WO2024122575A1 - Copper carbon brush - Google Patents

Copper carbon brush Download PDF

Info

Publication number
WO2024122575A1
WO2024122575A1 PCT/JP2023/043633 JP2023043633W WO2024122575A1 WO 2024122575 A1 WO2024122575 A1 WO 2024122575A1 JP 2023043633 W JP2023043633 W JP 2023043633W WO 2024122575 A1 WO2024122575 A1 WO 2024122575A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
brush
value
carbon
mass
Prior art date
Application number
PCT/JP2023/043633
Other languages
French (fr)
Japanese (ja)
Inventor
弘文 佐波
新太郎 道端
よし子 吉田
寛裕 小原
圭崇 北角
Original Assignee
トライス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トライス株式会社 filed Critical トライス株式会社
Publication of WO2024122575A1 publication Critical patent/WO2024122575A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R39/00Rotary current collectors, distributors or interrupters
    • H01R39/02Details for dynamo electric machines
    • H01R39/04Commutators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K13/00Structural associations of current collectors with motors or generators, e.g. brush mounting plates or connections to windings; Disposition of current collectors in motors or generators; Arrangements for improving commutation

Definitions

  • This invention relates to a copper carbon brush that has a low copper content and excellent electrical conductivity.
  • Copper carbon brushes are used in motors, generators, etc., where the carbon, such as graphite, improves the sliding performance against commutators, slip rings, etc., while the copper increases the electrical conductivity. If a brush with high electrical conductivity can be obtained with a low copper content, the carbon content can be increased to improve the sliding performance. Furthermore, the copper in the brush exists in a form close to powder, and when it comes into contact with the copper of the commutator, slip ring, etc., it tends to adhere to each other, reducing the sliding properties.
  • the carbon such as graphite
  • Patent Document 1 JP 2020-5490 A discloses a brush for a high-current DC motor, which has two layers: a high-resistance layer for suppressing spark discharge and a low-resistance layer for ensuring conductivity, with the low-resistance layer containing a large amount of copper.
  • the low-resistance layer contains a large amount of copper.
  • a copper graphite brush contains, for example, 50 to 90 mass% copper to improve conductivity and reduce friction. This brush ensures conductivity by containing a large amount of copper.
  • the objective of this invention is to provide a copper graphite brush that has a low copper content and excellent electrical conductivity and sliding properties.
  • This invention is characterized by a copper-carbon brush containing copper and graphite, with a copper to carbon ratio of 20-60 mass% copper and 80-40 mass% total carbon, including graphite and carbon derived from binder resin, and an RGB value when the brush surface is imaged in an unpolished state, with the red component being 135 to 200, and the value ⁇ obtained by subtracting the blue component from the red component of the RGB value being 35 to 100.
  • the unpolished state refers to a state in which no polishing is performed after press molding and sintering.
  • the red component of the RGB value is between 145 and 200, and the value ⁇ obtained by subtracting the blue component from the red component of the RGB value is between 40 and 100.
  • the red component of the RGB value is between 150 and 200, and the value ⁇ obtained by subtracting the blue component from the red component of the RGB value is between 45 and 100.
  • the brush resistivity can be set to, for example, 500 ⁇ cm or less and 20 ⁇ cm or more. More preferably, the brush resistivity can be set to 200 ⁇ cm or less and 20 ⁇ cm or more.
  • the RGB value should be 145 or more and 200 or less for the red component, and the value ⁇ obtained by subtracting the blue component from the red component of the RGB value should be 40 or more and 100 or less.
  • the experiments were conducted with copper at 40 mass% and total carbon at 60 mass%, so the ratio of copper to carbon is, for example, 30-50 mass% copper and 70-50 mass% total carbon.
  • the inventors discovered that even if the copper content of the brush is the same, the conductivity of the brush increases when the value of the Red component of the RGB value is large and the value ⁇ obtained by subtracting the Blue value from the Red value is large.
  • the brush resistivity can be reduced to 500 ⁇ cm or less when the Red component of the RGB value is 135 or more and ⁇ is 35 or more.
  • the brush resistivity can be reduced to 300 ⁇ cm or less when the Red component of the RGB value is 145 or more and ⁇ is 40 or more.
  • the brush resistivity can be reduced to 100 ⁇ cm or less when the Red component of the RGB value is 150 or more and ⁇ is 45 or more.
  • a low copper content reduces friction with commutators, slip rings, etc., and an increase in carbon content improves the sliding performance of the brush.
  • This invention provides a copper-carbon brush with high conductivity and high sliding performance. The effects are shown in Table 1 and Figure 2.
  • a high value of the Red component of the RGB value and a high ⁇ value are related to a low value of the Blue component. It is preferable for the value of the Blue component of the RGB value to be low, and it is particularly preferable for it to be below 110.
  • the brush contains powdered copper and graphite, bound together with a resin binder.
  • the graphite structure in the brush breaks down, and ground graphite powder appears on the brush surface. This makes the brush darker in color. Therefore, the RGB values of the brushes covered by this invention are those in an unpolished state.
  • Front view of the copper carbon brush of the embodiment A characteristic diagram showing the relationship between the RGB value R and the RGB value difference ⁇ Red-Blue and the brush resistivity for the copper carbon brushes of the embodiment and the comparative example. Flowchart showing how to measure RGB values
  • the manufactured copper-graphite brush 2 is shown in FIG. 1. 4 is the brush body, 6 is the sliding surface, and 8 is the lead wire.
