WO2024119632A1 - 一种电极结构射频相位可调的离子漏斗及电压加载方法 - Google Patents

一种电极结构射频相位可调的离子漏斗及电压加载方法 Download PDF

Info

Publication number
WO2024119632A1
WO2024119632A1 PCT/CN2023/078349 CN2023078349W WO2024119632A1 WO 2024119632 A1 WO2024119632 A1 WO 2024119632A1 CN 2023078349 W CN2023078349 W CN 2023078349W WO 2024119632 A1 WO2024119632 A1 WO 2024119632A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
same
electrode sheet
electrode
semi
Prior art date
Application number
PCT/CN2023/078349
Other languages
English (en)
French (fr)
Inventor
邱朝辉
徐福兴
王伟民
李哲
丁传凡
Original Assignee
宁波大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波大学 filed Critical 宁波大学
Publication of WO2024119632A1 publication Critical patent/WO2024119632A1/zh

Links

Definitions

  • the present invention relates to the technical field of radio frequency voltage loading, and in particular to an ion funnel with an electrode structure and adjustable radio frequency phase and a voltage loading method.
  • ESI electrospray ionization
  • the ion funnel is composed of a series of annular electrodes with linearly decreasing inner diameters, and applies RF voltages and DC gradient voltages of equal amplitude and opposite phase to adjacent electrodes, so that ions can be effectively confined, focused, and transmitted through the ion funnel, achieving very high ion transmission efficiency and ion focusing effects.
  • this also causes the ions to be affected by a strong potential barrier at the end of the ion funnel outlet, making the ion funnel inefficient in transmitting ions with low mass-to-charge ratios.
  • the problem solved by the present invention is how to solve the problem of low transmission efficiency of ions with low mass-to-charge ratio in the ion funnel.
  • the present invention provides an ion funnel with an electrode structure and an adjustable radio frequency phase, comprising a first group of electrodes and a second group of electrodes formed by stacking, wherein the first group of electrodes is formed by stacking a plurality of groups of annular electrodes with equal inner diameters, and the second group of electrodes is formed by stacking a plurality of groups of annular electrodes with equal inner diameters.
  • the stacking is performed in a linear decreasing manner, and the annular electrode is composed of four electrode sheets with the same inner diameter;
  • radio frequency voltages of the same amplitude and different phases are applied between adjacent electrode sheets; radio frequency voltages of the same amplitude and different phases are applied between adjacent annular electrodes, and a DC gradient voltage is applied to drive ions to move toward the exit of the ion funnel;
  • ions with different mass-to-charge ratios can be transmitted in the ion funnel.
  • the device uses the electrode structure and a cross-type RF voltage loading method to achieve better ion focusing and high transmission efficiency in the ion transmission process. At the same time, it can also improve the transmission of low mass-to-charge ratio ions and effectively improve the problem of low transmission efficiency of low mass-to-charge ratio ions in the ion funnel.
  • the annular electrode is an arc electrode, which is composed of four arc electrode sheets with the same inner diameter.
  • the annular electrode is a semi-cylindrical electrode, which is composed of four semi-cylindrical electrode sheets with the same inner diameter placed relatively at the same radial position, and the distance from the radius of each semi-cylindrical electrode sheet to the center point of the semi-cylindrical electrode is equal.
  • the annular electrode is a hyperbolic electrode, which is composed of four hyperbolic electrode sheets placed relatively at the same radial position, and the distance from the hyperbolic electrode sheet to the center point of the hyperbolic electrode is equal to the distance from the vertex of the hyperbolic electrode sheet to the edge line.
  • a voltage loading method for an ion funnel with an electrode structure and adjustable radio frequency phase comprising the steps of:
  • the first preset loading process adopts an axially crossed and radially identical RF voltage loading method.
  • the annular electrode in the ion funnel can be divided into four sections.
  • the ion funnel can have the ability to selectively transmit ions.
  • the second preset loading process adopts an axially and radially crossed RF voltage loading method. Through this voltage loading method, the various electrical parameters of the ion funnel are adjusted, and the transmission efficiency of low mass-to-charge ratio ions can be improved without changing the transmission range of the mass-to-charge ratio of the ion funnel.
  • the third preset loading process adopts an axially crossed and radially phase-adjustable RF voltage loading method.
  • the ion beam can be focused, and this RF voltage loading method can improve the transmission efficiency of the ion funnel for low mass-to-charge ratio ions.
  • the fourth preset loading process adopts an axially and radially phase-adjustable RF voltage loading method.
  • the electrode structure of the ion funnel includes an arc electrode, a semi-cylindrical electrode and a hyperbolic electrode.
  • the first preset loading process is:
  • a radio frequency voltage with the same phase is applied to the first arc electrode sheet and the third arc electrode sheet, and a radio frequency voltage with a phase opposite to that of the first arc electrode sheet and the third arc electrode sheet is applied to the second arc electrode sheet and the fourth arc electrode sheet;
  • a radio frequency voltage with the same phase is applied to the adjacent electrodes in the same radial direction as the first arc electrode sheet and the third arc electrode sheet, and a radio frequency voltage with the same phase is also applied to the adjacent electrodes in the same radial direction as the second arc electrode sheet and the fourth arc electrode sheet, and at the same time
  • the same DC voltage is applied to the arc electrodes at an axial position, and a linearly decreasing DC voltage is applied through a resistor in the radial direction along which the inner diameter of the electrode decreases, thereby forming a DC gradient voltage of the ion funnel;
  • a radio frequency voltage of the same phase is applied to adjacent electrodes in the same radial direction as the first semi-cylindrical electrode sheet and the third semi-cylindrical electrode sheet, and a radio frequency voltage of the same phase is also applied to adjacent electrodes in the same radial direction as the second semi-cylindrical electrode sheet and the fourth semi-cylindrical electrode sheet, and at the same time, the same direct current voltage is applied to the semi-cylindrical electrodes in the same axial position, and a linearly decreasing direct current voltage is applied through a resistor in the radial direction along which the inner diameter of the electrode decreases, so as to form a direct current gradient voltage of the ion funnel;
  • an RF voltage of the same phase is applied to adjacent electrodes in the same radial direction as the first hyperbolic electrode sheet and the third hyperbolic electrode sheet, and an RF voltage of the same phase is also applied to adjacent electrodes in the same radial direction as the second hyperbolic electrode sheet and the fourth hyperbolic electrode sheet.
  • the same DC voltage is applied to the hyperbolic electrodes in the same axial position.
  • a linearly decreasing DC voltage is applied through a resistor in the radial direction along which the inner diameter of the electrode decreases, thereby forming a DC gradient voltage of the ion funnel.
  • the second preset loading process is:
  • a radio frequency voltage of the same phase is applied to the first arc electrode sheet and the third arc electrode sheet, and a radio frequency voltage of the opposite phase to the first arc electrode sheet and the third arc electrode sheet is applied to the second arc electrode sheet and the fourth arc electrode sheet;
  • RF voltages of opposite phases are applied to adjacent electrodes in the same radial direction as the first arc electrode sheet and the third arc electrode sheet, and RF voltages of opposite phases are also applied to adjacent electrodes in the same radial direction as the second arc electrode sheet and the fourth arc electrode sheet, and at the same time, the same DC voltage is applied to the arc electrodes in the same axial position, and the radial direction along which the inner diameter of the electrode decreases is parallel to the inner diameter of the electrode.
  • a linearly decreasing DC voltage is applied upward through the resistor to form a DC gradient voltage of the ion funnel;
  • a radio frequency voltage of the same phase is applied to the first semi-cylindrical electrode sheet and the third semi-cylindrical electrode sheet, and a radio frequency voltage of the opposite phase to the first semi-cylindrical electrode sheet and the third semi-cylindrical electrode sheet is applied to the second semi-cylindrical electrode sheet and the fourth semi-cylindrical electrode sheet;
  • a radio frequency voltage with opposite phases is applied to adjacent electrodes in the same radial direction as the first semi-cylindrical electrode sheet and the third semi-cylindrical electrode sheet, and a radio frequency voltage with opposite phases is also applied to adjacent electrodes in the same radial direction as the second semi-cylindrical electrode sheet and the fourth semi-cylindrical electrode sheet, and at the same time, the same direct current voltage is applied to the semi-cylindrical electrodes in the same axial position, and a linearly decreasing direct current voltage is applied through a resistor in the radial direction along which the inner diameter of the electrode decreases, so as to form a direct current gradient voltage of the ion funnel;
  • a radio frequency voltage of the same phase is applied to the first hyperbolic electrode sheet and the third hyperbolic electrode sheet, and a radio frequency voltage of the opposite phase to the first hyperbolic electrode sheet and the third hyperbolic electrode sheet is applied to the second hyperbolic electrode sheet and the fourth hyperbolic electrode sheet;
  • RF voltages of opposite phases are applied to adjacent electrodes in the same radial direction as the first hyperbolic electrode sheet and the third hyperbolic electrode sheet, and RF voltages of opposite phases are also applied to adjacent electrodes in the same radial direction as the second hyperbolic electrode sheet and the fourth hyperbolic electrode sheet.
