WO2024122209A1 - Thermosetting adhesive, composite film, and printed wiring board - Google Patents

Thermosetting adhesive, composite film, and printed wiring board Download PDF

Info

Publication number
WO2024122209A1
WO2024122209A1 PCT/JP2023/038326 JP2023038326W WO2024122209A1 WO 2024122209 A1 WO2024122209 A1 WO 2024122209A1 JP 2023038326 W JP2023038326 W JP 2023038326W WO 2024122209 A1 WO2024122209 A1 WO 2024122209A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive layer
thermosetting
adhesive
layer
resin film
Prior art date
Application number
PCT/JP2023/038326
Other languages
French (fr)
Japanese (ja)
Inventor
拓馬 一松
隆幸 米澤
Original Assignee
住友電工プリントサーキット株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電工プリントサーキット株式会社, 住友電気工業株式会社 filed Critical 住友電工プリントサーキット株式会社
Publication of WO2024122209A1 publication Critical patent/WO2024122209A1/en

Links

Images

Definitions

  • thermosetting adhesive a composite film, and a printed wiring board.
  • This application claims priority to Japanese Patent Application No. 2022-196404, filed on December 8, 2022. All contents of said Japanese patent application are incorporated herein by reference.
  • Patent Document 1 JP 2019-116619 A (Patent Document 1) describes a coverlay.
  • the coverlay described in Patent Document 1 has a cover film and an adhesive layer.
  • the adhesive layer is disposed on the main surface of the cover film.
  • the adhesive layer is a layer of a thermosetting adhesive.
  • the printed wiring board has a base film and a conductive pattern.
  • the conductive pattern is disposed on the main surface of the base film.
  • the coverlay described in Patent Document 1 is attached to the main surface of the base film so that the adhesive layer covers the conductive pattern.
  • thermosetting adhesive of the present disclosure comprises a thermosetting component that hardens when heated, and an organic component different from the thermosetting component.
  • the mass fraction of the organic component in the thermosetting adhesive is 40 ppm or more.
  • FIG. 1 is a cross-sectional view of a composite film 100 .
  • FIG. 2 is a cross-sectional view of a composite film 100 according to a modified example.
  • FIG. 3 is a cross-sectional view of the printed wiring board 200.
  • FIG. 4 is a cross-sectional view of a printed wiring board 200 according to the first modification.
  • FIG. 5 is a cross-sectional view of a printed wiring board 200 according to the second modification.
  • 6A to 6C are diagrams showing the manufacturing process of the printed wiring board 200.
  • FIG. 7 is a cross-sectional view illustrating the seed layer forming step S2.
  • FIG. 8 is a cross-sectional view illustrating the electroless plating step S3.
  • FIG. 9 is a cross-sectional view illustrating the resist pattern forming step S4.
  • FIG. 10 is a cross-sectional view illustrating the electrolytic plating step S5.
  • FIG. 11 is a cross-sectional view illustrating the resist pattern removing step S6.
  • FIG. 12 is a cross-sectional view illustrating the etching step S7.
  • thermosetting adhesive that has improved embeddability between two adjacent portions of a wiring.
  • thermosetting adhesive of the present disclosure can improve the embedding ability between two adjacent portions of a wiring.
  • thermosetting adhesive of the present disclosure comprises a thermosetting component that hardens when heated, and an organic component different from the thermosetting component.
  • the mass fraction of the organic component in the thermosetting adhesive is 40 ppm or more.
  • the thermosetting adhesive of (1) above can improve the embeddability between two adjacent portions of a wiring.
  • thermosetting component and the organic component may be compatible with each other.
  • the thermosetting component may include at least one selected from the group consisting of epoxy, amide, and amide-imide.
  • the boiling point of the organic component may be 60° C. or higher and 210° C. or lower.
  • the thermosetting adhesive of (3) can improve the embedding property between two adjacent parts of the wiring while ensuring insulation between the two adjacent parts of the wiring.
  • thermosetting adhesives according to (1) to (3) above may have a melt viscosity of 1 ⁇ 10 5 Pa ⁇ s or less in a temperature range of 150° C. or more and 180° C. or less.
  • the composite film of the present disclosure comprises a first resin film having a first surface, and an adhesive layer disposed on the first surface.
  • the adhesive layer is a layer of a thermosetting adhesive as described in (1) to (4) above.
  • the composite film of (5) above may further include a second resin film disposed on the adhesive layer.
  • the composite film of (5) above makes it possible to protect the adhesive layer before use.
  • the second resin film may be a polyester film.
  • the first resin film may be a polyimide, liquid crystal polymer, or polyester film.
  • the printed wiring board of the present disclosure comprises a third resin film having a second surface, wiring disposed on the second surface, and an adhesive layer.
  • the value obtained by dividing the height of the wiring by the width of the wiring is 0.5 or more.
  • the distance between two adjacent portions of the wiring is 100 ⁇ m or less.
  • the adhesive layer is disposed on the second surface so as to cover the wiring.
  • the maximum diameter of the voids in the adhesive layer is 3 ⁇ m or less. According to the printed wiring board of (9) above, it is possible to improve the embeddability of the adhesive layer between two adjacent wirings.
  • the printed wiring board of (9) above may further include a first resin film disposed on the adhesive layer.
  • composite film according to the embodiment is referred to as composite film 100
  • printed wiring board 200 is referred to as printed wiring board 200.
  • FIG. 1 is a cross-sectional view of a composite film 100. As shown in FIG. 1, the composite film 100 has a first resin film 10, an adhesive layer 20, and a second resin film 30.
  • the first resin film 10 has a first surface 10a.
  • the first surface 10a is an end surface of the first resin film 10 in the thickness direction.
  • the first resin film 10 is, for example, a film of polyimide, liquid crystal polymer, or polyester.
  • the adhesive layer 20 is disposed on the first surface 10a.
  • the adhesive layer 20 is a layer of a thermosetting adhesive.
  • the thickness of the adhesive layer 20 is thickness T1. Thickness T1 may be 5 ⁇ m or more and 100 ⁇ m or less.
  • the thermosetting adhesive of the adhesive layer 20 is in an uncured state.
  • the thermosetting adhesive constituting the adhesive layer 20 has a thermosetting component and an organic component.
  • the thermosetting component is a component that hardens when heated.
  • the thermosetting component includes at least one selected from the group consisting of epoxy, amide, and amide-imide.
  • the organic component is a component different from the thermosetting component.
  • the thermosetting component and the organic component may be compatible. "The thermosetting component and the organic component are compatible" means that the thermosetting component and the organic component have mutual affinity and are mixed at the molecular level.
  • the mass fraction of the organic component in the thermosetting adhesive constituting the adhesive layer 20 is 40 ppm or more.
  • the mass fraction of the organic component in the thermosetting adhesive constituting the adhesive layer 20 may be, for example, 500 ppm or less.
  • the mass fraction of the organic component in the thermosetting adhesive constituting the adhesive layer 20 is measured by pyrolysis gas chromatography mass spectrometry.
  • the boiling point of the organic component in the thermosetting adhesive constituting the adhesive layer 20 may be, for example, 60° C. or higher and 210° C. or lower.
  • the melt viscosity of the thermosetting adhesive constituting the adhesive layer 20 may be 1 ⁇ 10 5 Pa ⁇ s or lower in a temperature range of 150° C. or higher and 180° C. or lower.
  • the melt viscosity of the thermosetting adhesive constituting the adhesive layer 20 is measured in accordance with JIS K 7121 (1987). More specifically, the viscosity is measured while heating using a rotational rheometer under conditions of a frequency of 1 Hz and a temperature rise rate of 10° C./min, and is taken as the melt viscosity.
  • As the rotational rheometer Rheosol-G3000 manufactured by UBM is used.
  • the second resin film 30 is disposed on the adhesive layer 20. From another perspective, the adhesive layer 20 is sandwiched between the first resin film 10 and the second resin film 30. The adhesive layer 20 is protected by the second resin film 30.
  • the second resin film 30 is, for example, a polyester film.
  • Fig. 2 is a cross-sectional view of a composite film 100 according to a modified example.
  • the composite film 100 has the second resin film 30, but the composite film 100 does not have to have the second resin film 30 as shown in Fig. 2.
  • FIG. 3 is a cross-sectional view of the printed wiring board 200.
  • the printed wiring board 200 has a third resin film 40, wiring 50, an adhesive layer 60, and a first resin film 10.
  • the third resin film 40 has a second surface 40a and a third surface 40b.
