-axis direction.
  • the range of the portion (contact surface 59) of the busbar 50 that comes into contact with the two terminals 120 is indicated by the shaded area.
  • FIG. 5 is an enlarged perspective view showing the convex portion 55 and the concave portion 56 of the busbar 50 according to the first embodiment.
  • FIG. 6 is a plan view (as viewed from the positive Z-axis direction) that shows a schematic positional relationship between the convex portion range 54a of the busbar 50 according to the first embodiment and the edge 61 of the joint portion 60.
  • FIG. 7 is a simplified cross-sectional view showing the cross section taken along line VII-VII in FIG. 6. In FIG.
  • FIG. 7 the illustration of the insulating member that insulates the terminals 120 and the container 110 is omitted, and the container 110 is shown not in cross section but in a side view as viewed from the X-axis direction.
  • the arrangement range of the contact surface 59 of the busbar 50 in the Y-axis direction is indicated by a thick dotted line.
  • the busbar 50 has a joint 60 which is a portion joined to the terminal 120.
  • the busbar 50 and the terminal 120 are welded together to form the joint 60. That is, in this embodiment, the joint 60 of the busbar 50 is a portion which melts during welding and then cools and hardens. More specifically, as shown in Figure 7, the terminal 120 also has a portion which melts during welding and then cools and hardens, and the joint 60 of the busbar 50 can also be recognized as a molten portion which is integral with the corresponding portion of the terminal 120.
  • the busbar 50 has a through hole 51 at a position facing the terminal 120 in the Z-axis direction.
  • the through hole 51 is used to check whether the busbar 50 is placed on the terminal 120 by image recognition using an imaging device or measurement using a height gauge.
  • the joint 60 of the busbar 50 is formed in a ring shape surrounding the through hole 51, as shown in FIG. 6.
  • the shape (layout) of the joint 60 is not limited to a ring shape, and may be an elliptical shape or a polygonal shape other than a circle, or may be linear or planar.
  • the bus bar 50 is joined to two terminals 120, and therefore has two joints 60.
  • the portion of the bus bar 50 joined to the terminal 120 of the first energy storage element 100A is referred to as the first joint 60a
  • the portion of the bus bar 50 joined to the terminal 120 of the second energy storage element 100B is referred to as the second joint 60b.
  • the busbar 50 thus provided with the joint 60 has a portion extending from the joint 60 along the Y-axis direction. That is, as shown in FIG. 3, the busbar 50 has a portion extending from the first joint 60a along the positive direction of the Y-axis. This portion of the busbar 50 is joined to the terminal 120 of the second storage element 100B.
  • the second storage element 100B is displaced (moved) in the positive direction of the Z-axis due to an impact or vibration applied to the energy storage device 1
  • the end of the busbar 50 in the positive direction of the Y-axis will be lifted.
  • stress will be concentrated on the edge 61 of the joint 60 shown in FIG. 6 in the positive direction of the Y-axis. If stress is concentrated on the edge 61 of the joint 60, the joint 60 may be deteriorated or damaged.
  • the busbar 50 is provided with a convex portion 55, and the edge 61 of the joint 60 is located within the convex portion range 54a, which is the arrangement range of the convex portion 55 in the Y-axis direction.
  • the edge position P is included within the convex portion range 54a.
  • the Y-axis direction is an example of a second direction that intersects with the first direction (Z-axis direction).
  • the portion of the busbar 50 where the convex portion 55 is formed has higher rigidity than the other portions of the busbar 50. Specifically, if the portion of the busbar 50 that is in the positive Y-axis direction from the convex portion 55 is the connection portion 54b (see Figures 6 and 7), the portion of the busbar 50 within the convex range 54a has higher rigidity than the connection portion 54b of the busbar 50.
  • the energy storage device 1 includes an energy storage element 100 including a terminal 120, and a busbar 50 including a joint 60 joined to one surface of the terminal 120 in the Z-axis direction.
  • the busbar 50 includes a protrusion 55 that protrudes to one side or the other side (positive or negative Z-axis direction) in the first direction (Z-axis direction).
  • An edge 61 of one side of the joint 60 in the Y-axis direction is located within the protrusion range 54a of the busbar 50.
  • the protrusion range 54a is the range of the busbar 50 in which the protrusion 55 in the Y-axis direction is formed.
  • the busbar 50 includes a protrusion 55 that protrudes in the negative Z-axis direction, and the end face of the protrusion of the protrusion 55 is joined to the terminal 120. Furthermore, an edge 61 of the joint 60 in the positive Y-axis direction is located within the protrusion range 54a (see Figures 6 and 7). In other words, when focusing on the joint 60, which is the first joint 60a, the edge 61 of that joint 60 in the direction in which the second joint 60b, which is another joint 60, is arranged (i.e., the positive Y-axis direction) is included within the convex range 54a.
  • the rigidity of the portion of the busbar 50 included in the convex range 54a in the Y-axis direction is improved, and the edge 61 on one side of the joint 60 in the Y-axis direction (the positive Y-axis direction in Figures 6 and 7) is located within the convex range 54a.
  • the connection portion 54b which is a portion that extends in the positive Y-axis direction beyond the convex portion 55 of the busbar 50, stress concentration is unlikely to occur at the edge 61 of the joint 60. Therefore, the occurrence of defects in the joint 60 due to stress concentration at the edge 61 of the joint 60 is suppressed. In this way, with the energy storage device 1 of this embodiment, the reliability of the joint 60 of the busbar 50 is improved.
  • the bus bar 50 has a contact surface 59 that is in contact with one side of the terminal 120 in the Z-axis direction (the positive Z-axis direction in this embodiment).
  • the joint 60 is formed at a position that is included in the contact surface 59.
  • the busbar 50 since the busbar 50 has contact surfaces 59 around the joints 60 that come into contact with the terminals 120, the busbar 50 can contact the terminals 120 over a relatively wide surface. This improves the stability of the position of the busbar 50 relative to the terminals 120. This is advantageous in improving the reliability of the joints 60 of the busbar 50.
  • the busbar 50 has a recess 56 formed on the back side of the protrusion 55.
  • the recess 56 has an inner bottom surface 57 facing the Z-axis direction, and an inner side surface 58 surrounding the inner bottom surface 57 from at least two directions.
  • the joint 60 is formed at a position spaced apart from the inner side surface 58.
  • a recess 56 is formed on the back side of the protrusion 55 of the busbar 50. That is, the protrusion 55 and recess 56 of the busbar 50 form a shape that bulges out in the thickness direction (Z-axis direction) in a portion of the busbar 50. This improves the rigidity of the portion of the busbar 50 where the protrusion 55 is arranged, while reducing the weight of the busbar 50. Since the joint 60 is arranged at a position away from the inner surface 58, stress is alleviated at a position away from the edge 61 of the joint 60. This more reliably reduces the effect of stress on the edge 61 of the joint 60.
  • the base material of the busbar 50 is subjected to a press process using a mold, thereby forming the protrusions 55 and the recesses 56 on the busbar 50.
  • the method for forming the protrusions 55 and the recesses 56 is not limited to this.
  • the busbar 50 having the protrusions 55 and the recesses 56 may also be produced by casting or cutting.
  • the inner surface 58 includes a first inner surface 58a and a second inner surface 58b as shown in FIG. 5.
  • the first inner surface 58a is located on one side of the edge 61 of the joint 60 in the Y-axis direction and faces the other side in the Y-axis direction.
  • the second inner surface 58b faces the X-axis direction that intersects with the Z-axis direction and the Y-axis direction.
  • the X-axis direction is an example of a third direction.
  • the recess 56 of the busbar 50 is composed of at least three inner surfaces (one inner bottom surface 57 and two inner side surfaces (58a, 58b)) that face in different directions. This ensures that the protrusions 55 and recesses 56 provide a more reliable effect of improving rigidity.
  • the recess 56 has an opening 56a at its end in the negative Y-axis direction that opens in the negative Y-axis direction.
  • the convex portion can be formed by a simple processing method, such as pressing the end of the bus bar 50 in the Y-axis direction.
  • the recess 56 is formed of one inner bottom surface 57 and three inner sides (a first inner side surface 58a and a pair of second inner sides 58b) surrounding the inner bottom surface 57.
  • the recess 56 may be a box shape formed of five inner surfaces (one inner bottom surface and four inner sides).
  • the recess 56 is a recess provided in the bus bar 50, and may be a recess having a shape such as a circle, an ellipse, an oval, or a combination of straight lines and curves when viewed from the positive direction of the Z axis.
  • the inner side of the recess 56 may be a curved shape in which the boundary between the part facing the Y axis direction and the part facing the X axis direction is not clear.
  • the recess 56 may have a side opening that opens in the positive or negative X-axis direction, regardless of whether it has an opening 56a that opens in the negative Y-axis direction. In other words, the recess 56 does not need to have one of the pair of second inner surfaces 58b. Even in this case, the recess 56 has a three-dimensional shape consisting of at least three inner surfaces (an inner bottom surface 57 facing the Z-axis direction, a first inner surface 58a facing the Y-axis direction, and a second inner surface 58b facing the X-axis direction) that face in different directions. Therefore, the protrusions 55 and the recesses 56 can provide an effect of improving rigidity.
  • the above describes the energy storage device 1 according to the first embodiment, focusing on the busbar 50 and its surrounding configuration.
  • the energy storage device 1 may have a busbar 50 and its surrounding configuration that are different from those shown in Figures 2 to 6. Therefore, below, modified examples of the busbar 50 and its surrounding configuration will be described, focusing on the differences from the first embodiment.
  • the energy storage device 1 can have each of the busbars 50a and 50b described below in place of or in addition to the busbar 50.
  • [3-1. First Modification of First Embodiment] 8 is a simplified cross-sectional view of a busbar 50a and a terminal 120 according to a first modification of the first embodiment.
  • the busbar 50a has a protrusion 55a that protrudes in the negative Z-axis direction.
  • An edge 61 of a joint 60 in the positive Y-axis direction is located within a protrusion range 54a in the Y-axis direction of the busbar 50a.
  • no recess is formed on the back side of the protrusion 55a of the busbar 50a. That is, in this modified example, the protrusion 55a is provided as a thick portion of the busbar 50a. Even in this case, the rigidity of the portion of the busbar 50a where the protrusion 55a is provided is higher than the rigidity of the connection portion 54b of the busbar 50a. Furthermore, in the Y-axis direction, the edge 61 of the joint 60 in the positive Y-axis direction is located within the protrusion range 54a. Therefore, even if an external force in the Z-axis direction is applied to the connection portion 54b, stress concentration is unlikely to occur at the edge 61 of the joint 60. This suppresses the occurrence of defects in the joint 60 caused by stress concentration at the edge 61 of the joint 60.
  • Fig. 9 is a cross-sectional view showing in a simplified manner the cross section of a busbar 50b and a terminal 120 according to the second modification of the first embodiment.
  • the busbar 50b shown in Fig. 9 has a protrusion 55b protruding in the Z-axis direction, and an edge 61 of a joint 60 in the positive direction in the Y-axis direction is located within a protrusion range 54a in the Y-axis direction of the busbar 50b.
  • the protrusion 55b of the busbar 50b protrudes in the positive direction of the Z axis, and the recess 56b on the back side of the protrusion 55b is joined to the terminal 120. Specifically, the inner bottom surface 57b of the recess 56b is joined to the terminal 120. Even in this case, the rigidity of the portion of the busbar 50b where the protrusion 55b is provided is higher than the rigidity of the connection portion 54b of the busbar 50b. Furthermore, in the Y axis direction, the edge 61 of the joint 60 in the positive direction of the Y axis is located within the protrusion range 54a.
  • the joint 60 when viewed from the positive direction of the Z axis, the joint 60 is located within the range in which the convex portion 55 (55a, 55b) of the busbar 50 (50a, 50b) is arranged.
  • the position of the joint 60 of the busbar 50 when viewed from the Z axis direction, the position of the joint 60 of the busbar 50 may be a position that does not overlap with the convex portion of the busbar 50.
  • various busbars having the joint 60 in a position that does not overlap with the convex portion will be described as a second embodiment.
  • the energy storage device 1 can include each of the busbars 50c to 50f described below in place of or in addition to the busbar 50 according to the first embodiment. Description of elements other than the busbars 50c to 50f will be omitted.
  • Fig. 10 is an enlarged perspective view showing a convex portion 55c and a concave portion 56c of a bus bar 50c according to the second embodiment.
  • Fig. 11 is a cross-sectional view simply showing a cross section of a bus bar 50c and a terminal 120 according to the second embodiment.
  • the busbar 50c shown in Figures 10 and 11 has a convex portion 55c that protrudes in the negative direction of the Z axis.
  • the edge 61 of the joint 60 in the positive direction of the Y axis is located within the convex portion range 54a in the Y axis direction of the busbar 50c.
  • the convex portion 55c when viewed from the positive Z-axis direction, the convex portion 55c is formed in a position that does not overlap with the joint 60. Furthermore, as shown in FIG. 11, in the Y-axis direction, the edge 61 of the joint 60 in the positive Y-axis direction is located within the convex portion range 54a. Therefore, even if an external force in the Z-axis direction is applied to the connection portion 54b, stress concentration is unlikely to occur at the edge 61 of the joint 60. This prevents defects in the joint 60 caused by stress concentration at the edge 61 of the joint 60.
  • the joint 60 and the protrusion 55c are formed at different positions. Therefore, there is a high degree of freedom in the position, shape, and size of the protrusion 55c. Therefore, it is easy to form the protrusion 55c suitable for protecting the joint 60, etc.
  • the busbar 50c has a recess 56c formed on the back side of the protrusion 55c.
  • the protrusion 55c and recess 56c of the busbar 50c form a shape that bulges out in the thickness direction (Z-axis direction) on a part of the busbar 50c. This reduces the weight of the busbar 50c.
  • the protrusion 55c may be provided as a thick portion of the busbar 50c. Also, in the busbar 50c, the protrusion 55c may protrude in the positive direction of the Z axis. Even in this case, the protrusion 55c can be formed at a position that does not overlap the joint 60 when viewed from the Z axis direction.
  • Fig. 12 is a plan view illustrating a schematic positional relationship between a convex portion area 54a of a busbar 50d according to a first modification of the second embodiment and an edge 61 of a joint portion 60.
  • the busbar 50d illustrated in Fig. 12 has two sets of a convex portion 55c and a concave portion 56c illustrated in Fig. 11 .
  • the convex portion 55c and the concave portion 56c formed on the back side of the convex portion 55c are arranged in the positive direction of the X-axis of the joint 60. Furthermore, the convex portion 55c and the concave portion 56c formed on the back side of the convex portion 55c are also arranged in the negative direction of the X-axis of the joint 60. This more reliably suppresses stress concentration at the edge 61 of the joint 60 when an external force in the Z-axis direction is applied to the connection portion 54b of the busbar 50d.
  • the convex ranges 54a of the two convex portions 55c coincide.
  • the convex range 54a of one of the two convex portions 55c and the convex range 54a of the other convex portion 55c may be offset in the Y-axis direction.
  • the edge 61 of the joint 60 only needs to be located at a position included in either one of the two convex ranges 54a.
  • Fig. 13 is a plan view illustrating a schematic positional relationship between convex portion range 54a of busbar 50e according to Variation 2 of Embodiment 2 and edge 61 of joint portion 60.
  • convex portion 55c is located outside joint portion 60 when viewed from the positive direction of the Z axis, similar to busbar 50c illustrated in Fig. 11.
  • the convex portion 55c in this modified example is longer in the Y-axis direction than the convex portion 55c shown in FIG. 11.
  • the convex portion range 54a in which the convex portion 55c in the Y-axis direction is formed includes the entire area of the joint portion 60 in the Y-axis direction.
  • the protrusions 55c are formed over a wide area including the entire area of the joint 60 in the Y-axis direction. This improves the rigidity of the busbar 50e over a wider area. This more reliably suppresses stress concentration at the edge 61 of the joint 60.
  • the busbar 50e has a protrusion 55c on both the positive and negative X-axis directions of the joint 60.
  • the busbar 50e may have a protrusion 55c on only one of the positive and negative X-axis directions of the joint 60.
  • the protrusion 55c is disposed on both the positive and negative X-axis directions of the joint 60.
  • Fig. 14 is a plan view illustrating a schematic positional relationship between convex portion range 54a of busbar 50f according to Variation 3 of Embodiment 2 and edge 61 of joint portion 60.
  • convex portion 55f is located outside joint portion 60 when viewed from the positive direction of the Z axis, similar to busbar 50c illustrated in Fig. 11.
  • the joint 60 is surrounded by the convex portion 55f when viewed from the Z-axis direction.
  • the convex portion 55f is formed so as to surround the joint 60. This further enhances the effect of improving rigidity provided by the convex portion 55f. This more reliably suppresses stress concentration at the edge 61 of the joint 60.
  • the shape (layout) of the convex portion 55f when viewed from the Z-axis direction is annular.
  • the shape of the convex portion 55f when viewed from the Z-axis direction is not limited to annular, and may be a polygonal or elliptical (excluding a circle, the same applies below) ring shape.
  • the convex portion 55f does not need to be a ring shape that surrounds the entire circumference of the joint 60 around the Z-axis.
  • the convex portion 55f may be arc-shaped, U-shaped, V-shaped, or the like.
  • the edge 61 of the joint 60 is included within the range (convex range 54a) in which the convex portion 55f is formed in the Y-axis direction, the effect of suppressing the concentration of stress at the edge 61 of the joint 60 can be obtained.
  • the concave portion 56f is provided on the back side of the convex portion 55f, the above supplementary notes regarding the shape of the convex portion 55f also apply to the concave portion 56f.
  • the joint 60 of the busbar 50 does not have to be formed by welding such as laser welding. If the energy storage element 100 has a terminal having a shaft that passes through a screw hole in a nut, the portion that is tightened by the nut may be provided on the busbar 50 as the joint.
  • FIG. 15 is a simplified cross-sectional view of the busbar 50g and terminal 120g joined to the terminal 120g using a nut 125.
  • the terminal 120g shown in FIG. 15 comprises a terminal body 122 and a shaft portion 121 protruding from the terminal body 122 in the positive direction of the Z axis.
  • the busbar 50g has a through hole 51a through which the shaft portion 121 passes.
  • the shaft portion 121 passes through the through hole 51a of the busbar 50g and the screw hole 125a of the nut 125.
  • the peripheral portion of the through hole 51a of the busbar 50g is sandwiched between the nut 125 and the terminal body 122.
  • the shaft portion 121 has a screw thread (not shown) on its outer periphery that corresponds to the screw hole 125a of the nut 125.
  • the nut 125 moves in the negative Z direction.
  • the peripheral portion of the through hole 51a of the busbar 50g is sandwiched between the nut 125 and the terminal body 122.
  • the peripheral portion sandwiched between the nut 125 and the terminal body 122 is the joint 60g of the busbar 50g.
  • the configuration around the joint 60g is described as follows.
  • the busbar 50g has a protrusion 55 that protrudes in the negative Z-axis direction.
  • the positive Y-axis edge 61g of the joint 60g is located within the protrusion range 54a in the Y-axis direction of the busbar 50g.
  • the busbar 50g like the busbar 50 according to the first embodiment, has a recess 56 formed on the back side of the protrusion 55, and the recess 56 has an inner bottom surface 57 and an inner side surface 58.
  • the joint 60g is formed at a position spaced apart from the inner side surface 58. This reduces the weight of the busbar 50g. Because the joint 60g is positioned at a position spaced apart from the inner side surface 58, stress is alleviated at a position away from the edge 61g of the joint 60g. This more reliably reduces the effect of stress on the edge 61g of the joint 60g.
  • a crimped portion formed by crimping the tip of the shaft portion 121 may be disposed.
  • the portion of the busbar 50g sandwiched between the crimped portion and the terminal body 122 is described as the joint portion 60g of the busbar 50g.
  • the edge 61g on one side of the Y-axis direction of the joint portion 60g (the positive Y-axis direction in FIG. 15) within the convex portion range 54a, stress concentration is unlikely to occur at the edge 61g of the joint portion 60g. Therefore, the occurrence of defects in the joint portion 60g caused by stress concentration at the edge 61g of the joint portion 60g is suppressed.
  • the busbar 50c according to the second embodiment may be joined to a terminal 120g having a shaft portion 121 using a nut 125. Even in this case, the portion of the busbar 50c sandwiched between the nut 125 and the terminal body 122 is described as the joint portion 60 of the busbar 50c. In other words, the edge 61 of the joint portion 60 is located within the range (convex portion range 54a) in which the convex portion 55c of the busbar 50c is formed, thereby suppressing stress concentration at the edge 61 of the joint portion 60.
  • the busbar 50 may be connected to a member other than the energy storage element 100.
  • the second joint 60b of the busbar 50 shown in FIG. 3 may be a portion that is joined to a member other than the second energy storage element 100B (such as an electrical device such as a control device or another busbar).
  • the other member moves in the vertical direction relative to the first energy storage element 100A due to vibration or impact.
  • the edge 61 of the joint 60 (first joint 60a) of the busbar 50 that is joined to the terminal 120 of the first energy storage element 100A is positioned in a position included in the convex portion range 54a, thereby suppressing the concentration of stress on the edge 61.
  • the overall shape and size of the busbar 50 shown in Figures 1 to 4 are examples.
  • the length of the busbar 50 in the Y-axis direction may be determined appropriately depending on factors such as the thickness of the energy storage element 100 to which the busbar 50 is joined (the width in the opposing direction of the long side surfaces 110a). It is not essential that the busbar 50 has a through hole 51. Even if the busbar 50 does not have a through hole, it is possible to detect the position of the busbar 50 relative to the energy storage element unit 101. In other words, it is possible to determine whether the busbar 50 is positioned in an appropriate position.
  • busbar 50 in the first embodiment may also be applied to each of the busbars 50a to 50g shown in Figures 8 to 15.
  • the scope of the present invention also includes configurations constructed by any combination of the components included in the above-mentioned first and second embodiments, as well as their modified examples.
  • the present invention can be applied to a storage device equipped with a storage element such as a lithium-ion secondary battery.