  • the same DC voltage is applied to the hyperbolic electrodes in the same axial position.
  • a linearly decreasing DC voltage is applied through resistance in the radial direction along which the inner diameter of the electrode decreases, thereby forming a DC gradient voltage of the ion funnel.
  • the third preset loading process is:
  • a radio frequency voltage of the same phase is applied to the first arc electrode sheet and the third arc electrode sheet, and a radio frequency voltage of the opposite phase to the first arc electrode sheet and the third arc electrode sheet is applied to the second arc electrode sheet and the fourth arc electrode sheet;
  • the phase difference of the RF voltage of each adjacent arc electrode is At the same time, the same DC voltage is applied to the arc electrodes at the same axial position, and a linearly decreasing DC voltage is applied through a resistor in the radial direction along which the inner diameter of the electrode decreases, so as to form a DC gradient voltage of the ion funnel;
  • a radio frequency voltage with the same phase is applied to the first semi-cylindrical electrode sheet and the third semi-cylindrical electrode sheet, and a radio frequency voltage with the same phase as the first is applied to the second semi-cylindrical electrode sheet and the fourth semi-cylindrical electrode sheet.
  • the phase difference of the RF voltage of each adjacent semi-cylindrical electrode is Simultaneously, the same DC voltage is applied to the semi-cylindrical electrodes at the same axial position, and a linearly decreasing DC voltage is applied through a resistor in the radial direction along which the inner diameter of the electrode decreases, thereby forming a DC gradient voltage of the ion funnel;
  • a radio frequency voltage of the same phase is applied to the first hyperbolic electrode sheet and the third hyperbolic electrode sheet, and a radio frequency voltage of the opposite phase to the first hyperbolic electrode sheet and the third hyperbolic electrode sheet is applied to the second hyperbolic electrode sheet and the fourth hyperbolic electrode sheet;
  • the phase difference of the RF voltage of each adjacent hyperbolic electrode is At the same time, the same DC voltage is applied to the hyperbolic electrodes at the same axial position, and a linearly decreasing DC voltage is applied through a resistor in the radial direction along which the inner diameter of the electrode decreases, thereby forming a DC gradient voltage of the ion funnel.
  • the fourth preset loading process is:
  • the four arc electrode pieces apply a phase difference
  • the RF voltage of each adjacent arc electrode also differs in phase in the radial direction.
  • the same DC voltage is applied to the arc electrodes at the same axial position, and a linearly decreasing DC voltage is applied through a resistor in the radial direction along which the inner diameter of the electrode decreases, so as to form a DC gradient voltage of the ion funnel;
  • each adjacent semi-cylindrical electrode also differs in phase in the radial direction.
  • the same DC voltage is applied to the semi-cylindrical electrodes at the same axial position, and a linearly decreasing DC voltage is applied through a resistor in the radial direction along which the inner diameter of the electrode decreases, thereby forming a DC gradient voltage of the ion funnel;
  • each adjacent hyperbolic electrode also differs in phase in the radial direction.
  • the same DC voltage is applied to the hyperbolic electrodes at the same axial position, and a linearly decreasing DC voltage is applied through a resistor in the radial direction along which the inner diameter of the electrode decreases, thereby forming a DC gradient voltage of the ion funnel.
  • the present invention uses a new electrode structure and a cross-type RF voltage loading method to achieve better ion focusing and high transmission efficiency in the ion transmission process. At the same time, it can also improve the transmission of low mass-to-charge ratio ions and effectively improve the problem of low mass-to-charge ratio ion transmission efficiency in the ion funnel.
  • the traditional ion funnel is The annular electrode of the conventional ion funnel is divided into four sections, and voltage is applied to the changed ion funnel electrode structure according to the first preset loading process, the second preset loading process, the third preset loading process and the fourth preset loading process to form a DC gradient voltage of the ion funnel, thereby improving the transmission efficiency of the ion funnel for low mass-to-charge ratio ions.
  • FIG1 is a flow chart of a voltage loading method for an ion funnel with an electrode structure and adjustable radio frequency phase provided in Embodiment 1 of the present invention
  • FIG. 2 is a segmented schematic diagram of a voltage loading method for an ion funnel with an electrode structure and adjustable radio frequency phase provided in Embodiment 1 of the present invention when the electrode structure of the ion funnel is an arc electrode;
  • FIG. 3 is a segmented schematic diagram of a voltage loading method for an ion funnel with an electrode structure and adjustable radio frequency phase provided in Embodiment 1 of the present invention when the electrode structure of the ion funnel is a semi-cylindrical electrode;
  • FIG. 4 is a segmented schematic diagram of a voltage loading method for an ion funnel with an electrode structure and adjustable radio frequency phase provided in Embodiment 1 of the present invention when the electrode structure of the ion funnel is a hyperbolic electrode;
  • FIG. 5 is a schematic diagram in the radial direction of the first preset loading process stage in the voltage loading method of the ion funnel with an electrode structure and adjustable radio frequency phase provided in the first embodiment of the present invention
  • FIG. 6 is a schematic diagram in the radial direction of the second preset loading process stage in the voltage loading method of the ion funnel with adjustable RF phase of the electrode structure provided in the first embodiment of the present invention
  • FIG. 7 is a schematic diagram in the radial direction of the third preset loading process and the fourth preset loading process stage in the voltage loading method of the ion funnel with an electrode structure and adjustable radio frequency phase provided in the first embodiment of the present invention
  • FIG. 8 is a schematic diagram of applying a DC voltage in a radial direction in a voltage loading method for an ion funnel with an electrode structure and adjustable RF phase provided in Embodiment 1 of the present invention
  • FIG. 9 is a schematic diagram of phase delay during phase modulation of radio frequency waves on ion funnel electrodes in a voltage loading method for an ion funnel with an electrode structure and adjustable radio frequency phase provided in Embodiment 1 of the present invention
  • FIG. 10 is a schematic cross-sectional view of an arc electrode structure of an ion funnel with an adjustable radio frequency phase and an electrode structure provided in the second embodiment of the present invention
  • FIG. 11 is a cross-sectional schematic diagram of a semi-cylindrical electrode structure of an ion funnel with an electrode structure and adjustable radio frequency phase provided in Embodiment 2 of the present invention
  • FIG. 12 is a cross-sectional schematic diagram of a hyperbolic electrode structure of an ion funnel with an electrode structure and adjustable radio frequency phase provided in the second embodiment of the present invention
  • FIG. 13 is a schematic diagram of the structure of an ion funnel with an electrode structure and adjustable radio frequency phase provided in the second embodiment of the present invention.
  • This embodiment provides a voltage loading method for an ion funnel with an electrode structure and adjustable radio frequency phase, as shown in FIG. 1 to FIG. 8 , and the method comprises the steps of:
  • the first preset loading process adopts an axially crossed and radially identical RF voltage loading method.
  • the annular electrode in the ion funnel can be divided into four sections.
  • the ion funnel can have the ability to selectively transmit ions.
  • the second preset loading process adopts an axially and radially cross-type RF voltage loading method.
  • the various electrical parameters of the ion funnel are adjusted to improve the transmission efficiency of low mass-to-charge ratio ions without changing the mass-to-charge ratio transmission range of the ion funnel.
  • the third preset loading process adopts an axially crossed and radially phase-adjustable RF voltage loading method.
  • the ion beam can be focused, and this RF voltage loading method can improve the transmission efficiency of the ion funnel for low mass-to-charge ratio ions.
  • the fourth preset loading process adopts an RF voltage loading method with adjustable phase in both axial and radial directions.
  • the phase of the RF wave By adjusting the phase of the RF wave, the potential barrier at the end of the ion funnel is reduced, thereby obtaining higher ion transmission efficiency and better focusing effect when transmitting ions with low mass-to-charge ratio.
  • the electrode structure of the ion funnel includes an arc electrode, a semi-cylindrical electrode and a hyperbolic electrode.
  • the first preset loading process is:
  • a radio frequency voltage with the same phase is applied to the first arc electrode sheet and the third arc electrode sheet, and a radio frequency voltage with a phase opposite to that of the first arc electrode sheet and the third arc electrode sheet is applied to the second arc electrode sheet and the fourth arc electrode sheet;
  • a radio frequency voltage of the same phase is applied to adjacent electrodes in the same radial direction as the first arc electrode sheet and the third arc electrode sheet, and a radio frequency voltage of the same phase is also applied to adjacent electrodes in the same radial direction as the second arc electrode sheet and the fourth arc electrode sheet, and at the same time, the same direct current voltage is applied to the arc electrodes in the same axial position, and a linearly decreasing direct current voltage is applied through a resistor in the radial direction along which the inner diameter of the electrode decreases, so as to form a direct current gradient voltage of the ion funnel;
  • arc electrodes 1 and 3 in Figure 2 apply RF voltages of the same phase
  • arc electrodes 2 and 4 apply RF voltages of opposite phases to arc electrodes 1 and 3.
