WO2024127901A1 - Liquefied gas-filled container and method for producing liquefied gas-filled container - Google Patents

Liquefied gas-filled container and method for producing liquefied gas-filled container Download PDF

Info

Publication number
WO2024127901A1
WO2024127901A1 PCT/JP2023/041224 JP2023041224W WO2024127901A1 WO 2024127901 A1 WO2024127901 A1 WO 2024127901A1 JP 2023041224 W JP2023041224 W JP 2023041224W WO 2024127901 A1 WO2024127901 A1 WO 2024127901A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquefied gas
gas
container
container containing
liquid
Prior art date
Application number
PCT/JP2023/041224
Other languages
French (fr)
Japanese (ja)
Inventor
章史 八尾
修平 上島
誠人 品川
亜紀応 菊池
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
Publication of WO2024127901A1 publication Critical patent/WO2024127901A1/en

Links

Images

Definitions

  • the present invention relates to a container containing liquefied gas and a method for manufacturing a container containing liquefied gas.
  • Patent Document 1 describes how corrosion resistance to halogen-based gases can be improved by forming a fluoride passivation film on the surface of a metal material (Claim 1 of Patent Document 1, Effects of the Invention, etc.).
  • the inventors discovered that by using a container with a fluoride passivation film formed on a metal film and then adding nickel and/or copper elements to the liquid in the container, it is possible to extremely reduce the difference in gas composition between the initial liquefied gas before the container is opened and the liquefied gas after gas release begins, thereby suppressing fluctuations in gas performance, and thus completing the present invention.
  • the following liquefied gas-filled container and method for manufacturing a liquefied gas-filled container 1.
  • a liquefied gas contained in the container, the container has a metal film on an inner surface, and a fluoride passivation film containing a metal fluoride on the metal film,
  • the contained liquefied gas is composed of a liquid phase and a gas phase,
  • the liquid phase contains nickel and/or copper.
  • Container containing liquefied gas 2.
  • a container containing liquefied gas according to 1. A container containing a liquefied gas, wherein the total content of the nickel element and the copper element in the liquid phase, as measured by ICP atomic emission spectrometry, is 10 ppb by weight or more and 1000 ppm by weight or less. 3.
  • a container containing liquefied gas according to 1. or 2. A container containing a liquefied gas, wherein the liquefied gas is HF or ClF3 .
  • a container containing liquefied gas according to any one of 1. to 3. A container containing liquefied gas, wherein the amount of a main component in the gas phase of the liquefied gas is 99.9 volume % or more. 5.
  • a container containing liquefied gas according to any one of 1. to 4. A container containing a liquefied gas, wherein the amount of F2 in the gas phase of the liquefied gas is less than 100 ppm by volume. 6.
  • a container containing liquefied gas according to any one of 1. to 5. A container containing liquefied gas, wherein the storage portion comprises one or more materials selected from the group consisting of stainless steel, carbon steel, manganese steel, nickel steel, and aluminum steel.
  • a container containing liquefied gas according to any one of 1. to 6. A container containing a liquefied gas, wherein the metal film has a plating film. 8.
  • a container containing liquefied gas according to any one of 1. to 8. A container containing a liquefied gas, wherein the thickness of the metal film is 1 ⁇ m or more and 300 ⁇ m or less.
  • a container containing liquefied gas according to any one of 1. to 9. A container containing a liquefied gas, wherein the fluoride passivation film is a room temperature fluoride passivation film.
  • a method for manufacturing a container containing liquefied gas 13.
  • the present invention provides a container filled with liquefied gas that is excellent at suppressing fluctuations in the performance of the liquefied gas, and a method for manufacturing the container filled with liquefied gas.
  • FIG. 1A is a cross-sectional view showing an example of the configuration of a liquefied gas-containing container according to the present embodiment
  • FIG. 1B is an enlarged view of a region ⁇ of FIG.
  • the liquefied gas container of this embodiment comprises a storage portion and liquefied gas stored in the storage portion.
  • the storage portion has a metal film on its inner surface and a fluoride passivation film containing a metal fluoride on the metal film, and the storage portion contains a gas and a liquid, the gas containing the gas phase of the liquefied gas, and the liquid containing the liquid phase of the liquefied gas and nickel and/or copper elements.
  • the above-mentioned “on the inner surface” and “on the metal film” may mean either direct contact with the inner surface and the metal film or an arbitrary film or layer intervening between the inner surface and the metal film.
  • the inclusion of nickel and copper elements means that the content in the liquid in the container is equal to or higher than the detection limit (1 ppb by weight or higher) when measured by ICP atomic emission spectroscopy.
  • the nickel and copper elements contained in the liquid may be contained as metals or metal ions, or may be contained in part or in whole as metal fluorides or metal fluoride ions (hereinafter, the terms “metal” and “metal fluorides” are used without distinguishing between the metallic state and the ionic state).
  • the liquefied gas container of this embodiment it is possible to suppress deterioration of the highly corrosive liquefied gas and the unintended mixing of impurities, etc., so it is possible to extremely reduce the difference in gas composition between the initial liquefied gas before the container is opened and the liquefied gas after gas release begins, thereby suppressing fluctuations in gas performance such as etching ability.
  • a container containing liquefied gas is directly installed in the gas supply section of various devices such as semiconductors, and the contents are extracted as gas, but if the gas performance fluctuates, it becomes necessary to adjust various settings of the gas supply destination accordingly.
  • the combined use of the metal film and the fluoride passivation film can further suppress the corrosion of the container caused by liquefied gas than when each is used alone, so that it is considered that the unintended mixing of impurities from the container into the liquid or gas in the container can be suppressed.
  • the fluorine mixed into the container is captured (trapped) through metals/metal fluorides such as Ni and NiF2 dissolved in the liquid in the container, so that it is considered that the further fluctuation of the gas composition of the gas can be suppressed. It is presumed that the fluorine is one of the origins of the trace amount of residual fluorine adsorbed on the film surface when the fluoride passivation film is formed. Therefore, it is considered that the fluctuation of the gas performance of the liquefied gas can be suppressed.
  • the content of nickel or copper in the liquid in the storage section is preferably 10 ppb to 1000 ppm by weight, more preferably 30 ppb to 800 ppm by weight, or more preferably 50 ppb to 500 ppm by weight.
  • the content may be, for example, 10 ppb to 1000 ppm by weight, preferably 30 ppb to 800 ppm by weight, or more preferably 50 ppb to 500 ppm by weight.
  • components with a lower vapor pressure than the contained liquefied gas such as iron, cobalt, molybdenum, and silver, may be included.
  • the content of nickel or copper can be measured by ICP atomic emission spectrometry. The measurement is performed on the liquefied gas immediately after the gas is taken out of the container (at the initial stage).
  • the liquefied gas filled in the liquefied gas container can be used for various purposes, but for example, it can be suitably used as a semiconductor gas.
  • the liquefied gas may be a halogen-containing liquefied gas, and is preferably a fluorine-containing liquefied gas.
  • fluorine-containing liquefied gases HF and ClF3 can be suitably used as etching gases corresponding to miniaturization in the semiconductor field.
  • FIG. 1(a) is a cross-sectional view showing a schematic configuration of a container 100 containing liquefied gas.
  • FIG. 1(b) is an enlarged view of region ⁇ in FIG. 1(a).
  • the liquefied gas container 100 has a storage section 10 filled with liquefied gas 30.
  • the storage section 10 contains a gas 35 and a liquid 33, the gas 35 containing the gas phase 34 of the liquefied gas 30, and the liquid 33 containing the liquid phase 32 of the liquefied gas and nickel and/or copper elements.
  • the gas 35 contains substantially only the gas phase 34, since this makes it possible to extract a high-purity liquefied gas from the gas-filled container 100.
  • the liquid 33 may contain any compound or component other than the liquid phase 32 of the liquefied gas and nickel and/or copper elements as described above, so long as it does not adversely affect the gas 35 or the gas phase 34 of the liquefied gas. It may also consist essentially of the liquid phase 32 and nickel and/or copper elements. For example, when the total liquid in the storage section 10 is taken as 100% by weight, the liquid phase 32 may be 98% by weight or more. It may be preferably 99% by weight or more, more preferably 99.5% by weight or more, and even more preferably 99.9% by weight or more.
  • the upper limit of the content of the liquid 33 may be, for example, 95 volume % or less, preferably 90 volume % or less, and more preferably 85 volume % or less.
  • the content of the gas 35 in the storage unit 10 may be, for example, 5 volume % or more, preferably 10 volume % or more, and more preferably 15 volume % or more.
  • the lower limit of the content of liquid 35 may be, for example, 50 volume % or more initially out of 100 volume % of the internal space of the storage section 10, but is not limited to this after the release of liquefied gas 30 has begun.
  • the liquefied gas 30 may be one that is highly corrosive to metals, and examples of the liquefied gas include fluorine-containing liquefied gases such as HF and ClF 3. Since it is easy to use if only one type of liquefied gas 30 is contained, the liquefied gas 30 is preferably HF or ClF 3. Even with a highly corrosive liquefied gas 30, the container 100 containing the liquefied gas can be stably stored.
  • the gas 35 in the storage section 10 consists essentially of only the gas phase 34 of the liquefied gas 30.
  • 99.9 volume % or more of the gas 35 in the storage section 10 may be the gas phase 34 of the liquefied gas 30. More preferably, it may be 99.95 volume % or more, and even more preferably, 99.99 volume % or more. This allows the use of liquefied gas 30 with a high purity maintained.
  • the gas 35 in the storage section 10 contains as little F2 as possible, and may contain, for example, less than 100 ppm by volume, preferably 30 ppm by volume or less, and more preferably 10 ppm by volume or less. This allows the use of liquefied gas 30 with high purity.
  • the types and amounts of components in the gas 35 in the container can be measured using ICP atomic emission spectrometry.
  • the subject of the measurement is the gas 35 immediately after (at the beginning) removal from the liquefied gas-containing container 100.
  • the storage section 10 is composed of a container having an internal space surrounded by walls.
  • the container 10 may be made of a corrosion-resistant metallic material or a ceramic material.
  • the container 10 may be made of one or more selected from the group consisting of stainless steel, carbon steel, manganese steel, nickel steel, and aluminum steel. Nickel-based alloys such as Monel and Hastelloy, or polished materials of the above-mentioned various steels, may also be used. Among these, stainless steel (SUS) and manganese steel are preferred from the viewpoint of low cost and excellent durability.
  • the above-mentioned stainless steel may be any known stainless steel that is used as a container, and may be, for example, an alloy steel containing 50 mass % or more of iron and an optional component (chromium, nickel, etc.) for improving corrosion resistance.
  • the container 10 may contain unavoidably mixed metal elements such as nickel and chromium.
  • the container 10 has a metal film 20 formed on the inner surface 12 , and a fluoride passivation film 22 containing a metal fluoride formed on the metal film 20 .
  • the metal film 20 and the fluoride passivation film 22 are configured to cover at least the inner surface 12 where the liquid 33 is present, but may cover the entire surface of the inner surface 12. If the metal film 20 does not cover the entire surface of the inner surface 12, it is desirable that the uncovered surface of the metal film 20 has a surface or coating that is not easily corroded by the liquefied gas 30 and does not adversely affect the gas phase 34 even if corroded.
  • the above-mentioned surface and coating may be any known surface or coating, and are not particularly limited. Examples of the coating include a gold plating film and a fluororesin film.
  • the metal film 20 may be configured to contain nickel and/or copper as the main component.
  • the metal film 20 may contain optional components, which are preferably those that are difficult to react with the liquefied gas 30, such as gold and fluororesin.
  • a component may be mixed into the liquid 33 from the metal film 20, it may be contained in the metal film 20 as long as the vapor pressure is low and does not adversely affect the gas phase 34 as described above. Examples of such components include iron, cobalt, molybdenum, and silver.
  • the metal film 20 may contain gold, fluororesin, etc., even if they are not components of the metal film 20.
  • an arbitrary coating may be provided between the metal film 20 and the inner surface 12.
  • the term “main component” means 80% by weight or more.
  • containing nickel and copper as main components means that the total content of both in the metal film is 80% by weight or more.
  • the thickness of the metal film 20 is, for example, 1 ⁇ m or more and 300 ⁇ m or less, preferably 2 ⁇ m or more and 200 ⁇ m or less, and more preferably 3 ⁇ m or more and 100 ⁇ m or less.
  • the method of forming the metal film 20 is not limited, but it may be, for example, a sputtered film or a plated film, with a plated film being preferred in that it is particularly easy to form a film that conforms to the shape of the container.
  • a plated film is preferred because it allows the inner surface of the container's storage section 10 and the outer surface of the container to be made of different materials, making it possible to obtain the desired container at low cost.
  • the plated film may be formed by a known method, such as electrolytic plating, electroless plating, or hot-dip plating.
  • the storage unit 10 includes an inlet/outlet mechanism for introducing the liquefied gas 30 into the space and/or discharging the gas 35 in the storage unit 10 to the outside.
  • the storage unit 10 includes an outlet 50 and a filling port (not shown) for the liquefied gas (e.g., having a liquid contact member for filling) as shown in Fig. 1.
  • the outlet 50 may be provided with a valve 40.
  • the outlet 50 and the filling port may be the same.
  • the valve 40, outlet 50 and filling port may be made of a corrosion-resistant metal material or a ceramic material, or may be made of the same material as the storage unit 10.
  • the surfaces of the valve 40, outlet 50 and filling port that come into contact with the liquefied gas 30 or the gas 35 in the storage unit may be formed with the metal film 20 or the fluoride passivation film 22.
  • the material of the outer surface of the liquefied gas-containing container 100 i.e., the outer surface of the wall portion that comes into contact with the outside air, is not particularly limited, and may be a corrosion-resistant metal material or a ceramic material, similar to the storage portion 10. In addition, any coating may be applied to the surface in order to improve physical and chemical strength. In addition, the outer surface may be made of the same material as the metal film 20, but stainless steel (SUS) and manganese steel are preferred from the viewpoints of low cost and excellent durability.
  • the fluoride passivation film 22 contains a metal fluoride obtained by reacting a metal component contained in the metal film 20 with a fluorine-containing gas such as F2 gas.
  • the metal fluoride may be NiF2 or CuF2 depending on the metal component contained in the metal film 20.
  • the metal film 20 may react with the liquefied gas 30, causing impurities to be mixed into the gas 35 inside the storage section 10.
  • the fluoride passivation film 22 may have a dissolution mark at least in a part thereof.
  • the dissolution mark may occur at the gas-liquid interface between the liquid phase 32 and the gas phase 34 of the liquefied gas 30.
  • the gas-liquid interface may also be the gas-liquid interface between the liquid 33 and the gas 35 in the storage unit 10. It is also possible to manage the durability of the fluoride passivation film 22 from the depth of the dissolution mark.
  • the dissolution mark may refer to a location where discoloration can be visually confirmed or where unevenness or peeling of the coating occurs due to contact between the gas-liquid interface and the metal film or fluoride passivation film of the storage unit 10.
  • the liquefied gas-filled container 100 may be stored, transported, etc., in an environment of, for example, 40° C. or less, preferably 30° C. or less, and more preferably 25° C. or less.
  • the temperature of the liquefied gas-filled container 100 during operation may be, for example, 40° C. or less, preferably 30° C. or less, and more preferably 25° C. or less.
  • the container of the present disclosure has less performance fluctuation than conventional containers at high temperatures during storage and transportation. This is effective even in the summer. From this perspective, one embodiment of the present disclosure is to store the container containing the liquefied gas of the present disclosure at 30 to 40°C.
  • one form of the liquefied gas storage method of this embodiment may include a step of introducing liquefied gas 30 into the storage section 10 of the above-mentioned liquefied gas-filled container 100, and a step of storing the liquefied gas-filled container 100 filled with the liquefied gas 30 under a predetermined temperature environment.
  • the liquefied gas 30 may be a halogen-containing liquefied gas or a fluorine-containing liquefied gas.
  • the temperature environment in the storage step is, for example, preferably 25° C. or higher and 40° C. or lower, and more preferably 30° C. or higher and 40° C. or lower.
  • One example of a method for manufacturing a container 100 filled with liquefied gas includes the steps of forming a metal film 20 on the inner surface 12 of the container 10, forming a fluoride passivation film 22 containing a metal fluoride on the metal film 20, and introducing liquefied gas 30 into the container 10 on which the fluoride passivation film 22 has been formed, to obtain a container 100 filled with liquefied gas, in which the container 10 contains a liquid 33 and a gas 35, the gas 35 contains a gas phase 34 of the liquefied gas 30, and the liquid 33 contains a liquid phase 32 of the liquefied gas 30 and nickel and/or copper elements.
  • the metal film 20 may be formed by a known method, for example, by a metal plating process such as electrolytic plating, electroless plating, or hot-dip plating, as described above.
  • the plating solution used in the metal plating process may be appropriately selected according to the processing method and the metal film 20 to be formed, and is not particularly limited.
  • the step of forming the fluoride passivation film 22 containing the metal fluoride can be achieved by reacting the metal component contained in the metal film 20 with a fluorine-containing gas as described above.
  • the fluorine-containing gas can be, for example, F2 gas.
  • the contact may be performed at, for example, 100° C. or less.
  • this room temperature fluoride passivation film can be produced by flowing a fluorine-containing gas at room temperature into the liquefied gas-containing container 100 after the metal film 20 has been formed on the inner surface, and bringing the fluorine-containing gas into contact with the metal film 20.
  • room temperature is not particularly limited as long as the temperature of the fluorine-containing gas is maintained at a temperature at which the reaction between the fluorine-containing gas and the metal film 20 does not become too rapid or too slow.
  • it may be within a range of 5 to 35°C, more preferably 10 to 35°C, and even more preferably 10 to 30°C. If the working environment is excessively high or low, the temperature may be heated or cooled to be within the above-mentioned room temperature range.
  • the liquefied gas 30 When the liquefied gas 30 is introduced, the liquefied gas 30 is introduced into the storage section 10 in a liquid state. It is also preferable to replace the inside of the liquefied gas-containing container 100 with an inert gas before the introduction of the liquefied gas 30, since this allows gases other than the liquefied gas, including the excess fluorine-containing gas, to be efficiently removed.
  • a liquid 33 and a gas 35 containing the liquefied gas 30 are formed in the container 10, and nickel and/or copper elements are further supplied to the liquid 33.
  • the excess metal element derived from the metal film 20 attached to the fluoride passivation film 22 is taken into the liquid 33, or that a part of the fluoride passivation film 22 is dissolved into the liquid 33 by introducing the liquefied gas 30.
  • the metal film 20 and the fluoride passivation film 22 of the preferred embodiment of the present invention are difficult to dissolve in the liquid phase 32, and the corrosion cycle of the inner wall of the container can be made difficult to progress.
  • a small amount of dissolution can occur, it can be presumed that a small amount of dissolution occurs simultaneously with the introduction of the liquefied gas 30, and nickel and/or copper elements are supplied to the liquid 33.
  • another method for supplying the nickel element and/or copper element contained in the liquid 33 may be to first place a supply source of nickel element or copper element in the liquid contact member or storage section 10 for filling the liquefied gas 30, and then introduce the liquefied gas 30 to supply the nickel element or copper element from the supply source into the liquid 33.
  • the nickel plating film was contacted with F2 gas (purity 99.9% by volume, fluorine-containing gas) at room temperature to form a passivation film containing NiF2 (fluoride passivation film 22 containing metal fluoride) on the nickel plating film (fluorine gas treatment).
  • F2 gas purity 99.9% by volume, fluorine-containing gas
  • the F2 gas was removed from the inside of the container and replaced with He gas (inert gas) (replacement process).
  • gaseous HF liquefied gas
  • liquid HF liquefied gas filling process
  • Example 2 A container containing liquefied gas was produced in the same manner as in Example 1, except that the Ni concentration in the plating solution used for nickel plating was made higher than that in Example 1.
  • Example 3 A container containing liquefied gas was produced in the same manner as in Example 1, except that the material of the container was changed from stainless steel to manganese steel.
  • Example 4 A container containing liquefied gas was produced in the same manner as in Example 1, except that the metal plating was changed from nickel plating to copper plating.
  • Example 5 A container containing liquefied gas was produced in the same manner as in Example 4, except that the Cu concentration in the plating solution used for copper plating was made higher than that in Example 4.
  • Example 6 A container containing a liquefied gas was produced in the same manner as in Example 1, except that the type of liquefied gas was changed from HF to ClF3 .
  • Example 7 A container containing a liquefied gas was prepared in the same manner as in Example 2, except that the type of liquefied gas was changed from HF to ClF3 .
  • Example 8 A container containing liquefied gas was prepared in the same manner as in Example 4, except that the type of liquefied gas was changed from HF to ClF3 .
  • Example 9 A container containing liquefied gas was prepared in the same manner as in Example 5, except that the type of liquefied gas was changed from HF to ClF3 .
  • Example 1 A container containing liquefied gas was produced in the same manner as in Example 1, except that the fluorine gas treatment was carried out without carrying out the plating treatment.
  • Comparative Example 2 A container containing liquefied gas was produced in the same manner as in Example 6, except that the fluorine gas treatment was carried out without carrying out the plating treatment.
  • Metal concentration in liquid The metal concentrations (wt. ppm) of nickel and copper contained in the liquid in the container were measured by ICP emission spectrometry. Table 1 shows the metal concentrations when the amount of liquid remaining in the container is 80% of the initial amount by volume, and when the amount of liquid remaining in the container is 20%, after the container is filled with liquefied gas and the valve of the container is opened to gradually release the gas containing the liquefied gas from the outlet.
  • metal type in “metal concentration in liquid” indicates either nickel or copper, and in cases where only one type is listed, such as in Examples 1 to 9, the unlisted element was less than 1 ppb (below the detection limit).
  • Comparative Examples 1 and 2 the concentrations of both nickel and copper elements were less than 1 ppb (below the detection limit) initially, when 80% remained, and when 20% remained, and neither nickel nor copper elements were confirmed in the liquid.
  • the F2 concentration (wt. Vol) contained in the gas in the container was measured by ICP emission spectrometry.
  • the F2 concentration was measured on the gas immediately after it was discharged from the outlet, and the values are shown in Table 1 when the amount of liquid remaining in the container was 80% by volume compared to the initial amount, and when the amount of liquid remaining in the container was 20%, at the initial time immediately after the liquefied gas was filled into the container, the valve of the container was opened and the gas containing the liquefied gas was gradually discharged from the outlet.
  • Example 1 the initial HF or ClF3 concentration was measured using ICP atomic emission spectrometry on the gas immediately after it was discharged from the outlet. In all Examples, it was confirmed that the initial HF or ClF3 concentration in the gas was 99.9% by volume or more.
  • the reaction chamber is equipped with a stage for supporting a sample.
  • the sample used was a 6-inch silicon substrate with a silicon oxide film (20 nm) formed thereon and a polysilicon film (30 ⁇ m) formed thereon.
  • the stage is equipped with a stage temperature regulator capable of adjusting the stage temperature.
  • the reaction chamber is connected to a first gas pipe for introducing gas and a second gas pipe for exhausting gas.
  • the etching gas supply system is connected to the first gas pipe via a first valve and supplies the above-mentioned substrate processing gas to the reaction chamber.
  • the vacuum pump is connected to the second gas pipe via a second valve for exhausting gas.
  • the pressure inside the reaction chamber is controlled by a second valve based on the indicated value of a pressure gauge attached to the reaction chamber.
  • a sample is placed on the stage, and the reaction chamber, the first gas pipe, and the second gas pipe are evacuated to 1.5 kPa, after which the stage temperature is set to a specified value (25°C). After confirming that the stage temperature has reached the specified value, the first and second valves are opened, the pressure of the etching gas supply system is set to the specified pressure (100 Pa), and liquefied gas stored in a liquefied gas container is introduced into the reaction chamber through the first gas pipe as a substrate processing gas. The total flow rate of the substrate processing gas at this time was set to 100 sccm.
  • etching time 1 minute
  • the thickness of the polysilicon film before etching and the thickness of the polysilicon film after etching were measured at five locations each, and the amount of etching at each measurement location (difference in film thickness before and after etching) was calculated.
  • the etching rate (nm/min) was calculated from the average amount of etching at each measurement location and the etching time.
  • the initial value immediately after filling the container with liquefied gas is taken as 1.0.
  • the valve of the container is opened and the gas is gradually released from the outlet.
  • Table 1 shows the relative values when the remaining amount of liquid in the container is 80% of the initial volume, and when the remaining amount of liquid in the container is 20%.