Landscapes

  • Connection Of Batteries Or Terminals (AREA)

Abstract

This electric power storage device comprises an electric power storage element provided with a terminal, and a bus bar provided with a joint that is joined to a surface of the terminal on one side in a first direction, the bus bar being provided with a protrusion that projects toward one side or the other side in the first direction, and an edge of the joint on one side in a second direction that intersects the first direction being positioned within a range in which the protrusion is formed in the second direction.

Description

蓄電装置Power storage device
 本発明は、蓄電装置に関する。 The present invention relates to an electricity storage device.
 特許文献1には、電池モジュールが開示されている。電池モジュールは、筐体と、並んで筐体に収容され、電極端子を有する複数のセルと、セルの電極端子を他のセルの電極端子に電気的に接続するバスバーとを備える。 Patent Document 1 discloses a battery module. The battery module includes a housing, a number of cells housed in the housing in a row and having electrode terminals, and bus bars that electrically connect the electrode terminals of the cells to the electrode terminals of the other cells.
特開2016-18634号公報JP 2016-18634 A
 上記従来の電池モジュールでは、バスバーは、隣り合う2つのセルの電極端子のそれぞれと、レーザ溶接によって接続されている。このような構成において、振動または衝撃に起因して、2つのセルのうちの一方が他方に対して上下方向に移動した場合、当該他方のセルの電極端子とバスバーとの接続部分に応力が集中し、その結果、当該接続部分に不具合が生じる可能性がある。 In the conventional battery module described above, the bus bar is connected to each of the electrode terminals of two adjacent cells by laser welding. In such a configuration, if one of the two cells moves vertically relative to the other due to vibration or impact, stress will concentrate at the connection between the electrode terminal of the other cell and the bus bar, which may result in a malfunction at the connection.
 本発明は、本願発明者が上記課題に新たに着目してなされたものであり、バスバーの接合部の信頼性が向上された蓄電装置を提供することを目的とする。 The present invention was developed by the inventors with a new focus on the above-mentioned problems, and aims to provide an energy storage device with improved reliability of the busbar joints.
 本発明の一態様に係る蓄電装置は、端子を備える蓄電素子と、前記端子の第一方向の一方側の面に接合された接合部を備えるバスバーと、を備え、前記バスバーは、前記第一方向の一方側または他方側に突出する凸部を備え、前記第一方向と交差する第二方向における前記凸部が形成された範囲内に、前記接合部の、前記第二方向の一方側の端縁が位置する。 The energy storage device according to one embodiment of the present invention comprises an energy storage element having a terminal, and a bus bar having a joint joined to one surface of the terminal in a first direction, the bus bar having a protrusion protruding to one or the other side in the first direction, and an edge of the joint on one side in the second direction is located within the range in which the protrusion is formed in a second direction intersecting the first direction.
 本発明によれば、バスバーの接合部の信頼性が向上された蓄電装置を提供できる。 The present invention provides an energy storage device with improved reliability of busbar joints.
図1は、実施の形態1に係る蓄電装置の外観を示す斜視図である。FIG. 1 is a perspective view showing the appearance of the electricity storage device according to the first embodiment. 図2は、実施の形態1に係る蓄電装置の分解斜視図である。FIG. 2 is an exploded perspective view of the electricity storage device according to the first embodiment. 図3は、実施の形態1に係るバスバー及び2つの蓄電素子の一部を示す拡大斜視図である。FIG. 3 is an enlarged perspective view showing a portion of the bus bar and two energy storage elements according to the first embodiment. 図4は、実施の形態1に係るバスバーのZ軸マイナス方向から見た場合の斜視図である。FIG. 4 is a perspective view of the bus bar according to the first embodiment as viewed from the negative Z-axis direction. 図5は、実施の形態1に係るバスバーの凸部及び凹部を示す拡大斜視図である。FIG. 5 is an enlarged perspective view showing a convex portion and a concave portion of the bus bar according to the first embodiment. 図6は、実施の形態1に係るバスバーの凸部範囲と接合部の端縁との位置関係を模式的に示す平面図である。FIG. 6 is a plan view illustrating a schematic positional relationship between the protruding portion area of the bus bar and the edge of the joint portion according to the first embodiment. 図7は、図6のVII-VII線断面を簡易的に示す断面図である。FIG. 7 is a simplified cross-sectional view taken along line VII-VII in FIG. 図8は、実施の形態1の変形例1に係るバスバー及び端子の断面を簡易的に示す断面図である。FIG. 8 is a cross-sectional view showing a cross section of a bus bar and a terminal according to a first modification of the first embodiment in a simplified manner. 図9は、実施の形態1の変形例2に係るバスバー及び端子の断面を簡易的に示す断面図である。FIG. 9 is a cross-sectional view showing a cross section of a bus bar and a terminal according to the second modification of the first embodiment in a simplified manner. 図10は、実施の形態2に係るバスバーの凸部及び凹部を示す拡大斜視図である。FIG. 10 is an enlarged perspective view showing a convex portion and a concave portion of a bus bar according to the second embodiment. 図11は、実施の形態2に係るバスバー及び端子の断面を簡易的に示す断面図である。FIG. 11 is a cross-sectional view showing a cross section of a bus bar and a terminal according to the second embodiment in a simplified manner. 図12は、実施の形態2の変形例1に係るバスバーの凸部範囲と接合部の端縁との位置関係を模式的に示す平面図である。FIG. 12 is a plan view illustrating a schematic positional relationship between the convex portion area of the bus bar and the edge of the joint portion according to the first modification of the second embodiment. 図13は、実施の形態2の変形例2に係るバスバーの凸部範囲と接合部の端縁との位置関係を模式的に示す平面図である。FIG. 13 is a plan view illustrating a schematic positional relationship between the convex portion area of the bus bar and the edge of the joint portion according to the second modification of the second embodiment. 図14は、実施の形態2の変形例3に係るバスバーの凸部範囲と接合部の端縁との位置関係を模式的に示す平面図である。FIG. 14 is a plan view illustrating a schematic positional relationship between the convex portion area of the bus bar and the edge of the joint portion according to the third modification of the second embodiment. 図15は、ナットを用いて端子と接合されたバスバー及び端子の断面を簡易的に示す断面図である。FIG. 15 is a cross-sectional view showing a simplified cross section of a bus bar and a terminal joined to the terminal by using a nut.
 (1)本発明の一態様に係る蓄電装置は、端子を備える蓄電素子と、前記端子の第一方向の一方側の面に接合された接合部を備えるバスバーと、を備え、前記バスバーは、前記第一方向の一方側または他方側に突出する凸部を備え、前記第一方向と交差する第二方向における前記凸部が形成された範囲内に、前記接合部の、前記第二方向の一方側の端縁が位置する。 (1) An energy storage device according to one embodiment of the present invention comprises an energy storage element having a terminal, and a bus bar having a joint joined to a surface on one side in a first direction of the terminal, the bus bar having a protrusion protruding to one side or the other side in the first direction, and an edge of the joint on one side in the second direction is located within an area in which the protrusion is formed in a second direction intersecting the first direction.
 本発明の一態様に係る蓄電装置によれば、バスバーの第二方向における凸部が形成されている範囲に、接合部の第二方向における一方側の端縁が位置している。その結果、バスバーに、第一方向の外力が与えられた場合であっても、接合部の当該端縁における応力集中が生じ難い。従って、接合部の当該端縁に応力が集中することに起因する接合部の不具合の発生が抑制される。このように、本態様に係る蓄電装置は、バスバーの接合部の信頼性が向上された蓄電装置である。 In the energy storage device according to one aspect of the present invention, one edge of the joint in the second direction is located in the area where the protrusion in the second direction of the busbar is formed. As a result, even if an external force in the first direction is applied to the busbar, stress concentration is unlikely to occur at that edge of the joint. Therefore, the occurrence of defects in the joint due to stress concentration at that edge of the joint is suppressed. In this way, the energy storage device according to this aspect is an energy storage device in which the reliability of the busbar joint is improved.
 (2)上記(1)に記載の蓄電装置において、前記バスバーは、前記端子の前記面と接触している接触面を備え、前記第一方向から見て、前記接合部は、前記接触面に含まれる位置に形成されている、としてもよい。 (2) In the energy storage device described in (1) above, the busbar may have a contact surface that is in contact with the surface of the terminal, and the joint may be formed at a position that is included in the contact surface when viewed from the first direction.
 上記(2)に記載の蓄電装置によれば、バスバーにおける接合部の周囲に、端子と接触する接触面があるため、バスバーは、比較的広い面で端子に接触できる。これにより、バスバーの端子に対する姿勢の安定性が向上する。 In the energy storage device described in (2) above, the busbar has a contact surface around the joint that contacts the terminal, so the busbar can contact the terminal over a relatively wide surface. This improves the stability of the busbar's position relative to the terminal.
 (3)上記(1)または(2)に記載の蓄電装置において、前記バスバーは、前記凸部の裏側に形成された凹部を備え、前記凹部は、前記第一方向を向く内底面、及び、少なくとも2つの方向から前記内底面を囲む内側面を備え、前記第一方向から見て、前記接合部は、前記内側面から離間した位置に形成されている、としてもよい。 (3) In the energy storage device described in (1) or (2) above, the busbar may have a recess formed on the back side of the protrusion, the recess having an inner bottom surface facing the first direction and an inner side surface surrounding the inner bottom surface from at least two directions, and the joint may be formed at a position spaced apart from the inner side surface when viewed from the first direction.
 上記(3)に記載の蓄電装置によれば、バスバーの凸部の裏側には凹部が形成されている。つまり、バスバーの凸部及び凹部によって、バスバーの一部に、厚さ方向に膨らみ出した形状が形成されている。これにより、バスバーの軽量化が図られる。接合部は、内側面から離間した位置に配置されるため、接合部の端縁から離れた位置で応力が緩和される。これにより、接合部の端縁に対する応力の影響が、より確実に低減される。 In the energy storage device described in (3) above, a recess is formed on the back side of the protrusion of the busbar. In other words, the protrusion and recess of the busbar form a shape that bulges out in the thickness direction in part of the busbar. This reduces the weight of the busbar. Since the joint is positioned away from the inner surface, stress is relieved at a position away from the edge of the joint. This more reliably reduces the effect of stress on the edge of the joint.
 (4)上記(3)に記載の蓄電装置において、前記内側面は、第一内側面と第二内側面とを含み、前記第一内側面は、前記接合部の前記端縁の、前記第二方向の一方側に位置し、前記第二内側面は、前記第一方向及び前記第二方向と交差する第三方向を向く、としてもよい。 (4) In the energy storage device described in (3) above, the inner surface may include a first inner surface and a second inner surface, the first inner surface may be located on one side of the edge of the joint in the second direction, and the second inner surface may face a third direction that intersects the first direction and the second direction.
 上記(4)に記載の蓄電装置によれば、凹部は、互いに向きが異なる少なくとも3つの内面(1つの内底面、及び、2つの内側面)で構成されるため、より確実に、凸部及び凹部による剛性の向上効果が得られる。 In the energy storage device described in (4) above, the recess is made up of at least three inner surfaces (one inner bottom surface and two inner side surfaces) that face in different directions, so the rigidity-improving effect of the protrusions and recesses can be more reliably achieved.
 (5)上記(3)または(4)に記載の蓄電装置において、前記凹部は、前記第二方向の他方側の端部に、前記第二方向の他方側に向けて開口する開口部を備える、としてもよい。 (5) In the energy storage device described in (3) or (4) above, the recess may have an opening at the end on the other side in the second direction that opens toward the other side in the second direction.
 上記(5)に記載の蓄電装置によれば、バスバ―の第二方向の端部をプレス加工するなど簡単な加工方法で凸部を形成できる。 The energy storage device described in (5) above allows the protrusions to be formed by a simple processing method, such as pressing the end of the bus bar in the second direction.
 (6)上記(1)または(2)に記載の蓄電装置において、前記第一方向から見て、前記凸部は、前記接合部と重ならない位置に形成されている、としてもよい。 (6) In the energy storage device described in (1) or (2) above, the convex portion may be formed at a position that does not overlap the joint portion when viewed from the first direction.
 上記(6)に記載の蓄電装置によれば、接合部と凸部とは互いに異なる位置に形成されるため、凸部の配置位置、形状、及びサイズについての自由度が高い。そのため、接合部の保護等に適した凸部を形成しやすい。 In the energy storage device described in (6) above, the joints and the protrusions are formed at different positions, so there is a high degree of freedom in terms of the position, shape, and size of the protrusions. This makes it easy to form protrusions suitable for protecting the joints, etc.
 (7)上記(6)に記載の蓄電装置において、前記第二方向における前記凸部が形成された範囲は、前記第二方向における前記接合部の全域を含む、としてもよい。 (7) In the energy storage device described in (6) above, the range in which the convex portion is formed in the second direction may include the entire area of the joint in the second direction.
 上記(7)に記載の蓄電装置によれば、第二方向における接合部の全域を含む広い範囲に凸部が形成されている。そのため、バスバーのより広い範囲の剛性が向上する。これにより、接合部の第二方向の一方側の端縁における応力集中がより確実に抑制される。 In the energy storage device described in (7) above, the convex portion is formed over a wide area including the entire area of the joint in the second direction. This improves the rigidity of the busbar over a wider area. This more reliably suppresses stress concentration at the edge on one side of the joint in the second direction.
 (8)上記(7)に記載の蓄電装置において、前記第一方向から見て、前記接合部は、前記凸部に囲まれている、としてもよい。 (8) In the energy storage device described in (7) above, the joint may be surrounded by the protrusion when viewed from the first direction.
 上記(8)に記載の蓄電装置によれば、接合部を囲むように凸部が形成されているため、凸部による剛性の向上効果がさらに高められる。これにより、接合部の第二方向の一方側の端縁における応力集中がより確実に抑制される。 In the energy storage device described in (8) above, a convex portion is formed so as to surround the joint, which further enhances the effect of improving the rigidity of the joint. This more reliably suppresses stress concentration at the edge on one side of the joint in the second direction.
 (9)上記(6)~(8)のいずれかひとつに記載の蓄電装置において、前記バスバーは、前記凸部の裏側に形成された凹部を備える、としてもよい。 (9) In the energy storage device described in any one of (6) to (8) above, the busbar may have a recess formed on the rear side of the protrusion.
 上記(9)に記載の蓄電装置によれば、バスバーの凸部及び凹部によって、バスバーの一部に、厚さ方向に膨らみ出した形状が形成されている。これにより、バスバーの軽量化が図られる。 In the energy storage device described in (9) above, the protrusions and recesses of the busbar cause a portion of the busbar to bulge in the thickness direction. This reduces the weight of the busbar.
 以下、図面を参照しながら、本発明の実施の形態(その変形例も含む)に係る蓄電装置について説明する。以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、製造工程、製造工程の順序などは、一例であり、本発明を限定する主旨ではない。各図において、寸法等は厳密に図示したものではない。各図において、同一または同様な構成要素については同じ符号を付している。 Below, a description will be given of an energy storage device according to an embodiment of the present invention (including its modified examples) with reference to the drawings. The embodiments described below are all comprehensive or specific examples. The numerical values, shapes, materials, components, component placement and connection forms, manufacturing processes, and the order of manufacturing processes shown in the following embodiments are merely examples and are not intended to limit the present invention. In each figure, dimensions, etc. are not strictly illustrated. In each figure, the same or similar components are given the same reference numerals.
