WO2024120170A1 - 一种大规模组网扩展级联麦克风系统和方法 - Google Patents

一种大规模组网扩展级联麦克风系统和方法 Download PDF

Info

Publication number
WO2024120170A1
WO2024120170A1 PCT/CN2023/132757 CN2023132757W WO2024120170A1 WO 2024120170 A1 WO2024120170 A1 WO 2024120170A1 CN 2023132757 W CN2023132757 W CN 2023132757W WO 2024120170 A1 WO2024120170 A1 WO 2024120170A1
Authority
WO
WIPO (PCT)
Prior art keywords
cascade
data
sound
local
sound data
Prior art date
Application number
PCT/CN2023/132757
Other languages
English (en)
French (fr)
Inventor
谭颢
谢俊杰
曹珈
Original Assignee
深圳市拔超科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市拔超科技股份有限公司 filed Critical 深圳市拔超科技股份有限公司
Publication of WO2024120170A1 publication Critical patent/WO2024120170A1/zh
Priority to US18/763,270 priority Critical patent/US20240357039A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/24Structural combinations of separate transducers or of two parts of the same transducer and responsive respectively to two or more frequency ranges
    • H04R1/245Structural combinations of separate transducers or of two parts of the same transducer and responsive respectively to two or more frequency ranges of microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M3/00Automatic or semi-automatic exchanges
    • H04M3/42Systems providing special services or facilities to subscribers
    • H04M3/56Arrangements for connecting several subscribers to a common circuit, i.e. affording conference facilities
    • H04M3/568Arrangements for connecting several subscribers to a common circuit, i.e. affording conference facilities audio processing specific to telephonic conferencing, e.g. spatial distribution, mixing of participants
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/1066Session management
    • H04L65/1069Session establishment or de-establishment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/26Spatial arrangements of separate transducers responsive to two or more frequency ranges
    • H04R1/265Spatial arrangements of separate transducers responsive to two or more frequency ranges of microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • H04R1/40Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers
    • H04R1/406Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/005Circuits for transducers, loudspeakers or microphones for combining the signals of two or more microphones
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the technical field of networked cascade microphone systems, and in particular to a large-scale networked extended cascade microphone system and method.
  • Another traditional solution is to aggregate multiple microphones to a mixer, but the number is also limited by the mixer's interface.
  • the existing system solution has some impact on the overall coverage effect due to the limited number of cascaded microphones.
  • Chinese invention patent CN2021106722942 discloses a microphone cascade system, a microphone and a terminal, wherein the microphone cascade system includes: a mother microphone, a plurality of sub-microphones and a preset terminal;
  • the mother microphone is provided with a first network communication module, each sub-microphone is provided with a second network communication module, and the preset terminal is provided with a third network communication module; the mother microphone is connected to the first sub-microphone and the preset terminal respectively through the first network communication module and the network cable; the first sub-microphone and other sub-microphones are connected in series through their respective second network communication modules and network cables in a preset order;
  • Each sub-microphone is used to obtain, through the second network communication module, a first audio data packet sent by a subsequent microphone connected thereto in the preset sequence; and to send the first audio data packet and a second audio data packet collected based on a network transmission audio protocol to a previous microphone connected thereto in the preset sequence;
  • the mother microphone is used to obtain the third audio data packet sent by the first sub-microphone from the first interface through the first network communication module; based on the network transmission audio protocol, obtain a mixed audio data packet according to the third audio data packet and the collected first audio data, and send the mixed audio data packet from the second interface to the preset terminal;
  • the preset terminal is used to obtain the mixed audio data packet from the mother microphone through the third network communication module;
  • the main microphone and each sub-microphone are also provided with a loudspeaker
  • the preset terminal is also used to send the audio data packet to be processed to the mother microphone;
  • the mother microphone is further used to obtain the audio data packet to be processed through the first network communication module; restore the audio data packet to be processed into audio data to be processed based on the network transmission audio protocol; play the audio data to be processed through the speaker; and send the audio data packet to be processed from the first interface to each sub-microphone through the first network communication module;
  • Each sub-microphone is also used to obtain the audio data packet to be processed from the previous microphone connected to it in the preset sequence through the second network communication module; restore the audio data packet to be processed into audio data to be processed based on the network transmission audio protocol; play the audio data to be processed through a speaker; and send the audio data packet to be processed to the next microphone connected to it in the preset sequence through the second network communication module.
  • the link structure it adopts is still a series structure, which is not capable of large-scale networking.
  • the number of microphones that can be networked is also limited by the number of interfaces of the switch, so there are certain limitations on networking and deployment.
  • the technical problem to be solved by the present application is to provide a system and method for large-scale networking and expansion of cascade microphones to achieve large-scale networking and expansion of cascade microphones.
  • a large-scale networking expansion cascade microphone system including the following modules:
  • Multiple cascade microphones are used to pick up sound and complete audio processing according to the reference audio signal received from the cascade hub of the upper device after picking up the sound, and the processed audio data is sent to the cascade hub of the upper device;
  • the cascaded hub after receiving the sound data uploaded by the cascaded microphones of one or more lower-level devices, will compare the energy and select the sound data with the largest energy to send to the conference all-in-one device of the upper-level device;
  • the all-in-one conference machine completes audio processing based on the audio signal received from the PC, compares the energy of the processed sound data with the sound data transmitted from the cascaded hub of the lower-level device, and selects the data with larger energy to send to the PC.
  • the cascade microphone comprises
  • the audio processing module receives the sound from the array microphone of the local machine, and after completing the sound processing, compares the energy of the sound data with the sound data from the local downlink cascade data module, selects the one with larger energy and sends it to the local uplink cascade data module, and at the same time transparently transmits the reference sound signal from the local uplink cascade data module to the local downlink cascade data module;
  • the uplink cascade data module receives the reference sound signal from the upper device and sends it to the local audio processing module; at the same time, it sends the sound data processed and compared by the local audio processing module to the upper device;
  • the downlink cascade data module receives the sound data from the lower-level device and sends it to the local audio processing module; at the same time, it sends the reference sound signal transparently transmitted by the local audio processing module to the lower-level device;
  • the array microphone collects the sound from the external sound source and transmits the data to the audio processing module of this machine.
  • the cascade Hub includes
