WO2024119794A1 - 一种储能系统、三相储能系统及储能柜 - Google Patents

一种储能系统、三相储能系统及储能柜 Download PDF

Info

Publication number
WO2024119794A1
WO2024119794A1 PCT/CN2023/104259 CN2023104259W WO2024119794A1 WO 2024119794 A1 WO2024119794 A1 WO 2024119794A1 CN 2023104259 W CN2023104259 W CN 2023104259W WO 2024119794 A1 WO2024119794 A1 WO 2024119794A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
energy storage
full
bridge
voltage
Prior art date
Application number
PCT/CN2023/104259
Other languages
English (en)
French (fr)
Inventor
王红星
施璐
李番军
徐鹏程
Original Assignee
上海派能能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海派能能源科技股份有限公司 filed Critical 上海派能能源科技股份有限公司
Publication of WO2024119794A1 publication Critical patent/WO2024119794A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/66Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
    • H02M7/68Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters
    • H02M7/72Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/79Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/797Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the technical field of energy storage batteries, and in particular to an energy storage system, a three-phase energy storage system and an energy storage cabinet.
  • Energy storage systems are in real demand in the fields of industry, communications, and medical treatment to prevent sudden power outages.
  • the classification of energy storage batteries includes two voltage levels: 400VDC and 800VDC.
  • the voltage range of the energy storage battery must be between 680VDC and 1000VDC, so only 800VDC battery packs can be used.
  • stacking is generally used to connect multiple battery packs with smaller voltage levels in series, which is inconvenient to use.
  • lithium battery energy storage cabinets are large-capacity battery systems formed by directly stacking battery packs to form a battery energy storage cabinet.
  • this type of battery energy storage cabinet has different initial states of the batteries in each energy storage cabinet, resulting in inconsistent voltages. In the initial stage of using multiple energy storage cabinets in parallel, the cabinet with high voltage will charge the cabinet with low voltage, which is commonly known as circulating current, affecting the normal operation of the system.
  • the embodiments of the present application provide an energy storage system, a three-phase energy storage system and an energy storage cabinet, which can be applicable to energy storage batteries with two voltage level specifications of 400VDC and 800VDC, and can also solve the problem of circulation between parallel energy storage cabinets.
  • an embodiment of the present application provides an energy storage system, including an energy storage battery, and also including: a bidirectional DCDC circuit; the bidirectional DCDC circuit includes a first full-bridge circuit, a transformer circuit, and a second full-bridge circuit; the second full-bridge circuit includes at least one full-bridge sub-circuit;
  • the first full-bridge circuit is connected to the primary side of the transformer circuit, and the secondary side of the transformer circuit is connected to the full-bridge sub-circuit;
  • the second full-bridge circuit is used to connect to the energy storage battery according to one or more of the full-bridge sub-circuits to adapt to energy storage batteries with different voltages.
  • the second full-bridge circuit includes a first full-bridge sub-circuit and a second full-bridge sub-circuit;
  • the transformer circuit includes a first winding and a second winding on the primary side, and a third winding and a fourth winding on the secondary side;
  • the first winding and the third winding correspond to each other and have the same number of coils;
  • the second winding and the fourth winding have the same number of coils. Corresponding and equal number of coils.
  • the third winding is connected to the first full-bridge sub-circuit
  • the fourth winding is connected to the second full-bridge sub-circuit
  • the first full-bridge sub-circuit and the second full-bridge sub-circuit are respectively connected to the energy storage battery.
  • the number of coils of the first winding, the second winding, the third winding, and the fourth winding is equal.
  • the energy storage battery is a 400V lithium battery pack, and two full-bridge sub-circuits are provided, and the two full-bridge sub-circuits are respectively connected in parallel with the 400V lithium battery pack.
  • the energy storage battery is an 800V lithium battery pack, and two full-bridge sub-circuits are provided.
  • the two full-bridge sub-circuits are connected in series with the 800V lithium battery pack to form a loop.
  • the energy storage system further includes a controller and a current sensor
  • the current sensor is connected in series in the primary circuit of the transformer circuit, and the current sensor is connected to the controller; the first full-bridge circuit and the second full-bridge circuit are connected to the controller respectively.
  • the current sensor is used to detect the resonant current signal of the primary circuit of the transformer circuit and send the detection result to the controller, so that the controller controls the synchronous rectification of the first full-bridge circuit or the second full-bridge circuit.
  • an embodiment of the present application further provides a three-phase energy storage system, including a bidirectional ACDC circuit, and the energy storage system described in the first aspect; the bidirectional ACDC circuit adopts a three-level topology circuit;
  • the bidirectional ACDC circuit includes an AC side and a DC side; the DC side of the bidirectional ACDC circuit is connected to the first full-bridge circuit, and the bidirectional ACDC circuit is connected to the controller;
  • the controller is used to collect voltage signals and current signals on the AC side and the DC side of the bidirectional ACDC circuit, and control the output voltage or power factor of the bidirectional ACDC circuit.
  • a voltage stabilizing unit is provided on the DC side of the bidirectional ACDC circuit; the voltage stabilizing unit includes a first voltage stabilizing capacitor, a second voltage stabilizing capacitor and a bidirectional DCDC voltage regulating module;
  • the first port of the first voltage-stabilizing capacitor is connected to the first port of the DC side of the bidirectional ACDC circuit
  • the second port of the first voltage-stabilizing capacitor is connected to the first port of the second voltage-stabilizing capacitor
  • the second port of the second voltage-stabilizing capacitor is connected to the second port of the DC side of the bidirectional ACDC circuit
  • the first port of the bidirectional DCDC voltage regulating module is connected to the first port of the first voltage-stabilizing capacitor
  • the second port of the bidirectional DCDC voltage regulating module is connected to the second port of the first voltage-stabilizing capacitor
  • the third port of the bidirectional DCDC voltage regulating module is connected to the first port of the AC side of the bidirectional ACDC circuit
  • the fourth port of the bidirectional DCDC voltage regulating module is connected to the second port of the second voltage-stabilizing capacitor.
  • the three-phase energy storage system further includes a filtering circuit and a pre-charging circuit
  • the filter circuit is connected to the pre-charging circuit, and the pre-charging circuit is connected to the AC side of the bidirectional ACDC circuit.
  • each phase of the AC side of the bidirectional ACDC circuit is respectively provided with a boost circuit.
  • the three-phase energy storage system further includes an auxiliary power supply, wherein an input end of the auxiliary power supply is connected to any phase of the AC side of the bidirectional ACDC circuit, and an output end of the auxiliary power supply is connected to the controller.
  • an embodiment of the present application further provides an energy storage cabinet, comprising an energy storage device and a peripheral circuit device, wherein the system in the energy storage device adopts the three-phase energy storage system described in any one of the second aspects.
  • the present application provides an energy storage system, in which the primary side circuit and the secondary side circuit of the transformer circuit in the bidirectional DCDC circuit are changed into two groups of windings corresponding to each other, and two groups of sub-power supply systems are arranged on the secondary side of the transformer circuit, namely, a first full-bridge sub-circuit and a second full-bridge sub-circuit.
  • the two sub-power supply systems By adopting a parallel or series connection mode for the two sub-power supply systems, they can be respectively applicable to battery packs of 400VDC and 800VDC, thereby increasing the application range of battery packs with different voltage levels and specifications, and facilitating use; and by adding a bidirectional DCDC circuit design to the battery pack, it is possible to prevent a high-voltage energy storage cabinet from transferring energy to a low-voltage energy storage cabinet in the initial stage of parallel connection of multiple energy storage cabinets, thereby preventing the occurrence of a circulating current phenomenon, and facilitating the normal and stable operation of the system; and by adding a bidirectional ACDC circuit, the energy storage system is transformed into a three-phase energy storage system, so that it can be applied to alternating current, thereby increasing the application range.
  • FIG1 shows a circuit diagram of an energy storage system according to an embodiment of the present application
  • FIG2 shows a connection circuit diagram of the energy storage system and the controller according to an embodiment of the present application
  • FIG3 shows a connection circuit diagram of another energy storage system and the controller according to an embodiment of the present application
  • FIG4 shows a circuit diagram of a three-phase energy storage system according to an embodiment of the present application
  • FIG5 shows a connection circuit diagram of the bidirectional ACDC circuit and the controller described in an embodiment of the present application.
  • the classification of energy storage batteries includes two voltage levels: 400VDC and 800VDC.
  • the voltage range of the energy storage battery must be between 680VDC and 1000VDC. Therefore, only 800VDC battery packs can be used.
  • a stacking method is generally used to connect multiple battery packs with smaller voltage levels in series, which is inconvenient to use.