 以下の説明及び図面中において、蓄電素子の一対の端子の並び方向、または、蓄電素子の短側面の対向方向を、X軸方向と定義する。蓄電素子の一対の長側面の対向方向、または、複数の蓄電素子の並び方向を、Y軸方向と定義する。バスバーと当該バスバーが接続された蓄電素子との並び方向、または、上下方向を、Z軸方向と定義する。これらX軸方向、Y軸方向及びZ軸方向は、互いに交差(実施の形態では直交)する方向である。使用態様によってはZ軸方向が上下方向にならない場合も考えられるが、以下では説明の便宜のため、Z軸方向を上下方向として説明する。 In the following explanation and drawings, the direction in which a pair of terminals of a storage element are arranged, or the direction in which the short sides of the storage element face each other, is defined as the X-axis direction. The direction in which a pair of long sides of a storage element face each other, or the direction in which multiple storage elements are arranged, is defined as the Y-axis direction. The direction in which the bus bar and the storage element to which it is connected are arranged, or the up-down direction, is defined as the Z-axis direction. These X-axis, Y-axis, and Z-axis directions intersect with each other (orthogonal in the embodiment). Depending on the mode of use, the Z-axis direction may not be the up-down direction, but for ease of explanation, the following explanation will be given assuming that the Z-axis direction is the up-down direction.
 以下の説明において、X軸プラス方向とは、X軸の矢印方向を示し、X軸マイナス方向とは、X軸プラス方向とは反対方向を示す。Y軸方向及びZ軸方向についても同様である。単に「X軸方向」という場合は、X軸に平行な双方向またはいずれか一方の方向を意味する。Y軸及びZ軸に関する用語についても同様である。 In the following explanation, the positive X-axis direction refers to the direction of the arrow on the X-axis, and the negative X-axis direction refers to the opposite direction to the positive X-axis direction. The same applies to the Y-axis and Z-axis directions. When simply referring to the "X-axis direction," it means either or both directions parallel to the X-axis. The same applies to terms related to the Y-axis and Z-axis.
 平行及び直交などの、相対的な方向または姿勢を示す表現は、厳密には、その方向または姿勢ではない場合も含む。2つの方向が直交している、とは、当該2つの方向が完全に直交していることを意味するだけでなく、実質的に直交していること、すなわち、数%程度の差異を含むことも意味する。単に、「X軸方向」という場合は、X軸に平行な双方向またはいずれか一方の方向を意味する。Y軸及びZ軸に関する用語についても同様である。以下の説明において、「絶縁」と表現する場合、「電気的な絶縁」を意味する。  Expressions indicating relative directions or attitudes, such as parallel and perpendicular, also include cases where the direction or attitude is not strictly that. Two directions that are perpendicular do not only mean that the two directions are completely perpendicular, but also mean that the two directions are substantially perpendicular, that is, that there is a difference of about a few percent. When we simply say "X-axis direction," it means both directions or either one of the directions parallel to the X-axis. The same applies to terms related to the Y-axis and Z-axis. In the following explanation, when we say "insulation," it means "electrical insulation."
 (実施の形態1)
 [1.蓄電装置の全般的な説明]
 まず、本実施の形態における蓄電装置1の概略構成について説明する。図1は、実施の形態1に係る蓄電装置1の外観斜視図である。図2は、実施の形態1に係る蓄電装置1の分解斜視図である。蓄電装置1は、図1及び図2に示される部材に加え、複数の蓄電素子100を収容する外装体、複数のバスバー50を保持するバスバーホルダ、及び、電気機器等を備え得る。しかし、これらの部材の図示及び説明は省略する。
(Embodiment 1)
[1. General Description of the Power Storage Device]
First, a schematic configuration of the energy storage device 1 in the present embodiment will be described. Fig. 1 is an external perspective view of the energy storage device 1 according to the first embodiment. Fig. 2 is an exploded perspective view of the energy storage device 1 according to the first embodiment. In addition to the components shown in Figs. 1 and 2, the energy storage device 1 may include an exterior body that houses a plurality of energy storage elements 100, a bus bar holder that holds a plurality of bus bars 50, electrical equipment, and the like. However, illustration and description of these components will be omitted.
 蓄電装置1は、外部からの電気を充電し、また外部へ電気を放電できる装置である。蓄電装置1は、電力貯蔵用途または電源用途等に使用される電池モジュール(組電池)である。具体的には、蓄電装置1は、自動車、自動二輪車、ウォータークラフト、船舶、スノーモービル、農業機械、建設機械、無人搬送車(AGV:Automatic Guided Vehicle)、または、電気鉄道用の鉄道車両等の移動体の駆動用またはエンジン始動用等のバッテリ等として用いられる。上記の自動車としては、電気自動車(EV)、ハイブリッド電気自動車(HEV)、プラグインハイブリッド電気自動車(PHEV)及び化石燃料(ガソリン、軽油、液化天然ガス等)自動車が例示される。上記の電気鉄道用の鉄道車両としては、電車、モノレール、リニアモーターカー、並びに、ディーゼル機関及び電気モーターの両方を備えるハイブリッド電車が例示される。また、蓄電装置1は、家庭用または事業用等に使用される定置用のバッテリ等としても用いることができる。 The power storage device 1 is a device that can charge electricity from an external source and discharge electricity to the outside. The power storage device 1 is a battery module (battery pack) used for power storage or power supply. Specifically, the power storage device 1 is used as a battery for driving or starting the engine of a moving object such as an automobile, motorcycle, watercraft, ship, snowmobile, agricultural machine, construction machine, automatic guided vehicle (AGV), or electric railway vehicle. Examples of the above automobiles include electric vehicles (EVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and fossil fuel (gasoline, diesel, liquefied natural gas, etc.) vehicles. Examples of the above electric railway vehicles include electric trains, monorails, linear motor cars, and hybrid electric trains equipped with both a diesel engine and an electric motor. The power storage device 1 can also be used as a stationary battery for home or business use.
 図1及び図2に示すように、本実施の形態に係る蓄電装置1は、1以上の蓄電素子100を備える蓄電素子ユニット101と、蓄電素子100に接続されたバスバー50とを備える。蓄電素子ユニット101は、1以上の蓄電素子100で構成された蓄電素子100群である。本実施の形態に係る蓄電素子ユニット101は8個の蓄電素子100で構成されている。8個の蓄電素子100は、Y軸方向に並べられている。蓄電素子ユニット101は、蓄電素子100に沿って配置されたスペーサまたはホルダ(図示せず)を備えてもよい。蓄電素子ユニット101は、複数の蓄電素子100をその並び方向で拘束する拘束部材(図示せず)を備えてもよい。 As shown in Figures 1 and 2, the energy storage device 1 according to this embodiment includes an energy storage element unit 101 including one or more energy storage elements 100, and a bus bar 50 connected to the energy storage elements 100. The energy storage element unit 101 is a group of energy storage elements 100 including one or more energy storage elements 100. The energy storage element unit 101 according to this embodiment includes eight energy storage elements 100. The eight energy storage elements 100 are aligned in the Y-axis direction. The energy storage element unit 101 may include a spacer or holder (not shown) arranged along the energy storage elements 100. The energy storage element unit 101 may include a restraining member (not shown) that restrains the multiple energy storage elements 100 in the alignment direction.
 蓄電素子ユニット101は、Y軸方向の両端部に端子120a及び端子120b(図2参照)を備える。端子120a及び端子120bは、図示しない導電部材が接続される。蓄電素子ユニット101は、これら導電部材を介して、外部からの電気を充電し、また外部へ電気を放電する。 The energy storage element unit 101 has terminals 120a and 120b (see FIG. 2) at both ends in the Y-axis direction. Terminals 120a and 120b are connected to conductive members (not shown). The energy storage element unit 101 charges with electricity from the outside and discharges electricity to the outside via these conductive members.
 蓄電素子100は、二次電池(単電池)であり、より具体的には、リチウムイオン二次電池等の非水電解質二次電池である。蓄電素子100は、図2に示すように、扁平な直方体形状(角形)の容器110を備える。容器110の内部には、図示しない電極体、集電体、及び電解液等が収容されている。当該電極体としては、極板とセパレータとが巻回されて形成された巻回型、または複数の平板状の極板が積層されて形成された積層型(スタック型)の電極体が採用される。容器110に収容される電解液としては、蓄電素子100の性能を損なうものでなければその種類に特に制限はなく、様々なものを選択できる。蓄電素子100は、非水電解質二次電池以外の二次電池であってもよいし、キャパシタであってもよい。蓄電素子100は、一次電池であってもよい。蓄電素子100は、固体電解質を用いた電池であってもよい。蓄電素子100の形状は、上記角形には限定されず、それ以外の多角柱形状、円柱形状、楕円柱形状、長円柱形状等であってもよい。 The energy storage element 100 is a secondary battery (single cell), and more specifically, a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery. As shown in FIG. 2, the energy storage element 100 has a flat rectangular parallelepiped (rectangular) container 110. An electrode body, a current collector, an electrolyte, and the like (not shown) are contained inside the container 110. As the electrode body, a wound type formed by winding an electrode plate and a separator, or a laminated type (stack type) formed by stacking a plurality of flat electrode plates is used. There is no particular limit to the type of electrolyte contained in the container 110 as long as it does not impair the performance of the energy storage element 100, and various types can be selected. The energy storage element 100 may be a secondary battery other than a non-aqueous electrolyte secondary battery, or may be a capacitor. The energy storage element 100 may be a primary battery. The energy storage element 100 may be a battery using a solid electrolyte. The shape of the energy storage element 100 is not limited to the above-mentioned rectangular shape, but may be other polygonal prism, cylindrical shape, elliptical cylinder shape, elongated cylinder shape, etc.
 容器110は、図2に示すように、一対の長側面110aと、一対の短側面110bと、底面110dと、端子配置面110cとを備える直方体形状のケースである。端子配置面110cには、一対の端子120と、ガス排出弁105とが設けられている。容器110は、端子配置面110c以外を形成する容器本体の内部に電極体等を収容後、容器本体と、端子配置面110cとが溶接等されることにより、内部を密封できる構造となっている。なお、容器110の材質は特に限定されないが、ステンレス鋼、アルミニウム、アルミニウム合金、鉄、メッキ鋼板など溶接可能な金属であるのが好ましい。 As shown in FIG. 2, the container 110 is a rectangular parallelepiped case having a pair of long sides 110a, a pair of short sides 110b, a bottom surface 110d, and a terminal arrangement surface 110c. A pair of terminals 120 and a gas exhaust valve 105 are provided on the terminal arrangement surface 110c. The container 110 is structured so that the inside can be sealed by accommodating an electrode body or the like inside the container body that forms the parts other than the terminal arrangement surface 110c, and then welding the container body and the terminal arrangement surface 110c together. The material of the container 110 is not particularly limited, but is preferably a weldable metal such as stainless steel, aluminum, aluminum alloy, iron, or plated steel sheet.
 端子120は、容器110に収容された電極体に電気的に接続される端子部材である。本実施の形態では、端子配置面110cから、Z軸プラス方向に突出して設けられている。Z軸方向は、第一方向の一例である。Z軸プラス方向は、第一方向の一方側の一例であり、Z軸マイナス方向は、第一方向の他方側の一例である。一対の端子120のうちの一方は、電極体の正極と電気的に接続され、他方は電極体の負極と電気的に接続される。端子120は、アルミニウム、アルミニウム合金、銅または銅合金等の導電部材で形成されている。 The terminal 120 is a terminal member electrically connected to the electrode body housed in the container 110. In this embodiment, the terminal 120 is provided protruding in the positive Z-axis direction from the terminal arrangement surface 110c. The Z-axis direction is an example of a first direction. The positive Z-axis direction is an example of one side of the first direction, and the negative Z-axis direction is an example of the other side of the first direction. One of the pair of terminals 120 is electrically connected to the positive electrode of the electrode body, and the other is electrically connected to the negative electrode of the electrode body. The terminal 120 is formed of a conductive material such as aluminum, an aluminum alloy, copper, or a copper alloy.
 バスバー50は、蓄電素子100の端子120と電気的及び機械的に接続される部材である。バスバー50は、アルミニウム、アルミニウム合金、銅または銅合金等の金属で形成されている。本実施の形態では、1つのバスバー50は、Y軸方向で隣り合う2つの蓄電素子100の端子120と接合されている。これら2つの端子120のうちの一方の端子120は正極端子であり、他方の端子120は負極端子である。本実施の形態において、蓄電装置1は7つのバスバー50を備えており、これら7つのバスバー50によって8つの蓄電素子100が直列に接続されている。複数の蓄電素子100の電気的な接続態様はこれに限られない。複数の蓄電素子100は、並列に接続された2以上の蓄電素子100を含んでいてもよい。バスバー50と端子120とは溶接で接合されている。バスバー50と端子120との溶接の手法としては、レーザ溶接が採用される。当該溶接の手法は、超音波溶接などの他の手法であってもよい。蓄電素子ユニット101が備える蓄電素子100の数は8には限定されない。蓄電素子ユニット101が備える蓄電素子100の数は、1~7のいずれかであってもよく、9以上であってもよい。 The bus bar 50 is a member electrically and mechanically connected to the terminal 120 of the energy storage element 100. The bus bar 50 is formed of a metal such as aluminum, an aluminum alloy, copper, or a copper alloy. In this embodiment, one bus bar 50 is joined to the terminals 120 of two energy storage elements 100 adjacent to each other in the Y-axis direction. One of these two terminals 120 is a positive terminal, and the other terminal 120 is a negative terminal. In this embodiment, the energy storage device 1 includes seven bus bars 50, and eight energy storage elements 100 are connected in series by these seven bus bars 50. The electrical connection mode of the multiple energy storage elements 100 is not limited to this. The multiple energy storage elements 100 may include two or more energy storage elements 100 connected in parallel. The bus bar 50 and the terminal 120 are joined by welding. Laser welding is used as a method for welding the bus bar 50 and the terminal 120. The welding method may be another method such as ultrasonic welding. The number of storage elements 100 included in the storage element unit 101 is not limited to 8. The number of storage elements 100 included in the storage element unit 101 may be any number between 1 and 7, or may be 9 or more.
 より具体的には、1つのバスバー50に着目した場合、バスバー50は、2つの蓄電素子100それぞれの端子120のZ軸プラス方向の面に接合されている。このようにバスバー50によって接続された2つの蓄電素子100のうちの一方がZ軸方向に移動した場合、バスバー50の、端子120と接合された部分である接合部に応力が集中しやすい。その結果、当該応力の集中に起因して接合部に不具合が生じる可能性がある。そこで、本実施の形態に係る蓄電装置1では、バスバー50の接合部における応力集中を抑制できる構成が採用されている。以下、実施の形態1に係るバスバー50及びその周辺の構成について、図3~図7を用いて説明する。 More specifically, when focusing on one busbar 50, the busbar 50 is joined to the surface of the terminal 120 of each of the two energy storage elements 100 in the positive Z-axis direction. When one of the two energy storage elements 100 connected by the busbar 50 in this way moves in the Z-axis direction, stress is likely to concentrate at the joint of the busbar 50, which is the part where the busbar 50 is joined to the terminal 120. As a result, there is a possibility that a malfunction will occur at the joint due to the concentration of stress. Therefore, the energy storage device 1 according to this embodiment employs a configuration that can suppress stress concentration at the joint of the busbar 50. The busbar 50 according to embodiment 1 and its surrounding configuration will be described below with reference to Figures 3 to 7.
 [2.バスバー50及びその周辺の構成]
 図3は、実施の形態1に係るバスバー50及び2つの蓄電素子100の一部を示す拡大斜視図である。図3では、1つのバスバー50及び当該バスバー50に接続された2つの蓄電素子100を図示し、他の蓄電素子100及び他のバスバー50の図示は省略されている。これら2つの蓄電素子100を区別する場合、図3に示すように、2つの蓄電素子100の一方を第一蓄電素子100Aと称し、他方を第二蓄電素子100Bと称する。本実施の形態では、バスバー50と第一蓄電素子100Aの端子120との接合の態様、及び、バスバー50と第二蓄電素子100Bの端子120との接合の態様は共通する。そのため、以下では、主として、バスバー50と第一蓄電素子100Aの端子120との接合の態様について説明し、バスバー50と第二蓄電素子100Bの端子120との接合の態様についての説明は省略する。
2. Configuration of bus bar 50 and its surroundings
FIG. 3 is an enlarged perspective view showing a part of the bus bar 50 and two energy storage elements 100 according to the first embodiment. In FIG. 3, one bus bar 50 and two energy storage elements 100 connected to the bus bar 50 are illustrated, and the other energy storage elements 100 and other bus bars 50 are omitted. When distinguishing between these two energy storage elements 100, one of the two energy storage elements 100 is referred to as the first energy storage element 100A and the other is referred to as the second energy storage element 100B, as shown in FIG. 3. In this embodiment, the manner of joining the bus bar 50 and the terminal 120 of the first energy storage element 100A and the manner of joining the bus bar 50 and the terminal 120 of the second energy storage element 100B are common. Therefore, hereinafter, the manner of joining the bus bar 50 and the terminal 120 of the first energy storage element 100A will be mainly described, and the manner of joining the bus bar 50 and the terminal 120 of the second energy storage element 100B will be omitted.