  • the audio processing module receives the sound data from multiple external downlink cascade data modules, compares the energy, selects the one with the larger energy, and sends it to the local uplink cascade data module; at the same time, the reference sound signal from the local uplink cascade data module is transparently transmitted to the local downlink cascade data module;
  • the uplink cascade data module receives the reference sound signal from the upper device and sends it to the local audio processing module; at the same time, it sends the sound data processed and compared by the local audio processing module to the upper device;
  • the downlink cascade data module receives the sound data from the lower-level device and sends it to the local audio processing module; at the same time, it sends the reference sound signal transparently transmitted by the local audio processing module to the lower-level device.
  • a cascade Hub includes a plurality of local downstream cascade data modules.
  • the all-in-one conference machine includes
  • the audio processing module receives the sound from the array microphone of the local machine, completes the sound processing, compares the energy of the sound data with the sound data from the cascade data module of the local machine, selects the one with larger energy, and sends it to the external PC as the final collected sound signal;
  • the cascade data module transmits the sound reference signal sent by the local audio processing module to the lower-level device; at the same time, it receives the sound data from the cascade microphone of the lower-level device and sends it to the local audio processing module;
  • Array microphone collects sound from external sound sources and transmits the data to the audio processing module of this machine;
  • the speaker receives audio data from the local audio processing module and produces sound.
  • the audio processing module of the all-in-one conference machine sends the audio data transmitted from the external PC to the local cascade data module for transmission to the next-level device as a sound reference signal; the audio processing module of the all-in-one conference machine sends the audio data transmitted from the external PC to the local speaker.
  • a method for large-scale networking and expansion of cascaded microphones comprising the following steps:
  • Step 1 The all-in-one conference machine queries the networking status of the cascaded microphones and the cascaded Hubs through a broadcast addressing message.
  • the cascaded microphones, the cascaded Hubs and the all-in-one conference machine form a three-fork tree network.
  • the all-in-one conference machine sends an addressed message to the cascaded microphone and the cascaded Hub.
  • the cascaded microphone or the cascaded Hub receives the addressed message, it adds its own flag data to the flag bit of the cascaded microphone or the cascaded Hub in the addressed message.
  • the next cascaded microphone or cascaded Hub adds its own flag data, traverses to all devices in the network, and the device adds its own flag data according to its location to reply to the message to the all-in-one conference machine.
  • the all-in-one conference machine collects the data returned by all devices, thereby forming a connection diagram of the entire network.
  • the mark data of the next cascade microphone or cascade Hub is the mark data of the previous cascade microphone or cascade Hub plus 1.
  • the all-in-one conference machine periodically sends addressing messages to obtain the networking status in real time.
  • Step 2 After the networking is completed, in actual operation, the array microphone of the last-level cascade microphone picks up the sound, completes the audio processing according to the reference audio signal received from the cascade hub of the upper-level device, and sends the processed audio data to the cascade hub of the upper-level device;
  • Step 3 After the array microphone of the intermediate cascade microphone picks up the sound, it completes audio processing according to the reference audio signal received from the cascade hub of the upper device, compares the energy of the processed sound data with the sound data transmitted from the cascade microphone of the lower device, selects the data with the larger energy, and sends it to the cascade hub of the upper device;
  • Step 4 After receiving the sound data uploaded by the cascade microphones of one or more lower-level devices, the cascaded Hub will compare the energy and select the sound data with the largest energy to send to the conference all-in-one device of the upper-level device;
  • Step 5 After the array microphone of the cascade microphone of the all-in-one conference machine picks up the sound, it completes audio processing according to the audio signal received from the PC, compares the energy of the processed sound data with the sound data transmitted from the cascade hub of the lower-level device, and selects the data with larger energy to send to the PC.
  • the beneficial effects of the present application are: the cascade microphones, cascade hubs and all-in-one conference machines form a three-fork tree structure network, and such a network can be expanded arbitrarily, thereby realizing an extended cascade microphone system of any scale.
  • the large-scale networking expansion cascade microphone system of the present application the large-scale networking expansion of cascade microphones can be realized, thereby meeting the needs of large-scale deployment of cascade microphones in large conference rooms or classrooms.
  • the three-fork tree networking structure is conducive to covering various types of conference rooms, especially conference rooms and classrooms with multiple rows of seats.
  • FIG1 is a network structure of an existing cascade microphone system
  • FIG2 is a network structure of the cascade microphone system of the present application.
  • FIG3 is a flowchart of the network addressing of the cascade microphone system of the present application.
  • FIG4 is a module framework diagram of the cascade microphone system of the present application.
  • FIG5 is a schematic diagram of the overall process of the cascade microphone method of the present application.
  • a large-scale networked extended cascade microphone system includes the following modules:
  • Multiple cascaded microphones can pick up sound and complete audio processing according to the reference audio signal received from the cascaded hub of the upper device after picking up the sound, and send the processed audio data to the cascaded hub of the upper device;
  • the cascaded hub after receiving the sound data uploaded by the cascaded microphones of one or more lower-level devices, will compare the energy and select the sound data with the largest energy to send to the conference all-in-one device of the upper-level device;
  • the all-in-one conference machine completes audio processing based on the audio signal received from the PC, compares the energy of the processed sound data with the sound data transmitted from the cascaded hub of the lower-level device, and selects the data with larger energy to send to the PC.
  • the cascade microphone includes
  • the audio processing module receives the sound from the array microphone of the local machine, and after completing the sound processing, compares the energy of the sound data with the sound data from the local downlink cascade data module, selects the one with larger energy and sends it to the local uplink cascade data module, and at the same time transparently transmits the reference sound signal from the local uplink cascade data module to the local downlink cascade data module;
  • the uplink cascade data module receives the reference sound signal from the upper device and sends it to the local audio processing module; at the same time, it sends the sound data processed and compared by the local audio processing module to the upper device;
  • the downlink cascade data module receives the sound data from the lower-level device and sends it to the local audio processing module; at the same time, it sends the reference sound signal transparently transmitted by the local audio processing module to the lower-level device;
  • the array microphone collects the sound from the external sound source and transmits the data to the audio processing module of this machine.
  • the cascade Hub includes
  • the audio processing module receives the sound data from multiple external downlink cascade data modules, compares the energy, selects the one with the larger energy, and sends it to the local uplink cascade data module; at the same time, the reference sound signal from the local uplink cascade data module is transparently transmitted to the local downlink cascade data module;