  • adjacent electrodes in the same radial direction as arc electrodes 1 and 3 apply RF voltages of the same phase
  • adjacent electrodes in the same radial direction as arc electrodes 2 and 4 also apply RF voltages of the same phase, as shown in Figure 8.
  • the arc electrodes in the same axial position apply the same DC voltage, and a linearly decreasing DC voltage is applied through a resistor in the radial direction as the inner diameter of the electrode decreases.
  • a radio frequency voltage of the same phase is applied to adjacent electrodes in the same radial direction as the first semi-cylindrical electrode sheet and the third semi-cylindrical electrode sheet, and a radio frequency voltage of the same phase is also applied to adjacent electrodes in the same radial direction as the second semi-cylindrical electrode sheet and the fourth semi-cylindrical electrode sheet, and at the same time, the same direct current voltage is applied to the semi-cylindrical electrodes in the same axial position, and a linearly decreasing direct current voltage is applied through a resistor in the radial direction along which the inner diameter of the electrode decreases, so as to form a direct current gradient voltage of the ion funnel;
  • the 1st and 3rd semi-cylindrical electrodes in Figure 3 apply RF voltages of the same phase
  • the 2nd and 4th semi-cylindrical electrodes apply RF voltages of the opposite phase to the 1st and 3rd semi-cylindrical electrodes.
  • the adjacent electrodes in the same radial direction as the 1st and 3rd semi-cylindrical electrodes apply RF voltages of the same phase
  • the adjacent electrodes in the same radial direction as the 2nd and 4th semi-cylindrical electrodes also apply RF voltages of the same phase.
  • the semi-cylindrical electrodes in the same axial position are simultaneously applied with the same DC voltage, and a linearly decreasing DC voltage is applied through a resistor in the radial direction as the inner diameter of the electrode decreases, forming a DC gradient voltage of the ion funnel.
  • the first hyperbolic electrode sheet and the third hyperbolic electrode sheet are applied The same phase radio frequency voltage is applied to the second hyperbolic electrode sheet and the fourth hyperbolic electrode sheet with a radio frequency voltage having a phase opposite to that of the first hyperbolic electrode sheet and the third hyperbolic electrode sheet;
  • an RF voltage of the same phase is applied to adjacent electrodes in the same radial direction as the first hyperbolic electrode sheet and the third hyperbolic electrode sheet, and an RF voltage of the same phase is also applied to adjacent electrodes in the same radial direction as the second hyperbolic electrode sheet and the fourth hyperbolic electrode sheet.
  • the same DC voltage is applied to the hyperbolic electrodes in the same axial position.
  • a linearly decreasing DC voltage is applied through a resistor in the radial direction along which the inner diameter of the electrode decreases, thereby forming a DC gradient voltage of the ion funnel.
  • the 1 and 3 hyperboloid electrodes in Figure 4 apply RF voltages of the same phase
  • the 2 and 4 hyperboloid electrodes apply RF voltages of the opposite phase to 1 and 3.
  • the adjacent electrodes in the same radial direction as the 1 and 3 hyperboloid electrodes apply RF voltages of the same phase
  • the adjacent electrodes in the same radial direction as the 2 and 4 hyperboloid electrodes also apply RF voltages of the same phase.
  • the hyperboloid electrodes in the same axial position apply the same DC voltage, and a linearly decreasing DC voltage is applied through a resistor in the radial direction as the inner diameter of the electrode decreases, forming a DC gradient voltage of the ion funnel.
  • a linearly decreasing DC voltage is applied through a resistor in the radial direction as the inner diameter of the electrode decreases, forming a DC gradient voltage of the ion funnel.
  • the second preset loading process is:
  • a radio frequency voltage of the same phase is applied to the first arc electrode sheet and the third arc electrode sheet, and a radio frequency voltage of the opposite phase to the first arc electrode sheet and the third arc electrode sheet is applied to the second arc electrode sheet and the fourth arc electrode sheet;
  • a radio frequency voltage with opposite phases is applied to adjacent electrodes in the same radial direction as the first arc electrode sheet and the third arc electrode sheet, and a radio frequency voltage with opposite phases is also applied to adjacent electrodes in the same radial direction as the second arc electrode sheet and the fourth arc electrode sheet, and at the same time, the same DC voltage is applied to the arc electrodes in the same axial position, and a linearly decreasing DC voltage is applied through a resistor in the radial direction along which the inner diameter of the electrode decreases, so as to form a DC gradient voltage of the ion funnel;
  • the arcs 1 and 3 in FIG. 2 The 1st and 2nd arc electrodes apply RF voltages of the same phase, and the 2nd and 4th arc electrodes apply RF voltages of opposite phases to the 1st and 3rd arc electrodes.
  • the adjacent electrodes in the same radial direction as the 1st and 3rd arc electrodes apply RF voltages of opposite phases, and the adjacent electrodes in the same radial direction as the 2nd and 4th arc electrodes also apply RF voltages of opposite phases, and the same DC voltage loading method as above is adopted.
  • a radio frequency voltage of the same phase is applied to the first semi-cylindrical electrode sheet and the third semi-cylindrical electrode sheet, and a radio frequency voltage of the opposite phase to the first semi-cylindrical electrode sheet and the third semi-cylindrical electrode sheet is applied to the second semi-cylindrical electrode sheet and the fourth semi-cylindrical electrode sheet;
  • a radio frequency voltage with opposite phases is applied to adjacent electrodes in the same radial direction as the first semi-cylindrical electrode sheet and the third semi-cylindrical electrode sheet, and a radio frequency voltage with opposite phases is also applied to adjacent electrodes in the same radial direction as the second semi-cylindrical electrode sheet and the fourth semi-cylindrical electrode sheet, and at the same time, the same direct current voltage is applied to the semi-cylindrical electrodes in the same axial position, and a linearly decreasing direct current voltage is applied through a resistor in the radial direction along which the inner diameter of the electrode decreases, so as to form a direct current gradient voltage of the ion funnel;
  • the 1st and 3rd semi-cylindrical electrodes in FIG3 apply RF voltages of the same phase
  • the 2nd and 4th semi-cylindrical electrodes apply RF voltages of opposite phases to the 1st and 3rd semi-cylindrical electrodes.
  • the adjacent electrodes in the same radial direction as the 1st and 3rd semi-cylindrical electrodes apply RF voltages of opposite phases
  • the adjacent electrodes in the same radial direction as the 2nd and 4th semi-cylindrical electrodes also apply RF voltages of opposite phases
  • the same DC voltage loading method as above is adopted.
  • a radio frequency voltage of the same phase is applied to the first hyperbolic electrode sheet and the third hyperbolic electrode sheet, and a radio frequency voltage of the opposite phase to the first hyperbolic electrode sheet and the third hyperbolic electrode sheet is applied to the second hyperbolic electrode sheet and the fourth hyperbolic electrode sheet;
  • a radio frequency voltage with opposite phases is applied to adjacent electrodes in the same radial direction as the first hyperboloid electrode sheet and the third hyperboloid electrode sheet, and a radio frequency voltage with opposite phases is applied to adjacent electrodes in the same radial direction as the second hyperboloid electrode sheet and the fourth hyperboloid electrode sheet.
  • Adjacent electrodes in the same radial direction of the hyperbolic electrode sheet are also applied with RF voltages of opposite phases, and at the same time, the same DC voltage is applied to the hyperbolic electrodes in the same axial position.
  • a linearly decreasing DC voltage is applied through resistance in the radial direction along which the inner diameter of the electrode decreases, forming a DC gradient voltage of the ion funnel.
  • the 1 and 3 hyperboloid electrodes in FIG. 4 apply RF voltages of the same phase
  • the 2 and 4 hyperboloid electrodes apply RF voltages of opposite phases to the 1 and 3 hyperboloid electrodes.
  • the adjacent electrodes in the same radial direction as the 1 and 3 hyperboloid electrodes apply RF voltages of opposite phases
  • the electrodes in the same radial direction as the 2 and 4 hyperboloid electrodes also apply RF voltages of opposite phases, and the same DC voltage loading method as above is adopted.
  • the third preset loading process is:
  • a radio frequency voltage of the same phase is applied to the first arc electrode sheet and the third arc electrode sheet, and a radio frequency voltage of the opposite phase to the first arc electrode sheet and the third arc electrode sheet is applied to the second arc electrode sheet and the fourth arc electrode sheet;
  • the phase difference of the RF voltage of each adjacent arc electrode is At the same time, the same DC voltage is applied to the arc electrodes at the same axial position, and a linearly decreasing DC voltage is applied through a resistor in the radial direction along which the inner diameter of the electrode decreases, so as to form a DC gradient voltage of the ion funnel;
  • arc electrodes 1 and 3 in FIG. 2 apply RF voltages of the same phase
  • arc electrodes 2 and 4 apply RF voltages of opposite phases to arc electrodes 1 and 3.