  • the second surface 40a and the third surface 40b are end surfaces in the thickness direction of the third resin film 40.
  • the third surface 40b is the opposite surface to the second surface 40a.
  • the third resin film 40 is, for example, a film of polyimide, liquid crystal polymer, or fluororesin.
  • the wiring 50 is disposed on the second surface 40a.
  • the width and height of the wiring 50 are width W and height H, respectively.
  • the aspect ratio of the wiring 50 (height H divided by width W) is, for example, 0.5 or more.
  • the distance between two adjacent portions of the wiring 50 is distance DIS.
  • Distance DIS is, for example, 100 ⁇ m or less.
  • the wiring 50 has a seed layer 51, an electroless plating layer 52, and an electrolytic plating layer 53.
  • the seed layer 51 is disposed on the second surface 40a.
  • the seed layer 51 is, for example, a layer of a nickel-chromium alloy formed by sputtering.
  • the seed layer 51 may also be a layer of sintered nano-copper particles.
  • the electroless plating layer 52 is disposed on the seed layer 51.
  • the electroless plating layer 52 is a copper layer formed by electroless plating.
  • the electrolytic plating layer 53 is disposed on the electroless plating layer 52.
  • the electrolytic plating layer 53 is a copper layer formed by electrolytic plating.
  • the adhesive layer 60 is disposed on the second surface 40a so as to cover the wiring 50.
  • the adhesive layer 60 is a layer of a thermosetting resin. In the adhesive layer 60, the thermosetting component is in a cured state.
  • the maximum diameter of the voids in the adhesive layer 60 is 3 ⁇ m or less.
  • the maximum diameter of the voids in the adhesive layer 60 is measured using an optical microscope.
  • the thickness of the adhesive layer 60 is taken as thickness T2.
  • Thickness T2 is the thickness of the adhesive layer 60 on the upper surface of the wiring 50. Thickness T2 may be 20 ⁇ m or less.
  • the first resin film 10 is disposed on the adhesive layer 60.
  • Fig. 4 is a cross-sectional view of a printed wiring board 200 according to Modification 1. As shown in Fig. 4, the printed wiring board 200 does not need to have the first resin film 10.
  • Fig. 5 is a cross-sectional view of a printed wiring board 200 according to Modification 2. As shown in Fig. 5, the wiring 50 may be disposed on the third surface 40b, and the adhesive layer 60 may be disposed on the third surface 40b so as to cover the wiring 50.
  • FIG. 6 is a manufacturing process diagram of the printed wiring board 200.
  • the manufacturing method of the printed wiring board 200 includes a preparation process S1, a seed layer formation process S2, an electroless plating process S3, a resist pattern formation process S4, an electrolytic plating process S5, a resist pattern removal process S6, an etching process S7, and a composite film attachment process S8.
  • FIG. 7 is a cross-sectional view illustrating the seed layer formation step S2.
  • a seed layer 51 is formed on the second surface 40a.
  • the seed layer 51 is formed by, for example, sputtering.
  • the seed layer 51 may be formed by applying an ink containing nano-copper particles onto the second surface 40a and baking the ink.
  • FIG. 8 is a cross-sectional view illustrating the electroless plating step S3.
  • an electroless plating layer 52 is formed on a seed layer 51.
  • the electroless plating layer 52 is formed by electroless plating.
  • FIG. 9 is a cross-sectional view illustrating the resist pattern formation step S4.
  • a resist pattern 70 is formed on the electroless plating layer 52.
  • the resist pattern 70 is formed, for example, by attaching a dry film resist on the electroless plating layer 52, and exposing and developing the dry film resist to pattern it.
  • the resist pattern 70 has an opening 71 penetrating the resist pattern 70 in the thickness direction, and the electroless plating layer 52 is exposed from the opening 71.
  • FIG. 10 is a cross-sectional view illustrating the electrolytic plating process S5. As shown in FIG. 10, in the electrolytic plating process S5, an electrolytic plating layer 53 is formed on the electroless plating layer 52 exposed from the opening 71. The electrolytic plating layer 53 is formed by electrolytic plating.
  • FIG. 11 is a cross-sectional view illustrating the resist pattern removal process S6. As shown in FIG. 11, in the resist pattern removal process S6, the resist pattern 70 is removed from the electroless plating layer 52.
  • FIG. 12 is a cross-sectional view illustrating the etching step S7. As shown in FIG. 12, in the etching step S7, the electroless plating layer 52 and the seed layer 51 that were underneath the resist pattern 70 are removed by etching.
  • the composite film 100 is attached onto the second surface 40a.
  • the composite film attachment process S8 first, the second resin film 30 is peeled off from the adhesive layer 20.
  • the composite film 100 is attached onto the second surface 40a so that the adhesive layer 20 covers the wiring 50.
  • the composite film 100 is heated and pressurized toward the third resin film 40. This heating is performed, for example, in a temperature range of 150°C to 180°C.
  • the thermosetting adhesive that constitutes the adhesive layer 20 flows and is embedded between the two adjacent portions of the wiring 50, and the thermosetting adhesive hardens. In this way, the adhesive layer 20 becomes the adhesive layer 60.
  • the mass fraction of organic components in the thermosetting adhesive constituting the adhesive layer 20 is 40 ppm or more. Therefore, the flowability of the thermosetting adhesive constituting the adhesive layer 20 can be ensured when the heating is performed in the composite film attachment step S8. More specifically, the melt viscosity of the thermosetting adhesive constituting the adhesive layer 20 can be set to 1 ⁇ 10 5 Pa ⁇ s or less when the heating is performed in the composite film attachment step S8. As a result, the composite film 100 can improve the embeddability of the adhesive layer 60 between two adjacent portions of the wiring 50.
  • the organic component contained in the thermosetting adhesive constituting the adhesive layer 20 may evaporate during heating in the composite film attachment process S8, and the fluidity of the thermosetting adhesive constituting the adhesive layer 20 may decrease.
  • the boiling point of the organic component contained in the thermosetting adhesive constituting the adhesive layer 20 is greater than 210°C, the organic component may remain in large amounts in the adhesive layer 60, which may reduce the insulating properties of the adhesive layer 60. Therefore, by setting the boiling point of the organic component contained in the thermosetting adhesive constituting the adhesive layer 20 to 60°C or more and 210°C or less, it is possible to improve the embedding property between two adjacent parts of the wiring 50 while ensuring the insulation between the two adjacent parts of the wiring 50.
  • Samples 1 to 7 were prepared as composite film samples. In Samples 1 to 7, a heat treatment was performed to adjust the mass fraction of the organic component in the thermosetting adhesive constituting the adhesive layer 20. Table 1 shows the heat treatment conditions applied to Samples 1 to 7.
  • thermosetting adhesive constituting the adhesive layer 20 As a result of this heat treatment, in samples 1 to 5, the mass fraction of organic components in the thermosetting adhesive constituting the adhesive layer 20 was 40 ppm or more. On the other hand, in samples 6 and 7, as a result of this heat treatment, the mass fraction of organic components in the thermosetting adhesive constituting the adhesive layer 20 was less than 40 ppm.
  • Tables 2 to 8 show the melt viscosities of the thermosetting adhesive constituting the adhesive layer 20 in Samples 1 to 7, respectively.
  • the melt viscosity of the thermosetting adhesive constituting the adhesive layer 20 was 1 ⁇ 10 5 Pa ⁇ s or less in the temperature range of 150° C. or more and 180° C. or less.
  • thermosetting adhesive constituting adhesive layer 20 As this comparison, it became clear that by setting the mass fraction of organic components in the thermosetting adhesive constituting adhesive layer 20 to 40 ppm or more, the melt viscosity of the thermosetting adhesive constituting adhesive layer 20 becomes 1 x 105 Pa ⁇ s or less in the temperature range of 150°C or higher and 180°C or lower.
  • Printed wiring boards were prepared using the composite films of samples 4 to 7.
  • the aspect ratio of the wiring 50 was 1.5 or more, and the distance DIS was 30 ⁇ m or less.
  • the voids in the adhesive layer 60 were observed.
  • the maximum diameter of the voids in the adhesive layer 60 was 3 ⁇ m or less.
  • the maximum diameter of the voids in the adhesive layer 60 was more than 3 ⁇ m.
  • thermosetting adhesive constituting the adhesive layer 20 By setting the mass fraction of the organic components in the thermosetting adhesive constituting the adhesive layer 20 to 40 ppm or more, the fluidity of the thermosetting adhesive constituting the adhesive layer 20 can be ensured during heating in the composite film attachment process S8, and the embeddability between two adjacent portions of the wiring 50 can be improved.