  • the uplink cascade data module receives the reference sound signal from the upper device and sends it to the local audio processing module; at the same time, it sends the sound data processed and compared by the local audio processing module to the upper device;
  • the downlink cascade data module receives the sound data from the lower-level device and sends it to the local audio processing module; at the same time, it sends the reference sound signal transparently transmitted by the local audio processing module to the lower-level device.
  • a cascade Hub includes a plurality of local downstream cascade data modules.
  • the conference all-in-one machine includes
  • the audio processing module receives the sound from the array microphone of the local machine, completes the sound processing, compares the energy of the sound data with the sound data from the cascade data module of the local machine, selects the one with larger energy, and sends it to the external PC as the final collected sound signal;
  • the cascade data module transmits the sound reference signal sent by the local audio processing module to the lower-level device; at the same time, it receives the sound data from the cascade microphone of the lower-level device and sends it to the local audio processing module;
  • Array microphone collects sound from external sound sources and transmits the data to the audio processing module of this machine;
  • the speaker receives audio data from the local audio processing module and produces sound.
  • the audio processing module of the all-in-one conference machine sends the audio data transmitted from the external PC to the local cascade data module for transmission to the next-level device as a sound reference signal; the audio processing module of the all-in-one conference machine sends the audio data transmitted from the external PC to the local speaker.
  • the cascade microphone has one uplink cascade data module as an uplink interface and one downlink cascade data module as a downlink interface.
  • the cascade microphone in addition to completing the sound collection, it also supports the function of completing the audio processing locally and comparing the energy of the sound data uploaded by the downstream device, and sending the one with higher energy to the uplink interface.
  • the cascaded Hub has one upstream cascaded data module as an upstream interface and multiple downstream cascaded data modules as downstream interfaces.
  • three downstream cascaded data modules are preferably used as downstream interfaces, but the actual number is not limited to this number.
  • the cascaded Hub itself does not have an array microphone. It obtains the sound data uploaded by multiple downstream interfaces, and after completing the energy comparison, sends the one with the larger energy to the upstream interface.
  • Cascade microphones and cascade hubs can be located at any level in the networking. As shown in FIG2 , cascade microphones, cascade hubs, and all-in-one conference machines form a three-fork tree structured networking. Such a networking can be expanded arbitrarily, thereby realizing an extended cascade microphone system of any scale. Using the large-scale networking expansion cascade microphone system of the present application, large-scale networking expansion of cascade microphones can be realized, thereby meeting the needs of large-scale deployment of cascade microphones in large conference rooms or classrooms.
  • the three-fork tree networking structure is conducive to covering various types of conference rooms, especially conference rooms and classrooms with multiple rows of seats.
  • a method for large-scale networking and expansion of cascaded microphones includes the following steps:
  • Step 1 The all-in-one conference machine queries the networking status of the cascaded microphones and the cascaded Hubs through a broadcast addressing message.
  • the cascaded microphones, the cascaded Hubs and the all-in-one conference machine form a three-fork tree network.
  • the all-in-one conference machine sends an addressing message to the cascaded microphone and the cascaded Hub.
  • the cascaded microphone or the cascaded Hub receives the addressing message, it adds its own flag data to the flag bit of the cascaded microphone or the cascaded Hub in the addressing message.
  • the next cascaded microphone or cascaded Hub receives the addressing message, it adds its own flag data, traverses to all devices in the network, and the device adds its own flag data according to its location to reply to the message to the all-in-one conference machine.
  • the all-in-one conference machine collects the data returned by all devices.
  • the mark data of the next cascade microphone or cascade Hub is the mark data of the previous cascade microphone or cascade Hub plus 1.
  • the all-in-one conference machine periodically sends an addressing message.
  • the conference all-in-one machine queries the networking status of the cascade microphones by broadcasting messages. Due to the three-fork tree structure, when the cascade microphone receives the message, it will increase the cascade microphone flag in the message by 1. In this way, the next cascade microphone will increase it by 1 after receiving it, and so on. After the message reaches the cascade hub, the cascade hub will increase the cascade hub flag by 1. At the same time, when forwarding to the lower-level port of the cascade hub, it will distinguish the positions of the lower-level ports of the cascade hub.
  • the first lower-level port is 1, the second lower-level port is 2, and the third lower-level port is 3; and so on, in this way, all devices in the network can be traversed, and the device will increase its own flag data according to the message replied by the location; the conference all-in-one machine can generate a three-fork tree structure network diagram by collecting the data returned by all devices, so as to intuitively understand the scale of the network. Furthermore, the conference all-in-one machine knows the fault points and new changes of the network by regularly querying messages, so as to achieve the management of the entire extended cascade microphone system.
  • Step 2 After the networking is completed, in actual operation, the array microphone of the last-level cascade microphone picks up the sound, completes the audio processing according to the reference audio signal received from the cascade hub of the upper-level device, and sends the processed audio data to the cascade hub of the upper-level device;
  • Step 3 After the array microphone of the intermediate cascade microphone picks up the sound, it completes audio processing according to the reference audio signal received from the cascade hub of the upper device, compares the energy of the processed sound data with the sound data transmitted from the cascade microphone of the lower device, selects the data with the larger energy, and sends it to the cascade hub of the upper device;
  • Step 4 After receiving the sound data uploaded by the cascade microphones of one or more lower-level devices, the cascaded Hub will compare the energy and select the sound data with the largest energy to send to the conference all-in-one device of the upper-level device;
  • Step 5 After the array microphone of the cascade microphone of the all-in-one conference machine picks up the sound, it completes audio processing according to the audio signal received from the PC, compares the energy of the processed sound data with the sound data transmitted from the cascade hub of the lower-level device, and selects the data with larger energy to send to the PC.
  • ternary tree addressing and uplink and downlink transmission of audio data can be implemented based on the microphone hub, thereby realizing large-scale networking, thereby meeting the needs of large-scale deployment of cascade microphones in large conference rooms or classrooms.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Otolaryngology (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • General Health & Medical Sciences (AREA)
  • Business, Economics & Management (AREA)
  • General Business, Economics & Management (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Telephonic Communication Services (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)
  • Circuit For Audible Band Transducer (AREA)