  • a lithium battery energy storage cabinet is a large-capacity battery system formed by directly stacking battery packs to form a battery energy storage cabinet.
  • this type of battery energy storage cabinet has different voltage inconsistencies due to the different initial states of the batteries in each energy storage cabinet. In the initial stage of using multiple energy storage cabinets in parallel, the cabinet with high voltage will charge the cabinet with low voltage, which is commonly known as circulation, affecting the normal operation of the system.
  • an embodiment of the present application provides an energy storage system, in which the primary side circuit and the secondary side circuit of the transformer circuit in the bidirectional DCDC circuit are changed into two groups of windings corresponding to each other, and two groups of sub-power supply systems are arranged on the secondary side of the transformer circuit, namely, a first full-bridge sub-circuit and a second full-bridge sub-circuit.
  • the two sub-power supply systems By adopting a parallel or series mode for the two sub-power supply systems, they can be respectively applicable to 400VDC and 800VDC battery packs, thereby increasing the application range of battery packs with different voltage levels and specifications, and facilitating use; and by adding a bidirectional DCDC circuit design to the battery pack, it is possible to prevent the energy storage cabinet with a high voltage from transferring energy to the energy storage cabinet with a low voltage in the initial stage of parallel connection of multiple energy storage cabinets, thereby preventing the occurrence of a circulating current phenomenon, and facilitating the normal and stable operation of the system; and by adding a bidirectional ACDC circuit, the energy storage system is transformed into a three-phase energy storage system, so that it can be applied to alternating current, thereby increasing the application range.
  • the energy storage system includes an energy storage battery and also includes: a bidirectional DCDC circuit; the bidirectional DCDC circuit includes a first full-bridge circuit, a transformer circuit, and a second full-bridge circuit; the second full-bridge circuit includes at least one full-bridge sub-circuit;
  • the first full-bridge circuit is connected to the primary side of the transformer circuit, the secondary side of the transformer circuit is connected to the full-bridge sub-circuit, and the full-bridge sub-circuit is connected to the energy storage battery;
  • the second full-bridge circuit is used to connect to the energy storage battery according to one or more of the full-bridge sub-circuits to adapt to energy storage batteries with different voltages.
  • multiple full-bridge sub-circuits connected in parallel or in series can respectively correspond to energy storage batteries with different input voltages when connected to the transformer circuit.
  • the second full-bridge circuit includes a first full-bridge sub-circuit and a second full-bridge sub-circuit;
  • the transformer circuit includes a first winding and a second winding on the primary side, and a third winding and a fourth winding on the secondary side;
  • the first winding and the third winding correspond to each other and have the same number of coils;
  • the second winding and the fourth winding correspond to each other and have the same number of coils.
  • the third winding is connected to the first full-bridge sub-circuit
  • the fourth winding is connected to the second full-bridge sub-circuit
  • the first full-bridge sub-circuit and the second full-bridge sub-circuit are respectively connected to the energy storage battery.
  • the first winding, the second winding, the third winding, and the fourth winding have the same number of coils.
  • the first winding corresponds to the third winding
  • the second winding corresponds to the fourth winding.
  • two groups of sub-power systems can be connected on the secondary side of the bidirectional DCDC circuit, namely the first full-bridge sub-circuit and the second full-bridge sub-circuit.
  • a 400V lithium battery pack or an 800V lithium battery pack can be selected to be connected to output 800V voltage, thereby increasing the application of battery packs with different voltage levels and specifications.
  • the 800VDC provided by the bidirectional DCDC circuit, conditions are provided for obtaining a three-phase 380VAC output.
  • FIG. 2 shows a connection circuit diagram of the energy storage system and the controller described in an embodiment of the present application; in the figure, MOS tubes Q13-Q16 form a first full-bridge circuit, MOS tubes Q17-Q20 form a first full-bridge sub-circuit, MOS tubes Q21-Q24 form a second full-bridge sub-circuit, and capacitors C3, C4, C5 and resonant inductor Lr form a voltage circuit.
  • the controller When the controller receives the charging instruction, it controls the energy storage system to enter the charging mode.
  • the current sensor collects the signal of the resonant current and sends an IReson signal to the controller.
  • the controller receives the signal and determines whether the signal passes through zero. When the IReson signal passes through zero, it indicates that the waveform of the resonant current is positive. When the IReson signal does not pass through zero, it indicates that the waveform of the resonant current is negative.
  • the controller controls the conduction of the corresponding MOS tube according to whether the IReson signal passes through zero, so as to realize the synchronous rectification of the secondary side of the bidirectional DCDC circuit.
  • the bidirectional DCDC circuit when the bidirectional DCDC circuit is in the charging mode, the MOS tubes Q13-Q16 work in the active pulse mode, and the MOS tubes Q17 ⁇ Q20 and MOS tubes Q21 ⁇ Q24 work in the synchronous rectification mode.
  • the controller detects the numerical values of the battery side voltage signal Vbat and the current signal Ibat, wherein the current signal Ibat is obtained by the controller through the detection resistor R5.
  • the voltage signal Vbat and the current signal Ibat can detect the charging state of the battery, and perform closed-loop control, which is reflected in the control of the battery logic to maintain the CC constant current mode and the CV constant voltage mode.
  • the controller When the controller receives the discharge instruction, it controls the energy storage system to enter the discharge mode, the current sensor collects the signal of the resonant current and sends the IReson signal to the controller, and the controller controls the conduction of the corresponding MOS tube according to whether the IReson signal passes through the zero point, so as to realize the synchronous rectification of the primary side of the bidirectional DCDC circuit, that is, when the bidirectional DCDC circuit is in the discharge mode, the MOS tubes Q17 to Q20 and the MOS tubes Q21 to Q24 work in the active pulse mode, and the MOS tubes Q13 to Q16 work in the synchronous rectification mode.
  • the controller detects the output signal of the bidirectional DCDC circuit by reading the values of the voltage signal Vh and the current signal Idc on the primary side of the bidirectional DCDC circuit, and performs closed-loop control.
  • the controller controls each MOS tube through a PWM driving unit.
  • the energy storage battery adopts a 400V lithium battery pack, and two full-bridge sub-circuits are provided, and the two full-bridge sub-circuits are respectively connected in parallel with the 400V lithium battery pack.
  • the two full-bridge sub-circuits are respectively a first full-bridge sub-circuit and a second full-bridge sub-circuit, and the first full-bridge sub-circuit and the second full-bridge sub-circuit are respectively connected in parallel with the 400V lithium battery pack.
  • the first full-bridge sub-circuit and the second full-bridge sub-circuit are connected in parallel and connected in parallel with the 400V lithium battery pack, the first port of the first full-bridge sub-circuit is connected to the positive electrode of the 400V lithium battery pack, the second port of the first full-bridge sub-circuit is connected to the negative electrode of the 400V lithium battery pack, the first port of the second full-bridge sub-circuit is connected to the positive electrode of the 400V lithium battery pack, and the second port of the second full-bridge sub-circuit is connected to the negative electrode of the 400V lithium battery pack.
  • FIG. 3 shows a connection circuit diagram of another energy storage system and the controller in an embodiment of the present application; in the embodiment of the present application, the energy storage battery adopts an 800V lithium battery pack, and two full-bridge sub-circuits are provided, and the two full-bridge sub-circuits are connected in series with the 800V lithium battery pack to form a loop.
  • the two full-bridge sub-circuits are respectively a first full-bridge sub-circuit and a second full-bridge sub-circuit, the first port of the first full-bridge sub-circuit is connected to the positive electrode of the 800V lithium battery pack, the second port of the first full-bridge sub-circuit is connected to the first port of the second full-bridge sub-circuit, and the second port of the second full-bridge sub-circuit is connected to the negative electrode of the 800V lithium battery pack.
  • the first full-bridge sub-circuit and the second full-bridge sub-circuit are connected in series, and two ports of the series-connected circuit are respectively connected to the positive electrode and the negative electrode of the 800V lithium battery pack.
  • voltage-dividing capacitors, C6 and C7 are provided on the battery side.
  • the two voltage-dividing capacitors may be capacitors of the same specification, which divide the voltage of the lithium battery pack equally so that the voltage input by the lithium battery pack to the first full-bridge sub-circuit and the second full-bridge sub-circuit is the same.
  • the energy storage system further includes a controller and a current sensor
  • the current sensor is connected in series in the primary circuit of the transformer circuit, and the current sensor is connected to the controller; the first full-bridge circuit, the first full-bridge sub-circuit, the second full-bridge sub-circuit and the second full-bridge circuit are respectively connected to the controller.
  • the first full-bridge sub-circuit and the second full-bridge sub-circuit are respectively connected to the controller.