  • the manufactured brush 2 had a length of 20 mm, a width of 10 mm, and a thickness of 5 mm, but the size is optional.
  • the binder may be a thermoplastic resin, and the type of graphite powder and copper powder is optional.
  • the brush 2 may contain a solid lubricant such as molybdenum disulfide powder, and an abrasive such as alumina powder.
  • a solid lubricant such as molybdenum disulfide powder
  • an abrasive such as alumina powder.
  • lead wires 8 is optional.
  • the use of the brush of this invention is optional, and since the brush has high conductivity, it is suitable for applications where a large current flows at high voltage, such as the main motor of an EV (electric vehicle) and a wind power generator.
  • the ratio of copper to carbon was varied from 10 to 60 mass% copper and 90 to 40 mass% carbon.
  • the average particle size of the carbon was varied in the range of 80 ⁇ m to 200 ⁇ m.
  • RGB values The measurement method for RGB values is shown in Figure 3.
  • the RGB values of the manufactured brush (not polished) are measured.
  • the color sample used is the Japan Paint Manufacturers Association's "Paint Standard Color Sample Book” (2021 edition), which corresponds to 10R5/14 (JIS-W-8301) of the Munsell color system. JIS specifies the RGB values of this color sample as R value 212, G value 66, and B value 10. Adjust the illuminance so that the illuminance on the color sample and brush is 500 lx ⁇ 10 (Step 1). Adjust the image analysis software (Image-J) built into the digital camera as necessary (Step 2) and take a picture of the color sample (Step 3).
  • Image-J image analysis software
  • the captured image of the color sample is processed using image analysis software (Image-J) to obtain the RGB values (Step 4). If the RGB values of the color sample are within the range of R value 212 ⁇ 20, G value 66 ⁇ 10, and B value 15 ⁇ 10, it is considered to be within the shooting conditions, and if they are outside this range, it is considered to be outside the shooting conditions. If it is outside the shooting conditions, execute steps 2 to 4 again to make the RGB values of the color sample fall within the conditions. After adjusting the image analysis software (Image-J) to fit within the shooting conditions, photograph the brush sample with the same digital camera at the same illuminance (step 5), and measure the RGB values of the copper-carbon brush using the adjusted image analysis software (step 6).
  • image analysis software Image-J
  • the resistivity of the copper-carbon brush was measured in the direction of pressure using the four-terminal method.
  • the resistivity in the direction perpendicular to the direction of pressure was lower.
  • the copper content in the brush body did not include the lead wires, and the brush body was crushed and dissolved in, for example, an aqueous solution of nitric acid, and the copper content was measured by chelate titration.
  • the carbon content in the brush was determined by weighing the insoluble portion in the aqueous solution of nitric acid, etc., as mentioned above.
  • the resistivity of the brush changed when the R value and ⁇ value of the RGB values of the brush were different. Also, even if the copper content was different, the resistivity of the brush was similar if the R value and ⁇ value of the RGB values were similar. In general, brushes with high R value and high ⁇ value of the RGB values had low resistivity, and brushes with low values had high resistivity. Since it was difficult to obtain a brush with sufficient conductivity with 10 mass% copper, the weight ratio of copper to total carbon was set to 20:80 to 60:40. This ratio is preferably 30:70 to 50:50.
  • Figure 2 shows the results for Examples 1 to 6 and Comparative Examples 1 to 4 when the copper content was standardized to 40 mass% (the total of carbon and graphite derived from the binder was 60 mass%).
  • the copper content was set to 30 mass% (the total of carbon and graphite derived from the binder was 70 mass%), and in Example 8, the copper content was set to 50 mass% (the total of carbon and graphite derived from the binder was 50 mass%).
  • the copper content is the same in Examples 1 to 6 and the Comparative Example.
  • the resistivity is 500 ⁇ cm or less in the Examples, whereas it is 1000 ⁇ cm or more in the Comparative Example. From Examples 1 to 8, it can be seen that when the R value of the RGB values is high and the ⁇ value is high, the resistivity of the brush decreases. In particular, in Examples 1 to 4, when the R value of the RGB values was 145 or more and the ⁇ value was 40 or more, the resistivity of the brush was 200 ⁇ cm or less. Also, in Examples 1 to 4, the Blue component of the RGB values was less than 110 (105 or less). Furthermore, when the R value of the RGB values was 150 or more and the ⁇ value was 45 or more (Examples 1, 2, and 4), the resistivity of the brush was 100 ⁇ cm or less.
  • Comparative Examples 1 to 4 the resistivity exceeded 1000 ⁇ cm, and in Comparative Examples 1 and 2, where the Red value of the RGB values was low and the ⁇ value was also low, the resistivity was 3000 ⁇ cm or higher. In Comparative Examples 3 and 4, the Red value of the RGB values was high, but the ⁇ value was low at less than 35, and the resistivity exceeded 1000 ⁇ cm. Furthermore, in the Comparative Examples, the values of the Blue component of the RGB values all exceeded 110.
  • the brush may contain, in addition to copper, graphite, and carbon derived from the binder, a metal sulfide solid lubricant such as molybdenum disulfide, or an abrasive material such as alumina.
  • a metal sulfide solid lubricant such as molybdenum disulfide
  • an abrasive material such as alumina.
  • the ratio of materials other than copper, graphite, and carbon derived from the binder in the brush is, for example, 10 mass% or less, preferably 6 mass% or less. In such a range, the metal sulfide solid lubricant and the abrasive material have little effect on the color tone of the brush and on the conductivity of the brush.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Current Collectors (AREA)

