WO2024127608A1 - Flavor inhaler and flavor inhalation system - Google Patents

Flavor inhaler and flavor inhalation system Download PDF

Info

Publication number
WO2024127608A1
WO2024127608A1 PCT/JP2022/046303 JP2022046303W WO2024127608A1 WO 2024127608 A1 WO2024127608 A1 WO 2024127608A1 JP 2022046303 W JP2022046303 W JP 2022046303W WO 2024127608 A1 WO2024127608 A1 WO 2024127608A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
guide member
insertion guide
consumable product
flavor inhaler
Prior art date
Application number
PCT/JP2022/046303
Other languages
French (fr)
Japanese (ja)
Inventor
篤史 一瀬
貴裕 小山
貴司 藤木
Original Assignee
日本たばこ産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本たばこ産業株式会社 filed Critical 日本たばこ産業株式会社
Priority to PCT/JP2022/046303 priority Critical patent/WO2024127608A1/en
Publication of WO2024127608A1 publication Critical patent/WO2024127608A1/en

Links

Definitions

  • This disclosure relates to a flavor inhaler and a flavor inhalation system.
  • an optical detection unit is provided to detect the state of a storage unit that stores consumable materials containing smokable substances, and the presence or absence of a component inside the storage unit is determined.
  • an optical sensor is provided for a heating unit that heats the consumable materials stored in the storage unit, and the presence or absence of the consumable materials inside the storage unit is determined.
  • the present disclosure provides a suitably configured flavor inhaler and flavor inhalation system.
  • a first aspect of the present disclosure is a flavor inhaler comprising an insertion portion into which a consumer product is inserted, and at least two detection portions each including a light emitting portion that irradiates light and a light receiving portion that receives light, the detection portions being arranged to be spaced apart from each other, wherein an intersecting region exists within the insertion portion where the light irradiated from each of the at least two detection portions can intersect, and at least one of the at least two detection portions is configured to exclude the light reflected in the intersecting region from being detected.
  • At least one of the multiple optical detection units excludes from the detection target the reflected light reflected in the intersection area where the irradiation ranges of the multiple optical detection units overlap. In other words, at least one of the multiple optical detection units excludes from the detection target the objects located in the intersection area where a false positive determination may occur.
  • the first aspect by excluding objects located in the intersection area from the detection target, false positive determinations can be prevented and the advantage of making a determination based on a combination of the respective detection results of the multiple detection units can be realized.
  • a second aspect of the present disclosure is a flavor inhaler according to the first aspect, in which the light receiving unit has a threshold value that is a minimum value of the intensity of light that can be detected, and when reflected light reflected in the intersecting region is received by at least one of the light receiving units, the intensity of the reflected light is smaller than the threshold value.
  • a threshold value that is the minimum detectable light intensity is set in the light receiving section of the detection unit, and when at least one of the multiple detection units receives reflected light reflected in the intersection possible area, the intensity of this reflected light is smaller than the threshold value.
  • the reflected light is not detected.
  • a third aspect of the present disclosure is a flavor inhaler according to the first or second aspect, in which the at least two detection units are arranged so as to be spaced apart from each other when viewed in the axial direction of the inserted portion.
  • the multiple detectors that detect the inside of the inserted part in the flavor inhaler are arranged so as to be spaced apart from each other when viewed from the axial direction of the inserted part. Therefore, according to the third aspect, each of the multiple detectors detects from a different angle, making it possible to more accurately determine the condition inside the inserted part.
  • the fourth aspect of the present disclosure is a flavor inhaler according to the third aspect, in which the intersecting region is located approximately at the center of the inserted portion when viewed in the axial direction of the inserted portion.
  • the intersecting area where the illumination ranges of the multiple optical detection units overlap is located approximately at the center of the inserted part when viewed from the axial direction of the inserted part. Therefore, according to the fourth aspect, it is possible to prevent erroneous determinations caused by an object located near the center of the inserted part.
  • a fifth aspect of the present disclosure is a flavor inhaler according to the first or second aspect, further comprising a heating section for heating the consumer product, the inserted section includes a storage section for storing the consumer product and a guide section connected to the storage section and constituting an insertion port for the consumer product, the at least two detection sections are arranged to overlap with the guide section in the axial direction of the inserted section, and the guide section includes a transparent region configured to allow the transmission of light emitted by the light emitting section and reflected light reflected within the inserted section.
  • the multiple detection units are arranged in the axial direction of the inserted part so as not to overlap with the storage part in which the consumable material heated by the heating part is mainly stored, but to overlap with the guide part connected to the storage part.
  • the multiple detection units are sufficiently separated from the consumable material heated by the heating part, and the influence of heat on the multiple detection units can be suppressed.
  • the multiple detection units by arranging the multiple detection units so as to overlap with the inserted part in the axial direction of the inserted part, the axial length of the inserted part of the flavor inhaler can be suppressed, and the detection units can be shielded to protect them from external influences.
  • the detection units are arranged so as to be exposed, there is a possibility that smoke generated from the heated consumable material may affect the detection units. Furthermore, since the guide part is provided with a transparent area configured to allow the detection light to pass through, the detection function of the detection units can be properly performed.
  • the sixth aspect of the present disclosure is a flavor inhaler according to the fifth aspect, in which the light emitted from the light-emitting unit is incident approximately perpendicularly to the tangent of the outer periphery of the guide unit.
  • the light emitted from the light-emitting elements of the multiple detection units is incident approximately perpendicularly to the tangent of the outer periphery of the guide unit. Therefore, the detection light emitted from each of the multiple detection units is directed toward approximately the center of the inserted part when viewed from the axial direction of the inserted part, and an intersection area is formed near the center of the inserted part. Therefore, according to the sixth aspect, it is possible to prevent erroneous determinations caused by objects located near the center of the inserted part.
  • the seventh aspect of the present disclosure is a flavor inhaler according to the fifth aspect, in which the light-emitting unit and the corresponding light-receiving unit are arranged along the axial direction of the inserted portion, and the transmissive area of the guide portion has a longitudinal direction that is along the axial direction of the inserted portion.
  • the light emitting unit and the light receiving unit are arranged along the axial direction of the inserted part, and the transmission area of the guide unit extends along the axial direction of the inserted part.
  • the space for arranging the detection unit becomes large, resulting in an increase in the size of the device.
  • the light emitting unit and the light receiving unit are arranged along a direction perpendicular to the axial direction of the inserted part, the light irradiated from the light emitting unit and spread in the horizontal direction is diffused by the circular shape of the consumer product, preventing it from reaching the light receiving unit properly.
  • the light emitting unit and the light receiving unit are arranged along the axial direction of the inserted part, the light irradiated from the light emitting unit spreads in a direction approximately parallel to the longitudinal direction of the cylindrical surface (i.e., vertical direction), so it is reflected by the linear shape of the consumer product and can reach the light receiving unit properly. Therefore, according to the seventh aspect, it is possible to contribute to the miniaturization of the device and the improvement of the detection accuracy.
  • the eighth aspect of the present disclosure is a flavor inhaler according to the fifth aspect, wherein at least one of the light-emitting elements is configured to irradiate light such that when the irradiated light is reflected at the intersection region, passes through the transmission region, and then reaches the corresponding light-receiving element, the intensity of the light is less than a threshold value that is the minimum light intensity that the light-receiving element can detect.
  • a threshold value that is the minimum detectable light intensity is set in the light receiving section of the detection section, and in at least one of the multiple detection sections, when reflected light reflected in the intersection possible region passes through the transparent region of the guide section and reaches the light receiving section, the intensity of the reflected light is smaller than the threshold value.
  • the reflected light is not detected.
  • the ninth aspect of the present disclosure is a flavor inhaler according to the first or second aspect above, in which the consumable product is configured in a substantially cylindrical shape.
  • the consumable material inserted into the insertion portion of the flavor inhaler is configured to have a roughly cylindrical shape.
  • a roughly cylindrical consumable material is easy to hold for users who are accustomed to conventional tobacco sticks.
  • the roughly circular shape when viewed vertically from above has symmetry, making it suitable for detection by multiple detection units. Therefore, the ninth aspect can contribute to improving operability for users and improving detection accuracy.
  • a tenth aspect of the present disclosure is a flavor inhaler according to the first or second aspect, in which when each of the at least two detection units detects the consumer good inserted into the insertion unit, the heating unit starts heating the consumer good.
  • the flavor inhaler starts heating the consumable goods after each of at least two detectors provided for detecting the consumable goods detects the consumable goods. Therefore, according to the tenth aspect, unnecessary heating operations can be prevented.
  • An eleventh aspect of the present disclosure is a flavor inhaler, comprising: an insertion portion into which a consumable product is inserted;
  • the flavor inhalation system includes a flavor inhaler and a consumer product, and at least two detection units, each of which includes a light-emitting unit that emits light and a light-receiving unit that receives light, and which are arranged at a distance from each other, wherein an intersection area exists within the inserted portion where the light emitted from each of the at least two detection units can intersect, and at least one of the at least two detection units is configured to exclude reflected light reflected in the intersection area from being detected.
  • At least one of the multiple optical detection units in the flavor inhalation system excludes from the detection target the reflected light reflected in the intersection area where the irradiation ranges of the multiple optical detection units overlap.
  • at least one of the multiple optical detection units excludes from the detection target the objects located in the intersection area where a misjudgment may occur.
  • FIG. 1 is a perspective view of a flavor inhaler according to an embodiment of the present disclosure.
  • FIG. 2 is a perspective view of a flavor inhaler housing a consumable product.
  • 3 is a cross-sectional view of the flavor inhaler taken along the arrows 3-3 in FIG. 1.
  • FIG. 2 is a perspective view of a chamber and a heating unit.
  • FIG. 5B is a cross-sectional view of the chamber taken along line 5B-5B of FIG. 5A.
  • 6A is a cross-sectional view of the chamber taken along line 6A-6A of FIG. 5B.
  • 6B is a cross-sectional view of the chamber taken along line 6B-6B of FIG. 5B.
  • FIG. 6B shows the cross-sectional view of the consumable product placed in the chamber 50 at a desired location.
  • FIG. 4 is a perspective view of the periphery of the insertion guide member.
  • FIG. 2 is a side view of the infrared sensor.
  • 9 is a top view of the main part of FIG. 8 as viewed from the axial direction of the insertion guide member.
  • 11 is a cross-sectional view of the upper part of the atomizing unit 30 taken along the arrows 11-11 in FIG. 8.
  • FIG. 11 is a schematic diagram in which a heat transfer path is added to the top view shown in FIG. 10 .
  • FIG. 11 is a top view of a main part of the atomization unit in which consumable materials are accommodated in the insertion guide member in a flavor inhaler according to a modified embodiment, as viewed from the axial direction of the insertion guide member.
  • FIG. 14 is a top view of the insertion guide member shown in FIG. 13 , in which a cleaning tool is accommodated in place of the consumable product.
  • FIG. 15 is a top view showing a modified arrangement of the cleaning tools in FIG. 14 .
  • FIG. 16 is a first top view showing a further modification of the arrangement of the cleaning tools in FIG. 15 .
  • FIG. 16 is a second top view showing a further modification of the arrangement of the cleaning tools in FIG. 15 .
  • FIG. 1 is a perspective view of the flavor inhaler 100 according to this embodiment.
  • FIG. 2 is a perspective view of the flavor inhaler 100 containing the consumable product 120 inserted through the opening 110.
  • an X-Y-Z Cartesian coordinate system may be used for convenience of explanation.
  • the Z axis faces vertically upward, the X-Y plane is arranged to cut the flavor inhaler 100 horizontally, and the Y axis is arranged to extend from the front to the back of the flavor inhaler 100.
  • the Z axis can also be referred to as the insertion direction of the consumable product 120 contained in the chamber 50 described later.
  • the X-axis direction can also be referred to as the device longitudinal direction in a plane perpendicular to the insertion direction of the consumable product 120.
  • the Y-axis direction can also be referred to as the device lateral direction in a plane perpendicular to the insertion direction of the consumable product 120.
  • the flavor inhaler 100 is configured to generate an aerosol containing a flavor by, for example, heating a stick-shaped consumable product 120 having a flavor source containing an aerosol source.
  • the consumable product 120 is configured to have a smokable article containing a flavor source such as tobacco and an aerosol source at the tip in the negative direction of the Z axis, and a filter at another location.
  • the aerosol source include glycerin, propylene glycol, triacetin, 1,3-butanediol, and mixtures thereof.
  • the consumable product 120 is described as having a stick shape, but the consumable product used in the flavor inhaler 100 is not limited to this.
  • the consumable product can be configured to include a cartridge containing a liquid aerosol source. Furthermore, this cartridge may have a heating section.
  • the flavor inhaler 100 has a housing 102 composed of an upper housing 104 and a lower housing 106, and a sliding cover 108.
  • the housing 102 constitutes the outermost housing of the flavor inhaler 100 and has a size that fits in the user's hand. When using the flavor inhaler 100, the user can hold the flavor inhaler 100 in their hand and inhale the aerosol.
  • the upper housing 104 is made of a resin such as polycarbonate
  • the lower housing 106 is made of a metal such as aluminum.
  • the material of the housing 102 is not limited to these and may be made of any suitable resin, such as polycarbonate (PC), ABS (Acrylonitrile-Butadiene-Styrene) resin, PEEK (Polyether Ether Ketone), or a polymer alloy containing multiple types of polymers.
  • the upper housing 104 has an opening 110 for receiving the consumable product 120, and the slide cover 108 is slidably attached to the upper housing 104 so as to close the opening 110.
  • the slide cover 108 is configured to be movable along the outer surface of the upper housing 104 between a closed position in which the opening 110 of the upper housing 104 is closed, and an open position (position shown in Figures 1 and 2) in which the opening is opened.
  • a user can manually operate the slide cover 108 to move the slide cover 108 between the closed position and the open position. In this way, the slide cover 108 can allow or restrict access of the consumable product 120 to the inside of the flavor inhaler 100.
  • FIGS. 1 and 2 show the joint surface between the upper housing 104 and the lower housing 106 of the housing 102 of the flavor inhaler 100 as intersecting obliquely with the XY plane, but the configuration of the housing 102 is not limited to this.
  • the housing 102 can also be constructed from three or more members.
  • the flavor inhaler 100 may further have a terminal (not shown).
  • the terminal may be an interface that connects the flavor inhaler 100 to, for example, an external power source. If the power source provided in the flavor inhaler 100 is a rechargeable battery, connecting the external power source to the terminal allows current to flow from the external power source to the power source, thereby charging the power source.
  • connecting a data transmission cable to the terminal may allow data related to the operation of the flavor inhaler 100 to be transmitted to an external device.
  • Figure 3 is a cross-sectional view of the flavor inhaler 100 taken along the arrow 3-3 shown in Figure 1.
  • the internal space of the housing 102 of the flavor inhaler 100 contains a power supply unit 20, an atomization unit 30, and a control unit 80.
  • the control unit 80 includes a substrate 82.
  • the substrate 82 includes, for example, a microprocessor, and can control the supply of power from the power supply unit 20 to the atomization unit 30. This allows the control unit 80 to control the heating of the consumable product 120 by the atomization unit 30.
  • the control unit 80 also includes a Bluetooth (registered trademark) interface 28. The control unit 80 can communicate with external devices via the Bluetooth interface 28.
  • the power supply unit 20 has a power supply 21 electrically connected to the board 82 of the control unit 80.
  • the power supply 21 can be, for example, a rechargeable battery or a non-rechargeable battery.
  • the power supply 21 is electrically connected to the atomization unit 30 via the board 82. This allows the power supply 21 to supply power to the atomization unit 30 so as to appropriately heat the consumable product 120.
  • the atomization unit 30 has a chamber 50 extending in the longitudinal direction of the consumable product 120, a heating unit 40 (not shown in FIG. 3) surrounding a portion of the chamber 50, a heat insulating unit 32, and a generally cylindrical insertion guide member 34.
  • the chamber 50 is configured to accommodate the consumable product 120.
  • the heating unit 40 is configured to contact the outer peripheral surface of the chamber 50 and heat the consumable product 120 accommodated in the chamber 50.
  • the insulating section 32 is disposed so as to surround the chamber 50 and the heating section 40.
  • the insulating section 32 may be, for example, an aerogel.
  • the insertion guide member 34 is formed of a resin material such as PEEK, PC, or ABS, and is provided between the slide cover 108 in the closed position and the chamber 50. When the slide cover 108 is in the open position, the insertion guide member 34 communicates with the outside of the flavor inhaler 100, and guides the insertion of the consumable product 120 into the chamber 50 by inserting the consumable product 120 into the insertion guide member 34.
  • the atomizing unit 30 and the control unit 80 are covered by a heat diffusion sleeve 70 and placed in the internal space of the housing 102.
  • the heat diffusion sleeve 70 is made of a material with high thermal conductivity such as metal, and diffuses the heat generated in the atomizing unit 30 inside the housing 102.
  • the heat diffusion sleeve 70 can be configured to be placed only inside the upper housing 104 without interfering with the lower housing 106.
  • an open area can be provided in the heat diffusion sleeve 70 so as not to interfere with communication with external devices via the Bluetooth interface 28 of the control unit 80.
  • metal members interfere with electromagnetic waves, but at least the open area of the heat diffusion sleeve 70 can be used as a path for the control unit 80 to communicate with external devices via the Bluetooth interface 28.
  • Fig. 4 is a perspective view of the chamber 50 and the heating unit 40.
  • Fig. 5A is a perspective view of the chamber 50 alone.
  • Fig. 5B is a cross-sectional view of the chamber 50 taken along line 5B-5B in Fig. 5A.
  • Fig. 6A is a cross-sectional view of the chamber 50 taken along line 6A-6A in Fig. 5B.
  • Fig. 6B is a cross-sectional view of the chamber 50 taken along line 6B-6B in Fig. 5B.
  • Fig. 7 is a cross-sectional view of Fig. 6B in which the consumable product 120 has been placed at a desired position in the chamber 50.
  • the atomization unit 30 has a heating unit 40, a chamber 50, and an insertion guide member 34. Furthermore, as shown in FIG. 4, a strip-shaped electrode 48 is connected between the heating unit 40 and the chamber 50. For ease of explanation, the heat insulating unit 32 is not shown in FIG. 4.
  • the chamber 50 may be a cylindrical member including an opening 52 into which the consumable product 120 is inserted and a cylindrical side wall portion 60 that houses the consumable product 120.
  • the chamber 50 is preferably formed from a material that is heat resistant and has a low coefficient of thermal expansion, and may be formed from, for example, a metal such as stainless steel, a resin such as PEEK, glass, or ceramic. This allows for effective heating from the chamber 50 to the consumable product 120.
  • the side wall portion 60 includes a contact portion 62 and a separation portion 66.
  • the contact portion 62 contacts or presses a part of the consumable product 120, and the separation portion 66 is separated from the consumable product 120.
  • the “desired position in the chamber 50" refers to a position where the consumable product 120 is appropriately heated, or the position of the consumable product 120 when the user smokes.
  • the contact portion 62 has an inner surface 62a and an outer surface 62b.
  • the separation portion 66 has an inner surface 66a and an outer surface 66b.
  • the heating portion 40 is placed on the outer surface 62b of the contact portion 62. It is preferable that the heating portion 40 is placed on the outer surface 62b of the contact portion 62 without any gaps.
  • the heating portion 40 may include an adhesive layer. In this case, it is preferable that the heating section 40 including the adhesive layer is arranged without any gaps on the outer surface 62b of the contact section 62.
  • the outer surface 62b of the contact portion 62 is flat.
  • the outer surface 62b of the contact portion 62 be flat, it is possible to prevent the band-shaped electrode 48 connected to the heating portion 40, which is disposed on the outer surface 62b of the contact portion 62 as shown in Figure 4, from bending.
  • the inner surface 62a of the contact portion 62 is flat.
  • the thickness of the contact portion 62 is uniform.
  • the chamber 50 preferably has a cylindrical non-retaining portion 54 between the opening 52 and the side wall portion 60.
  • a gap may be formed between the non-retaining portion 54 and the consumable product 120.
  • the chamber 50 preferably has a first guide portion 58 with a tapered surface 58a that connects the inner surface of the non-retaining portion 54 and the inner surface 62a of the contact portion 62.
  • the chamber 50 has two contact portions 62 in the circumferential direction of the chamber 50, and the two contact portions 62 face each other so as to be parallel to each other. It is preferable that at least a part of the distance between the inner surfaces 62a of the two contact portions 62 is smaller than the width of the portion of the consumable product 120 inserted into the chamber 50 that is disposed between the contact portions 62.
  • the inner surface 66a of the separation portion 66 may have an overall arc-shaped cross section in a plane perpendicular to the longitudinal direction (Z-axis direction) of the chamber 50.
  • the separation portion 66 is disposed so as to be adjacent to the contact portion 62 in the circumferential direction.
  • the chamber 50 may have a hole 56a in its bottom 56 so that a bottom member (not shown) can pass through and be positioned inside the chamber 50.
  • the bottom member provided on the bottom 56 supports a portion of the consumable product 120 inserted into the chamber 50 so that at least a portion of the end surface of the consumable product 120 is exposed.
  • the bottom 56 may also support a portion of the consumable product 120 so that the exposed end surface of the consumable product 120 communicates with a gap 67 (see FIG. 7) described below.
  • the heating unit 40 has a heating element 42.
  • the heating element 42 may be, for example, a heating track.
  • the heating element 42 is preferably arranged so as to heat the contact portion 62 without contacting the separation portion 66 of the chamber 50.
  • the heating element 42 is preferably arranged only on the outer surface of the contact portion 62.
  • the heating element 42 may have a difference in heating capacity between the portion that heats the separation portion 66 of the chamber 50 and the portion that heats the contact portion 62.
  • the heating element 42 may be configured to heat the contact portion 62 to a higher temperature than the separation portion 66.
  • the arrangement density of the heating track of the heating element 42 in the contact portion 62 and the separation portion 66 may be adjusted.
  • the heating element 42 may have approximately the same heating capacity around the entire circumference of the chamber 50 and be wound around the outer periphery of the chamber 50.
  • the heating unit 40 preferably has, in addition to the heating element 42, an electrically insulating member 44 that covers at least one surface of the heating element 42. In the atomizing unit 30 of this embodiment, the electrical insulating member 44 is arranged to cover both sides of the heating element 42.
  • FIG. 7 is a cross-sectional view of FIG. 6B in a state where the consumable product 120 is placed at a desired position in the chamber 50.
  • the consumable product 120 when the consumable product 120 is placed at a desired position in the chamber 50, the consumable product 120 can be pressed against the contact portion 62 of the chamber 50 by contacting it. Meanwhile, a gap 67 is formed between the consumable product 120 and the separation portion 66.
  • the gap 67 can be connected to the opening 52 of the chamber 50 and the end face of the consumable product 120 positioned in the chamber 50. This allows air flowing in from the opening 52 of the chamber 50 to pass through the gap 67 and flow into the inside of the consumable product 120. In other words, an air flow path (gap 67) is formed between the consumable product 120 and the separation portion 66.
  • the flavor inhaler 100 has been described as generating an aerosol containing flavor by contact heating the chamber 50 containing the stick-shaped consumer product 120 from the outside by the heating unit 40.
  • the manner of heating the consumer product in the flavor inhaler disclosed herein is not limited to the external contact heating type.
  • the chamber 50 containing the consumer product 120 may be used as a susceptor, and the chamber 50 may be inductively heated by an induction coil wound around the chamber 50 to generate an aerosol containing flavor.
  • the material and shape of the chamber 50 may be changed as appropriate.
  • a pin-shaped heating unit protruding from the bottom of the chamber 50 may be provided, and the pin-shaped heating unit inside the consumer product 120 may be resistively or inductively heated to generate an aerosol containing flavor.
  • the shape of the consumer product is not limited to a stick shape, and a susceptor may be placed on a non-stick-shaped consumer product contained in the chamber, and the susceptor may be inductively heated to generate an aerosol containing flavor.
  • Fig. 8 is a perspective view of the periphery of the insertion guide member 34.
  • Fig. 9 is a side view of the infrared sensor 94A.
  • Fig. 10 is a top view of the main part of Fig. 8 as seen from the axial direction of the insertion guide member.
  • Fig. 11 is a cross-sectional view of the upper part of the atomization unit 30 as seen along arrows 11-11 in Fig. 8.
  • the detection unit In a flavor inhaler, it is preferable to separate the detection unit from the heating unit to avoid the effects of heat from the heating unit. On the other hand, if the distance between the detection unit and the detection target is too large, the detection medium will attenuate as it travels and the signal strength will decrease, making it difficult to perform proper detection and resulting in an increase in the size of the device.
  • FIG. 8 shows the upper end of the insertion guide member 34 and the members arranged around it.
  • the Z-axis direction is the insertion direction of the consumer product 120 contained in the chamber 50. Therefore, as shown in FIG. 8, the axial direction of the insertion guide member 34 is approximately parallel to the Z-axis.
  • the end of the chamber 50 in the positive Z-axis direction is connected to the end of the insertion guide member 34 in the negative Z-axis direction, and the consumer product 120 is inserted into the pair of the insertion guide member 34 and the chamber 50.
  • the axial direction of the insertion guide member 34 and the axial direction of the chamber 50 are both approximately parallel to the Z-axis and point in a common direction.
  • the pair of the insertion guide member 34 and the chamber 50 is an example of an inserted portion of the present disclosure.
  • the chamber 50 is also an example of a storage portion of the present disclosure, and the insertion guide member 34 is an example of a guide portion of the present disclosure.
  • the insertion guide member 34 and the chamber 50 may be integrally molded.
  • a retaining wall 90 is disposed on the X-axis positive side (i.e., the direction in which the control unit 80 is disposed) of the insertion guide member 34.
  • the retaining wall 90 functions to hold the insertion guide member 34 in an appropriate position and orientation inside the housing 102.
  • the gasket 38 into which the insertion guide member 34 is fitted is held by two ribs 90B and 90C of the retaining wall 90.
  • the retaining wall 90 may hold the insertion guide member 34 via other ribs or protrusions.
  • the retaining wall portion 90 may extend in the negative Z-axis direction and retain the chamber 50 via other ribs or protrusions.
  • a fixed substrate 92 is provided on three surfaces of the retaining wall portion 90 that face the insertion guide member 34 and are joined to each other at bent portions.
  • the fixed substrate 92 has three portions that are bent so as to join to the three surfaces of the retaining wall portion 90.
  • infrared sensors 94A and 94B are provided on the two surfaces at both ends of the fixed substrate 92, respectively.
  • the infrared sensors 94A and 94B are an example of a detection unit of the present disclosure.
  • the three faces of the retaining wall portion 90 on which the fixed substrate 92 is disposed are configured to surround a portion of the outer periphery of the insertion guide member 34.
  • the fixed substrate 92 is shown as a single substrate that is integrally molded and bent, but the configuration of the fixed substrate 92 is not limited to this. It is also possible to configure the fixed substrate 92 as two independent horizontal substrates on which infrared sensors 94A and 94B are mounted, respectively.
  • the infrared sensor 94A is configured to include a light receiving unit 94A1 and a light emitting unit 94A2 arranged along the Z-axis direction as shown in FIG. 9, for example.
  • the light receiving unit 94A1 is configured to be able to detect infrared rays when it receives infrared rays in a predetermined wavelength range and intensity range.
  • the light receiving unit 94A1 has a threshold value that is the minimum value of the intensity of the infrared rays that can be detected.
  • the light emitting unit 94A2 is also configured to be able to irradiate infrared rays of a predetermined wavelength and intensity.
  • the infrared rays irradiated from the light emitting unit 94A2 pass through the outer periphery of the insertion guide member 34 and irradiate the internal configuration of the insertion guide member 34.
  • the infrared rays are reflected by the consumable product 120 and head toward the outside of the insertion guide member 34.
  • the light receiving unit 94A1 detects the reflected infrared rays.
  • the infrared rays irradiating the inside of the insertion guide member 34 reach the opposing points on the outer periphery of the insertion guide member 34, where they are absorbed and reflected.
  • the intensity of the infrared rays received by the light receiving unit 94A1 does not meet the threshold value described above, so the light receiving unit 94A1 does not detect the infrared rays.
  • the infrared sensor 94A can determine whether the consumable product 120 is contained in the insertion guide member 34.
  • the detection results from the infrared sensor 94A can be used by the control unit 80 to control each component of the flavor inhaler 100.
  • the control unit 80 can be configured not to allow the heating unit 40 to heat the chamber 50 unless it is determined that the consumable product 120 is contained within the insertion guide member 34. With this configuration, a safety device that prevents unnecessary heating can be provided in the flavor inhaler 100.
  • the other infrared sensor 94B can be configured in the same manner as the infrared sensor 94A. As shown in FIG. 10, the two infrared sensors 94A and 94B are arranged to be spaced apart from each other when viewed from the positive Z-axis direction of the insertion guide member 34, and perform detection from different angles, thereby making it possible to more reliably determine whether or not the consumable product 120 is contained within the insertion guide member 34.
  • the control unit 80 can be configured to determine that the consumable product 120 is inserted into the insertion guide member 34 and the chamber 50 only when the presence of the consumable product 120 is detected by both the two infrared sensors 94A and 94B. With the above configuration, it is possible to prevent a false determination that the consumable product 120 is inserted when the consumable product 120 is not inserted.
  • the transparent regions 34A and 34B are provided at the locations facing the infrared sensors 94A and 94B on the outer periphery of the insertion guide member 34.
  • the transparent regions 34A and 34B do not need to transmit substantially 100% of the infrared light emitted by the light receiving unit 94A1 (and 94B1) and the infrared light reflected inside the insertion guide member 34, but only need to be configured to have an appropriate transmittance for performing detection by the above-mentioned infrared sensor 94A (and 94B).
  • a portion of the outer periphery of the insertion guide member 34 is configured as the transparent regions 34A and 34B, but the entire outer periphery of the insertion guide member 34 may be configured as a transparent region.
  • the light receiving portions 94A1, 94B1 and the light emitting portions 94A2, 94B2 of the infrared sensors 94A and 94B are arranged along the Z axis.
  • the transparent regions 34A, 34B of the insertion guide member 34 may be formed to extend so as to have a longitudinal direction along the Z axis.
  • the longitudinal length of the transparent regions 34A and 34B of the insertion guide member 34 along the Z-axis direction may be 2.7 to 8.4 mm.
  • the tangent at the center of the transmission areas 34A and 34B of the insertion guide member 34 is approximately perpendicular to the infrared rays emitted from the light-emitting portions 94A2 and 94B2 of the infrared sensors 94A and 94B.
  • the infrared rays emitted from the infrared sensors 94A and 94B are directed toward approximately the center inside the insertion guide member when viewed from the positive direction of the Z axis.
  • the distance from the infrared sensors 94A and 94B to the inner surface of the transparent regions 34A and 34B of the insertion guide member 34 may be 2 to 8 mm.
  • the starting point of this distance may be the light-emitting portion 94A2, 94B2 of the infrared sensors 94A and 94B, or may be the midpoint between the light-emitting portion 94A2, 94B2 and the light-receiving portion 94A1, 94B1.
  • the three faces of the retaining wall portion 90 that face the insertion guide member 34 and are joined to each other at the bends are approximately parallel to a tangent drawn at the opposing points of the insertion guide member 34.
  • the distances from each of the infrared sensors 94A and 94B to opposing points on the outer periphery of the insertion guide member 34 are approximately equal.
  • each of the infrared sensors 94A and 94B is positioned so as to be linearly symmetrical with respect to the pair of the rib 90A and the concave protrusion 36.
  • the infrared sensors 94A and 94B are positioned so as to be spaced apart from each other.