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

A liquefied gas-filled container (100) according to the present invention which is equipped with a storage section (10) and a liquefied gas (30) stored in the storage section (10), wherein: the storage section (10) has a metal film (20) on an inner surface (12) and a fluorinated passive film (22) containing a metal fluoride on the metal film (20); a gas (35) and a liquid (33) are present inside the storage section (10); the gas (35) contains a gas phase (34) of the liquefied gas (30); and the liquid (33) contains a liquid phase (32) of the liquefied gas (30) and elemental nickel and/or elemental copper.

Description

液化ガス入り容器および液化ガス入り容器の製造方法Container containing liquefied gas and method for manufacturing the container containing liquefied gas
 本発明は、液化ガス入り容器および液化ガス入り容器の製造方法に関する。 The present invention relates to a container containing liquefied gas and a method for manufacturing a container containing liquefied gas.
 これまで液化ガス入り容器について様々な開発がなされてきた。この種の技術として、特許文献1に記載の技術が知られている。特許文献1には、金属材料の表面にフッ化不動態膜を形成することによりハロゲン系ガスに対する耐食性を向上させることが記載されている(特許文献1の請求項1、発明の効果など)。 Various developments have been made so far regarding containers containing liquefied gas. One such technology is described in Patent Document 1. Patent Document 1 describes how corrosion resistance to halogen-based gases can be improved by forming a fluoride passivation film on the surface of a metal material (Claim 1 of Patent Document 1, Effects of the Invention, etc.).
特開平02-263972号公報Japanese Patent Application Laid-Open No. 02-263972
 しかしながら、本発明者が検討した結果、上記特許文献1に記載のフッ化不動態膜付き金属材料を用いたガス貯蔵容器において、液化ガスの性能変動の抑制の点で改善の余地があることが判明した。 However, as a result of the inventor's investigations, it was found that there is room for improvement in terms of suppressing performance fluctuations of liquefied gas in gas storage containers using metal materials with fluoride passivation films as described in Patent Document 1 above.
 本発明者はさらに検討したところ、金属膜上にフッ化不動態膜が形成された容器を用い、その上で、容器中の液体内にニッケル元素および/または銅元素を含ませることにより、容器開放前の当初液化ガスと、ガス放出開始後の液化ガスとの気体組成の差を極めて小さくすることが達成可能となり、その結果ガス性能の変動を抑制できることを見出し、本発明を完成するに至った。 After further investigation, the inventors discovered that by using a container with a fluoride passivation film formed on a metal film and then adding nickel and/or copper elements to the liquid in the container, it is possible to extremely reduce the difference in gas composition between the initial liquefied gas before the container is opened and the liquefied gas after gas release begins, thereby suppressing fluctuations in gas performance, and thus completing the present invention.
 本発明の一態様によれば、以下の液化ガス入り容器および液化ガス入り容器の製造方法が提供される。
1. 収容部と、
 前記収容部に収容された液化ガスと、を備え、
 前記収容部が、内面上に金属膜と、前記金属膜上に金属フッ化物を含むフッ化不動態膜と、を有し、
 収容された前記液化ガスが、液相および気相から構成され、
 前記液相中にニッケル元素および/または銅元素を含む、
液化ガス入り容器。
2. 1.に記載の液化ガス入り容器であって、
 ICP発光分光分析法により測定される、前記液相中における前記ニッケル元素及び銅元素の含有量の総量が、10重量ppb以上1000重量ppm以下である、液化ガス入り容器。
3. 1.または2.に記載の液化ガス入り容器であって、
 前記液化ガスが、HF又はClFである、液化ガス入り容器。
4. 1.~3.のいずれか一つに記載の液化ガス入り容器であって、
 前記液化ガスの前記気相中における主成分の量が、99.9体積%以上である、液化ガス入り容器。
5. 1.~4.のいずれか一つに記載の液化ガス入り容器であって、
 前記液化ガスの前記気相中におけるFの量が、100体積ppm未満である、液化ガス入り容器。
6. 1.~5.のいずれか一つに記載の液化ガス入り容器であって、
 前記収容部が、ステンレス鋼、炭素鋼、マンガン鋼、ニッケル鋼、及びアルミニウム鋼からなる群から選らばれる一又は二以上を含む、液化ガス入り容器。
7. 1.~6.のいずれか一つに記載の液化ガス入り容器であって、
 前記金属膜が、めっき膜を有する、液化ガス入り容器。
8. 1.~7.のいずれか一つに記載の液化ガス入り容器であって、
 前記金属膜が、ニッケルおよび/または銅を主成分に含む、液化ガス入り容器。
9. 1.~8.のいずれか一つに記載の液化ガス入り容器であって、
 前記金属膜の膜厚が、1μm以上300μm以下である、液化ガス入り容器。
10. 1.~9.のいずれか一つに記載の液化ガス入り容器であって、
 前記フッ化不動態膜が、常温フッ化不動態膜である、液化ガス入り容器。
11. 1.~10.のいずれか一つに記載の液化ガス入り容器であって、
 前記フッ化不動態膜の少なくとも一部に溶解痕が存在する、液化ガス入り容器。
12. 収容部と、前記収容部に収容された液化ガスと、を備える液化ガス入り容器の製造方法であって、
 前記収容部の内面上に金属膜を形成する工程と、
 前記金属膜上に金属フッ化物を含むフッ化不動態膜を形成する工程と、
 前記フッ化不動態膜が形成された前記収容部内に、前記液化ガスを導入して、前記収容部内には液体と気体とを有し、前記気体は前記液化ガスの気相を含み、前記液体は前記液化ガスの液相とニッケル元素および/または銅元素とを含む、液化ガス入り容器を得る工程と、を有する、
液化ガス入り容器の製造方法。
13. 前記フッ化不動態膜を形成する工程が、前記収容部にフッ素含有ガスを常温で流入させ、前記金属膜に接触させる工程である、12.に記載の液化ガス入り容器の製造方法。
According to one aspect of the present invention, there is provided the following liquefied gas-filled container and method for manufacturing a liquefied gas-filled container.
1. A storage section;
A liquefied gas contained in the container,
the container has a metal film on an inner surface, and a fluoride passivation film containing a metal fluoride on the metal film,
The contained liquefied gas is composed of a liquid phase and a gas phase,
The liquid phase contains nickel and/or copper.
Container containing liquefied gas.
2. A container containing liquefied gas according to 1.,
A container containing a liquefied gas, wherein the total content of the nickel element and the copper element in the liquid phase, as measured by ICP atomic emission spectrometry, is 10 ppb by weight or more and 1000 ppm by weight or less.
3. A container containing liquefied gas according to 1. or 2.,
A container containing a liquefied gas, wherein the liquefied gas is HF or ClF3 .
4. A container containing liquefied gas according to any one of 1. to 3.,
A container containing liquefied gas, wherein the amount of a main component in the gas phase of the liquefied gas is 99.9 volume % or more.
5. A container containing liquefied gas according to any one of 1. to 4.,
A container containing a liquefied gas, wherein the amount of F2 in the gas phase of the liquefied gas is less than 100 ppm by volume.
6. A container containing liquefied gas according to any one of 1. to 5.,
A container containing liquefied gas, wherein the storage portion comprises one or more materials selected from the group consisting of stainless steel, carbon steel, manganese steel, nickel steel, and aluminum steel.
7. A container containing liquefied gas according to any one of 1. to 6.,
A container containing a liquefied gas, wherein the metal film has a plating film.
8. A container containing liquefied gas according to any one of 1. to 7.,
A container containing liquefied gas, wherein the metal film contains nickel and/or copper as a main component.
9. A container containing liquefied gas according to any one of 1. to 8.,
A container containing a liquefied gas, wherein the thickness of the metal film is 1 μm or more and 300 μm or less.
10. A container containing liquefied gas according to any one of 1. to 9.,
A container containing a liquefied gas, wherein the fluoride passivation film is a room temperature fluoride passivation film.
11. A container containing liquefied gas according to any one of 1. to 10.,
A container containing a liquefied gas, wherein a dissolution mark is present on at least a portion of the fluoride passivation film.
12. A method for manufacturing a container containing liquefied gas, the container comprising a storage section and liquefied gas stored in the storage section, comprising the steps of:
forming a metal film on an inner surface of the container;
forming a fluoride passivation film containing a metal fluoride on the metal film;
and introducing the liquefied gas into the container on which the fluoride passivation film is formed to obtain a container containing the liquefied gas, the container having a liquid and a gas, the gas including a gas phase of the liquefied gas, and the liquid including a liquid phase of the liquefied gas and nickel element and/or copper element.
A method for manufacturing a container containing liquefied gas.
13. The method for producing a container containing liquefied gas according to 12., wherein the step of forming the fluoride passivation film is a step of flowing a fluorine-containing gas into the container at room temperature and bringing the gas into contact with the metal film.
 本発明によれば、液化ガスの性能変動の抑制に優れた液化ガス入り容器および液化ガス入り容器の製造方法が提供される。 The present invention provides a container filled with liquefied gas that is excellent at suppressing fluctuations in the performance of the liquefied gas, and a method for manufacturing the container filled with liquefied gas.
(a)本実施形態に係る液化ガス入り容器の構成の一例を模式的に示す断面図である。(b)(a)のα領域における拡大図である。1A is a cross-sectional view showing an example of the configuration of a liquefied gas-containing container according to the present embodiment, and FIG. 1B is an enlarged view of a region α of FIG.
 以下、本発明の実施の形態について、図面を用いて説明する。なお、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。また、図は概略図であり、実際の寸法比率とは一致していない。 Below, an embodiment of the present invention will be described with reference to the drawings. Note that in all drawings, similar components are given similar reference symbols and descriptions will be omitted where appropriate. Also, the drawings are schematic and do not correspond to the actual dimensional ratios.
 本実施形態の液化ガス入り容器の概要を説明する。 An overview of the liquefied gas container of this embodiment is given below.
 本実施形態の液化ガス入り容器は、収容部と、収容部に収容された液化ガスと、を備える。
 本実施形態の液化ガス入り容器において、収容部が、内面上に金属膜と、金属膜上に金属フッ化物を含むフッ化不動態膜と、を有し、収容部内には気体と液体とを有し、気体は液化ガスの気相を含み、液体は液化ガスの液相と、ニッケル元素および/または銅元素とを含むように構成される。
The liquefied gas container of this embodiment comprises a storage portion and liquefied gas stored in the storage portion.
In the container containing liquefied gas of this embodiment, the storage portion has a metal film on its inner surface and a fluoride passivation film containing a metal fluoride on the metal film, and the storage portion contains a gas and a liquid, the gas containing the gas phase of the liquefied gas, and the liquid containing the liquid phase of the liquefied gas and nickel and/or copper elements.
 なお、上記の「内面上」「金属膜上」とは、内面及び金属膜と直接接触するものでも、内面及び金属膜との間に任意の膜や層が介在するものでもよい。
 ニッケル元素および銅元素が含まれるとは、収容部内の液体中の含有量をICP発光分光分析法を用いて測定したときに検出限界以上(1重量ppb以上)であることを意味する。液体中に含まれるニッケル元素および銅元素は、金属や金属イオンとして含まれていてもよいが、その一部または全部が金属フッ化物や金属フッ化物イオンとして含まれていてもよい(以下、金属状態とイオン状態とを区別せずに「金属」や「金属フッ化物」と記載する)。
The above-mentioned "on the inner surface" and "on the metal film" may mean either direct contact with the inner surface and the metal film or an arbitrary film or layer intervening between the inner surface and the metal film.
The inclusion of nickel and copper elements means that the content in the liquid in the container is equal to or higher than the detection limit (1 ppb by weight or higher) when measured by ICP atomic emission spectroscopy. The nickel and copper elements contained in the liquid may be contained as metals or metal ions, or may be contained in part or in whole as metal fluorides or metal fluoride ions (hereinafter, the terms "metal" and "metal fluorides" are used without distinguishing between the metallic state and the ionic state).