 図4は、実施の形態1に係るバスバー50のZ軸マイナス方向から見た場合の斜視図である。図4では、バスバー50における、2つの端子120と接触する部分(接触面59)の範囲が、斜線を付した領域で表されている。図5は、実施の形態1に係るバスバー50の凸部55及び凹部56を示す拡大斜視図である。図6は、実施の形態1に係るバスバー50の凸部範囲54aと接合部60の端縁61との位置関係を模式的に示す平面図(Z軸プラス方向から見た図)である。図7は、図6のVII-VII線断面を簡易的に示す断面図である。図7では、端子120と容器110とを絶縁する絶縁部材等の図示は省略されており、容器110は断面ではなくX軸方向から見た側面図で表されている。図7では、バスバー50の、接触面59のY軸方向における配置範囲が、太線の点線で表されている。図7についてのこれらの補足事項は、後述する図8、図9、図11及び図15にも適用される。 4 is a perspective view of the busbar 50 according to the first embodiment as viewed from the negative Z-axis direction. In FIG. 4, the range of the portion (contact surface 59) of the busbar 50 that comes into contact with the two terminals 120 is indicated by the shaded area. FIG. 5 is an enlarged perspective view showing the convex portion 55 and the concave portion 56 of the busbar 50 according to the first embodiment. FIG. 6 is a plan view (as viewed from the positive Z-axis direction) that shows a schematic positional relationship between the convex portion range 54a of the busbar 50 according to the first embodiment and the edge 61 of the joint portion 60. FIG. 7 is a simplified cross-sectional view showing the cross section taken along line VII-VII in FIG. 6. In FIG. 7, the illustration of the insulating member that insulates the terminals 120 and the container 110 is omitted, and the container 110 is shown not in cross section but in a side view as viewed from the X-axis direction. In FIG. 7, the arrangement range of the contact surface 59 of the busbar 50 in the Y-axis direction is indicated by a thick dotted line. These supplementary points about Figure 7 also apply to Figures 8, 9, 11, and 15, which will be described later.
 図3~図7に示されるように、バスバー50は、端子120と接合された部分である接合部60を備える。本実施の形態では、バスバー50と端子120とを溶接することで、接合部60が形成されている。つまり、本実施の形態では、バスバー50の接合部60は、溶接時に溶融して冷え固まった部分である。より具体的には、図7に示すように、端子120にも、溶接時に溶融して冷え固まった部分が形成されており、バスバー50の接合部60は、端子120の当該部分と一体の溶融部としても認識できる。 As shown in Figures 3 to 7, the busbar 50 has a joint 60 which is a portion joined to the terminal 120. In this embodiment, the busbar 50 and the terminal 120 are welded together to form the joint 60. That is, in this embodiment, the joint 60 of the busbar 50 is a portion which melts during welding and then cools and hardens. More specifically, as shown in Figure 7, the terminal 120 also has a portion which melts during welding and then cools and hardens, and the joint 60 of the busbar 50 can also be recognized as a molten portion which is integral with the corresponding portion of the terminal 120.
 本実施の形態では、バスバー50は、端子120にZ軸方向で対向する位置に貫通孔51を備えている。貫通孔51は、撮像装置を用いた画像認識またはハイトゲージを用いた測定によって、バスバー50が端子120に配置されているか否かを確認するために利用される。バスバー50の接合部60は、図6に示すように、貫通孔51を囲む円環形状に形成されている。接合部60の形状(配置レイアウト)は、円環形状に限定されず、円形以外の楕円形状または多角形状であってもよく、線状または面状であってもよい。 In this embodiment, the busbar 50 has a through hole 51 at a position facing the terminal 120 in the Z-axis direction. The through hole 51 is used to check whether the busbar 50 is placed on the terminal 120 by image recognition using an imaging device or measurement using a height gauge. The joint 60 of the busbar 50 is formed in a ring shape surrounding the through hole 51, as shown in FIG. 6. The shape (layout) of the joint 60 is not limited to a ring shape, and may be an elliptical shape or a polygonal shape other than a circle, or may be linear or planar.
 本実施の形態では、バスバー50は、図3に示すように、2つの端子120と接合されており、従って、2つの接合部60を備えている。これら2つの接合部60を区別する場合、バスバー50の、第一蓄電素子100Aの端子120と接合された部分を第一接合部60aと称し、バスバー50の、第二蓄電素子100Bの端子120と接合された部分を第二接合部60bと称する。 In this embodiment, as shown in FIG. 3, the bus bar 50 is joined to two terminals 120, and therefore has two joints 60. When distinguishing between these two joints 60, the portion of the bus bar 50 joined to the terminal 120 of the first energy storage element 100A is referred to as the first joint 60a, and the portion of the bus bar 50 joined to the terminal 120 of the second energy storage element 100B is referred to as the second joint 60b.
 このように接合部60を備えるバスバー50は、接合部60からY軸方向に沿って延びる部分を備えている。すなわち、図3に示すように、バスバー50は、第一接合部60aからY軸プラス方向に沿って延びる部分を備えている。バスバー50の当該部分は、第二蓄電素子100Bの端子120と接合されている。この構成において、蓄電装置1に与えられた衝撃または振動に起因して、第二蓄電素子100BがZ軸プラス方向にずれた(移動した)場合、バスバー50の、Y軸プラス方向の端部が持ち上げられることとなる。その結果、図6に示す接合部60の、Y軸プラス方向の端縁61に応力が集中することが考えられる。接合部60の端縁61に応力が集中した場合、接合部60が劣化または損傷する可能性がある。 The busbar 50 thus provided with the joint 60 has a portion extending from the joint 60 along the Y-axis direction. That is, as shown in FIG. 3, the busbar 50 has a portion extending from the first joint 60a along the positive direction of the Y-axis. This portion of the busbar 50 is joined to the terminal 120 of the second storage element 100B. In this configuration, if the second storage element 100B is displaced (moved) in the positive direction of the Z-axis due to an impact or vibration applied to the energy storage device 1, the end of the busbar 50 in the positive direction of the Y-axis will be lifted. As a result, it is considered that stress will be concentrated on the edge 61 of the joint 60 shown in FIG. 6 in the positive direction of the Y-axis. If stress is concentrated on the edge 61 of the joint 60, the joint 60 may be deteriorated or damaged.
 しかしながら、本実施の形態に係る蓄電装置1では、バスバー50には、凸部55が設けられており、かつ、Y軸方向における凸部55の配置範囲である凸部範囲54a内に、接合部60の端縁61が位置している。つまり、Y軸方向における接合部60の端縁61の位置を端縁位置P(図6及び図7参照)とした場合、凸部範囲54a内に、端縁位置Pが含まれている。Y軸方向は、第一方向(Z軸方向)と交差する第二方向の一例である。 However, in the energy storage device 1 according to this embodiment, the busbar 50 is provided with a convex portion 55, and the edge 61 of the joint 60 is located within the convex portion range 54a, which is the arrangement range of the convex portion 55 in the Y-axis direction. In other words, if the position of the edge 61 of the joint 60 in the Y-axis direction is the edge position P (see Figures 6 and 7), then the edge position P is included within the convex portion range 54a. The Y-axis direction is an example of a second direction that intersects with the first direction (Z-axis direction).
 バスバー50の凸部55が形成された部分は、バスバー50の他の部分よりも剛性が高い。具体的には、バスバー50の、凸部55よりもY軸プラス方向の部分を接続部54b(図6及び図7参照)とした場合、バスバー50の凸部範囲54a内の部分は、バスバー50の接続部54bよりも剛性が高い。従って、バスバー50の接続部54bにZ軸方向の外力が作用した場合、この外力によりバスバー50に生じる応力(曲げ応力)は、凸部55のY軸プラス方向の端縁(凸部端縁52、図6及び図7参照)に集中する、または、凸部端縁52で分散される。つまり、接合部60(第二接合部60b)で接続部54bと接合された第二蓄電素子100BがZ軸方向に移動した場合において、接合部60(第一接合部60a)の端縁61への応力集中が緩和される。これにより、接合部60は、バスバー50に生じる応力から保護される。なお、剛性とは、同じ荷重を作用させた場合において、変形量が大きい方を「剛性が低い」とし、変形量が小さい方を「剛性が高い」と定義する。 The portion of the busbar 50 where the convex portion 55 is formed has higher rigidity than the other portions of the busbar 50. Specifically, if the portion of the busbar 50 that is in the positive Y-axis direction from the convex portion 55 is the connection portion 54b (see Figures 6 and 7), the portion of the busbar 50 within the convex range 54a has higher rigidity than the connection portion 54b of the busbar 50. Therefore, when an external force in the Z-axis direction acts on the connection portion 54b of the busbar 50, the stress (bending stress) generated in the busbar 50 by this external force is concentrated on the edge (convex portion edge 52, see Figures 6 and 7) of the convex portion 55 in the positive Y-axis direction, or is dispersed at the convex portion edge 52. In other words, when the second storage element 100B joined to the connection portion 54b at the joint 60 (second joint 60b) moves in the Z-axis direction, the stress concentration on the edge 61 of the joint 60 (first joint 60a) is alleviated. This protects the joint 60 from the stress generated in the busbar 50. In addition, when the same load is applied, the stiffness is defined as "low stiffness" when the deformation is large, and "high stiffness" when the deformation is small.
 このように、本実施の形態に係る蓄電装置1は、端子120を備える蓄電素子100と、端子120のZ軸方向の一方側の面に接合された接合部60を備えるバスバー50と、を備える。バスバー50は、第一方向(Z軸方向)の一方側または他方側(Z軸プラス方向またはZ軸マイナス方向)に突出する凸部55を備える。バスバー50の凸部範囲54a内に、接合部60の、Y軸方向の一方側の端縁61が位置する。凸部範囲54aは、バスバー50の、Y軸方向における凸部55が形成された範囲である。本実施の形態では、バスバー50は、Z軸マイナス方向に突出する凸部55を備えており、凸部55の突出方向の端面が端子120と接合されている。さらに、凸部範囲54a内に、接合部60の、Y軸プラス方向の端縁61が位置している(図6及び図7参照)。つまり、第一接合部60aである接合部60に着目した場合、当該接合部60の端縁61であって、他の接合部60である第二接合部60bが配置された方向(すなわち、Y軸プラス方向)の端縁61が、凸部範囲54a内に含まれている。 Thus, the energy storage device 1 according to this embodiment includes an energy storage element 100 including a terminal 120, and a busbar 50 including a joint 60 joined to one surface of the terminal 120 in the Z-axis direction. The busbar 50 includes a protrusion 55 that protrudes to one side or the other side (positive or negative Z-axis direction) in the first direction (Z-axis direction). An edge 61 of one side of the joint 60 in the Y-axis direction is located within the protrusion range 54a of the busbar 50. The protrusion range 54a is the range of the busbar 50 in which the protrusion 55 in the Y-axis direction is formed. In this embodiment, the busbar 50 includes a protrusion 55 that protrudes in the negative Z-axis direction, and the end face of the protrusion of the protrusion 55 is joined to the terminal 120. Furthermore, an edge 61 of the joint 60 in the positive Y-axis direction is located within the protrusion range 54a (see Figures 6 and 7). In other words, when focusing on the joint 60, which is the first joint 60a, the edge 61 of that joint 60 in the direction in which the second joint 60b, which is another joint 60, is arranged (i.e., the positive Y-axis direction) is included within the convex range 54a.
 この構成によれば、バスバー50のY軸方向における凸部範囲54aに含まれる部分の剛性が向上し、かつ、凸部範囲54a内に、接合部60のY軸方向の一方側(図6及び図7ではY軸プラス方向)の端縁61が位置している。その結果、バスバー50の凸部55よりもY軸プラス方向に延びる部分である接続部54bに、Z軸方向の外力が与えられた場合であっても、接合部60の端縁61における応力集中が生じ難い。従って、接合部60の端縁61に応力が集中することに起因する接合部60の不具合の発生が抑制される。このように、本実施の形態に係る蓄電装置1によれば、バスバー50の接合部60の信頼性が向上されている。 With this configuration, the rigidity of the portion of the busbar 50 included in the convex range 54a in the Y-axis direction is improved, and the edge 61 on one side of the joint 60 in the Y-axis direction (the positive Y-axis direction in Figures 6 and 7) is located within the convex range 54a. As a result, even if an external force in the Z-axis direction is applied to the connection portion 54b, which is a portion that extends in the positive Y-axis direction beyond the convex portion 55 of the busbar 50, stress concentration is unlikely to occur at the edge 61 of the joint 60. Therefore, the occurrence of defects in the joint 60 due to stress concentration at the edge 61 of the joint 60 is suppressed. In this way, with the energy storage device 1 of this embodiment, the reliability of the joint 60 of the busbar 50 is improved.
 本実施の形態において、バスバー50は、図4及び図7に示すように、端子120のZ軸方向の一方側(本実施の形態ではZ軸プラス方向)の面と接触している接触面59を備える。Z軸プラス方向から見た場合において、接合部60は、接触面59に含まれる位置に形成されている。 In this embodiment, as shown in Figures 4 and 7, the bus bar 50 has a contact surface 59 that is in contact with one side of the terminal 120 in the Z-axis direction (the positive Z-axis direction in this embodiment). When viewed from the positive Z-axis direction, the joint 60 is formed at a position that is included in the contact surface 59.
 このように、本実施の形態では、バスバー50における接合部60の周囲に、端子120と接触する接触面59があるため、バスバー50は、比較的広い面で端子120に接触できる。これにより、バスバー50の端子120に対する姿勢の安定性が向上する。このことは、バスバー50の接合部60の信頼性の向上に有利である。 In this manner, in this embodiment, since the busbar 50 has contact surfaces 59 around the joints 60 that come into contact with the terminals 120, the busbar 50 can contact the terminals 120 over a relatively wide surface. This improves the stability of the position of the busbar 50 relative to the terminals 120. This is advantageous in improving the reliability of the joints 60 of the busbar 50.
 本実施の形態では、図3~図7に示すように、バスバー50は、凸部55の裏側に形成された凹部56を備えている。凹部56は、図5に示すように、Z軸方向を向く内底面57、及び、少なくとも2つの方向から内底面57を囲む内側面58を備える。図3及び図5に示すように、Z軸プラス方向から見た場合、接合部60は、内側面58から離間した位置に形成されている。 In this embodiment, as shown in Figs. 3 to 7, the busbar 50 has a recess 56 formed on the back side of the protrusion 55. As shown in Fig. 5, the recess 56 has an inner bottom surface 57 facing the Z-axis direction, and an inner side surface 58 surrounding the inner bottom surface 57 from at least two directions. As shown in Figs. 3 and 5, when viewed from the positive direction of the Z-axis, the joint 60 is formed at a position spaced apart from the inner side surface 58.
 このように、本実施の形態では、バスバー50の凸部55の裏側には凹部56が形成されている。つまり、バスバー50の凸部55及び凹部56によって、バスバー50の一部に、厚さ方向(Z軸方向)に膨らみ出した形状が形成されている。これにより、バスバー50の凸部55が配置された部分の剛性を向上しつつ、バスバー50の軽量化が図られる。接合部60は、内側面58から離間した位置に配置されるため、接合部60の端縁61から離れた位置で応力が緩和される。これにより、接合部60の端縁61に対する応力の影響が、より確実に低減される。 In this manner, in the present embodiment, a recess 56 is formed on the back side of the protrusion 55 of the busbar 50. That is, the protrusion 55 and recess 56 of the busbar 50 form a shape that bulges out in the thickness direction (Z-axis direction) in a portion of the busbar 50. This improves the rigidity of the portion of the busbar 50 where the protrusion 55 is arranged, while reducing the weight of the busbar 50. Since the joint 60 is arranged at a position away from the inner surface 58, stress is alleviated at a position away from the edge 61 of the joint 60. This more reliably reduces the effect of stress on the edge 61 of the joint 60.
 バスバー50の母材に、金型を用いたプレス加工を施すことで、凸部55及び凹部56がバスバー50に形成される。凸部55及び凹部56の形成の手法はこれに限定されない。鋳造または切削加工によって、凸部55及び凹部56を備えるバスバー50が作製されてもよい。 The base material of the busbar 50 is subjected to a press process using a mold, thereby forming the protrusions 55 and the recesses 56 on the busbar 50. The method for forming the protrusions 55 and the recesses 56 is not limited to this. The busbar 50 having the protrusions 55 and the recesses 56 may also be produced by casting or cutting.
 本実施の形態において、内側面58は、図5に示すように第一内側面58aと第二内側面58bとを含む。第一内側面58aは、接合部60の端縁61の、Y軸方向の一方側に位置し、かつ、Y軸方向の他方側を向く。第二内側面58bは、Z軸方向及びY軸方向と交差するX軸方向を向く。X軸方向は、第三方向の一例である。 In this embodiment, the inner surface 58 includes a first inner surface 58a and a second inner surface 58b as shown in FIG. 5. The first inner surface 58a is located on one side of the edge 61 of the joint 60 in the Y-axis direction and faces the other side in the Y-axis direction. The second inner surface 58b faces the X-axis direction that intersects with the Z-axis direction and the Y-axis direction. The X-axis direction is an example of a third direction.