Abstract

本申请公开了一种大规模组网扩展级联麦克风系统和方法,级联麦克风系统包括:多个级联麦克风,可进行拾音以及拾音后根据从上级设备的级联Hub处接收的参考音频信号完成音频处理,并将处理后的音频数据送给上级设备的级联Hub;级联Hub,在收到一个或者多个下级设备的级联麦克风上传的声音数据后,将进行能量比较,选择能量最大的声音数据送给上级设备的会议一体机;会议一体机,根据从PC机接收的音频信号完成音频处理,将处理后的声音数据与从下级设备的级联Hub传上来的声音数据进行能量比较,选择能量较大的那一路数据送给PC机。本申请实现级联麦克风的大规模组网扩展,从而满足大型会议室或者教室中大规模部署级联麦克风的需求。

Description

一种大规模组网扩展级联麦克风系统和方法
本申请要求于2022年12月05日在中国专利局提交的、申请号为202211549335.X、发明名称为“一种大规模组网扩展级联麦克风系统和方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及组网级联麦克风系统技术领域,尤其是一种大规模组网扩展级联麦克风系统和方法。
背景技术
传统会议室中部署会议一体机,即一种带扬声器和阵列麦克风的设备,形态可以是多样的。如图1所示,由于阵列麦克风的拾音距离有限,为了更好的拾取距离会议一体机较远(例如超过3m以上)的发言人的声音,通常会增加级联麦克风。
该种形式的级联麦克风主要有几个问题:1、级联麦克风之间的同步性问题,多个级联麦克风以及会议一体机的阵列麦克风一起工作时,每个拾音单元之间的同步和比较;拾音单元如各级麦克风,包括会议一体机的麦克风,各自视为一个单元。传统的设计思路基本上是将级联麦克风仅作为拾取声音的物理设备,所有的声音处理都汇总到会议一体机来完成,这对会议一体机的性能就提出了比较高的要求,同时这客观上也限制了级联麦克风的最大数量,目前市面上的同类产品一般不超过8级。2、级联麦克风由于一般是菊花链连接的,对组网和部署都有一定的限制。
另一传统的方案是将多个麦克风都汇聚到调音台,数量同样受到调音台的接口限制。而对于远程教育或者视频会议这样的应用场景越来越多,希望麦克风部署在教室或房间各个角落,现有的系统方案由于级联麦克风数量限制,整体的覆盖效果会有一些影响。
中国发明专利CN2021106722942公开的一种麦克风级联系统、麦克风及终端,其中麦克风级联系统包括:母麦克风、多个子麦克风和预设终端;
所述母麦克风中设置有第一网络通信模块,每个子麦克风中设置有第二网络通信模块,所述预设终端中设置有第三网络通信模块;所述母麦克风通过所述第一网络通信模块及网线分别与第一个子麦克风,以及所述预设终端联接;所述第一个子麦克风与其他各个子麦克风按照预设顺序通过各自的第二网络通信模块及网线串联;
每一子麦克风,用于通过所述第二网络通信模块,获取所述预设顺序中与其联接的后一个麦克风发送的第一音频数据包;向所述预设顺序中与其联接的前一个麦克风发送所述第一音频数据包,以及基于网络传输音频协议采集到的第二音频数据包;
所述母麦克风,用于通过所述第一网络通信模块,从第一接口获取所述第一个子麦克风发送的第三音频数据包;基于网络传输音频协议,根据所述第三音频数据包和采集到第一音频数据,得到混合音频数据包,并从第二接口向所述预设终端发送所述混合音频数据包;
所述预设终端,用于通过所述第三网络通信模块,从所述母麦克风获取所述混合音频数据包;
所述母麦克风和各个子麦克风中还设置有扬声器;
所述预设终端,还用于向所述母麦克风下发待处理音频数据包;
所述母麦克风,还用于通过所述第一网络通信模块获取所述待处理音频数据包;基于网络传输音频协议将所述待处理音频数据包恢复成待处理音频数据;通过扬声器播放所述待处理音频数据;通过所述第一网络通信模块,从所述第一接口向各个子麦克风发送所述待处理音频数据包;
每一子麦克风,还用于通过所述第二网络通信模块,从所述预设顺序中与其联接的前一个麦克风获取所述待处理音频数据包;基于网络传输音频协议将所述待处理音频数据包恢复成待处理音频数据;通过扬声器播放所述待处理音频数据;通过所述第二网络通信模块,向所述预设顺序中与其联接的后一个麦克风发送所述待处理音频数据包。
从其说明书以及其说明书附图的图3-图5所示,其采用的链路结构仍然是一种串联式结构,无法做到大规模组网,其如图3所示,其麦克风的组网数量同样受到交换机的接口数量限制,因此对组网和部署都有一定的限制。
技术问题
本申请要解决的技术问题是:提供一种大规模组网扩展级联麦克风系统和方法,实现级联麦克风的大规模组网扩展。
技术解决方案
本申请解决上述技术问题所采用的技术方案是:一种大规模组网扩展级联麦克风系统,包括有以下模块:
多个级联麦克风,进行拾音以及拾音后根据从上级设备的级联Hub处接收的参考音频信号完成音频处理,并将处理后的音频数据送给上级设备的级联Hub;
级联Hub,在收到一个或者多个下级设备的级联麦克风上传的声音数据后,将进行能量比较,选择能量最大的声音数据送给上级设备的会议一体机;
会议一体机,根据从PC机接收的音频信号完成音频处理,将处理后的声音数据与从下级设备的级联Hub传上来的声音数据进行能量比较,选择能量较大的那一路数据送给PC机。
优选的,所述级联麦克风包括
音频处理模块,接收来自于本机的阵列麦克风的声音,完成声音处理后,将其与来自于本机的下行级联数据模块的声音数据进行能量比较,选择能量较大的那一路送给本机的上行级联数据模块,同时将来自于本机的上行级联数据模块的参考声音信号透传给本机的下行级联数据模块;
上行级联数据模块,接收来自于上级设备的参考声音信号送给本机的音频处理模块;同时将本机的音频处理模块处理和比较后的声音数据送给上级设备;
下行级联数据模块,接收来自于下级设备的声音数据送给本机的音频处理模块;同时将本机的音频处理模块透传的参考声音信号送给下级设备;
阵列麦克风,采集外部声源的声音,并将数据传输给本机的音频处理模块。
优选的,所述级联Hub包括