Abstract

According to the present invention, the proportions of copper and carbon in a carbon brush are set such that the proportion of copper is 20-60 mass% and the total proportion of carbons including graphite and a carbon derived from a binder resin is 80-40 mass%. With respect to the RGB value obtained by taking an image of the brush surface in an unpolished state, the red component is 135 to 200 (inclusive), and the value ∆ obtained by subtracting the blue component from the red component of the RGB value is 35 to 100 (inclusive). This brush can achieve high conductivity even if the copper content is low.

Description

銅カーボンブラシCopper Carbon Brush
 この発明は、銅含有量が少なく、かつ導電性に優れる銅カーボンブラシに関する。 This invention relates to a copper carbon brush that has a low copper content and excellent electrical conductivity.
 銅カーボンブラシはモータ、発電機などに用いられ、黒鉛等のカーボンによりコンミュテータ、スリップリング等に対する摺動性能を高め、銅により導電性を高めている。少ない銅含有量で導電性が高いブラシが得られると、カーボン含有量を増して摺動性能を高めることができる。なおブラシ中の銅は粉体に近い形状で存在し、コンミュテータ、スリップリング等の銅と接触すると、相互に付着しようとする傾向があるため、摺動性を低下させる。 Copper carbon brushes are used in motors, generators, etc., where the carbon, such as graphite, improves the sliding performance against commutators, slip rings, etc., while the copper increases the electrical conductivity. If a brush with high electrical conductivity can be obtained with a low copper content, the carbon content can be increased to improve the sliding performance. Furthermore, the copper in the brush exists in a form close to powder, and when it comes into contact with the copper of the commutator, slip ring, etc., it tends to adhere to each other, reducing the sliding properties.
 関連する先行技術を示す。特許文献1(特開2020-5490)は大電流の直流モータ用ブラシを開示し、火花放電を抑制するための高抵抗層と、導電性を確保するための低抵抗層の2層を備え、低抵抗層は多量の銅を含んでいる。特許文献1のブラシでは、低抵抗層は多量の銅を含有する。 Related prior art: Patent Document 1 (JP 2020-5490 A) discloses a brush for a high-current DC motor, which has two layers: a high-resistance layer for suppressing spark discharge and a low-resistance layer for ensuring conductivity, with the low-resistance layer containing a large amount of copper. In the brush of Patent Document 1, the low-resistance layer contains a large amount of copper.
 特許文献2(特開2001-298913)では、導電性の向上と摩擦の軽減のため、銅黒鉛ブラシに例えば50~90mass%の銅を含有させる。このブラシは、多量の銅を含有することにより導電性を確保している。 In Patent Document 2 (JP Patent Publication 2001-298913), a copper graphite brush contains, for example, 50 to 90 mass% copper to improve conductivity and reduce friction. This brush ensures conductivity by containing a large amount of copper.
特開2020-5490Patent Publication No. 2020-5490 特開2001-298913Patent Publication No. 2001-298913
 この発明の課題は、少ない銅含有量で、導電性と摺動性に優れた銅黒鉛ブラシを提供することにある。 The objective of this invention is to provide a copper graphite brush that has a low copper content and excellent electrical conductivity and sliding properties.
 この発明は、銅と黒鉛を含有する銅カーボンブラシにおいて、銅とカーボンとの割合が、銅が20~60mass%、黒鉛とバインダー樹脂由来のカーボンを含む総カーボンが80~40mass%で、未研磨状態のブラシ表面を撮像した際のRGB値が、Red成分で135以上で200以下で、RGB値のRed成分からBlue成分を引いた値Δが35以上で100以下であることを特徴とする。なお未研磨状態とは、プレス成型と焼結の後で研磨を施していない状態をいう。 This invention is characterized by a copper-carbon brush containing copper and graphite, with a copper to carbon ratio of 20-60 mass% copper and 80-40 mass% total carbon, including graphite and carbon derived from binder resin, and an RGB value when the brush surface is imaged in an unpolished state, with the red component being 135 to 200, and the value Δ obtained by subtracting the blue component from the red component of the RGB value being 35 to 100. The unpolished state refers to a state in which no polishing is performed after press molding and sintering.