  • the infrared sensors 94A and 94B are spaced apart from the insertion guide member 34 and the outer periphery of the chamber 50 when viewed from the positive direction of the Z axis. Also, as shown in FIG. 11, the infrared sensors 94A and 94B are spaced apart from the heating section 40 (the heating element 42) along the Z axis. In particular, the infrared sensors 94A and 94B are arranged in parallel with the insertion guide member 34 along the Z axis. For ease of explanation, the gasket 38 and the transparent regions 34A and 34B are omitted from FIG. 11.
  • Figures 8 and 11 show the control unit 80, holding wall 90, and fixed substrate 92 all having their upper ends on the same horizontal plane (X-Y plane) as the upper end of the insertion guide member 34, the configuration of the control unit 80, holding wall 90, and fixed substrate 92 is not limited to this.
  • Figure 8 can also be interpreted as a perspective view of the upper part of the atomization unit 30 cut by a horizontal plane (X-Y plane) that passes through the transparent regions 34A and 34B of the insertion guide member 34.
  • the infrared sensors 94A and 94B have been described as detecting the consumer product 120.
  • the detection target of the infrared sensors 94A and 94B is not limited to the consumer product 120, and various objects located inside the insertion guide member 34 can be detected.
  • the infrared sensors 94A and 94B can detect the cleaning tool 130 described below.
  • the infrared sensors 94A and 94B can also detect the presence of dirt on the transparent areas 34A and 34B of the insertion guide member 34.
  • the infrared rays irradiated from the light-emitting unit 94A2 or 94B2 may not enter the inside of the insertion guide member 34, and the infrared rays may not reach the corresponding light-receiving unit 94A1 or 94B1. In other words, if the infrared sensors 94A or 94B do not detect an object, it can be determined that the transparent area 34A or 34B may be dirty.
  • the detection results of the infrared sensors 94A and 94B are described as being used to determine whether or not the consumable product 120 is contained in the insertion guide member 34, but the use of the detection results is not limited to this.
  • the control unit 80 can use the detection results of the infrared sensors 94A and 94B for various controls of each component of the flavor inhaler 100.
  • the control unit 80 when performing the above-mentioned detection of a cleaning tool or dirt, can be configured to notify the user of the flavor inhaler 100 of a message such as "cleaning in progress" or "transmitting area is dirty.” Specifically, the control unit 80 can notify the user by turning on or blinking an LED (not shown) that is arranged in an easily visible position on the flavor inhaler 100. The control unit 80 can also be configured to notify the user of the message via the Bluetooth interface 28 to the user's smartphone.
  • a suitable flavor inhalation system can be constructed.
  • Fig. 12 is a schematic diagram in which the heat transfer path is added to the top view shown in Fig. 10.
  • the rib 90A of the retaining wall 90 to which the concave protrusion 36 of the insertion guide member 34 is connected is disposed at a position separated from the infrared sensors 94A and 94B.
  • the infrared sensors 94A and 94B are separated from the pair of the rib 90A and the concave protrusion 36.
  • the pair of the rib 90A and the concave protrusion 36 is an example of a connecting portion of the present disclosure.
  • the rib 90A is also an example of a first protrusion of the present disclosure
  • the concave protrusion 36 is an example of a second protrusion of the present disclosure.
  • the retaining wall 90 described above is an example of a retaining portion of the present disclosure.
  • the fixed substrate 92 is also an example of a substrate of the present disclosure.
  • the heat generated in the atomizing unit 30 is caused by the heating unit 40.
  • the heating unit 40 heats the chamber 50, the consumable product 120 contained in the chamber 50 is heated and an aerosol is generated.
  • chamber 50 ⁇ insertion guide member 34 ⁇ set of concave protrusions 36 and ribs 90A ⁇ fixed substrate 92 ⁇ infrared sensor 94A or 94B.
  • the transmission path A from the outer periphery of the insertion guide member 34 is clearly longer than the distance from the infrared sensors 94A and 94B to the outer periphery of the insertion guide member 34.
  • the retaining wall portion 90, the rib 90A, the concave protrusion portion 36, and the insertion guide member 34 are made of a material with a lower thermal conductivity than the material of the chamber 50. By configuring them in this way, it is possible to suppress the transfer of heat to the infrared sensors 94A and 94B via the transfer path A.
  • the infrared sensors 94A and 94B that detect the consumable product 120 in the flavor inhaler 100 are separated from the heating unit 40 in the axial direction of the insertion guide member 34 and the chamber 50, and are separated from the outer circumferential surfaces of the insertion guide member 34 and the chamber 50 in a direction perpendicular to the axial direction of the insertion guide member 34 and the chamber 50.
  • the infrared sensors 94A and 94B By being separated from the heating unit 40 in the axial direction of the insertion guide member 34 and the chamber 50, and being separated from the outer circumferential surfaces of the insertion guide member 34 and the chamber 50 in which the consumable product 120 heated by the heating unit 40 is stored, the influence of heat on the infrared sensors 94A and 94B can be reduced.
  • the infrared sensors 94A and 94B which are provided to prevent performance degradation due to the influence of heat, can appropriately determine the presence or absence of the consumable product in the insertion guide member 34.
  • the multiple infrared sensors 94A and 94B that detect the consumable product 120 in the flavor inhaler 100 are arranged so as to be spaced apart from each other when viewed from the axial direction of the insertion guide member 34. Therefore, according to this embodiment, the multiple infrared sensors 94A and 94B each perform detection from a different angle, making it possible to more accurately determine the presence or absence of the consumable product 120 in the insertion guide member 34.
  • the infrared sensors 94A and 94B that detect the consumable product 120 in the flavor inhaler 100 are arranged so as to overlap the guide section connected to the chamber 50, without overlapping the chamber 50 in which the insertion guide member 34 heated by the heating section 40 is mainly housed, in the axial direction of the insertion guide member 34 and the chamber 50. Therefore, according to this embodiment, the infrared sensors 94A and 94B are sufficiently separated from the heating section 40 and the consumable product 120 heated by the heating section 40, and the influence of heat on the infrared sensors 94A and 94B can be further reduced.
  • the infrared sensors 94A and 94B are arranged so as to overlap the insertion guide member 34 in the axial direction of the insertion guide member 34 and the chamber 50, the axial length of the atomization section 30 of the flavor inhaler 100 can be reduced, and the infrared sensors 94A and 94B can be shielded to protect them from external influences.
  • the infrared sensors 94A and 94B are positioned so that they are exposed, smoke generated by the heated consumable product 120 may affect the infrared sensors 94A and 94B.
  • the infrared sensors 94A and 94B that detect the consumable product 120 in the flavor inhaler 100 are configured as optical sensors including a light-emitting portion 94A2 (94B2) and a light-receiving portion 94A1 (94B1). Therefore, according to this embodiment, it is possible to optically determine the presence or absence of the consumable product 120 in the insertion guide member 34.
  • the chamber 50 that houses the consumable product 120 and the insertion guide member 34 that forms the insertion port for the consumable product 120 are integrally molded. Therefore, according to this embodiment, the strength and rigidity of the combination of the insertion guide member 34 and the chamber 50 can be increased.
  • the insertion guide member 34 has transparent regions 34A and 34B that serve as passageways for infrared light for detection by the infrared sensors 94A and 94B. Therefore, according to this embodiment, the detection function of the infrared sensors 94A and 94B can be properly performed.
  • the distance from the infrared sensors 94A and 94B to the inner surface of the insertion guide member 34 is 2 to 8 mm. Therefore, according to this embodiment, the infrared sensors 94A and 94B are sufficiently separated from the insertion guide member 34 and the chamber 50 that contain the consumable product 120 heated by the heating unit 40, so that the infrared sensors 94A and 94B can be reliably protected from the effects of heat.
  • the light-emitting unit 94A2 (94B2) and the light-receiving unit 94A1 (94B1) of the infrared sensors 94A and 94B are arranged along the axial direction (Z-axis direction) of the insertion guide member 34. If the light-emitting unit 94A2 (94B2) and the light-receiving unit 94A1 (94B1) are arranged along a direction perpendicular to the axial direction of the insertion guide member 34 (a straight line on the X-Y plane), the space required for arranging the infrared sensors 94A and 94B becomes large, resulting in an increase in the size of the flavor inhaler 100.
  • the light-emitting unit 94A2 (94B2) and the light-receiving unit 94A1 (94B1) are arranged along a direction perpendicular to the axial direction of the insertion guide member 34, the light irradiated from the light-emitting unit 94A2 (94B2) and spread in the horizontal direction (X-Y plane) is diffused by the circular shape of the consumer product 120, preventing it from reaching the light-receiving unit 94A1 (94B1) properly.
  • this embodiment can contribute to miniaturizing the flavor inhaler 100 and improving the accuracy of detection by the infrared sensors 94A and 94B.
  • the length of the transparent regions 34A and 34B of the insertion guide member 34 along the axial direction of the insertion guide member 34 is 2.7 to 8.4 mm. If the transparent regions 34A and 34B are too large, the infrared light emitted by the light-emitting unit 94A2 (94B2) may be diffused inside the insertion guide member 34 and reach the light-receiving unit 94A1 (94B1), which may cause an erroneous determination. On the other hand, by making the transparent regions 34A and 34B an appropriate size, the detection accuracy can be improved. Therefore, this embodiment can contribute to further improving the detection accuracy of the infrared sensors 94A and 94B.
  • infrared sensors 94A and 94B that detect the consumable product 120 are separated from the heating unit 40 in the axial direction of the insertion guide member 34 and the chamber 50, and separated from the outer circumferential surface of the insertion guide member 34 and the chamber 50 in a direction perpendicular to the axial direction of the insertion guide member 34 and the chamber 50.
  • the infrared sensors 94A and 94B By being separated from the heating unit 40 in the axial direction of the insertion guide member 34 and the chamber 50, and being separated from the outer circumferential surface of the insertion guide member 34 and the chamber 50 in which the consumable product 120 heated by the heating unit 40 is stored, the influence of heat on the infrared sensors 94A and 94B can be reduced. Therefore, according to this embodiment, the infrared sensors 94A and 94B, which are provided to prevent performance degradation due to the influence of heat, can appropriately determine the presence or absence of a consumable product in the insertion guide member 34.
  • the shortest path from the infrared sensors 94A and 94B to the outer periphery of the insertion guide member 34, which passes through the set of the concave protrusions 36 and the ribs 90A that connect the insertion guide member 34, into which the consumer product 120 is inserted, to the holding wall 90 in the flavor inhaler 100, is configured to be longer than the distance between each of the infrared sensors 94A and 94B and the outer periphery of the insertion guide member 34 of the inserted portion.
  • the heat conduction path from the insertion guide member 34 through the set of the concave protrusions 36 and the ribs 90A and the holding wall 90 to each of the infrared sensors 94A and 94B is sufficiently long, so that the influence of heat from the insertion guide member 34 on the infrared sensors 94A and 94B can be suppressed.
  • the concave projections 36 and ribs 90A that connect the insertion guide member 34, into which the consumable product 120 is inserted, to the retaining wall 90 in the flavor inhaler 100 are not directly connected to the infrared sensors 94A and 94B held by the retaining wall 90.
  • the heat conduction path from the outer periphery of the insertion guide member 34 through the concave projections 36 and ribs 90A and the retaining wall 90 to the infrared sensors 94A and 94B is guaranteed to be longer than the distance between each of the infrared sensors 94A and 94B and the outer periphery of the insertion guide member 34, and the influence of heat from the insertion guide member 34 on the infrared sensors 94A and 94B can be reliably suppressed.
  • the holding wall 90 which holds the infrared sensors 94A and 94B for detecting the consumer product 120 and is connected to the insertion guide member 34 into which the consumer product 120 is inserted via the concave protrusion 36 and the rib 90A, is configured to surround a portion of the outer periphery of the insertion guide member 34.
  • the insertion guide member 34 is connected to the holding wall 90 located around the outer periphery via the concave protrusion 36 and the rib 90A, so that the position of the insertion guide member 34 inside the flavor inhaler 100 is stabilized, and the infrared sensors 94A and 94B held around the insertion guide member 34 can detect the consumer product 120 inside the insertion guide member 34.
  • the infrared sensors 94A and 94B that detect the consumable product 120 in the flavor inhaler 100 are arranged so as to overlap the insertion guide member 34 connected to the chamber 50 in the axial direction of the insertion guide member 34, without overlapping the chamber 50 in which the consumable product 120 heated by the heating unit 40 is mainly stored. Therefore, according to this embodiment, the infrared sensors 94A and 94B are sufficiently separated from the heating unit 40 and the consumable product 120 heated by the heating unit 40, and the influence of heat on the infrared sensors 94A and 94B can be further reduced.
  • the infrared sensors 94A and 94B are arranged so as to overlap the insertion guide member 34 in the axial direction of the insertion guide member 34, the axial length of the insertion guide member 34 of the flavor inhaler 100 can be reduced, and the infrared sensors 94A and 94B can be shielded to protect them from external influences.
  • the infrared sensors 94A and 94B are arranged so as to be exposed, smoke generated from the heated consumable product 120 may affect the infrared sensors 94A and 94B.
  • the concave projection 36 and the rib 90A connect the retaining wall 90 and the insertion guide member 34, preventing the chamber 50, which mainly contains the consumable product 120 heated by the heating unit 40, from connecting to the retaining wall 90, thereby reliably suppressing the transfer of heat.
  • the configuration for connecting the insertion guide member 34, into which the consumable product 120 is inserted, to the holding wall 90 in the flavor inhaler 100 includes a rib 90A that is integrally molded with the holding wall 90 and protrudes from the holding wall 90, and a concave protrusion 36 that protrudes from the outer periphery of the insertion guide member 34 and connects to the rib 90A. Therefore, according to this embodiment, the insertion guide member 34 and the holding wall 90 can be stably connected by the concave protrusion 36 and the rib 90A.
  • the multiple infrared sensors 94A and 94B that detect the consumable product 120 in the flavor inhaler 100 are held and arranged by a holding wall portion 90 configured to surround the outer periphery of the insertion guide member 34 into which the consumable product 120 is inserted. Therefore, according to this embodiment, the multiple infrared sensors 94A and 94B arranged to surround the outer periphery of the insertion guide member 34 each perform detection from a different angle, making it possible to more accurately determine the presence or absence of the consumable product 120 in the insertion guide member 34.
  • the holding wall portion 90 has multiple faces that are approximately parallel to the tangent plane of the outer periphery of the insertion guide member 34 that faces each of the multiple infrared sensors 94A and 94B, and each of the multiple infrared sensors 94A and 94B is held by the corresponding face of the holding wall portion 90. Therefore, according to this embodiment, each of the multiple infrared sensors 94A and 94B can emit infrared rays toward approximately the center of the insertion guide member 34.
  • each of the multiple infrared sensors 94A and 94B is disposed on a corresponding fixed substrate 92, and each surface of the fixed substrate 92 is disposed on a surface of the retaining wall portion 90 that is approximately parallel to a tangent plane on the outer periphery of the insertion guide member 34. Therefore, according to this embodiment, the infrared sensors 94A and 94B can be stably held in a preferred position.
  • the distance from each of the multiple infrared sensors 94A and 94B to the outer periphery of the opposing insertion guide member 34 is approximately equal. Therefore, according to this embodiment, the multiple infrared sensors 94A and 94B arranged approximately symmetrically when viewed from the axial direction of the insertion guide member 34 can reliably detect the presence or absence of consumable products 120 in the insertion guide member 34.
  • the multiple infrared sensors 94A and 94B are arranged so as to be linearly symmetrical when viewed from the axial direction of the insertion guide member 34 with respect to the concave protrusion 36 and rib 90A that connect the insertion guide member 34, into which the consumable product 120 is inserted, to the retaining wall portion 90. Therefore, according to this embodiment, the multiple infrared sensors 94A and 94B arranged symmetrically when viewed from the axial direction of the insertion guide member 34 can reliably detect the presence or absence of the consumable product in the inserted portion.
  • the components other than the chamber 50 that mainly holds the consumable product 120 to be heated are made of a material with a lower thermal conductivity than the chamber 50. Therefore, according to this embodiment, heat conduction to the infrared sensors 94A and 94B can be reliably suppressed.
  • the shortest path from the infrared sensors 94A and 94B to the outer periphery of the insertion guide member 34, through the set of concave protrusions 36 and ribs 90A that connect the insertion guide member 34 into which the consumable product 120 is inserted to the retaining wall 90 is configured to be longer than the distance between each of the infrared sensors 94A and 94B and the outer periphery of the insertion guide member 34 of the inserted portion.
  • the heat conduction path from the insertion guide member 34 through the set of concave protrusions 36 and ribs 90A and the retaining wall 90 to each of the infrared sensors 94A and 94B is sufficiently long, so that the influence of heat from the insertion guide member 34 on the infrared sensors 94A and 94B can be suppressed.
  • Fig. 13 is a top view of the main part of the atomizing unit 30 in which the consumable product 120 is accommodated in the insertion guide member 34, as seen from the axial direction of the insertion guide member 34.
  • Fig. 14 is a top view in which the cleaning tool 130 is accommodated in the insertion guide member 34 instead of the consumable product 120 in Fig. 13.
  • Fig. 15 is a top view in which the arrangement of the cleaning tool 130 in Fig. 14 is changed.
  • Fig. 16 is a first top view in which the arrangement of the cleaning tool 130 in Fig. 15 is further changed.
  • Fig. 17 is a second top view in which the arrangement of the cleaning tool 130 in Fig. 15 is further changed.
  • the infrared sensors 94A and 94B are adjusted to fully utilize the advantages of using multiple optical detection units, the infrared sensors 94A and 94B, to detect the inside of the insertion guide member 34.
  • an accurate determination can be made by providing multiple detection units and making a determination based on a combination of the detection results of each detection unit. For example, if a thinner foreign object, rather than a consumable product, is present within the irradiation range of one optical detection unit, combining detection by another optical detection unit can prevent a false determination that a consumable product is contained within the storage unit. However, in an area where the irradiation ranges of multiple optical detection units overlap within the storage unit, if a thinner foreign object, rather than a consumable product, is present in this area, it may be falsely determined that a consumable product is contained within the storage unit. In other words, in an area where the irradiation ranges of multiple optical detection units overlap within the storage unit, the advantage of making a determination based on a combination of the detection results of each detection unit may not be obtained.
  • the infrared rays emitted from the light-emitting portions 94A2, 94B2 of the infrared sensors 94A, 94B enter the insertion guide member 34 through the transparent regions 34A, 34B of the insertion guide member 34, reach the consumable product 120 and are reflected.
  • the reflected infrared rays pass through the transparent regions 34A, 34B and reach the light-receiving portions 94A1, 94B1 of the infrared sensors 94A, 94B and are received.
  • the above process determines that the consumable product 120 is contained inside the insertion guide member 34.
  • FIG. 13 shows the central axis 34C of the insertion guide member 34. Also, in FIG. 13, an intersecting region 140 is shown, which is a region that can be irradiated by both infrared rays irradiated from the light-emitting units 94A2 and 94B2 of the infrared sensors 94A and 94B. For convenience, in FIG. 13, the intersecting region 140 is shown by a circular dashed line centered on the central axis 34C.
  • the shape and area of the intersecting region 140 are substantially determined based on the intensity and directivity of the infrared rays irradiated from the light-emitting units 94A2 and 94B2 of the infrared sensors 94A and 94B, and the transmittance of the transmission regions 34A and 34B of the insertion guide member 34.
  • the sizes and shapes of the infrared rays, the intersecting region 140, the consumable product 120, and the cleaning tool 130 (described later) shown in FIG. 13 to 17 are for convenience in explaining the principle of this modified example, and do not necessarily match the actual sizes and shapes.
  • the tangent at the center of the transparent regions 34A and 34B of the insertion guide member 34 is approximately perpendicular to the infrared rays emitted from the light-emitting portions 94A2 and 94B2 of the infrared sensors 94A and 94B. Therefore, as shown in FIG. 13, the intersecting region 140 is located approximately at the center of the insertion guide member 34 when viewed from the positive direction of the Z axis.
  • a cleaning tool 130 for cleaning the insertion guide member 34 and the chamber 50 may be inserted into the insertion guide member 34.
  • the cleaning tool 130 is formed in a roughly cylindrical shape with an appropriate longitudinal length, and is configured to be able to sweep out dust that has accumulated at the bottom of the chamber 50.
  • the infrared rays emitted from the light-emitting portion 94A2 of the infrared sensor 94A pass through the transmission area 34A and reach the opposing portion of the outer periphery of the insertion guide member 34 without being reflected by the cleaning tool 130, where they are absorbed and reflected.
  • the intensity of the infrared rays received by the light-receiving portion 94A1 does not meet the threshold value, which is the minimum value of the intensity of the infrared rays that the light-receiving portion 94A1 can detect. Therefore, the infrared sensor 94A does not detect anything. This is the same as when the consumable product 120 is not inserted into the insertion guide member 34 in the above-mentioned embodiment.
  • the infrared light emitted from the light-emitting portion 94B2 of the infrared sensor 94B passes through the transmission area 34B, reaches the cleaning tool 130 and is reflected, and the reflected infrared light passes through the transmission area 34B again and reaches the light-receiving portion 94B1.
  • the intensity of the infrared light received by the light-receiving portion 94B1 is equal to or greater than the threshold value, which is the minimum value of the intensity of the infrared light that the light-receiving portion 94B1 can detect. Therefore, the infrared sensor 94B detects that the detection object is contained inside the insertion guide member 34.
  • the control unit 80 can determine the internal state of the insertion guide member 34. Because the infrared sensor 94A does not detect anything, the control unit 80 can determine that the consumable product 120 is not inserted into the insertion guide member 34. This is because, if the consumable product 120 is inserted into the insertion guide member 34 as shown in FIG. 13, both infrared sensors 94A and 94B should detect the consumable product 120. Furthermore, because only the infrared sensor 94B detects the detection target, the control unit 80 can determine that a thinner foreign object (here, the cleaning tool 130) is contained inside the insertion guide member 34, rather than the consumable product 120.
  • a thinner foreign object here, the cleaning tool 130
  • the control unit 80 can determine that the inside of the insertion guide member 34 is in one of three states: (1) the consumable product 120 is contained, (2) a foreign object thinner than the consumable product 120 is contained, or (3) nothing is contained. This is an advantage that cannot be obtained when the flavor inhaler 100 is configured to have only a single infrared sensor. If the infrared sensor 94A does not exist in FIG. 14, the control unit 80 can only recognize that some kind of member is present inside the insertion guide member 34. In other words, it is not possible to distinguish between the above states (1) and (2). On the other hand, if the infrared sensor 94B does not exist in FIG. 14, the control unit 80 will erroneously determine that nothing is contained inside the insertion guide member 34 (i.e., the state is (3)).
  • both of the multiple infrared sensors 94A and 94B detect the detection target, and the control unit 80 erroneously determines that the consumable product 120 is contained in the insertion guide member 34. In other words, it fails to recognize that the state is (2), and erroneously recognizes that the state is (1).
  • the infrared sensors 94A and 94B are configured to exclude infrared rays reflected in the intersection area 140 from the detection target. Specifically, in the situation shown in FIG. 15, the infrared rays irradiated from the light emitting units 94A2 and 94B2 of the infrared sensors 94A and 94B pass through the transmission areas 34A and 34B, reach the cleaning tool 130 and are reflected. The reflected infrared rays pass through the transmission areas 34A and 34B again and reach the light receiving units 94A1 and 94B1.
  • the intensity of the infrared rays received by the light receiving units 94A1 and 94B1 is smaller than the threshold value, which is the minimum value of the intensity of the infrared rays that can be detected by the light receiving units 94A1 and 94B1. Therefore, neither of the infrared sensors 94A nor 94B detects anything. Since none of the multiple infrared sensors 94A and 94B detect anything, the control unit 80 does not erroneously determine that the consumable product 120 is stored in the insertion guide member 34. Specifically, the control unit 80 determines that nothing is contained inside the insertion guide member 34 (i.e., the state is (3)). This determination is not accurate, but at least it prevents the control unit 80 from erroneously determining that the consumable product 120 is contained in the insertion guide member 34 in the situation shown in FIG. 15.
  • the control unit 80 of the flavor inhaler 100 can correctly determine that a foreign object thinner than the consumable product 120 is contained inside the insertion guide member 34 (i.e., the state is (2)).
  • the entire cleaning tool 130 is contained within the intersecting region 140, but in FIG. 16 and 17, a part of the cleaning tool 130 overlaps the intersecting region 140, and other parts of the cleaning tool 130 do not overlap the intersecting region 140.
  • the control unit 80 can accurately determine the state inside the insertion guide member 34.
  • both infrared sensors 94A and 94B have been described as excluding infrared rays reflected in the intersection area 140 from the detection target.
  • the configuration of this modified example is not limited to this, and only one of infrared sensors 94A and 94B may be configured to exclude infrared rays reflected in the intersection area 140 from the detection target. Details of the individual cases in each of Figures 13 to 17 will be omitted, but in all cases, it is prevented from erroneously determining that the consumable product 120 is contained within the insertion guide member 34 (i.e., it is in state (1)) when the consumable product 120 is not contained within the insertion guide member 34 (i.e., it is not in state (1)).
  • the infrared sensors 94A and 94B have been described as detecting the consumable product 120 and the cleaning tool 130.
  • the detection targets of the infrared sensors 94A and 94B are not limited to the consumable product 120 and the cleaning tool 130, and various objects located inside the insertion guide member 34 can be detected.
  • the infrared sensors 94A and 94B can also detect the presence of dirt on the transparent areas 34A and 34B of the insertion guide member 34.
  • the infrared rays irradiated from the light-emitting unit 94A2 or 94B2 may not enter the inside of the insertion guide member 34, and the infrared rays may not reach the corresponding light-receiving unit 94A1 or 94B1. In other words, if the infrared sensor 94A or 94B does not detect an object, it can be determined that the transparent area 34A or 34B may be dirty.
  • the consumable product 120 may be configured to have a substantially cylindrical shape.
  • the detection results from the infrared sensors 94A and 94B can be used by the control unit 80 to control each component of the flavor inhaler 100.
  • the control unit 80 can be configured not to allow the heating unit 40 to heat the chamber 50 unless it is determined that the consumable product 120 is contained within the insertion guide member 34 (state (1)). With this configuration, a safety device that prevents unnecessary heating can be provided in the flavor inhaler 100.
  • a suitable flavor inhalation system can be constructed.
  • At least one of the multiple infrared sensors 94A and 94B excludes from the detection target infrared rays reflected in the intersecting region 140 where the irradiation ranges of the infrared sensors 94A and 94B overlap. That is, at least one of the multiple infrared sensors 94A and 94B excludes from the detection target objects located in the intersecting region 140 where erroneous determination may occur.
  • a threshold value that is the minimum intensity of infrared light that can be detected is set in the light receiving parts 94A1, 94B1 of the infrared sensors 94A, 94B, and when at least one of the infrared sensors 94A and 94B receives infrared light reflected in the intersecting area 140, the intensity of the infrared light is smaller than the threshold value.
  • the infrared sensors 94A and 94B receives infrared light reflected by an object located in the intersecting area 140 where a misjudgment may occur, the infrared light is not detected by the infrared sensor.
  • the multiple infrared sensors 94A and 94B that detect the inside of the insertion guide member 34 in the flavor inhaler 100 are arranged so as to be spaced apart from each other when viewed from the axial direction of the insertion guide member 34. Therefore, according to this modified example, the multiple infrared sensors 94A and 94B each perform detection from a different angle, making it possible to more accurately determine the state inside the insertion guide member 34.
  • the intersecting area 140 where the irradiation ranges of the multiple infrared sensors 94A and 94B overlap is located approximately at the center of the insertion guide member 34 when viewed from the axial direction of the insertion guide member 34. Therefore, according to this modified example, it is possible to prevent erroneous determinations caused by objects located near the center of the insertion guide member 34.
  • the multiple infrared sensors 94A and 94B are arranged so as to overlap the insertion guide member 34 connected to the chamber 50 in the axial direction of the insertion guide member 34 and the chamber 50, without overlapping the chamber 50 in which the consumable product 120 heated by the heating unit 40 is mainly stored. Therefore, according to this modification, the multiple infrared sensors 94A and 94B are sufficiently separated from the consumable product 120 heated by the heating unit 40, and the influence of heat on the multiple infrared sensors 94A and 94B can be suppressed.
  • the multiple infrared sensors 94A and 94B are arranged so as to overlap the insertion guide member 34 in the axial direction of the insertion guide member 34, the axial length of the insertion guide member 34 of the flavor inhaler 100 can be suppressed, and the multiple infrared sensors 94A and 94B can be shielded to protect them from external influences.
  • the infrared sensors 94A and 94B are arranged so as to be exposed, smoke generated from the heated consumable product 120 may affect the infrared sensors 94A and 94B.
  • the insertion guide member 34 is provided with transparent areas 34A and 34B that are configured to allow infrared light irradiated from the light-emitting parts 94A2 and 94B2 of the infrared sensors 94A and 94B to pass through, so that the detection functions of the infrared sensors 94A and 94B can be performed appropriately.
  • the infrared rays emitted from the light-emitting portions 94A2, 94B2 of the multiple infrared sensors 94A and 94B are incident approximately perpendicularly to the tangent to the outer periphery of the insertion guide member 34. Therefore, the infrared rays emitted from each of the multiple infrared sensors 94A and 94B are directed toward approximately the center of the insertion guide member 34 when viewed from the axial direction of the insertion guide member 34, and an intersection area 140 is formed near the center of the insertion guide member 34. Therefore, according to this modified example, it is possible to prevent erroneous determinations caused by objects located near the center of the insertion guide member 34.
  • the light-emitting units 94A2, 94B2 and the light-receiving units 94A1, 94B1 are arranged along the axial direction (Z-axis direction) of the insertion guide member 34, and the transparent regions 34A and 34B of the insertion guide member 34 extend along the axial direction of the insertion guide member 34.
  • the space for arranging the infrared sensors 94A and 94B becomes larger, resulting in an increase in the size of the flavor inhaler 100.
  • the light emitting unit 94A2 (94B2) and the light receiving unit 94A1 (94B1) are arranged along a direction perpendicular to the axial direction of the insertion guide member 34, the light irradiated from the light emitting unit 94A2 (94B2) and spreading in the horizontal direction (X-Y plane) is diffused by the circular shape of the consumer goods 120, preventing the light from reaching the light receiving unit 94A1 (94B1) properly.
  • the light emitting unit 94A2 (94B2) and the light receiving unit 94A1 (94B1) are arranged along the axial direction of the insertion guide member 34, the light irradiated from the light emitting unit 94A2 (94B2) spreads in a direction approximately parallel to the longitudinal direction of the cylindrical surface (i.e., the Z-axis direction), and is reflected by the linear shape of the consumer goods 120, so that it can reach the light receiving unit 94A1 (94B1) properly.
  • the transmission areas 34A and 34B are provided in accordance with the arrangement of the infrared sensors 94A and 94B. Therefore, this modification can contribute to miniaturizing the flavor inhaler 100 and improving the detection accuracy of the infrared sensors 94A and 94B.
  • a threshold value is set for the light receiving parts 94A1, 94B1 of the multiple infrared sensors 94A and 94B, which is the minimum value of the intensity of infrared light that can be detected.
  • the intensity of the infrared light is smaller than the threshold value.
  • the infrared light is not detected. Therefore, according to this modification, by reliably excluding the object located in the crossable region 140 from the detection target, misjudgment can be prevented, and the advantage of making a judgment based on a combination of the detection results of the multiple infrared sensors 94A and 94B can be reliably demonstrated.
  • the consumable product 120 inserted into the insertion guide member 34 and chamber 50 of the flavor inhaler 100 is configured to have an approximately cylindrical shape.
  • the approximately cylindrical consumable product 120 is easy to hold for users who are accustomed to conventional tobacco sticks.
  • the approximately circular shape when viewed vertically from above is symmetrical, making it suitable for detection by multiple infrared sensors 94A and 94B. Therefore, this modified example can contribute to improving operability for users and improving detection accuracy.
  • At least one of the multiple infrared sensors 94A and 94B excludes from the detection target infrared rays reflected in an intersection possible area 140 where the irradiation ranges of the infrared sensors 94A and 94B overlap.
  • at least one of the multiple infrared sensors 94A and 94B excludes from the detection target objects located in the intersection possible area 140 where erroneous determination may occur.