音频处理模块,接收来自于外来的多个下行级联数据模块的声音数据,进行能量比较,选择能量较大的那一路,送给本机的上行级联数据模块;同时将来自于本机的上行级联数据模块的参考声音信号透传给本机的下行级联数据模块;
上行级联数据模块,接收来自于上级设备的参考声音信号送给本机的音频处理模块;同时将本机的音频处理模块处理和比较后的声音数据送给上级设备;
下行级联数据模块,接收来自于下级设备的声音数据送给本机的音频处理模块;同时将本机的音频处理模块透传的参考声音信号送给下级设备。
更为优选的,一个级联Hub包括有多个本机的下行级联数据模块。
优选的,所述会议一体机包括
音频处理模块,接收来自于本机的阵列麦克风的声音,并完成声音的处理,将其与来自于本机的级联数据模块的声音数据进行能量比较,选择能量较大的那一路,作为最终的采集声音信号送给外部的PC机;
级联数据模块,将本机的音频处理模块传送来的声音参考信号传输到下级设备;同时接收来自于下级设备的级联麦克风的声音数据,送给本机的音频处理模块;
阵列麦克风,采集外部声源的声音,并将数据传输给本机的音频处理模块;
扬声器,从本机的音频处理模块接收音频数据,并发出声音。
更为优选的,所述会议一体机的音频处理模块将外部的PC机传输过来的音频数据,送给本机的级联数据模块,以便传递到下一级设备作为声音参考信号;所述会议一体机的音频处理模块将外部的PC机传输过来的音频数据送给本机的扬声器。
一种大规模组网扩展级联麦克风的方法,包括以下步骤:
步骤1,会议一体机通过广播寻址消息查询级联麦克风和级联Hub组网的情况,级联麦克风、级联Hub以及会议一体机形成三叉树结构的组网;
优选的,会议一体机发送寻址消息至级联麦克风和级联Hub,级联麦克风或级联Hub在收到寻址消息时,将在寻址消息中的级联麦克风或级联Hub的标志位增加自身的标志数据,下一台的级联麦克风或级联Hub收到寻址消息之后再增加自身的标志数据,遍历到组网中的所有设备,并且设备根据所在位置增加自身的标志数据进行回复消息至会议一体机,会议一体机收集所有设备返回的数据,从而可以形成整个组网的连接图。
优选的,下一台的级联麦克风或级联Hub的标志数据为前一台的级联麦克风或级联Hub的标志数据加1。
更为优选的,会议一体机定期发送寻址消息,来实时获取组网情况。
步骤2,组网完成后,在实际工作时,最后一级的级联麦克风的阵列麦克风拾音后,根据从上级设备的级联Hub处接收的参考音频信号完成音频处理,并将处理后的音频数据送给上级设备的级联Hub;
步骤3,中间级的级联麦克风的阵列麦克风拾音后,根据从上级设备的级联Hub处接收的参考音频信号完成音频处理,将处理后的声音数据与从下级设备的级联麦克风传上来的声音数据进行能量比较,选择能量较大的那一路数据,送给上级设备的级联Hub;
步骤4,级联Hub在收到一个或者多个下级设备的级联麦克风上传的声音数据后,将进行能量比较,选择能量最大的声音数据送给上级设备的会议一体机;
步骤5,会议一体机的级联麦克风的阵列麦克风拾音后,根据从PC机接收的音频信号完成音频处理,将处理后的声音数据与从下级设备的级联Hub传上来的声音数据进行能量比较,选择能量较大的那一路数据送给PC机。
有益效果
本申请的有益效果是:级联麦克风、级联Hub以及会议一体机形成一个三叉树结构的组网,这样的组网是可以任意扩展的,从而实现任意级规模的扩展级联麦克风系统。使用本申请的大规模组网扩展级联麦克风系统,可以实现级联麦克风的大规模组网扩展,从而满足大型会议室或者教室中大规模部署级联麦克风的需求。三叉树的组网结构,有利于覆盖各种类型的会议室,特别是有多排座位的会议室以及教室。
附图说明
下面结合附图对本申请进一步说明。
图1是现有的级联麦克风系统的组网结构;
图2是本申请的级联麦克风系统的组网结构;
图3是本申请的级联麦克风系统的组网寻址流程图;
图4是本申请的级联麦克风系统的模块框架图;
图5是本申请的级联麦克风方法的总体流程示意图;
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员基于本申请所获得的所有其他实施例,都属于本申请保护的范围。
如图2所示,一种大规模组网扩展级联麦克风系统,包括有以下模块:
多个级联麦克风,可进行拾音以及拾音后根据从上级设备的级联Hub处接收的参考音频信号完成音频处理,并将处理后的音频数据送给上级设备的级联Hub;
级联Hub,在收到一个或者多个下级设备的级联麦克风上传的声音数据后,将进行能量比较,选择能量最大的声音数据送给上级设备的会议一体机;
会议一体机,根据从PC机接收的音频信号完成音频处理,将处理后的声音数据与从下级设备的级联Hub传上来的声音数据进行能量比较,选择能量较大的那一路数据送给PC机。
具体的,作为本实施例中的一种可选实施方式,如图4所示,所述级联麦克风包括
音频处理模块,接收来自于本机的阵列麦克风的声音,完成声音处理后,将其与来自于本机的下行级联数据模块的声音数据进行能量比较,选择能量较大的那一路送给本机的上行级联数据模块,同时将来自于本机的上行级联数据模块的参考声音信号透传给本机的下行级联数据模块;
上行级联数据模块,接收来自于上级设备的参考声音信号送给本机的音频处理模块;同时将本机的音频处理模块处理和比较后的声音数据送给上级设备;
下行级联数据模块,接收来自于下级设备的声音数据送给本机的音频处理模块;同时将本机的音频处理模块透传的参考声音信号送给下级设备;
阵列麦克风,采集外部声源的声音,并将数据传输给本机的音频处理模块。
具体的,作为本实施例中的一种可选实施方式,如图4所示,所述级联Hub包括
音频处理模块,接收来自于外来的多个下行级联数据模块的声音数据,进行能量比较,选择能量较大的那一路,送给本机的上行级联数据模块;同时将来自于本机的上行级联数据模块的参考声音信号透传给本机的下行级联数据模块;
上行级联数据模块,接收来自于上级设备的参考声音信号送给本机的音频处理模块;同时将本机的音频处理模块处理和比较后的声音数据送给上级设备;
下行级联数据模块,接收来自于下级设备的声音数据送给本机的音频处理模块;同时将本机的音频处理模块透传的参考声音信号送给下级设备。