  • the current sensor is used to detect the resonant current signal of the primary circuit of the transformer circuit and send the detection result to the controller, so that the controller controls the synchronous rectification of the first full-bridge circuit and the second full-bridge circuit. Specifically, when the controller receives a charging instruction, it controls the first full-bridge sub-circuit and the second full-bridge sub-circuit to perform synchronous rectification, and when the controller receives a discharging instruction, it controls the first full-bridge circuit to perform synchronous rectification. Rectification.
  • the charging instruction and the discharging instruction may be manually issued and sent to the controller via the CAN communication module, or may be a charging time period set in advance in the controller.
  • the embodiment of the present application also provides a three-phase energy storage system.
  • Figure 4 shows a circuit schematic diagram of the three-phase energy storage system described in the embodiment of the present application; specifically, the three-phase energy storage system includes a bidirectional ACDC circuit, and the above-mentioned energy storage system; the bidirectional ACDC circuit adopts a three-level topology circuit; compared with a two-level topology circuit, the three-level topology circuit can reduce switching ripple noise and reduce the volume of the EMI filter including the filter circuit.
  • the AC side port of the bidirectional ACDC circuit is connected to a public power grid, and the DC side port of the bidirectional ACDC circuit is connected to a bidirectional DCDC circuit through a DC bus.
  • the bidirectional ACDC circuit includes an AC side and a DC side; the DC side of the bidirectional ACDC circuit is connected to the first full-bridge circuit, and the bidirectional ACDC circuit is connected to the controller;
  • the bidirectional ACDC circuit is used to convert the DC voltage output by the first full-bridge circuit into an AC voltage when the controller receives a discharge instruction, and to convert the AC voltage on the AC side of the bidirectional ACDC circuit into a DC voltage when the controller receives a charging instruction.
  • the controller is used to collect the voltage signal and current signal on the AC side of the bidirectional ACDC circuit, as well as to collect the voltage signal and current signal on the DC side of the bidirectional ACDC circuit, and control the output voltage or power factor of the bidirectional ACDC circuit; specifically, the controller sends a first control signal to the bidirectional ACDC circuit according to the voltage signal and current signal on the AC side and the voltage signal and current signal on the DC side, so that when the controller receives a discharge instruction, the output voltage of the bidirectional ACDC circuit is controlled to reach a first preset value, and when the controller receives a charging instruction, the power factor value of the bidirectional ACDC circuit is controlled to reach a second preset value.
  • FIG. 5 shows a connection circuit diagram of the bidirectional ACDC circuit and the controller described in an embodiment of the present application.
  • the bidirectional ACDC circuit operates in a rectification mode, that is, the AC side of the bidirectional ACDC circuit transmits energy to the DC side, and the controller collects the AC side voltage signals Va, Vb, Vc and the AC side current signals Ia, Ib, Ic, as well as the DC side full voltage signal Vh and current signal Idc.
  • the current signals Ia, Ib, Ic are respectively obtained by the controller through the voltage detection resistors R1, R2 and R3, and the current signal Idc is obtained by the controller through the detection resistor R4.
  • the controller controls the three-level topology structure.
  • the MOS tubes Q1 ⁇ Q12 are controlled to make the system power factor value reach a second preset value.
  • the improvement of the power factor will reduce the reactive power in the power grid and reduce the power grid loss. Therefore, the second preset value needs to be around 0.99, close to the power factor 1, close to the most ideal working state.
  • the second preset value can be a value between 0.980 and 0.999; in the discharge state, the bidirectional ACDC circuit operates in the inverter mode, that is, the DC side of the bidirectional ACDC circuit transmits energy to the AC side.
  • the controller controls the AC voltage output by the bidirectional ACDC through the collected voltage signal and current signal to meet the preset requirements.
  • an AC three-phase energy storage system can be provided.
  • the ports on the AC side of the bidirectional ACDC are connected in parallel, and no circulation phenomenon occurs.
  • a voltage stabilizing unit is provided on the DC side of the bidirectional ACDC circuit; the voltage stabilizing unit includes a first voltage stabilizing capacitor, a second voltage stabilizing capacitor and a bidirectional DCDC voltage regulating module;
  • the first port of the first voltage-stabilizing capacitor is connected to the first port of the DC side of the bidirectional ACDC circuit
  • the second port of the first voltage-stabilizing capacitor is connected to the first port of the second voltage-stabilizing capacitor
  • the second port of the second voltage-stabilizing capacitor is connected to the second port of the DC side of the bidirectional ACDC circuit
  • the first port of the bidirectional DCDC voltage regulating module is connected to the first port of the first voltage-stabilizing capacitor
  • the second port of the bidirectional DCDC voltage regulating module is connected to the second port of the first voltage-stabilizing capacitor
  • the third port of the bidirectional DCDC voltage regulating module is connected to the first port of the AC side of the bidirectional ACDC circuit
  • the fourth port of the bidirectional DCDC voltage regulating module is connected to the second port of the second voltage-stabilizing capacitor.
  • the bidirectional DCDC voltage regulating module works, so that the high-voltage port on the DC side of the bidirectional ACDC circuit transfers energy to the low-voltage port through the bidirectional DCDC voltage regulating module, thereby balancing the positive and negative potentials.
  • the three-phase energy storage system further includes a filtering circuit and a pre-charging circuit
  • the filter circuit is connected to the pre-charging circuit, and the pre-charging circuit is connected to the AC side of the bidirectional ACDC circuit.
  • the filtering circuit can adopt an EMI filter circuit, and the EMI filter is arranged at the power input line of the AC measurement port of the bidirectional ACDC circuit. Since the power line is the main way for interference to be transmitted to and from the device, the interference of the power grid can be transmitted to the device through the power line, interfering with the normal operation of the device. Similarly, the interference generated by the device may also be transmitted to the power grid through the power line, interfering with the normal operation of other devices. Therefore, the present application sets an EMI filter at the output port to allow the frequency signal of the device to pass smoothly when the device is working normally, and to suppress the interference signal with a frequency higher than the high frequency when the device is working normally.
  • the circuit can be pre-charged to prevent sparking when the port is connected to the signal, thereby reducing the impact on the line when powering on.
  • each phase of the AC side of the bidirectional ACDC circuit is respectively provided with a boost circuit, and the three boost circuits respectively include boost inductors La, Lb, and Lc.
  • the AC signal enters from the AC side port of the bidirectional ACDC circuit, and the boost inductors La, Lb, and Lc convert the inductance into magnetic energy and store it first to form a voltage source.
  • This voltage source is superimposed and filtered on the input voltage and then provided to the load. Therefore, the output voltage from the AC side to the DC side of the bidirectional ACDC circuit is greater than the input voltage, completing the boost process, so that the 380VAC input on the AC side can be converted to 800VDC on the DC side.
  • the three-phase energy storage system further includes an auxiliary power supply, the input end of the auxiliary power supply is connected to the Any one phase of the AC side of the bidirectional ACDC circuit is connected, and the output end of the auxiliary power supply is connected to the controller.
  • the auxiliary power supply draws power from any phase circuit of the bidirectional ACDC circuit, and outputs direct current through an AC-to-DC conversion operation to power the controller.
  • An embodiment of the present application further provides an energy storage cabinet, including an energy storage device and a peripheral circuit device, wherein the system in the energy storage device adopts the above-mentioned three-phase energy storage system.
  • multiple energy storage systems can be set on one side of the DC bus and connected in parallel.
  • Each energy storage system represents a small battery unit with an 800VDC interface. When an individual small unit fails, the impact on the system is small, and it can be hot-swapped and replaced for maintenance.
  • the parallel energy storage systems are connected to the DC bus, and the DC bus is connected to a bidirectional ACDC circuit to convert it into a three-phase 380VAC energy storage system.
  • the disclosed methods and devices can be implemented in other ways.
  • the device embodiments described above are merely schematic.
  • the division of the units is only a logical function division. There may be other division methods in actual implementation.
  • multiple units or components can be combined or integrated into another system, or some features can be ignored or not executed.
  • Another point is that the mutual coupling or direct coupling or communication connection shown or discussed can be through some communication interfaces, indirect coupling or communication connection of devices or units, which can be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place or distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in the embodiments provided in the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种储能系统、三相储能系统及储能柜,储能系统包括:双向DCDC电路;双向DCDC电路包括第一全桥式电路、变压器电路和第二全桥式电路;第二全桥式电路包括至少一个全桥式子电路;第一全桥式电路与变压器电路的一次侧连接,变压器电路的二次侧与全桥式子电路连接,第二全桥式电路,用于根据一个或多个全桥式子电路与储能电池连接,以适配不同电压的储能电池。本申请能够适用于400VDC和800VDC两个电压等级规格的储能电池,同时还能解决并联的储能柜之间易出现环流的问题。