 本実施形態の液化ガス入り容器を用いることにより、腐食性の高い液化ガスの劣化や意図しない不純物の混入等を抑制可能であるため、容器開封前の当初液化ガスと、ガス放出開始後の液化ガスとの気体組成の差を極めて小さくすることが可能となり、エッチング能などのガス性能の変動を抑制することができる。
 一般的に、液化ガス入り容器は半導体等の各種装置のガス供給部にそのまま設置し、内容物がガスとして取り出されるが、ガス性能が変動するとガス供給先の各種設定を変動に合わせて調整する必要が生じる。さらに、容器内の液化ガスがなくなるとまだ消費されていない新しいガス入り容器を付け替えるが、この時、付け替え前後でガス性能にバラつきが生じると、ガス供給先の装置の各種設定を再調整する工程が生じるため、量産化設備の操業において操作が煩雑になってしまう。
By using the liquefied gas container of this embodiment, it is possible to suppress deterioration of the highly corrosive liquefied gas and the unintended mixing of impurities, etc., so it is possible to extremely reduce the difference in gas composition between the initial liquefied gas before the container is opened and the liquefied gas after gas release begins, thereby suppressing fluctuations in gas performance such as etching ability.
Generally, a container containing liquefied gas is directly installed in the gas supply section of various devices such as semiconductors, and the contents are extracted as gas, but if the gas performance fluctuates, it becomes necessary to adjust various settings of the gas supply destination accordingly. Furthermore, when the liquefied gas in the container runs out, a new container containing gas that has not yet been consumed is replaced, but if there is a variation in gas performance before and after the replacement, a process of readjusting various settings of the device to which the gas is supplied becomes necessary, which makes the operation of the mass production facility complicated.
 本発明者らの知見によれば、液化ガス入り容器の内面を金属膜およびフッ化不動態膜で被覆するとともに、容器内の非気体中(例えば、液体中)に所定の金属元素を含むように構成することによって、上述のような、ガス性能の変動を抑制できることが見出された。 According to the findings of the present inventors, it has been discovered that the above-mentioned fluctuations in gas performance can be suppressed by coating the inner surface of a container containing liquefied gas with a metal film and a fluoride passivation film, and configuring the container so that a specific metal element is contained in the non-gaseous medium (e.g., in the liquid) inside the container.
 詳細なメカニズムは定かではないが、金属膜およびフッ化不動態膜の併用によって、それぞれ単独の場合よりも、液化ガスによる収容部の腐食を一層抑制できるため、容器内の液体や気体への意図しない容器由来の不純物の混入を抑制できると考えられる。さらに、容器内の液体中に溶解したNiやNiF等の金属/金属フッ化物を介して、収容部内に混入したフッ素が捕集(トラップ)されるため、気体のガス組成のさらなる変動を抑制することができると考えられる。なお、前記のフッ素は、前記フッ化不動態膜を形成時に膜表面に吸着した微量な残留フッ素が由来の一つであると推測される。このため、液化ガスのガス性能の変動を抑制できると考えられる。 Although the detailed mechanism is unclear, the combined use of the metal film and the fluoride passivation film can further suppress the corrosion of the container caused by liquefied gas than when each is used alone, so that it is considered that the unintended mixing of impurities from the container into the liquid or gas in the container can be suppressed. Furthermore, the fluorine mixed into the container is captured (trapped) through metals/metal fluorides such as Ni and NiF2 dissolved in the liquid in the container, so that it is considered that the further fluctuation of the gas composition of the gas can be suppressed. It is presumed that the fluorine is one of the origins of the trace amount of residual fluorine adsorbed on the film surface when the fluoride passivation film is formed. Therefore, it is considered that the fluctuation of the gas performance of the liquefied gas can be suppressed.
 また、液体中のNiやNiF等の金属/金属フッ化物の蒸気圧は相対的に低いため、これらが、収容部内の気体中に混入することを抑制できる。このため、液化ガス入り容器から取り出された液化ガスの純度を長期的に維持する。 In addition, since the vapor pressure of metals/metal fluorides such as Ni and NiF2 in the liquid is relatively low, it is possible to prevent them from being mixed into the gas in the container, thereby maintaining the purity of the liquefied gas taken out of the liquefied gas container for a long period of time.
 収容部内の液体中におけるニッケル元素または銅元素の含有量は、前記液体中における前記ニッケル元素及び銅元素の含有量の総量が、10重量ppb以上1000重量ppm以下であるのが好ましく、より好ましくは30重量ppb以上800重量ppm以下、50重量ppb以上500重量ppm以下としてもよい。また、ニッケル元素と銅元素の一方しか含まない場合、含有量は、例えば、10重量ppb以上1000重量ppm以下、好ましくは30重量ppb以上800重量ppm以下、より好ましくは50重量ppb以上500重量ppm以下としてもよい。上記範囲内とすることにより、液化ガスのガス性能の変動を抑制しやすい。
 また、液化ガスの気相におけるガス性能の変動に影響を与えない範囲であれば、前記液体中に他の成分を含有してもよい。例えば、収容されている液化ガスに対して蒸気圧の低い成分が挙げられ、鉄元素、コバルト元素、モリブデン元素、銀元素等が挙げられる。
 ニッケル元素または銅元素の含有量は、ICP発光分光分析法により測定できる。測定の対象は、液化ガス入り容器から取り出し開始直後(初期時)の液化ガスとする。
The content of nickel or copper in the liquid in the storage section is preferably 10 ppb to 1000 ppm by weight, more preferably 30 ppb to 800 ppm by weight, or more preferably 50 ppb to 500 ppm by weight. In addition, when only one of nickel and copper is contained, the content may be, for example, 10 ppb to 1000 ppm by weight, preferably 30 ppb to 800 ppm by weight, or more preferably 50 ppb to 500 ppm by weight. By setting the content within the above range, it is easy to suppress the fluctuation of the gas performance of the liquefied gas.
The liquid may contain other components as long as they do not affect the fluctuation of the gas performance in the gas phase of the liquefied gas. For example, components with a lower vapor pressure than the contained liquefied gas, such as iron, cobalt, molybdenum, and silver, may be included.
The content of nickel or copper can be measured by ICP atomic emission spectrometry. The measurement is performed on the liquefied gas immediately after the gas is taken out of the container (at the initial stage).
 液化ガス入り容器に充填された液化ガスは、各種用途に用いることができるが、例えば、半導体用ガスとして好適に用いることができる。
 具体的には、液化ガスは、ハロゲン含有液化ガスでもよく、好ましくはフッ素含有液化ガスである。
 フッ素含有液化ガスの中でも、HFやClFは、半導体分野における微細化に対応したエッチングガスとして好適に用いることができる。
The liquefied gas filled in the liquefied gas container can be used for various purposes, but for example, it can be suitably used as a semiconductor gas.
Specifically, the liquefied gas may be a halogen-containing liquefied gas, and is preferably a fluorine-containing liquefied gas.
Among fluorine-containing liquefied gases, HF and ClF3 can be suitably used as etching gases corresponding to miniaturization in the semiconductor field.
 以下、本実施形態の液化ガス入り容器の各構成について詳述する。 The individual components of the liquefied gas container of this embodiment are described in detail below.
 図1(a)は、液化ガス入り容器100の構成を模式的に示す断面図である。図1(b)は、図1(a)のα領域における拡大図である。 FIG. 1(a) is a cross-sectional view showing a schematic configuration of a container 100 containing liquefied gas. FIG. 1(b) is an enlarged view of region α in FIG. 1(a).
 液化ガス入り容器100は、液化ガス30が充填された収容部10を備える。 The liquefied gas container 100 has a storage section 10 filled with liquefied gas 30.
 収容部10内は、気体35と液体33とを有し、気体35は液化ガス30の気相34を含み、液体33は液化ガスの液相32とニッケル元素および/または銅元素とを有する。 The storage section 10 contains a gas 35 and a liquid 33, the gas 35 containing the gas phase 34 of the liquefied gas 30, and the liquid 33 containing the liquid phase 32 of the liquefied gas and nickel and/or copper elements.
 前記気体35は、後述するように実質的に気相34のみを含むと、高純度な液化ガスをガス入り容器100から取り出すことが可能であるため好ましい。 As described below, it is preferable that the gas 35 contains substantially only the gas phase 34, since this makes it possible to extract a high-purity liquefied gas from the gas-filled container 100.
 前記液体33は、気体35や液化ガスの気相34に悪影響を与えない範囲内であれば、前述したように液化ガスの液相32とニッケル元素および/または銅元素以外に任意の化合物や成分を含んでも良い。また、実質的に液相32とニッケル元素および/または銅元素のみからなるとしてもよい。例えば、収容部10内の全液体を100重量%とした時、液相32が98重量%以上であるとしてもよい。好ましくは99重量%以上、より好ましくは99.5重量%以上、さらに好ましくは99.9重量%以上としてもよい。 The liquid 33 may contain any compound or component other than the liquid phase 32 of the liquefied gas and nickel and/or copper elements as described above, so long as it does not adversely affect the gas 35 or the gas phase 34 of the liquefied gas. It may also consist essentially of the liquid phase 32 and nickel and/or copper elements. For example, when the total liquid in the storage section 10 is taken as 100% by weight, the liquid phase 32 may be 98% by weight or more. It may be preferably 99% by weight or more, more preferably 99.5% by weight or more, and even more preferably 99.9% by weight or more.
 収容部10の内部空間を100体積%としたとき、液体33の含有量の上限は、例えば、95体積%以下、好ましくは90体積%以下、より好ましくは85体積%以下であるとしてもよい。また、収容部10内の気体35の含有量は、例えば5体積%以上としてもよく、好ましくは10体積%以上、より好ましくは15体積%以上としてもよい。収容部10内の気体35の体積量を所定値以上とすることにより、気体35内に不純物が混入したとしても、体積が多いほど当該不純物が希釈されて不純物の濃度が低下するため、ガス性能への影響を抑制できる。
 一方、液体35の含有量の下限は、収容部10の内部空間100体積%中、例えば、初期時には50体積%以上としてもよいが、液化ガス30の放出を開始した後はこれに限定されない。
When the internal space of the storage unit 10 is taken as 100 volume %, the upper limit of the content of the liquid 33 may be, for example, 95 volume % or less, preferably 90 volume % or less, and more preferably 85 volume % or less. The content of the gas 35 in the storage unit 10 may be, for example, 5 volume % or more, preferably 10 volume % or more, and more preferably 15 volume % or more. By setting the volume of the gas 35 in the storage unit 10 to a predetermined value or more, even if impurities are mixed into the gas 35, the larger the volume, the more the impurities are diluted and the lower the concentration of the impurities, so that the effect on the gas performance can be suppressed.
On the other hand, the lower limit of the content of liquid 35 may be, for example, 50 volume % or more initially out of 100 volume % of the internal space of the storage section 10, but is not limited to this after the release of liquefied gas 30 has begun.
 液化ガス30は、金属に対する腐食性が高いものが挙げられるが、例えば、HFおよびClF等のフッ素含有液化ガスが挙げられる。収容された液化ガス30は1種類であると使用しやすいことから、液化ガス30は、HFまたはClFであることが好ましい。高い腐食性を有する液化ガス30でも、液化ガス入り容器100は安定的に保管することができる。 The liquefied gas 30 may be one that is highly corrosive to metals, and examples of the liquefied gas include fluorine-containing liquefied gases such as HF and ClF 3. Since it is easy to use if only one type of liquefied gas 30 is contained, the liquefied gas 30 is preferably HF or ClF 3. Even with a highly corrosive liquefied gas 30, the container 100 containing the liquefied gas can be stably stored.
 収容部10内の気体35は、実質的に液化ガス30の気相34のみからなるのが好ましい。例えば、収容部10内の気体35の99.9体積%以上が、液化ガス30の気相34であるとしてもよい。より好ましくは99.95体積%以上、さらに好ましくは99.99体積%以上としてもよい。これにより、高純度が維持された液化ガス30を使用できる。 It is preferable that the gas 35 in the storage section 10 consists essentially of only the gas phase 34 of the liquefied gas 30. For example, 99.9 volume % or more of the gas 35 in the storage section 10 may be the gas phase 34 of the liquefied gas 30. More preferably, it may be 99.95 volume % or more, and even more preferably, 99.99 volume % or more. This allows the use of liquefied gas 30 with a high purity maintained.