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

Provided is a flavor inhaler comprising: an insertion-receiving part into which a consumer good is inserted; and at least two sensing units that are positioned so as to be set apart from each other, each of the at least two sensing units including a light-emitting unit that emits light and a light-receiving unit that receives light. An intersection-possible region where the light emitted from each of the at least two sensing units can intersect is present within the insertion-receiving part. At least one of the at least two sensing units is configured to exclude, from sensing subjects, reflected light that is reflected in the intersection-possible region.

Description

香味吸引器及び香味吸引システムFlavor inhaler and flavor inhalation system
 本開示は、香味吸引器及び香味吸引システムに関する。 This disclosure relates to a flavor inhaler and a flavor inhalation system.
 従来、香味吸引器の分野において、喫煙可能物質を含む消費材を収容する収容部の状態を検知する光学検知部を設け、収容部の内部の部材の有無を判定することが行われている。例えば、特許文献1は、収容部に収容された消費材を加熱する加熱部に対して、光学センサを設けて、収容部内の消費材の有無を判定している。  Traditionally, in the field of flavor inhalers, an optical detection unit is provided to detect the state of a storage unit that stores consumable materials containing smokable substances, and the presence or absence of a component inside the storage unit is determined. For example, in Patent Document 1, an optical sensor is provided for a heating unit that heats the consumable materials stored in the storage unit, and the presence or absence of the consumable materials inside the storage unit is determined.
特表2021-520776号Special table No. 2021-520776
 本開示は、好適に設定された香味吸引器及び香味吸引システムを提供する。 The present disclosure provides a suitably configured flavor inhaler and flavor inhalation system.
課題を解決する手段Means for solving the problem
 本開示の第1の態様は、消費材が挿入される被挿入部と、各々が光を照射する発光部と、光を受光する受光部とを含み、互いに離隔するように配置された、少なくとも2つの検知部とを備え、前記被挿入部内には、前記少なくとも2つの検知部の各々から照射された光が交わることが可能な交差可能領域が存在し、前記少なくとも2つの検知部の少なくとも1つは、前記交差可能領域において反射された反射光を検知対象から除外するように構成されている、香味吸引器である。 A first aspect of the present disclosure is a flavor inhaler comprising an insertion portion into which a consumer product is inserted, and at least two detection portions each including a light emitting portion that irradiates light and a light receiving portion that receives light, the detection portions being arranged to be spaced apart from each other, wherein an intersecting region exists within the insertion portion where the light irradiated from each of the at least two detection portions can intersect, and at least one of the at least two detection portions is configured to exclude the light reflected in the intersecting region from being detected.
 上記第1の態様では、複数の光学検知部の少なくとも1つが、複数の光学検知部の各々の照射範囲が重なる交差可能領域において反射された反射光を、検知対象から除外する。すなわち、複数の光学検知部の少なくとも1つは、誤判定が生じる可能性がある交差可能領域に位置する対象を、検知対象から除外する。よって第1の態様によれば、交差可能領域に位置する対象を検知対象から除外することにより、誤判定を防止し、複数の検知部のそれぞれの検知結果の組み合わせに基づいて判定を行うことの利点を発揮することができる。 In the first aspect, at least one of the multiple optical detection units excludes from the detection target the reflected light reflected in the intersection area where the irradiation ranges of the multiple optical detection units overlap. In other words, at least one of the multiple optical detection units excludes from the detection target the objects located in the intersection area where a false positive determination may occur. Thus, according to the first aspect, by excluding objects located in the intersection area from the detection target, false positive determinations can be prevented and the advantage of making a determination based on a combination of the respective detection results of the multiple detection units can be realized.
 本開示の第2の態様は、上記第1の態様において、前記受光部は、検知し得る光の強度の最小値である閾値を有しており、少なくとも1つの前記受光部において、前記交差可能領域において反射された反射光が受光された場合、反射光の強度は前記閾値よりも小さい、香味吸引器である。 A second aspect of the present disclosure is a flavor inhaler according to the first aspect, in which the light receiving unit has a threshold value that is a minimum value of the intensity of light that can be detected, and when reflected light reflected in the intersecting region is received by at least one of the light receiving units, the intensity of the reflected light is smaller than the threshold value.
 上記第2の態様では、検知部の受光部には検知し得る光の強度の最小値である閾値が設定されており、複数の検知部の少なくとも1つにおいて、交差可能領域において反射された反射光を受光した場合に、この反射光の強度は閾値よりも小さい。すなわち、複数の光学検知部の少なくとも1つは、誤判定が生じる可能性がある交差可能領域に位置する対象により反射された反射光を受光した場合に、この反射光を検知しない。よって第2の態様によれば、交差可能領域に位置する対象を検知対象から確実に除外することにより、誤判定を防止し、複数の検知部のそれぞれの検知結果の組み合わせに基づいて判定を行うことの利点を確実に発揮することができる。 In the second aspect, a threshold value that is the minimum detectable light intensity is set in the light receiving section of the detection unit, and when at least one of the multiple detection units receives reflected light reflected in the intersection possible area, the intensity of this reflected light is smaller than the threshold value. In other words, when at least one of the multiple optical detection units receives reflected light reflected by an object located in the intersection possible area where a misjudgment may occur, the reflected light is not detected. Thus, according to the second aspect, by reliably excluding objects located in the intersection possible area from the detection targets, misjudgments can be prevented and the advantage of making a judgment based on a combination of the respective detection results of the multiple detection units can be reliably achieved.
 本開示の第3の態様は、上記第1または第2の態様において、前記少なくとも2つの検知部は、前記被挿入部の軸方向から見て互いに離隔するように配置される、香味吸引器である。 A third aspect of the present disclosure is a flavor inhaler according to the first or second aspect, in which the at least two detection units are arranged so as to be spaced apart from each other when viewed in the axial direction of the inserted portion.
 上記第3の態様では、香味吸引器において被挿入部の内部を検知する複数の検知部が、被挿入部の軸方向から見て互いに離隔するように配置されている。よって第3の態様によれば、複数の検知部の各々が異なる角度から検知を行うことにより、被挿入部内の状態をより正確に判定することができる。 In the third aspect, the multiple detectors that detect the inside of the inserted part in the flavor inhaler are arranged so as to be spaced apart from each other when viewed from the axial direction of the inserted part. Therefore, according to the third aspect, each of the multiple detectors detects from a different angle, making it possible to more accurately determine the condition inside the inserted part.
 本開示の第4の態様は、上記第3の態様において、前記交差可能領域は、前記被挿入部の軸方向から見て前記被挿入部の略中心に位置する、香味吸引器である。 The fourth aspect of the present disclosure is a flavor inhaler according to the third aspect, in which the intersecting region is located approximately at the center of the inserted portion when viewed in the axial direction of the inserted portion.
 上記第4の態様では、複数の光学検知部の各々の照射範囲が重なる交差可能領域が、被挿入部の軸方向から見て被挿入部の略中心に位置している。よって第4の態様によれば、被挿入部の中心近傍に位置する対象に起因する誤判定を防止することができる。 In the fourth aspect, the intersecting area where the illumination ranges of the multiple optical detection units overlap is located approximately at the center of the inserted part when viewed from the axial direction of the inserted part. Therefore, according to the fourth aspect, it is possible to prevent erroneous determinations caused by an object located near the center of the inserted part.
 本開示の第5の態様は、上記第1または第2の態様において、前記消費材を加熱する加熱部をさらに備え、前記被挿入部は、前記消費材を収容する収容部と、前記収容部に接続し、前記消費材の挿入口を構成するガイド部とを含み、前記少なくとも2つの検知部は、前記被挿入部の軸方向において前記ガイド部と重なるように配置され、前記ガイド部は、前記発光部が照射した光と、前記被挿入部内で反射された反射光とが透過可能に構成された透過領域を含む、香味吸引器である。 A fifth aspect of the present disclosure is a flavor inhaler according to the first or second aspect, further comprising a heating section for heating the consumer product, the inserted section includes a storage section for storing the consumer product and a guide section connected to the storage section and constituting an insertion port for the consumer product, the at least two detection sections are arranged to overlap with the guide section in the axial direction of the inserted section, and the guide section includes a transparent region configured to allow the transmission of light emitted by the light emitting section and reflected light reflected within the inserted section.
 本開示の第5の態様では、複数の検知部が、被挿入部の軸方向において、加熱部により加熱される消費材が主に収納される収容部には重ならず、収容部に接続するガイド部に重なるように配置される。よって第5の態様によれば、複数の検知部が加熱部により加熱される消費材から十分に離隔され、複数の検知部への熱の影響を抑制することができる。また、複数の検知部を被挿入部の軸方向において被挿入部と重なるように配置することにより、香味吸引器の被挿入部の軸方向の長さを抑制することができるとともに、検知部を遮蔽して外部の影響から防御することができる。一例として、検知部が露出するように配置された場合、加熱された消費材から生じた煙が検知部に影響を及ぼす可能性がある。さらに、ガイド部に検知光が透過可能に構成された透過領域が設けられていることにより、検知部の検知機能を適切に実行し得る。 In the fifth aspect of the present disclosure, the multiple detection units are arranged in the axial direction of the inserted part so as not to overlap with the storage part in which the consumable material heated by the heating part is mainly stored, but to overlap with the guide part connected to the storage part. Thus, according to the fifth aspect, the multiple detection units are sufficiently separated from the consumable material heated by the heating part, and the influence of heat on the multiple detection units can be suppressed. Furthermore, by arranging the multiple detection units so as to overlap with the inserted part in the axial direction of the inserted part, the axial length of the inserted part of the flavor inhaler can be suppressed, and the detection units can be shielded to protect them from external influences. As an example, if the detection units are arranged so as to be exposed, there is a possibility that smoke generated from the heated consumable material may affect the detection units. Furthermore, since the guide part is provided with a transparent area configured to allow the detection light to pass through, the detection function of the detection units can be properly performed.
 本開示の第6の態様は、上記第5の態様において、前記発光部から照射された光は、前記ガイド部の外周部の接線に対して略垂直に入射する、香味吸引器である。 The sixth aspect of the present disclosure is a flavor inhaler according to the fifth aspect, in which the light emitted from the light-emitting unit is incident approximately perpendicularly to the tangent of the outer periphery of the guide unit.
 上記第6の態様では、複数の検知部の発光部から照射された光が、ガイド部の外周部の接線に対して略垂直に入射する。したがって、複数の検知部の各々から照射される検知光は、被挿入部の軸方向から見て、被挿入部の略中心に向かい、被挿入部の中心近傍に交差可能領域が形成される。よって第6の態様によれば、被挿入部の中心近傍に位置する対象に起因する誤判定を防止することができる。 In the sixth aspect, the light emitted from the light-emitting elements of the multiple detection units is incident approximately perpendicularly to the tangent of the outer periphery of the guide unit. Therefore, the detection light emitted from each of the multiple detection units is directed toward approximately the center of the inserted part when viewed from the axial direction of the inserted part, and an intersection area is formed near the center of the inserted part. Therefore, according to the sixth aspect, it is possible to prevent erroneous determinations caused by objects located near the center of the inserted part.
 本開示の第7の態様は、上記第5の態様において、前記発光部と、対応する前記受光部とは、前記被挿入部の軸方向に沿うように配置され、前記ガイド部の前記透過領域は、前記被挿入部の軸方向に沿った長手方向を有している、香味吸引器である。 The seventh aspect of the present disclosure is a flavor inhaler according to the fifth aspect, in which the light-emitting unit and the corresponding light-receiving unit are arranged along the axial direction of the inserted portion, and the transmissive area of the guide portion has a longitudinal direction that is along the axial direction of the inserted portion.
 上記第7の態様では、複数の検知部の各々において、発光部と受光部とが被挿入部の軸方向に沿って配列され、ガイド部の透過領域は、被挿入部の軸方向に沿って延在している。ここで検知部の発光部と受光部とが被挿入部の軸方向に直交する方向に沿って配列する場合、検知部の配置のためのスペースが大きくなり、装置の大型化をもたらす。また発光部と受光部とが被挿入部の軸方向に直交する方向に沿って配列されていると、発光部から照射されて水平方向に広がった光が消費材の円形状により乱反射され、受光部への適切な到達の妨げとなる。一方、発光部と受光部とが被挿入部の軸方向に沿って配列されていると、発光部から照射された光は円筒面の長手方向に略平行な方向(つまり、鉛直方向)に広がるため、消費材の直線形状により反射され、受光部に適切に到達し得る。よって第7の態様によれば、装置の小型化とともに、検知の精度向上に寄与し得る。 In the seventh aspect, in each of the multiple detection units, the light emitting unit and the light receiving unit are arranged along the axial direction of the inserted part, and the transmission area of the guide unit extends along the axial direction of the inserted part. Here, if the light emitting unit and the light receiving unit of the detection unit are arranged along a direction perpendicular to the axial direction of the inserted part, the space for arranging the detection unit becomes large, resulting in an increase in the size of the device. Also, if the light emitting unit and the light receiving unit are arranged along a direction perpendicular to the axial direction of the inserted part, the light irradiated from the light emitting unit and spread in the horizontal direction is diffused by the circular shape of the consumer product, preventing it from reaching the light receiving unit properly. On the other hand, if the light emitting unit and the light receiving unit are arranged along the axial direction of the inserted part, the light irradiated from the light emitting unit spreads in a direction approximately parallel to the longitudinal direction of the cylindrical surface (i.e., vertical direction), so it is reflected by the linear shape of the consumer product and can reach the light receiving unit properly. Therefore, according to the seventh aspect, it is possible to contribute to the miniaturization of the device and the improvement of the detection accuracy.
 本開示の第8の態様は、上記第5の態様において、少なくとも1つの前記発光部は、照射した光が前記交差領域で反射され、前記透過領域を通過した後に対応する前記受光部に到達した場合に、前記受光部が検知し得る光の強度の最小値である閾値よりも小さい強度となるような光を照射するように構成されている、香味吸引器である。 The eighth aspect of the present disclosure is a flavor inhaler according to the fifth aspect, wherein at least one of the light-emitting elements is configured to irradiate light such that when the irradiated light is reflected at the intersection region, passes through the transmission region, and then reaches the corresponding light-receiving element, the intensity of the light is less than a threshold value that is the minimum light intensity that the light-receiving element can detect.
 上記第8の態様では、検知部の受光部には検知し得る光の強度の最小値である閾値が設定されており、複数の検知部の少なくとも1つにおいて、交差可能領域において反射された反射光がガイド部の透過領域を通過して受光部に到達した場合に、この反射光の強度は閾値よりも小さい。すなわち、複数の光学検知部の少なくとも1つは、誤判定が生じる可能性がある交差可能領域に位置する対象により反射された反射光を受光した場合に、この反射光を検知しない。よって第8の態様によれば、交差可能領域に位置する対象を検知対象から確実に除外することにより、誤判定を防止し、複数の検知部のそれぞれの検知結果の組み合わせに基づいて判定を行うことの利点を確実に発揮することができる。 In the eighth aspect, a threshold value that is the minimum detectable light intensity is set in the light receiving section of the detection section, and in at least one of the multiple detection sections, when reflected light reflected in the intersection possible region passes through the transparent region of the guide section and reaches the light receiving section, the intensity of the reflected light is smaller than the threshold value. In other words, when at least one of the multiple optical detection sections receives reflected light reflected by an object located in the intersection possible region where a misjudgment may occur, the reflected light is not detected. Thus, according to the eighth aspect, by reliably excluding objects located in the intersection possible region from the detection targets, misjudgments can be prevented and the advantage of making a judgment based on a combination of the respective detection results of the multiple detection sections can be reliably achieved.
 本開示の第9の態様は、上記第1または第2の態様において、前記消費材は、略円柱形状に構成されている、香味吸引器である。 The ninth aspect of the present disclosure is a flavor inhaler according to the first or second aspect above, in which the consumable product is configured in a substantially cylindrical shape.
 上記第9の態様では、香味吸引器の被挿入部に挿入される消費材が略円柱形状に構成されている。略円柱形状の消費材は、従来のたばこスティックに慣れているユーザにとって保持しやすい。また鉛直上方向から見て略円形の形状は対称性を有するため、複数の検知部による検知を行う際に好適である。よって第9の態様によれば、ユーザの操作性の向上及び検知の精度向上に寄与し得る。 In the ninth aspect, the consumable material inserted into the insertion portion of the flavor inhaler is configured to have a roughly cylindrical shape. A roughly cylindrical consumable material is easy to hold for users who are accustomed to conventional tobacco sticks. In addition, the roughly circular shape when viewed vertically from above has symmetry, making it suitable for detection by multiple detection units. Therefore, the ninth aspect can contribute to improving operability for users and improving detection accuracy.
 本開示の第10の態様は、上記第1または第2の態様において、前記少なくとも2つの検知部の各々が前記被挿入部に挿入された前記消費材を検知した場合に、前記加熱部は前記消費財の加熱を開始する、香味吸引器である。 A tenth aspect of the present disclosure is a flavor inhaler according to the first or second aspect, in which when each of the at least two detection units detects the consumer good inserted into the insertion unit, the heating unit starts heating the consumer good.
 上記第10の態様では、香味吸引器において消費材を検知するために設けられた少なくとも2つの検知部の各々が消費財を検知した後に、消費材への加熱を開始する。よって第10の態様によれば、不要な加熱動作を防止することができる。 In the tenth aspect, the flavor inhaler starts heating the consumable goods after each of at least two detectors provided for detecting the consumable goods detects the consumable goods. Therefore, according to the tenth aspect, unnecessary heating operations can be prevented.
 本開示の第11の態様は、香味吸引器であって、消費材が挿入される被挿入部と、
 各々が光を照射する発光部と、光を受光する受光部とを含み、互いに離隔するように配置された、少なくとも2つの検知部とを備え、前記被挿入部内には、前記少なくとも2つの検知部の各々から照射された光が交わることが可能な交差可能領域が存在し、前記少なくとも2つの検知部の少なくとも1つは、前記交差可能領域において反射された反射光を検知対象から除外するように構成されている、香味吸引器と、消費材とを含む、香味吸引システム、である。
An eleventh aspect of the present disclosure is a flavor inhaler, comprising: an insertion portion into which a consumable product is inserted;
The flavor inhalation system includes a flavor inhaler and a consumer product, and at least two detection units, each of which includes a light-emitting unit that emits light and a light-receiving unit that receives light, and which are arranged at a distance from each other, wherein an intersection area exists within the inserted portion where the light emitted from each of the at least two detection units can intersect, and at least one of the at least two detection units is configured to exclude reflected light reflected in the intersection area from being detected.
 上記第11の態様では、香味吸引システムにおいて複数の光学検知部の少なくとも1つが、複数の光学検知部の各々の照射範囲が重なる交差可能領域において反射された反射光を、検知対象から除外する。すなわち、複数の光学検知部の少なくとも1つは、誤判定が生じる可能性がある交差可能領域に位置する対象を、検知対象から除外する。よって第11の態様によれば、交差可能領域に位置する対象を検知対象から除外することにより、誤判定を防止し、複数の検知部のそれぞれの検知結果の組み合わせに基づいて判定を行うことの利点を発揮することができる。 In the above eleventh aspect, at least one of the multiple optical detection units in the flavor inhalation system excludes from the detection target the reflected light reflected in the intersection area where the irradiation ranges of the multiple optical detection units overlap. In other words, at least one of the multiple optical detection units excludes from the detection target the objects located in the intersection area where a misjudgment may occur. Thus, according to the eleventh aspect, by excluding objects located in the intersection area from the detection target, it is possible to prevent misjudgment and to realize the advantage of making a judgment based on a combination of the respective detection results of the multiple detection units.
本開示の実施形態に係る香味吸引器の斜視図である。FIG. 1 is a perspective view of a flavor inhaler according to an embodiment of the present disclosure. 消費材を収容した香味吸引器の斜視図である。FIG. 2 is a perspective view of a flavor inhaler housing a consumable product. 図1の矢視3-3における香味吸引器の断面図である。3 is a cross-sectional view of the flavor inhaler taken along the arrows 3-3 in FIG. 1. チャンバ及び加熱部の斜視図である。FIG. 2 is a perspective view of a chamber and a heating unit. チャンバ50単体の斜視図である。FIG. 図5Aに示す矢視5B-5Bにおけるチャンバの断面図である。5B is a cross-sectional view of the chamber taken along line 5B-5B of FIG. 5A. 図5Bに示す矢視6A-6Aにおけるチャンバの断面図である。6A is a cross-sectional view of the chamber taken along line 6A-6A of FIG. 5B. 図5Bに示す矢視6B-6Bにおけるチャンバの断面図である。6B is a cross-sectional view of the chamber taken along line 6B-6B of FIG. 5B. チャンバ50内の所望の位置に消費材が配置された状態の図6Bに示す断面図である。6B shows the cross-sectional view of the consumable product placed in the chamber 50 at a desired location. 挿入ガイド部材の周辺の斜視図である。FIG. 4 is a perspective view of the periphery of the insertion guide member. 赤外線センサの側面図である。FIG. 2 is a side view of the infrared sensor. 挿入ガイド部材の軸方向から見た図8の要部の上面図である。9 is a top view of the main part of FIG. 8 as viewed from the axial direction of the insertion guide member. 図8の矢視11-11における霧化部30の上方部の断面図である。11 is a cross-sectional view of the upper part of the atomizing unit 30 taken along the arrows 11-11 in FIG. 8. 図10に示された上面図に、熱の伝達経路を追記した模式図である。FIG. 11 is a schematic diagram in which a heat transfer path is added to the top view shown in FIG. 10 . 実施形態の変形例に係る香味吸引器において、挿入ガイド部材の軸方向から見た、消費材を挿入ガイド部材に収容した霧化部の要部の上面図である。FIG. 11 is a top view of a main part of the atomization unit in which consumable materials are accommodated in the insertion guide member in a flavor inhaler according to a modified embodiment, as viewed from the axial direction of the insertion guide member. 図13において消費材に代えて清掃具を挿入ガイド部材に収容した上面図である。FIG. 14 is a top view of the insertion guide member shown in FIG. 13 , in which a cleaning tool is accommodated in place of the consumable product. 図14において清掃具の配置を変更した上面図である。FIG. 15 is a top view showing a modified arrangement of the cleaning tools in FIG. 14 . 図15において清掃具の配置をさらに変更した第1の上面図である。FIG. 16 is a first top view showing a further modification of the arrangement of the cleaning tools in FIG. 15 . 図15において清掃具の配置をさらに変更した第2の上面図である。FIG. 16 is a second top view showing a further modification of the arrangement of the cleaning tools in FIG. 15 .
 以下、本開示の実施形態について図面を参照して説明する。以下で説明する図面において、同一の又は相当する構成要素には、同一の符号を付して重複した説明を省略する。 Below, an embodiment of the present disclosure will be described with reference to the drawings. In the drawings described below, identical or corresponding components will be given the same reference numerals and duplicate descriptions will be omitted.
 図1は、本実施形態に係る香味吸引器100の斜視図である。図2は、開口110を介して挿入された消費材120を収容した香味吸引器100の斜視図である。本明細書で説明する図面においては、説明の便宜のためにX-Y-Z直交座標系を付することがある。この座標系において、Z軸は鉛直上方を向いており、X-Y平面は香味吸引器100を水平方向に切断するように配置されており、Y軸は香味吸引器100の正面から裏面へ延出するように配置されている。Z軸は、後述するチャンバ50に収容される消費材120の挿入方向ということもできる。また、X軸方向は、消費材120の挿入方向に直交する面の中のデバイス長手方向ということもできる。Y軸方向は、消費材120の挿入方向に直交する面の中のデバイス短手方向ということもできる。 1 is a perspective view of the flavor inhaler 100 according to this embodiment. FIG. 2 is a perspective view of the flavor inhaler 100 containing the consumable product 120 inserted through the opening 110. In the drawings described in this specification, an X-Y-Z Cartesian coordinate system may be used for convenience of explanation. In this coordinate system, the Z axis faces vertically upward, the X-Y plane is arranged to cut the flavor inhaler 100 horizontally, and the Y axis is arranged to extend from the front to the back of the flavor inhaler 100. The Z axis can also be referred to as the insertion direction of the consumable product 120 contained in the chamber 50 described later. The X-axis direction can also be referred to as the device longitudinal direction in a plane perpendicular to the insertion direction of the consumable product 120. The Y-axis direction can also be referred to as the device lateral direction in a plane perpendicular to the insertion direction of the consumable product 120.
 香味吸引器100は、例えば、エアロゾル源を含んだ香味源を有するスティック型の消費材120を加熱することで、香味を含むエアロゾルを生成するように構成される。消費材120は、一例として、Z軸負方向の先端にたばこ等の香味源とエアロゾル源とを含む喫煙可能物を備え、他の箇所にフィルタを備えるように構成される。エアロゾル源として、例えば、グリセリン、プロピレングリコール、トリアセチン、1,3-ブタンジオール、及びこれらの混合物を挙げることができる。なお、本実施形態では消費材120をスティック形状として説明するが、香味吸引器100に用いられる消費材はこれに限られるものではない。例えば、液体状のエアロゾル源を収容したカートリッジを含むように消費材を構成することも可能である。さらにこのカートリッジは、加熱部を有していてもよい。 The flavor inhaler 100 is configured to generate an aerosol containing a flavor by, for example, heating a stick-shaped consumable product 120 having a flavor source containing an aerosol source. As an example, the consumable product 120 is configured to have a smokable article containing a flavor source such as tobacco and an aerosol source at the tip in the negative direction of the Z axis, and a filter at another location. Examples of the aerosol source include glycerin, propylene glycol, triacetin, 1,3-butanediol, and mixtures thereof. Note that, in this embodiment, the consumable product 120 is described as having a stick shape, but the consumable product used in the flavor inhaler 100 is not limited to this. For example, the consumable product can be configured to include a cartridge containing a liquid aerosol source. Furthermore, this cartridge may have a heating section.
 図1に示されるように、香味吸引器100は、上部ハウジング104と下部ハウジング106とから構成されるハウジング102と、スライドカバー108とを有する。 As shown in FIG. 1, the flavor inhaler 100 has a housing 102 composed of an upper housing 104 and a lower housing 106, and a sliding cover 108.
 ハウジング102は、香味吸引器100の最外のハウジングを構成し、ユーザの手に収まるようなサイズを有する。ユーザが香味吸引器100を使用する際は、香味吸引器100を手で保持して、エアロゾルを吸引することができる。なおハウジング102について、ここでは、上部ハウジング104を、例えばポリカーボネート等の樹脂で形成し、下部ハウジング106を、例えばアルミニウム等の金属で形成する。ただし、ハウジング102の材質は、これらに限定されず、例えば、樹脂製であり、特に、ポリカーボネート(PC)、ABS(Acrylonitrile-Butadiene-Styrene)樹脂、PEEK(ポリエーテルエーテルケトン)または複数種類のポリマーを含有するポリマーアロイ等、任意好適に選択することができるものとする。 The housing 102 constitutes the outermost housing of the flavor inhaler 100 and has a size that fits in the user's hand. When using the flavor inhaler 100, the user can hold the flavor inhaler 100 in their hand and inhale the aerosol. In this embodiment, the upper housing 104 is made of a resin such as polycarbonate, and the lower housing 106 is made of a metal such as aluminum. However, the material of the housing 102 is not limited to these and may be made of any suitable resin, such as polycarbonate (PC), ABS (Acrylonitrile-Butadiene-Styrene) resin, PEEK (Polyether Ether Ketone), or a polymer alloy containing multiple types of polymers.
 上部ハウジング104は、消費材120を受け入れるための開口110を有し、スライドカバー108は、この開口110を閉じるように上部ハウジング104にスライド可能に取り付けられる。具体的には、スライドカバー108は、上部ハウジング104の開口110を閉鎖する閉位置と、上記開口を開放する開位置(図1及び図2に示す位置)との間を、上部ハウジング104の外表面に沿って移動可能に構成される。例えば、ユーザがスライドカバー108を手動で操作することにより、スライドカバー108を閉位置と開位置とに移動させることができる。これにより、スライドカバー108は、香味吸引器100の内部への消費材120のアクセスを許可または制限することができる。 The upper housing 104 has an opening 110 for receiving the consumable product 120, and the slide cover 108 is slidably attached to the upper housing 104 so as to close the opening 110. Specifically, the slide cover 108 is configured to be movable along the outer surface of the upper housing 104 between a closed position in which the opening 110 of the upper housing 104 is closed, and an open position (position shown in Figures 1 and 2) in which the opening is opened. For example, a user can manually operate the slide cover 108 to move the slide cover 108 between the closed position and the open position. In this way, the slide cover 108 can allow or restrict access of the consumable product 120 to the inside of the flavor inhaler 100.
 図1及び図2は、香味吸引器100のハウジング102において上部ハウジング104と下部ハウジング106との接合面がX-Y平面に対して斜めに交わるように図示しているが、ハウジング102の構成はこれに限られるものではない。例えば、3つ以上の部材からハウジング102を構成することも可能である。 FIGS. 1 and 2 show the joint surface between the upper housing 104 and the lower housing 106 of the housing 102 of the flavor inhaler 100 as intersecting obliquely with the XY plane, but the configuration of the housing 102 is not limited to this. For example, the housing 102 can also be constructed from three or more members.
 香味吸引器100はさらに、図示しない端子を有してもよい。端子は、香味吸引器100を例えば外部電源と接続するインターフェースであり得る。香味吸引器100が備える電源が充電式バッテリである場合は、端子に外部電源を接続することで、外部電源から電源に電流を流し、電源を充電することができる。また、端子にデータ送信ケーブルを接続することにより、香味吸引器100の作動に関連するデータを外部装置に送信できるようにしてもよい。 The flavor inhaler 100 may further have a terminal (not shown). The terminal may be an interface that connects the flavor inhaler 100 to, for example, an external power source. If the power source provided in the flavor inhaler 100 is a rechargeable battery, connecting the external power source to the terminal allows current to flow from the external power source to the power source, thereby charging the power source. In addition, connecting a data transmission cable to the terminal may allow data related to the operation of the flavor inhaler 100 to be transmitted to an external device.
 次に、香味吸引器100の内部構造について説明する。図3は、図1に示した矢視3-3における香味吸引器100の断面図である。 Next, the internal structure of the flavor inhaler 100 will be described. Figure 3 is a cross-sectional view of the flavor inhaler 100 taken along the arrow 3-3 shown in Figure 1.
 図3に示すように、香味吸引器100のハウジング102の内部空間には、電源部20と、霧化部30と、制御部80とが設けられる。 As shown in FIG. 3, the internal space of the housing 102 of the flavor inhaler 100 contains a power supply unit 20, an atomization unit 30, and a control unit 80.
 制御部80は、基板82を含む。基板82は、例えばマイクロプロセッサ等を含み、電源部20から霧化部30への電力の供給を制御することができる。これにより、制御部80は、霧化部30による消費材120の加熱を制御することができる。また、制御部80は、ブルートゥース(登録商標)インターフェース28を含む。制御部80は、ブルートゥースインターフェース28を介して外部機器と通信を行うことができる。 The control unit 80 includes a substrate 82. The substrate 82 includes, for example, a microprocessor, and can control the supply of power from the power supply unit 20 to the atomization unit 30. This allows the control unit 80 to control the heating of the consumable product 120 by the atomization unit 30. The control unit 80 also includes a Bluetooth (registered trademark) interface 28. The control unit 80 can communicate with external devices via the Bluetooth interface 28.
 電源部20は、制御部80の基板82と電気的に接続される電源21を有する。電源21は、例えば、充電式バッテリ又は非充電式のバッテリであり得る。電源21は、基板82を介して、霧化部30と電気的に接続される。これにより、電源21は、消費材120を適切に加熱するように、霧化部30に電力を供給することができる。 The power supply unit 20 has a power supply 21 electrically connected to the board 82 of the control unit 80. The power supply 21 can be, for example, a rechargeable battery or a non-rechargeable battery. The power supply 21 is electrically connected to the atomization unit 30 via the board 82. This allows the power supply 21 to supply power to the atomization unit 30 so as to appropriately heat the consumable product 120.
 霧化部30は、消費材120の長手方向に延びるチャンバ50と、チャンバ50の一部を囲う加熱部40(図3では図示を省略する)と、断熱部32と、略筒状の挿入ガイド部材34と、を有する。チャンバ50は、消費材120を収容するように構成される。加熱部40は、チャンバ50の外周面に接触し、チャンバ50に収容された消費材120を加熱するように構成される。なお、一例として、消費材120の内部または近接するようにサセプタを設け、加熱部40がサセプタを誘導加熱するための誘導コイルを含むように構成することも可能である。 The atomization unit 30 has a chamber 50 extending in the longitudinal direction of the consumable product 120, a heating unit 40 (not shown in FIG. 3) surrounding a portion of the chamber 50, a heat insulating unit 32, and a generally cylindrical insertion guide member 34. The chamber 50 is configured to accommodate the consumable product 120. The heating unit 40 is configured to contact the outer peripheral surface of the chamber 50 and heat the consumable product 120 accommodated in the chamber 50. As an example, it is also possible to provide a susceptor inside or adjacent to the consumable product 120, and to configure the heating unit 40 to include an induction coil for inductively heating the susceptor.
 断熱部32は、チャンバ50及び加熱部40を囲うように配置される。断熱部32は、例えばエアロゲルであり得る。挿入ガイド部材34は、例えば、PEEK、PC、又はABS等などの樹脂材料により形成され、閉位置にあるスライドカバー108とチャンバ50との間に設けられる。挿入ガイド部材34は、スライドカバー108が開位置にあるときに、香味吸引器100の外部と連通し、消費材120を挿入ガイド部材34に挿入することで、チャンバ50への消費材120の挿入を案内する。 The insulating section 32 is disposed so as to surround the chamber 50 and the heating section 40. The insulating section 32 may be, for example, an aerogel. The insertion guide member 34 is formed of a resin material such as PEEK, PC, or ABS, and is provided between the slide cover 108 in the closed position and the chamber 50. When the slide cover 108 is in the open position, the insertion guide member 34 communicates with the outside of the flavor inhaler 100, and guides the insertion of the consumable product 120 into the chamber 50 by inserting the consumable product 120 into the insertion guide member 34.