 好ましくは、RGB値がRed成分で145以上で200以下で、RGB値のRed成分からBlue成分を引いた値Δが40以上で100以下である。 Preferably, the red component of the RGB value is between 145 and 200, and the value Δ obtained by subtracting the blue component from the red component of the RGB value is between 40 and 100.
 より好ましくは、RGB値がRed成分で150以上で200以下で、RGB値のRed成分からBlue成分を引いた値Δが45以上で100以下である。 More preferably, the red component of the RGB value is between 150 and 200, and the value Δ obtained by subtracting the blue component from the red component of the RGB value is between 45 and 100.
 以上のようにすると、ブラシの抵抗率を例えば500μΩ・cm以下で20μΩ・cm以上にできる。より好ましくは、ブラシの抵抗率を200μΩ・cm以下で20μΩ・cm以上にする。このためには、例えばRGB値がRed成分で145以上で200以下で、RGB値のRed成分からBlue成分を引いた値Δが40以上で100以下にすると良い。 By doing the above, the brush resistivity can be set to, for example, 500 μΩ·cm or less and 20 μΩ·cm or more. More preferably, the brush resistivity can be set to 200 μΩ·cm or less and 20 μΩ·cm or more. To achieve this, for example, the RGB value should be 145 or more and 200 or less for the red component, and the value Δ obtained by subtracting the blue component from the red component of the RGB value should be 40 or more and 100 or less.
 実施例では銅が40mass%、総カーボンが60mass%を中心に実験したので、銅とカーボンとの割合は例えば銅が30~50mass%、総カーボンが70~50mass%とする。 In the examples, the experiments were conducted with copper at 40 mass% and total carbon at 60 mass%, so the ratio of copper to carbon is, for example, 30-50 mass% copper and 70-50 mass% total carbon.
 発明者は、ブラシの銅含有量が同じでも、RGB値のRed成分の値が大きく、かつRedの値からBlueの値を引いた値Δが大きいと、ブラシの導電性が高くなることを見出した。例えば銅含有量を40mass%に揃えると、RGB値のRedを135以上、Δを35以上とすると、ブラシの抵抗率を500μΩ・cm以下にできる。RGB値のRedを145以上、Δを40以上とすると、ブラシの抵抗率を300μΩ・cm以下にできる。RGB値のRedを150以上、Δを45以上とすると、ブラシの抵抗率を100μΩ・cm以下にできる。銅含有量が低いとコンミュテータ、スリップリング等との摩擦が減少し、カーボン含有量が増すとブラシの摺動性能が向上する。この発明では、導電性が高く、かつ摺動性能も高い銅カーボンブラシが得られる。この効果を表1、図2に示す。 The inventors discovered that even if the copper content of the brush is the same, the conductivity of the brush increases when the value of the Red component of the RGB value is large and the value Δ obtained by subtracting the Blue value from the Red value is large. For example, if the copper content is uniform at 40 mass%, the brush resistivity can be reduced to 500 μΩ·cm or less when the Red component of the RGB value is 135 or more and Δ is 35 or more. The brush resistivity can be reduced to 300 μΩ·cm or less when the Red component of the RGB value is 145 or more and Δ is 40 or more. The brush resistivity can be reduced to 100 μΩ·cm or less when the Red component of the RGB value is 150 or more and Δ is 45 or more. A low copper content reduces friction with commutators, slip rings, etc., and an increase in carbon content improves the sliding performance of the brush. This invention provides a copper-carbon brush with high conductivity and high sliding performance. The effects are shown in Table 1 and Figure 2.
 RGB値のRed成分の値、Δ値は一般に高いほど良く、上限はこれらが到達可能な範囲の上限を示している。ブラシの抵抗率は低いほど良く、下限は到達可能な範囲の下限を示している。RGB値のRed成分の値が高く、かつΔ値も高いことは、Blue成分の値が低いことと関係が有る。そしてRGB値のBlue成分の値が低いことが好ましく、特に110以下であることが好ましい。 Generally, the higher the value of the Red component of the RGB value and the Δ value, the better, with the upper limit indicating the upper limit of the range that these can reach. The lower the resistivity of the brush, the better, with the lower limit indicating the lower limit of the range that they can reach. A high value of the Red component of the RGB value and a high Δ value are related to a low value of the Blue component. It is preferable for the value of the Blue component of the RGB value to be low, and it is particularly preferable for it to be below 110.
 ブラシは粉体状の銅と黒鉛を含み、樹脂バインダーでこれらを結合したものである。ブラシを研磨すると、ブラシ中の黒鉛組織が崩れ、摩砕された黒鉛粉がブラシ表面に現れる。このためブラシの色は暗くなる。そこでこの発明が対象とするブラシのRGB値は未研磨の状態での値である。 
 
