WO2024125493A1 - 交调测量装置 - Google Patents

交调测量装置 Download PDF

Info

Publication number
WO2024125493A1
WO2024125493A1 PCT/CN2023/138074 CN2023138074W WO2024125493A1 WO 2024125493 A1 WO2024125493 A1 WO 2024125493A1 CN 2023138074 W CN2023138074 W CN 2023138074W WO 2024125493 A1 WO2024125493 A1 WO 2024125493A1
Authority
WO
WIPO (PCT)
Prior art keywords
line
signal generator
measurement device
output end
spectrum analyzer
Prior art date
Application number
PCT/CN2023/138074
Other languages
English (en)
French (fr)
Inventor
薛厚
郭嘉帅
Original Assignee
深圳飞骧科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳飞骧科技股份有限公司 filed Critical 深圳飞骧科技股份有限公司
Publication of WO2024125493A1 publication Critical patent/WO2024125493A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/16Spectrum analysis; Fourier analysis
    • G01R23/20Measurement of non-linear distortion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/46Monitoring; Testing

Definitions

  • the utility model relates to the technical field of wireless communications, in particular to an intermodulation measurement device.
  • multi-carrier communication is a communication method that uses power lines to transmit data and media signals.
  • the environment for using carriers for communication is gradually maturing.
  • the use of power line carrier communication does not require rewiring, which can save a lot of material and manpower resources and has good economic and social benefits.
  • the intermodulation intercept point is an important indicator for measuring linearity or distortion. Since intermodulation distortion will cause adjacent channel crosstalk, reduce system spectrum utilization and worsen the bit error rate, the larger the system capacity, the higher the intermodulation distortion requirement. Due to the high complexity of general measurement systems, it is difficult to ensure the consistency and accuracy of multiple test results, which increases the difficulty and workload of testing.
  • the embodiment of the utility model provides an intermodulation measurement device to solve the technical problems that the existing measurement system is highly complex, it is difficult to ensure the consistency and accuracy of multiple test results, and the test difficulty and workload are increased.
  • an embodiment of the utility model provides an intermodulation measurement device, comprising: a multi-scale signal generator, a low-noise amplifier, a spectrum analyzer, and a data correction capture system electrically connected in sequence; wherein the output end of the multi-scale signal generator is connected to the input end of the low-noise amplifier through a first line, the output end of the low-noise amplifier is connected to the input end of the spectrum analyzer through a second line, the output end of the multi-scale signal generator and the output end of the spectrum analyzer are respectively connected to the data correction capture system, the first line and the second line are homogeneous connecting lines of equal length, and the data correction capture system is used to measure the losses of the first line and the second line respectively.
  • the polyphonic signal generator is used to generate a polyphonic signal greater than or equal to 2.
  • the input power of the low noise amplifier is the difference between the output power of the multi-scale signal generator and the loss of the first line.
  • the multi-scale signal generator outputs a dual-scale equal-amplitude signal
  • the dual-scale equal-amplitude signal includes a first signal and a second signal
  • the first signal and the second signal are both -34.5dBm.
  • the frequency f1 of the first signal is 2050 Mhz
  • the frequency f2 of the second signal is 2060 Mhz.
  • the spectrum width of the spectrum analyzer is 2030Mhz-2080Mhz.
  • a multi-scale signal generator, a low noise amplifier, a spectrum analyzer and a data correction and capture system are connected in sequence; the output end of the multi-scale signal generator is connected to the input end of the low noise amplifier through a first line, the output end of the low noise amplifier is connected to the input end of the spectrum analyzer through a second line, the output end of the multi-scale signal generator and the output end of the spectrum analyzer are respectively connected to the data correction and capture system, and the data correction and capture system is used to measure the loss of the first line and the second line respectively; through the input power of the multi-scale signal generator, the line loss is controlled and the measurement data is corrected and captured in real time, the state of the signal after passing through the system is well reflected, so that the real-time error of the intermodulation measurement device is reduced to about 0.1dBm, which can be ignored, and thus the sensitivity of the current measurement system to interference can also be reflected, thereby ensuring the accuracy and reliability of real-time measurement.
  • FIG1 is a module diagram of an intermodulation measurement device provided by an embodiment of the utility model
  • FIG. 2 is a frequency diagram of the connection lines of the intermodulation measurement device provided by an embodiment of the present utility model.
  • An embodiment of the utility model provides an intermodulation measurement device, comprising: a multi-scale signal generator Gt, a low noise amplifier LNA, a spectrum analyzer Sa and a data correction capture system Dt connected in sequence; the output end of the multi-scale signal generator Gt is connected to the input end of the low noise amplifier LNA through a first line, the output end of the low noise amplifier LNA is connected to the input end of the spectrum analyzer Sa through a second line, the output end of the multi-scale signal generator Gt and the output end of the spectrum analyzer Sa are respectively connected to the data correction capture system Dt, and the data correction capture system Dt is used to measure the losses of the first line and the second line respectively.
  • the power is outputted from the multi-tone signal generator Gt to the input end of the low noise amplifier LNA, and then inputted to the spectrum analyzer Sa through the output end of the low noise amplifier LNA.
  • the frequency band of the spectrum analyzer Sa is wide, and the input power can meet the range of the output power requirement of the low noise amplifier LNA.
  • the data correction capture system Dt can dynamically capture the measurement data of the spectrum analyzer Sa multiple times, and compare it with the output value of the multi-tone signal generator Gt to reduce the error. In this way, by controlling the input power of the multi-tone signal generator Gt, the line loss, and correcting the captured measurement data in real time, the state of the signal after passing through the system is well reflected.
  • the real-time error of the intermodulation measurement device is reduced to about 0.1dBm, which can be ignored, and thus can also reflect the sensitivity of the current measurement system to interference, thereby ensuring the accuracy and reliability of real-time measurement.
  • the polyphonic signal generator Gt is used to generate a polyphonic signal greater than or equal to 2.
  • the input power of the low noise amplifier LNA is the difference between the output power of the multi-scale signal generator Gt and the loss of the first line.
  • the multi-tone signal generator Gt is used to generate a multi-tone signal greater than or equal to 2, and its output power is Pout.
  • LNA is a low noise amplifier within a certain operating frequency band, its operating frequency band is fa-fz, its input power is Pin, and its gain is G0.
  • the loss of the first line A is RLa.
  • the loss of the second line B is RLb.
  • the spectrum analyzer Sa has a wide frequency band range, and the input power can meet the range required by the LNA output power.
  • the data correction capture system Dt can dynamically capture the Sa measurement data multiple times and compare it with the output value of the multi-tone signal generator Gt to reduce the error.
  • the real-time error of the intermodulation measurement device is reduced to a negligible about 0.1dBm, and thus it can also reflect the sensitivity of the current measurement system to interference, thereby ensuring the accuracy and reliability of real-time measurement.
  • the multi-scale signal generator Gt outputs a dual-scale constant-amplitude signal
  • the dual-scale constant-amplitude signal includes a first signal and a second signal, and both the first signal and the second signal are -34.5dBm.
  • the frequency f1 of the first signal is 2050 Mhz
  • the frequency f2 of the second signal is 2060 Mhz.
  • the spectrum width of the spectrum analyzer Sa is 2030Mhz-2080Mhz.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)