 さらに、霧化部30と制御部80は、熱拡散スリーブ70に覆われてハウジング102の内部空間に配置される。熱拡散スリーブ70は、金属等のような熱伝導率が高い素材から構成され、霧化部30で生じた熱をハウジング102の内部で拡散させる。熱拡散スリーブ70は、下部ハウジング106とは干渉せず、上部ハウジング104のみの内部に配置されるように構成することができる。また、制御部80のブルートゥースインターフェース28による外部機器との通信に干渉しないように、熱拡散スリーブ70に開放領域を設けることができる。一般に金属部材は電磁波と干渉するが、少なくとも熱拡散スリーブ70の開放領域を経路として、制御部80はブルートゥースインターフェース28による外部機器との通信を実行できる。 Furthermore, the atomizing unit 30 and the control unit 80 are covered by a heat diffusion sleeve 70 and placed in the internal space of the housing 102. The heat diffusion sleeve 70 is made of a material with high thermal conductivity such as metal, and diffuses the heat generated in the atomizing unit 30 inside the housing 102. The heat diffusion sleeve 70 can be configured to be placed only inside the upper housing 104 without interfering with the lower housing 106. Also, an open area can be provided in the heat diffusion sleeve 70 so as not to interfere with communication with external devices via the Bluetooth interface 28 of the control unit 80. Generally, metal members interfere with electromagnetic waves, but at least the open area of the heat diffusion sleeve 70 can be used as a path for the control unit 80 to communicate with external devices via the Bluetooth interface 28.
(霧化部の構成の詳細)
 以下、本実施形態の霧化部30の構成の詳細を説明する。図4は、チャンバ50及び加熱部40の斜視図である。図5Aは、チャンバ50単体の斜視図である。図5Bは、図5Aに示す矢視5B-5Bにおけるチャンバ50の断面図である。図6Aは、図5Bに示す矢視6A-6Aにおけるチャンバ50の断面図である。図6Bは、図5Bに示す矢視6B-6Bにおけるチャンバ50の断面図である。図7は、チャンバ50内の所望の位置に消費材120が配置された状態の図6Bに示す断面図である。
(Details of the configuration of the atomization section)
The configuration of the atomization unit 30 of this embodiment will be described in detail below. Fig. 4 is a perspective view of the chamber 50 and the heating unit 40. Fig. 5A is a perspective view of the chamber 50 alone. Fig. 5B is a cross-sectional view of the chamber 50 taken along line 5B-5B in Fig. 5A. Fig. 6A is a cross-sectional view of the chamber 50 taken along line 6A-6A in Fig. 5B. Fig. 6B is a cross-sectional view of the chamber 50 taken along line 6B-6B in Fig. 5B. Fig. 7 is a cross-sectional view of Fig. 6B in which the consumable product 120 has been placed at a desired position in the chamber 50.
 上述したように、霧化部30は、加熱部40と、チャンバ50と、挿入ガイド部材34とを有している。さらに図4に示すように、加熱部40とチャンバ50との間には、帯状の電極48が接続されている。なお、説明の便宜上、図4では断熱部32の図示を省略している。 As described above, the atomization unit 30 has a heating unit 40, a chamber 50, and an insertion guide member 34. Furthermore, as shown in FIG. 4, a strip-shaped electrode 48 is connected between the heating unit 40 and the chamber 50. For ease of explanation, the heat insulating unit 32 is not shown in FIG. 4.
 図5A及び図5Bに示すように、チャンバ50は、消費材120が挿入される開口52と、消費材120を収容する筒状の側壁部60と、を含む筒状部材であり得る。チャンバ50は、耐熱性を有し、且つ熱膨張率が小さい材料で形成されることが好ましく、例えば、ステンレス鋼等の金属、PEEK等の樹脂、ガラス、又はセラミック等で形成され得る。これにより、チャンバ50から消費材120へ効果的な加熱が可能になる。 As shown in Figures 5A and 5B, the chamber 50 may be a cylindrical member including an opening 52 into which the consumable product 120 is inserted and a cylindrical side wall portion 60 that houses the consumable product 120. The chamber 50 is preferably formed from a material that is heat resistant and has a low coefficient of thermal expansion, and may be formed from, for example, a metal such as stainless steel, a resin such as PEEK, glass, or ceramic. This allows for effective heating from the chamber 50 to the consumable product 120.
 図5B及び図6Bに示すように、側壁部60は、接触部62と、離隔部66と、を含む。消費材120がチャンバ50内の所望の位置に配置されたとき、接触部62は、消費材120の一部と接触又は押圧し、離隔部66は、消費材120から離隔する。なお、本開示において、「チャンバ50内の所望の位置」とは、消費材120が適切に加熱される位置、又はユーザが喫煙するときの消費材120の位置をいう。接触部62は、内面62aと、外面62bとを有する。離隔部66は、内面66aと、外面66bとを有する。図14に示すように、加熱部40は、接触部62の外面62bに配置される。加熱部40は、接触部62の外面62bに隙間なく配置されることが好ましい。なお、加熱部40は接着層を含んでもよい。その場合、接着層を含む加熱部40が、接触部62の外面62bに隙間なく配置されることが好ましい。 As shown in Figures 5B and 6B, the side wall portion 60 includes a contact portion 62 and a separation portion 66. When the consumable product 120 is placed at a desired position in the chamber 50, the contact portion 62 contacts or presses a part of the consumable product 120, and the separation portion 66 is separated from the consumable product 120. In this disclosure, the "desired position in the chamber 50" refers to a position where the consumable product 120 is appropriately heated, or the position of the consumable product 120 when the user smokes. The contact portion 62 has an inner surface 62a and an outer surface 62b. The separation portion 66 has an inner surface 66a and an outer surface 66b. As shown in Figure 14, the heating portion 40 is placed on the outer surface 62b of the contact portion 62. It is preferable that the heating portion 40 is placed on the outer surface 62b of the contact portion 62 without any gaps. The heating portion 40 may include an adhesive layer. In this case, it is preferable that the heating section 40 including the adhesive layer is arranged without any gaps on the outer surface 62b of the contact section 62.
 図5A及び図5Bに示すように、接触部62の外面62bは平面である。接触部62の外面62bが平面であることにより、図4に示すように接触部62の外面62bに配置される加熱部40に接続された帯状の電極48が、撓むことを抑制することができる。図5B及び図5Bに示すように、接触部62の内面62aは平面である。また、図5B及び図6Bに示すように、接触部62の厚みは均一である。 As shown in Figures 5A and 5B, the outer surface 62b of the contact portion 62 is flat. By having the outer surface 62b of the contact portion 62 be flat, it is possible to prevent the band-shaped electrode 48 connected to the heating portion 40, which is disposed on the outer surface 62b of the contact portion 62 as shown in Figure 4, from bending. As shown in Figures 5B and 6B, the inner surface 62a of the contact portion 62 is flat. Also, as shown in Figures 5B and 6B, the thickness of the contact portion 62 is uniform.
 図5A及び図5Bに示すように、チャンバ50は、開口52と側壁部60との間に筒状の非保持部54を有することが好ましい。消費材120がチャンバ50の所望の位置に位置決めされた状態において、非保持部54と消費材120との間に隙間が形成され得る。また、図5A及び図5Bに示すように、チャンバ50は、非保持部54の内面と接触部62の内面62aとを接続するテーパ面58aを備えた第1ガイド部58を有することが好ましい。 As shown in Figures 5A and 5B, the chamber 50 preferably has a cylindrical non-retaining portion 54 between the opening 52 and the side wall portion 60. When the consumable product 120 is positioned at a desired position in the chamber 50, a gap may be formed between the non-retaining portion 54 and the consumable product 120. Also, as shown in Figures 5A and 5B, the chamber 50 preferably has a first guide portion 58 with a tapered surface 58a that connects the inner surface of the non-retaining portion 54 and the inner surface 62a of the contact portion 62.
 図5A、図5B、及び図6Bに示すように、チャンバ50は、接触部62をチャンバ50の周方向に2つ有し、2つの接触部62は、互いに平行になるように対向する。2つの接触部62の内面62a間の少なくとも一部の距離は、チャンバ50に挿入される消費材120の接触部62間に配置される箇所の幅よりも小さいことが好ましい。 As shown in Figures 5A, 5B, and 6B, the chamber 50 has two contact portions 62 in the circumferential direction of the chamber 50, and the two contact portions 62 face each other so as to be parallel to each other. It is preferable that at least a part of the distance between the inner surfaces 62a of the two contact portions 62 is smaller than the width of the portion of the consumable product 120 inserted into the chamber 50 that is disposed between the contact portions 62.
 図6Bに示すように、離隔部66の内面66aは、チャンバ50の長手方向(Z軸方向)に直交する面において、全体的に円弧状の断面を有し得る。また、離隔部66は、接触部62と周方向において隣接するように配置される。 As shown in FIG. 6B, the inner surface 66a of the separation portion 66 may have an overall arc-shaped cross section in a plane perpendicular to the longitudinal direction (Z-axis direction) of the chamber 50. In addition, the separation portion 66 is disposed so as to be adjacent to the contact portion 62 in the circumferential direction.
 図6Bに示すように、チャンバ50は図示しない底部材が貫通してチャンバ50内部に配置されるように、その底部56に穴56aを有し得る。底部56に設けられる底部材は、消費材120の端面の少なくとも一部を露出するように、チャンバ50に挿入された消費材120の一部を支持する。また、底部56は、露出した消費材120の端面が後述する空隙67(図7参照)と連通するように、消費材120の一部を支持し得る。 As shown in FIG. 6B, the chamber 50 may have a hole 56a in its bottom 56 so that a bottom member (not shown) can pass through and be positioned inside the chamber 50. The bottom member provided on the bottom 56 supports a portion of the consumable product 120 inserted into the chamber 50 so that at least a portion of the end surface of the consumable product 120 is exposed. The bottom 56 may also support a portion of the consumable product 120 so that the exposed end surface of the consumable product 120 communicates with a gap 67 (see FIG. 7) described below.
 図4に戻ると、加熱部40は、加熱要素42を有する。加熱要素42は、例えばヒーティングトラックであってもよい。加熱要素42は、チャンバ50の離隔部66に接触せず、接触部62を加熱するように配置されることが好ましい。言い換えれば、加熱要素42は、接触部62の外面にのみ配置されることが好ましい。加熱要素42は、チャンバ50の離隔部66を加熱する部分と、接触部62を加熱する部分とで、加熱能力に差を有していてもよい。具体的には、加熱要素42は、離隔部66よりも接触部62を高い温度に加熱するように構成されていてもよい。例えば、接触部62と離隔部66とにおける加熱要素42のヒーティングトラックの配置密度が調整され得る。また、加熱要素42は、チャンバ50の全周において略同一の加熱能力を有して、チャンバ50の外周に巻回されてもよい。図4に示すように、加熱部40は、加熱要素42に加えて、加熱要素42の少なくとも一面を覆う電気絶縁部材44を有することが好ましい。本実施形態の霧化部30においては、電気絶縁部材44は加熱要素42の両面を覆う様に配置される。 Returning to FIG. 4, the heating unit 40 has a heating element 42. The heating element 42 may be, for example, a heating track. The heating element 42 is preferably arranged so as to heat the contact portion 62 without contacting the separation portion 66 of the chamber 50. In other words, the heating element 42 is preferably arranged only on the outer surface of the contact portion 62. The heating element 42 may have a difference in heating capacity between the portion that heats the separation portion 66 of the chamber 50 and the portion that heats the contact portion 62. Specifically, the heating element 42 may be configured to heat the contact portion 62 to a higher temperature than the separation portion 66. For example, the arrangement density of the heating track of the heating element 42 in the contact portion 62 and the separation portion 66 may be adjusted. In addition, the heating element 42 may have approximately the same heating capacity around the entire circumference of the chamber 50 and be wound around the outer periphery of the chamber 50. As shown in FIG. 4, the heating unit 40 preferably has, in addition to the heating element 42, an electrically insulating member 44 that covers at least one surface of the heating element 42. In the atomizing unit 30 of this embodiment, the electrical insulating member 44 is arranged to cover both sides of the heating element 42.
 図7は、チャンバ50内の所望の位置に消費材120が配置された状態の図6Bに示す断面図である。図7に示すように、消費材120がチャンバ50内の所望の位置に配置されると、消費材120はチャンバ50の接触部62と接触して押圧され得る。他方、消費材120と離隔部66との間には、空隙67が形成される。空隙67は、チャンバ50の開口52と、チャンバ50内に位置づけられた消費材120の端面と連通し得る。これにより、チャンバ50の開口52から流入した空気は、空隙67を通過して、消費材120の内部に流入することができる。言い換えれば、消費材120と離隔部66との間に空気流路(空隙67)が形成される。 7 is a cross-sectional view of FIG. 6B in a state where the consumable product 120 is placed at a desired position in the chamber 50. As shown in FIG. 7, when the consumable product 120 is placed at a desired position in the chamber 50, the consumable product 120 can be pressed against the contact portion 62 of the chamber 50 by contacting it. Meanwhile, a gap 67 is formed between the consumable product 120 and the separation portion 66. The gap 67 can be connected to the opening 52 of the chamber 50 and the end face of the consumable product 120 positioned in the chamber 50. This allows air flowing in from the opening 52 of the chamber 50 to pass through the gap 67 and flow into the inside of the consumable product 120. In other words, an air flow path (gap 67) is formed between the consumable product 120 and the separation portion 66.
 以上においては、香味吸引器100は、スティック型の消費材120を収容したチャンバ50を加熱部40により外部から接触加熱することにより、香味を含むエアロゾルを生成するものとして説明した。しかしながら、本開示の香味吸引器における消費材の加熱の態様は、外部接触加熱型にのみ限られるものではない。例えば、消費材120を収容したチャンバ50をサセプタとして、チャンバ50の周囲に巻き付けられた誘導コイルによりチャンバ50を誘導加熱することにより、香味を含むエアロゾルを生成してもよい。この場合、チャンバ50の材質及び形状は適宜変更される。また、チャンバ50の底部から突出するピン型加熱部を設けて、消費材120の内部にされたピン型加熱部を抵抗加熱または誘導加熱することにより、香味を含むエアロゾルを生成してもよい。さらに、消費材の形状はスティック状に限られるものではなく、チャンバに収容された非スティック形状の消費材上にサセプタを載置し、このサセプタを誘導加熱することにより、香味を含むエアロゾルを生成してもよい。 In the above, the flavor inhaler 100 has been described as generating an aerosol containing flavor by contact heating the chamber 50 containing the stick-shaped consumer product 120 from the outside by the heating unit 40. However, the manner of heating the consumer product in the flavor inhaler disclosed herein is not limited to the external contact heating type. For example, the chamber 50 containing the consumer product 120 may be used as a susceptor, and the chamber 50 may be inductively heated by an induction coil wound around the chamber 50 to generate an aerosol containing flavor. In this case, the material and shape of the chamber 50 may be changed as appropriate. Also, a pin-shaped heating unit protruding from the bottom of the chamber 50 may be provided, and the pin-shaped heating unit inside the consumer product 120 may be resistively or inductively heated to generate an aerosol containing flavor. Furthermore, the shape of the consumer product is not limited to a stick shape, and a susceptor may be placed on a non-stick-shaped consumer product contained in the chamber, and the susceptor may be inductively heated to generate an aerosol containing flavor.
(霧化部の上方部の構成の詳細)
 以下、霧化部30の上方部、具体的には挿入ガイド部材34の周辺の構造の詳細について説明する。図8は、挿入ガイド部材34の周辺の斜視図である。図9は、赤外線センサ94Aの側面図である。図10は、挿入ガイド部材の軸方向から見た図8の要部の上面図である。図11は、図8の矢視11-11における霧化部30の上方部の断面図である。
(Details of the configuration of the upper part of the atomization section)
The following describes in detail the structure of the upper part of the atomization unit 30, specifically the periphery of the insertion guide member 34. Fig. 8 is a perspective view of the periphery of the insertion guide member 34. Fig. 9 is a side view of the infrared sensor 94A. Fig. 10 is a top view of the main part of Fig. 8 as seen from the axial direction of the insertion guide member. Fig. 11 is a cross-sectional view of the upper part of the atomization unit 30 as seen along arrows 11-11 in Fig. 8.
 香味吸引器において、加熱部からの熱の影響を回避するために、検知部を加熱部から離隔させることが好ましい。一方で、検知部と検知対象との距離を大きくし過ぎると、検知媒体が進行につれて減衰して信号強度が減少するので、適切な検知を実行することが難しくなるとともに、装置の大型化をもたらす。 In a flavor inhaler, it is preferable to separate the detection unit from the heating unit to avoid the effects of heat from the heating unit. On the other hand, if the distance between the detection unit and the detection target is too large, the detection medium will attenuate as it travels and the signal strength will decrease, making it difficult to perform proper detection and resulting in an increase in the size of the device.
 図8は、挿入ガイド部材34の上端部、及びその周辺に配置された部材を示している。上述したように、本実施形態においてZ軸方向はチャンバ50に収容される消費材120の挿入方向である。よって図8に示すように、挿入ガイド部材34の軸方向は、Z軸に略平行である。図3、4及び9に示すように、チャンバ50のZ軸正方向の端部は挿入ガイド部材34のZ軸負方向の端部に接続し、消費材120は挿入ガイド部材34とチャンバ50との組に挿入される。この構成により、挿入ガイド部材34の軸方向とチャンバ50の軸方向とはいずれもZ軸に略平行であって、共通の方向を指す。挿入ガイド部材34とチャンバ50との組は、本開示の被挿入部の一例である。またチャンバ50は本開示の収容部の一例であり、挿入ガイド部材34は本開示のガイド部の一例である。 FIG. 8 shows the upper end of the insertion guide member 34 and the members arranged around it. As described above, in this embodiment, the Z-axis direction is the insertion direction of the consumer product 120 contained in the chamber 50. Therefore, as shown in FIG. 8, the axial direction of the insertion guide member 34 is approximately parallel to the Z-axis. As shown in FIGS. 3, 4, and 9, the end of the chamber 50 in the positive Z-axis direction is connected to the end of the insertion guide member 34 in the negative Z-axis direction, and the consumer product 120 is inserted into the pair of the insertion guide member 34 and the chamber 50. With this configuration, the axial direction of the insertion guide member 34 and the axial direction of the chamber 50 are both approximately parallel to the Z-axis and point in a common direction. The pair of the insertion guide member 34 and the chamber 50 is an example of an inserted portion of the present disclosure. The chamber 50 is also an example of a storage portion of the present disclosure, and the insertion guide member 34 is an example of a guide portion of the present disclosure.
 また、挿入ガイド部材34とチャンバ50とは一体成型されて構成されてもよい。 Alternatively, the insertion guide member 34 and the chamber 50 may be integrally molded.
 図8に示すように、挿入ガイド部材34に対してX軸正方向側(つまり、制御部80が配置される方向)には、保持壁部90が配置されている。保持壁部90は、ハウジング102の内部において、挿入ガイド部材34を適切な位置及び方向に保持するように機能する。図8に示すように、挿入ガイド部材34が嵌め込まれたガスケット38は、保持壁部90の2つのリブ90B及び90Cによって保持される。また、挿入ガイド部材34の上端部の外周面において、2つのリブを備えた凹型突起部36がX軸正方向に向かって突出しているが、保持壁部90から突出するリブ90Aが挿入ガイド部材34の凹型突起部36に結合されることにより、挿入ガイド部材34がZ軸方向の周りに(つまり、XY平面上において)回転することが防止される。図示は省略するが、保持壁部90は他のリブや突起を介して、挿入ガイド部材34を保持してもよい。さらに、図示は省略するが、保持壁部90はZ軸負方向に向かって延在し、他のリブや突起を介してチャンバ50を保持してもよい。 As shown in FIG. 8, a retaining wall 90 is disposed on the X-axis positive side (i.e., the direction in which the control unit 80 is disposed) of the insertion guide member 34. The retaining wall 90 functions to hold the insertion guide member 34 in an appropriate position and orientation inside the housing 102. As shown in FIG. 8, the gasket 38 into which the insertion guide member 34 is fitted is held by two ribs 90B and 90C of the retaining wall 90. In addition, on the outer peripheral surface of the upper end of the insertion guide member 34, a concave protrusion 36 having two ribs protrudes toward the X-axis positive direction, and the rib 90A protruding from the retaining wall 90 is coupled to the concave protrusion 36 of the insertion guide member 34, thereby preventing the insertion guide member 34 from rotating around the Z-axis direction (i.e., on the XY plane). Although not shown, the retaining wall 90 may hold the insertion guide member 34 via other ribs or protrusions. Furthermore, although not shown, the retaining wall portion 90 may extend in the negative Z-axis direction and retain the chamber 50 via other ribs or protrusions.
 図8に示すように、保持壁部90の挿入ガイド部材34に対向し、屈曲部で互いに接合されている3つの面には、固定基板92が設けられている。固定基板92は保持壁部90の3つの面に接合するように屈曲した3つの部分を有している。図8に示すように、固定基板92の両端の2つの面には、それぞれ赤外線センサ94A及び94Bが設けられている。赤外線センサ94A及び94Bは、本開示の検知部の一例である。 As shown in FIG. 8, a fixed substrate 92 is provided on three surfaces of the retaining wall portion 90 that face the insertion guide member 34 and are joined to each other at bent portions. The fixed substrate 92 has three portions that are bent so as to join to the three surfaces of the retaining wall portion 90. As shown in FIG. 8, infrared sensors 94A and 94B are provided on the two surfaces at both ends of the fixed substrate 92, respectively. The infrared sensors 94A and 94B are an example of a detection unit of the present disclosure.
 図8に示すように、固定基板92が配置された保持壁部90の3つの面は、挿入ガイド部材34の外周部の一部を囲むように構成されている。図8では、固定基板92を一体成型されて屈曲された単一の基板として示したが、固定基板92の構成はこれに限られるものではない。赤外線センサ94Aと94Bとをそれぞれ載置した、2つの独立した水平基板として固定基板92を構成することも可能である。 As shown in FIG. 8, the three faces of the retaining wall portion 90 on which the fixed substrate 92 is disposed are configured to surround a portion of the outer periphery of the insertion guide member 34. In FIG. 8, the fixed substrate 92 is shown as a single substrate that is integrally molded and bent, but the configuration of the fixed substrate 92 is not limited to this. It is also possible to configure the fixed substrate 92 as two independent horizontal substrates on which infrared sensors 94A and 94B are mounted, respectively.
 赤外線センサ94Aは、一例として、図9に示すようなZ軸方向に沿って配列された受光部94A1と、発光部94A2とを含むように構成される。受光部94A1は所定の波長範囲及び強度範囲の赤外線を受光した場合に、赤外線を検知可能に構成されている。特に、受光部94A1は、検知可能な赤外線の強度の最小値である閾値を備えている。また発光部94A2は、所定の波長及び強度の赤外線を照射可能に構成されている。赤外線センサ94Aは、発光部94A2から照射された赤外線が挿入ガイド部材34の外周部を透過して挿入ガイド部材34の内部の構成を照射する。ここで、例えば消費材120が挿入ガイド部材34及びチャンバ50に挿入されている場合、赤外線は消費材120に反射されて、挿入ガイド部材34の外側に向かう。この反射された赤外線が挿入ガイド部材34の外周部を透過して受光部94A1に到達すると、受光部94A1はこの反射された赤外線を検知する。消費材120が挿入ガイド部材34及びチャンバ50に挿入されていない場合には、挿入ガイド部材34の内部を照射する赤外線は挿入ガイド部材34の外周部の対向する箇所に到達し、そこで吸収及び反射されるが、この場合の赤外線の反射成分が挿入ガイド部材34の外周部を透過して受光部94A1に到達した場合、受光部94A1が受光する赤外線の強度は上述の閾値に満たないので、受光部94A1は赤外線を検知しない。以上の構成により、赤外線センサ94Aは、挿入ガイド部材34内に消費材120が収容されているか否かを判定することができる。 The infrared sensor 94A is configured to include a light receiving unit 94A1 and a light emitting unit 94A2 arranged along the Z-axis direction as shown in FIG. 9, for example. The light receiving unit 94A1 is configured to be able to detect infrared rays when it receives infrared rays in a predetermined wavelength range and intensity range. In particular, the light receiving unit 94A1 has a threshold value that is the minimum value of the intensity of the infrared rays that can be detected. The light emitting unit 94A2 is also configured to be able to irradiate infrared rays of a predetermined wavelength and intensity. In the infrared sensor 94A, the infrared rays irradiated from the light emitting unit 94A2 pass through the outer periphery of the insertion guide member 34 and irradiate the internal configuration of the insertion guide member 34. Here, for example, when the consumable product 120 is inserted into the insertion guide member 34 and the chamber 50, the infrared rays are reflected by the consumable product 120 and head toward the outside of the insertion guide member 34. When the reflected infrared rays pass through the outer periphery of the insertion guide member 34 and reach the light receiving unit 94A1, the light receiving unit 94A1 detects the reflected infrared rays. When the consumable product 120 is not inserted into the insertion guide member 34 and the chamber 50, the infrared rays irradiating the inside of the insertion guide member 34 reach the opposing points on the outer periphery of the insertion guide member 34, where they are absorbed and reflected. In this case, when the reflected components of the infrared rays pass through the outer periphery of the insertion guide member 34 and reach the light receiving unit 94A1, the intensity of the infrared rays received by the light receiving unit 94A1 does not meet the threshold value described above, so the light receiving unit 94A1 does not detect the infrared rays. With the above configuration, the infrared sensor 94A can determine whether the consumable product 120 is contained in the insertion guide member 34.
 赤外線センサ94Aによる検知結果は、制御部80による香味吸引器100の各部材の制御に利用することができる。例えば、制御部80は、挿入ガイド部材34内に消費材120が収容されていると判定しない限り、加熱部40によるチャンバ50に対する加熱を許可しないように構成することができる。この構成により、不要な加熱を防止する安全装置を香味吸引器100に設けることができる。 The detection results from the infrared sensor 94A can be used by the control unit 80 to control each component of the flavor inhaler 100. For example, the control unit 80 can be configured not to allow the heating unit 40 to heat the chamber 50 unless it is determined that the consumable product 120 is contained within the insertion guide member 34. With this configuration, a safety device that prevents unnecessary heating can be provided in the flavor inhaler 100.
 以上では一方の赤外線センサ94Aのみについて述べたが、他方の赤外線センサ94Bも、赤外線センサ94Aと同様に構成することができる。図10に示すように、挿入ガイド部材34のZ軸正方向側から見て互いに離隔するように配置された2つの赤外線センサ94A及び94Bにより異なる角度から検知を行うことにより、挿入ガイド部材34内に消費材120が収容されているか否かをより確実に判定することができる。例えば、制御部80を、2つの赤外線センサ94A及び94Bの双方により消費材120の存在を検知した場合にのみ、消費材120が挿入ガイド部材34及びチャンバ50に挿入されていると判定するように構成することができる。以上の構成により、消費材120が挿入されていないにも関わらず、消費材120が挿入されているとの誤判定が行われることを防止できる。 Although only one of the infrared sensors 94A has been described above, the other infrared sensor 94B can be configured in the same manner as the infrared sensor 94A. As shown in FIG. 10, the two infrared sensors 94A and 94B are arranged to be spaced apart from each other when viewed from the positive Z-axis direction of the insertion guide member 34, and perform detection from different angles, thereby making it possible to more reliably determine whether or not the consumable product 120 is contained within the insertion guide member 34. For example, the control unit 80 can be configured to determine that the consumable product 120 is inserted into the insertion guide member 34 and the chamber 50 only when the presence of the consumable product 120 is detected by both the two infrared sensors 94A and 94B. With the above configuration, it is possible to prevent a false determination that the consumable product 120 is inserted when the consumable product 120 is not inserted.
 上述のように、赤外線センサ94A(及び94B)による検知を実行するに際し、挿入ガイド部材34の外周部に赤外線の経路を確保する必要がある。本実施形態では、図8及び10に示すように、挿入ガイド部材34の外周部において赤外線センサ94Aと94Bとにそれぞれ対向する箇所に、透過領域34A及び34Bが設けられている。透過領域34A及び34Bは受光部94A1(及び94B1)が照射する赤外線、及び挿入ガイド部材34の内部で反射された赤外線を略100%透過させる必要はなく、上述の赤外線センサ94A(及び94B)による検知を実行するために適切な透過率を備えるように構成されていればよい。なお、本実施形態では挿入ガイド部材34の外周部の一部を透過領域34A及び34Bとするように構成するものとして説明するが、挿入ガイド部材34の外周部の全体を透過領域として構成してもよい。 As described above, when performing detection by the infrared sensor 94A (and 94B), it is necessary to secure an infrared path on the outer periphery of the insertion guide member 34. In this embodiment, as shown in Figs. 8 and 10, the transparent regions 34A and 34B are provided at the locations facing the infrared sensors 94A and 94B on the outer periphery of the insertion guide member 34. The transparent regions 34A and 34B do not need to transmit substantially 100% of the infrared light emitted by the light receiving unit 94A1 (and 94B1) and the infrared light reflected inside the insertion guide member 34, but only need to be configured to have an appropriate transmittance for performing detection by the above-mentioned infrared sensor 94A (and 94B). Note that, in this embodiment, a portion of the outer periphery of the insertion guide member 34 is configured as the transparent regions 34A and 34B, but the entire outer periphery of the insertion guide member 34 may be configured as a transparent region.
 ここで、図9に示され、上述したように、赤外線センサ94A及び94Bの受光部94A1、94B1と、発光部94A2、94B2とは、それぞれZ軸に沿うように配置されている。この構成に対応して、挿入ガイド部材34の透過領域34A、34Bは、Z軸方向に沿う長手方向を有するように延在するように形成してもよい。 9 and described above, the light receiving portions 94A1, 94B1 and the light emitting portions 94A2, 94B2 of the infrared sensors 94A and 94B are arranged along the Z axis. Corresponding to this configuration, the transparent regions 34A, 34B of the insertion guide member 34 may be formed to extend so as to have a longitudinal direction along the Z axis.
 特に、挿入ガイド部材34の透過領域34A及び34BのZ軸方向に沿う長手方向長さは、2.7~8.4mmであってもよい。 In particular, the longitudinal length of the transparent regions 34A and 34B of the insertion guide member 34 along the Z-axis direction may be 2.7 to 8.4 mm.
 図10に示すように、挿入ガイド部材34の透過領域34A及び34Bの中心における接線は、赤外線センサ94A及び94Bの発光部94A2及び94B2から照射される赤外線と略直交する。この構成により、挿入ガイド部材34が略円筒状である場合に、赤外線センサ94A及び94Bから照射される赤外線は、Z軸正方向から見て挿入ガイド部材の内部の略中心に向かう。 As shown in FIG. 10, the tangent at the center of the transmission areas 34A and 34B of the insertion guide member 34 is approximately perpendicular to the infrared rays emitted from the light-emitting portions 94A2 and 94B2 of the infrared sensors 94A and 94B. With this configuration, when the insertion guide member 34 is approximately cylindrical, the infrared rays emitted from the infrared sensors 94A and 94B are directed toward approximately the center inside the insertion guide member when viewed from the positive direction of the Z axis.
 特に、赤外線センサ94A及び94Bから挿入ガイド部材34の透過領域34A及び34Bにおける内側面までの距離は、2~8mmであってもよい。この距離の起点は、赤外線センサ94A及び94Bの発光部94A2、94B2としてもよく、発光部94A2、94B2と受光部94A1、94B1との中点としてもよい。 In particular, the distance from the infrared sensors 94A and 94B to the inner surface of the transparent regions 34A and 34B of the insertion guide member 34 may be 2 to 8 mm. The starting point of this distance may be the light-emitting portion 94A2, 94B2 of the infrared sensors 94A and 94B, or may be the midpoint between the light-emitting portion 94A2, 94B2 and the light-receiving portion 94A1, 94B1.
 また図8及び10に示すように、挿入ガイド部材34に対向し、屈曲部で互いに接合されている保持壁部90の3つの面は、挿入ガイド部材34の対向する箇所に引いた接線に対して略平行である。 Also, as shown in Figures 8 and 10, the three faces of the retaining wall portion 90 that face the insertion guide member 34 and are joined to each other at the bends are approximately parallel to a tangent drawn at the opposing points of the insertion guide member 34.
 また図10に示すように、赤外線センサ94A及び94Bの各々から挿入ガイド部材34の外周部の対向する箇所までの距離は、略等しい。 As shown in FIG. 10, the distances from each of the infrared sensors 94A and 94B to opposing points on the outer periphery of the insertion guide member 34 are approximately equal.
 また図10に示すように、Z軸正方向から見て、赤外線センサ94A及び94Bの各々は、リブ90Aと凹型突起部36との組に対して線対称となる位置に配置されている。 As shown in FIG. 10, when viewed from the positive direction of the Z axis, each of the infrared sensors 94A and 94B is positioned so as to be linearly symmetrical with respect to the pair of the rib 90A and the concave protrusion 36.
 また図8及び図10に示すように、Z軸正方向から見て、赤外線センサ94A及び94Bは、互いに離隔するように配置されている。 As shown in Figures 8 and 10, when viewed from the positive direction of the Z axis, the infrared sensors 94A and 94B are positioned so as to be spaced apart from each other.
 次に、図11を参照して、加熱部40と赤外線センサ94A及び94Bとの相互配置を説明する。図8、10、11に示すように、赤外線センサ94A及び94Bは、Z軸正方向から見て、挿入ガイド部材34及びチャンバ50の外周部から離隔している。また、図11に示すように、赤外線センサ94A及び94Bは、Z軸に沿って、加熱部40(の加熱要素42)から離隔している。特に、赤外線センサ94A及び94Bは、Z軸に沿って、挿入ガイド部材34と並列する位置に配置されている。なお、説明の便宜上、図11ではガスケット38と、透過領域34A及び34Bとの図示を省略している。 Next, referring to FIG. 11, the relative arrangement of the heating section 40 and the infrared sensors 94A and 94B will be described. As shown in FIGS. 8, 10, and 11, the infrared sensors 94A and 94B are spaced apart from the insertion guide member 34 and the outer periphery of the chamber 50 when viewed from the positive direction of the Z axis. Also, as shown in FIG. 11, the infrared sensors 94A and 94B are spaced apart from the heating section 40 (the heating element 42) along the Z axis. In particular, the infrared sensors 94A and 94B are arranged in parallel with the insertion guide member 34 along the Z axis. For ease of explanation, the gasket 38 and the transparent regions 34A and 34B are omitted from FIG. 11.
 なお、図8及び11では、制御部80、保持壁部90、固定基板92のいずれもが、挿入ガイド部材34の上端と同一の水平面(X-Y平面)上に上端を有するように示されているが、制御部80、保持壁部90、固定基板92の構成はこれに限られるものではない。図8は、霧化部30の上方部を、挿入ガイド部材34の透過領域34A及び34Bを通る水平面(X-Y平面)で切断したものの斜視図とも解することができる。 In addition, although Figures 8 and 11 show the control unit 80, holding wall 90, and fixed substrate 92 all having their upper ends on the same horizontal plane (X-Y plane) as the upper end of the insertion guide member 34, the configuration of the control unit 80, holding wall 90, and fixed substrate 92 is not limited to this. Figure 8 can also be interpreted as a perspective view of the upper part of the atomization unit 30 cut by a horizontal plane (X-Y plane) that passes through the transparent regions 34A and 34B of the insertion guide member 34.
 以上においては、赤外線センサ94A及び94Bは、消費材120を検知するものとして説明した。しかしながら、赤外線センサ94A及び94Bの検知対象は消費材120のみに限られるものではなく、挿入ガイド部材34の内部に位置する様々な対象を検知することができる。一例として、後述する変形例に置いて説明するように、赤外線センサ94A及び94Bは、後述する清掃具130を検知することができる。また、赤外線センサ94A及び94Bにより、挿入ガイド部材34の透過領域34A及び34Bに汚れが付着していることを検知することもできる。透過領域34Aまたは34Bに(赤外線の透過を阻む材質の)汚れが付着していることにより、発光部94A2または94B2から照射された赤外線が挿入ガイド部材34の内部に進入せず、対応する受光部94A1または94B1に赤外線が到達しないことがあり得る。つまり、赤外線センサ94Aまたは94Bが対象を検知しないことをもって、透過領域34Aまたは34Bが汚れている可能性があると判定することができる。 In the above, the infrared sensors 94A and 94B have been described as detecting the consumer product 120. However, the detection target of the infrared sensors 94A and 94B is not limited to the consumer product 120, and various objects located inside the insertion guide member 34 can be detected. As an example, as described in a modified example below, the infrared sensors 94A and 94B can detect the cleaning tool 130 described below. The infrared sensors 94A and 94B can also detect the presence of dirt on the transparent areas 34A and 34B of the insertion guide member 34. If dirt (made of a material that blocks the transmission of infrared rays) is present on the transparent area 34A or 34B, the infrared rays irradiated from the light-emitting unit 94A2 or 94B2 may not enter the inside of the insertion guide member 34, and the infrared rays may not reach the corresponding light-receiving unit 94A1 or 94B1. In other words, if the infrared sensors 94A or 94B do not detect an object, it can be determined that the transparent area 34A or 34B may be dirty.