 収容部10内の気体35中にFは極力含まれないのが好ましく、例えば、100体積ppm未満、好ましくは30体積ppm以下、より好ましくは10体積ppm以下としてもよい。これにより、高純度が維持された液化ガス30を使用できる。 It is preferable that the gas 35 in the storage section 10 contains as little F2 as possible, and may contain, for example, less than 100 ppm by volume, preferably 30 ppm by volume or less, and more preferably 10 ppm by volume or less. This allows the use of liquefied gas 30 with high purity.
 本明細書中において、容器内の気体35中の成分種や成分量については、ICP発光分光分析法を用いて測定できる。測定の対象は、液化ガス入り容器100から取り出し開始直後(初期時)における気体35とする。 In this specification, the types and amounts of components in the gas 35 in the container can be measured using ICP atomic emission spectrometry. The subject of the measurement is the gas 35 immediately after (at the beginning) removal from the liquefied gas-containing container 100.
 収容部10は、壁部で囲まれた内部空間を有する容器で構成される。 The storage section 10 is composed of a container having an internal space surrounded by walls.
 収容部10は、耐食性金属材料またはセラミックス材料で構成されてもよい。
 収容部10は、ステンレス鋼、炭素鋼、マンガン鋼、ニッケル鋼、及びアルミニウム鋼からなる群から選らばれる一又は二以上で構成されてもよい。また、モネル、ハステロイ等のニッケル系合金や上記の各種鋼が研磨された材料等を用いてもよい。この中でも、安価で耐久性に優れる観点から、ステンレス鋼(SUS)、マンガン鋼が好ましい。上記のステンレス鋼は、公知の容器として用いられるものであれば良く、例えば、50質量%以上の鉄と、耐食性を高めるための任意成分(クロム、ニッケル等)との合金鋼としてもよい。
 なお、収容部10には、主成分である耐食性金属材料の他に、ニッケル、クロムなどの不可避に混入する金属元素が含まれていてもよい。
The container 10 may be made of a corrosion-resistant metallic material or a ceramic material.
The container 10 may be made of one or more selected from the group consisting of stainless steel, carbon steel, manganese steel, nickel steel, and aluminum steel. Nickel-based alloys such as Monel and Hastelloy, or polished materials of the above-mentioned various steels, may also be used. Among these, stainless steel (SUS) and manganese steel are preferred from the viewpoint of low cost and excellent durability. The above-mentioned stainless steel may be any known stainless steel that is used as a container, and may be, for example, an alloy steel containing 50 mass % or more of iron and an optional component (chromium, nickel, etc.) for improving corrosion resistance.
In addition to the corrosion-resistant metal material that is the main component, the container 10 may contain unavoidably mixed metal elements such as nickel and chromium.
 収容部10は、内面12上に形成された金属膜20と、金属膜20上に形成された金属フッ化物を含むフッ化不動態膜22と、を有する。
 金属膜20およびフッ化不動態膜22は、少なくとも液体33が存在する内面12上を被覆するように構成されるが、内面12全面を被覆していてもよい。また、金属膜20が内面12を全面被覆しない場合、金属膜20の非被覆面は液化ガス30に腐食され難く、かつ腐食されても気相34へ悪影響を与えない表面又は被膜を有するのが望ましい。上記のような表面や被膜は公知のものを用いればよく、特に限定されるものではない。被膜としては、例えば、金めっき膜やフッ素樹脂膜等が挙げられる。
The container 10 has a metal film 20 formed on the inner surface 12 , and a fluoride passivation film 22 containing a metal fluoride formed on the metal film 20 .
The metal film 20 and the fluoride passivation film 22 are configured to cover at least the inner surface 12 where the liquid 33 is present, but may cover the entire surface of the inner surface 12. If the metal film 20 does not cover the entire surface of the inner surface 12, it is desirable that the uncovered surface of the metal film 20 has a surface or coating that is not easily corroded by the liquefied gas 30 and does not adversely affect the gas phase 34 even if corroded. The above-mentioned surface and coating may be any known surface or coating, and are not particularly limited. Examples of the coating include a gold plating film and a fluororesin film.
 金属膜20は、ニッケルおよび/または銅を主成分に含むように構成されてもよい。ニッケル、銅の他に金属膜20を構成する任意成分を含んでもよく、任意成分としては液化ガス30と反応し難いものが望ましく、例えば金やフッ素樹脂等が挙げられる。また、金属膜20から一部液体33中へ混入し得る成分でも、前述したように蒸気圧が低く気相34へ悪影響を与えない程度であれば、金属膜20内に含んでいてもよい。例えば、鉄元素、コバルト元素、モリブデン元素、銀元素等が挙げられる。また、当然、金属膜20の構成成分でなくとも、金属膜20に金元素やフッ素樹脂等を含んでもよい。
 また、金属膜20と内面12との密着性や金属膜20の耐久性等を向上させる目的で、金属膜20と内面12との間に任意のコーティングを有していてもよい。
 なお、本明細書中において、主成分とは、重量換算で、80重量%以上を意味する。
 前記金属膜が、ニッケルおよび銅の両方を含む場合には、「ニッケルと銅を主成分に含む」とは、金属膜中の両者の合計含有量が80重量%以上であることを意味する
The metal film 20 may be configured to contain nickel and/or copper as the main component. In addition to nickel and copper, the metal film 20 may contain optional components, which are preferably those that are difficult to react with the liquefied gas 30, such as gold and fluororesin. In addition, even if a component may be mixed into the liquid 33 from the metal film 20, it may be contained in the metal film 20 as long as the vapor pressure is low and does not adversely affect the gas phase 34 as described above. Examples of such components include iron, cobalt, molybdenum, and silver. Naturally, the metal film 20 may contain gold, fluororesin, etc., even if they are not components of the metal film 20.
Furthermore, for the purpose of improving the adhesion between the metal film 20 and the inner surface 12 and the durability of the metal film 20, an arbitrary coating may be provided between the metal film 20 and the inner surface 12.
In this specification, the term "main component" means 80% by weight or more.
When the metal film contains both nickel and copper, "containing nickel and copper as main components" means that the total content of both in the metal film is 80% by weight or more.
 金属膜20の膜厚は、例えば、1μm以上300μm以下、好ましくは2μm以上200μm以下、より好ましくは3μm以上100μm以下である。 The thickness of the metal film 20 is, for example, 1 μm or more and 300 μm or less, preferably 2 μm or more and 200 μm or less, and more preferably 3 μm or more and 100 μm or less.
 金属膜20において、その形成方法は限定されないが、例えば、スパッタ膜やめっき膜で構成されてもよく、特に容器形状に沿った膜形成を行いやすい点でめっき膜が好ましい。また、めっき膜を用いると、容器の収容部10の内面と、容器の外表面とを構成する材料を異なるものとし、安価に所望の容器を得ることが可能なため好ましい。めっき膜は公知の方法で成膜されたものでよく、例えば電解めっき、無電解めっき、溶融めっき等が挙げられる。 The method of forming the metal film 20 is not limited, but it may be, for example, a sputtered film or a plated film, with a plated film being preferred in that it is particularly easy to form a film that conforms to the shape of the container. In addition, the use of a plated film is preferred because it allows the inner surface of the container's storage section 10 and the outer surface of the container to be made of different materials, making it possible to obtain the desired container at low cost. The plated film may be formed by a known method, such as electrolytic plating, electroless plating, or hot-dip plating.
 収容部10は、液化ガス30を空間内部に導入および/または収容部10内の気体35を外部に放出する出入機構を備える。出入機構の一例として、収容部10は、図1に示すような、取出口50と、図示しない液化ガスの充填口(例えば、充填用の接液部材を備える)を有する。上記取出口50には設けられた弁40が設けられていてもよい。また、取出口50と充填口が同じであってもよい。
 弁40、取出口50、充填口は、耐食性金属材料またはセラミックス材料などで構成されてもよく、収容部10と同じ材料で構成されてもよい。また、弁40、取出口50、充填口の、液化ガス30や収容部内の気体35と接する表面は、前記金属膜20やフッ化不動態膜22が形成されていてもよい。
The storage unit 10 includes an inlet/outlet mechanism for introducing the liquefied gas 30 into the space and/or discharging the gas 35 in the storage unit 10 to the outside. As an example of the inlet/outlet mechanism, the storage unit 10 includes an outlet 50 and a filling port (not shown) for the liquefied gas (e.g., having a liquid contact member for filling) as shown in Fig. 1. The outlet 50 may be provided with a valve 40. Also, the outlet 50 and the filling port may be the same.
The valve 40, outlet 50 and filling port may be made of a corrosion-resistant metal material or a ceramic material, or may be made of the same material as the storage unit 10. Furthermore, the surfaces of the valve 40, outlet 50 and filling port that come into contact with the liquefied gas 30 or the gas 35 in the storage unit may be formed with the metal film 20 or the fluoride passivation film 22.
 液化ガス入り容器100の外表面、すなわち前記壁部の外気と接触する外面の材質は特に限定されず、収容部10と同様に耐食性金属材料またはセラミックス材料であってもよい。また、物理的強度や化学的強度を向上させる目的で表面に任意のコーティングを施してもよい。また、外表面が金属膜20と同様の材質であってもよいが、安価で耐久性に優れる観点から、ステンレス鋼(SUS)、マンガン鋼が好ましい。 The material of the outer surface of the liquefied gas-containing container 100, i.e., the outer surface of the wall portion that comes into contact with the outside air, is not particularly limited, and may be a corrosion-resistant metal material or a ceramic material, similar to the storage portion 10. In addition, any coating may be applied to the surface in order to improve physical and chemical strength. In addition, the outer surface may be made of the same material as the metal film 20, but stainless steel (SUS) and manganese steel are preferred from the viewpoints of low cost and excellent durability.
 フッ化不動態膜22は、金属膜20に含まれる金属成分とFガス等のフッ素含有ガスとが反応して得られた金属フッ化物を含む。金属フッ化物は、金属膜20に含まれる金属成分に応じて、NiFやCuF等が挙げられる。
 なお、フッ化不動態膜22が被覆されておらず、金属膜20のみが形成されている収容部10の場合、金属膜20と液化ガス30とが反応し、収容部10内の気体35に不純物が混入する場合がある。
The fluoride passivation film 22 contains a metal fluoride obtained by reacting a metal component contained in the metal film 20 with a fluorine-containing gas such as F2 gas. The metal fluoride may be NiF2 or CuF2 depending on the metal component contained in the metal film 20.
In addition, in the case of the storage section 10 which is not coated with the fluoride passivation film 22 and only has the metal film 20 formed thereon, the metal film 20 may react with the liquefied gas 30, causing impurities to be mixed into the gas 35 inside the storage section 10.
 フッ化不動態膜22は、少なくとも一部に溶解痕が存在するものであってもよい。
 上記の溶解痕は、液化ガス30における液相32と気相34との気液界面で生じることがある。また、上記の気液界面は収容部10内の液体33と気体35の気液界面であるとしてもよい。溶解痕の深さから、フッ化不動態膜22の耐久度合を管理することも可能になる。溶解痕は、上記の気液界面と収容部10の金属膜やフッ化不動態膜とが接触したことにより、目視で変色が確認できたり、凹凸やコーティング剥がれが生じている箇所を指すものとしてもよい。
The fluoride passivation film 22 may have a dissolution mark at least in a part thereof.
The dissolution mark may occur at the gas-liquid interface between the liquid phase 32 and the gas phase 34 of the liquefied gas 30. The gas-liquid interface may also be the gas-liquid interface between the liquid 33 and the gas 35 in the storage unit 10. It is also possible to manage the durability of the fluoride passivation film 22 from the depth of the dissolution mark. The dissolution mark may refer to a location where discoloration can be visually confirmed or where unevenness or peeling of the coating occurs due to contact between the gas-liquid interface and the metal film or fluoride passivation film of the storage unit 10.
 液化ガス入り容器100は、例えば、40℃以下、好ましくは30℃以下、より好ましくは25℃以下の環境下で保管、輸送等されるとしてもよい。また、作業時の液化ガス入り容器100の温度を例えば、40℃以下、好ましくは30℃以下、より好ましくは25℃以下としてもよい。
 保管時、輸送時高温において、本開示の容器は、従来の容器よりも性能変動が抑制される。このことは、夏場であっても効果を奏するものである。この観点から、本開示の一態様として、本開示の液化ガス入り容器を30~40℃で保管することが挙げられる。
 すなわち、本実施形態の液化ガスの保存方法の一形態は、上述の液化ガス入り容器100の収容部10内に液化ガス30を導入する工程と、かかる液化ガス30が充填された液化ガス入り容器100を所定の温度環境下で保存する工程と、を含んでもよい。
 液化ガスの保存方法において、液化ガス30は、ハロゲン含有液化ガスでもよく、フッ素含有液化ガスでもよい。
 また、液化ガスの保存方法において、保存する工程における温度環境は、例えば、25℃以上40℃以下が好ましく、30℃以上40℃以下がより好ましい。