Abstract

本申请提供一种交调测量装置,所述交调测量装置包括:依次电连接的多音阶信号发生器、低噪声放大器、频谱分析仪以及数据修正捕获系统;其中,所述多音阶信号发生器的输出端通过第一线路连接至所述低噪声放大器的输入端,所述低噪声放大器的输出端通过第二线路连接至所述频谱分析仪的输入端,所述多音阶信号发生器的输出端和所述频谱分析仪的输出端分别连接至所述数据修正捕获系统,所述第一线路和所述第二线路为等长同质连接线,所述数据修正捕获系统用于分别测量所述第一线路和所述第二线路的损耗。本申请的交调测量装置测量准确,可靠性高。

Description

交调测量装置 技术领域
本实用新型涉及无线通信技术领域,尤其涉及一种交调测量装置。
背景技术
随着无线通信技术的快速发展,多载波通讯为利用电力线传输数据和媒体信号的一种通信方式。利用载波进行通信的环境逐渐成熟,采用电力线载波通信不用重新布线,可以节省大量的物力人力,具有良好的经济效益和社会效益。
在多载波通讯系统中,交调截取点是衡量线性度或失真的重要指标,由于交调失真会产生临近信道串扰,降低系统频谱利用率使误码率恶化,因此系统容量越大,交调失真要求也高。由于一般的测量系统复杂度高,很难保证多次测试结果的一致性和准确性,加大了测试难度和工作量。
实用新型内容
本实用新型实施例提供一种交调测量装置,以解决现有测量系统复杂度高,很难保证多次测试结果的一致性和准确性,加大了测试难度和工作量的技术问题。
第一方面,本实用新型实施例提供一种交调测量装置,所述交调测量装置包括:依次电连接的多音阶信号发生器、低噪声放大器、频谱分析仪以及数据修正捕获系统;其中,所述多音阶信号发生器的输出端通过第一线路连接至所述低噪声放大器的输入端,所述低噪声放大器的输出端通过第二线路连接至所述频谱分析仪的输入端,所述多音阶信号发生器的输出端和所述频谱分析仪的输出端分别连接至所述数据修正捕获系统,所述第一线路和所述第二线路为等长同质连接线,所述数据修正捕获系统用于分别测量所述第一线路和所述第二线路的损耗。
优选的,所述多音阶信号发生器用于产生大于等于2的多音阶信号。
优选的,所述低噪声放大器的输入功率为所述多音阶信号发生器的输出功率和第一线路的损耗的差值。
优选的,所述多音阶信号发生器输出双音阶等幅信号,所述双音阶等幅信号包括第一信号和第二信号,所述第一信号和所述第二信号均为-34.5dBm。
优选的,所述第一信号的频率f1为2050Mhz,所述第二信号的频率f2为2060Mhz。
优选的,所述频谱分析仪的频谱宽度为2030Mhz-2080Mhz。
本实用新型实施例中,通过将多音阶信号发生器、低噪声放大器、频谱分析仪以及数据修正捕获系统依次连接;所述多音阶信号发生器的输出端通过第一线路连接至所述低噪声放大器的输入端,所述低噪声放大器的输出端通过第二线路连接至所述频谱分析仪的输入端,所述多音阶信号发生器的输出端和所述频谱分析仪的输出端分别连接至所述数据修正捕获系统,所述数据修正捕获系统用于分别测量所述第一线路和所述第二线路的损耗;通过对多音阶信号发生器的输入功率,线路损耗的控制及实时修正捕获测量数据的方式,很好的反应了信号在经过系统后的状态,使得交调测量装置实时误差缩小到可忽略不计约0.1dBm,因而也可反应当前测量系统对干扰的敏感度,从而保证实时测量的准确度与可靠性。
附图说明
为了更清楚地说明本实用新型实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本实用新型的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本实用新型实施例提供的交调测量装置的模块图;
图2是本实用新型实施例提供的交调测量装置的连接线的频率图。
具体实施方式
下面将结合本实用新型实施例中的附图,对本实用新型实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本实用新型一部分实施例,而不是全部的实施例。基于本实用新型中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的每个行人其他实施例,都属 于本实用新型保护的范围。
本申请的说明书和权利要求书及附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