具体的,作为本实施例中的一种可选实施方式,如图4所示,一个级联Hub包括有多个本机的下行级联数据模块。
具体的,作为本实施例中的一种可选实施方式,如图4所示,所述会议一体机包括
音频处理模块,接收来自于本机的阵列麦克风的声音,并完成声音的处理,将其与来自于本机的级联数据模块的声音数据进行能量比较,选择能量较大的那一路,作为最终的采集声音信号送给外部的PC机;
级联数据模块,将本机的音频处理模块传送来的声音参考信号传输到下级设备;同时接收来自于下级设备的级联麦克风的声音数据,送给本机的音频处理模块;
阵列麦克风,采集外部声源的声音,并将数据传输给本机的音频处理模块;
扬声器,从本机的音频处理模块接收音频数据,并发出声音。
具体的,作为本实施例中的一种可选实施方式,如图4所示,所述会议一体机的音频处理模块将外部的PC机传输过来的音频数据,送给本机的级联数据模块,以便传递到下一级设备作为声音参考信号;所述会议一体机的音频处理模块将外部的PC机传输过来的音频数据送给本机的扬声器。
如图4所示,级联麦克风具备1个上行级联数据模块作为上行接口和1个下行级联数据模块作为下行接口。与传统级联麦克风相比,除了需要完成拾音采集外,还支持在本地完成音频处理和下级设备上传的声音数据进行能量比较后,将能量比较大的那一路送给上行接口的功能。
级联Hub具备1个上行级联数据模块作为上行接口和多个下行级联数据模块作为下行接口,本文优选为3个下行级联数据模块作为下行接口,实际数量不局限于这个数量。级联Hub本身没有阵列麦克风,获取多个下行接口上传的声音数据,完成能量比较后,将能量比较大的那一路送给上行接口。
级联麦克风和级联Hub可以位于组网中的任意一级,如图2所示,级联麦克风、级联Hub以及会议一体机形成一个三叉树结构的组网,这样的组网是可以任意扩展的,从而实现任意级规模的扩展级联麦克风系统。使用本申请的大规模组网扩展级联麦克风系统,可以实现级联麦克风的大规模组网扩展,从而满足大型会议室或者教室中大规模部署级联麦克风的需求。三叉树的组网结构,有利于覆盖各种类型的会议室,特别是有多排座位的会议室以及教室。
如图5所示,一种大规模组网扩展级联麦克风的方法,包括以下步骤:
步骤1,会议一体机通过广播寻址消息查询级联麦克风和级联Hub组网的情况,级联麦克风、级联Hub以及会议一体机形成三叉树结构的组网;
具体的,作为本实施例中的一种可选实施方式,如图3所示,会议一体机发送寻址消息至级联麦克风和级联Hub,级联麦克风或级联Hub在收到寻址消息时,将在寻址消息中的级联麦克风或级联Hub的标志位增加自身的标志数据,下一台的级联麦克风或级联Hub收到寻址消息之后再增加自身的标志数据,遍历到组网中的所有设备,并且设备根据所在位置增加自身的标志数据进行回复消息至会议一体机,会议一体机收集所有设备返回的数据。
具体的,作为本实施例中的一种可选实施方式,如图3所示,下一台的级联麦克风或级联Hub的标志数据为前一台的级联麦克风或级联Hub的标志数据加1。
具体的,作为本实施例中的一种可选实施方式,如图3所示,会议一体机定期发送寻址消息。
会议一体机通过广播消息查询级联麦克风组网的情况,由于是三叉树结构,级联麦克风在收到消息时,将在消息中的级联麦克风标志位增加1,这样下一台级联麦克风收到之后再增加1,以此类推。而消息到达级联Hub后,级联Hub将在级联Hub标志位增加1,同时转发到级联Hub的下级端口时,再分别在级联Hub下级端口位置做区分,例如第一个下级端口是1,第二个下级端口是2,第三个下级端口是3;依次类推,这样就可以遍历到组网中的所有设备,并且设备根据所在位置回复的消息增加自身的标志数据;会议一体机通过收集所有设备返回的数据,可以生成一个三叉树结构的组网图,从而直观的了解组网规模。更进一步会议一体机通过定期查询消息,知道组网的故障点和新增变化,从而达到管理整个扩展级联麦克风的系统。
例如下一个的标志位,级联Hub占2个字节,下行口占一个字节,级联麦克风占2个字节;在下行口为3个时,如果系统中是纯级联麦克风组网,最大可以支持255个级联麦克风;而如果系统中有级联Hub时,组网规模可以高达255*3*255=195075个;如果扩展标志位,将支持更多的数量。
步骤2,组网完成后,在实际工作时,最后一级的级联麦克风的阵列麦克风拾音后,根据从上级设备的级联Hub处接收的参考音频信号完成音频处理,并将处理后的音频数据送给上级设备的级联Hub;
步骤3,中间级的级联麦克风的阵列麦克风拾音后,根据从上级设备的级联Hub处接收的参考音频信号完成音频处理,将处理后的声音数据与从下级设备的级联麦克风传上来的声音数据进行能量比较,选择能量较大的那一路数据,送给上级设备的级联Hub;
步骤4,级联Hub在收到一个或者多个下级设备的级联麦克风上传的声音数据后,将进行能量比较,选择能量最大的声音数据送给上级设备的会议一体机;
步骤5,会议一体机的级联麦克风的阵列麦克风拾音后,根据从PC机接收的音频信号完成音频处理,将处理后的声音数据与从下级设备的级联Hub传上来的声音数据进行能量比较,选择能量较大的那一路数据送给PC机。
使用本申请的大规模组网扩展级联麦克风的方法,基于麦克风hub可以实现三叉树形态的寻址和音频数据上下行传输,从而实现大规模的组网,从而满足大型会议室或者教室中大规模部署级联麦克风的需求。
需要说明的是,在本文中,各个可选方案中的技术特征只要不矛盾均可组合来形成方案,这些方案均在本申请公开的范围内。诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
本说明书中的各个实施例均采用相关的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。以上所述仅为本申请的较佳实施例,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内所作的任何修改、等同替换、改进等,均包含在本申请的保护范围内。