The brush contains powdered copper and graphite, bound together with a resin binder. When the brush is polished, the graphite structure in the brush breaks down, and ground graphite powder appears on the brush surface. This makes the brush darker in color. Therefore, the RGB values of the brushes covered by this invention are those in an unpolished state.
実施例の銅カーボンブラシの正面図Front view of the copper carbon brush of the embodiment 実施例と比較例の銅カーボンブラシでの、RGB値R及びRGB値の差ΔRed-Blueと、ブラシの抵抗率との関係を示す特性図A characteristic diagram showing the relationship between the RGB value R and the RGB value difference ΔRed-Blue and the brush resistivity for the copper carbon brushes of the embodiment and the comparative example. RGB値の測定法を示すフローチャートFlowchart showing how to measure RGB values
 以下に本発明を実施するための最適実施例を示す。本発明は実施例に限定されるものではなく、特許請求の範囲に基づいて定められ、かつ実施例に当業者に公知の事項を加えて変形できる。 The following are the best examples for carrying out the present invention. The present invention is not limited to the examples, but is defined based on the scope of the claims, and can be modified by adding matters known to those skilled in the art to the examples.
ブラシの製造
 銅粉と黒鉛粉及びフェノール樹脂バインダーとを混合し、配合粉とした。配合粉を金型に充填し、プレス成型後に焼結し、リード線付きのブラシとした。製造した銅黒鉛ブラシ2を図1に示す。4はブラシ本体で、6は摺動面、8はリード線である。製造したブラシ2は長さ20mm、幅10mm、厚さ5mmであったが、サイズは任意である。バインダーは熱可塑性樹脂でも良く、黒鉛粉と銅粉の種類は任意である。ブラシ2は、銅粉、黒鉛粉、バインダーの他に、二硫化モリブデン粉末等の固体潤滑剤、アルミナ粉末等の削摩材を含んでいても良い。リード線8の有無は任意である。この発明のブラシの用途は任意で、ブラシは導電性が高いので、EV(電気自動車)のメインモータ、風力発電機などの、高電圧で大電流が流れる用途に適している。
Manufacturing of the brush Copper powder, graphite powder, and phenolic resin binder were mixed to obtain a blended powder. The blended powder was filled into a mold, press molded, and sintered to obtain a brush with lead wires. The manufactured copper-graphite brush 2 is shown in FIG. 1. 4 is the brush body, 6 is the sliding surface, and 8 is the lead wire. The manufactured brush 2 had a length of 20 mm, a width of 10 mm, and a thickness of 5 mm, but the size is optional. The binder may be a thermoplastic resin, and the type of graphite powder and copper powder is optional. In addition to copper powder, graphite powder, and binder, the brush 2 may contain a solid lubricant such as molybdenum disulfide powder, and an abrasive such as alumina powder. The presence or absence of lead wires 8 is optional. The use of the brush of this invention is optional, and since the brush has high conductivity, it is suitable for applications where a large current flows at high voltage, such as the main motor of an EV (electric vehicle) and a wind power generator.
 銅とカーボンの割合は、銅が10~60mass%、カーボンが90~40mass%となるように変化させた。カーボンの平均粒径は80μm~200μmの範囲で変化させた。 The ratio of copper to carbon was varied from 10 to 60 mass% copper and 90 to 40 mass% carbon. The average particle size of the carbon was varied in the range of 80 μm to 200 μm.
測定 
 RGB値の測定法を図3に示す。製造後のブラシ(研磨などを施していない物)のRGB値を測定する。色見本として、日本塗料工業会の「塗料用標準色一色見本帳」(2021年度版)を用い、マンセル表色系の10R5/14(JIS-W-8301)に対応する色見本を用いる。JISではこの色見本のRGB値を、R値が212,G値が66,B値が10と規定している。色見本とブラシへの照度が500 lx±10となるように、照度を調整する(ステップ1)。必要に応じてデジタルカメラに内蔵の画像解析ソフトウェア(Image-J)を調整し(ステップ2)、色見本を撮影する(ステップ3)。色見本の撮影画像を画像解析ソフトウェア(Image-J)により処理し、RGB値を求める(ステップ4)。色見本のRGB値が、R値が212±20、G値が66±10、B値が15±10の範囲内であれば撮影条件内とし、この範囲から外れていれば撮影条件外とし、撮影条件外の場合、ステップ2~4を再度実行し、色見本のRGB値が条件内になるようにする。撮影条件内に画像解析ソフトウェア(Image-J)を調整した後、同じ照度で、ブラシのサンプルを同じデジタルカメラにより撮影し(ステップ5)、調整済みの画像解析ソフトウェアにより、銅カーボンブラシのRGB値を測定する(ステップ6)。
measurement