Landscapes

  • Manufacturing Of Printed Wiring (AREA)

Abstract

This thermosetting adhesive comprises a thermosetting component that is cured by heating, and an organic component that is different from the thermosetting component. The mass fraction of the organic component in the thermosetting adhesive is 40 ppm or more.

Description

熱硬化性接着剤、複合フィルム及びプリント配線板Thermosetting adhesives, composite films and printed wiring boards
 本開示は、熱硬化性接着剤、複合フィルム及びプリント配線板に関する。本出願は、2022年12月8日に出願した日本特許出願である特願2022-196404号に基づく優先権を主張する。当該日本特許出願に記載された全ての記載内容は、参照によって本明細書に援用される。 This disclosure relates to a thermosetting adhesive, a composite film, and a printed wiring board. This application claims priority to Japanese Patent Application No. 2022-196404, filed on December 8, 2022. All contents of said Japanese patent application are incorporated herein by reference.
 例えば特開2019-116619号公報(特許文献1)には、カバーレイが記載されている。特許文献1に記載のカバーレイは、カバーフィルムと接着剤層とを有している。接着剤層は、カバーフィルムの主面上に配置されている。接着剤層は、熱硬化性接着剤の層である。 For example, JP 2019-116619 A (Patent Document 1) describes a coverlay. The coverlay described in Patent Document 1 has a cover film and an adhesive layer. The adhesive layer is disposed on the main surface of the cover film. The adhesive layer is a layer of a thermosetting adhesive.
 プリント配線板は、ベースフィルムと導電パターンとを有している。導電パターンは、ベースフィルムの主面上に配置されている。特許文献1に記載のカバーレイは、接着剤層が導電パターンを覆うようにベースフィルムの主面上に貼り付けられる。 The printed wiring board has a base film and a conductive pattern. The conductive pattern is disposed on the main surface of the base film. The coverlay described in Patent Document 1 is attached to the main surface of the base film so that the adhesive layer covers the conductive pattern.
特開2019-116619号公報JP 2019-116619 A
 本開示の熱硬化性接着剤は、加熱により硬化する熱硬化成分と、熱硬化成分とは異なる有機成分とを備える。熱硬化性接着剤中の前記有機成分の質量分率は、40ppm以上である。 The thermosetting adhesive of the present disclosure comprises a thermosetting component that hardens when heated, and an organic component different from the thermosetting component. The mass fraction of the organic component in the thermosetting adhesive is 40 ppm or more.
図1は、複合フィルム100の断面図である。FIG. 1 is a cross-sectional view of a composite film 100 . 図2は、変形例に係る複合フィルム100の断面図である。FIG. 2 is a cross-sectional view of a composite film 100 according to a modified example. 図3は、プリント配線板200の断面図である。FIG. 3 is a cross-sectional view of the printed wiring board 200. 図4は、変形例1に係るプリント配線板200の断面図である。FIG. 4 is a cross-sectional view of a printed wiring board 200 according to the first modification. 図5は、変形例2に係るプリント配線板200の断面図である。FIG. 5 is a cross-sectional view of a printed wiring board 200 according to the second modification. 図6は、プリント配線板200の製造工程図である。6A to 6C are diagrams showing the manufacturing process of the printed wiring board 200. 図7は、シード層形成工程S2を説明する断面図である。FIG. 7 is a cross-sectional view illustrating the seed layer forming step S2. 図8は、無電解めっき工程S3を説明する断面図である。FIG. 8 is a cross-sectional view illustrating the electroless plating step S3. 図9は、レジストパターン形成工程S4を説明する断面図である。FIG. 9 is a cross-sectional view illustrating the resist pattern forming step S4. 図10は、電解めっき工程S5を説明する断面図である。FIG. 10 is a cross-sectional view illustrating the electrolytic plating step S5. 図11は、レジストパターン除去工程S6を説明する断面図である。FIG. 11 is a cross-sectional view illustrating the resist pattern removing step S6. 図12は、エッチング工程S7を説明する断面図である。FIG. 12 is a cross-sectional view illustrating the etching step S7.
 [本開示が解決しようとする課題]
 導電パターンのアスペクト比(導電パターンの高さを導電パターンの幅で除した値)が大きい場合や導電パターンの隣り合う2つの部分の間の間隔が小さい場合に、特許文献1に記載のカバーレイの接着剤層は、導電パターンの隣り合う2つの部分の間を十分に埋め込めないことがある。
[Problem that this disclosure aims to solve]
When the aspect ratio of the conductive pattern (the height of the conductive pattern divided by the width of the conductive pattern) is large or when the distance between two adjacent parts of the conductive pattern is small, the adhesive layer of the coverlay described in Patent Document 1 may not be able to sufficiently fill the space between the two adjacent parts of the conductive pattern.
 本開示は、上記のような従来技術の問題点に鑑みてなされたものである。より具体的には、本開示は、配線の隣り合う2つの部分の間における埋め込み性が改善された熱硬化性接着剤を提供するものである。 The present disclosure has been made in consideration of the problems of the conventional technology as described above. More specifically, the present disclosure provides a thermosetting adhesive that has improved embeddability between two adjacent portions of a wiring.
 [本開示の効果]
 本開示の熱硬化性接着剤によると、配線の隣り合う2つの部分の間における埋め込み性を改善することが可能である。
[Effects of this disclosure]
The thermosetting adhesive of the present disclosure can improve the embedding ability between two adjacent portions of a wiring.
 [本開示の実施形態の説明]
 まず、本開示の実施態様を列記して説明する。
[Description of the embodiments of the present disclosure]
First, embodiments of the present disclosure will be listed and described.
 (1)本開示の熱硬化性接着剤は、加熱により硬化する熱硬化成分と、熱硬化成分とは異なる有機成分とを備えている。熱硬化性接着剤中の有機成分の質量分率は、40ppm以上である。上記(1)の熱硬化性接着剤によると、配線の隣り合う2つの部分の間における埋め込み性を改善することが可能である。 (1) The thermosetting adhesive of the present disclosure comprises a thermosetting component that hardens when heated, and an organic component different from the thermosetting component. The mass fraction of the organic component in the thermosetting adhesive is 40 ppm or more. The thermosetting adhesive of (1) above can improve the embeddability between two adjacent portions of a wiring.
 (2)上記(1)の熱硬化性接着剤では、熱硬化成分及び有機成分が相溶してもよい。
 (3)上記(1)又は上記(2)の熱硬化性接着剤では、熱硬化成分が、エポキシ、アミド及びアミドイミドからなる群から選択される少なくとも1つを含んでいてもよい。有機成分の沸点は、60℃以上210℃以下であってもよい。上記(3)の熱硬化性接着剤によると、配線の隣り合う2つの部分の間における埋め込み性を改善しつつ、配線の隣り合う2つの部分の間の絶縁性を確保することが可能である。
(2) In the thermosetting adhesive of (1) above, the thermosetting component and the organic component may be compatible with each other.
(3) In the thermosetting adhesive of (1) or (2), the thermosetting component may include at least one selected from the group consisting of epoxy, amide, and amide-imide. The boiling point of the organic component may be 60° C. or higher and 210° C. or lower. The thermosetting adhesive of (3) can improve the embedding property between two adjacent parts of the wiring while ensuring insulation between the two adjacent parts of the wiring.
 (4)上記(1)から上記(3)の熱硬化性接着剤は、150℃以上180℃以下の温度領域における溶融粘度が1×10Pa・s以下であってもよい。 (4) The thermosetting adhesives according to (1) to (3) above may have a melt viscosity of 1×10 5 Pa·s or less in a temperature range of 150° C. or more and 180° C. or less.
 (5)本開示の複合フィルムは、第1面を有する第1樹脂フィルムと、第1面上に配置されている接着剤層とを備えている。接着剤層は、上記(1)から上記(4)の熱硬化性接着剤の層である。上記(5)の複合フィルムによると、配線の隣り合う2つの部分の間における接着剤層の埋め込み性を改善することが可能である。 (5) The composite film of the present disclosure comprises a first resin film having a first surface, and an adhesive layer disposed on the first surface. The adhesive layer is a layer of a thermosetting adhesive as described in (1) to (4) above. With the composite film of (5) above, it is possible to improve the embeddability of the adhesive layer between two adjacent portions of the wiring.
 (6)上記(5)の複合フィルムは、接着剤層上に配置されている第2樹脂フィルムをさらに備えていてもよい。上記(5)の複合フィルムによると、使用前に接着剤層を保護することが可能である。 (6) The composite film of (5) above may further include a second resin film disposed on the adhesive layer. The composite film of (5) above makes it possible to protect the adhesive layer before use.
 (7)上記(6)の複合フィルムでは、第2樹脂フィルムが、ポリエステルのフィルムであってもよい。 (7) In the composite film of (6) above, the second resin film may be a polyester film.
 (8)上記(5)から上記(7)の複合フィルムでは、第1樹脂フィルムが、ポリイミド、液晶ポリマー又はポリエステルのフィルムであってもよい。 (8) In the composite films of (5) to (7) above, the first resin film may be a polyimide, liquid crystal polymer, or polyester film.