 また以上においては、赤外線センサ94A及び94Bの検知結果は挿入ガイド部材34内に消費材120が収容されているか否かを判定するために用いられるとして説明したが、検知結果の用途はこれに限られるものではない。制御部80は、香味吸引器100の各部材の様々な制御のために、赤外線センサ94A及び94Bの検知結果を利用することができる。例えば、上述の清掃具または汚れの検知を実行する場合に、「清掃中」または「透過領域が汚れている」とのメッセージを香味吸引器100のユーザに通知するように構成することができる。具体的には、制御部80が、香味吸引器100の視認しやすい位置に配置された図示しないLEDを点灯または点滅させることによりユーザへ通知することができる。また、制御部80が、ブルートゥースインターフェース28を介してユーザのスマートフォンにメッセージを通知するように構成することもできる。 In the above, the detection results of the infrared sensors 94A and 94B are described as being used to determine whether or not the consumable product 120 is contained in the insertion guide member 34, but the use of the detection results is not limited to this. The control unit 80 can use the detection results of the infrared sensors 94A and 94B for various controls of each component of the flavor inhaler 100. For example, when performing the above-mentioned detection of a cleaning tool or dirt, the control unit 80 can be configured to notify the user of the flavor inhaler 100 of a message such as "cleaning in progress" or "transmitting area is dirty." Specifically, the control unit 80 can notify the user by turning on or blinking an LED (not shown) that is arranged in an easily visible position on the flavor inhaler 100. The control unit 80 can also be configured to notify the user of the message via the Bluetooth interface 28 to the user's smartphone.
 以上において説明した香味吸引器100と、消費材120とを組み合わせることにより、好適な香味吸引システムを構成することができる。 By combining the flavor inhaler 100 described above with the consumable product 120, a suitable flavor inhalation system can be constructed.
(加熱部から赤外線センサへの熱の伝達路の詳細)
 香味吸引器100において、加熱部40からの熱の影響を回避するために、赤外線センサ94A及び94Bを加熱部40から離隔させることが好ましい。以下、図12を参照して、図8に示された挿入ガイド部材34の周辺における熱の伝達について説明する。図12は、図10に示された上面図に、熱の伝達経路を追記した模式図である。
(Details of the heat transfer path from the heating unit to the infrared sensor)
In the flavor inhaler 100, in order to avoid the influence of heat from the heating unit 40, it is preferable to separate the infrared sensors 94A and 94B from the heating unit 40. Hereinafter, the transfer of heat around the insertion guide member 34 shown in Fig. 8 will be described with reference to Fig. 12. Fig. 12 is a schematic diagram in which the heat transfer path is added to the top view shown in Fig. 10.
 図8、10、12に示されるように、挿入ガイド部材34の凹型突起部36が接続される保持壁部90のリブ90Aは、赤外線センサ94A及び94Bとは離隔した位置に配置されている。具体的には、図10及び12に示されるように、Z軸正方向から見て、赤外線センサ94A及び94Bとは、リブ90Aと凹型突起部36との組から、離隔している。リブ90Aと凹型突起部36との組は、本開示の連結部の一例である。またリブ90Aは本開示の第1突起部の一例であり、凹型突起部36は本開示の第2突起部の一例である。なお上述の保持壁部90は、本開示の保持部の一例である。また固定基板92は、本開示の基板の一例である。 8, 10, and 12, the rib 90A of the retaining wall 90 to which the concave protrusion 36 of the insertion guide member 34 is connected is disposed at a position separated from the infrared sensors 94A and 94B. Specifically, as shown in FIGS. 10 and 12, when viewed from the positive direction of the Z axis, the infrared sensors 94A and 94B are separated from the pair of the rib 90A and the concave protrusion 36. The pair of the rib 90A and the concave protrusion 36 is an example of a connecting portion of the present disclosure. The rib 90A is also an example of a first protrusion of the present disclosure, and the concave protrusion 36 is an example of a second protrusion of the present disclosure. The retaining wall 90 described above is an example of a retaining portion of the present disclosure. The fixed substrate 92 is also an example of a substrate of the present disclosure.
 図4及び11に示されるように、霧化部30に生じる熱は、加熱部40に起因するものである。加熱部40によりチャンバ50が加熱されることにより、チャンバ50内に収容された消費材120が加熱されてエアロゾルが生成される。この熱が赤外線センサ94A及び94Bへ到達する経路を考えると、チャンバ50→挿入ガイド部材34→凹型突起部36及びリブ90Aの組→固定基板92→赤外線センサ94Aまたは94B、という経路を経る。図12に模式的に示されるように、挿入ガイド部材34の外周部からの伝達路Aは、明らかに赤外線センサ94A及び94Bから挿入ガイド部材34の外周部までの距離よりも長い。このように伝達路Aが長くなるように構成することにより、赤外線センサ94A及び94Bへの熱の伝達を抑制することができる。 4 and 11, the heat generated in the atomizing unit 30 is caused by the heating unit 40. When the heating unit 40 heats the chamber 50, the consumable product 120 contained in the chamber 50 is heated and an aerosol is generated. Considering the path that this heat takes to reach the infrared sensors 94A and 94B, it passes through the following path: chamber 50 → insertion guide member 34 → set of concave protrusions 36 and ribs 90A → fixed substrate 92 → infrared sensor 94A or 94B. As shown diagrammatically in FIG. 12, the transmission path A from the outer periphery of the insertion guide member 34 is clearly longer than the distance from the infrared sensors 94A and 94B to the outer periphery of the insertion guide member 34. By configuring the transmission path A to be longer in this way, the transmission of heat to the infrared sensors 94A and 94B can be suppressed.
 また、保持壁部90と、リブ90Aと、凹型突起部36と、挿入ガイド部材34とは、チャンバ50の材質よりも熱伝導率の低い材料により構成されている。このように構成することにより、伝達路Aを介した赤外線センサ94A及び94Bへの熱の伝達を抑制することができる。 Furthermore, the retaining wall portion 90, the rib 90A, the concave protrusion portion 36, and the insertion guide member 34 are made of a material with a lower thermal conductivity than the material of the chamber 50. By configuring them in this way, it is possible to suppress the transfer of heat to the infrared sensors 94A and 94B via the transfer path A.
(本実施形態の作用1)
 本実施形態では、香味吸引器100において消費材120を検知する赤外線センサ94A及び94Bが、挿入ガイド部材34及びチャンバ50の軸方向において加熱部40から離隔し、挿入ガイド部材34及びチャンバ50の軸方向と垂直の方向において挿入ガイド部材34及びチャンバ50の外周面から離隔している。挿入ガイド部材34及びチャンバ50の軸方向において加熱部40から離隔するとともに、加熱部40により加熱される消費材120が収納される挿入ガイド部材34及びチャンバ50の外周面から離隔していることにより、赤外線センサ94A及び94Bへの熱の影響を軽減することができる。よって本実施形態によれば、熱の影響により性能が低下することを防止するように設けられた赤外線センサ94A及び94Bにより、挿入ガイド部材34内の消費材の有無を適切に判定することができる。
(Function 1 of this embodiment)
In this embodiment, the infrared sensors 94A and 94B that detect the consumable product 120 in the flavor inhaler 100 are separated from the heating unit 40 in the axial direction of the insertion guide member 34 and the chamber 50, and are separated from the outer circumferential surfaces of the insertion guide member 34 and the chamber 50 in a direction perpendicular to the axial direction of the insertion guide member 34 and the chamber 50. By being separated from the heating unit 40 in the axial direction of the insertion guide member 34 and the chamber 50, and being separated from the outer circumferential surfaces of the insertion guide member 34 and the chamber 50 in which the consumable product 120 heated by the heating unit 40 is stored, the influence of heat on the infrared sensors 94A and 94B can be reduced. Thus, according to this embodiment, the infrared sensors 94A and 94B, which are provided to prevent performance degradation due to the influence of heat, can appropriately determine the presence or absence of the consumable product in the insertion guide member 34.
 本実施形態では、香味吸引器100において消費材120を検知する複数の赤外線センサ94A及び94Bが、挿入ガイド部材34の軸方向から見て互いに離隔するように配置されている。よって本実施形態によれば、複数の赤外線センサ94A及び94Bの各々が異なる角度から検知を行うことにより、挿入ガイド部材34内の消費材120の有無をより正確に判定することができる。 In this embodiment, the multiple infrared sensors 94A and 94B that detect the consumable product 120 in the flavor inhaler 100 are arranged so as to be spaced apart from each other when viewed from the axial direction of the insertion guide member 34. Therefore, according to this embodiment, the multiple infrared sensors 94A and 94B each perform detection from a different angle, making it possible to more accurately determine the presence or absence of the consumable product 120 in the insertion guide member 34.
 本実施形態では、香味吸引器100において消費材120を検知する赤外線センサ94A及び94Bが、挿入ガイド部材34及びチャンバ50の軸方向において、加熱部40により加熱される挿入ガイド部材34が主に収納されるチャンバ50には重ならず、チャンバ50に接続するガイド部に重なるように配置される。よって本実施形態によれば、赤外線センサ94A及び94Bが加熱部40及び加熱部40により加熱される消費材120から十分に離隔され、赤外線センサ94A及び94Bへの熱の影響をより軽減することができる。また、赤外線センサ94A及び94Bを挿入ガイド部材34及びチャンバ50の軸方向において挿入ガイド部材34と重なるように配置することにより、香味吸引器100の霧化部30の軸方向の長さを抑制することができるとともに、赤外線センサ94A及び94Bを遮蔽して外部の影響から防御することができる。一例として、赤外線センサ94A及び94Bが露出するように配置された場合、加熱された消費材120から生じた煙が赤外線センサ94A及び94Bに影響を及ぼす可能性がある。 In this embodiment, the infrared sensors 94A and 94B that detect the consumable product 120 in the flavor inhaler 100 are arranged so as to overlap the guide section connected to the chamber 50, without overlapping the chamber 50 in which the insertion guide member 34 heated by the heating section 40 is mainly housed, in the axial direction of the insertion guide member 34 and the chamber 50. Therefore, according to this embodiment, the infrared sensors 94A and 94B are sufficiently separated from the heating section 40 and the consumable product 120 heated by the heating section 40, and the influence of heat on the infrared sensors 94A and 94B can be further reduced. In addition, by arranging the infrared sensors 94A and 94B so as to overlap the insertion guide member 34 in the axial direction of the insertion guide member 34 and the chamber 50, the axial length of the atomization section 30 of the flavor inhaler 100 can be reduced, and the infrared sensors 94A and 94B can be shielded to protect them from external influences. As an example, if the infrared sensors 94A and 94B are positioned so that they are exposed, smoke generated by the heated consumable product 120 may affect the infrared sensors 94A and 94B.
 本実施形態では、香味吸引器100において消費材120を検知する赤外線センサ94A及び94Bが、発光部94A2(94B2)と、受光部94A1(94B1)とを含む光学センサとして構成される。よって本実施形態によれば、光学的に、挿入ガイド部材34内の消費材120の有無を判定することができる。 In this embodiment, the infrared sensors 94A and 94B that detect the consumable product 120 in the flavor inhaler 100 are configured as optical sensors including a light-emitting portion 94A2 (94B2) and a light-receiving portion 94A1 (94B1). Therefore, according to this embodiment, it is possible to optically determine the presence or absence of the consumable product 120 in the insertion guide member 34.
 本実施形態では、消費材120を収容するチャンバ50と、消費材120の挿入口を構成する挿入ガイド部材34とが一体成型されて構成される。よって本実施形態によれば、挿入ガイド部材34及びチャンバ50の組み合わせの強度及び剛性を高めることができる。 In this embodiment, the chamber 50 that houses the consumable product 120 and the insertion guide member 34 that forms the insertion port for the consumable product 120 are integrally molded. Therefore, according to this embodiment, the strength and rigidity of the combination of the insertion guide member 34 and the chamber 50 can be increased.
 本実施形態では、挿入ガイド部材34が、赤外線センサ94A及び94Bによる検知のための赤外線の通路となる透過領域34A及び34Bを有している。よって本実施形態によれば、赤外線センサ94A及び94Bによる検知機能を適切に実行し得る。 In this embodiment, the insertion guide member 34 has transparent regions 34A and 34B that serve as passageways for infrared light for detection by the infrared sensors 94A and 94B. Therefore, according to this embodiment, the detection function of the infrared sensors 94A and 94B can be properly performed.
 本実施形態では、赤外線センサ94A及び94Bから挿入ガイド部材34の内側面までの距離は、2~8mmである。よって本実施形態によれば、加熱部40により加熱される消費材120を収容する挿入ガイド部材34及びチャンバ50から赤外線センサ94A及び94Bが十分に離隔していることにより、赤外線センサ94A及び94Bを熱の影響から確実に保護することができる。 In this embodiment, the distance from the infrared sensors 94A and 94B to the inner surface of the insertion guide member 34 is 2 to 8 mm. Therefore, according to this embodiment, the infrared sensors 94A and 94B are sufficiently separated from the insertion guide member 34 and the chamber 50 that contain the consumable product 120 heated by the heating unit 40, so that the infrared sensors 94A and 94B can be reliably protected from the effects of heat.
 本実施形態では、赤外線センサ94A及び94Bの発光部94A2(94B2)と受光部94A1(94B1)とが、挿入ガイド部材34の軸方向(Z軸方向)に沿って配列されている。ここで発光部94A2(94B2)と受光部94A1(94B1)とが挿入ガイド部材34の軸方向に直交する方向(X-Y平面上の直線)に沿って配列する場合、赤外線センサ94A及び94Bの配置のためのスペースが大きくなり、香味吸引器100の大型化をもたらす。また発光部94A2(94B2)と受光部94A1(94B1)とが挿入ガイド部材34の軸方向に直交する方向に沿って配列されていると、発光部94A2(94B2)から照射されて水平方向(X-Y平面)に広がった光が消費材120の円形状により乱反射され、受光部94A1(94B1)への適切な到達の妨げとなる。一方、発光部94A2(94B2)と受光部94A1(94B1)とが挿入ガイド部材34の軸方向に沿って配列されていると、発光部94A2(94B2)から照射された光は円筒面の長手方向に略平行な方向(つまり、Z軸方向)に広がるため、消費材120の直線形状により反射され、受光部94A1(94B1)に適切に到達し得る。よって本実施形態によれば、香味吸引器100の小型化とともに、赤外線センサ94A及び94Bによる検知の精度向上に寄与し得る。 In this embodiment, the light-emitting unit 94A2 (94B2) and the light-receiving unit 94A1 (94B1) of the infrared sensors 94A and 94B are arranged along the axial direction (Z-axis direction) of the insertion guide member 34. If the light-emitting unit 94A2 (94B2) and the light-receiving unit 94A1 (94B1) are arranged along a direction perpendicular to the axial direction of the insertion guide member 34 (a straight line on the X-Y plane), the space required for arranging the infrared sensors 94A and 94B becomes large, resulting in an increase in the size of the flavor inhaler 100. Furthermore, if the light-emitting unit 94A2 (94B2) and the light-receiving unit 94A1 (94B1) are arranged along a direction perpendicular to the axial direction of the insertion guide member 34, the light irradiated from the light-emitting unit 94A2 (94B2) and spread in the horizontal direction (X-Y plane) is diffused by the circular shape of the consumer product 120, preventing it from reaching the light-receiving unit 94A1 (94B1) properly. On the other hand, when the light-emitting unit 94A2 (94B2) and the light-receiving unit 94A1 (94B1) are arranged along the axial direction of the insertion guide member 34, the light emitted from the light-emitting unit 94A2 (94B2) spreads in a direction approximately parallel to the longitudinal direction of the cylindrical surface (i.e., the Z-axis direction), and is reflected by the linear shape of the consumable product 120 and can properly reach the light-receiving unit 94A1 (94B1). Therefore, this embodiment can contribute to miniaturizing the flavor inhaler 100 and improving the accuracy of detection by the infrared sensors 94A and 94B.
 本実施形態では、挿入ガイド部材34の透過領域34A及び34Bの、挿入ガイド部材34の軸方向に沿った長さは、2.7~8.4mmである。ここで透過領域34A及び34Bが大きすぎると、発光部94A2(94B2)が照射した赤外線が挿入ガイド部材34の内部で乱反射し、受光部94A1(94B1)に到達することにより、誤判定の原因となり得る。一方、透過領域34A及び34Bを適切な大きさとすることで、検知の精度を向上することができる。よって本実施形態によれば、赤外線センサ94A及び94Bによる検知のさらなる精度向上に寄与し得る。 In this embodiment, the length of the transparent regions 34A and 34B of the insertion guide member 34 along the axial direction of the insertion guide member 34 is 2.7 to 8.4 mm. If the transparent regions 34A and 34B are too large, the infrared light emitted by the light-emitting unit 94A2 (94B2) may be diffused inside the insertion guide member 34 and reach the light-receiving unit 94A1 (94B1), which may cause an erroneous determination. On the other hand, by making the transparent regions 34A and 34B an appropriate size, the detection accuracy can be improved. Therefore, this embodiment can contribute to further improving the detection accuracy of the infrared sensors 94A and 94B.
 本実施形態では、香味吸引器100において消費材120を検知するために設けられた赤外線センサ94A及び94Bが消費財120を検知した後に、消費材120への加熱を開始する。よって本実施形態によれば、不要な加熱動作を防止することができる。 In this embodiment, after infrared sensors 94A and 94B provided in the flavor inhaler 100 for detecting the consumable product 120 detect the consumable product 120, heating of the consumable product 120 is started. Therefore, according to this embodiment, unnecessary heating operations can be prevented.
 本実施形態では、香味吸引器100と消費材120とを含む香味吸引システムにおいて、消費材120を検知する赤外線センサ94A及び94Bが、挿入ガイド部材34及びチャンバ50の軸方向において加熱部40から離隔し、挿入ガイド部材34及びチャンバ50の軸方向と垂直の方向において挿入ガイド部材34及びチャンバ50の外周面から離隔している。挿入ガイド部材34及びチャンバ50の軸方向において加熱部40から離隔するとともに、加熱部40により加熱される消費材120が収納される挿入ガイド部材34及びチャンバ50の外周面から離隔していることにより、赤外線センサ94A及び94Bへの熱の影響を軽減することができる。よって本実施形態によれば、熱の影響により性能が低下することを防止するように設けられた赤外線センサ94A及び94Bにより、挿入ガイド部材34内の消費材の有無を適切に判定することができる。 In this embodiment, in a flavor inhalation system including a flavor inhaler 100 and a consumable product 120, infrared sensors 94A and 94B that detect the consumable product 120 are separated from the heating unit 40 in the axial direction of the insertion guide member 34 and the chamber 50, and separated from the outer circumferential surface of the insertion guide member 34 and the chamber 50 in a direction perpendicular to the axial direction of the insertion guide member 34 and the chamber 50. By being separated from the heating unit 40 in the axial direction of the insertion guide member 34 and the chamber 50, and being separated from the outer circumferential surface of the insertion guide member 34 and the chamber 50 in which the consumable product 120 heated by the heating unit 40 is stored, the influence of heat on the infrared sensors 94A and 94B can be reduced. Therefore, according to this embodiment, the infrared sensors 94A and 94B, which are provided to prevent performance degradation due to the influence of heat, can appropriately determine the presence or absence of a consumable product in the insertion guide member 34.
(本実施形態の作用2)
 本実施形態では、香味吸引器100において消費材120が挿入される挿入ガイド部材34を保持壁部90に連結する凹型突起部36及びリブ90Aの組を通る、赤外線センサ94A及び94Bから挿入ガイド部材34の外周部までの最短経路は、赤外線センサ94A及び94Bの各々と被挿入部の挿入ガイド部材34の外周部との距離よりも長くなるように構成されている。よって本実施形態によれば、挿入ガイド部材34から凹型突起部36及びリブ90Aの組と、保持壁部90とを経由して赤外線センサ94A及び94Bの各々に至る熱の伝導路は十分な長さとなるので、挿入ガイド部材34からの熱の影響が赤外線センサ94A及び94Bに及ぶことを抑制できる。
(Function 2 of this embodiment)
In this embodiment, the shortest path from the infrared sensors 94A and 94B to the outer periphery of the insertion guide member 34, which passes through the set of the concave protrusions 36 and the ribs 90A that connect the insertion guide member 34, into which the consumer product 120 is inserted, to the holding wall 90 in the flavor inhaler 100, is configured to be longer than the distance between each of the infrared sensors 94A and 94B and the outer periphery of the insertion guide member 34 of the inserted portion. Therefore, according to this embodiment, the heat conduction path from the insertion guide member 34 through the set of the concave protrusions 36 and the ribs 90A and the holding wall 90 to each of the infrared sensors 94A and 94B is sufficiently long, so that the influence of heat from the insertion guide member 34 on the infrared sensors 94A and 94B can be suppressed.
 また本実施形態では、香味吸引器100において消費材120が挿入される挿入ガイド部材34を保持壁部90に連結する凹型突起部36及びリブ90Aは、保持壁部90に保持された赤外線センサ94A及び94Bに直接接続していない。よって本実施形態によれば、挿入ガイド部材34の外周部から凹型突起部36及びリブ90Aと、保持壁部90とを経由して赤外線センサ94A及び94Bに至る熱の伝導路は、赤外線センサ94A及び94Bの各々と挿入ガイド部材34の外周部との距離に比べて長くなることが保証され、挿入ガイド部材34からの熱の影響が赤外線センサ94A及び94Bに及ぶことを確実に抑制できる。 In addition, in this embodiment, the concave projections 36 and ribs 90A that connect the insertion guide member 34, into which the consumable product 120 is inserted, to the retaining wall 90 in the flavor inhaler 100 are not directly connected to the infrared sensors 94A and 94B held by the retaining wall 90. Therefore, according to this embodiment, the heat conduction path from the outer periphery of the insertion guide member 34 through the concave projections 36 and ribs 90A and the retaining wall 90 to the infrared sensors 94A and 94B is guaranteed to be longer than the distance between each of the infrared sensors 94A and 94B and the outer periphery of the insertion guide member 34, and the influence of heat from the insertion guide member 34 on the infrared sensors 94A and 94B can be reliably suppressed.
 また本実施形態では、消費材120を検知するための赤外線センサ94A及び94Bを保持するとともに、凹型突起部36及びリブ90Aを介して消費材120が挿入される挿入ガイド部材34に連結する保持壁部90が、挿入ガイド部材34の一部の外周を囲むように構成されている。よって本実施形態によれば、挿入ガイド部材34が凹型突起部36及びリブ90Aを介して外周部の周りに位置する保持壁部90に連結されることにより香味吸引器100内部での挿入ガイド部材34の配置が安定するとともに、挿入ガイド部材34の周りに保持された赤外線センサ94A及び94Bにより、挿入ガイド部材34内の消費材120を検知することができる。 In addition, in this embodiment, the holding wall 90, which holds the infrared sensors 94A and 94B for detecting the consumer product 120 and is connected to the insertion guide member 34 into which the consumer product 120 is inserted via the concave protrusion 36 and the rib 90A, is configured to surround a portion of the outer periphery of the insertion guide member 34. Therefore, according to this embodiment, the insertion guide member 34 is connected to the holding wall 90 located around the outer periphery via the concave protrusion 36 and the rib 90A, so that the position of the insertion guide member 34 inside the flavor inhaler 100 is stabilized, and the infrared sensors 94A and 94B held around the insertion guide member 34 can detect the consumer product 120 inside the insertion guide member 34.
 また本実施形態では、香味吸引器100において消費材120を検知する赤外線センサ94A及び94Bが、挿入ガイド部材34の軸方向において、加熱部40により加熱される消費材120が主に収納されるチャンバ50には重ならず、チャンバ50に接続する挿入ガイド部材34に重なるように配置される。よって本実施形態によれば、赤外線センサ94A及び94Bが加熱部40及び加熱部40により加熱される消費材120から十分に離隔され、赤外線センサ94A及び94Bへの熱の影響をより軽減することができる。また、赤外線センサ94A及び94Bを挿入ガイド部材34の軸方向において挿入ガイド部材34と重なるように配置することにより、香味吸引器100の挿入ガイド部材34の軸方向の長さを抑制することができるとともに、赤外線センサ94A及び94Bを遮蔽して外部の影響から防御することができる。一例として、赤外線センサ94A及び94Bが露出するように配置された場合、加熱された消費材120から生じた煙が赤外線センサ94A及び94Bに影響を及ぼす可能性がある。さらに、凹型突起部36及びリブ90Aが保持壁部90と挿入ガイド部材34とを接続していることにより、加熱部40により加熱される消費材120が主に収納されるチャンバ50が保持壁部90に接続することを防止でき、熱の伝達を確実に抑制できる。 In addition, in this embodiment, the infrared sensors 94A and 94B that detect the consumable product 120 in the flavor inhaler 100 are arranged so as to overlap the insertion guide member 34 connected to the chamber 50 in the axial direction of the insertion guide member 34, without overlapping the chamber 50 in which the consumable product 120 heated by the heating unit 40 is mainly stored. Therefore, according to this embodiment, the infrared sensors 94A and 94B are sufficiently separated from the heating unit 40 and the consumable product 120 heated by the heating unit 40, and the influence of heat on the infrared sensors 94A and 94B can be further reduced. In addition, by arranging the infrared sensors 94A and 94B so as to overlap the insertion guide member 34 in the axial direction of the insertion guide member 34, the axial length of the insertion guide member 34 of the flavor inhaler 100 can be reduced, and the infrared sensors 94A and 94B can be shielded to protect them from external influences. As an example, if the infrared sensors 94A and 94B are arranged so as to be exposed, smoke generated from the heated consumable product 120 may affect the infrared sensors 94A and 94B. Furthermore, the concave projection 36 and the rib 90A connect the retaining wall 90 and the insertion guide member 34, preventing the chamber 50, which mainly contains the consumable product 120 heated by the heating unit 40, from connecting to the retaining wall 90, thereby reliably suppressing the transfer of heat.
 また本実施形態では、香味吸引器100において消費材120が挿入される挿入ガイド部材34を保持壁部90に連結する構成は、保持壁部90と一体成型されて保持壁部90から突出するリブ90Aと、挿入ガイド部材34の外周部から突出してリブ90Aと連結する凹型突起部36とを含む。よって本実施形態によれば、凹型突起部36及びリブ90Aにより挿入ガイド部材34と保持壁部90とを安定的に接続することができる。 In addition, in this embodiment, the configuration for connecting the insertion guide member 34, into which the consumable product 120 is inserted, to the holding wall 90 in the flavor inhaler 100 includes a rib 90A that is integrally molded with the holding wall 90 and protrudes from the holding wall 90, and a concave protrusion 36 that protrudes from the outer periphery of the insertion guide member 34 and connects to the rib 90A. Therefore, according to this embodiment, the insertion guide member 34 and the holding wall 90 can be stably connected by the concave protrusion 36 and the rib 90A.
 また本実施形態では、香味吸引器100において消費材120を検知する複数の赤外線センサ94A及び94Bが、消費材120が挿入される挿入ガイド部材34の外周を囲むように構成された保持壁部90により保持されて配置されている。よって本実施形態によれば、挿入ガイド部材34の外周を囲むように配置された複数の赤外線センサ94A及び94Bの各々が異なる角度から検知を行うことにより、挿入ガイド部材34内の消費材120の有無をより正確に判定することができる。 In addition, in this embodiment, the multiple infrared sensors 94A and 94B that detect the consumable product 120 in the flavor inhaler 100 are held and arranged by a holding wall portion 90 configured to surround the outer periphery of the insertion guide member 34 into which the consumable product 120 is inserted. Therefore, according to this embodiment, the multiple infrared sensors 94A and 94B arranged to surround the outer periphery of the insertion guide member 34 each perform detection from a different angle, making it possible to more accurately determine the presence or absence of the consumable product 120 in the insertion guide member 34.
 また本実施形態では、保持壁部90が、複数の赤外線センサ94A及び94Bのそれぞれに対向する挿入ガイド部材34の外周の接平面に対して略平行な複数の面を備えており、複数の赤外線センサ94A及び94Bのそれぞれは対応する保持壁部90の面により保持される。よって本実施形態によれば、複数の赤外線センサ94A及び94Bの各々は挿入ガイド部材34の略中心に向かって赤外線を射出することができる。 In addition, in this embodiment, the holding wall portion 90 has multiple faces that are approximately parallel to the tangent plane of the outer periphery of the insertion guide member 34 that faces each of the multiple infrared sensors 94A and 94B, and each of the multiple infrared sensors 94A and 94B is held by the corresponding face of the holding wall portion 90. Therefore, according to this embodiment, each of the multiple infrared sensors 94A and 94B can emit infrared rays toward approximately the center of the insertion guide member 34.
 また本実施形態では複数の赤外線センサ94A及び94Bの各々が対応する固定基板92に配置され、固定基板92のそれぞれの面は、挿入ガイド部材34の外周上の接平面に略平行な保持壁部90の面に配置される。よって本実施形態によれば、赤外線センサ94A及び94Bを好ましい位置に安定的に保持できる。 In addition, in this embodiment, each of the multiple infrared sensors 94A and 94B is disposed on a corresponding fixed substrate 92, and each surface of the fixed substrate 92 is disposed on a surface of the retaining wall portion 90 that is approximately parallel to a tangent plane on the outer periphery of the insertion guide member 34. Therefore, according to this embodiment, the infrared sensors 94A and 94B can be stably held in a preferred position.
 また本実施形態では、複数の赤外線センサ94A及び94Bの各々から、対向する挿入ガイド部材34の外周部までの距離は略等しい。よって本実施形態によれば、挿入ガイド部材34の軸方向から見て略対称に配置された複数の赤外線センサ94A及び94Bにより、挿入ガイド部材34内の消費材120の有無を確実に検知できる。 In addition, in this embodiment, the distance from each of the multiple infrared sensors 94A and 94B to the outer periphery of the opposing insertion guide member 34 is approximately equal. Therefore, according to this embodiment, the multiple infrared sensors 94A and 94B arranged approximately symmetrically when viewed from the axial direction of the insertion guide member 34 can reliably detect the presence or absence of consumable products 120 in the insertion guide member 34.
 また本実施形態では、複数の赤外線センサ94A及び94Bは、消費材120が挿入される挿入ガイド部材34を保持壁部90に連結する凹型突起部36及びリブ90Aに対して、挿入ガイド部材34の軸方向から見て線対称となるように配置される。よって本実施形態によれば、挿入ガイド部材34の軸方向から見て対称に配置された複数の赤外線センサ94A及び94Bにより、被挿入部内の消費材の有無を確実に検知できる。 In addition, in this embodiment, the multiple infrared sensors 94A and 94B are arranged so as to be linearly symmetrical when viewed from the axial direction of the insertion guide member 34 with respect to the concave protrusion 36 and rib 90A that connect the insertion guide member 34, into which the consumable product 120 is inserted, to the retaining wall portion 90. Therefore, according to this embodiment, the multiple infrared sensors 94A and 94B arranged symmetrically when viewed from the axial direction of the insertion guide member 34 can reliably detect the presence or absence of the consumable product in the inserted portion.
 また本実施形態では、挿入ガイド部材34から凹型突起部36及びリブ90Aと、保持壁部90とを経由して赤外線センサ94A及び94Bに至る熱の伝導路において、加熱される消費材120を主に保持するチャンバ50以外の構成要素は、チャンバ50よりも熱伝導率の低い材料により構成されている。よって本実施形態によれば、赤外線センサ94A及び94Bへの熱伝導を確実に抑制できる。 In addition, in this embodiment, in the heat conduction path from the insertion guide member 34 through the concave protrusion 36 and the rib 90A, and the holding wall 90 to the infrared sensors 94A and 94B, the components other than the chamber 50 that mainly holds the consumable product 120 to be heated are made of a material with a lower thermal conductivity than the chamber 50. Therefore, according to this embodiment, heat conduction to the infrared sensors 94A and 94B can be reliably suppressed.
 本実施形態では、香味吸引器100において消費材120を検知するために設けられた赤外線センサ94A及び94Bが消費財120を検知した後に、消費材120への加熱を開始する。よって本実施形態によれば、不要な加熱動作を防止することができる。 In this embodiment, after infrared sensors 94A and 94B provided in the flavor inhaler 100 for detecting the consumable product 120 detect the consumable product 120, heating of the consumable product 120 is started. Therefore, according to this embodiment, unnecessary heating operations can be prevented.
 本実施形態では、香味吸引器100と消費材120とを含む香味吸引システムにおいて、消費材120が挿入される挿入ガイド部材34を保持壁部90に連結する凹型突起部36及びリブ90Aの組を通る、赤外線センサ94A及び94Bから挿入ガイド部材34の外周部までの最短経路は、赤外線センサ94A及び94Bの各々と被挿入部の挿入ガイド部材34の外周部との距離よりも長くなるように構成されている。よって本実施形態によれば、挿入ガイド部材34から凹型突起部36及びリブ90Aの組と、保持壁部90とを経由して赤外線センサ94A及び94Bの各々に至る熱の伝導路は十分な長さとなるので、挿入ガイド部材34からの熱の影響が赤外線センサ94A及び94Bに及ぶことを抑制できる。 In this embodiment, in a flavor inhalation system including a flavor inhaler 100 and a consumable product 120, the shortest path from the infrared sensors 94A and 94B to the outer periphery of the insertion guide member 34, through the set of concave protrusions 36 and ribs 90A that connect the insertion guide member 34 into which the consumable product 120 is inserted to the retaining wall 90, is configured to be longer than the distance between each of the infrared sensors 94A and 94B and the outer periphery of the insertion guide member 34 of the inserted portion. Therefore, according to this embodiment, the heat conduction path from the insertion guide member 34 through the set of concave protrusions 36 and ribs 90A and the retaining wall 90 to each of the infrared sensors 94A and 94B is sufficiently long, so that the influence of heat from the insertion guide member 34 on the infrared sensors 94A and 94B can be suppressed.
(変形例)
 以下、図13~17を参照して、本実施形態の変形例を説明する。なお、上述の実施形態と同一または対応する箇所については、同一の符号を付して説明を省略する。図13は、挿入ガイド部材34の軸方向から見た、消費材120を挿入ガイド部材34に収容した、霧化部30の要部の上面図である。図14は、図13において消費材120に代えて清掃具130を挿入ガイド部材34に収容した上面図である。図15は、図14において清掃具130の配置を変更した上面図である。図16は、図15において清掃具130の配置をさらに変更した第1の上面図である。図17は、図15において清掃具130の配置をさらに変更した第2の上面図である。
(Modification)
Hereinafter, a modified example of this embodiment will be described with reference to Figs. 13 to 17. Note that the same or corresponding parts as those in the above-mentioned embodiment are denoted by the same reference numerals and description thereof will be omitted. Fig. 13 is a top view of the main part of the atomizing unit 30 in which the consumable product 120 is accommodated in the insertion guide member 34, as seen from the axial direction of the insertion guide member 34. Fig. 14 is a top view in which the cleaning tool 130 is accommodated in the insertion guide member 34 instead of the consumable product 120 in Fig. 13. Fig. 15 is a top view in which the arrangement of the cleaning tool 130 in Fig. 14 is changed. Fig. 16 is a first top view in which the arrangement of the cleaning tool 130 in Fig. 15 is further changed. Fig. 17 is a second top view in which the arrangement of the cleaning tool 130 in Fig. 15 is further changed.
 本実施形態の変形例は、赤外線センサ94A及び94Bという複数の光学検知部を用いて挿入ガイド部材34の内部を検知する際の利点を十分に発揮するように、赤外線センサ94A及び94Bを調節したものである。 In this modified embodiment, the infrared sensors 94A and 94B are adjusted to fully utilize the advantages of using multiple optical detection units, the infrared sensors 94A and 94B, to detect the inside of the insertion guide member 34.
 一般に、複数の検知部を設けて、各々の検知部の検知結果の組み合わせに基づいて判定を行うことにより、正確な判定を行うことができる。例えば、消費材ではなくより細い異物が1つの光学検知部の照射範囲に存在する場合に、他の光学検知部による検知を組み合わせれば、収容部内に消費材が収容されていると誤判定することを防止できる。しかしながら、複数の光学検知部の照射範囲が収容部内で重なる領域においては、この領域に消費材ではなくより細い異物が存在する場合に、収容部内に消費材が収容されていると誤判定する可能性がある。すなわち、複数の光学検知部の照射範囲が収容部内で重なる領域においては、各々の検知部の検知結果の組み合わせに基づいて判定を行うことの利点が得られないことがあり得る。 In general, an accurate determination can be made by providing multiple detection units and making a determination based on a combination of the detection results of each detection unit. For example, if a thinner foreign object, rather than a consumable product, is present within the irradiation range of one optical detection unit, combining detection by another optical detection unit can prevent a false determination that a consumable product is contained within the storage unit. However, in an area where the irradiation ranges of multiple optical detection units overlap within the storage unit, if a thinner foreign object, rather than a consumable product, is present in this area, it may be falsely determined that a consumable product is contained within the storage unit. In other words, in an area where the irradiation ranges of multiple optical detection units overlap within the storage unit, the advantage of making a determination based on a combination of the detection results of each detection unit may not be obtained.
 図13に示されるように、挿入ガイド部材34(及びチャンバ50)の内部に消費材120が収容されている場合、赤外線センサ94A、94Bの発光部94A2、94B2から照射された赤外線は、挿入ガイド部材34の透過領域34A、34Bを介して挿入ガイド部材34の内部に進入し、消費材120に到達して反射され、反射された赤外線は透過領域34A、34Bを通過して赤外線センサ94A、94Bの受光部94A1、94B1に到達し、受光される。上述の実施形態において述べたように、以上の過程により、挿入ガイド部材34の内部に消費材120が収容されているとの判定が行われる。 As shown in FIG. 13, when the consumable product 120 is contained inside the insertion guide member 34 (and the chamber 50), the infrared rays emitted from the light-emitting portions 94A2, 94B2 of the infrared sensors 94A, 94B enter the insertion guide member 34 through the transparent regions 34A, 34B of the insertion guide member 34, reach the consumable product 120 and are reflected. The reflected infrared rays pass through the transparent regions 34A, 34B and reach the light-receiving portions 94A1, 94B1 of the infrared sensors 94A, 94B and are received. As described in the above embodiment, the above process determines that the consumable product 120 is contained inside the insertion guide member 34.