The measurement method for RGB values is shown in Figure 3. The RGB values of the manufactured brush (not polished) are measured. The color sample used is the Japan Paint Manufacturers Association's "Paint Standard Color Sample Book" (2021 edition), which corresponds to 10R5/14 (JIS-W-8301) of the Munsell color system. JIS specifies the RGB values of this color sample as R value 212, G value 66, and B value 10. Adjust the illuminance so that the illuminance on the color sample and brush is 500 lx ± 10 (Step 1). Adjust the image analysis software (Image-J) built into the digital camera as necessary (Step 2) and take a picture of the color sample (Step 3). The captured image of the color sample is processed using image analysis software (Image-J) to obtain the RGB values (Step 4). If the RGB values of the color sample are within the range of R value 212±20, G value 66±10, and B value 15±10, it is considered to be within the shooting conditions, and if they are outside this range, it is considered to be outside the shooting conditions. If it is outside the shooting conditions, execute steps 2 to 4 again to make the RGB values of the color sample fall within the conditions. After adjusting the image analysis software (Image-J) to fit within the shooting conditions, photograph the brush sample with the same digital camera at the same illuminance (step 5), and measure the RGB values of the copper-carbon brush using the adjusted image analysis software (step 6).
 銅カーボンブラシの抵抗率として加圧方向の抵抗率を4端子法により測定した。なお加圧方向に直交する方向の抵抗率はより低い。ブラシ本体中の銅含有量はリード線を含まず、ブラシ本体を粉砕し、例えば硝酸水溶液に溶解し、キレート滴定により銅含有量を測定した。ブラシ中のカーボン含有量は、上記の硝酸等の水溶液への不溶分を秤量することにより求めた。 The resistivity of the copper-carbon brush was measured in the direction of pressure using the four-terminal method. The resistivity in the direction perpendicular to the direction of pressure was lower. The copper content in the brush body did not include the lead wires, and the brush body was crushed and dissolved in, for example, an aqueous solution of nitric acid, and the copper content was measured by chelate titration. The carbon content in the brush was determined by weighing the insoluble portion in the aqueous solution of nitric acid, etc., as mentioned above.
結果 
 銅含有量が同じでも、ブラシのRGB値のR値とΔ値が異なると、ブラシの抵抗率は変化した。また銅含有量が異なっても、RGB値のR値とΔ値とが類似であれば、ブラシの抵抗率は類似していた。一般にRGB値のR値が高くかつΔ値が高いブラシで抵抗率は低く、これらの値が低いブラシで抵抗率は高かった。なお銅10mass%では、十分な導電性のブラシを得ることは難しかったので、銅と総カーボンの重量比は20:80~60:40とした。この比は好ましくは、30:70~50:50である。
result
Even if the copper content was the same, the resistivity of the brush changed when the R value and Δ value of the RGB values of the brush were different. Also, even if the copper content was different, the resistivity of the brush was similar if the R value and Δ value of the RGB values were similar. In general, brushes with high R value and high Δ value of the RGB values had low resistivity, and brushes with low values had high resistivity. Since it was difficult to obtain a brush with sufficient conductivity with 10 mass% copper, the weight ratio of copper to total carbon was set to 20:80 to 60:40. This ratio is preferably 30:70 to 50:50.
 銅含有量を40mass%(バインダー由来のカーボンと黒鉛の合計が60mass%)に統一した場合の、実施例1~6と比較例1~4での結果を図2に示す。また実施例7では銅含有量を30mass%(バインダー由来のカーボンと黒鉛の合計が70mass%)にし、実施例8では銅含有量を50mass%(バインダー由来のカーボンと黒鉛の合計が50mass%)にした。 これらの結果を表1に詳細に示す。  Figure 2 shows the results for Examples 1 to 6 and Comparative Examples 1 to 4 when the copper content was standardized to 40 mass% (the total of carbon and graphite derived from the binder was 60 mass%). In Example 7, the copper content was set to 30 mass% (the total of carbon and graphite derived from the binder was 70 mass%), and in Example 8, the copper content was set to 50 mass% (the total of carbon and graphite derived from the binder was 50 mass%).  These results are shown in detail in Table 1.
表1
             RGB値と抵抗率 (銅 40mass%)
       Red  Green  Blue ΔRed-Blue  抵抗率(μΩ・cm) 
実施例1   152   110   98    54       98
実施例2   153   113   100    53       99
実施例3   145   117   103    42       169
実施例4   154   117   103    51       78
 