 (9)本開示のプリント配線板は、第2面を有する第3樹脂フィルムと、第2面上に配置されている配線と、接着剤層とを備える。配線の高さを配線の幅で除した値は、0.5以上である。配線の隣り合う2つの部分の間の間隔は、100μm以下である。接着剤層は、配線を覆うように、第2面上に配置されている。接着剤層中におけるボイドの最大径は、3μm以下である。上記(9)のプリント配線板によると、配線の隣り合う2つの間における接着剤層の埋め込み性を改善することが可能である。 (9) The printed wiring board of the present disclosure comprises a third resin film having a second surface, wiring disposed on the second surface, and an adhesive layer. The value obtained by dividing the height of the wiring by the width of the wiring is 0.5 or more. The distance between two adjacent portions of the wiring is 100 μm or less. The adhesive layer is disposed on the second surface so as to cover the wiring. The maximum diameter of the voids in the adhesive layer is 3 μm or less. According to the printed wiring board of (9) above, it is possible to improve the embeddability of the adhesive layer between two adjacent wirings.
 (10)上記(9)のプリント配線板は、接着剤層上に配置されている第1樹脂フィルムをさらに備えていてもよい。 (10) The printed wiring board of (9) above may further include a first resin film disposed on the adhesive layer.
 [本開示の実施形態の詳細]
 次に、本開示の実施形態の詳細を、図面を参照しながら説明する。以下の図面では、同一又は相当する部分に同一の参照符号を付し、重複する説明は繰り返さないものとする。実施形態に係る複合フィルムを複合フィルム100とし、実施形態に係るプリント配線板をプリント配線板200とする。
[Details of the embodiment of the present disclosure]
Next, details of the embodiment of the present disclosure will be described with reference to the drawings. In the following drawings, the same or corresponding parts are given the same reference characters, and duplicated descriptions will not be repeated. The composite film according to the embodiment is referred to as composite film 100, and the printed wiring board according to the embodiment is referred to as printed wiring board 200.
 (複合フィルム100の構成)
 以下に、複合フィルム100の構成を説明する。
(Configuration of composite film 100)
The structure of the composite film 100 will be described below.
 図1は、複合フィルム100の断面図である。図1に示されるように、複合フィルム100は、第1樹脂フィルム10と、接着剤層20と、第2樹脂フィルム30とを有している。 FIG. 1 is a cross-sectional view of a composite film 100. As shown in FIG. 1, the composite film 100 has a first resin film 10, an adhesive layer 20, and a second resin film 30.
 第1樹脂フィルム10は、第1面10aを有している。第1面10aは、第1樹脂フィルム10の厚さ方向における端面である。第1樹脂フィルム10は、例えばポリイミド、液晶ポリマー又はポリエステルのフィルムである。接着剤層20は、第1面10a上に配置されている。接着剤層20は、熱硬化性接着剤の層である。接着剤層20の厚さを、厚さT1とする。厚さT1は、5μm以上100μm以下であってもよい。なお、接着剤層20の熱硬化性接着剤は、未硬化の状態である。 The first resin film 10 has a first surface 10a. The first surface 10a is an end surface of the first resin film 10 in the thickness direction. The first resin film 10 is, for example, a film of polyimide, liquid crystal polymer, or polyester. The adhesive layer 20 is disposed on the first surface 10a. The adhesive layer 20 is a layer of a thermosetting adhesive. The thickness of the adhesive layer 20 is thickness T1. Thickness T1 may be 5 μm or more and 100 μm or less. The thermosetting adhesive of the adhesive layer 20 is in an uncured state.
 接着剤層20を構成している熱硬化性接着剤は、熱硬化成分と、有機成分とを有している。熱硬化成分は、加熱により硬化する成分である。熱硬化成分は、例えば、エポキシ、アミド及びアミドイミドからなる群から選択される少なくとも1つを含んでいる。有機成分は、熱硬化成分とは異なる成分である。熱硬化成分及び有機成分は、相溶してもよい。「熱硬化成分及び有機成分が相溶する」とは、熱硬化成分及び有機成分が相互に親和性を有し、分子レベルで混ざり合うことを意味する。接着剤層20を構成している熱硬化性接着剤中における有機成分の質量分率は、40ppm以上である。接着剤層20を構成している熱硬化性接着剤中における有機成分の質量分率は、例えば500ppm以下であってもよい。接着剤層20を構成している熱硬化性接着剤中における有機成分の質量分率は、熱分解ガスクロマトグラフ質量分析法により測定される。 The thermosetting adhesive constituting the adhesive layer 20 has a thermosetting component and an organic component. The thermosetting component is a component that hardens when heated. The thermosetting component includes at least one selected from the group consisting of epoxy, amide, and amide-imide. The organic component is a component different from the thermosetting component. The thermosetting component and the organic component may be compatible. "The thermosetting component and the organic component are compatible" means that the thermosetting component and the organic component have mutual affinity and are mixed at the molecular level. The mass fraction of the organic component in the thermosetting adhesive constituting the adhesive layer 20 is 40 ppm or more. The mass fraction of the organic component in the thermosetting adhesive constituting the adhesive layer 20 may be, for example, 500 ppm or less. The mass fraction of the organic component in the thermosetting adhesive constituting the adhesive layer 20 is measured by pyrolysis gas chromatography mass spectrometry.
 接着剤層20を構成している熱硬化性接着剤中における有機成分の沸点は、例えば60℃以上210℃以下であってもよい。接着剤層20を構成している熱硬化性接着剤の溶融粘度は、150℃以上180℃以下の温度領域において、1×10Pa・s以下であってもよい。接着剤層20を構成している熱硬化性接着剤の溶融粘度は、JIS K 7121(1987)に準拠して測定される。より具体的には、回転式レオメータを用いて、周波数が1Hz、昇温速度が10℃/分との条件で加熱しながら粘度測定し、溶融粘度とされる。上記の回転式レオメータとしては、UBM社製のRheosol-G3000を用いる。 The boiling point of the organic component in the thermosetting adhesive constituting the adhesive layer 20 may be, for example, 60° C. or higher and 210° C. or lower. The melt viscosity of the thermosetting adhesive constituting the adhesive layer 20 may be 1×10 5 Pa·s or lower in a temperature range of 150° C. or higher and 180° C. or lower. The melt viscosity of the thermosetting adhesive constituting the adhesive layer 20 is measured in accordance with JIS K 7121 (1987). More specifically, the viscosity is measured while heating using a rotational rheometer under conditions of a frequency of 1 Hz and a temperature rise rate of 10° C./min, and is taken as the melt viscosity. As the rotational rheometer, Rheosol-G3000 manufactured by UBM is used.
 第2樹脂フィルム30は、接着剤層20上に配置されている。このことを別の観点から言えば、接着剤層20は、第1樹脂フィルム10と第2樹脂フィルム30とに挟み込まれている。接着剤層20は、第2樹脂フィルム30により保護されている。第2樹脂フィルム30は、例えば、ポリエステルのフィルムである。 The second resin film 30 is disposed on the adhesive layer 20. From another perspective, the adhesive layer 20 is sandwiched between the first resin film 10 and the second resin film 30. The adhesive layer 20 is protected by the second resin film 30. The second resin film 30 is, for example, a polyester film.
 <変形例>
 図2は、変形例に係る複合フィルム100の断面図である。上記の例では、複合フィルム100が第2樹脂フィルム30を有しているが、複合フィルム100は、図2に示されるように、第2樹脂フィルム30を有していなくてもよい。
<Modification>
Fig. 2 is a cross-sectional view of a composite film 100 according to a modified example. In the above example, the composite film 100 has the second resin film 30, but the composite film 100 does not have to have the second resin film 30 as shown in Fig. 2.
 (プリント配線板200の構成)
 以下に、プリント配線板200の構成を説明する。
(Configuration of printed wiring board 200)
The configuration of the printed wiring board 200 will be described below.
 図3は、プリント配線板200の断面図である。図3に示されるように、プリント配線板200は、第3樹脂フィルム40と、配線50と、接着剤層60と、第1樹脂フィルム10とを有している。 FIG. 3 is a cross-sectional view of the printed wiring board 200. As shown in FIG. 3, the printed wiring board 200 has a third resin film 40, wiring 50, an adhesive layer 60, and a first resin film 10.
 第3樹脂フィルム40は、第2面40aと、第3面40bとを有している。第2面40a及び第3面40bは、第3樹脂フィルム40の厚さ方向における端面である。第3面40bは、第2面40aの反対面である。第3樹脂フィルム40は、例えば、ポリイミド、液晶ポリマー又はフッ素樹脂のフィルムである。 The third resin film 40 has a second surface 40a and a third surface 40b. The second surface 40a and the third surface 40b are end surfaces in the thickness direction of the third resin film 40. The third surface 40b is the opposite surface to the second surface 40a. The third resin film 40 is, for example, a film of polyimide, liquid crystal polymer, or fluororesin.
 配線50は、第2面40a上に配置されている。配線50の幅及び高さを、それぞれ幅W及び高さHとする。配線50のアスペクト比(高さHを幅Wで除した値)は、例えば、0.5以上である。配線50の隣り合う2つの部分の間の距離を、距離DISとする。距離DISは、例えば、100μm以下である。 The wiring 50 is disposed on the second surface 40a. The width and height of the wiring 50 are width W and height H, respectively. The aspect ratio of the wiring 50 (height H divided by width W) is, for example, 0.5 or more. The distance between two adjacent portions of the wiring 50 is distance DIS. Distance DIS is, for example, 100 μm or less.