 このように、本実施の形態では、バスバー50が備える凹部56は、互いに向きが異なる少なくとも3つの内面(1つの内底面57、及び、2つの内側面(58a、58b))で構成される。これにより、より確実に、凸部55及び凹部56による剛性の向上効果が得られる。 In this manner, in this embodiment, the recess 56 of the busbar 50 is composed of at least three inner surfaces (one inner bottom surface 57 and two inner side surfaces (58a, 58b)) that face in different directions. This ensures that the protrusions 55 and recesses 56 provide a more reliable effect of improving rigidity.
 本実施の形態において、凹部56は、図5に示すように、Y軸マイナス方向の端部に、Y軸マイナス方向に向けて開口する開口部56aを備えている。 In this embodiment, as shown in FIG. 5, the recess 56 has an opening 56a at its end in the negative Y-axis direction that opens in the negative Y-axis direction.
 この構成によれば、バスバー50のY軸方向の端部をプレス加工するなど簡単な加工方法で凸部を形成できる。 With this configuration, the convex portion can be formed by a simple processing method, such as pressing the end of the bus bar 50 in the Y-axis direction.
 本実施の形態では、図5に示すように、凹部56は、1つの内底面57、及び、内底面57を囲む3つの内側面(第一内側面58a、及び、一対の第二内側面58b)で形成されている。しかし、凹部56の形状はこれに限定されない。凹部56は、5つの内面(1つの内底面、及び、4つの内側面)で形成された箱型であってもよい。凹部56は、バスバー50に設けられた凹みであって、Z軸プラス方向から見た場合に円形、楕円形、長円形、または直線と曲線の組み合わせ等の形状の凹みであってもよい。凹部56の内側面は、Y軸方向を向く部分とX軸方向を向く部分との境界が明確ではない湾曲形状であってもよい。 In this embodiment, as shown in FIG. 5, the recess 56 is formed of one inner bottom surface 57 and three inner sides (a first inner side surface 58a and a pair of second inner sides 58b) surrounding the inner bottom surface 57. However, the shape of the recess 56 is not limited to this. The recess 56 may be a box shape formed of five inner surfaces (one inner bottom surface and four inner sides). The recess 56 is a recess provided in the bus bar 50, and may be a recess having a shape such as a circle, an ellipse, an oval, or a combination of straight lines and curves when viewed from the positive direction of the Z axis. The inner side of the recess 56 may be a curved shape in which the boundary between the part facing the Y axis direction and the part facing the X axis direction is not clear.
 凹部56は、Y軸マイナス方向に開口する開口部56aを備えるか否かにかかわらず、X軸プラス方向またはX軸マイナス方向に開口する側部開口を備えてもよい。つまり、凹部56は、一対の第二内側面58bのうちの一方を備えなくてもよい。この場合であっても、凹部56は、互いに向きが異なる、少なくとも3つの内面(Z軸方向を向く内底面57、Y軸方向を向く第一内側面58a、及び、X軸方向を向く第二内側面58b)からなる立体形状を有している。従って、凸部55及び凹部56による剛性の向上効果を得ることができる。 The recess 56 may have a side opening that opens in the positive or negative X-axis direction, regardless of whether it has an opening 56a that opens in the negative Y-axis direction. In other words, the recess 56 does not need to have one of the pair of second inner surfaces 58b. Even in this case, the recess 56 has a three-dimensional shape consisting of at least three inner surfaces (an inner bottom surface 57 facing the Z-axis direction, a first inner surface 58a facing the Y-axis direction, and a second inner surface 58b facing the X-axis direction) that face in different directions. Therefore, the protrusions 55 and the recesses 56 can provide an effect of improving rigidity.
 以上、実施の形態1に係る蓄電装置1について、バスバー50及びその周辺の構成を中心に説明した。しかし、蓄電装置1は、図2~図6とは異なる構成のバスバー50及びその周辺の構成を備えてもよい。そこで、以下に、バスバー50及びその周辺の構成についての変形例を、上記実施の形態1との差分を中心に説明する。蓄電装置1は、以下で説明されるバスバー50a及び50bのそれぞれを、バスバー50に換えてまたは加えて備えることができる。 The above describes the energy storage device 1 according to the first embodiment, focusing on the busbar 50 and its surrounding configuration. However, the energy storage device 1 may have a busbar 50 and its surrounding configuration that are different from those shown in Figures 2 to 6. Therefore, below, modified examples of the busbar 50 and its surrounding configuration will be described, focusing on the differences from the first embodiment. The energy storage device 1 can have each of the busbars 50a and 50b described below in place of or in addition to the busbar 50.
 [3-1.実施の形態1の変形例1]
 図8は、実施の形態1の変形例1に係るバスバー50a及び端子120の断面を簡易的に示す断面図である。バスバー50aは、Z軸マイナス方向に突出する凸部55aを備えている。バスバー50aのY軸方向における凸部範囲54a内に、接合部60のY軸プラス方向の端縁61が位置する。これらの構成は、実施の形態1に係るバスバー50と、本変形例に係るバスバー50aとで共通する。
[3-1. First Modification of First Embodiment]
8 is a simplified cross-sectional view of a busbar 50a and a terminal 120 according to a first modification of the first embodiment. The busbar 50a has a protrusion 55a that protrudes in the negative Z-axis direction. An edge 61 of a joint 60 in the positive Y-axis direction is located within a protrusion range 54a in the Y-axis direction of the busbar 50a. These configurations are common to the busbar 50 according to the first embodiment and the busbar 50a according to this modification.
 本変形例では、バスバー50aの凸部55aの裏側には凹部は形成されていない。つまり、本変形例では、バスバー50aにおける肉厚部として凸部55aが設けられている。この場合であっても、バスバー50aの凸部55aが設けられた部分の剛性は、バスバー50aの接続部54bの剛性よりも高い。さらに、Y軸方向において、凸部範囲54a内に接合部60のY軸プラス方向の端縁61が位置している。そのため、接続部54bにZ軸方向の外力が与えられた場合であっても、接合部60の端縁61における応力集中が生じ難い。これにより、接合部60の端縁61に応力が集中することに起因する接合部60の不具合の発生が抑制される。 In this modified example, no recess is formed on the back side of the protrusion 55a of the busbar 50a. That is, in this modified example, the protrusion 55a is provided as a thick portion of the busbar 50a. Even in this case, the rigidity of the portion of the busbar 50a where the protrusion 55a is provided is higher than the rigidity of the connection portion 54b of the busbar 50a. Furthermore, in the Y-axis direction, the edge 61 of the joint 60 in the positive Y-axis direction is located within the protrusion range 54a. Therefore, even if an external force in the Z-axis direction is applied to the connection portion 54b, stress concentration is unlikely to occur at the edge 61 of the joint 60. This suppresses the occurrence of defects in the joint 60 caused by stress concentration at the edge 61 of the joint 60.
 [3-2.実施の形態1の変形例2]
 図9は、実施の形態1の変形例2に係るバスバー50b及び端子120の断面を簡易的に示す断面図である。図9に示すバスバー50bは、Z軸方向に突出する凸部55bを備えており、バスバー50bのY軸方向における凸部範囲54a内に、接合部60のY軸プラス方向の端縁61が位置する。これらの構成は、実施の形態1に係るバスバー50と、本変形例に係るバスバー50bとで共通する。
[3-2. Modification 2 of the First Embodiment]
Fig. 9 is a cross-sectional view showing in a simplified manner the cross section of a busbar 50b and a terminal 120 according to the second modification of the first embodiment. The busbar 50b shown in Fig. 9 has a protrusion 55b protruding in the Z-axis direction, and an edge 61 of a joint 60 in the positive direction in the Y-axis direction is located within a protrusion range 54a in the Y-axis direction of the busbar 50b. These configurations are common to the busbar 50 according to the first embodiment and the busbar 50b according to this modification.
 本変形例では、バスバー50bの凸部55bは、Z軸プラス方向に突出しており、凸部55bの裏側の凹部56bと端子120とが接合されている。具体的には、凹部56bの内底面57bと端子120とが接合されている。この場合であっても、バスバー50bの凸部55bが設けられた部分の剛性は、バスバー50bの接続部54bの剛性よりも高い。さらに、Y軸方向において、凸部範囲54a内に接合部60のY軸プラス方向の端縁61が位置している。そのため、接続部54bにZ軸方向の外力が与えられた場合であっても、接合部60の端縁61における応力集中が生じ難い。これにより、接合部60の端縁61に応力が集中することに起因する接合部60の不具合の発生が抑制される。 In this modified example, the protrusion 55b of the busbar 50b protrudes in the positive direction of the Z axis, and the recess 56b on the back side of the protrusion 55b is joined to the terminal 120. Specifically, the inner bottom surface 57b of the recess 56b is joined to the terminal 120. Even in this case, the rigidity of the portion of the busbar 50b where the protrusion 55b is provided is higher than the rigidity of the connection portion 54b of the busbar 50b. Furthermore, in the Y axis direction, the edge 61 of the joint 60 in the positive direction of the Y axis is located within the protrusion range 54a. Therefore, even if an external force in the Z axis direction is applied to the connection portion 54b, stress concentration is unlikely to occur at the edge 61 of the joint 60. This suppresses the occurrence of defects in the joint 60 caused by stress concentration at the edge 61 of the joint 60.
 (実施の形態2)
 上記実施の形態1(変形例1、2)では、Z軸プラス方向から見た場合、バスバー50(50a、50b)の凸部55(55a、55b)が配置された範囲内に、接合部60が位置している。しかし、Z軸方向から見た場合、バスバー50の接合部60の位置は、バスバー50の凸部と重ならない位置であってもよい。そこで、凸部と重ならない位置に接合部60を備える各種のバスバーについて、実施の形態2として説明する。蓄電装置1は、以下で説明されるバスバー50c~50fのそれぞれを、実施の形態1に係るバスバー50に換えてまたは加えて備えることができる。バスバー50c~50f以外の要素についての説明は省略する。
(Embodiment 2)
In the above-described first embodiment (variations 1 and 2), when viewed from the positive direction of the Z axis, the joint 60 is located within the range in which the convex portion 55 (55a, 55b) of the busbar 50 (50a, 50b) is arranged. However, when viewed from the Z axis direction, the position of the joint 60 of the busbar 50 may be a position that does not overlap with the convex portion of the busbar 50. Thus, various busbars having the joint 60 in a position that does not overlap with the convex portion will be described as a second embodiment. The energy storage device 1 can include each of the busbars 50c to 50f described below in place of or in addition to the busbar 50 according to the first embodiment. Description of elements other than the busbars 50c to 50f will be omitted.
 [1.バスバー50cの構成について]
 図10は、実施の形態2に係るバスバー50cの凸部55c及び凹部56cを示す拡大斜視図である。図11は、実施の形態2に係るバスバー50c及び端子120の断面を簡易的に示す断面図である。
[1. Configuration of bus bar 50c]
Fig. 10 is an enlarged perspective view showing a convex portion 55c and a concave portion 56c of a bus bar 50c according to the second embodiment. Fig. 11 is a cross-sectional view simply showing a cross section of a bus bar 50c and a terminal 120 according to the second embodiment.
 図10及び図11に示すバスバー50cは、Z軸マイナス方向に突出する凸部55cを備えている。X軸方向から見て、バスバー50cのY軸方向における凸部範囲54a内に、接合部60のY軸プラス方向の端縁61が位置する。これらの構成は、実施の形態1に係るバスバー50と、本変形例に係るバスバー50cとで共通する。 The busbar 50c shown in Figures 10 and 11 has a convex portion 55c that protrudes in the negative direction of the Z axis. When viewed from the X axis direction, the edge 61 of the joint 60 in the positive direction of the Y axis is located within the convex portion range 54a in the Y axis direction of the busbar 50c. These configurations are common to the busbar 50 according to the first embodiment and the busbar 50c according to this modified example.
 本変形例では、Z軸プラス方向から見た場合において、凸部55cは、接合部60と重ならない位置に形成されている。さらに、図11に示すように、Y軸方向において、凸部範囲54a内に接合部60のY軸プラス方向の端縁61が位置している。そのため、接続部54bにZ軸方向の外力が与えられた場合であっても、接合部60の端縁61における応力集中が生じ難い。これにより、接合部60の端縁61に応力が集中することに起因する接合部60の不具合の発生が抑制される。 In this modified example, when viewed from the positive Z-axis direction, the convex portion 55c is formed in a position that does not overlap with the joint 60. Furthermore, as shown in FIG. 11, in the Y-axis direction, the edge 61 of the joint 60 in the positive Y-axis direction is located within the convex portion range 54a. Therefore, even if an external force in the Z-axis direction is applied to the connection portion 54b, stress concentration is unlikely to occur at the edge 61 of the joint 60. This prevents defects in the joint 60 caused by stress concentration at the edge 61 of the joint 60.
 さらに、本実施の形態では、接合部60と凸部55cとは互いに異なる位置に形成される。そのため、凸部55cの配置位置、形状、及びサイズについての自由度が高い。そのため、接合部60の保護等に適した凸部55cを形成しやすい。 Furthermore, in this embodiment, the joint 60 and the protrusion 55c are formed at different positions. Therefore, there is a high degree of freedom in the position, shape, and size of the protrusion 55c. Therefore, it is easy to form the protrusion 55c suitable for protecting the joint 60, etc.
 本変形例では、バスバー50cは、凸部55cの裏側に形成された凹部56cを備えている。つまり、バスバー50cの凸部55c及び凹部56cによって、バスバー50cの一部に、厚さ方向(Z軸方向)に膨らみ出した形状が形成されている。これにより、バスバー50cの軽量化が図られる。 In this modified example, the busbar 50c has a recess 56c formed on the back side of the protrusion 55c. In other words, the protrusion 55c and recess 56c of the busbar 50c form a shape that bulges out in the thickness direction (Z-axis direction) on a part of the busbar 50c. This reduces the weight of the busbar 50c.
 バスバー50cにおいて、凸部55cの裏側に凹部56cが形成されることは必須ではない。図8に示すバスバー50aと同様に、バスバー50cにおける肉厚部として凸部55cが設けられてもよい。また、バスバー50cにおいて、凸部55cは、Z軸プラス方向に突出していてもよい。この場合であっても、Z軸方向から見た場合において、凸部55cを、接合部60と重ならない位置に形成することが可能である。これらの、凸部55cについての補足事項は、以下で説明される凸部55c及び凸部55fについても適用される。 In the busbar 50c, it is not essential that the recess 56c is formed on the back side of the protrusion 55c. As with the busbar 50a shown in FIG. 8, the protrusion 55c may be provided as a thick portion of the busbar 50c. Also, in the busbar 50c, the protrusion 55c may protrude in the positive direction of the Z axis. Even in this case, the protrusion 55c can be formed at a position that does not overlap the joint 60 when viewed from the Z axis direction. These supplementary notes regarding the protrusion 55c also apply to the protrusion 55c and the protrusion 55f described below.
 [2-1.実施の形態2の変形例1]
 図12は、実施の形態2の変形例1に係るバスバー50dの凸部範囲54aと接合部60の端縁61との位置関係を模式的に示す平面図である。図12に示すバスバー50dは、図11に示す凸部55c及び凹部56cの組を2つ備えている。
[2-1. Modification 1 of the second embodiment]
Fig. 12 is a plan view illustrating a schematic positional relationship between a convex portion area 54a of a busbar 50d according to a first modification of the second embodiment and an edge 61 of a joint portion 60. The busbar 50d illustrated in Fig. 12 has two sets of a convex portion 55c and a concave portion 56c illustrated in Fig. 11 .
 具体的には、図12に示すように、接合部60のX軸プラス方向に、凸部55c及び凸部55cの裏側に形成された凹部56cが配置される。さらに、接合部60のX軸マイナス方向にも、凸部55c及び凸部55cの裏側に形成された凹部56cが配置されている。これにより、バスバー50dの接続部54bにZ軸方向の外力が与えられた場合の、接合部60の端縁61における応力集中がより確実に抑制される。 Specifically, as shown in FIG. 12, the convex portion 55c and the concave portion 56c formed on the back side of the convex portion 55c are arranged in the positive direction of the X-axis of the joint 60. Furthermore, the convex portion 55c and the concave portion 56c formed on the back side of the convex portion 55c are also arranged in the negative direction of the X-axis of the joint 60. This more reliably suppresses stress concentration at the edge 61 of the joint 60 when an external force in the Z-axis direction is applied to the connection portion 54b of the busbar 50d.
 本変形例では、2つの凸部55cの凸部範囲54aは一致している。しかし、2つの凸部55cのうちの一方の凸部55cの凸部範囲54aと、他方の凸部55cの凸部範囲54aとはY軸方向でずれていてもよい。この場合、接合部60の端縁61は、2つの凸部範囲54aのいずれか一方に含まれる位置に配置されていればよい。ただし、接合部60の端縁61における応力集中をより確実に抑制する、という観点からは、Y軸方向における2つの凸部範囲54aが重複する範囲内に、接合部60の端縁61が位置することが好ましい。 In this modified example, the convex ranges 54a of the two convex portions 55c coincide. However, the convex range 54a of one of the two convex portions 55c and the convex range 54a of the other convex portion 55c may be offset in the Y-axis direction. In this case, the edge 61 of the joint 60 only needs to be located at a position included in either one of the two convex ranges 54a. However, from the viewpoint of more reliably suppressing stress concentration at the edge 61 of the joint 60, it is preferable that the edge 61 of the joint 60 be located within the range where the two convex ranges 54a overlap in the Y-axis direction.