Description

一种储能系统、三相储能系统及储能柜
相关申请的交叉引用
本申请要求于2022年12月09日提交中国国家知识产权局的申请号为202211583642.X、名称为“一种储能系统、三相储能系统及储能柜”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及储能电池技术领域,具体而言,涉及一种储能系统、三相储能系统及储能柜。
背景技术
储能系统,在工业、通信、医疗等防止突然掉电的领域有现实需求。在储能电池的分类中,包含有400VDC和800VDC两个电压等级的规格,然而在得到三相380VAC的储能系统时,储能电池的电压范围必须在680VDC和1000VDC之间,因此只能使用800VDC的电池包,对于电压等级规格较小的电池包,一般采用堆叠方式,将多个电压等级规格较小的电池包串联起来,使用不便;并且,锂电池储能柜是靠电池包直接堆叠形成的大容量的电池系统,然后组成一个电池储能柜,但是这种电池储能柜,由于每个储能柜的电池初始状态不同,导致电压不一致,在多个储能柜并联使用的初始阶段,会出现电压高的柜子向电压低的柜子充电,也就是通常所说的环流,影响系统的正常工作。
发明内容
有鉴于此,本申请实施例提供了一种储能系统、三相储能系统及储能柜,能够适用于400VDC和800VDC两个电压等级规格的储能电池,同时还能解决并联的储能柜之间易出现环流的问题。
第一方面,本申请实施例提供了一种储能系统,包括储能电池,还包括:双向DCDC电路;所述双向DCDC电路包括第一全桥式电路、变压器电路和第二全桥式电路;所述第二全桥式电路包括至少一个全桥式子电路;
所述第一全桥式电路与所述变压器电路的一次侧连接,所述变压器电路的二次侧与所述全桥式子电路连接;
所述第二全桥式电路,用于根据一个或多个所述全桥式子电路与所述储能电池连接,以适配不同电压的储能电池。
在一种可能的实施方式中,所述第二全桥式电路包括第一全桥式子电路和第二全桥式子电路;所述变压器电路包括一次侧的第一绕组和第二绕组,以及二次侧的第三绕组和第四绕组;所述第一绕组和所述第三绕组对应且线圈数相等;所述第二绕组和所述第四绕组 对应且线圈数相等。
在一种可能的实施方式中,所述第三绕组与所述第一全桥式子电路连接,所述第四绕组与所述第二全桥式子电路连接,所述第一全桥式子电路和所述第二全桥式子电路分别与所述储能电池连接。
在一种可能的实施方式中,所述第一绕组、第二绕组、第三绕组和第四绕组的线圈数相等。
在一种可能的实施方式中,所述储能电池采用400V锂电池组,所述全桥式子电路设置有两个,两个全桥式子电路分别与所述400V锂电池组并联连接。
在一种可能的实施方式中,所述储能电池采用800V锂电池组,所述全桥式子电路设置有两个,两个全桥式子电路与所述800V锂电池组串联并构成回路。
在一种可能的实施方式中,所述储能系统,还包括有控制器和电流传感器;
所述电流传感器串接于所述变压器电路的原边电路中,所述电流传感器与所述控制器连接;所述第一全桥式电路和所述第二全桥式电路分别与所述控制器连接。
所述电流传感器用于检测所述变压器电路的原边电路的谐振电流信号并将检测结果发送至所述控制器,以使所述控制器控制所述第一全桥式电路或第二全桥式电路的同步整流。
第二方面,本申请实施例还提供了一种三相储能系统,包括双向ACDC电路,以及第一方面所述的储能系统;所述双向ACDC电路采用三电平拓扑电路;
所述双向ACDC电路包括交流侧和直流侧;所述双向ACDC电路的直流侧与所述第一全桥式电路连接,所述双向ACDC电路与所述控制器连接;
所述控制器,用于采集所述双向ACDC电路的交流侧和直流侧的电压信号和电流信号,并控制所述双向ACDC电路的输出电压或功率因数。
在一种可能的实施方式中,所述双向ACDC电路的直流侧设置有稳压单元;所述稳压单元包括第一稳压电容、第二稳压电容和双向DCDC调压模块;
所述第一稳压电容的第一端口连接所述双向ACDC电路的直流侧的第一端口,所述第一稳压电容的第二端口连接所述第二稳压电容的第一端口,所述第二稳压电容的第二端口连接所述双向ACDC电路的直流侧的第二端口,所述双向DCDC调压模块的第一端口连接所述第一稳压电容的第一端口,所述双向DCDC调压模块的第二端口连接所述第一稳压电容的第二端口,所述双向DCDC调压模块的第三端口连接所述双向ACDC电路的交流侧的第一端口,所述双向DCDC调压模块的第四端口连接所述第二稳压电容的第二端口。
在一种可能的实施方式中,所述三相储能系统,还包括有滤波电路和预充电电路;
所述滤波电路与所述预充电电路连接,所述预充电电路与所述双向ACDC电路的交流侧连接。
在一种可能的实施方式中,所述双向ACDC电路的交流侧的每一相分别设置有boost升压电路。
在一种可能的实施方式中,所述三相储能系统,还包括有辅助电源,所述辅助电源的输入端与所述双向ACDC电路的交流侧的任意一相连接,所述辅助电源的输出端与所述控制器连接。
第三方面,本申请实施例还提供了一种储能柜,包括储能设备和外围电路设备,所述储能设备中的系统采用第二方面任一项所述的三相储能系统。
本申请提供的技术方案具有以下有益效果:
本申请提供了一种储能系统,将双向DCDC电路中的变压路电路的一次侧电路和二次侧电路改为了两组两两对应的绕组,并且在变压器电路的二次侧设置有两组子电源系统,即第一全桥式子电路和第二全桥式子电路,通过对两个子电源系统采取并联或串联方式,能够分别适用于400VDC和800VDC的电池包,增加了不同电压等级规格的电池包的应用范围,便于使用;并且通过在电池包上增加双向DCDC电路的设计,能够防止在多个储能柜并联的初始阶段,电压高的储能柜向电压低的储能柜传递能量,防止环流现象的产生,有利于系统的正常稳定运行;还通过增加双向ACDC电路,使该储能系统变为三相储能系统,使其能够应用于交流电中,增加了应用范围。
为使本申请的上述目的、特征和优点能更明显易懂,下文特举较佳实施例,并配合所附附图,作详细说明如下。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1示出了本申请实施例所述储能系统的电路原理图;
图2示出了本申请实施例所述储能系统与所述控制器的连接电路图;
图3示出了本申请实施例另一所述储能系统与所述控制器的连接电路图;
图4示出了本申请实施例所述三相储能系统的电路原理图;
图5示出了本申请实施例所述双向ACDC电路与控制器的连接电路图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本申请实施 例的组件可以以各种不同的配置来布置和设计。因此,以下对在附图中提供的本申请的实施例的详细描述并非旨在限制要求保护的本申请的范围,而是仅仅表示本申请的选定实施例。基于本申请的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本申请保护的范围。
在以下的描述中,涉及到“一些实施例”,其描述了所有可能实施例的子集,但是可以理解,“一些实施例”可以是所有可能实施例的相同子集或不同子集,并且可以在不冲突的情况下相互结合。
在现有技术中,可能会存在以下问题:
在储能电池的分类中,包含有400VDC和800VDC两个电压等级的规格,然而在得到三相380VAC的储能系统时,储能电池的电压范围必须在680VDC和1000VDC之间,因此只能使用800VDC的电池包,对于电压等级规格较小的电池包,一般采用堆叠方式,将多个电压等级规格较小的电池包串联起来,使用不便;并且,锂电池储能柜是靠电池包直接堆叠形成的大容量的电池系统,然后组成一个电池储能柜,但是这种电池储能柜,由于每个储能柜的电池初始状态不同,导致电压不一致,在多个储能柜并联使用的初始阶段,会出现电压高的柜子向电压低的柜子充电,也就是通常所说的环流,影响系统的正常工作。
基于此,本申请实施例提供了一种储能系统,将双向DCDC电路中的变压路电路的一次侧电路和二次侧电路改为了两组两两对应的绕组,并且在变压器电路的二次侧设置有两组子电源系统,即第一全桥式子电路和第二全桥式子电路,通过对两个子电源系统采取并联或串联方式,能够分别适用于400VDC和800VDC的电池包,增加了不同电压等级规格的电池包的应用范围,便于使用;并且通过在电池包上增加双向DCDC电路的设计,能够防止在多个储能柜并联的初始阶段,电压高的储能柜向电压低的储能柜传递能量,防止环流现象的产生,有利于系统的正常稳定运行;还通过增加双向ACDC电路,使该储能系统变为三相储能系统,使其能够应用于交流电中,增加了应用范围。
请参照图1,图1示出了本申请实施例所述储能系统的电路原理图,具体的,所述储能系统,包括储能电池,还包括:双向DCDC电路;所述双向DCDC电路包括第一全桥式电路、变压器电路和第二全桥式电路;所述第二全桥式电路包括至少一个全桥式子电路;
所述第一全桥式电路与所述变压器电路的一次侧连接,所述变压器电路的二次侧与所述全桥式子电路连接,所述全桥式子电路与所述储能电池连接;
所述第二全桥式电路,用于根据一个或多个所述全桥式子电路与所述储能电池连接,以适配不同电压的储能电池。
具体的,在采用多个全桥式子电路时,多个并联或串联的全桥式子电路在与变压器电路连接时,能够分别对应不同输入电压的储能电池。
本申请实施例中,所述第二全桥式电路包括第一全桥式子电路和第二全桥式子电路;所述变压器电路包括一次侧的第一绕组和第二绕组,以及二次侧的第三绕组和第四绕组;所述第一绕组和所述第三绕组对应且线圈数相等;所述第二绕组和所述第四绕组对应且线圈数相等。
本申请实施例中,所述第三绕组与所述第一全桥式子电路连接,所述第四绕组与所述第二全桥式子电路连接,所述第一全桥式子电路和所述第二全桥式子电路分别与所述储能电池连接。
在一些实施例中,所述第一绕组、第二绕组、第三绕组和第四绕组的线圈数相等。
具体的,第一绕组和第三绕组对应,第二绕组和第四绕组对应,通过两组对应的绕组,能够在双向DCDC电路的二次侧连接两组子电源系统,即第一全桥式子电路和第二全桥式子电路,通过两个全桥式子电路的不同连接方式,能够选择连接400V锂电池组或800V锂电池组,输出800V电压,增加了不同电压等级规格的电池包的应用,同时,根据该双向DCDC电路提供的800VDC,为得到三相380VAC的输出提供了条件。
请参照图2,图2示出了本申请实施例所述储能系统与所述控制器的连接电路图;图中,MOS管Q13-Q16组成第一全桥式电路,MOS管Q17-Q20组成第一全桥式子电路,MOS管Q21-Q24组成第二全桥式子电路,电容C3、电容C4、电容C5以及谐振电感Lr组成电压器电路。
当控制器接收到充电指令时,控制储能系统进入充电模式,电流传感器采集谐振电流的信号并发出IReson信号到控制器,控制器接收该信号并判断该信号的是否过零点,该IReson信号过零点时,说明谐振电流的波形为正,IReson信号未过零点时,说明谐振电流的波形为负,控制器根据IReson信号是否过零点,控制对应的MOS管的导通,实现双向DCDC电路二次侧的同步整流,即,当双向DCDC电路处于充电模式时,MOS管Q13-Q16工作在主动脉冲模式,MOS管Q17~Q20、MOS管Q21~Q24工作在同步整流模式,控制器检测电池侧电压信号Vbat和电流信号Ibat的数值大小,其中,电流信号Ibat是控制器通过检测电阻R5得出,通过电压信号Vbat和电流信号Ibat能够检测出电池的充电状态,执行闭环控制,体现在对电池逻辑的控制,保持CC恒流模式和CV恒压模式。
当控制器接收到放电指令时,控制储能系统进入放电模式,电流传感器采集谐振电流的信号并发出IReson信号到控制器,控制器根据IReson信号是否过零点,控制对应的MOS管的导通,实现双向DCDC电路一次侧的同步整流,即,当双向DCDC电路处于放电模式时,MOS管Q17~Q20、MOS管Q21~Q24工作在主动脉冲模式,MOS管Q13-Q16工作在同步整流模式,控制器通过读取双向DCDC电路一次侧的电压信号Vh和电流信号Idc的数值大小,检测双向DCDC电路的输出信号,执行闭环控制。
具体的,所述控制器通过PWM驱动单元,实现对各个MOS管的控制。
本申请实施例中,所述储能电池采用400V锂电池组,所述全桥式子电路设置有两个,两个全桥式子电路分别与所述400V锂电池组并联连接。
本申请实施例中,两个全桥式子电路分别为第一全桥式子电路和第二全桥式子电路,所述第一全桥式子电路和所述第二全桥式子电路分别与所述400V锂电池组并联连接。
在上述实施例中,将第一全桥式子电路和第二全桥式子电路采用并联的方式,并与400V锂电池组并联连接,所述第一全桥式子电路的第一端口连接所述400V锂电池组的正极,所述第一全桥式子电路的第二端口连接所述400V锂电池组的负极,所述第二全桥式子电路的第一端口连接所述400V锂电池组的正极,所述第二全桥式子电路的第二端口连接所述400V锂电池组的负极。
请参照图3,图3示出了本申请实施例另一所述储能系统与所述控制器的连接电路图;本申请实施例中,所述储能电池采用800V锂电池组,所述全桥式子电路设置有两个,两个全桥式子电路与所述800V锂电池组串联并构成回路。
本申请实施例中,两个全桥式子电路分别为第一全桥式子电路和第二全桥式子电路,所述第一全桥式子电路的第一端口连接所述800V锂电池组的正极,所述第一全桥式子电路的第二端口连接所述第二全桥式子电路的第一端口,所述第二全桥式子电路的第二端口连接所述800V锂电池组的负极。
在上述实施例中,将第一全桥式子电路和第二全桥式子电路采用串联的方式,串联后的电路的两个端口分别连接800V锂电池组的正极和负极。
在一些实施例中,在电池侧设置有分压电容,分别是C6和C7,两个分压电容可以是规格相同的电容,平分锂电池组的电压,以使锂电池组向第一全桥式子电路和第二全桥式子电路输入的电压相同。
本申请实施例中,所述储能系统,还包括有控制器和电流传感器;
所述电流传感器串接于所述变压器电路的原边电路中,所述电流传感器与所述控制器连接;所述第一全桥式电路、所述第一全桥式子电路和所述第二全桥式子电路和所述第二全桥式电路分别与所述控制器连接。
即,本申请实施例中,所述第一全桥式子电路和所述第二全桥式子电路分别与所述控制器连接。
所述电流传感器用于检测所述变压器电路的原边电路的谐振电流信号并将检测结果发送至所述控制器,以使所述控制器控制所述第一全桥式电路和第二全桥式电路的同步整流,具体的,所述控制器接收到充电指令时,控制所述第一全桥式子电路和第二全桥式子电路进行同步整流,以及,所述控制器接收到放电指令时,控制所述第一全桥式电路进行同步 整流。
具体的,充电指令和放电指令可以是人为发出的,并通过CAN通信模块发送至控制器,也可以是在控制器中提前设定的充电时间段。
本申请实施例还提供一种三相储能系统,请参照图4,图4示出了本申请实施例所述三相储能系统的电路原理图;具体的,所述三相储能系统包括双向ACDC电路,以及上述储能系统;所述双向ACDC电路采用三电平拓扑电路;三电平拓扑电路相比于两电平拓扑电路,能降低开关波纹噪声,缩小包含滤波电路的EMI滤波器的体积。