 配線50は、シード層51と、無電解めっき層52と、電解めっき層53とを有している。シード層51は、第2面40a上に配置されている。シード層51は、例えば、スパッタリングで形成されたニッケル-クロム合金の層である。シード層51は、焼結されたナノ銅粒子の層であってもよい。 The wiring 50 has a seed layer 51, an electroless plating layer 52, and an electrolytic plating layer 53. The seed layer 51 is disposed on the second surface 40a. The seed layer 51 is, for example, a layer of a nickel-chromium alloy formed by sputtering. The seed layer 51 may also be a layer of sintered nano-copper particles.
 無電解めっき層52は、シード層51上に配置されている。無電解めっき層52は、無電解めっきにより形成された銅の層である。電解めっき層53は、無電解めっき層52上に配置されている。電解めっき層53は、電解めっきにより形成された銅の層である。 The electroless plating layer 52 is disposed on the seed layer 51. The electroless plating layer 52 is a copper layer formed by electroless plating. The electrolytic plating layer 53 is disposed on the electroless plating layer 52. The electrolytic plating layer 53 is a copper layer formed by electrolytic plating.
 接着剤層60は、配線50を覆うように第2面40a上に配置されている。接着剤層60は、熱硬化性樹脂の層である。なお、接着剤層60では、熱硬化成分が硬化された状態になっている。接着剤層60中におけるボイドの最大径は、3μm以下である。接着剤層60中におけるボイドの最大径は、光学顕微鏡により測定される。接着剤層60の厚さを厚さT2とする。厚さT2は、配線50の上面上にある接着剤層60の厚さである。厚さT2は、20μm以下であってもよい。第1樹脂フィルム10は、接着剤層60上に配置されている。 The adhesive layer 60 is disposed on the second surface 40a so as to cover the wiring 50. The adhesive layer 60 is a layer of a thermosetting resin. In the adhesive layer 60, the thermosetting component is in a cured state. The maximum diameter of the voids in the adhesive layer 60 is 3 μm or less. The maximum diameter of the voids in the adhesive layer 60 is measured using an optical microscope. The thickness of the adhesive layer 60 is taken as thickness T2. Thickness T2 is the thickness of the adhesive layer 60 on the upper surface of the wiring 50. Thickness T2 may be 20 μm or less. The first resin film 10 is disposed on the adhesive layer 60.
 <変形例>
 図4は、変形例1に係るプリント配線板200の断面図である。図4に示されているように、プリント配線板200は第1樹脂フィルム10を有していなくてもよい。図5は、変形例2に係るプリント配線板200の断面図である。図5に示されるように、配線50は第3面40b上に配置されていてもよく、接着剤層60は配線50を覆うように第3面40b上に配置されていてもよい。
<Modification>
Fig. 4 is a cross-sectional view of a printed wiring board 200 according to Modification 1. As shown in Fig. 4, the printed wiring board 200 does not need to have the first resin film 10. Fig. 5 is a cross-sectional view of a printed wiring board 200 according to Modification 2. As shown in Fig. 5, the wiring 50 may be disposed on the third surface 40b, and the adhesive layer 60 may be disposed on the third surface 40b so as to cover the wiring 50.
 (プリント配線板200の製造方法)
 以下に、プリント配線板200の製造方法を説明する。
(Method of Manufacturing Printed Wiring Board 200)
A method for manufacturing the printed wiring board 200 will be described below.
 図6は、プリント配線板200の製造工程図である。図6に示されるように、プリント配線板200の製造方法は、準備工程S1と、シード層形成工程S2と、無電解めっき工程S3と、レジストパターン形成工程S4と、電解めっき工程S5と、レジストパターン除去工程S6と、エッチング工程S7と、複合フィルム貼付工程S8とを有している。 FIG. 6 is a manufacturing process diagram of the printed wiring board 200. As shown in FIG. 6, the manufacturing method of the printed wiring board 200 includes a preparation process S1, a seed layer formation process S2, an electroless plating process S3, a resist pattern formation process S4, an electrolytic plating process S5, a resist pattern removal process S6, an etching process S7, and a composite film attachment process S8.
 準備工程S1では、第3樹脂フィルム40が準備される。図7は、シード層形成工程S2を説明する断面図である。図7に示されるように、シード層形成工程S2では、第2面40a上にシード層51が形成される。シード層51は、例えばスパッタリングにより形成される。シード層51は、ナノ銅粒子を含むインクを第2面40a上に塗布するとともに、当該インクを焼成することにより形成されてもよい。 In the preparation step S1, the third resin film 40 is prepared. FIG. 7 is a cross-sectional view illustrating the seed layer formation step S2. As shown in FIG. 7, in the seed layer formation step S2, a seed layer 51 is formed on the second surface 40a. The seed layer 51 is formed by, for example, sputtering. The seed layer 51 may be formed by applying an ink containing nano-copper particles onto the second surface 40a and baking the ink.
 図8は、無電解めっき工程S3を説明する断面図である。図8に示されるように、無電解めっき工程S3では、シード層51上に、無電解めっき層52が形成される。無電解めっき層52は、無電解めっきにより形成される。図9は、レジストパターン形成工程S4を説明する断面図である。図9に示されるように、レジストパターン形成工程S4では、無電解めっき層52上にレジストパターン70が形成される。レジストパターン70は、例えば無電解めっき層52上にドライフィルムレジストを貼付するとともに、当該ドライフィルムレジストを露光及び現像してパターンニングすることにより形成される。レジストパターン70は、レジストパターン70を厚さ方向に沿って貫通している開口部71を有しており、開口部71からは無電解めっき層52が露出している。 FIG. 8 is a cross-sectional view illustrating the electroless plating step S3. As shown in FIG. 8, in the electroless plating step S3, an electroless plating layer 52 is formed on a seed layer 51. The electroless plating layer 52 is formed by electroless plating. FIG. 9 is a cross-sectional view illustrating the resist pattern formation step S4. As shown in FIG. 9, in the resist pattern formation step S4, a resist pattern 70 is formed on the electroless plating layer 52. The resist pattern 70 is formed, for example, by attaching a dry film resist on the electroless plating layer 52, and exposing and developing the dry film resist to pattern it. The resist pattern 70 has an opening 71 penetrating the resist pattern 70 in the thickness direction, and the electroless plating layer 52 is exposed from the opening 71.
 図10は、電解めっき工程S5を説明する断面図である。図10に示されるように、電解めっき工程S5では、開口部71から露出している無電解めっき層52上に、電解めっき層53が形成される。電解めっき層53は、電解めっきにより形成される。図11は、レジストパターン除去工程S6を説明する断面図である。図11に示されるように、レジストパターン除去工程S6では、レジストパターン70が無電解めっき層52上から除去される。 FIG. 10 is a cross-sectional view illustrating the electrolytic plating process S5. As shown in FIG. 10, in the electrolytic plating process S5, an electrolytic plating layer 53 is formed on the electroless plating layer 52 exposed from the opening 71. The electrolytic plating layer 53 is formed by electrolytic plating. FIG. 11 is a cross-sectional view illustrating the resist pattern removal process S6. As shown in FIG. 11, in the resist pattern removal process S6, the resist pattern 70 is removed from the electroless plating layer 52.
 図12は、エッチング工程S7を説明する断面図である。図12に示されるように、エッチング工程S7では、レジストパターン70の下にあった無電解めっき層52及びシード層51が、エッチングにより除去される。 FIG. 12 is a cross-sectional view illustrating the etching step S7. As shown in FIG. 12, in the etching step S7, the electroless plating layer 52 and the seed layer 51 that were underneath the resist pattern 70 are removed by etching.
 複合フィルム貼付工程S8では、複合フィルム100が第2面40a上に貼り付けられる。複合フィルム貼付工程S8では、第1に、第2樹脂フィルム30が接着剤層20上から剥離される。第2に、接着剤層20が配線50を覆うように複合フィルム100が第2面40a上に貼り付けられる。第3に、複合フィルム100が、加熱されながら第3樹脂フィルム40側に向かって加圧される。この加熱は、例えば、150℃以上180℃以下の温度領域において行われる。これにより、接着剤層20を構成している熱硬化性接着剤が流動して配線50の隣り合う2つの部分の間に埋め込まれるとともに、当該熱硬化性接着剤が硬化する。このようにして、接着剤層20が接着剤層60となる。 In the composite film attachment process S8, the composite film 100 is attached onto the second surface 40a. In the composite film attachment process S8, first, the second resin film 30 is peeled off from the adhesive layer 20. Second, the composite film 100 is attached onto the second surface 40a so that the adhesive layer 20 covers the wiring 50. Third, the composite film 100 is heated and pressurized toward the third resin film 40. This heating is performed, for example, in a temperature range of 150°C to 180°C. As a result, the thermosetting adhesive that constitutes the adhesive layer 20 flows and is embedded between the two adjacent portions of the wiring 50, and the thermosetting adhesive hardens. In this way, the adhesive layer 20 becomes the adhesive layer 60.
 (複合フィルム100の効果)
 以下に、複合フィルム100の効果を説明する。
(Effects of the composite film 100)
The effects of the composite film 100 will be described below.