 [2-2.実施の形態2の変形例2]
 図13は、実施の形態2の変形例2に係るバスバー50eの凸部範囲54aと接合部60の端縁61との位置関係を模式的に示す平面図である。図13に示すバスバー50eでは、図11に示すバスバー50cと同じく、Z軸プラス方向から見た場合に、凸部55cは、接合部60の外側に位置している。
[2-2. Modification 2 of the second embodiment]
Fig. 13 is a plan view illustrating a schematic positional relationship between convex portion range 54a of busbar 50e according to Variation 2 of Embodiment 2 and edge 61 of joint portion 60. In busbar 50e illustrated in Fig. 13, convex portion 55c is located outside joint portion 60 when viewed from the positive direction of the Z axis, similar to busbar 50c illustrated in Fig. 11.
 しかし、本変形例に係る凸部55cは、図11に示す凸部55cよりもY軸方向に長い。具体的には、本変形例では、Y軸方向における凸部55cが形成された凸部範囲54aは、Y軸方向における接合部60の全域を含んでいる。 However, the convex portion 55c in this modified example is longer in the Y-axis direction than the convex portion 55c shown in FIG. 11. Specifically, in this modified example, the convex portion range 54a in which the convex portion 55c in the Y-axis direction is formed includes the entire area of the joint portion 60 in the Y-axis direction.
 この構成によれば、Y軸方向における接合部60の全域を含む広い範囲に凸部55cが形成されている。そのため、バスバー50eのより広い範囲の剛性が向上する。これにより、接合部60の端縁61における応力集中がより確実に抑制される。 With this configuration, the protrusions 55c are formed over a wide area including the entire area of the joint 60 in the Y-axis direction. This improves the rigidity of the busbar 50e over a wider area. This more reliably suppresses stress concentration at the edge 61 of the joint 60.
 本変形例では、バスバー50eは、接合部60のX軸プラス方向及びX軸マイナス方向のそれぞれに凸部55cを備えている。しかし、バスバー50eは、接合部60のX軸プラス方向及びX軸マイナス方向のいずれか一方のみに凸部55cを備えてもよい。ただし、接合部60の端縁61における応力集中を効果的に抑制する、という観点からは、接合部60のX軸プラス方向及びX軸マイナス方向の両方に、凸部55cが配置されることが好ましい。 In this modified example, the busbar 50e has a protrusion 55c on both the positive and negative X-axis directions of the joint 60. However, the busbar 50e may have a protrusion 55c on only one of the positive and negative X-axis directions of the joint 60. However, from the viewpoint of effectively suppressing stress concentration at the edge 61 of the joint 60, it is preferable that the protrusion 55c is disposed on both the positive and negative X-axis directions of the joint 60.
 [2-3.実施の形態2の変形例3]
 図14は、実施の形態2の変形例3に係るバスバー50fの凸部範囲54aと接合部60の端縁61との位置関係を模式的に示す平面図である。図14に示すバスバー50fでは、図11に示すバスバー50cと同じく、Z軸プラス方向から見た場合に、凸部55fは、接合部60の外側に位置している。
[2-3. Modification 3 of the second embodiment]
Fig. 14 is a plan view illustrating a schematic positional relationship between convex portion range 54a of busbar 50f according to Variation 3 of Embodiment 2 and edge 61 of joint portion 60. In busbar 50f illustrated in Fig. 14, convex portion 55f is located outside joint portion 60 when viewed from the positive direction of the Z axis, similar to busbar 50c illustrated in Fig. 11.
 しかし、本変形例に係るバスバー50fでは、Z軸方向から見た場合において、接合部60は凸部55fに囲まれている。つまり、本変形例では、接合部60を囲むように凸部55fが形成されている。そのため、凸部55fによる剛性の向上効果がさらに高められる。これにより、接合部60の端縁61における応力集中がより確実に抑制される。 However, in the busbar 50f according to this modified example, the joint 60 is surrounded by the convex portion 55f when viewed from the Z-axis direction. In other words, in this modified example, the convex portion 55f is formed so as to surround the joint 60. This further enhances the effect of improving rigidity provided by the convex portion 55f. This more reliably suppresses stress concentration at the edge 61 of the joint 60.
 本変形例では、凸部55fのZ軸方向から見た場合の形状(配置レイアウト)は円環形状である。しかし、凸部55fのZ軸方向から見た場合の形状は、円環形状には限定されず、多角形または楕円(円を除く、以下同じ)の環形状であってもよい。凸部55fは、Z軸周りにおいて接合部60の全周を囲む環形状である必要はない。凸部55fは、円弧状、U字状またはV字状等であってもよい。この場合であっても、Y軸方向における凸部55fが形成された範囲(凸部範囲54a)内に、接合部60の端縁61が含まれていれば、接合部60の端縁61における応力の集中抑制効果を得ることができる。凸部55fの裏側に凹部56fが設けられる場合、上記の、凸部55fの形状についての補足事項は、凹部56fにも適用される。 In this modified example, the shape (layout) of the convex portion 55f when viewed from the Z-axis direction is annular. However, the shape of the convex portion 55f when viewed from the Z-axis direction is not limited to annular, and may be a polygonal or elliptical (excluding a circle, the same applies below) ring shape. The convex portion 55f does not need to be a ring shape that surrounds the entire circumference of the joint 60 around the Z-axis. The convex portion 55f may be arc-shaped, U-shaped, V-shaped, or the like. Even in this case, as long as the edge 61 of the joint 60 is included within the range (convex range 54a) in which the convex portion 55f is formed in the Y-axis direction, the effect of suppressing the concentration of stress at the edge 61 of the joint 60 can be obtained. When the concave portion 56f is provided on the back side of the convex portion 55f, the above supplementary notes regarding the shape of the convex portion 55f also apply to the concave portion 56f.
 (他の実施の形態)
 以上、実施の形態1及び2に係る蓄電装置1、並びに、これらの変形例について説明したが、本発明は、実施の形態1及び2、並びに、これらの変形例に限定されるものではない。つまり、今回開示された実施の形態は、全ての点で例示であって制限的なものではなく、本発明の範囲は、請求の範囲と均等の意味及び範囲内での全ての変更が含まれる。
Other Embodiments
Although the energy storage device 1 according to the first and second embodiments and their modified examples have been described above, the present invention is not limited to the first and second embodiments and their modified examples. In other words, the embodiments disclosed herein are illustrative and not restrictive in all respects, and the scope of the present invention includes all modifications within the meaning and scope equivalent to the claims.
 バスバー50の接合部60は、レーザ溶接等の溶接によって形成されなくてもよい。蓄電素子100が、ナットのネジ孔を貫通する軸部を有する端子を備える場合、ナットによって締め付けられる部分が、接合部としてバスバー50に備えられてもよい。 The joint 60 of the busbar 50 does not have to be formed by welding such as laser welding. If the energy storage element 100 has a terminal having a shaft that passes through a screw hole in a nut, the portion that is tightened by the nut may be provided on the busbar 50 as the joint.
 図15は、ナット125を用いて端子120gと接合されたバスバー50g及び端子120gの断面を簡易的に示す断面図である。図15に示す端子120gは、端子本体122と、端子本体122からZ軸プラス方向に突出する軸部121とを備えている。バスバー50gは、軸部121が貫通する貫通孔51aを備えている。軸部121は、バスバー50gの貫通孔51a及びナット125のネジ孔125aを貫通している。バスバー50gの貫通孔51aの周縁部は、ナット125と端子本体122とで挟まれている。 FIG. 15 is a simplified cross-sectional view of the busbar 50g and terminal 120g joined to the terminal 120g using a nut 125. The terminal 120g shown in FIG. 15 comprises a terminal body 122 and a shaft portion 121 protruding from the terminal body 122 in the positive direction of the Z axis. The busbar 50g has a through hole 51a through which the shaft portion 121 passes. The shaft portion 121 passes through the through hole 51a of the busbar 50g and the screw hole 125a of the nut 125. The peripheral portion of the through hole 51a of the busbar 50g is sandwiched between the nut 125 and the terminal body 122.
 より具体的には、軸部121は、ナット125のネジ孔125aに対応するネジ山(図示せず)を外周面に備えている。軸部121の先端をネジ孔125aに挿入してナット125をZ軸周りに回転させることで、ナット125はZ軸マイナス方向に移動する。その結果、バスバー50gの貫通孔51aの周縁部は、ナット125と端子本体122との間に挟まれる。この場合、ナット125と端子本体122との間に挟まれた当該周縁部は、バスバー50gが備える接合部60gである。接合部60g周りの構成は以下のように説明される。 More specifically, the shaft portion 121 has a screw thread (not shown) on its outer periphery that corresponds to the screw hole 125a of the nut 125. By inserting the tip of the shaft portion 121 into the screw hole 125a and rotating the nut 125 around the Z axis, the nut 125 moves in the negative Z direction. As a result, the peripheral portion of the through hole 51a of the busbar 50g is sandwiched between the nut 125 and the terminal body 122. In this case, the peripheral portion sandwiched between the nut 125 and the terminal body 122 is the joint 60g of the busbar 50g. The configuration around the joint 60g is described as follows.
 バスバー50gは、Z軸マイナス方向に突出する凸部55を備える。バスバー50gのY軸方向における凸部範囲54a内に、接合部60gのY軸プラス方向の端縁61gが位置する。 The busbar 50g has a protrusion 55 that protrudes in the negative Z-axis direction. The positive Y-axis edge 61g of the joint 60g is located within the protrusion range 54a in the Y-axis direction of the busbar 50g.
 その結果、バスバー50gの接続部54bに、Z軸方向の外力が与えられた場合であっても、接合部60gの端縁61gにおける応力集中が生じ難い。従って、接合部60gの端縁61gに応力が集中することに起因する接合部60gの不具合の発生が抑制される。 As a result, even if an external force in the Z-axis direction is applied to the connection portion 54b of the busbar 50g, stress concentration is unlikely to occur at the edge 61g of the joint 60g. Therefore, the occurrence of defects in the joint 60g due to stress concentration at the edge 61g of the joint 60g is suppressed.
 バスバー50gは、実施の形態1に係るバスバー50と同じく、凸部55の裏側に形成された凹部56を備えており、凹部56は、内底面57及び内側面58を備えている。接合部60gは、内側面58から離間した位置に形成されている。これにより、バスバー50gの軽量化が図られる。接合部60gは、内側面58から離間した位置に配置されるため、接合部60gの端縁61gから離れた位置で応力が緩和される。これにより、接合部60gの端縁61gに対する応力の影響が、より確実に低減される。 The busbar 50g, like the busbar 50 according to the first embodiment, has a recess 56 formed on the back side of the protrusion 55, and the recess 56 has an inner bottom surface 57 and an inner side surface 58. The joint 60g is formed at a position spaced apart from the inner side surface 58. This reduces the weight of the busbar 50g. Because the joint 60g is positioned at a position spaced apart from the inner side surface 58, stress is alleviated at a position away from the edge 61g of the joint 60g. This more reliably reduces the effect of stress on the edge 61g of the joint 60g.
 図15に示されるナット125に換えて、軸部121の先端部がかしめられることで形成されたかしめ部が配置されてもよい。この場合であっても、バスバー50gにおける、かしめ部と端子本体122との間に挟まれた部分は、バスバー50gが備える接合部60gである、と説明される。つまり、凸部範囲54a内に、接合部60gのY軸方向の一方側(図15ではY軸プラス方向)の端縁61gが位置していることで、接合部60gの端縁61gにおける応力集中が生じ難い。従って、接合部60gの端縁61gに応力が集中することに起因する接合部60gの不具合の発生が抑制される。 Instead of the nut 125 shown in FIG. 15, a crimped portion formed by crimping the tip of the shaft portion 121 may be disposed. Even in this case, the portion of the busbar 50g sandwiched between the crimped portion and the terminal body 122 is described as the joint portion 60g of the busbar 50g. In other words, by positioning the edge 61g on one side of the Y-axis direction of the joint portion 60g (the positive Y-axis direction in FIG. 15) within the convex portion range 54a, stress concentration is unlikely to occur at the edge 61g of the joint portion 60g. Therefore, the occurrence of defects in the joint portion 60g caused by stress concentration at the edge 61g of the joint portion 60g is suppressed.
 実施の形態2に係るバスバー50cが、軸部121を備える端子120gと、ナット125を用いて接合されてもよい。この場合であっても、バスバー50cの、ナット125と端子本体122との間に挟まれた部分が、バスバー50cが備える接合部60である、と説明される。つまり、バスバー50cの凸部55cが形成された範囲(凸部範囲54a)内に、接合部60の端縁61が位置していることで、接合部60の端縁61における応力集中が抑制される。 The busbar 50c according to the second embodiment may be joined to a terminal 120g having a shaft portion 121 using a nut 125. Even in this case, the portion of the busbar 50c sandwiched between the nut 125 and the terminal body 122 is described as the joint portion 60 of the busbar 50c. In other words, the edge 61 of the joint portion 60 is located within the range (convex portion range 54a) in which the convex portion 55c of the busbar 50c is formed, thereby suppressing stress concentration at the edge 61 of the joint portion 60.
 バスバー50は、蓄電素子100以外の部材と接続されてもよい。図3に示すバスバー50の第二接合部60bは、第二蓄電素子100B以外の他の部材(制御装置などの電気機器または他のバスバー等)と接合された部分であってもよい。この場合、振動または衝撃に起因して、当該他の部材が第一蓄電素子100Aに対して上下方向に移動することが考えられる。この場合であっても、バスバー50の、第一蓄電素子100Aの端子120と接合された接合部60(第一接合部60a)の端縁61が、凸部範囲54aに含まれる位置に配置されていることで、端縁61への応力の集中が抑制される。 The busbar 50 may be connected to a member other than the energy storage element 100. The second joint 60b of the busbar 50 shown in FIG. 3 may be a portion that is joined to a member other than the second energy storage element 100B (such as an electrical device such as a control device or another busbar). In this case, it is conceivable that the other member moves in the vertical direction relative to the first energy storage element 100A due to vibration or impact. Even in this case, the edge 61 of the joint 60 (first joint 60a) of the busbar 50 that is joined to the terminal 120 of the first energy storage element 100A is positioned in a position included in the convex portion range 54a, thereby suppressing the concentration of stress on the edge 61.
 図1~図4に示す、バスバー50の全体的な形状及びサイズは一例である。バスバー50のY軸方向の長さは、バスバー50が接合される蓄電素子100の厚さ(長側面110aの対向方向の幅)等に応じて適宜決定されてもよい。バスバー50が貫通孔51を備えることは必須ではない。バスバー50が貫通孔を備えない場合であっても、バスバー50の、蓄電素子ユニット101に対する位置を検出することは可能である。すなわち、バスバー50が適切な位置に配置されているか否かの判断は可能である。 The overall shape and size of the busbar 50 shown in Figures 1 to 4 are examples. The length of the busbar 50 in the Y-axis direction may be determined appropriately depending on factors such as the thickness of the energy storage element 100 to which the busbar 50 is joined (the width in the opposing direction of the long side surfaces 110a). It is not essential that the busbar 50 has a through hole 51. Even if the busbar 50 does not have a through hole, it is possible to detect the position of the busbar 50 relative to the energy storage element unit 101. In other words, it is possible to determine whether the busbar 50 is positioned in an appropriate position.
 上記の実施の形態1に係るバスバー50についての補足事項は、図8~図15に示されるバスバー50a~50gのそれぞれに適用されてもよい。 The supplementary notes regarding the busbar 50 in the first embodiment above may also be applied to each of the busbars 50a to 50g shown in Figures 8 to 15.
 上記実施の形態1及び2、並びに、これらの変形例に含まれる構成要素を任意に組み合わせて構築される形態も、本発明の範囲内に含まれる。  The scope of the present invention also includes configurations constructed by any combination of the components included in the above-mentioned first and second embodiments, as well as their modified examples.
 本発明は、リチウムイオン二次電池等の蓄電素子を備えた蓄電装置に適用できる。 The present invention can be applied to a storage device equipped with a storage element such as a lithium-ion secondary battery.
   1 蓄電装置
  50、50a、50b、50c、50d、50e、50f、50g バスバー
  52 凸部端縁
  54a 凸部範囲
  54b 接続部
  55、55a、55b、55c、55f 凸部
  56、56b、56c、56f 凹部
  56a 開口部
  57、57b 内底面
  58 内側面
  58a 第一内側面
  58b 第二内側面
  59 接触面
  60、60g 接合部
  60a 第一接合部
  60b 第二接合部
  61、61g 端縁
 100 蓄電素子
 120、120a、120b、120g 端子
LIST OF REFERENCE NUMERALS 1 Energy storage device 50, 50a, 50b, 50c, 50d, 50e, 50f, 50g Bus bar 52 Convex edge 54a Convex range 54b Connection portion 55, 55a, 55b, 55c, 55f Convex portion 56, 56b, 56c, 56f Concave portion 56a Opening 57, 57b Inner bottom surface 58 Inner surface 58a First inner surface 58b Second inner surface 59 Contact surface 60, 60g Joint portion 60a First joint portion 60b Second joint portion 61, 61g Edge 100 Energy storage element 120, 120a, 120b, 120g Terminal