  • the RF voltage phases of each adjacent arc electrode differ by The same DC voltage loading method as above is used.
  • a radio frequency voltage of the same phase is applied to the first semi-cylindrical electrode sheet and the third semi-cylindrical electrode sheet, and a radio frequency voltage of the opposite phase to the first semi-cylindrical electrode sheet and the third semi-cylindrical electrode sheet is applied to the second semi-cylindrical electrode sheet and the fourth semi-cylindrical electrode sheet;
  • the phase difference of the RF voltage of each adjacent semi-cylindrical electrode is At the same time, the same DC voltage is applied to the semi-cylindrical electrodes at the same axial position, and the diameter along the electrode inner diameter is reduced. Apply a linearly decreasing DC voltage through the resistor in the positive direction to form a DC gradient voltage of the ion funnel;
  • the 1st and 3rd semi-cylindrical electrodes in FIG. 3 apply RF voltages of the same phase
  • the 2nd and 4th semi-cylindrical electrodes apply RF voltages of opposite phases to those of 1st and 3rd semi-cylindrical electrodes.
  • the RF voltage phases of each adjacent semi-cylindrical electrode differ by The same DC voltage loading method as above is used.
  • a radio frequency voltage of the same phase is applied to the first hyperbolic electrode sheet and the third hyperbolic electrode sheet, and a radio frequency voltage of the opposite phase to the first hyperbolic electrode sheet and the third hyperbolic electrode sheet is applied to the second hyperbolic electrode sheet and the fourth hyperbolic electrode sheet;
  • the phase difference of the RF voltage of each adjacent hyperbolic electrode is At the same time, the same DC voltage is applied to the hyperbolic electrodes at the same axial position, and a linearly decreasing DC voltage is applied through a resistor in the radial direction along which the inner diameter of the electrode decreases, thereby forming a DC gradient voltage of the ion funnel.
  • the 1st and 3rd hyperboloid electrodes in FIG. 4 apply the RF voltage of the same phase
  • the 2nd and 4th hyperboloid electrodes apply the RF voltage of the opposite phase to that of 1st and 3nd.
  • the RF voltage phase of each adjacent hyperboloid electrode differs by ⁇ /2, and the same DC voltage loading method as in Example 9 is adopted.
  • the fourth preset loading process is:
  • the four arc electrode pieces apply a phase difference
  • the RF voltage of each adjacent arc electrode also differs in phase in the radial direction.
  • the same DC voltage is applied to the arc electrodes at the same axial position, and a linearly decreasing DC voltage is applied through a resistor in the radial direction along which the inner diameter of the electrode decreases, so as to form a DC gradient voltage of the ion funnel;
  • the four arc electrodes in FIG. 2 apply a phase difference of The RF voltage of each adjacent arc electrode also differs in phase in the radial direction, as shown in Figures 2 and 7.
  • the same DC voltage loading method as above is used.
  • each adjacent semi-cylindrical electrode also differs in phase in the radial direction.
  • the same DC voltage is applied to the semi-cylindrical electrode at an axial position, and a linearly decreasing DC voltage is applied through a resistor in the radial direction along which the inner diameter of the electrode decreases, thereby forming a DC gradient voltage of the ion funnel;
  • the four semi-cylindrical electrode sheets in FIG. 3 apply a phase difference
  • the RF voltage of each adjacent hyperbolic electrode also differs in phase in the radial direction, as shown in FIG3 and FIG7.
  • the same DC voltage loading method as above is used.
  • each adjacent hyperbolic electrode also differs in phase in the radial direction.
  • the same DC voltage is applied to the hyperbolic electrodes at the same axial position, and a linearly decreasing DC voltage is applied through a resistor in the radial direction along which the inner diameter of the electrode decreases, thereby forming a DC gradient voltage of the ion funnel.
  • the four hyperbolic electrodes in FIG. 4 apply a phase difference
  • the RF voltage of each adjacent hyperbolic electrode also differs in phase in the radial direction, as shown in FIG2 and FIG7.
  • the same DC voltage loading method is used as in Example 9.
  • FIG. 9 is a schematic diagram of phase delay when radio frequency wave phase modulation is implemented on the ion funnel electrode, without limiting the waveform.
  • the key to improving the transmission efficiency of the ion funnel for low mass-to-charge ratio ions is to reduce the influence of the potential barrier at the end of the ion funnel outlet.
  • the transmission efficiency of low mass-to-charge ratio ions can be improved by increasing the inner diameter of the electrode at the end of the ion funnel outlet, adjusting the electrode thickness, the electrode spacing and reducing the RF voltage amplitude.
  • this method divides the annular electrode of the traditional ion funnel into four sections, and applies voltage to the changed ion funnel electrode structure according to the first preset loading process, the second preset loading process, the third preset loading process and the fourth preset loading process to form a DC gradient voltage of the ion funnel, thereby improving the transmission efficiency of the ion funnel for low mass-to-charge ratio ions.
  • the present embodiment provides an ion funnel with an electrode structure and adjustable radio frequency phase, as shown in FIG10 , FIG11 , FIG12 and FIG13 , including a first type of group electrode and a second type of group electrode formed by stacking, the first type of group electrode is formed by stacking a plurality of groups of annular electrodes with equal inner diameters, the second type of group electrode is formed by stacking a plurality of groups of annular electrodes with linearly decreasing inner diameters, and the annular electrodes are composed of four electrode sheets with the same inner diameters;
  • radio frequency voltages of the same amplitude and different phases are applied between adjacent electrode sheets; radio frequency voltages of the same amplitude and different phases are applied between adjacent annular electrodes, and a direct current gradient voltage is applied to drive ions to move toward the exit of the ion funnel;
  • ions with different mass-to-charge ratios can be transmitted in the ion funnel.
  • the annular electrode is an arc electrode, which is composed of four arc electrode sheets with the same inner diameter.
  • a non-closed annular electrode is formed by four arc electrodes with equal inner diameters, as shown in Figures 10 and 13, and a total of multiple groups of annular electrodes are included. It is divided into a first group of electrodes and a second group of electrodes, wherein the first group of electrodes is an annular electrode with an inner diameter of 25.4 mm, and the second group of electrodes is an electrode with a linearly decreasing inner diameter, and the inner diameter of the last group of annular electrodes of the first group of electrodes is 2 mm.
  • the entire ion funnel device is in a low vacuum system.
  • the ion funnel is located in the first-stage vacuum pumping area of the mass spectrometer. Ions are generated in an ion source at atmospheric pressure, and then the ions enter the ion funnel in the first-stage vacuum system from atmospheric pressure through a heated capillary or orifice.
  • a set of annular electrodes in the ion funnel includes four arc electrode sheets with equal inner diameters. There are a total of 100 sets of annular electrodes, the thickness of the arc electrode sheets is 0.5 mm, and the distance between each set of annular electrodes is 0.5 mm.
  • the first 55 sets are annular electrodes with an inner diameter of 25.4 mm, and the inner diameter of the last 45 sets of annular electrodes decreases linearly from 25.4 mm to 2 mm.
  • the required RF voltage is applied to each electrode, and a linearly decreasing DC voltage is applied to the electrode in the direction of decreasing inner diameter of the electrode, so that a DC gradient voltage is formed inside the ion funnel, thereby realizing the transmission and focusing of ions.
  • the annular electrode is a semi-cylindrical electrode, which is composed of four semi-cylindrical electrode pieces with the same inner diameter placed relatively at the same radial position.
  • the radius of each semi-cylindrical electrode piece is The distances are equal.
  • the ion funnel is located in the first-stage vacuum pumping area in the mass spectrometer. Ions are generated in an ion source at atmospheric pressure, and then the ions enter the first-stage vacuum ion funnel from atmospheric pressure through a heated capillary or orifice.
  • a set of electrodes in the ion funnel consists of four semi-cylindrical electrode sheets with equal inner diameters placed relative to each other in the same radial position. There are a total of 100 sets of electrodes.
  • the radius of the semi-cylindrical electrode sheets of the first 55 electrode groups and the radial relative distance between each semi-cylindrical electrode are 25.4 mm, the axial relative distance is 0.5 mm, and the thickness of the semi-cylindrical electrode sheets is 0.5 mm.
  • the inner diameter and radial relative distance of the last 45 sets of semi-cylindrical electrodes decrease linearly from 25.4 mm to 2 mm. In all electrodes, the required RF voltage is applied to each electrode, and a linearly decreasing DC voltage is applied to the electrode in the direction of decreasing inner diameter of the electrode, so that a DC gradient voltage is formed inside the ion funnel, thereby realizing the transmission and focusing of ions.