请参见附图1-2所示,本实用新型实施例提供一种交调测量装置,包括:依次连接的多音阶信号发生器Gt、低噪声放大器LNA、频谱分析仪Sa以及数据修正捕获系统Dt;所述多音阶信号发生器Gt的输出端通过第一线路连接至所述低噪声放大器LNA的输入端,所述低噪声放大器LNA的输出端通过第二线路连接至所述频谱分析仪Sa的输入端,所述多音阶信号发生器Gt的输出端和所述频谱分析仪Sa的输出端分别连接至所述数据修正捕获系统Dt,所述数据修正捕获系统Dt用于分别测量所述第一线路和所述第二线路的损耗。
具体的,通过多音阶信号发生器Gt输出功率至低噪声放大器LNA的输入端,通过低噪声放大器LNA的输出端输入至频谱分析仪Sa,通过频谱分析仪Sa的频段范围宽,可输入功率能满足低噪声放大器LNA输出功率要求的范围。通过数据修正捕获系统Dt可动态多次捕捉频谱分析仪Sa的测量数据,并与多音阶信号发生器Gt输出值比较以减小误差。这样通过对多音阶信号发生器Gt的输入功率,线路损耗的控制及实时修正捕获测量数据的方式,很好的反应了信号在经过系统后的状态。与传统测量法其误差最优在0.5-1dBm,本交调测量装置实时误差缩小到可忽略不计约0.1dBm,因而也可反应当前测量系统对干扰的敏感度,从而保证实时测量的准确度与可靠性。
在本实施例中,所述多音阶信号发生器Gt用于产生大于等于2的多音阶信号。
在本实施例中,所述低噪声放大器LNA的输入功率为所述多音阶信号发生器Gt的输出功率和第一线路的损耗的差值。
具体的,多音阶信号发生器Gt用于产生大于等于2的多音阶信号,其输出功率为Pout。LNA为一定工作频段内的低噪声放大器,其工作频段为fa-fz,其输入功率为Pin,其增益为G0。第一线路A的损耗为RLa。第二线路B的损耗为RLb。频谱分析仪Sa为频段范围宽,可输入功率能满足LNA输出功率要求的范围。数据修正捕获系统Dt可动态多次捕获Sa测量数据,并与多音阶信号发生器Gt输出值比较以减少误差。本交调测量装置实时误差缩小到可忽略不计约0.1dBm,因而也可反应当前测量系统对干扰的敏感度,从而保证实时测量的准确度与可靠性。
其中:Pin=Pout-RLa。
在本实施例中,所述多音阶信号发生器Gt输出双音阶等幅信号,所述双音阶等幅信号包括第一信号和第二信号,所述第一信号和所述第二信号均为-34.5dBm。
在本实施例中,所述第一信号的频率f1为2050Mhz,所述第二信号的频率f2为2060Mhz。
在本实施例中,所述频谱分析仪Sa的频谱宽度为2030Mhz-2080Mhz。
本实用新型的工作原理如下:
具体仅以IIP3测试为例说明方案具体实施,IIPn(n>=2)测试也可参照实施。
1)准备好两个长度适中的等长同质第一线路A和第二线路B,测量第一线路A和第二线路B损耗:在2Ghz时RLa=RLb=0.5dB;第二线路B连接频谱分析仪Sa的输入端。
2)调节多音阶信号发生器Gt使之输出双音阶等幅信号:f1=f2=-34.5dBm;f1=2050Mhz;f2=2060Mhz,即Pout=-34.5dBm;因此Pin=-35dBm。
3)打开频谱仪Sa,设定其频谱宽度为2030-2080Mhz,RBW=1Khz,将第二线路B的另一端连接至多音阶信号发生器Gt的输出端,将第二线路B的线损0.5补偿入频谱分析仪Sa,此时频谱分析仪Sa上f1和f2应该为-34.5dBm,然后将第二线路B从多音阶信号发生器Gt的输出端取下。
4)导通并测量低噪声放大器LNA以确定其工作状态良好,并将其如图1接入第一线路A和第二线路B之间,第一线路A的另一端接上多音阶信号发生器Gt输出端,观察频谱分析仪Sa上应多出两条除f1和f2以外的直 线f3=2040Mhz,f4=2070Mhz,如图2所示。
5)将数据修正捕获系统Dt接入频谱分析仪Sa,使其捕获f1和f3或f2和f4的值,则IIP3=Pin+(f1-f3)/2;比如此时f1=-17dBm,f3=-79dBm,带入上式得IIP3=-4dBm。不断改变Pin的值在合适范围内重复测试几次后其结果维持不变说明测试结果良好;比如Pin=-45dBm时IIP3=-4.04dBm;Pin=-40dBm时IIP3=-4.03dBm。
这样通过对多音阶信号发生器Gt的输入功率,线路损耗(A、B)的控制及实时修正捕获测量数据的方式,很好的反应了信号在经过系统后的状态。与传统测量法其误差最优在0.5-1dBm,本交调测量装置实时误差缩小到可忽略不计约0.1dBm,因而也可反应当前测量系统对干扰的敏感度,从而保证实时测量的准确度与可靠性。
以上所揭露的仅为本实用新型较佳实施例而已,当然不能以此来限定本实用新型之权利范围,因此依本实用新型权利要求所作的等同变化,仍属本实用新型所涵盖的范围。