 なお、図13において、挿入ガイド部材34の中心軸34Cを示している。また図13において、赤外線センサ94A、94Bの発光部94A2、94B2から照射される赤外線の双方によって照射可能な領域である交差可能領域140を示している。図13においては、便宜上、交差可能領域140は、中心軸34Cを中心とする円形状の破線で示している。交差可能領域140の形状及び面積は、赤外線センサ94A、94Bの発光部94A2、94B2から照射される赤外線の強度及び指向性、挿入ガイド部材34の透過領域34A及び34Bの透過率に基づいて実質的に定まる。なお、図13~17に示される赤外線、交差可能領域140、消費材120、及び後述する清掃具130の大きさ及び形状は、本変形例の原理を説明するための便宜上のものであり、現実の大きさ及び形状は必ずしもこれに一致しない。 13 shows the central axis 34C of the insertion guide member 34. Also, in FIG. 13, an intersecting region 140 is shown, which is a region that can be irradiated by both infrared rays irradiated from the light-emitting units 94A2 and 94B2 of the infrared sensors 94A and 94B. For convenience, in FIG. 13, the intersecting region 140 is shown by a circular dashed line centered on the central axis 34C. The shape and area of the intersecting region 140 are substantially determined based on the intensity and directivity of the infrared rays irradiated from the light-emitting units 94A2 and 94B2 of the infrared sensors 94A and 94B, and the transmittance of the transmission regions 34A and 34B of the insertion guide member 34. Note that the sizes and shapes of the infrared rays, the intersecting region 140, the consumable product 120, and the cleaning tool 130 (described later) shown in FIG. 13 to 17 are for convenience in explaining the principle of this modified example, and do not necessarily match the actual sizes and shapes.
 また、図10に示され、実施形態について上述したように、挿入ガイド部材34の透過領域34A及び34Bの中心における接線は、赤外線センサ94A及び94Bの発光部94A2及び94B2から照射される赤外線と略直交する。よって図13に示すように、交差可能領域140は、Z軸正方向から見て、挿入ガイド部材34の略中心に位置することになる。 10 and described above for the embodiment, the tangent at the center of the transparent regions 34A and 34B of the insertion guide member 34 is approximately perpendicular to the infrared rays emitted from the light-emitting portions 94A2 and 94B2 of the infrared sensors 94A and 94B. Therefore, as shown in FIG. 13, the intersecting region 140 is located approximately at the center of the insertion guide member 34 when viewed from the positive direction of the Z axis.
 ここで挿入ガイド部材34の内部に存在するものは、消費材120に限られず、異物が収容されていることもあり得る。例えば、図14に示されるように、挿入ガイド部材34及びチャンバ50を清掃するための清掃具130が挿入ガイド部材34に挿入されていることがあり得る。一例として、清掃具130は適切な長手方向長さを備えた略円筒状に形成され、チャンバ50の下部に堆積した塵を掃き出すことができるように構成されている。 Here, what is present inside the insertion guide member 34 is not limited to consumable products 120, and foreign objects may also be contained therein. For example, as shown in FIG. 14, a cleaning tool 130 for cleaning the insertion guide member 34 and the chamber 50 may be inserted into the insertion guide member 34. As an example, the cleaning tool 130 is formed in a roughly cylindrical shape with an appropriate longitudinal length, and is configured to be able to sweep out dust that has accumulated at the bottom of the chamber 50.
 清掃具130が挿入ガイド部材34の内部において図14に示すように配置されている場合、赤外線センサ94Aの発光部94A2から照射された赤外線は、透過領域34Aを透過した後、清掃具130により反射されることなく、挿入ガイド部材34の外周部の対向する箇所に到達し、そこで吸収及び反射されるが、この場合の赤外線の反射成分が再び透過領域34Aを透過して受光部94A1に到達した場合、受光部94A1が受光する赤外線の強度は、受光部94A1が検知可能な赤外線の強度の最小値である閾値に満たない。したがって、赤外線センサ94Aは、何も検知しない。これは、上述の実施形態において挿入ガイド部材34に消費材120が挿入されていない場合と同様である。 When the cleaning tool 130 is positioned inside the insertion guide member 34 as shown in FIG. 14, the infrared rays emitted from the light-emitting portion 94A2 of the infrared sensor 94A pass through the transmission area 34A and reach the opposing portion of the outer periphery of the insertion guide member 34 without being reflected by the cleaning tool 130, where they are absorbed and reflected. In this case, when the reflected component of the infrared rays passes through the transmission area 34A again and reaches the light-receiving portion 94A1, the intensity of the infrared rays received by the light-receiving portion 94A1 does not meet the threshold value, which is the minimum value of the intensity of the infrared rays that the light-receiving portion 94A1 can detect. Therefore, the infrared sensor 94A does not detect anything. This is the same as when the consumable product 120 is not inserted into the insertion guide member 34 in the above-mentioned embodiment.
 一方、この場合、赤外線センサ94Bの発光部94B2から照射された赤外線は、透過領域34Bを透過した後、清掃具130に到達して反射され、反射された赤外線は再び透過領域34Bを透過して受光部94B1に到達する。この場合に受光部94B1が受光する赤外線の強度は、受光部94B1が検知可能な赤外線の強度の最小値である閾値以上である。したがって、赤外線センサ94Bは、挿入ガイド部材34の内部に検知対象が収容されていることを検知する。 In this case, the infrared light emitted from the light-emitting portion 94B2 of the infrared sensor 94B passes through the transmission area 34B, reaches the cleaning tool 130 and is reflected, and the reflected infrared light passes through the transmission area 34B again and reaches the light-receiving portion 94B1. In this case, the intensity of the infrared light received by the light-receiving portion 94B1 is equal to or greater than the threshold value, which is the minimum value of the intensity of the infrared light that the light-receiving portion 94B1 can detect. Therefore, the infrared sensor 94B detects that the detection object is contained inside the insertion guide member 34.
 以上の検知結果に基づいて、制御部80は、挿入ガイド部材34の内部の状態について判定を行うことができる。赤外線センサ94Aは何も検知していないので、制御部80は、挿入ガイド部材34には消費材120が挿入されていないと判定することができる。図13に示すように挿入ガイド部材34に消費材120が挿入されているのであれば、赤外線センサ94A及び94Bの双方が消費材120を検知するはずであるからである。さらに、制御部80は、赤外線センサ94Bのみが検知対象を検知していることから、挿入ガイド部材34の内部には、消費材120ではなくより細い異物(ここでは清掃具130)が収容されていると判定することができる。 Based on the above detection results, the control unit 80 can determine the internal state of the insertion guide member 34. Because the infrared sensor 94A does not detect anything, the control unit 80 can determine that the consumable product 120 is not inserted into the insertion guide member 34. This is because, if the consumable product 120 is inserted into the insertion guide member 34 as shown in FIG. 13, both infrared sensors 94A and 94B should detect the consumable product 120. Furthermore, because only the infrared sensor 94B detects the detection target, the control unit 80 can determine that a thinner foreign object (here, the cleaning tool 130) is contained inside the insertion guide member 34, rather than the consumable product 120.
 以上のように、香味吸引器100が複数の赤外線センサ94A及び94Bを備えていることから、制御部80は、挿入ガイド部材34の内部について、(1)消費材120が収容されている、(2)消費材120よりも細い異物が収容されている、(3)何も収容されていない、との3つの状態のいずれかであることを判定することができる。これは、香味吸引器100が単一の赤外線センサのみを備えるように構成された場合には得られない利点である。図14において赤外線センサ94Aが存在しないとすると、制御部80は挿入ガイド部材34の内部に何らかの部材が存在することしか認識することができない。つまり、上記の状態(1)と状態(2)との区別を行うことはできない。一方、図14において赤外線センサ94Bが存在しないとすると、制御部80は、挿入ガイド部材34の内部には何も収容されていない(つまり、状態(3)である)と誤判定してしまう。 As described above, since the flavor inhaler 100 is equipped with multiple infrared sensors 94A and 94B, the control unit 80 can determine that the inside of the insertion guide member 34 is in one of three states: (1) the consumable product 120 is contained, (2) a foreign object thinner than the consumable product 120 is contained, or (3) nothing is contained. This is an advantage that cannot be obtained when the flavor inhaler 100 is configured to have only a single infrared sensor. If the infrared sensor 94A does not exist in FIG. 14, the control unit 80 can only recognize that some kind of member is present inside the insertion guide member 34. In other words, it is not possible to distinguish between the above states (1) and (2). On the other hand, if the infrared sensor 94B does not exist in FIG. 14, the control unit 80 will erroneously determine that nothing is contained inside the insertion guide member 34 (i.e., the state is (3)).
 しかしながら、図15に示すように清掃具130が交差可能領域140と重なるように配置されている場合、上述の利点を得ることができない。図15に示された状況では、複数の赤外線センサ94A及び94Bのいずれもが検知対象を検知するので、制御部80は、挿入ガイド部材34に消費材120が収容されていると誤判定してしまう。つまり、状態(2)であることを認識できず、状態(1)であると誤って認識してしまう。 However, if the cleaning tool 130 is positioned so as to overlap the intersection area 140 as shown in FIG. 15, the above-mentioned advantages cannot be obtained. In the situation shown in FIG. 15, both of the multiple infrared sensors 94A and 94B detect the detection target, and the control unit 80 erroneously determines that the consumable product 120 is contained in the insertion guide member 34. In other words, it fails to recognize that the state is (2), and erroneously recognizes that the state is (1).
 本変形例では、赤外線センサ94A及び94Bを、交差可能領域140において反射された赤外線を検知対象から除外するように構成する。具体的には、図15に示された状況において、赤外線センサ94A、94Bの発光部94A2、94B2から照射された赤外線は、透過領域34A、34Bを透過した後、清掃具130に到達して反射され、反射された赤外線は再び透過領域34A、34Bを透過して受光部94A1,94B1に到達するが、この場合に受光部94A1、94B1が受光する赤外線の強度は、受光部94A1、94B1が検知可能な赤外線の強度の最小値である閾値よりも小さい。したがって、赤外線センサ94A及び94Bのいずれもが、何も検知しない。複数の赤外線センサ94A及び94Bのいずれもが何も検知していないので、制御部80は、挿入ガイド部材34に消費材120が収容されていると誤判定することは無い。具体的には、制御部80は、挿入ガイド部材34の内部には何も収容されていない(つまり、状態(3)である)と判定する。この判定は正確ではないが、少なくとも、図15に示された状況において挿入ガイド部材34に消費材120が収容されていると誤判定することは防止される。 In this modified example, the infrared sensors 94A and 94B are configured to exclude infrared rays reflected in the intersection area 140 from the detection target. Specifically, in the situation shown in FIG. 15, the infrared rays irradiated from the light emitting units 94A2 and 94B2 of the infrared sensors 94A and 94B pass through the transmission areas 34A and 34B, reach the cleaning tool 130 and are reflected. The reflected infrared rays pass through the transmission areas 34A and 34B again and reach the light receiving units 94A1 and 94B1. In this case, the intensity of the infrared rays received by the light receiving units 94A1 and 94B1 is smaller than the threshold value, which is the minimum value of the intensity of the infrared rays that can be detected by the light receiving units 94A1 and 94B1. Therefore, neither of the infrared sensors 94A nor 94B detects anything. Since none of the multiple infrared sensors 94A and 94B detect anything, the control unit 80 does not erroneously determine that the consumable product 120 is stored in the insertion guide member 34. Specifically, the control unit 80 determines that nothing is contained inside the insertion guide member 34 (i.e., the state is (3)). This determination is not accurate, but at least it prevents the control unit 80 from erroneously determining that the consumable product 120 is contained in the insertion guide member 34 in the situation shown in FIG. 15.
 また、清掃具130が図16及び17に示されたように配置されている場合、本変形例に係る香味吸引器100の制御部80は、挿入ガイド部材34の内部には消費材120よりも細い異物が収容されている(つまり、状態(2)である)との正しい判定を行うことができる。図15では清掃具130の全体が交差可能領域140内に収まっていたが、図16及び17においては、清掃具130の一部が交差可能領域140と重なっており、清掃具130の他の部分は交差可能領域140と重なっていない。図16では赤外線センサ94Bのみ、図17では94Aのみが対象を検知するので、図16及び図17に示される状況では、制御部80は、挿入ガイド部材34の内部
の状態について正確な判定を行うことができる。
16 and 17, the control unit 80 of the flavor inhaler 100 according to this modification can correctly determine that a foreign object thinner than the consumable product 120 is contained inside the insertion guide member 34 (i.e., the state is (2)). In FIG. 15, the entire cleaning tool 130 is contained within the intersecting region 140, but in FIG. 16 and 17, a part of the cleaning tool 130 overlaps the intersecting region 140, and other parts of the cleaning tool 130 do not overlap the intersecting region 140. In FIG. 16, only the infrared sensor 94B detects an object, and in FIG. 17, only the infrared sensor 94A detects an object, so that in the situations shown in FIG. 16 and FIG. 17, the control unit 80 can accurately determine the state inside the insertion guide member 34.
 本変形例では、赤外線センサ94A及び94Bのいずれもが、交差可能領域140において反射された赤外線を検知対象から除外するものとして説明した。しかし、本変形例の構成はこれに限られるものではなく、赤外線センサ94A及び94Bの一方のみが交差可能領域140において反射された赤外線を検知対象から除外するように構成してもよい。図13~17のそれぞれにおける個々の場合についての詳細は省略するが、いずれの場合においても、挿入ガイド部材34内に消費材120が収容されていない(つまり、状態(1)ではない)にもかかわらず、消費材120が収容されている(つまり、状態(1)である)と誤判定することは防止される。すなわち、挿入ガイド部材34内に清掃具130が収容されている(つまり、状態(2)である)場合に、何も収容されていない(つまり、状態(3)である)と判定する点で正確でない判定がなされることはあり得るが、赤外線センサ94A及び94Bの一方のみが交差可能領域140において反射された赤外線を検知対象から除外するように構成した場合であっても、図13~17のいずれについても、消費材120が収容されていないにも関わらず消費材120が収容されていると誤判定することは防止される。 In this modified example, both infrared sensors 94A and 94B have been described as excluding infrared rays reflected in the intersection area 140 from the detection target. However, the configuration of this modified example is not limited to this, and only one of infrared sensors 94A and 94B may be configured to exclude infrared rays reflected in the intersection area 140 from the detection target. Details of the individual cases in each of Figures 13 to 17 will be omitted, but in all cases, it is prevented from erroneously determining that the consumable product 120 is contained within the insertion guide member 34 (i.e., it is in state (1)) when the consumable product 120 is not contained within the insertion guide member 34 (i.e., it is not in state (1)). That is, when the cleaning tool 130 is contained within the insertion guide member 34 (i.e., state (2)), it is possible that an inaccurate determination is made as to whether or not anything is contained therein (i.e., state (3)). However, even if only one of the infrared sensors 94A and 94B is configured to exclude infrared light reflected in the intersection area 140 from the detection target, it is possible to prevent a false determination that the consumable product 120 is contained therein when the consumable product 120 is not contained therein in any of the cases shown in Figures 13 to 17.
 本変形例においては、赤外線センサ94A及び94Bは、消費材120及び清掃具130を検知するものとして説明した。しかしながら、赤外線センサ94A及び94Bの検知対象は消費材120及び清掃具130のみに限られるものではなく、挿入ガイド部材34の内部に位置する様々な対象を検知することができる。一例として、上述の実施形態と同様に、赤外線センサ94A及び94Bにより、挿入ガイド部材34の透過領域34A及び34Bに汚れが付着していることを検知することもできる。透過領域34Aまたは34Bに(赤外線の透過を阻む材質の)汚れが付着していることにより、発光部94A2または94B2から照射された赤外線が挿入ガイド部材34の内部に進入せず、対応する受光部94A1または94B1に赤外線が到達しないことがあり得る。つまり、赤外線センサ94Aまたは94Bが対象を検知しないことをもって、透過領域34Aまたは34Bが汚れている可能性があると判定することができる。 In this modified example, the infrared sensors 94A and 94B have been described as detecting the consumable product 120 and the cleaning tool 130. However, the detection targets of the infrared sensors 94A and 94B are not limited to the consumable product 120 and the cleaning tool 130, and various objects located inside the insertion guide member 34 can be detected. As an example, similar to the above embodiment, the infrared sensors 94A and 94B can also detect the presence of dirt on the transparent areas 34A and 34B of the insertion guide member 34. If dirt (made of a material that blocks the transmission of infrared rays) is present on the transparent area 34A or 34B, the infrared rays irradiated from the light-emitting unit 94A2 or 94B2 may not enter the inside of the insertion guide member 34, and the infrared rays may not reach the corresponding light-receiving unit 94A1 or 94B1. In other words, if the infrared sensor 94A or 94B does not detect an object, it can be determined that the transparent area 34A or 34B may be dirty.
 また本変形例では、消費材120は特に略円柱形状に構成されてもよい。 In this modified example, the consumable product 120 may be configured to have a substantially cylindrical shape.
 赤外線センサ赤外線センサ94A及び94Bによる検知結果は、制御部80による香味吸引器100の各部材の制御に利用することができる。例えば、制御部80は、挿入ガイド部材34内に消費材120が収容されている(状態(1)である)と判定しない限り、加熱部40によるチャンバ50に対する加熱を許可しないように構成することができる。この構成により、不要な加熱を防止する安全装置を香味吸引器100に設けることができる。 Infrared Sensor The detection results from the infrared sensors 94A and 94B can be used by the control unit 80 to control each component of the flavor inhaler 100. For example, the control unit 80 can be configured not to allow the heating unit 40 to heat the chamber 50 unless it is determined that the consumable product 120 is contained within the insertion guide member 34 (state (1)). With this configuration, a safety device that prevents unnecessary heating can be provided in the flavor inhaler 100.
 本変形例において説明した香味吸引器100と、消費材120とを組み合わせることにより、好適な香味吸引システムを構成することができる。 By combining the flavor inhaler 100 described in this modified example with a consumable product 120, a suitable flavor inhalation system can be constructed.
(本変形例の作用)
 本変形例では、複数の赤外線センサ94A及び94Bの少なくとも1つが、赤外線センサ94A及び94Bの各々の照射範囲が重なる交差可能領域140において反射された赤外線を、検知対象から除外する。すなわち、複数の赤外線センサ94A及び94Bの少なくとも1つは、誤判定が生じる可能性がある交差可能領域140に位置する対象を、検知対象から除外する。よって本変形例によれば、交差可能領域140に位置する対象を検知対象から除外することにより、誤判定を防止し、複数の赤外線センサ94A及び94Bのそれぞれの検知結果の組み合わせに基づいて判定を行うことの利点を発揮することができる。
(Function of this Modification)
In this modification, at least one of the multiple infrared sensors 94A and 94B excludes from the detection target infrared rays reflected in the intersecting region 140 where the irradiation ranges of the infrared sensors 94A and 94B overlap. That is, at least one of the multiple infrared sensors 94A and 94B excludes from the detection target objects located in the intersecting region 140 where erroneous determination may occur. Thus, according to this modification, by excluding objects located in the intersecting region 140 from the detection target objects, erroneous determination can be prevented, and the advantage of making a determination based on a combination of the detection results of the multiple infrared sensors 94A and 94B can be exhibited.
 本変形例では、赤外線センサ94A、94Bの受光部94A1、94B1には検知し得る赤外線の強度の最小値である閾値が設定されており、複数の赤外線センサ94A及び94Bの少なくとも1つにおいて、交差可能領域140において反射された赤外線を受光した場合に、この赤外線の強度は閾値よりも小さい。すなわち、複数の赤外線センサ94A及び94Bの少なくとも1つは、誤判定が生じる可能性がある交差可能領域140に位置する対象により反射された赤外線を受光した場合に、この赤外線を検知しない。よって本変形例によれば、交差可能領域140に位置する対象を検知対象から確実に除外することにより、誤判定を防止し、赤外線センサ94A及び94Bのそれぞれの検知結果の組み合わせに基づいて判定を行うことの利点を確実に発揮することができる。 In this modification, a threshold value that is the minimum intensity of infrared light that can be detected is set in the light receiving parts 94A1, 94B1 of the infrared sensors 94A, 94B, and when at least one of the infrared sensors 94A and 94B receives infrared light reflected in the intersecting area 140, the intensity of the infrared light is smaller than the threshold value. In other words, when at least one of the infrared sensors 94A and 94B receives infrared light reflected by an object located in the intersecting area 140 where a misjudgment may occur, the infrared light is not detected by the infrared sensor. Therefore, according to this modification, by reliably excluding objects located in the intersecting area 140 from the detection targets, misjudgments can be prevented, and the advantage of making a judgment based on a combination of the detection results of the infrared sensors 94A and 94B can be reliably achieved.
 本変形例では、香味吸引器100において挿入ガイド部材34の内部を検知する複数の赤外線センサ94A及び94Bが、挿入ガイド部材34の軸方向から見て互いに離隔するように配置されている。よって本変形例によれば、複数の赤外線センサ94A及び94Bの各々が異なる角度から検知を行うことにより、挿入ガイド部材34内の状態をより正確に判定することができる。 In this modified example, the multiple infrared sensors 94A and 94B that detect the inside of the insertion guide member 34 in the flavor inhaler 100 are arranged so as to be spaced apart from each other when viewed from the axial direction of the insertion guide member 34. Therefore, according to this modified example, the multiple infrared sensors 94A and 94B each perform detection from a different angle, making it possible to more accurately determine the state inside the insertion guide member 34.
 本変形例では、複数の赤外線センサ94A及び94Bの各々の照射範囲が重なる交差可能領域140が、挿入ガイド部材34の軸方向から見て挿入ガイド部材34の略中心に位置している。よって本変形例によれば、挿入ガイド部材34の中心近傍に位置する対象に起因する誤判定を防止することができる。 In this modified example, the intersecting area 140 where the irradiation ranges of the multiple infrared sensors 94A and 94B overlap is located approximately at the center of the insertion guide member 34 when viewed from the axial direction of the insertion guide member 34. Therefore, according to this modified example, it is possible to prevent erroneous determinations caused by objects located near the center of the insertion guide member 34.
 本変形例では、複数の赤外線センサ94A及び94Bが、挿入ガイド部材34及びチャンバ50の軸方向において、加熱部40により加熱される消費材120が主に収納されるチャンバ50には重ならず、チャンバ50に接続する挿入ガイド部材34に重なるように配置される。よって本変形例によれば、複数の赤外線センサ94A及び94Bが加熱部40により加熱される消費材120から十分に離隔され、複数の赤外線センサ94A及び94Bへの熱の影響を抑制することができる。また、複数の赤外線センサ94A及び94Bを挿入ガイド部材34の軸方向において挿入ガイド部材34と重なるように配置することにより、香味吸引器100の挿入ガイド部材34の軸方向の長さを抑制することができるとともに、複数の赤外線センサ94A及び94Bを遮蔽して外部の影響から防御することができる。一例として、赤外線センサ94A及び94Bが露出するように配置された場合、加熱された消費材120から生じた煙が赤外線センサ94A及び94Bに影響を及ぼす可能性がある。さらに、挿入ガイド部材34に赤外線センサ94A、94Bの発光部94A2、94B2から照射された赤外線が透過可能に構成された透過領域34A及び34Bが設けられていることにより、赤外線センサ94A及び94Bの検知機能を適切に実行し得る。 In this modification, the multiple infrared sensors 94A and 94B are arranged so as to overlap the insertion guide member 34 connected to the chamber 50 in the axial direction of the insertion guide member 34 and the chamber 50, without overlapping the chamber 50 in which the consumable product 120 heated by the heating unit 40 is mainly stored. Therefore, according to this modification, the multiple infrared sensors 94A and 94B are sufficiently separated from the consumable product 120 heated by the heating unit 40, and the influence of heat on the multiple infrared sensors 94A and 94B can be suppressed. In addition, by arranging the multiple infrared sensors 94A and 94B so as to overlap the insertion guide member 34 in the axial direction of the insertion guide member 34, the axial length of the insertion guide member 34 of the flavor inhaler 100 can be suppressed, and the multiple infrared sensors 94A and 94B can be shielded to protect them from external influences. As an example, if the infrared sensors 94A and 94B are arranged so as to be exposed, smoke generated from the heated consumable product 120 may affect the infrared sensors 94A and 94B. Furthermore, the insertion guide member 34 is provided with transparent areas 34A and 34B that are configured to allow infrared light irradiated from the light-emitting parts 94A2 and 94B2 of the infrared sensors 94A and 94B to pass through, so that the detection functions of the infrared sensors 94A and 94B can be performed appropriately.
 本変形例では、複数の赤外線センサ94A及び94Bの発光部94A2、94B2から照射された赤外線が、挿入ガイド部材34の外周部の接線に対して略垂直に入射する。したがって、複数の赤外線センサ94A及び94Bの各々から照射される赤外線は、挿入ガイド部材34の軸方向から見て、挿入ガイド部材34の略中心に向かい、挿入ガイド部材34の中心近傍に交差可能領域140が形成される。よって本変形例によれば、挿入ガイド部材34の中心近傍に位置する対象に起因する誤判定を防止することができる。 In this modified example, the infrared rays emitted from the light-emitting portions 94A2, 94B2 of the multiple infrared sensors 94A and 94B are incident approximately perpendicularly to the tangent to the outer periphery of the insertion guide member 34. Therefore, the infrared rays emitted from each of the multiple infrared sensors 94A and 94B are directed toward approximately the center of the insertion guide member 34 when viewed from the axial direction of the insertion guide member 34, and an intersection area 140 is formed near the center of the insertion guide member 34. Therefore, according to this modified example, it is possible to prevent erroneous determinations caused by objects located near the center of the insertion guide member 34.
 本変形例では、複数の赤外線センサ94A及び94Bの各々において、発光部94A2、94B2と受光部94A1、94B1とが挿入ガイド部材34の軸方向(Z軸方向)に沿って配列され、挿入ガイド部材34の透過領域34A及び34Bは、挿入ガイド部材34の軸方向に沿って延在している。ここで発光部94A2(94B2)と受光部94A1(94B1)とが挿入ガイド部材34の軸方向に直交する方向(X-Y平面上の直線)に沿って配列する場合、赤外線センサ94A及び94Bの配置のためのスペースが大きくなり、香味吸引器100の大型化をもたらす。また発光部94A2(94B2)と受光部94A1(94B1)とが挿入ガイド部材34の軸方向に直交する方向に沿って配列されていると、発光部94A2(94B2)から照射されて水平方向(X-Y平面)に広がった光が消費材120の円形状により乱反射され、受光部94A1(94B1)への適切な到達の妨げとなる。一方、発光部94A2(94B2)と受光部94A1(94B1)とが挿入ガイド部材34の軸方向に沿って配列されていると、発光部94A2(94B2)から照射された光は円筒面の長手方向に略平行な方向(つまり、Z軸方向)に広がるため、消費材120の直線形状により反射され、受光部94A1(94B1)に適切に到達し得る。さらに、赤外線センサ94A及び94Bの配置に合わせて、透過領域34A及び34Bを設けている。よって本変形例によれば、香味吸引器100の小型化とともに、赤外線センサ94A及び94Bによる検知の精度向上に寄与し得る。 In this modified example, in each of the multiple infrared sensors 94A and 94B, the light-emitting units 94A2, 94B2 and the light-receiving units 94A1, 94B1 are arranged along the axial direction (Z-axis direction) of the insertion guide member 34, and the transparent regions 34A and 34B of the insertion guide member 34 extend along the axial direction of the insertion guide member 34. Here, if the light-emitting units 94A2 (94B2) and the light-receiving units 94A1 (94B1) are arranged along a direction perpendicular to the axial direction of the insertion guide member 34 (a straight line on the X-Y plane), the space for arranging the infrared sensors 94A and 94B becomes larger, resulting in an increase in the size of the flavor inhaler 100. Furthermore, if the light emitting unit 94A2 (94B2) and the light receiving unit 94A1 (94B1) are arranged along a direction perpendicular to the axial direction of the insertion guide member 34, the light irradiated from the light emitting unit 94A2 (94B2) and spreading in the horizontal direction (X-Y plane) is diffused by the circular shape of the consumer goods 120, preventing the light from reaching the light receiving unit 94A1 (94B1) properly. On the other hand, if the light emitting unit 94A2 (94B2) and the light receiving unit 94A1 (94B1) are arranged along the axial direction of the insertion guide member 34, the light irradiated from the light emitting unit 94A2 (94B2) spreads in a direction approximately parallel to the longitudinal direction of the cylindrical surface (i.e., the Z-axis direction), and is reflected by the linear shape of the consumer goods 120, so that it can reach the light receiving unit 94A1 (94B1) properly. Furthermore, the transmission areas 34A and 34B are provided in accordance with the arrangement of the infrared sensors 94A and 94B. Therefore, this modification can contribute to miniaturizing the flavor inhaler 100 and improving the detection accuracy of the infrared sensors 94A and 94B.
 本変形例では、複数の赤外線センサ94A及び94Bの受光部94A1、94B1には検知し得る赤外線の強度の最小値である閾値が設定されており、複数の赤外線センサ94A及び94Bの少なくとも1つにおいて、交差可能領域140において反射された赤外線が挿入ガイド部材34の透過領域34A、34Bを通過して受光部94A1、94B1に到達した場合に、この赤外線の強度は閾値よりも小さい。すなわち、複数の赤外線センサ94A及び94Bの少なくとも1つは、誤判定が生じる可能性がある交差可能領域140に位置する対象により反射された赤外線を受光した場合に、この赤外線を検知しない。よって本変形例によれば、交差可能領域140に位置する対象を検知対象から確実に除外することにより、誤判定を防止し、複数の赤外線センサ94A及び94Bのそれぞれの検知結果の組み合わせに基づいて判定を行うことの利点を確実に発揮することができる。 In this modification, a threshold value is set for the light receiving parts 94A1, 94B1 of the multiple infrared sensors 94A and 94B, which is the minimum value of the intensity of infrared light that can be detected. In at least one of the multiple infrared sensors 94A and 94B, when infrared light reflected in the crossable region 140 passes through the transmission regions 34A, 34B of the insertion guide member 34 and reaches the light receiving parts 94A1, 94B1, the intensity of the infrared light is smaller than the threshold value. In other words, when at least one of the multiple infrared sensors 94A and 94B receives infrared light reflected by an object located in the crossable region 140 where a misjudgment may occur, the infrared light is not detected. Therefore, according to this modification, by reliably excluding the object located in the crossable region 140 from the detection target, misjudgment can be prevented, and the advantage of making a judgment based on a combination of the detection results of the multiple infrared sensors 94A and 94B can be reliably demonstrated.
 本変形例では、香味吸引器100の挿入ガイド部材34及びチャンバ50に挿入される消費材120が略円柱形状に構成されている。略円柱形状の消費材120は、従来のたばこスティックに慣れているユーザにとって保持しやすい。また鉛直上方向から見て略円形の形状は対称性を有するため、複数の赤外線センサ94A及び94Bによる検知を行う際に好適である。よって本変形例によれば、ユーザの操作性の向上及び検知の精度向上に寄与し得る。 In this modified example, the consumable product 120 inserted into the insertion guide member 34 and chamber 50 of the flavor inhaler 100 is configured to have an approximately cylindrical shape. The approximately cylindrical consumable product 120 is easy to hold for users who are accustomed to conventional tobacco sticks. In addition, the approximately circular shape when viewed vertically from above is symmetrical, making it suitable for detection by multiple infrared sensors 94A and 94B. Therefore, this modified example can contribute to improving operability for users and improving detection accuracy.
 本変形例では、香味吸引器100において消費材120を検知するために設けられた赤外線センサ94A及び94Bの各々が消費財120を検知した後に、消費材120への加熱を開始する。よって本変形例によれば、不要な加熱動作を防止することができる。 In this modification, after each of the infrared sensors 94A and 94B provided in the flavor inhaler 100 for detecting the consumable product 120 detects the consumable product 120, heating of the consumable product 120 is started. Therefore, according to this modification, unnecessary heating operations can be prevented.
 本変形例では、香味吸引器100と消費材120とを含む香味吸引システムにおいて、複数の赤外線センサ94A及び94Bの少なくとも1つが、赤外線センサ94A及び94Bの各々の照射範囲が重なる交差可能領域140において反射された赤外線を、検知対象から除外する。すなわち、複数の赤外線センサ94A及び94Bの少なくとも1つは、誤判定が生じる可能性がある交差可能領域140に位置する対象を、検知対象から除外する。よって本変形例によれば、交差可能領域140に位置する対象を検知対象から除外することにより、誤判定を防止し、複数の赤外線センサ94A及び94Bのそれぞれの検知結果の組み合わせに基づいて判定を行うことの利点を発揮することができる。 In this modified example, in a flavor inhalation system including a flavor inhaler 100 and a consumable product 120, at least one of the multiple infrared sensors 94A and 94B excludes from the detection target infrared rays reflected in an intersection possible area 140 where the irradiation ranges of the infrared sensors 94A and 94B overlap. In other words, at least one of the multiple infrared sensors 94A and 94B excludes from the detection target objects located in the intersection possible area 140 where erroneous determination may occur. Therefore, according to this modified example, by excluding objects located in the intersection possible area 140 from the detection target objects, erroneous determination can be prevented, and the advantage of making a determination based on a combination of the respective detection results of the multiple infrared sensors 94A and 94B can be exerted.
 以上に本開示の実施形態及び変形例を説明したが、本開示は上記の実施形態及び変形例に限定されるものではなく、特許請求の範囲、及び明細書と図面に記載された技術的思想の範囲内において種々の変形が可能である。なお直接明細書及び図面に記載のない何れの形状や材質であっても、本開示の作用を奏する以上、本開示の技術的思想の範囲内である。 Although the embodiments and modifications of the present disclosure have been described above, the present disclosure is not limited to the above embodiments and modifications, and various modifications are possible within the scope of the claims and the technical ideas described in the specification and drawings. Furthermore, any shape or material not directly described in the specification and drawings is within the scope of the technical ideas of the present disclosure as long as it achieves the effect of the present disclosure.
  20…電源部
  21…電源
  28…ブルートゥースインターフェース
  30…霧化部
  32…断熱部
  34…挿入ガイド部材
  34A…透過領域
  34B…透過領域
  34C…中心軸
  36…凹型突起部
  38…ガスケット
  40…加熱部
  42…加熱要素
  44…電気絶縁部材
  48…電極
  50…チャンバ
  52…開口
  54…非保持部
  56…底部
  56a…穴
  58…第1ガイド部
  58a…テーパ面
  60…側壁部
  62…接触部
  62a…内面
  62b…外面
  66…離隔部
  66a…内面
  66b…外面
  67…空隙
  70…熱拡散スリーブ
  80…制御部
  82…基板
  90…保持壁部
  90A…リブ
  90B…リブ
  90C…リブ
  92…固定基板
  94A、94B…赤外線センサ
  94A1、94B1…受光部
  94A2、94B2…発光部
  100…香味吸引器
  102…ハウジング
  104…上部ハウジング
  106…下部ハウジング
  108…スライドカバー
  110…開口
  120…消費材
  130…清掃具
  140…交差可能領域
20...Power supply unit 21...Power supply 28...Bluetooth interface 30...Atomization unit 32...Insulation unit 34...Insertion guide member 34A...Transmission area 34B...Transmission area 34C...Central axis 36...Concave protrusion 38...Gasket 40...Heating unit 42...Heating element 44...Electrical insulation member 48...Electrode 50...Chamber 52...Opening 54...Non-holding unit 56...Bottom 56a...Hole 58...First guide unit 58a...Tapered surface 60...Side wall 62...Contact unit 62a...Inner surface 62b...Outer surface 66...Separation unit 66a...Inner surface 66b...Outer surface 67...Gap 70...Heat diffusion sleeve 80...Control unit 82...Substrate 90...Retaining wall 90A...Rib 90B...Rib 90C...Rib 92...Fixed substrate 94A, 94B... Infrared sensors 94A1, 94B1... Light receiving section 94A2, 94B2... Light emitting section 100... Flavor inhaler 102... Housing 104... Upper housing 106... Lower housing 108... Slide cover 110... Opening 120... Consumable goods 130... Cleaning tool 140... Possible intersection area