The liquefied gas-filled container 100 may be stored, transported, etc., in an environment of, for example, 40° C. or less, preferably 30° C. or less, and more preferably 25° C. or less. In addition, the temperature of the liquefied gas-filled container 100 during operation may be, for example, 40° C. or less, preferably 30° C. or less, and more preferably 25° C. or less.
The container of the present disclosure has less performance fluctuation than conventional containers at high temperatures during storage and transportation. This is effective even in the summer. From this perspective, one embodiment of the present disclosure is to store the container containing the liquefied gas of the present disclosure at 30 to 40°C.
That is, one form of the liquefied gas storage method of this embodiment may include a step of introducing liquefied gas 30 into the storage section 10 of the above-mentioned liquefied gas-filled container 100, and a step of storing the liquefied gas-filled container 100 filled with the liquefied gas 30 under a predetermined temperature environment.
In the method for storing liquefied gas, the liquefied gas 30 may be a halogen-containing liquefied gas or a fluorine-containing liquefied gas.
In the method for storing liquefied gas, the temperature environment in the storage step is, for example, preferably 25° C. or higher and 40° C. or lower, and more preferably 30° C. or higher and 40° C. or lower.
 液化ガス入り容器100の製造方法の一例は、収容部10の内面12上に金属膜20を形成する工程と、金属膜20上に金属フッ化物を含むフッ化不動態膜22を形成する工程と、フッ化不動態膜22が形成された収容部10内に、液化ガス30を導入して、収容部10内には液体33と気体35とを有し、気体35は液化ガス30の気相34を含み、液体33は液化ガス30の液相32とニッケル元素および/または銅元素とを含む、液化ガス入り容器100を得る工程と、を有する。 One example of a method for manufacturing a container 100 filled with liquefied gas includes the steps of forming a metal film 20 on the inner surface 12 of the container 10, forming a fluoride passivation film 22 containing a metal fluoride on the metal film 20, and introducing liquefied gas 30 into the container 10 on which the fluoride passivation film 22 has been formed, to obtain a container 100 filled with liquefied gas, in which the container 10 contains a liquid 33 and a gas 35, the gas 35 contains a gas phase 34 of the liquefied gas 30, and the liquid 33 contains a liquid phase 32 of the liquefied gas 30 and nickel and/or copper elements.
 上記金属膜20は公知の方法で形成すればよく、例えば、前述したように電解めっき、無電解めっき、溶融めっき等の金属めっき処理により形成することができる。また、金属めっき処理を行う際のめっき液は、処理方法及び形成する金属膜20に合わせて適宜選択されればよく、特に限定されるものではない。 The metal film 20 may be formed by a known method, for example, by a metal plating process such as electrolytic plating, electroless plating, or hot-dip plating, as described above. The plating solution used in the metal plating process may be appropriately selected according to the processing method and the metal film 20 to be formed, and is not particularly limited.
 上記金属フッ化物を含むフッ化不動態膜22を形成する工程は、前述したように金属膜20に含まれる金属成分とフッ素含有ガスとを反応させて得ることが可能である。上記フッ素含有ガスは、例えば、Fガスを用いることができる。フッ素含有ガスと反応させる場合、例えば100℃以下で接触させてもよい。
 また、フッ化不動態膜22が、常温フッ化不動態膜である場合、この常温フッ化不動態膜は、内面に金属膜20を形成した後の液化ガス入り容器100内に、フッ素含有ガスを常温で流入させ、前記金属膜20に接触させることで生じさせることができる。
 上記の「常温」はフッ素含有ガスと金属膜20との反応が急激になったり、著しく遅くなったりしない程度にフッ素含有ガスの温度が維持されればよく、特に限定されるものではない。例えば5~35℃、より好ましくは10~35℃、さらに好ましくは10~30℃の範囲内としてもよい。また、作業環境が過度に高温や低温だったりする場合は、前記の常温の範囲内となるように加熱又は冷却してもよい。
The step of forming the fluoride passivation film 22 containing the metal fluoride can be achieved by reacting the metal component contained in the metal film 20 with a fluorine-containing gas as described above. The fluorine-containing gas can be, for example, F2 gas. When reacting with the fluorine-containing gas, the contact may be performed at, for example, 100° C. or less.
Furthermore, when the fluoride passivation film 22 is a room temperature fluoride passivation film, this room temperature fluoride passivation film can be produced by flowing a fluorine-containing gas at room temperature into the liquefied gas-containing container 100 after the metal film 20 has been formed on the inner surface, and bringing the fluorine-containing gas into contact with the metal film 20.
The above-mentioned "room temperature" is not particularly limited as long as the temperature of the fluorine-containing gas is maintained at a temperature at which the reaction between the fluorine-containing gas and the metal film 20 does not become too rapid or too slow. For example, it may be within a range of 5 to 35°C, more preferably 10 to 35°C, and even more preferably 10 to 30°C. If the working environment is excessively high or low, the temperature may be heated or cooled to be within the above-mentioned room temperature range.
 また、液化ガス30の導入では、液状状態の液化ガス30を収容部10に導入する。また、液化ガス30の導入前に、前記液化ガス入り容器100内を不活性ガスで置換すると、余剰の前記のフッ素含有ガスをはじめとする液化ガス以外のガスを効率よく除去できるため好ましい。 When the liquefied gas 30 is introduced, the liquefied gas 30 is introduced into the storage section 10 in a liquid state. It is also preferable to replace the inside of the liquefied gas-containing container 100 with an inert gas before the introduction of the liquefied gas 30, since this allows gases other than the liquefied gas, including the excess fluorine-containing gas, to be efficiently removed.
 前記のフッ化不動態膜22を形成した後に液化ガス30を導入すると、収容部10内で液化ガス30を含む液体33及び気体35が形成され、さらに液体33中にニッケル元素および/または銅元素が供給される。詳細なメカニズムは不明だが、フッ化不動態膜22に付着した金属膜20由来の余剰の金属元素が液体33中に取り込まれたか、液化ガス30を導入することでフッ化不動態膜22の一部が液体33中に溶出したと推測される。例えば、収容部10内の液体33が実質的にHF又はClFの液化ガスの液相32のみであるとき、本発明の好適な実施形態の金属膜20やフッ化不動態膜22は、液相32に溶解し難く容器内壁の腐食サイクルを進み難くすることが出来る。しかしその一方で微量の溶解は生じ得るため、液化ガス30の導入と同時に微量の溶解が生じ、液体33中にニッケル元素および/または銅元素が供給されたと推測できる。
 また、上記液体33中に含まれるニッケル元素および/または銅元素の供給方法は、他にも、液化ガス30の充填用の接液部材や収容部10に予めニッケル元素や銅元素の供給源を配置した後、液化ガス30を導入して当該供給源より液体33中に供給されるようにしてもよい。
When the liquefied gas 30 is introduced after the formation of the fluoride passivation film 22, a liquid 33 and a gas 35 containing the liquefied gas 30 are formed in the container 10, and nickel and/or copper elements are further supplied to the liquid 33. Although the detailed mechanism is unclear, it is presumed that the excess metal element derived from the metal film 20 attached to the fluoride passivation film 22 is taken into the liquid 33, or that a part of the fluoride passivation film 22 is dissolved into the liquid 33 by introducing the liquefied gas 30. For example, when the liquid 33 in the container 10 is substantially only the liquid phase 32 of the liquefied gas of HF or ClF3 , the metal film 20 and the fluoride passivation film 22 of the preferred embodiment of the present invention are difficult to dissolve in the liquid phase 32, and the corrosion cycle of the inner wall of the container can be made difficult to progress. However, since a small amount of dissolution can occur, it can be presumed that a small amount of dissolution occurs simultaneously with the introduction of the liquefied gas 30, and nickel and/or copper elements are supplied to the liquid 33.
In addition, another method for supplying the nickel element and/or copper element contained in the liquid 33 may be to first place a supply source of nickel element or copper element in the liquid contact member or storage section 10 for filling the liquefied gas 30, and then introduce the liquefied gas 30 to supply the nickel element or copper element from the supply source into the liquid 33.
 以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することができる。また、本発明は上述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれる。 The above describes the embodiments of the present invention, but these are merely examples of the present invention, and various configurations other than those described above can be adopted. Furthermore, the present invention is not limited to the above-described embodiments, and modifications and improvements within the scope of the present invention are included in the present invention.
 以下、本発明について実施例を参照して詳細に説明するが、本発明は、これらの実施例の記載に何ら限定されるものではない。 The present invention will be described in detail below with reference to examples, but the present invention is not limited to the description of these examples.
<液化ガス入り容器の作製>
(実施例1)
 以下の手順に従って図1に示す液化ガス入り容器100を作製した。
 まず、液化ガスを収容する内部空間、弁、および取出口を有するステンレス鋼製の容器(収容部10)を準備した。
 続いて、容器の内壁全面にニッケルめっき(めっき液全体に対するNi濃度=15wt%)を施し、その内壁(内面12)上に厚みが50μmのニッケルめっき膜(金属膜20)を形成した(めっき処理)。
 続いて、ニッケルめっき膜にFガス(純度99.9体積%、フッ素含有ガス)を常温で接触させ、ニッケルめっき膜上にNiFを含む不動態被膜(金属フッ化物を含むフッ化不動態膜22)を形成した(フッ素ガス処理)。
 その後、Fガスを容器内部から除去し、Heガス(不活性ガス)で置換した(置換処理)。
 置換した後、その容器の内部空間中に、気体状態のHF(液化ガス)を導入して、液体状態のHFを充填した(液化ガス充填処理)。
 以上により、容器の内部空間中80体積%となる液化ガスの液相を含む液化ガス入り容器を作製した。
<Preparation of container containing liquefied gas>
Example 1
The liquefied gas container 100 shown in FIG. 1 was produced according to the following procedure.
First, a stainless steel container (container 10) having an internal space for containing a liquefied gas, a valve, and an outlet was prepared.
Next, nickel plating was applied to the entire inner wall of the container (Ni concentration in the entire plating solution=15 wt %) to form a nickel plating film (metal film 20) having a thickness of 50 μm on the inner wall (inner surface 12) (plating process).
Next, the nickel plating film was contacted with F2 gas (purity 99.9% by volume, fluorine-containing gas) at room temperature to form a passivation film containing NiF2 (fluoride passivation film 22 containing metal fluoride) on the nickel plating film (fluorine gas treatment).
Thereafter, the F2 gas was removed from the inside of the container and replaced with He gas (inert gas) (replacement process).
After the replacement, gaseous HF (liquefied gas) was introduced into the internal space of the container to fill it with liquid HF (liquefied gas filling process).
As a result of the above steps, a container containing liquefied gas was produced, with the liquid phase of the liquefied gas accounting for 80 volume % of the internal space of the container.
(実施例2)
 ニッケルめっきに用いためっき液中のNi濃度を実施例1よりも高くした以外、実施例1と同様にして、液化ガス入り容器を作製した。
(実施例3)
 容器の材質をステンレス鋼からマンガン鋼に変更した以外、実施例1と同様にして、液化ガス入り容器を作製した。
(実施例4)
 金属めっきをニッケルめっきから銅めっきに変更した以外、実施例1と同様にして、液化ガス入り容器を作製した。
(実施例5)
 銅めっきに用いためっき液中のCu濃度を実施例4よりも高くした以外、実施例4と同様にして、液化ガス入り容器を作製した。
(実施例6)
 液化ガスの種類をHFからClFに変更した以外、実施例1と同様にして、液化ガス入り容器を作製した。
(実施例7)
 液化ガスの種類をHFからClFに変更した以外、実施例2と同様にして、液化ガス入り容器を作製した。
(実施例8)
 液化ガスの種類をHFからClFに変更した以外、実施例4と同様にして、液化ガス入り容器を作製した。
(実施例9)
 液化ガスの種類をHFからClFに変更した以外、実施例5と同様にして、液化ガス入り容器を作製した。
Example 2
A container containing liquefied gas was produced in the same manner as in Example 1, except that the Ni concentration in the plating solution used for nickel plating was made higher than that in Example 1.
Example 3