在一些实施例中,所述双向ACDC电路的交流侧端口连接公共电网,所述双向ACDC电路的直流侧端口通过直流母线与双向DCDC电路连接。
所述双向ACDC电路包括交流侧和直流侧;所述双向ACDC电路的直流侧与所述第一全桥式电路连接,所述双向ACDC电路与所述控制器连接;
本申请实施例中,所述双向ACDC电路,用于在所述控制器接收到放电指令时,将所述第一全桥式电路输出的直流电压转换为交流电压,以及在所述控制器接收到充电指令时,将所述双向ACDC电路的交流侧的交流电压转换为直流电压。
本申请实施例中,所述控制器,用于采集所述双向ACDC电路的交流侧的电压信号和电流信号,以及,采集所述双向ACDC电路的直流侧的电压信号和电流信号,并控制所述双向ACDC电路的输出电压或功率因数;具体的,所述控制器根据所述交流侧的电压信号和电流信号以及所述直流侧的电压信号和电流信号,向所述双向ACDC电路发送第一控制信号,以使在所述控制器接收到放电指令时,控制所述双向ACDC电路的输出电压达到第一预设数值,以及,在所述控制器接收到充电指令时,控制所述双向ACDC电路的功率因数值达到第二预设数值。
具体的,请参照图5,图5示出了本申请实施例所述双向ACDC电路与控制器的连接电路图,在充电状态下,双向ACDC电路工作在整流模式,即双向ACDC电路的交流侧向直流侧传输能量,控制器采集交流侧电压信号Va、Vb、Vc和交流侧电流信号Ia、Ib、Ic,以及直流侧的全压信号Vh和电流信号Idc,电流信号Ia、Ib、Ic分别是控制器通过检测电阻R1、R2和R3上的电压得出,电流信号Idc是控制器通过检测电阻R4得出,通过上述信号,控制器对三电平拓扑结构中的MOS管Q1~Q12进行控制,使系统功率因数值达到第二预设数值,功率因数的提高,会降低电网内无功功率,进入降低电网损耗,因此,第二预设数值需在0.99左右,接近功率因数1,接近最理想的工作状态,本申请实施例中,第二预设数值可以是0.980~0.999之间的一个数值;在放电状态下,双向ACDC电路工作在逆变模式,即双向ACDC电路的直流侧向交流侧传输能量,控制器通过采集的上述电压信号和电流信号,对双向ACDC输出的交流电压进行控制,使其符合预设要求。
在上述实施例中,通过在锂电池组上增加双向DCDC电路和双向ACDC电路,能够提供一种交流三相储能系统,同时在多个储能系统并联时,在双向ACDC交流侧的端口并联,不会出现环流现象。
本申请实施例中,所述双向ACDC电路的直流侧设置有稳压单元;所述稳压单元包括第一稳压电容、第二稳压电容和双向DCDC调压模块;
所述第一稳压电容的第一端口连接所述双向ACDC电路的直流侧的第一端口,所述第一稳压电容的第二端口连接所述第二稳压电容的第一端口,所述第二稳压电容的第二端口连接所述双向ACDC电路的直流侧的第二端口,所述双向DCDC调压模块的第一端口连接所述第一稳压电容的第一端口,所述双向DCDC调压模块的第二端口连接所述第一稳压电容的第二端口,所述双向DCDC调压模块的第三端口连接所述双向ACDC电路的交流侧的第一端口,所述双向DCDC调压模块的第四端口连接所述第二稳压电容的第二端口。
在上述实施例中,当直流母线的+400V与-400V中间电位偏移时,两个储能电容的电压不同,双向DCDC调压模块进行工作,使双向ACDC电路的直流侧的电压高的端口通过双向DCDC调压模块向电压低的端口传递能量,从而使正负电位平衡。
本申请实施例中,所述三相储能系统,还包括有滤波电路和预充电电路;
所述滤波电路与所述预充电电路连接,所述预充电电路与所述双向ACDC电路的交流侧连接。
在一些实施例中,滤波电路可以采用EMI滤波器的电路,EMI滤波器设置在双向ACDC电路交流测端口的电源进线处,由于电源线是干扰传入设备和传出设备的主要途径,通过电源线,电网的干扰可以传入设备,干扰设备的正常工作,同样设备产生的干扰也可能通过电源线传到电网上,干扰其他设备的正常工作,因此本申请在输出端口设置EMI滤波器,允许设备正常工作时的频率信号顺利通过,而对高于设备正常工作时的高频频率的干扰信号有抑制作用。
在一些实施例中,通过设置预充电电路,能够进行电路的预充电,防止在端口接入信号时出现打火现象,减轻了上电时对线路的冲击。
本申请实施例中,所述双向ACDC电路的交流侧的每一相分别设置有boost升压电路,三个boost升压电路分别包括升压电感La、Lb、Lc,在电路处于充电状态时,交流信号从双向ACDC电路的交流侧端口进入,升压电感La、Lb、Lc将电感转成磁能先储能起来,形成一个电压源,这个电压源和输入电压叠加并滤波后提供给负载,因此双向ACDC电路的交流侧向直流侧的输出电压大于输入电压,完成了升压的过程,使交流侧输入的380VAC能够转换为直流侧的800VDC。
在一些实施例中,所述三相储能系统,还包括有辅助电源,所述辅助电源的输入端与 所述双向ACDC电路的交流侧的任意一相连接,所述辅助电源的输出端与所述控制器连接。
在一些实施例中,所述辅助电源从所述双向ACDC电路的任意一相电路取电,并通过交流转直流的操作,输出直流电,为所述控制器供电。
本申请实施例还提供了一种储能柜,包括储能设备和外围电路设备,所述储能设备中的系统采用上述的三相储能系统。
在一些实施例中,可以在直流母线的一侧设置多个储能系统,并将多个储能系统并联,每个储能系统表示一个具有800VDC接口的电池小单元,当个别小单元故障时,对系统影响很小,且可以热插拔更换维护,将并联后的储能系统连接在直流母线上,将该直流母线连接双向ACDC电路,转换为三相380VAC储能系统。
在本申请所提供的实施例中,应该理解到,所揭露方法和装置,可以通过其它的方式实现。以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,又例如,多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些通信接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请提供的实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释,此外,术语“第一”、“第二”、“第三”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
需要说明的是,本申请实施例中所用到的术语“包括”,用于指出其后所声明的特征的存在,但并不排除增加其它的特征。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中所使用的术语是为了描述本申请实施例的目的,不是在限制本申请。
最后应说明的是:以上所述实施例,仅为本申请的具体实施方式,用以说明本申请的技术方案,而非对其限制,本申请的保护范围并不局限于此,尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,其依然可以对前述实施例所记载的技术方案进行修改或可轻 易想到变化,或者对其中部分技术特征进行等同替换;而这些修改、变化或者替换,并不使相应技术方案的本质脱离本申请实施例技术方案的精神和范围。都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (13)