 複合フィルム100では、接着剤層20を構成している熱硬化性接着剤中における有機成分の質量分率が40ppm以上になっている。そのため、複合フィルム貼付工程S8の加熱が行われている際に接着剤層20を構成している熱硬化性接着剤の流動性を確保することができる。より具体的には、複合フィルム貼付工程S8の加熱が行われている際に、接着剤層20を構成している熱硬化性接着剤の溶融粘度を1×10Pa・s以下とすることができる。その結果、複合フィルム100によると、配線50の隣り合う2つの部分の間における接着剤層60の埋め込み性を改善することができる。 In the composite film 100, the mass fraction of organic components in the thermosetting adhesive constituting the adhesive layer 20 is 40 ppm or more. Therefore, the flowability of the thermosetting adhesive constituting the adhesive layer 20 can be ensured when the heating is performed in the composite film attachment step S8. More specifically, the melt viscosity of the thermosetting adhesive constituting the adhesive layer 20 can be set to 1×10 5 Pa·s or less when the heating is performed in the composite film attachment step S8. As a result, the composite film 100 can improve the embeddability of the adhesive layer 60 between two adjacent portions of the wiring 50.
 接着剤層20を構成している熱硬化性接着剤に含まれている有機成分の沸点が60℃未満である場合、複合フィルム貼付工程S8の加熱が行われている際に当該有機成分が蒸発してしまい、接着剤層20を構成している熱硬化性接着剤の流動性が低下するおそれがある。他方で、接着剤層20を構成している熱硬化性接着剤に含まれている有機成分の沸点が210℃超である場合、当該有機成分が接着剤層60中に多く残存し、接着剤層60の絶縁性を低下させるおそれがある。そのため、接着剤層20を構成している熱硬化性接着剤に含まれている有機成分の沸点を60℃以上210℃以下とすることにより、配線50の隣り合う2つの部分の間における埋め込み性を改善しつつ、配線50の隣り合う2つの部分の間の絶縁性を確保することが可能である。 If the boiling point of the organic component contained in the thermosetting adhesive constituting the adhesive layer 20 is less than 60°C, the organic component may evaporate during heating in the composite film attachment process S8, and the fluidity of the thermosetting adhesive constituting the adhesive layer 20 may decrease. On the other hand, if the boiling point of the organic component contained in the thermosetting adhesive constituting the adhesive layer 20 is greater than 210°C, the organic component may remain in large amounts in the adhesive layer 60, which may reduce the insulating properties of the adhesive layer 60. Therefore, by setting the boiling point of the organic component contained in the thermosetting adhesive constituting the adhesive layer 20 to 60°C or more and 210°C or less, it is possible to improve the embedding property between two adjacent parts of the wiring 50 while ensuring the insulation between the two adjacent parts of the wiring 50.
 (実施例)
 複合フィルムのサンプルとして、サンプル1からサンプル7が準備された。サンプル1からサンプル7では、熱処理を行うことにより、接着剤層20を構成している熱硬化性接着剤中における有機成分の質量分率が調整された。表1には、サンプル1からサンプル7に適用された熱処理の条件が示されている。
(Example)
Samples 1 to 7 were prepared as composite film samples. In Samples 1 to 7, a heat treatment was performed to adjust the mass fraction of the organic component in the thermosetting adhesive constituting the adhesive layer 20. Table 1 shows the heat treatment conditions applied to Samples 1 to 7.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 この熱処理が行われた結果、サンプル1からサンプル5では、接着剤層20を構成している熱硬化性接着剤中における有機成分の質量分率が40ppm以上であった。他方で、サンプル6及びサンプル7では、この熱処理が行われた結果、接着剤層20を構成している熱硬化性接着剤中における有機成分の質量分率が40ppm未満であった。 As a result of this heat treatment, in samples 1 to 5, the mass fraction of organic components in the thermosetting adhesive constituting the adhesive layer 20 was 40 ppm or more. On the other hand, in samples 6 and 7, as a result of this heat treatment, the mass fraction of organic components in the thermosetting adhesive constituting the adhesive layer 20 was less than 40 ppm.
 表2から表8には、それぞれ、サンプル1からサンプル7における接着剤層20を構成している熱硬化性接着剤の溶融粘度が示されている。サンプル1からサンプル5では、接着剤層20を構成している熱硬化性接着剤の溶融粘度が、150℃以上180℃以下の温度領域において、1×10Pa・s以下であった。 Tables 2 to 8 show the melt viscosities of the thermosetting adhesive constituting the adhesive layer 20 in Samples 1 to 7, respectively. In Samples 1 to 5, the melt viscosity of the thermosetting adhesive constituting the adhesive layer 20 was 1×10 5 Pa·s or less in the temperature range of 150° C. or more and 180° C. or less.
 他方で、サンプル6及びサンプル7では、150℃以上180℃以下の温度領域において、接着剤層20を構成している熱硬化性接着剤の溶融粘度が高すぎ、正確な測定ができなかった。このことから、サンプル6及びサンプル7では、150℃以上180℃以下の温度領域において、接着剤層20を構成している熱硬化性接着剤の溶融粘度が1×10Pa・s超であると考えられる。 On the other hand, in Samples 6 and 7, the melt viscosity of the thermosetting adhesive constituting the adhesive layer 20 was too high in the temperature range of 150° C. or higher and 180° C. or lower, and accurate measurement was not possible. From this, it is considered that the melt viscosity of the thermosetting adhesive constituting the adhesive layer 20 in Samples 6 and 7 exceeds 1×10 5 Pa·s in the temperature range of 150° C. or higher and 180° C. or lower.
 この比較から、接着剤層20を構成している熱硬化性接着剤中における有機成分の質量分率が40ppm以上とすることにより、接着剤層20を構成している熱硬化性接着剤の溶融粘度を150℃以上180℃以下の温度領域において1×10Pa・s以下になることが明らかになった。 From this comparison, it became clear that by setting the mass fraction of organic components in the thermosetting adhesive constituting adhesive layer 20 to 40 ppm or more, the melt viscosity of the thermosetting adhesive constituting adhesive layer 20 becomes 1 x 105 Pa·s or less in the temperature range of 150°C or higher and 180°C or lower.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 サンプル4からサンプル7の複合フィルムを用いて、プリント配線板が準備された。これらのプリント配線板では、配線50のアスペクト比が1.5以上とされ、距離DISが30μm以下とされた。これらのプリント配線板において、接着剤層60中のボイドの観察が行われた。サンプル4及びサンプル5を用いたプリント配線板では、接着剤層60中のボイドの最大径が3μm以下であった。他方で、サンプル6及びサンプル7を用いたプリント配線板では、接着剤層60中のボイドの最大径が3μm超であった。 Printed wiring boards were prepared using the composite films of samples 4 to 7. In these printed wiring boards, the aspect ratio of the wiring 50 was 1.5 or more, and the distance DIS was 30 μm or less. In these printed wiring boards, the voids in the adhesive layer 60 were observed. In the printed wiring boards using samples 4 and 5, the maximum diameter of the voids in the adhesive layer 60 was 3 μm or less. On the other hand, in the printed wiring boards using samples 6 and 7, the maximum diameter of the voids in the adhesive layer 60 was more than 3 μm.
 この比較から、接着剤層20を構成している熱硬化性接着剤中における有機成分の質量分率が40ppm以上とすることにより、複合フィルム貼付工程S8の加熱が行われている際に接着剤層20を構成している熱硬化性接着剤の流動性を確保することができ、配線50の隣り合う2つの部分の間における埋め込み性が改善されることが明らかになった。 This comparison reveals that by setting the mass fraction of the organic components in the thermosetting adhesive constituting the adhesive layer 20 to 40 ppm or more, the fluidity of the thermosetting adhesive constituting the adhesive layer 20 can be ensured during heating in the composite film attachment process S8, and the embeddability between two adjacent portions of the wiring 50 can be improved.
 今回開示された実施形態は全ての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記の実施形態ではなく請求の範囲によって示され、請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。 The embodiments disclosed herein are illustrative in all respects and should not be considered limiting. The scope of the present invention is indicated by the claims rather than the above embodiments, and is intended to include all modifications within the meaning and scope of the claims.
 100 複合フィルム、10 第1樹脂フィルム、10a 第1面、20 接着剤層、30 第2樹脂フィルム、40 第3樹脂フィルム、40a 第2面、40b 第3面、50 配線、51 シード層、52 無電解めっき層、53 電解めっき層、60 接着剤層、70 レジストパターン、71 開口部、200 プリント配線板、T1,T2 厚さ、W 幅、DIS 距離、H 高さ、S1 準備工程、S2 シード層形成工程、S3 無電解めっき工程、S4 レジストパターン形成工程、S5 電解めっき工程、S6 レジストパターン除去工程、S7 エッチング工程、S8 複合フィルム貼付工程。 100 composite film, 10 first resin film, 10a first surface, 20 adhesive layer, 30 second resin film, 40 third resin film, 40a second surface, 40b third surface, 50 wiring, 51 seed layer, 52 electroless plating layer, 53 electrolytic plating layer, 60 adhesive layer, 70 resist pattern, 71 opening, 200 printed wiring board, T1, T2 thickness, W width, DIS distance, H height, S1 preparation step, S2 seed layer formation step, S3 electroless plating step, S4 resist pattern formation step, S5 electrolytic plating step, S6 resist pattern removal step, S7 etching step, S8 composite film attachment step.