  • the annular electrode is a hyperbolic electrode, which is composed of four hyperbolic electrode sheets placed relatively at the same radial position, and the distance from the hyperbolic electrode sheet to the center point of the hyperbolic electrode is equal to the distance from the vertex of the hyperbolic electrode sheet to the edge line.
  • hyperbolic electrode sheets are placed relatively at the same radial position, and the distance from the hyperbolic surface to the center point is equal to the distance from the hyperbolic surface vertex to the edge line, as shown in Figures 12 and 13.
  • the distance from the hyperbolic electrode sheet of the first group of electrodes to the center point is 25.4 mm, and the radial relative distance of each hyperbolic electrode is 25.4 mm.
  • the distance from the electrode sheet of the first group of electrodes to the center point and the radial relative distance of each hyperbolic electrode decrease linearly from 25.4 mm to 2 mm.
  • the entire ion funnel is in a low vacuum system.
  • the ion funnel is located in the first vacuum pumping area of the mass spectrometer. Ions are generated in an ion source at atmospheric pressure, and then enter the first vacuum ion funnel from atmospheric pressure through a heated capillary or orifice.
  • the ion funnel has a set of electrodes consisting of four equal hyperbolic electrode plates on the same The electrodes are placed in a radial position relative to each other, with a total of 100 groups of electrodes.
  • the radial relative distance between the hyperboloid electrodes of the first 55 groups of electrodes is 25.4mm
  • the axial relative distance is 0.5mm
  • the thickness of the hyperboloid electrodes is 0.5mm.
  • the radial relative distance between the hyperboloid electrodes of the last 45 groups of electrodes decreases linearly from 25.4mm to 2mm.
  • the required RF voltage is applied to each electrode, and a linearly decreasing DC voltage is applied to the electrode in the direction of decreasing inner diameter of the electrode, so that a DC gradient voltage is formed inside the ion funnel, thereby realizing the transmission and focusing of ions.
  • the ion funnel contains three new structures, one of which is a non-closed annular electrode formed by four arc electrode sheets in the same radial direction, with a total of 100 groups of non-closed annular electrodes; the other two structures are a four-piece electrode device formed by four semi-cylindrical electrode structures or hyperbolic electrode structures in the same radial direction, with a total of 100 groups of electrodes.
  • the present invention uses the above electrode structure and a cross-type radio frequency voltage loading method to obtain better ion focusing and high transmission efficiency in the ion transmission process. At the same time, it can also improve the transmission of low mass-to-charge ratio ions and effectively improve the problem of low transmission efficiency of low mass-to-charge ratio ions in the ion funnel.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Electron Sources, Ion Sources (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

本发明提供了一种电极结构射频相位可调的离子漏斗及电压加载方法,涉及射频电压加载技术领域,离子漏斗包括叠加而成的第一类组电极和第二类组电极,所述第一类组电极由内径相等的多组环形电极进行叠加,所述第二类组电极由多组环形电极的内径呈线性递减进行叠加,所述环形电极由四片内径相同的电极片组成;在形成一个非闭合的所述环形电极的四片所述电极片中,相邻的所述电极片之间加载相同幅值、不同相位的射频电压。本装置通过该电极结构,并采用交叉式的射频电压加载方法,在传输离子过程中获得更好的离子聚焦和高效传输效率。同时还能提高对低质荷比离子的传输,有效改善离子漏斗中对低质荷比离子传输效率低的问题。

Description

一种电极结构射频相位可调的离子漏斗及电压加载方法 技术领域
本发明涉及射频电压加载技术领域,具体而言,涉及一种电极结构射频相位可调的离子漏斗及电压加载方法。
背景技术
在质谱仪器中,如何实现有效聚焦和传输在大气压电离源中产生的离子的能力,基本上决定了质谱仪可以实现的灵敏度。自电喷雾电离(ESI)发明以来,质谱应用在生命科学领域的蛋白质分析中扮演越来越重要的角色。虽然ESI在常压下具有很高的电离效率,但产生的离子中只有一小部分可以进入质谱仪并最终被检测器检测到。导致这一现象的主要原因之一是在第一差分泵送区域必须使用小直径加热毛细管或孔口作为接口,以维持适当的MS操作所需的真空压力。由于加热毛细管或孔口出口处的超音速自由射流膨胀,如果不使用有效的离子光学器件,大多数通过毛细管或孔口传输的离子将丢失而无法进入质谱下一阶段。