実施例5   150   120   113    37       355
実施例6   168   137   125    43       478
      
 
実施例7   168   137   125    43       455
実施例8   170   130   135    35       85
      
比較例1   132   122   119    13      5824
比較例2   138   124   121    17      3245
比較例3   143   126   122    21      2588
比較例4   158   133   125    33      1080
 
Table 1
RGB values and resistivity (copper 40mass%)
Red Green Blue ΔRed-Blue Resistivity (μΩ cm)
Example 1 152 110 98 54 98
Example 2 153 113 100 53 99
Example 3 145 117 103 42 169
Example 4 154 117 103 51 78

Example 5 150 120 113 37 355
Example 6 168 137 125 43 478


Example 7 168 137 125 43 455
Example 8 170 130 135 35 85

Comparative Example 1 132 122 119 13 5824
Comparative Example 2 138 124 121 17 3245
Comparative Example 3 143 126 122 21 2588
Comparative Example 4 158 133 125 33 1080
 実施例1~6と比較例は銅含有量が同じである。実施例では抵抗率が500μΩ・cm以下であるのに対し、比較例では1000μΩ・cm以上である。実施例1~8から、RGB値のR値が高くかつΔ値が高いと、ブラシの抵抗率が小さくなることが分かる。特に実施例1~4では、RGB値のR値が145以上でかつΔ値が40以上で、ブラシの抵抗率が200μΩ・cm以下となった。また実施例1~4では、RGB値のBlue成分は110未満(105以下)であった。さらにRGB値のR値が150以上でかつΔ値が45以上では(実施例1,2,4)、ブラシの抵抗率が100μΩ・cm以下となった。 The copper content is the same in Examples 1 to 6 and the Comparative Example. The resistivity is 500 μΩ·cm or less in the Examples, whereas it is 1000 μΩ·cm or more in the Comparative Example. From Examples 1 to 8, it can be seen that when the R value of the RGB values is high and the Δ value is high, the resistivity of the brush decreases. In particular, in Examples 1 to 4, when the R value of the RGB values was 145 or more and the Δ value was 40 or more, the resistivity of the brush was 200 μΩ·cm or less. Also, in Examples 1 to 4, the Blue component of the RGB values was less than 110 (105 or less). Furthermore, when the R value of the RGB values was 150 or more and the Δ value was 45 or more (Examples 1, 2, and 4), the resistivity of the brush was 100 μΩ·cm or less.
 比較例1~4では抵抗率は1000μΩ・cmを越え、RGB値のRed値が低くかつΔ値も低い比較例1,2では、抵抗率は3000μΩ・cm以上であった。比較例3,4では、RGB値のRed値は高かったが、Δ値が35未満と低く、抵抗率は1000μΩ・cmを越えていた。また比較例ではRGB値のBlue成分の値は全て110を越えていた。 In Comparative Examples 1 to 4, the resistivity exceeded 1000 μΩ·cm, and in Comparative Examples 1 and 2, where the Red value of the RGB values was low and the Δ value was also low, the resistivity was 3000 μΩ·cm or higher. In Comparative Examples 3 and 4, the Red value of the RGB values was high, but the Δ value was low at less than 35, and the resistivity exceeded 1000 μΩ·cm. Furthermore, in the Comparative Examples, the values of the Blue component of the RGB values all exceeded 110.
 銅含有量が同じでもブラシ表面のRGB値と抵抗率が異なることは、黒鉛粒子と銅粉の分散状態の違いを表している、と推定される。即ち、R値が高くΔ値が大きいことは、銅粉の色調が強く表れていることを意味し、これは銅粉同士が黒鉛粒子の表面で互いに接触し、低抵抗な導電経路を形成していることを示唆する。 The fact that the RGB values and resistivity of the brush surface are different even when the copper content is the same is presumably due to differences in the dispersion state of the graphite particles and copper powder. In other words, a high R value and a large Δ value mean that the color tone of the copper powder is more pronounced, suggesting that the copper powder particles are in contact with each other on the surface of the graphite particles, forming a low-resistance conductive path.
 ブラシは、銅と、黒鉛とバインダー由来のカーボン等の他に、二硫化モリブデン等の金属硫化物固体潤滑剤あるいはアルミナ等の削摩材を含有することがある。銅と、黒鉛とバインダー由来等のカーボン以外の材料がブラシ中で占める割合は、例えば10mass%以下、好ましくは6mass%以下とする。このような範囲では、金属硫化物固体潤滑剤及び削摩材等の、ブラシの色調への影響もブラシの導電性への影響も小さい。
 
The brush may contain, in addition to copper, graphite, and carbon derived from the binder, a metal sulfide solid lubricant such as molybdenum disulfide, or an abrasive material such as alumina. The ratio of materials other than copper, graphite, and carbon derived from the binder in the brush is, for example, 10 mass% or less, preferably 6 mass% or less. In such a range, the metal sulfide solid lubricant and the abrasive material have little effect on the color tone of the brush and on the conductivity of the brush.
2  銅カーボンブラシ
4  ブラシ本体
6  摺動面
8  リード線   
2 Copper carbon brush 4 Brush body 6 Sliding surface 8 Lead wire

Claims (6)