A container containing liquefied gas was produced in the same manner as in Example 1, except that the material of the container was changed from stainless steel to manganese steel.
Example 4
A container containing liquefied gas was produced in the same manner as in Example 1, except that the metal plating was changed from nickel plating to copper plating.
Example 5
A container containing liquefied gas was produced in the same manner as in Example 4, except that the Cu concentration in the plating solution used for copper plating was made higher than that in Example 4.
(Example 6)
A container containing a liquefied gas was produced in the same manner as in Example 1, except that the type of liquefied gas was changed from HF to ClF3 .
(Example 7)
A container containing a liquefied gas was prepared in the same manner as in Example 2, except that the type of liquefied gas was changed from HF to ClF3 .
(Example 8)
A container containing liquefied gas was prepared in the same manner as in Example 4, except that the type of liquefied gas was changed from HF to ClF3 .
(Example 9)
A container containing liquefied gas was prepared in the same manner as in Example 5, except that the type of liquefied gas was changed from HF to ClF3 .
 上記の実施例1~9において、容器に収容された液化ガス(HFまたはClF)は液相と気相との2相で構成された状態であることが確認された。
 また、実施例1~3、6~7において、ニッケルめっき膜上にNiFを含む不動態被膜が形成されること、実施例4~5、8~9において、銅めっき膜上にCuFを含む不動態被膜が形成されることが確認された。
In the above Examples 1 to 9, it was confirmed that the liquefied gas (HF or ClF 3 ) contained in the container was in a state consisting of two phases, a liquid phase and a gas phase.
It was also confirmed that in Examples 1 to 3 and 6 to 7, a passivation film containing NiF2 was formed on the nickel plating film, and in Examples 4 to 5 and 8 to 9, a passivation film containing CuF2 was formed on the copper plating film.
(比較例1)
 めっき処理を施さずにフッ素ガス処理を施す以外、実施例1と同様にして、液化ガス入り容器を作製した。
(比較例2)
 めっき処理を施さずにフッ素ガス処理を施す以外、実施例6と同様にして、液化ガス入り容器を作製した。
(Comparative Example 1)
A container containing liquefied gas was produced in the same manner as in Example 1, except that the fluorine gas treatment was carried out without carrying out the plating treatment.
(Comparative Example 2)
A container containing liquefied gas was produced in the same manner as in Example 6, except that the fluorine gas treatment was carried out without carrying out the plating treatment.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 各実施例および各比較例の液化ガス入り容器について、以下の評価項目に基づいて評価を行った。 The liquefied gas containers of each Example and Comparative Example were evaluated based on the following evaluation items.
(液体中の金属濃度)
 ICP発光分光分析法により、容器中の液体に含まれるニッケル元素及び銅元素の金属濃度(wt.ppm)を測定した。また、金属濃度については、液化ガスを容器に充填した直後における初期時、容器の弁を開放して取出口から液化ガスを含む気体を徐々に放出していき、容器中の液体の残量が初期に対して体積換算で80%の時、容器中の液体の残量が20%の時の値を表1に示す。
 なお、表1の「液体中の金属濃度」の「金属種」はニッケルか銅を記載するものであり、実施例1~9のように1種類しか記載がないものについては、記載していない方の元素は1ppb未満(検出限界未満)だった。また、比較例1および2では、ニッケル元素及び銅元素のいずれも、初期、残量80%時、残量20%時の濃度が1ppb未満(検出限界未満)であり、ニッケル元素および銅元素はどちらも液体中に確認できなかった。
(Metal concentration in liquid)
The metal concentrations (wt. ppm) of nickel and copper contained in the liquid in the container were measured by ICP emission spectrometry. Table 1 shows the metal concentrations when the amount of liquid remaining in the container is 80% of the initial amount by volume, and when the amount of liquid remaining in the container is 20%, after the container is filled with liquefied gas and the valve of the container is opened to gradually release the gas containing the liquefied gas from the outlet.
In Table 1, "metal type" in "metal concentration in liquid" indicates either nickel or copper, and in cases where only one type is listed, such as in Examples 1 to 9, the unlisted element was less than 1 ppb (below the detection limit). In Comparative Examples 1 and 2, the concentrations of both nickel and copper elements were less than 1 ppb (below the detection limit) initially, when 80% remained, and when 20% remained, and neither nickel nor copper elements were confirmed in the liquid.
(気体中のF濃度)
 ICP発光分光分析法により、容器中の気体に含まれるF濃度(wt.Vol)を測定した。なお、F濃度については、取出口から放出された直後のガス(気体)を測定対象とし、液化ガスを容器に充填した直後における初期時、容器の弁を開放して取出口から液化ガスを含む気体を徐々に放出していき、容器中の液体の残量が初期に対して体積換算で80%の時、容器中の液体の残量が20%の時の値を表1に示す。
( F2 concentration in gas)
The F2 concentration (wt. Vol) contained in the gas in the container was measured by ICP emission spectrometry. The F2 concentration was measured on the gas immediately after it was discharged from the outlet, and the values are shown in Table 1 when the amount of liquid remaining in the container was 80% by volume compared to the initial amount, and when the amount of liquid remaining in the container was 20%, at the initial time immediately after the liquefied gas was filled into the container, the valve of the container was opened and the gas containing the liquefied gas was gradually discharged from the outlet.
 なお、実施例1~9において、ICP発光分光分析法を用いて、取出口から放出された直後のガスを測定対象として、初期時におけるHF濃度またはClF濃度を測定した。いずれの実施例においても、初期時における気体中のHF濃度またはClF濃度は、99.9体積%以上であることが確認された。 In Examples 1 to 9, the initial HF or ClF3 concentration was measured using ICP atomic emission spectrometry on the gas immediately after it was discharged from the outlet. In all Examples, it was confirmed that the initial HF or ClF3 concentration in the gas was 99.9% by volume or more.
(エッチング速度)
 まず、エッチング装置の構成について説明する。反応チャンバーには試料を支持するためのステージが具備されている。試料は、6インチのシリコン基板上にシリコン酸化膜(20nm)が形成され、さらにその上にポリシリコン膜(30μm)が形成されたものを使用した。ステージにはステージの温度を調整可能なステージ温度調整器が具備されている。反応チャンバーにはガス導入の為の第1ガス配管及びガス排気の為の第2ガス配管が接続されている。エッチングガス供給系は、第1バルブを介して第1ガス配管に接続されており、前述の基板処理用ガスを反応チャンバーに供給する。真空ポンプはガス排気の為、第2バルブを介して第2ガス配管に接続されている。
 反応チャンバー内部の圧力は反応チャンバー付設の圧力計の指示値を基に、第2バルブにより制御される。
(Etching rate)
First, the configuration of the etching apparatus will be described. The reaction chamber is equipped with a stage for supporting a sample. The sample used was a 6-inch silicon substrate with a silicon oxide film (20 nm) formed thereon and a polysilicon film (30 μm) formed thereon. The stage is equipped with a stage temperature regulator capable of adjusting the stage temperature. The reaction chamber is connected to a first gas pipe for introducing gas and a second gas pipe for exhausting gas. The etching gas supply system is connected to the first gas pipe via a first valve and supplies the above-mentioned substrate processing gas to the reaction chamber. The vacuum pump is connected to the second gas pipe via a second valve for exhausting gas.
The pressure inside the reaction chamber is controlled by a second valve based on the indicated value of a pressure gauge attached to the reaction chamber.
 次に、エッチング装置の操作方法について説明する。ステージ上に試料を設置し、反応チャンバー内及び第1ガス配管内、第2ガス配管内を1.5kPaまで真空置換後、ステージの温度を所定値(25℃)に設定する。ステージの温度が所定値に達したことを確認後、第1バルブ、第2バルブを開放し、エッチングガス供給系の圧力を所定圧力(100Pa)にし、第1ガス配管より、液化ガス入り容器に保管されている液化ガスを、基板処理用ガスとして反応チャンバーに導入する。この時の基板処理用ガスの総流量を100sccmとした。 Next, the method of operating the etching apparatus will be explained. A sample is placed on the stage, and the reaction chamber, the first gas pipe, and the second gas pipe are evacuated to 1.5 kPa, after which the stage temperature is set to a specified value (25°C). After confirming that the stage temperature has reached the specified value, the first and second valves are opened, the pressure of the etching gas supply system is set to the specified pressure (100 Pa), and liquefied gas stored in a liquefied gas container is introduced into the reaction chamber through the first gas pipe as a substrate processing gas. The total flow rate of the substrate processing gas at this time was set to 100 sccm.
 基板処理用ガスを導入してから所定時間(エッチング処理時間、1分)経過した後、基板処理用ガスの導入を停止し、反応チャンバー内部を真空置換した後、試料を取り出し、エッチング速度の測定を行った。 After a specified time (etching time, 1 minute) had elapsed since the introduction of the substrate processing gas, the introduction of the substrate processing gas was stopped, the inside of the reaction chamber was replaced with a vacuum, the sample was removed, and the etching rate was measured.
 上記のポリシリコン膜付きシリコン基板(試料)を用いてエッチング前のポリシリコン膜の膜厚とエッチング後のポリシリコン膜の膜厚をそれぞれ5個所測定し、各測定箇所におけるエッチング量(エッチング前とエッチング後の膜厚差)を求めた。各測定箇所のエッチング量の平均とエッチング時間からエッチング速度(nm/min)を算出した。 Using the above-mentioned silicon substrate (sample) with polysilicon film, the thickness of the polysilicon film before etching and the thickness of the polysilicon film after etching were measured at five locations each, and the amount of etching at each measurement location (difference in film thickness before and after etching) was calculated. The etching rate (nm/min) was calculated from the average amount of etching at each measurement location and the etching time.
 エッチング速度については、液化ガスを容器に充填した直後における初期時の値を1.0としたとき、容器の弁を開放して取出口からガスを徐々に放出していき、容器中の液体の残量が初期に対して体積換算で80%の時、容器中の液体の残量が20%の時の相対値を表1に示す。 Regarding the etching rate, the initial value immediately after filling the container with liquefied gas is taken as 1.0. The valve of the container is opened and the gas is gradually released from the outlet. Table 1 shows the relative values when the remaining amount of liquid in the container is 80% of the initial volume, and when the remaining amount of liquid in the container is 20%.
 以上より、実施例1~9の液化ガス入り容器は、液体中にニッケル又は銅が確認され、容器内の気体中の成分組成を開放直後の初期から使用を終えるまでほぼ一定とすることが可能であることが示された。また、いずれの実施例のガスもエッチング速度がほぼ一定であり、比較例1,2と比べて、液化ガスの性能変動を抑制できる結果を示した。
 また、各実施例の液化ガス入り容器に充填された液化ガスは、エッチングガスなどの半導体用途に好適に用いることが可能である。
From the above, nickel or copper was confirmed in the liquid of the liquefied gas containers of Examples 1 to 9, and it was shown that it is possible to keep the composition of the gas in the container almost constant from the initial stage immediately after opening until the end of use. In addition, the etching rate of the gas in each Example was almost constant, and compared to Comparative Examples 1 and 2, it was shown that the performance fluctuation of the liquefied gas can be suppressed.
In addition, the liquefied gas filled in the liquefied gas container of each embodiment can be suitably used for semiconductor applications such as etching gas.
 この出願は、2022年12月15日に出願された日本出願特願2022-199993号を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2022-199993, filed on December 15, 2022, the entire disclosure of which is incorporated herein by reference.
10 収容部
12 内面
20 金属膜
22 フッ化不動態膜
30 液化ガス
32 液相
33 液体
34 気相
35 気体
40 弁
50 取出口
100 液化ガス入り容器 
10: container 12: inner surface 20: metal film 22: fluoride passivation film 30: liquefied gas 32: liquid phase 33: liquid 34: gas phase 35: gas 40: valve 50: outlet 100: container containing liquefied gas