  1. 一种储能系统,包括储能电池,其特征在于,还包括:双向DCDC电路;所述双向DCDC电路包括第一全桥式电路、变压器电路和第二全桥式电路;所述第二全桥式电路包括至少一个全桥式子电路;
    所述第一全桥式电路与所述变压器电路的一次侧连接,所述变压器电路的二次侧与所述全桥式子电路连接;
    所述第二全桥式电路,用于根据一个或多个所述全桥式子电路与所述储能电池连接,以适配不同电压的储能电池。
  2. 根据权利要求1所述的储能系统,其特征在于,所述第二全桥式电路包括第一全桥式子电路和第二全桥式子电路;所述变压器电路包括一次侧的第一绕组和第二绕组,以及二次侧的第三绕组和第四绕组;所述第一绕组和所述第三绕组对应且线圈数相等;所述第二绕组和所述第四绕组对应且线圈数相等。
  3. 根据权利要求2所述的储能系统,其特征在于,所述第三绕组与所述第一全桥式子电路连接,所述第四绕组与所述第二全桥式子电路连接,所述第一全桥式子电路和所述第二全桥式子电路分别与所述储能电池连接。
  4. 根据权利要求2所述的储能系统,其特征在于,所述第一绕组、第二绕组、第三绕组和第四绕组的线圈数相等。
  5. 根据权利要求1所述的储能系统,其特征在于,所述储能电池采用400V锂电池组,所述全桥式子电路设置有两个,两个全桥式子电路分别与所述400V锂电池组并联连接。
  6. 根据权利要求1所述的储能系统,其特征在于,所述储能电池采用800V锂电池组,所述全桥式子电路设置有两个,两个全桥式子电路与所述800V锂电池组串联并构成回路。
  7. 根据权利要求1所述的储能系统,其特征在于,还包括有控制器和电流传感器;
    所述电流传感器串接于所述变压器电路的原边电路中,所述电流传感器与所述控制器连接;所述第一全桥式电路和所述第二全桥式电路分别与所述控制器连接;
    所述电流传感器用于检测所述变压器电路的原边电路的谐振电流信号并将检测结果发送至所述控制器,以使所述控制器控制所述第一全桥式电路或第二全桥式电路的同步整流。
  8. 一种三相储能系统,其特征在于,包括双向ACDC电路,以及权利要求7所述的储能系统;所述双向ACDC电路采用三电平拓扑电路;
    所述双向ACDC电路包括交流侧和直流侧;所述双向ACDC电路的直流侧与所述第一全桥式电路连接,所述双向ACDC电路与所述控制器连接;
    所述控制器,用于采集所述双向ACDC电路的交流侧和直流侧的电压信号和电流信号, 并控制所述双向ACDC电路的输出电压或功率因数。
  9. 根据权利要求8所述的三相储能系统,其特征在于,所述双向ACDC电路的直流侧设置有稳压单元;所述稳压单元包括第一稳压电容、第二稳压电容和双向DCDC调压模块;
    所述第一稳压电容的第一端口连接所述双向ACDC电路的直流侧的第一端口,所述第一稳压电容的第二端口连接所述第二稳压电容的第一端口,所述第二稳压电容的第二端口连接所述双向ACDC电路的直流侧的第二端口,所述双向DCDC调压模块的第一端口连接所述第一稳压电容的第一端口,所述双向DCDC调压模块的第二端口连接所述第一稳压电容的第二端口,所述双向DCDC调压模块的第三端口连接所述双向ACDC电路的交流侧的第一端口,所述双向DCDC调压模块的第四端口连接所述第二稳压电容的第二端口。
  10. 根据权利要求8所述的三相储能系统,其特征在于,还包括有滤波电路和预充电电路;
    所述滤波电路与所述预充电电路连接,所述预充电电路与所述双向ACDC电路的交流侧连接。
  11. 根据权利要求8所述的三相储能系统,其特征在于,所述双向ACDC电路的交流侧的每一相分别设置有boost升压电路。
  12. 根据权利要求8所述的三相储能系统,其特征在于,还包括有辅助电源,所述辅助电源的输入端与所述双向ACDC电路的交流侧的任意一相连接,所述辅助电源的输出端与所述控制器连接。
  13. 一种储能柜,其特征在于:包括储能设备和外围电路设备,所述储能设备中的系统采用权利要求8-12任一项所述的三相储能系统。
PCT/CN2023/104259 2022-12-09 2023-06-29 一种储能系统、三相储能系统及储能柜 WO2024119794A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211583642.X 2022-12-09
CN202211583642.XA CN115800461A (zh) 2022-12-09 2022-12-09 一种储能系统、三相储能系统及储能柜