Claims (7)

  1. 一种大规模组网扩展级联麦克风系统,其特征在于,包括有以下模块:
    多个级联麦克风,进行拾音以及拾音后根据从上级设备的级联Hub处接收的参考音频 信号完成音频处理,并将处理后的声音数据送给上级设备的级联Hub;
    级联Hub,在收到一个或者多个下级设备的级联麦克风上传的声音数据后,将进行能量 比较,选择能量最大的声音数据送给上级设备的会议一体机;
    会议一体机,进行拾音以及拾音后根据从PC机接收的作为参考音频信号的音频信号完 成音频处理,将处理后的声音数据与从下级设备的级联Hub传上来的声音数据进行能量比 较,选择能量较大的那一路送给PC机;
    所述会议一体机包括:
    音频处理模块,接收来自于本机的阵列麦克风的声音数据,并根据从PC机接收的作为 参考音频信号的音频信号完成声音数据的处理,将其与来自于本机的级联数据模块的声音 数据进行能量比较,选择能量较大的那一路,作为最终采集的声音数据送给外部的PC机;还 将外部的PC机传输过来的音频信号,送给本机的级联数据模块,以便传递到下级设备作为 参考音频信号;
    级联数据模块,将本机的音频处理模块传送来的参考音频信号传输到下级设备;同时 接收来自于下级设备的级联麦克风的声音数据,送给本机的音频处理模块;
    阵列麦克风,采集外部声源的声音,并将声音数据传输给本机的音频处理模块;
    扬声器,从本机的音频处理模块接收声音数据,并发出声音。
  2. 根据权利要求1所述的一种大规模组网扩展级联麦克风系统,其特征在于,所述级联麦克风包括:
    音频处理模块,接收来自于本机的阵列麦克风的声音数据,并根据从本机的上行级联 数据模块接收的参考音频信号完成声音数据处理后,将其与来自于本机的下行级联数据模 块的声音数据进行能量比较,选择能量较大的那一路送给本机的上行级联数据模块,同时 将来自于本机的上行级联数据模块的参考音频信号透传给本机的下行级联数据模块;
    上行级联数据模块,接收来自于上级设备的参考音频信号送给本机的音频处理模块; 同时将本机的音频处理模块处理和比较后的声音数据送给上级设备;
    下行级联数据模块,接收来自于下级设备的声音数据送给本机的音频处理模块;同时 将本机的音频处理模块透传的参考音频信号送给下级设备;
    阵列麦克风,采集外部声源的声音,并将声音数据传输给本机的音频处理模块。
  3. 根据权利要求1所述的一种大规模组网扩展级联麦克风系统,其特征在于,所述级联Hub包括:
    音频处理模块,接收来自于外来的多个下行级联数据模块的声音数据,进行能量比较, 选择能量较大的那一路,送给本机的上行级联数据模块;同时将来自于本机的上行级联数 据模块的参考音频信号透传给本机的下行级联数据模块;
    上行级联数据模块,接收来自于上级设备的参考音频信号送给本机的音频处理模块;同时将本机的音频处理模块处理和比较后的声音数据送给上级设备;
    下行级联数据模块,接收来自于下级设备的声音数据送给本机的音频处理模块;同时将本机的音频处理模块透传的参考音频信号送给下级设备。
  4. 根据权利要求3所述的一种大规模组网扩展级联麦克风系统,其特征在于,一个级联Hub包括有多个本机的下行级联数据模块。
  5. 根据权利要求1所述的一种大规模组网扩展级联麦克风系统,其特征在于,所述会议一体机的音频处理模块将外部的PC机传输过来的声音数据送给本机的扬声器。
  6. 一种大规模组网扩展级联麦克风的方法,其特征在于,包括以下步骤:
    步骤1,会议一体机通过广播寻址消息查询级联麦克风和级联Hub组网的情况,级联麦 克风、级联Hub以及会议一体机形成三叉树结构的组网;
    步骤2,组网完成后,在实际工作时,最后一级的级联麦克风的阵列麦克风拾音后,根据 从上级设备的级联Hub处接收的参考音频信号完成音频处理,并将处理后的声音数据送给 上级设备的级联Hub;
    步骤3,中间级的级联麦克风的阵列麦克风拾音后,根据从上级设备的级联Hub处接收 的参考音频信号完成音频处理,将处理后的声音数据与从下级设备的级联麦克风传上来的 声音数据进行能量比较,选择能量较大的那一路,送给上级设备的级联Hub;
    步骤4,级联Hub在收到一个或者多个下级设备的级联麦克风上传的声音数据后,将进 行能量比较,选择能量最大的声音数据送给上级设备的会议一体机;
    步骤5,会议一体机的级联麦克风的阵列麦克风拾音后,根据从PC机接收的作为参考音 频信号的音频信号完成音频处理,将处理后的声音数据与从下级设备的级联Hub传上来的 声音数据进行能量比较,选择能量较大的那一路送给PC机。
  7. 根据权利要求6所述的大规模组网扩展级联麦克风的方法,其特征在于,会议一体机 定期发送寻址消息,来实时获取组网情况。
PCT/CN2023/132757 2022-12-05 2023-11-20 一种大规模组网扩展级联麦克风系统和方法 WO2024120170A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/763,270 US20240357039A1 (en) 2022-12-05 2024-07-03 System and method of large-scale networking extended cascaded microphones