Claims (6)

  1. 一种交调测量装置,其特征在于,所述交调测量装置包括:依次电连接的多音阶信号发生器、低噪声放大器、频谱分析仪以及数据修正捕获系统;其中,所述多音阶信号发生器的输出端通过第一线路连接至所述低噪声放大器的输入端,所述低噪声放大器的输出端通过第二线路连接至所述频谱分析仪的输入端,所述多音阶信号发生器的输出端和所述频谱分析仪的输出端分别连接至所述数据修正捕获系统,所述第一线路和所述第二线路为等长同质连接线,所述数据修正捕获系统用于分别测量所述第一线路和所述第二线路的损耗。
  2. 如权利要求1所述的交调测量装置,其特征在于,所述多音阶信号发生器用于产生大于等于2的多音阶信号。
  3. 如权利要求1所述的交调测量装置,其特征在于,所述低噪声放大器的输入功率为所述多音阶信号发生器的输出功率和所述第一线路的损耗的差值。
  4. 如权利要求2所述的交调测量装置,其特征在于,所述多音阶信号发生器输出双音阶等幅信号,所述双音阶等幅信号包括第一信号和第二信号,所述第一信号和所述第二信号均为-34.5dBm。
  5. 如权利要求4所述的交调测量装置,其特征在于,所述第一信号的频率f1为2050Mhz,所述第二信号的频率f2为2060Mhz。
  6. 如权利要求5所述的交调测量装置,其特征在于,所述频谱分析仪的频谱宽度为2030Mhz-2080Mhz。
PCT/CN2023/138074 2022-12-16 2023-12-12 交调测量装置 WO2024125493A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202223395129.6U CN219068196U (zh) 2022-12-16 2022-12-16 交调测量装置
CN202223395129.6 2022-12-16