Claims (9)

  1.  端子を備える蓄電素子と、
     前記端子の第一方向の一方側の面に接合された接合部を備えるバスバーと、を備え、
     前記バスバーは、
     前記第一方向の一方側または他方側に突出する凸部を備え、
     前記第一方向と交差する第二方向における前記凸部が形成された範囲内に、前記接合部の、前記第二方向の一方側の端縁が位置する、
     蓄電装置。
    A storage element having a terminal;
    a bus bar including a joint portion joined to a surface on one side in the first direction of the terminal,
    The bus bar is
    A protrusion protruding to one side or the other side in the first direction is provided,
    an edge of the joint portion on one side in the second direction is located within a range in which the protrusion is formed in a second direction intersecting the first direction;
    Energy storage device.
  2.  前記バスバーは、前記端子の前記面と接触している接触面を備え、
     前記第一方向から見て、前記接合部は、前記接触面に含まれる位置に形成されている、
     請求項1記載の蓄電装置。
    the busbar includes a contact surface in contact with the surface of the terminal;
    When viewed from the first direction, the joint portion is formed at a position included in the contact surface.
    The power storage device according to claim 1.
  3.  前記バスバーは、前記凸部の裏側に形成された凹部を備え、
     前記凹部は、前記第一方向を向く内底面、及び、少なくとも2つの方向から前記内底面を囲む内側面を備え、
     前記第一方向から見て、前記接合部は、前記内側面から離間した位置に形成されている、
     請求項1または2記載の蓄電装置。
    the bus bar includes a recess formed on a rear side of the protrusion,
    The recess includes an inner bottom surface facing the first direction and an inner side surface surrounding the inner bottom surface from at least two directions,
    When viewed from the first direction, the joint portion is formed at a position spaced apart from the inner surface.
    The electricity storage device according to claim 1 or 2.
  4.  前記内側面は、第一内側面と第二内側面とを含み、
     前記第一内側面は、前記接合部の前記端縁の、前記第二方向の一方側に位置し、
     前記第二内側面は、前記第一方向及び前記第二方向と交差する第三方向を向く、
     請求項3記載の蓄電装置。
    The inner surface includes a first inner surface and a second inner surface,
    The first inner surface is located on one side of the edge of the joint portion in the second direction,
    The second inner surface faces a third direction intersecting the first direction and the second direction.
    The power storage device according to claim 3.
  5.  前記凹部は、前記第二方向の他方側の端部に、前記第二方向の他方側に向けて開口する開口部を備える、
     請求項3記載の蓄電装置。
    The recess includes an opening at an end portion on the other side in the second direction, the opening opening toward the other side in the second direction.
    The electricity storage device according to claim 3.
  6.  前記第一方向から見て、前記凸部は、前記接合部と重ならない位置に形成されている、
     請求項1記載の蓄電装置。
    When viewed from the first direction, the protrusion is formed at a position that does not overlap with the joint.
    The power storage device according to claim 1.
  7.  前記第二方向における前記凸部が形成された範囲は、前記第二方向における前記接合部の全域を含む、
     請求項6記載の蓄電装置。
    The range in which the convex portion is formed in the second direction includes the entire area of the joint in the second direction.
    The electricity storage device according to claim 6.
  8.  前記第一方向から見て、前記接合部は、前記凸部に囲まれている、
     請求項7記載の蓄電装置。
    When viewed from the first direction, the joint portion is surrounded by the protrusion.
    The electricity storage device according to claim 7.
  9.  前記バスバーは、前記凸部の裏側に形成された凹部を備える、
     請求項6~8のいずれか一項に記載の蓄電装置。
    The bus bar has a recess formed on a rear side of the protrusion.
    The power storage device according to any one of claims 6 to 8.
PCT/JP2023/043931 2022-12-15 2023-12-08 Electric power storage device WO2024128143A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-200499 2022-12-15
JP2022200499 2022-12-15