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211549335.XA CN115567832B (zh) 2022-12-05 2022-12-05 一种大规模组网扩展级联麦克风系统和方法
CN202211549335.X 2022-12-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/763,270 Continuation-In-Part US20240357039A1 (en) 2022-12-05 2024-07-03 System and method of large-scale networking extended cascaded microphones

Publications (1)

Publication Number Publication Date
WO2024120170A1 true WO2024120170A1 (zh) 2024-06-13

Family

ID=84770367

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/132757 WO2024120170A1 (zh) 2022-12-05 2023-11-20 一种大规模组网扩展级联麦克风系统和方法

Country Status (3)

Country Link
US (1) US20240357039A1 (zh)
CN (1) CN115567832B (zh)
WO (1) WO2024120170A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115567832B (zh) * 2022-12-05 2023-03-14 深圳市拔超科技股份有限公司 一种大规模组网扩展级联麦克风系统和方法
CN116249045B (zh) * 2023-05-11 2023-08-01 深圳奥尼电子股份有限公司 一种采用无线星链方式的集联麦克风声学技术设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050286443A1 (en) * 2004-06-29 2005-12-29 Octiv, Inc. Conferencing system
US20180035222A1 (en) * 2016-07-27 2018-02-01 Sound Devices Llc Network system for reliable reception of wireless audio
CN210297835U (zh) * 2019-11-22 2020-04-10 深圳随锐云网科技有限公司 一种实现高品质级联的会议电话机及会议系统
CN114040303A (zh) * 2020-12-09 2022-02-11 深圳海翼智新科技有限公司 一种音箱系统
CN115567832A (zh) * 2022-12-05 2023-01-03 深圳市拔超科技股份有限公司 一种大规模组网扩展级联麦克风系统和方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8483101B2 (en) * 2009-09-16 2013-07-09 Mitel Networks Corporation System and method for cascaded teleconferencing
US10440469B2 (en) * 2017-01-27 2019-10-08 Shure Acquisitions Holdings, Inc. Array microphone module and system
CN112929594B (zh) * 2019-12-06 2023-08-08 中兴通讯股份有限公司 自组网级联方法、音频采集设备、会议系统、存储介质
CN114697805B (zh) * 2020-12-28 2024-04-16 广州视源电子科技股份有限公司 麦克风级联方法、装置、麦克风及麦克风级联系统
CN113411719B (zh) * 2021-06-17 2022-03-04 杭州海康威视数字技术股份有限公司 一种麦克风级联系统、麦克风及终端
CN115410593A (zh) * 2022-08-01 2022-11-29 钉钉(中国)信息技术有限公司 音频信道的选择方法、装置、设备及存储介质
CN218217617U (zh) * 2022-10-26 2023-01-03 深圳市闪联信息技术有限公司 一种实现多蓝牙麦克风音箱的网络会议管理系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050286443A1 (en) * 2004-06-29 2005-12-29 Octiv, Inc. Conferencing system
US20180035222A1 (en) * 2016-07-27 2018-02-01 Sound Devices Llc Network system for reliable reception of wireless audio
CN210297835U (zh) * 2019-11-22 2020-04-10 深圳随锐云网科技有限公司 一种实现高品质级联的会议电话机及会议系统
CN114040303A (zh) * 2020-12-09 2022-02-11 深圳海翼智新科技有限公司 一种音箱系统
CN115567832A (zh) * 2022-12-05 2023-01-03 深圳市拔超科技股份有限公司 一种大规模组网扩展级联麦克风系统和方法

Also Published As

Publication number Publication date
CN115567832A (zh) 2023-01-03
US20240357039A1 (en) 2024-10-24
CN115567832B (zh) 2023-03-14

Similar Documents

Publication Publication Date Title
WO2024120170A1 (zh) 一种大规模组网扩展级联麦克风系统和方法
CN104640013B (zh) 音箱控制方法及系统
CN103618636B (zh) 基于epon+eoc技术的综合网络管理的eoc设备自发现自配置方法
KR20140103290A (ko) 회의 시스템에서의 에코 소거를 위한 방법 및 장치
CN104967617B (zh) 一种数据处理方法及装置
CN106411750B (zh) 数据分发方法及系统
WO2008031342A1 (fr) Procédé, système et équipement couche 2 pour la mise en oeuvre de convergence rapide de trajet de relais multidiffusion en couche 2
US10979920B2 (en) Integrated access system with baseband unit and base station network management
CN102857377A (zh) 一种列车网络在线拓扑自动生成方法
WO2015131739A1 (zh) 数据交互方法、基带处理单元、射频拉远单元及中继单元
CN107517130B (zh) 基于opnet的无缝冗余协议网络性能等效仿真方法
JP2016535957A (ja) 分散型基地局のネットワーキング方法及び装置、並びにコンピュータ可読記憶媒体
CN115633292A (zh) 多级级联内置扬声器的全向麦克风灵活组网系统及方法
CN102387037B (zh) 一种广电网络设备拓扑发现的方法、装置及系统
CN204836428U (zh) 一种数字直播调音台
CN105071986A (zh) 一种监控系统运行状态的方法
CN102347906A (zh) 一种组播方法及组播网络系统
CN116132407B (zh) 一种基于异构终端的融合通信实现方法
CN105634962B (zh) Sdn网络拓扑的生成方法和装置
CN102025626B (zh) 转发组播数据报文的方法和提供商边缘设备
CN102377888B (zh) 实现微波通信网上公务电话的系统、装置及方法
CN106506716B (zh) 一种sdn控制器带内管理的连接方法及装置
CN206389372U (zh) 基于CobraNet的消防应急广播系统
CN209497467U (zh) 一种改进的消防广播和数字广播合用系统
CN107733850A (zh) 基于集中控制架构的组播隔离方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23899749

Country of ref document: EP

Kind code of ref document: A1