Publications (1)

Publication Number Publication Date
WO2024125493A1 true WO2024125493A1 (zh) 2024-06-20

Family

ID=86343900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/138074 WO2024125493A1 (zh) 2022-12-16 2023-12-12 交调测量装置

Country Status (2)

Country Link
CN (1) CN219068196U (zh)
WO (1) WO2024125493A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN219068196U (zh) * 2022-12-16 2023-05-23 深圳飞骧科技股份有限公司 交调测量装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050159908A1 (en) * 2002-04-30 2005-07-21 Ronald Minihold Method and device for measuring intermodulation distortion
US20060290358A1 (en) * 2005-02-08 2006-12-28 Stmicroelectronics S.R.I. Method and circuit for measuring characteristic parameters of intermodulation distortion
CN102628897A (zh) * 2011-12-05 2012-08-08 中国科学院微电子研究所 基于N1dB压缩点和N2dB压缩点的三阶交调测试方法
CN102749513A (zh) * 2012-06-27 2012-10-24 中国电子科技集团公司第四十一研究所 一种利用矢量网络分析仪实现交调失真频谱测量的方法
CN217159719U (zh) * 2022-02-28 2022-08-09 成都航拓航空科技有限公司 三阶截点测试电路
CN219068196U (zh) * 2022-12-16 2023-05-23 深圳飞骧科技股份有限公司 交调测量装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050159908A1 (en) * 2002-04-30 2005-07-21 Ronald Minihold Method and device for measuring intermodulation distortion
US20060290358A1 (en) * 2005-02-08 2006-12-28 Stmicroelectronics S.R.I. Method and circuit for measuring characteristic parameters of intermodulation distortion
CN102628897A (zh) * 2011-12-05 2012-08-08 中国科学院微电子研究所 基于N1dB压缩点和N2dB压缩点的三阶交调测试方法
CN102749513A (zh) * 2012-06-27 2012-10-24 中国电子科技集团公司第四十一研究所 一种利用矢量网络分析仪实现交调失真频谱测量的方法
CN217159719U (zh) * 2022-02-28 2022-08-09 成都航拓航空科技有限公司 三阶截点测试电路
CN219068196U (zh) * 2022-12-16 2023-05-23 深圳飞骧科技股份有限公司 交调测量装置

Also Published As

Publication number Publication date
CN219068196U (zh) 2023-05-23

Similar Documents

Publication Publication Date Title
WO2024125493A1 (zh) 交调测量装置
CN101526564B (zh) 功率与驻波比的检测装置及方法
CN102281113B (zh) 通信中继装置及其驻波比检测装置和方法
CN106877892B (zh) 一种抗干扰接收电路结构,方法及设备
CN207652434U (zh) 超高频射频识别载波两级对消处理电路
CN107911093A (zh) 自动增益控制agc电路、方法和装置
CN110034831A (zh) 一种低复杂度的频谱监测装置及方法
CN106877946A (zh) 一种高性能信道模拟器自动控制接收机及其验证装置
CN210243527U (zh) 一种多通道v波段辐射计接收机
CN109951244B (zh) 一种应用于信道模拟器的功率测量及射频接收增益控制方法
CN106597106A (zh) 一种行波管工作状态下输出端口驻波系数测试装置及方法
CN207200713U (zh) 一种无源互调测试系统
CN204721339U (zh) 一种八通道多模系统的信号接收装置
CN106788813A (zh) 一种干扰信号检测、消除装置、方法以及移动终端
CN113037234B (zh) 一种宽带大功率合成方法
CN104242831A (zh) 宽带低噪声放大装置
CN115061524A (zh) 多模电台的功率控制电路及多模电台
CN101598751B (zh) 高功率射频模块动态阻抗的一种测量方法及其测量装置
CN109412621B (zh) 一种四通道独立稳幅式本振功分装置和方法
US20100007415A1 (en) Signal nonlinear distoration magnitude detection method and device
WO2022087818A1 (zh) 一种射频拉远单元的测试系统及方法
US6374083B1 (en) Apparatus, and associated method, for selectively modifying characteristics of the receive signal received at a receiving station
CN110474695A (zh) 一种适用于微波辐射计通道间能量互扰的检验和优化方法
CN217849458U (zh) 调幅失真度对消电路和发射机
CN114499708B (zh) 一种射频拉远单元的测试系统及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23902689

Country of ref document: EP

Kind code of ref document: A1