Claims (13)

  1.  収容部と、
     前記収容部に収容された液化ガスと、を備える液化ガス入り容器であって、
     前記収容部が、内面上に金属膜と、前記金属膜上に金属フッ化物を含むフッ化不動態膜と、を有し、
     前記収容部内には、液体と気体とを有し、
     前記気体は、前記液化ガスの気相を含み、
     前記液体は、前記液化ガスの液相と、ニッケル元素および/または銅元素とを含む、
    液化ガス入り容器。
    A storage section;
    A liquefied gas container comprising: a liquefied gas contained in the container portion;
    the container has a metal film on an inner surface, and a fluoride passivation film containing a metal fluoride on the metal film,
    The container contains a liquid and a gas,
    The gas includes a gas phase of the liquefied gas,
    The liquid contains a liquid phase of the liquefied gas and nickel and/or copper.
    Container containing liquefied gas.
  2.  請求項1に記載の液化ガス入り容器であって、
     ICP発光分光分析法により測定される、前記液体中における前記ニッケル元素及び銅元素の含有量の総量が、10重量ppb以上1000重量ppm以下である、液化ガス入り容器。
    2. The container containing liquefied gas according to claim 1,
    A container containing a liquefied gas, wherein the total content of the nickel element and the copper element in the liquid, as measured by ICP atomic emission spectrometry, is 10 ppb by weight or more and 1000 ppm by weight or less.
  3.  請求項1または2に記載の液化ガス入り容器であって、
     前記液化ガスが、HF又はClFである、液化ガス入り容器。
    A container containing liquefied gas according to claim 1 or 2,
    A container containing a liquefied gas, wherein the liquefied gas is HF or ClF3 .
  4.  請求項1または2に記載の液化ガス入り容器であって、
     前記気体の99.9体積%以上が、前記液化ガスの気相である、液化ガス入り容器。
    A container containing liquefied gas according to claim 1 or 2,
    A container containing liquefied gas, wherein 99.9% by volume or more of the gas is in the gas phase of the liquefied gas.
  5.  請求項1または2に記載の液化ガス入り容器であって、
     前記気体中におけるFの量が、100体積ppm未満である、液化ガス入り容器。
    A container containing liquefied gas according to claim 1 or 2,
    A container containing a liquefied gas, wherein the amount of F2 in the gas is less than 100 ppm by volume.
  6.  請求項1または2に記載の液化ガス入り容器であって、
     前記収容部が、ステンレス鋼、炭素鋼、マンガン鋼、ニッケル鋼、及びアルミニウム鋼からなる群から選らばれる一又は二以上を含む、液化ガス入り容器。
    A container containing liquefied gas according to claim 1 or 2,
    A container containing liquefied gas, wherein the storage portion comprises one or more materials selected from the group consisting of stainless steel, carbon steel, manganese steel, nickel steel, and aluminum steel.
  7.  請求項1または2に記載の液化ガス入り容器であって、
     前記金属膜が、めっき膜を有する、液化ガス入り容器。
    A container containing liquefied gas according to claim 1 or 2,
    A container containing a liquefied gas, wherein the metal film has a plating film.
  8.  請求項1または2に記載の液化ガス入り容器であって、
     前記金属膜が、ニッケルおよび/または銅を主成分に含む、液化ガス入り容器。
    A container containing liquefied gas according to claim 1 or 2,
    A container containing liquefied gas, wherein the metal film contains nickel and/or copper as a main component.
  9.  請求項1または2に記載の液化ガス入り容器であって、
     前記金属膜の膜厚が、1μm以上300μm以下である、液化ガス入り容器。
    A container containing liquefied gas according to claim 1 or 2,
    A container containing a liquefied gas, wherein the thickness of the metal film is 1 μm or more and 300 μm or less.
  10.  請求項1または2に記載の液化ガス入り容器であって、
     前記フッ化不動態膜が、常温フッ化不動態膜である、液化ガス入り容器。
    A container containing liquefied gas according to claim 1 or 2,
    A container containing a liquefied gas, wherein the fluoride passivation film is a room temperature fluoride passivation film.
  11.  請求項1または2に記載の液化ガス入り容器であって、
     前記フッ化不動態膜の少なくとも一部に溶解痕が存在する、液化ガス入り容器。
    A container containing liquefied gas according to claim 1 or 2,
    A container containing a liquefied gas, wherein a dissolution mark is present on at least a portion of the fluoride passivation film.
  12.  収容部と、前記収容部に収容された液化ガスと、を備える液化ガス入り容器の製造方法であって、
     前記収容部の内面上に金属膜を形成する工程と、
     前記金属膜上に金属フッ化物を含むフッ化不動態膜を形成する工程と、
     前記フッ化不動態膜が形成された前記収容部内に、前記液化ガスを導入して、前記収容部内には液体と気体とを有し、前記気体は前記液化ガスの気相を含み、前記液体は前記液化ガスの液相とニッケル元素および/または銅元素とを含む、液化ガス入り容器を得る工程と、を有する、
    液化ガス入り容器の製造方法。
    A method for manufacturing a container containing liquefied gas, the container comprising: a storage section; and a liquefied gas stored in the storage section, the method comprising the steps of:
    forming a metal film on an inner surface of the housing;
    forming a fluoride passivation film containing a metal fluoride on the metal film;
    and introducing the liquefied gas into the container on which the fluoride passivation film is formed to obtain a container containing the liquefied gas, the container having a liquid and a gas, the gas including a gas phase of the liquefied gas, and the liquid including a liquid phase of the liquefied gas and nickel element and/or copper element.
    A method for manufacturing a container containing liquefied gas.
  13.  前記フッ化不動態膜を形成する工程が、前記収容部にフッ素含有ガスを常温で流入させ、前記金属膜に接触させる工程である、請求項12に記載の液化ガス入り容器の製造方法。 The method for manufacturing a container containing liquefied gas according to claim 12, wherein the step of forming the fluoride passivation film is a step of flowing a fluorine-containing gas into the container at room temperature and bringing it into contact with the metal film.
PCT/JP2023/041224 2022-12-15 2023-11-16 Liquefied gas-filled container and method for producing liquefied gas-filled container WO2024127901A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-199993 2022-12-15
JP2022199993 2022-12-15