Publications (1)

Publication Number Publication Date
WO2024128143A1 true WO2024128143A1 (en) 2024-06-20

Family

ID=91484917

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/043931 WO2024128143A1 (en) 2022-12-15 2023-12-08 Electric power storage device

Country Status (1)

Country Link
WO (1) WO2024128143A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012073331A1 (en) * 2010-11-30 2012-06-07 日立ビークルエナジー株式会社 Rechargeable battery and rechargeable battery module
JP2015099759A (en) * 2013-11-20 2015-05-28 株式会社東芝 Bus bar for battery pack and battery pack
JP2017111896A (en) * 2015-12-15 2017-06-22 株式会社オートネットワーク技術研究所 Bus bar and electricity storage module
JP2017168349A (en) * 2016-03-17 2017-09-21 株式会社Gsユアサ Power storage device
JP2019046575A (en) * 2017-08-30 2019-03-22 矢崎総業株式会社 Bus bar, bus bar module, and battery pack
CN213905486U (en) * 2020-12-17 2021-08-06 江苏塔菲尔动力系统有限公司 Battery module based on battery is set up to electrode opposite terminal
US20220328945A1 (en) * 2021-03-31 2022-10-13 Contemporary Amperex Technology Co., Limited Bus member, battery and power consumption device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012073331A1 (en) * 2010-11-30 2012-06-07 日立ビークルエナジー株式会社 Rechargeable battery and rechargeable battery module
JP2015099759A (en) * 2013-11-20 2015-05-28 株式会社東芝 Bus bar for battery pack and battery pack
JP2017111896A (en) * 2015-12-15 2017-06-22 株式会社オートネットワーク技術研究所 Bus bar and electricity storage module
JP2017168349A (en) * 2016-03-17 2017-09-21 株式会社Gsユアサ Power storage device
JP2019046575A (en) * 2017-08-30 2019-03-22 矢崎総業株式会社 Bus bar, bus bar module, and battery pack
CN213905486U (en) * 2020-12-17 2021-08-06 江苏塔菲尔动力系统有限公司 Battery module based on battery is set up to electrode opposite terminal
US20220328945A1 (en) * 2021-03-31 2022-10-13 Contemporary Amperex Technology Co., Limited Bus member, battery and power consumption device

Similar Documents

Publication Publication Date Title
US11289773B2 (en) Power supply device, vehicle using same, bus bar, and electrical connection method for battery cell using same bus bar
US11374290B2 (en) Power supply device, vehicle in which same is used, and bus bar
US9017858B2 (en) Conductor for connecting terminals comprising plate-shaped parts, assembled battery, and method for producing assembled battery
EP1750313B1 (en) Modular battery with connector interconnecting terminals of adjacent unit cells
US8603670B2 (en) Secondary battery
KR101107082B1 (en) Rechargeable battery
US20060127754A1 (en) Battery pack
CN112713364B (en) Battery system
KR101731329B1 (en) Battery module and tab welding method
US11171371B2 (en) Cylindrical secondary battery including structure configured to block laser beam for welding and battery pack including the same
US20240170809A1 (en) Tab welding method, welding tool, battery cell, battery, and electric device
US20230369703A1 (en) Battery pack and battery holder
WO2024128143A1 (en) Electric power storage device
US20210151722A1 (en) Battery pack
US11929510B2 (en) Secondary battery and manufacturing method thereof, battery module, and apparatus
CN216903240U (en) Connecting part, battery monomer, battery and power utilization device
US20230275327A1 (en) Energy storage apparatus
US20240234915A9 (en) Battery module
US20240136637A1 (en) Battery module
JP7321984B2 (en) secondary battery
CN113924685B (en) Secondary battery, method for manufacturing the same, battery module, and device
JP2018125252A (en) Power storage device and conductive member
WO2023176109A1 (en) Power storage element
WO2023249102A1 (en) Power storage device
US20240113365A1 (en) Battery cell and method of manufacturing same