Claims (11)

  1.  消費材が挿入される被挿入部と、
     各々が光を照射する発光部と、光を受光する受光部とを含み、互いに離隔するように配置された、少なくとも2つの検知部と
     を備え、
     前記被挿入部内には、前記少なくとも2つの検知部の各々から照射された光が交わることが可能な交差可能領域が存在し、
     前記少なくとも2つの検知部の少なくとも1つは、前記交差可能領域において反射された反射光を検知対象から除外するように構成されている、
     香味吸引器。
    an insertion portion into which a consumable product is inserted;
    At least two detection units, each of which includes a light-emitting unit that emits light and a light-receiving unit that receives light, and which are arranged to be spaced apart from each other;
    an intersecting area is present within the inserted portion, where light beams emitted from the at least two detection portions can intersect with each other;
    At least one of the at least two detection units is configured to exclude reflected light reflected in the intersecting region from a detection target.
    Flavor inhaler.
  2.  前記受光部は、検知し得る光の強度の最小値である閾値を有しており、
     少なくとも1つの前記受光部において、前記交差可能領域において反射された反射光が受光された場合、反射光の強度は前記閾値よりも小さい、
     請求項1に記載の香味吸引器。
    The light receiving unit has a threshold value that is a minimum value of detectable light intensity,
    When the light reflected in the intersection region is received by at least one of the light receiving units, the intensity of the reflected light is smaller than the threshold value.
    The flavor inhaler according to claim 1 .
  3.  前記少なくとも2つの検知部は、前記被挿入部の軸方向から見て互いに離隔するように配置される、
     請求項1または2に記載の香味吸引器。
    The at least two detection units are disposed so as to be spaced apart from each other when viewed in the axial direction of the inserted portion.
    The flavor inhaler according to claim 1 or 2.
  4.  前記交差可能領域は、前記被挿入部の軸方向から見て前記被挿入部の略中心に位置する、
     請求項3に記載の香味吸引器。
    The intersecting region is located approximately at the center of the inserted portion when viewed in the axial direction of the inserted portion.
    The flavor inhaler according to claim 3.
  5.  前記消費材を加熱する加熱部をさらに備え、
     前記被挿入部は、
      前記消費材を収容する収容部と、
      前記収容部に接続し、前記消費材の挿入口を構成するガイド部と
     を含み、
     前記少なくとも2つの検知部は、前記被挿入部の軸方向において前記ガイド部と重なるように配置され、
     前記ガイド部は、前記発光部が照射した光と、前記被挿入部内で反射された反射光とが透過可能に構成された透過領域を含む、
     請求項1または2に記載の香味吸引器。
    The device further includes a heating unit for heating the consumable product.
    The inserted portion is
    A storage section for storing the consumable product;
    a guide portion connected to the storage portion and constituting an insertion port for the consumable product;
    the at least two detection portions are arranged so as to overlap with the guide portion in an axial direction of the inserted portion,
    The guide portion includes a transmission region configured to transmit light emitted by the light emitting portion and reflected light reflected within the inserted portion.
    The flavor inhaler according to claim 1 or 2.
  6.  前記発光部から照射された光は、前記ガイド部の外周部の接線に対して略垂直に入射する、
     請求項5に記載の香味吸引器。
    The light emitted from the light emitting unit is incident approximately perpendicularly to a tangent line of the outer periphery of the guide unit.
    The flavor inhaler according to claim 5.
  7.  前記発光部と、対応する前記受光部とは、前記被挿入部の軸方向に沿うように配置され、
     前記ガイド部の前記透過領域は、前記被挿入部の軸方向に沿った長手方向を有している、
     請求項5に記載の香味吸引器。
    The light emitting portion and the corresponding light receiving portion are arranged along an axial direction of the inserted portion,
    The transmission area of the guide portion has a longitudinal direction along an axial direction of the inserted portion.
    The flavor inhaler according to claim 5.
  8.  少なくとも1つの前記発光部は、照射した光が前記交差領域で反射され、前記透過領域を通過した後に対応する前記受光部に到達した場合に、前記受光部が検知し得る光の強度の最小値である閾値よりも小さい強度となるような光を照射するように構成されている、
     請求項5に記載の香味吸引器。
    At least one of the light emitting units is configured to irradiate light such that when the irradiated light is reflected at the intersection region, passes through the transmission region, and then reaches the corresponding light receiving unit, the intensity of the light is smaller than a threshold value that is a minimum value of the intensity of light that can be detected by the light receiving unit.
    The flavor inhaler according to claim 5.
  9.  前記消費材は、略円柱形状に構成されている、
     請求項1または2に記載の香味吸引器。
    The consumable product is configured to have a substantially cylindrical shape.
    The flavor inhaler according to claim 1 or 2.
  10.  前記少なくとも2つの検知部の各々が前記被挿入部に挿入された前記消費材を検知した場合に、前記加熱部は前記消費財の加熱を開始する、
     請求項1または2に記載の香味吸引器。
    When each of the at least two detection units detects the consumer good inserted into the insertion unit, the heating unit starts heating the consumer good.
    The flavor inhaler according to claim 1 or 2.
  11.  香味吸引器であって、
     消費材が挿入される被挿入部と、
     各々が光を照射する発光部と、光を受光する受光部とを含み、互いに離隔するように配置された、少なくとも2つの検知部と
     を備え、
     前記被挿入部内には、前記少なくとも2つの検知部の各々から照射された光が交わることが可能な交差可能領域が存在し、
     前記少なくとも2つの検知部の少なくとも1つは、前記交差可能領域において反射された反射光を検知対象から除外するように構成されている、
     香味吸引器と、
     消費材と
     を含む、
     香味吸引システム。
    1. A flavor inhaler, comprising:
    an insertion portion into which a consumable product is inserted;
    At least two detection units, each of which includes a light-emitting unit that emits light and a light-receiving unit that receives light, and which are arranged to be spaced apart from each other;
    an intersecting region is present within the inserted portion, where light beams emitted from the at least two detection portions can intersect with each other;
    At least one of the at least two detection units is configured to exclude reflected light reflected in the intersecting region from a detection target.
    A flavor aspirator;
    Including consumer goods and
    Flavor extraction system.
PCT/JP2022/046303 2022-12-16 2022-12-16 Flavor inhaler and flavor inhalation system WO2024127608A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/046303 WO2024127608A1 (en) 2022-12-16 2022-12-16 Flavor inhaler and flavor inhalation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/046303 WO2024127608A1 (en) 2022-12-16 2022-12-16 Flavor inhaler and flavor inhalation system