  1.  銅と黒鉛を含有する銅カーボンブラシにおいて、
     銅とカーボンとの割合が、銅が20~60mass%、黒鉛とバインダー樹脂由来のカーボンを含む総カーボンが80~40mass%で、
     未研磨状態のブラシ表面を撮像した際のRGB値が、Red成分で135以上で200以下で、RGB値のRed成分からBlue成分を引いた値Δが35以上で100以下であることを特徴とする、銅カーボンブラシ。
    In copper-carbon brushes containing copper and graphite,
    The ratio of copper to carbon is 20-60 mass% copper, and 80-40 mass% total carbon, including carbon derived from graphite and binder resin.
    A copper carbon brush characterized in that, when an image of the unpolished brush surface is taken, the RGB value is 135 or more and 200 or less for the red component, and the value Δ obtained by subtracting the blue component from the red component of the RGB value is 35 or more and 100 or less.
  2.  ブラシの抵抗率が500μΩ・cm以下で20μΩ・cm以上であることを特徴とする、請求項1の銅カーボンブラシ。 The copper-carbon brush of claim 1, characterized in that the brush resistivity is 500 μΩ·cm or less and 20 μΩ·cm or more.
  3.  前記RGB値がRed成分で145以上で200以下で、RGB値のRed成分からBlue成分を引いた値Δが40以上で100以下であることを特徴とする、請求項1または2の銅カーボンブラシ。 The copper carbon brush of claim 1 or 2, characterized in that the red component of the RGB value is 145 or more and 200 or less, and the value Δ obtained by subtracting the blue component from the red component of the RGB value is 40 or more and 100 or less.
  4.  前記RGB値がRed成分で150以上で200以下で、RGB値のRed成分からBlue成分を引いた値Δが45以上で100以下であることを特徴とする、請求項3の銅カーボンブラシ。 The copper carbon brush of claim 3, characterized in that the red component of the RGB value is 150 or more and 200 or less, and the value Δ obtained by subtracting the blue component from the red component of the RGB value is 45 or more and 100 or less.
  5.  ブラシの抵抗率が200μΩ・cm以下で20μΩ・cm以上であることを特徴とする、請求項3の銅カーボンブラシ。 The copper-carbon brush of claim 3, characterized in that the brush resistivity is 200 μΩ·cm or less and 20 μΩ·cm or more.
  6.  銅とカーボンとの割合が、銅が30~50mass%、前記総カーボンが70~50mass%であることを特徴とする、請求項1または2の銅カーボンブラシ。 
     
    3. The copper-carbon brush according to claim 1, wherein the ratio of copper to carbon is 30 to 50 mass % and the total carbon is 70 to 50 mass %.
PCT/JP2023/043633 2022-12-06 2023-12-06 Copper carbon brush WO2024122575A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-194636 2022-12-06
JP2022194636 2022-12-06

Publications (1)

Publication Number Publication Date
WO2024122575A1 true WO2024122575A1 (en) 2024-06-13

Family

ID=91379079

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/043633 WO2024122575A1 (en) 2022-12-06 2023-12-06 Copper carbon brush

Country Status (1)

Country Link
WO (1) WO2024122575A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009148034A (en) * 2007-12-12 2009-07-02 Denso Corp Brush for dynamo-electric machine, and dynamo-electric machine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009148034A (en) * 2007-12-12 2009-07-02 Denso Corp Brush for dynamo-electric machine, and dynamo-electric machine

Similar Documents

Publication Publication Date Title
US6909219B2 (en) Carbon brush for electric machine
JP2006280164A (en) Electrical carbon brush and its manufacturing method
US8004143B2 (en) Carbon brush of motor and method for producing the same
JP4512318B2 (en) Laminated brush
US9525258B2 (en) Contact brush
EP3136558A1 (en) Resin-bonded carbonaceous brush and method for manufacturing same
JP3914804B2 (en) Metallic graphite brush and method for producing the same
WO2024122575A1 (en) Copper carbon brush
EP1333546B1 (en) Copper-graphite brush
JP2000197315A (en) Carbon brush for electric machine
EP2863523B1 (en) Metal-carbonaceous brush and method for producing same
JP2641695B2 (en) Manufacturing method of metallic graphite brush
JP4533513B2 (en) Carbon brush for electric machine
JP2001298913A (en) Brush
JPH0651894B2 (en) Manufacturing method of metallic graphite brush
JP6563617B1 (en) Conductive coating material
JP2005176492A (en) Brush for dc motor
JP4476458B2 (en) Carbon brush for electric machine
JP5136841B2 (en) Brush for rotating electrical machine and rotating electrical machine
JP2018206530A (en) Conductive paste for forming solar cell electrode and solar cell
JP2004159437A (en) Carbon brush
JPH0438152A (en) Electrical brush
WO2021260771A1 (en) Metal graphite material and electric brush
JPH077892A (en) Metal graphite brush
JP2007159283A (en) Resin-bonded carbon brush