Publications (1)

Publication Number Publication Date
WO2024127901A1 true WO2024127901A1 (en) 2024-06-20

Family

ID=91485626

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/041224 WO2024127901A1 (en) 2022-12-15 2023-11-16 Liquefied gas-filled container and method for producing liquefied gas-filled container

Country Status (1)

Country Link
WO (1) WO2024127901A1 (en)

Similar Documents

Publication Publication Date Title
EP3375008B1 (en) Plasma-free etching process
JP2730695B2 (en) Tungsten film forming equipment
KR20180100734A (en) Coatings for enhancement of properties and performance of substrate articles and apparatus
WO2020162500A1 (en) Solid vaporizing/supplying system for thin film-forming metal halide compound
KR102560205B1 (en) Systems and methods for storage and supply of FNO-free FNO gases and FNO-free FNO gas mixtures for semiconductor processing
JP6887688B2 (en) A container for evaporative raw materials and a solid vaporization supply system using the container for evaporative raw materials
TW432763B (en) Excimer laser generator provided with a laser chamber with a fluoride passivated inner surface
JP2023134421A (en) Method for depositing tungsten or molybdenum layer in presence of reducing co-reactant
CN114586131A (en) Hafnium aluminum oxide coatings deposited by atomic layer deposition
WO2024127901A1 (en) Liquefied gas-filled container and method for producing liquefied gas-filled container
JP2018107438A (en) Method for surface treatment of metal member, and method for manufacturing semiconductor element
CN111886674B (en) Gas for substrate processing, storage container, and substrate processing method
JP3030351B2 (en) Stainless steel on which fluorinated passivation film is formed, method for producing the same, and apparatus using the stainless steel
JP2002038252A (en) Structure resistant to heat, and material and structure resistant to corrosive halogen-based gas
JP7506530B2 (en) Coatings for enhancing the properties and performance of substrate articles and devices
KR950012809B1 (en) Metal material with film passivated by fluorination and apparatus composed of the metal material
WO1992014858A1 (en) Process for forming passivated film