Publications (1)

Publication Number Publication Date
WO2024127608A1 true WO2024127608A1 (en) 2024-06-20

Family

ID=91484627

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/046303 WO2024127608A1 (en) 2022-12-16 2022-12-16 Flavor inhaler and flavor inhalation system

Country Status (1)

Country Link
WO (1) WO2024127608A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0590161U (en) * 1992-05-02 1993-12-07 剛志 原田 Toxic substance reducer for tobacco
JP2021520776A (en) * 2018-03-29 2021-08-26 ニコベンチャーズ トレーディング リミテッド A device for producing an aerosol from an aerosolizable medium, an article of an aerosolizable medium, and a method of operating an aerosol generator.
JP2022504005A (en) * 2019-10-10 2022-01-13 ケーティー・アンド・ジー・コーポレーション Aerosol generator and its operation method
WO2022123768A1 (en) * 2020-12-11 2022-06-16 日本たばこ産業株式会社 Flavor inhalerr and method for manufacturing flavor inhaler

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0590161U (en) * 1992-05-02 1993-12-07 剛志 原田 Toxic substance reducer for tobacco
JP2021520776A (en) * 2018-03-29 2021-08-26 ニコベンチャーズ トレーディング リミテッド A device for producing an aerosol from an aerosolizable medium, an article of an aerosolizable medium, and a method of operating an aerosol generator.
JP2022504005A (en) * 2019-10-10 2022-01-13 ケーティー・アンド・ジー・コーポレーション Aerosol generator and its operation method
WO2022123768A1 (en) * 2020-12-11 2022-06-16 日本たばこ産業株式会社 Flavor inhalerr and method for manufacturing flavor inhaler

Similar Documents

Publication Publication Date Title
EP3813574B1 (en) Electronic cigarette with optical vaporisation system
JP2017504361A (en) Aerosol delivery device comprising a plurality of outer bodies and associated assembly method
US11944125B2 (en) Sensor for device aerosol-generating system
CN111109679A (en) Electronic smoking device
CN109640715B (en) Aerosol generating system with spectrometer for aerosol analysis
JP2023156363A (en) Aerosol provision device
KR20200127884A (en) Residual amount measurement structure of liquid catridge applied in portable aerosol forming apparatus
WO2024127608A1 (en) Flavor inhaler and flavor inhalation system
WO2024127609A1 (en) Flavor inhaler and flavor inhalation system
WO2024127607A1 (en) Flavor inhaler and flavor inhalation system
JP7284818B2 (en) Optical module and aerosol generator containing same
TW202223388A (en) Gas concentration measurement system and airway adapter thereof
US20230276846A1 (en) Aerosol-generating device
WO2023112184A1 (en) Flavor inhaler
WO2024127611A1 (en) Flavor inhaler and flavor inhalation system
WO2024127612A1 (en) Flavor inhaler and flavor inhalation system
WO2024013928A1 (en) Aerosol generation system and information processing method
WO2024127610A1 (en) Flavor inhaler and flavor inhalation system
CN216147228U (en) Atomization assembly and atomization device
US20240016212A1 (en) Aerosol provision systems and methods
RU2803240C2 (en) Aerosol generating system, method for its application, aerosol generating device, and cartridge for use in aerosol generating device
TWI739555B (en) Nebulizer and method for detecting the aerosol inside the nebulizer
RU2821198C2 (en) Aerosol generating device
WO2022123769A1 (en) Flavor inhaler
WO2023161447A1 (en) Aerosol provision device