Publications (1)

Publication Number Publication Date
WO2024119794A1 true WO2024119794A1 (zh) 2024-06-13

Family

ID=85418463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/104259 WO2024119794A1 (zh) 2022-12-09 2023-06-29 一种储能系统、三相储能系统及储能柜

Country Status (2)

Country Link
CN (1) CN115800461A (zh)
WO (1) WO2024119794A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115800461A (zh) * 2022-12-09 2023-03-14 上海派能能源科技股份有限公司 一种储能系统、三相储能系统及储能柜

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201039541A (en) * 2009-04-28 2010-11-01 Univ Southern Taiwan Two way full bridge zero-voltage and zero-current switching DC-DC converter
CN108809138A (zh) * 2018-06-29 2018-11-13 西安特锐德智能充电科技有限公司 一种兼容三相和单相交流电源的双向acdc电路及其控制方法
CN212073740U (zh) * 2019-10-22 2020-12-04 芜湖瑞来电子科技有限公司 一种用于电动汽车储能的充放电控制系统
TW202107823A (zh) * 2019-08-02 2021-02-16 海韻電子工業股份有限公司 全橋式諧振轉換電路
CN115800461A (zh) * 2022-12-09 2023-03-14 上海派能能源科技股份有限公司 一种储能系统、三相储能系统及储能柜

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201039541A (en) * 2009-04-28 2010-11-01 Univ Southern Taiwan Two way full bridge zero-voltage and zero-current switching DC-DC converter
CN108809138A (zh) * 2018-06-29 2018-11-13 西安特锐德智能充电科技有限公司 一种兼容三相和单相交流电源的双向acdc电路及其控制方法
TW202107823A (zh) * 2019-08-02 2021-02-16 海韻電子工業股份有限公司 全橋式諧振轉換電路
CN212073740U (zh) * 2019-10-22 2020-12-04 芜湖瑞来电子科技有限公司 一种用于电动汽车储能的充放电控制系统
CN115800461A (zh) * 2022-12-09 2023-03-14 上海派能能源科技股份有限公司 一种储能系统、三相储能系统及储能柜

Also Published As

Publication number Publication date
CN115800461A (zh) 2023-03-14

Similar Documents

Publication Publication Date Title
US20220014088A1 (en) Systems and methods for mitigating harmonics in electrical systems by using active and passive filtering techniques
CN103208929B (zh) 基于mmc的电子电力变压器
EP3787170A1 (en) Dcdc converter, vehicle-mounted charger and electric vehicle
CN101604853B (zh) 蓄电池充放电装置
CN104078992A (zh) 一种储能电压平衡电力电子电能变换系统及其控制方法
WO2024119794A1 (zh) 一种储能系统、三相储能系统及储能柜
US20220360184A1 (en) Energy conversion device, power system and vehicle
EP2020725A2 (en) On-line uninterruptible power system
CN217545885U (zh) 一种应用于宽电压范围的双向cllc变换器装置
CN113547945B (zh) 基于导抗网络的带均压功能的电池充电装置及方法
CN105322637B (zh) 一种具有恒功率输入特性的电容器充电方法及装置
WO2021217622A1 (zh) 一种电力电子变压器及供电系统
CN116345718B (zh) 原边多模块副边多模块的mc-wpt系统及其副边切换方法
CN219181416U (zh) 电源电路及储能装置
CN218161822U (zh) 一种柴油发电机油电混合系统
CN115065228B (zh) 一种输出共享型工业电源
EP3691082A1 (en) Uninterruptible power supply with dc output
WO2022126300A1 (zh) 一种光伏系统及环流抑制方法
CN113381593B (zh) 一种大功率容性负载仪器的前端辅助电路
WO2024130895A1 (zh) 一种电源电压转换电路、电池包及储能系统
Shou et al. Efficiency analysis in ipt system based on lcc compensation network
CN207926461U (zh) 一种用于母线电容软起的ac-dc隔离变换电路
CN208986675U (zh) Ups装置
CN109660010B (zh) 一种用于轨道交通车辆的混合储能充电机及控制方法
CN103199550B (zh) 级联无功补偿装置的电容电压平衡控制方法