Claims (10)

  1.  熱硬化性接着剤であって、
     加熱により硬化する熱硬化成分と、
     前記熱硬化成分とは異なる有機成分とを備え、
     前記熱硬化性接着剤中の前記有機成分の質量分率は、40ppm以上である、熱硬化性接着剤。
    A thermosetting adhesive,
    A thermosetting component that hardens when heated;
    an organic component different from the thermosetting component;
    A thermosetting adhesive, wherein the mass fraction of the organic component in the thermosetting adhesive is 40 ppm or more.
  2.  前記熱硬化成分及び前記有機成分は、相溶する、請求項1に記載の熱硬化性接着剤。 The thermosetting adhesive of claim 1, wherein the thermosetting component and the organic component are compatible.
  3.  前記熱硬化成分は、エポキシ、アミド及びアミドイミドからなる群から選択される少なくとも1つを含み、
     前記有機成分の沸点は、60℃以上210℃以下である、請求項1又は請求項2に記載の熱硬化性接着剤。
    The thermosetting component includes at least one selected from the group consisting of epoxy, amide, and amide-imide;
    The thermosetting adhesive according to claim 1 or 2, wherein the boiling point of the organic component is 60°C or higher and 210°C or lower.
  4.  150℃以上180℃以下の温度領域における溶融粘度が1×10Pa・s以下である、請求項1から請求項3のいずれか1項に記載の熱硬化性接着剤。 The thermosetting adhesive according to claim 1 , which has a melt viscosity of 1×10 5 Pa·s or less in a temperature range of 150° C. or more and 180° C. or less.
  5.  第1面を有する第1樹脂フィルムと、
     前記第1面上に配置されている接着剤層とを備え、
     前記接着剤層は、請求項1から請求項4のいずれか1項に記載の前記熱硬化性接着剤の層である、複合フィルム。
    a first resin film having a first surface;
    an adhesive layer disposed on the first surface;
    A composite film, wherein the adhesive layer is a layer of the thermosetting adhesive according to any one of claims 1 to 4.
  6.  前記接着剤層上に配置されている第2樹脂フィルムをさらに備える、請求項5に記載の複合フィルム。 The composite film of claim 5, further comprising a second resin film disposed on the adhesive layer.
  7.  前記第2樹脂フィルムは、ポリエステルのフィルムである、請求項6に記載の複合フィルム。 The composite film according to claim 6, wherein the second resin film is a polyester film.
  8.  前記第1樹脂フィルムは、ポリイミド、液晶ポリマー又はポリエステルのフィルムである、請求項5から請求項7のいずれか1項に記載の複合フィルム。 The composite film according to any one of claims 5 to 7, wherein the first resin film is a film of polyimide, liquid crystal polymer, or polyester.
  9.  第2面を有する第3樹脂フィルムと、
     前記第2面上に配置されている配線と、
     接着剤層とを備え、
     前記配線の高さを前記配線の幅で除した値は、0.5以上であり、
     前記配線の隣り合う2つの部分の間の間隔は、100μm以下であり、
     前記接着剤層は、前記配線を覆うように前記第2面上に配置されており、
     前記接着剤層中におけるボイドの最大径は、3μm以下である、プリント配線板。
    a third resin film having a second surface;
    Wiring disposed on the second surface;
    an adhesive layer;
    a value obtained by dividing the height of the wiring by the width of the wiring is 0.5 or more;
    The distance between two adjacent portions of the wiring is 100 μm or less;
    the adhesive layer is disposed on the second surface so as to cover the wiring,
    A printed wiring board, wherein the maximum diameter of voids in the adhesive layer is 3 μm or less.
  10.  前記接着剤層上に配置されている第1樹脂フィルムをさらに備える、請求項9に記載のプリント配線板。 The printed wiring board of claim 9, further comprising a first resin film disposed on the adhesive layer.
PCT/JP2023/038326 2022-12-08 2023-10-24 Thermosetting adhesive, composite film, and printed wiring board WO2024122209A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-196404 2022-12-08
JP2022196404 2022-12-08