离子漏斗由一系列内径线性递减的环形电极组成,并且以同相邻电极施加幅度相等相位相反的射频电压和直流梯度电压,从而使离子可以有效地限制、聚焦并通过离子漏斗传输,实现了非常高的离子传输效率和离子聚焦效果。但是这也导致了离子在离子漏斗出口末端受到较强的势垒影响,使得离子漏斗对于低质荷比的离子传输效率低。
发明内容
本发明解决的问题是如何解决离子漏斗对于低质荷比的离子传输效率低的问题。
为解决上述问题,本发明提供一种电极结构射频相位可调的离子漏斗,包括叠加而成的第一类组电极和第二类组电极,所述第一类组电极由内径相等的多组环形电极进行叠加,所述第二类组电极由多组环形电极的内径 呈线性递减进行叠加,所述环形电极由四片内径相同的电极片组成;
在形成一个非闭合的所述环形电极的四片所述电极片中,相邻的所述电极片之间加载相同幅值、不同相位的射频电压;相邻的所述环形电极之间加载相同幅值、不同相位的射频电压,并加载直流梯度电压用于驱动离子向离子漏斗出口方向移动;
通过调节射频电压的频率、幅值和直流梯度电压使不同质荷比的离子在离子漏斗中进行传输。
进一步地,本装置通过该电极结构,并采用交叉式的射频电压加载方法,在传输离子过程中获得更好的离子聚焦和高效传输效率。同时还能提高对低质荷比离子的传输,有效改善离子漏斗中对低质荷比离子传输效率低的问题。
进一步地,所述环形电极为圆弧电极,由四片内径相同的圆弧电极片组成。
进一步地,所述环形电极为半圆柱电极,由四个内径相同的半圆柱电极片在同一径向位置相对放置组成,各个所述半圆柱电极片半径到半圆柱电极中心点的距离相等。
进一步地,所述环形电极为双曲面电极,由四个双曲面电极片在同一径向位置相对放置组成,双曲面电极片到双曲面电极中心点的距离和双曲面电极片顶点到边线距离相等。
一种电极结构射频相位可调的离子漏斗的电压加载方法,包括步骤:
S1:将离子漏斗的环形电极分为四段,并在分段后的离子漏斗电极结构上分别按照第一预设加载流程、第二预设加载流程、第三预设加载流程和第四预设加载流程施加射频电压;其中,射频幅值和频率相同;
S2:经第一预设加载流程在同一轴向方向上的相邻电极施加相位相反的射频电压,并在同一径向方向上相邻电极施加相位相同的射频电压;
S3:经第二预设加载流程在同一轴向方向上的相邻电极施加相位相反的射频电压,并在同一径向方向上相邻电极也施加相位相反的射频电压;
S4:经第三预设加载流程在同一轴向方向上的相邻电极施加相位相反的射频电压,在同一径向方向上相邻电极之间的射频电压相位相差
S5:经第四预设加载流程在同一轴向方向上的相邻电极射频电压相位相差在同一径向方向上相邻电极之间的射频电压相位相差
S6:在同一轴向位置的电极施加相同的直流电压,沿电极内径减小的径向方向上通过电阻施加线性递减的直流电压,形成离子漏斗的直流梯度电压。
在上述方法中,第一预设加载流程采用了轴向交叉、径向相同的射频电压加载方法,在这种方法下,可以在离子漏斗中环形电极分为四段,通过调节离子漏斗的各电参数,使离子漏斗具备选择性传输离子的能力。第二预设加载流程采用了轴向和径向都交叉式的射频电压加载方法,通过这种电压加载方法,调节离子漏斗的各电参数,可以在不改变离子漏斗传输离子质荷比传输范围下提高低质荷比离子的传输效率。第三预设加载流程采用了轴向交叉、径向相位可调的射频电压加载方法,通过调节径向电极上所施加射频波的相位,可以实现对离子束的聚焦,并且这种射频电压加载方法可以改善离子漏斗对低质荷比离子的传输效率。第四预设加载流程采用了轴向和径向都是相位可调的射频电压加载方法,通过对射频波的相位调整,减小离子漏斗末端势垒,在传输低质荷比的离子时,得到更高的离子传输效率和更好的聚焦效果。
进一步地,所述离子漏斗的电极结构包括圆弧电极、半圆柱电极和双曲面电极。
进一步地,所述第一预设加载流程为:
在圆弧电极结构中,对第一圆弧电极片和第三圆弧电极片施加相同相位射频电压,在第二圆弧电极片和第四圆弧电极片施加与第一圆弧电极片和第三圆弧电极片相反相位的射频电压;
在径向方向上,对与第一圆弧电极片和第三圆弧电极片同一径向方向上的相邻电极施加相同相位的射频电压,与第二圆弧电极片和第四圆弧电极片同一径向方向上的相邻电极也施加相同相位的射频电压,并同时在同 一轴向位置的圆弧电极施加相同的直流电压,在沿电极内径减小的径向方向上通过电阻施加线性递减的直流电压,形成离子漏斗的直流梯度电压;
在半圆柱电极结构中,对第一半圆柱电极片和第三半圆柱电极片施加相同相位射频电压,在第二半圆柱电极片和第四半圆柱电极片施加与第一半圆柱电极片和第三半圆柱电极片相反相位的射频电压;
在径向方向上,对与第一半圆柱电极片和第三半圆柱电极片同一径向方向上的相邻电极施加相同相位的射频电压,与第二半圆柱电极片和第四半圆柱电极片同一径向方向上的相邻电极也施加相同相位的射频电压,并同时在同一轴向位置的半圆柱电极施加相同的直流电压,在沿电极内径减小的径向方向上通过电阻施加线性递减的直流电压,形成离子漏斗的直流梯度电压;
在双曲面电极结构中,对第一双曲面电极片和第三双曲面电极片施加相同相位射频电压,在第二双曲面电极片和第四双曲面电极片施加与第一双曲面电极片和第三双曲面电极片相反相位的射频电压;
在径向方向上,对与第一双曲面电极片和第三双曲面电极片同一径向方向上的相邻电极施加相同相位的射频电压,与第二双曲面电极片和第四双曲面电极片同一径向方向上的相邻电极也施加相同相位的射频电压,并同时在同一轴向位置的双曲面电极施加相同的直流电压,在沿电极内径减小的径向方向上通过电阻施加线性递减的直流电压,形成离子漏斗的直流梯度电压。
进一步地,所述第二预设加载流程为:
在圆弧电极结构中,对第一圆弧电极片和第三圆弧电极片施加相同相位的射频电压,在第二圆弧电极片和第四圆弧电极片施加与第一圆弧电极片和第三圆弧电极片相反相位的射频电压;
在径向方向上,对与第一圆弧电极片和第三圆弧电极片同一径向方向上的相邻电极施加相反相位的射频电压,与第二圆弧电极片和第四圆弧电极片同一径向方向上的相邻电极也施加相反相位的射频电压,并同时在同一轴向位置的圆弧电极施加相同的直流电压,在沿电极内径减小的径向方 向上通过电阻施加线性递减的直流电压,形成离子漏斗的直流梯度电压;
在半圆柱电极结构中,对第一半圆柱电极片和第三半圆柱电极片施加相同相位的射频电压,在第二半圆柱电极片和第四半圆柱电极片施加与第一半圆柱电极片和第三半圆柱电极片相反相位的射频电压;
在径向方向上,对与第一半圆柱电极片和第三半圆柱电极片同一径向方向上的相邻电极施加相反相位的射频电压,与第二半圆柱电极片和第四半圆柱电极片同一径向方向上的相邻电极也施加相反相位的射频电压,并同时在同一轴向位置的半圆柱电极施加相同的直流电压,在沿电极内径减小的径向方向上通过电阻施加线性递减的直流电压,形成离子漏斗的直流梯度电压;
在双曲面电极结构中,对第一双曲面电极片和第三双曲面电极片施加相同相位的射频电压,在第二双曲面电极片和第四双曲面电极片施加与第一双曲面电极片和第三双曲面电极片相反相位的射频电压;
在径向方向上,对与第一双曲面电极片和第三双曲面电极片同一径向方向上的相邻电极施加相反相位的射频电压,与第二双曲面电极片和第四双曲面电极片同一径向方向上的相邻电极也施加相反相位的射频电压,并同时在同一轴向位置的双曲面电极施加相同的直流电压,在沿电极内径减小的径向方向上通过电阻施加线性递减的直流电压,形成离子漏斗的直流梯度电压。
进一步地,所述第三预设加载流程为:
在圆弧电极结构中,对第一圆弧电极片和第三圆弧电极片施加相同相位的射频电压,在第二圆弧电极片和第四圆弧电极片施加与第一圆弧电极片和第三圆弧电极片相反相位的射频电压;
在径向方向上,每相邻的圆弧电极的射频电压相位相差并同时在同一轴向位置的圆弧电极施加相同的直流电压,在沿电极内径减小的径向方向上通过电阻施加线性递减的直流电压,形成离子漏斗的直流梯度电压;
在半圆柱电极结构中,对第一半圆柱电极片和第三半圆柱电极片施加相同相位的射频电压,在第二半圆柱电极片和第四半圆柱电极片施加与第 一半圆柱电极片和第三半圆柱电极片相反相位的射频电压;
在径向方向上,每相邻的半圆柱电极的射频电压相位相差并同时在同一轴向位置的半圆柱电极施加相同的直流电压,在沿电极内径减小的径向方向上通过电阻施加线性递减的直流电压,形成离子漏斗的直流梯度电压;
在双曲面电极结构中,对第一双曲面电极片和第三双曲面电极片施加相同相位的射频电压,在第二双曲面电极片和第四双曲面电极片施加与第一双曲面电极片和第三双曲面电极片相反相位的射频电压;
在径向方向上,每相邻的双曲面电极的射频电压相位相差并同时在同一轴向位置的双曲面电极施加相同的直流电压,在沿电极内径减小的径向方向上通过电阻施加线性递减的直流电压,形成离子漏斗的直流梯度电压。
进一步地,所述第四预设加载流程为:
在圆弧电极结构中,四个圆弧电极片施加相位相差的射频电压,在径向方向上,每相邻的圆弧电极的射频电压相位也相差并同时在同一轴向位置的圆弧电极施加相同的直流电压,在沿电极内径减小的径向方向上通过电阻施加线性递减的直流电压,形成离子漏斗的直流梯度电压;