Publications (1)

Publication Number Publication Date
WO2024122209A1 true WO2024122209A1 (en) 2024-06-13

Family

ID=91378892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/038326 WO2024122209A1 (en) 2022-12-08 2023-10-24 Thermosetting adhesive, composite film, and printed wiring board

Country Status (1)

Country Link
WO (1) WO2024122209A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003229458A (en) * 2002-02-01 2003-08-15 Toray Ind Inc Method of manufacturing substrate for semiconductor circuit, and semiconductor device
JP2010195887A (en) * 2009-02-24 2010-09-09 Sumitomo Electric Ind Ltd Adhesive resin composition, and laminate and flexible printed wiring board using the same
WO2019194208A1 (en) * 2018-04-04 2019-10-10 住友電工プリントサーキット株式会社 Cover film for flexible printed circuit and flexible printed circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003229458A (en) * 2002-02-01 2003-08-15 Toray Ind Inc Method of manufacturing substrate for semiconductor circuit, and semiconductor device
JP2010195887A (en) * 2009-02-24 2010-09-09 Sumitomo Electric Ind Ltd Adhesive resin composition, and laminate and flexible printed wiring board using the same
WO2019194208A1 (en) * 2018-04-04 2019-10-10 住友電工プリントサーキット株式会社 Cover film for flexible printed circuit and flexible printed circuit

Similar Documents

Publication Publication Date Title
KR100674075B1 (en) Compositions with polymers for advanced matertials
US5073840A (en) Circuit board with coated metal support structure and method for making same
JP2018504776A (en) High speed interconnects for printed circuit boards
KR20030046552A (en) Printed Circuit Board with Buried Resistors and Manufacturing Method Thereof
WO1991014015A1 (en) Method and materials for forming multi-layer circuits by an additive process
KR100432105B1 (en) Resin Compound, and Adhesive Film, Metal-clad Adhesive Film, Circuit Board, and Assembly Structure, Using the Resin Compound
WO2020090727A1 (en) Electromagnetic wave shielding film, method of manufacturing shielded printed wiring board, and shielded printed wiring board
JP5309352B2 (en) Interlayer insulation sheet for electronic component built-in module, electronic component built-in module, and method of manufacturing electronic component built-in module
CN110016302A (en) Conductive adhesive compositions and the isotropism conductive film formed by it
KR20070037494A (en) Coated copper, method for inhibiting generation of whisker, printed wiring board and semiconductor device
JP2022133347A (en) Metal foil with resin and flexible printed wiring board
WO2024122209A1 (en) Thermosetting adhesive, composite film, and printed wiring board
WO2020090726A1 (en) Electromagnetic shielding film, method for producing shielded printed wiring board, and shielded printed wiring board
JP2005129921A (en) Sheets for fixed jig
KR20050084990A (en) Multi-layer circuit assembly and process for preparing the same
JPH07297522A (en) Manufacture of wiring board
EP0123954B1 (en) Structure containing a layer consisting of polyimide and an inorganic filler and method for producing such a structure
JP2021057395A (en) Method for manufacturing flexible print wiring board
DE102016124559A1 (en) Method for producing an LED module
JPH0577161B2 (en)
KR102010658B1 (en) Method for manufacturing Multi-layer metal clay material For Printed Circuit Board
JPH11150366A (en) Production of sequential multilayer wiring board
GB2161325A (en) Method for making wire scribed circuit boards
Tilsley et al. Comparison of Dry Film and Liquid Photo‐imageable Solder Masks for Surface‐mount Assemblies
JPH0752788B2 (en) Method of forming printed wiring board