在半圆柱电极结构中,四个半圆柱电极片施加相位相差的射频电压,在径向方向上,每相邻的半圆柱电极的射频电压相位也相差并同时在同一轴向位置的半圆柱电极施加相同的直流电压,在沿电极内径减小的径向方向上通过电阻施加线性递减的直流电压,形成离子漏斗的直流梯度电压;
在双曲面电极结构中,四个双曲面电极片施加相位相差的射频电压,在径向方向上,每相邻的双曲面电极的射频电压相位也相差并同时在同一轴向位置的双曲面电极施加相同的直流电压,在沿电极内径减小的径向方向上通过电阻施加线性递减的直流电压,形成离子漏斗的直流梯度电压。
本发明采用上述技术方案包括以下有益效果:
本发明通过新型的电极结构,并采用交叉式的射频电压加载方法,在传输离子过程中获得更好的离子聚焦和高效传输效率。同时还能提高对低质荷比离子的传输,有效改善离子漏斗中对低质荷比离子传输效率低的问题。基于离子漏斗对与低质荷比离子传输效率低的问题,将传统离子漏斗 的环形电极分成四段,并在改变后的离子漏斗电极结构上按照第一预设加载流程、第二预设加载流程、第三预设加载流程和第四预设加载流程施加电压,形成离子漏斗的直流梯度电压,提高离子漏斗对于低质荷比离子的传输效率。通过将传统离子漏斗的一个圆环电极分成在同一径向方向上的四段电极,并在各电极下施加射频电压和直流电压,可以实现较好的离子传输和聚焦效果。
附图说明
图1为本发明实施例一提供的电极结构射频相位可调的离子漏斗的电压加载方法流程图;
图2为本发明实施例一提供的电极结构射频相位可调的离子漏斗的电压加载方法中离子漏斗的电极结构为圆弧电极时分段示意图;
图3为本发明实施例一提供的电极结构射频相位可调的离子漏斗的电压加载方法中离子漏斗的电极结构为半圆柱电极时分段示意图;
图4为本发明实施例一提供的电极结构射频相位可调的离子漏斗的电压加载方法中离子漏斗的电极结构为双曲面电极时分段示意图;
图5为本发明实施例一提供的电极结构射频相位可调的离子漏斗的电压加载方法中第一预设加载流程阶段在径向方向的示意图;
图6为本发明实施例一提供的电极结构射频相位可调的离子漏斗的电压加载方法中第二预设加载流程阶段在径向方向的示意图;
图7为本发明实施例一提供的电极结构射频相位可调的离子漏斗的电压加载方法中第三预设加载流程和第四预设加载流程阶段在径向方向的示意图;
图8为本发明实施例一提供的电极结构射频相位可调的离子漏斗的电压加载方法中径向方向加载直流电压的示意图;
图9为本发明实施例一提供的电极结构射频相位可调的离子漏斗的电压加载方法中离子漏斗电极上的射频波相位调制时的相位延迟示意图;
图10为本发明实施例二提供的电极结构射频相位可调的离子漏斗的电极为圆弧电极结构剖面示意图;
图11为本发明实施例二提供的电极结构射频相位可调的离子漏斗的电极为半圆柱电极结构剖面示意图;
图12为本发明实施例二提供的电极结构射频相位可调的离子漏斗的电极为双曲面电极结构剖面示意图;
图13为本发明实施例二提供的电极结构射频相位可调的离子漏斗的结构示意图。
具体实施方式
为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。
以下是本发明的具体实施例并结合附图,对本发明的技术方案作进一步的描述,但本发明并不限于这些实施例。
实施例一
本实施例提供了一种电极结构射频相位可调的离子漏斗的电压加载方法,如图1至图8所示,本方法包括步骤:
S1:将离子漏斗的环形电极分为四段,并在分段后的离子漏斗电极结构上分别按照第一预设加载流程、第二预设加载流程、第三预设加载流程和第四预设加载流程施加射频电压;其中,射频幅值和频率相同;
S2:经第一预设加载流程在同一轴向方向上的相邻电极施加相位相反的射频电压,并在同一径向方向上相邻电极施加相位相同的射频电压;
S3:经第二预设加载流程在同一轴向方向上的相邻电极施加相位相反的射频电压,并在同一径向方向上相邻电极也施加相位相反的射频电压;
S4:经第三预设加载流程在同一轴向方向上的相邻电极施加相位相反的射频电压,在同一径向方向上相邻电极之间的射频电压相位相差
S5:经第四预设加载流程在同一轴向方向上的相邻电极射频电压相位 相差在同一径向方向上相邻电极之间的射频电压相位相差
S6:在同一轴向位置的电极施加相同的直流电压,沿电极内径减小的径向方向上通过电阻施加线性递减的直流电压,形成离子漏斗的直流梯度电压。
具体的,第一预设加载流程采用了轴向交叉、径向相同的射频电压加载方法,在这种方法下,可以在离子漏斗中环形电极分为四段,通过调节离子漏斗的各电参数,使离子漏斗具备选择性传输离子的能力。
具体的,第二预设加载流程采用了轴向和径向都交叉式的射频电压加载方法,通过这种电压加载方法,调节离子漏斗的各电参数,可以在不改变离子漏斗传输离子质荷比传输范围下提高低质荷比离子的传输效率。
具体的,第三预设加载流程采用了轴向交叉、径向相位可调的射频电压加载方法,通过调节径向电极上所施加射频波的相位,可以实现对离子束的聚焦,并且这种射频电压加载方法可以改善离子漏斗对低质荷比离子的传输效率。
具体的,第四预设加载流程采用了轴向和径向都是相位可调的射频电压加载方法,通过对射频波的相位调整,减小离子漏斗末端势垒,在传输低质荷比的离子时,得到更高的离子传输效率和更好的聚焦效果。
其中,离子漏斗的电极结构包括圆弧电极、半圆柱电极和双曲面电极。
其中,第一预设加载流程为:
在圆弧电极结构中,对第一圆弧电极片和第三圆弧电极片施加相同相位射频电压,在第二圆弧电极片和第四圆弧电极片施加与第一圆弧电极片和第三圆弧电极片相反相位的射频电压;
在径向方向上,对与第一圆弧电极片和第三圆弧电极片同一径向方向上的相邻电极施加相同相位的射频电压,与第二圆弧电极片和第四圆弧电极片同一径向方向上的相邻电极也施加相同相位的射频电压,并同时在同一轴向位置的圆弧电极施加相同的直流电压,在沿电极内径减小的径向方向上通过电阻施加线性递减的直流电压,形成离子漏斗的直流梯度电压;
参阅图2、图5和图8,在离子漏斗实施电压方法上,图2中的1、3圆弧电极施加相同相位射频电压,2、4圆弧电极施加和1、3相反相位的射频电压。如图2和图5所示,在径向方向上,与1、3圆弧电极同一径向方向上的相邻电极施加相同相位的射频电压,与2、4圆弧电极同一径向方向上的相邻电极也施加相同相位的射频电压,如图8所示,同时在同一轴向位置的圆弧电极施加相同的直流电压,在随着电极内径减小的径向方向上通过电阻施加线性递减的直流电压。通过以上的离子漏斗电压加载方法并调节射频电压幅值为60V,频率为0.8MHz,直流梯度电压为15V/cm,实现离子漏斗传输和聚焦离子的作用。
在半圆柱电极结构中,对第一半圆柱电极片和第三半圆柱电极片施加相同相位射频电压,在第二半圆柱电极片和第四半圆柱电极片施加与第一半圆柱电极片和第三半圆柱电极片相反相位的射频电压;
在径向方向上,对与第一半圆柱电极片和第三半圆柱电极片同一径向方向上的相邻电极施加相同相位的射频电压,与第二半圆柱电极片和第四半圆柱电极片同一径向方向上的相邻电极也施加相同相位的射频电压,并同时在同一轴向位置的半圆柱电极施加相同的直流电压,在沿电极内径减小的径向方向上通过电阻施加线性递减的直流电压,形成离子漏斗的直流梯度电压;
参阅图3、图5和图8,在离子漏斗实施电压方法上,图3中的1、3半圆柱电极施加相同相位的射频电压,2、4半圆柱电极施加和1、3相反相位的射频电压。在径向方向上,如图3和图5所示,与1、3半圆柱电极同一径向方向上的相邻电极施加相同相位的射频电压,与2、4半圆柱电极同一径向方向上的相邻电极也施加相同相位的射频电压。如图8所示,同时在同一轴向位置的半圆柱电极施加相同的直流电压,在随着电极内径减小的径向方向上通过电阻施加线性递减的直流电压,形成离子漏斗的直流梯度电压。通过以上的离子漏斗电压加载方法并调节射频电压幅值为60V,频率为0.8MHz,直流梯度电压为15V/cm,实现离子漏斗传输和聚焦离子的作用。
在双曲面电极结构中,对第一双曲面电极片和第三双曲面电极片施加 相同相位射频电压,在第二双曲面电极片和第四双曲面电极片施加与第一双曲面电极片和第三双曲面电极片相反相位的射频电压;
在径向方向上,对与第一双曲面电极片和第三双曲面电极片同一径向方向上的相邻电极施加相同相位的射频电压,与第二双曲面电极片和第四双曲面电极片同一径向方向上的相邻电极也施加相同相位的射频电压,并同时在同一轴向位置的双曲面电极施加相同的直流电压,在沿电极内径减小的径向方向上通过电阻施加线性递减的直流电压,形成离子漏斗的直流梯度电压。
参阅图4、图5和图8,在离子漏斗实施电压方法上,图4中的1、3双曲面电极施加相同相位的射频电压,2、4双曲面电极施加和1、3相反相位的射频电压。在径向方向上,如图2和图5所示,与1、3双曲面电极同一径向方向上的相邻电极施加相同相位的射频电压,与2、4双曲面电极同一径向方向上的相邻电极也施加相同相位的射频电压,。如图8所示,同时在同一轴向位置的双曲面电极施加相同的直流电压,在随着电极内径减小的径向方向上通过电阻施加线性递减的直流电压,形成离子漏斗的直流梯度电压。通过以上的离子漏斗电压加载方法并调节射频电压幅值为60V,频率为0.8MHz,直流梯度电压为15V/cm,实现离子漏斗传输和聚焦离子的作用。
其中,第二预设加载流程为:
在圆弧电极结构中,对第一圆弧电极片和第三圆弧电极片施加相同相位的射频电压,在第二圆弧电极片和第四圆弧电极片施加与第一圆弧电极片和第三圆弧电极片相反相位的射频电压;
在径向方向上,对与第一圆弧电极片和第三圆弧电极片同一径向方向上的相邻电极施加相反相位的射频电压,与第二圆弧电极片和第四圆弧电极片同一径向方向上的相邻电极也施加相反相位的射频电压,并同时在同一轴向位置的圆弧电极施加相同的直流电压,在沿电极内径减小的径向方向上通过电阻施加线性递减的直流电压,形成离子漏斗的直流梯度电压;
参阅图2和图6,在离子漏斗实施电压方法上,图2中的1、3圆弧电 极施加相同相位的射频电压,2、4圆弧电极施加和1、3相反相位的射频电压。在径向方向上,如图2和图6所示,与1、3圆弧电极同一径向方向上的相邻电极施加相反相位的射频电压,与2、4圆弧电极同一径向方向上的相邻电极也施加相反相位的射频电压,采用与上述相同的直流电压加载方法。通过以上的离子漏斗电压加载方法并调节射频电压幅值为100V,频率为0.8MHz,直流梯度电压为15V/cm,实现离子漏斗传输和聚焦离子的作用。
在半圆柱电极结构中,对第一半圆柱电极片和第三半圆柱电极片施加相同相位的射频电压,在第二半圆柱电极片和第四半圆柱电极片施加与第一半圆柱电极片和第三半圆柱电极片相反相位的射频电压;
在径向方向上,对与第一半圆柱电极片和第三半圆柱电极片同一径向方向上的相邻电极施加相反相位的射频电压,与第二半圆柱电极片和第四半圆柱电极片同一径向方向上的相邻电极也施加相反相位的射频电压,并同时在同一轴向位置的半圆柱电极施加相同的直流电压,在沿电极内径减小的径向方向上通过电阻施加线性递减的直流电压,形成离子漏斗的直流梯度电压;
参阅图3和图6,在离子漏斗实施电压方法上,图3中的1、3半圆柱电极施加相同相位的射频电压,2、4半圆柱电极施加和1、3相反相位的射频电压。在径向方向上,如图3和图6所示,与1、3半圆柱电极同一径向方向上的相邻电极施加相反相位的射频电压,与2、4半圆柱电极同一径向方向上的相邻电极也施加相反相位的射频电压,采用与上述相同的直流电压加载方法。通过以上的离子漏斗电压加载方法并调节射频电压幅值为100V,频率为0.8MHz,直流梯度电压为15V/cm,实现离子漏斗传输和聚焦离子的作用。
在双曲面电极结构中,对第一双曲面电极片和第三双曲面电极片施加相同相位的射频电压,在第二双曲面电极片和第四双曲面电极片施加与第一双曲面电极片和第三双曲面电极片相反相位的射频电压;
在径向方向上,对与第一双曲面电极片和第三双曲面电极片同一径向方向上的相邻电极施加相反相位的射频电压,与第二双曲面电极片和第四 双曲面电极片同一径向方向上的相邻电极也施加相反相位的射频电压,并同时在同一轴向位置的双曲面电极施加相同的直流电压,在沿电极内径减小的径向方向上通过电阻施加线性递减的直流电压,形成离子漏斗的直流梯度电压。
参阅图4和图6,在离子漏斗实施电压方法上,图4中的1、3双曲面电极施加相同相位的射频电压,2、4双曲面电极施加和1、3相反相位的射频电压。在径向方向上,如图4和图6所示,与1、3双曲面电极同一径向方向上的相邻电极施加相反相位的射频电压,与2、4双曲面电极相同径向方向上的电极也施加相反相位的射频电压,采用与上述相同的直流电压加载方法。通过以上的离子漏斗电压加载方法并调节射频电压幅值为100V,频率为0.8MHz,直流梯度电压为15V/cm,实现离子漏斗传输和聚焦离子的作用。
其中,第三预设加载流程为:
在圆弧电极结构中,对第一圆弧电极片和第三圆弧电极片施加相同相位的射频电压,在第二圆弧电极片和第四圆弧电极片施加与第一圆弧电极片和第三圆弧电极片相反相位的射频电压;
在径向方向上,每相邻的圆弧电极的射频电压相位相差并同时在同一轴向位置的圆弧电极施加相同的直流电压,在沿电极内径减小的径向方向上通过电阻施加线性递减的直流电压,形成离子漏斗的直流梯度电压;
参阅图2和图7,在离子漏斗实施电压方法上,图2中的1、3圆弧电极施加相同相位的射频电压,2、4圆弧电极施加和1、3相反相位的射频电压。在径向方向上,如图2和图7所示,每相邻的圆弧电极的射频电压相位相差采用与上述相同的直流电压加载方法。通过以上的离子漏斗电压加载方法并调节射频电压幅值为80V,频率为0.8MHz,直流梯度电压为15V/cm,实现离子漏斗传输和聚焦离子的作用。
在半圆柱电极结构中,对第一半圆柱电极片和第三半圆柱电极片施加相同相位的射频电压,在第二半圆柱电极片和第四半圆柱电极片施加与第一半圆柱电极片和第三半圆柱电极片相反相位的射频电压;
在径向方向上,每相邻的半圆柱电极的射频电压相位相差并同时在同一轴向位置的半圆柱电极施加相同的直流电压,在沿电极内径减小的径 向方向上通过电阻施加线性递减的直流电压,形成离子漏斗的直流梯度电压;
参阅图3和图7,在离子漏斗实施电压方法上,图3中的1、3半圆柱电极施加相同相位的射频电压,2、4半圆柱电极施加和1、3相反相位的射频电压。在径向方向上,如图3和图7所示,每相邻的半圆柱电极的射频电压相位相差采用与上述相同的直流电压加载方法。通过以上的离子漏斗电压加载方法并调节射频电压幅值为80V,频率为0.8MHz,直流梯度电压为15V/cm,实现离子漏斗传输和聚焦离子的作用。
在双曲面电极结构中,对第一双曲面电极片和第三双曲面电极片施加相同相位的射频电压,在第二双曲面电极片和第四双曲面电极片施加与第一双曲面电极片和第三双曲面电极片相反相位的射频电压;
在径向方向上,每相邻的双曲面电极的射频电压相位相差并同时在同一轴向位置的双曲面电极施加相同的直流电压,在沿电极内径减小的径向方向上通过电阻施加线性递减的直流电压,形成离子漏斗的直流梯度电压。
参阅图4和图7,在离子漏斗实施电压方法上,图4中的1、3双曲面电极施加相同相位的射频电压,2、4双曲面电极施加和1、3相反相位的射频电压。在径向方向上,如图4和图7所示,每相邻的双曲面电极的射频电压相位相差Π/2,并与实施例9采用相同的直流电压加载方法。通过以上的离子漏斗电压加载方法并调节射频电压幅值为80V,频率为0.8MHz,直流梯度电压为15V/cm,实现离子漏斗传输和聚焦离子的作用
其中,第四预设加载流程为:
在圆弧电极结构中,四个圆弧电极片施加相位相差的射频电压,在径向方向上,每相邻的圆弧电极的射频电压相位也相差并同时在同一轴向位置的圆弧电极施加相同的直流电压,在沿电极内径减小的径向方向上通过电阻施加线性递减的直流电压,形成离子漏斗的直流梯度电压;
参阅图2和图7,在离子漏斗实施电压方法上,图2中的四个圆弧电极片施加相位相差的射频电压,在径向方向上,如图2和图7所示,每相邻的圆弧电极的射频电压相位也相差采用与上述相同的直流电压加载方法。通过以上的离子漏斗电压加载方法并调节射频电压幅值为80V,频率为0.8MHz,直流梯度电压为15V/cm,实现离子漏斗传输和聚焦离子的作用。
在半圆柱电极结构中,四个半圆柱电极片施加相位相差的射频电压,在径向方向上,每相邻的半圆柱电极的射频电压相位也相差并同时在同 一轴向位置的半圆柱电极施加相同的直流电压,在沿电极内径减小的径向方向上通过电阻施加线性递减的直流电压,形成离子漏斗的直流梯度电压;
参阅图3和图7,在离子漏斗实施电压方法上,图3中的四个半圆柱电极片施加相位相差的射频电压,在径向方向上,如图3和图7所示,每相邻的双曲面电极的射频电压相位也相差采用与上述相同的直流电压加载方法。通过以上的离子漏斗电压加载方法并调节射频电压幅值为80V,频率为0.8MHz,直流梯度电压为15V/cm,实现离子漏斗传输和聚焦离子的作用。
在双曲面电极结构中,四个双曲面电极片施加相位相差的射频电压,在径向方向上,每相邻的双曲面电极的射频电压相位也相差并同时在同一轴向位置的双曲面电极施加相同的直流电压,在沿电极内径减小的径向方向上通过电阻施加线性递减的直流电压,形成离子漏斗的直流梯度电压。
参阅图4和图7,在离子漏斗实施电压方法上,图4中的四个双曲面电极片施加相位相差的射频电压,在径向方向上,如图2和图7所示,每相邻的双曲面电极的射频电压相位也相差并与实施例9采用相同的直流电压加载方法。通过以上的离子漏斗电压加载方法并调节射频电压幅值为80V,频率为0.8MHz,直流梯度电压为15V/cm,实现离子漏斗传输和聚焦离子的作用。
参阅图9,为实施在离子漏斗电极上的射频波相位调制时的相位延迟示意图,不限波形。
提高离子漏斗对低质荷比离子的传输效率,关键在于减小离子漏斗出口末端势垒的影响,优选地,可以通过增大离子漏斗出口末端电极内径、调整电极厚度、电极间距及减小射频电压幅值的方法来提高对低质荷比离子的传输效率。
本方法基于离子漏斗对与低质荷比离子传输效率低的问题,将传统离子漏斗的环形电极分成四段,并在改变后的离子漏斗电极结构上按照第一预设加载流程、第二预设加载流程、第三预设加载流程和第四预设加载流程施加电压,形成离子漏斗的直流梯度电压,提高离子漏斗对于低质荷比离子的传输效率。
实施例二
本实施例提供了一种电极结构射频相位可调的离子漏斗,如图10、图11、图12和图13所示,包括叠加而成的第一类组电极和第二类组电极,第一类组电极由内径相等的多组环形电极进行叠加,第二类组电极由多组环形电极的内径呈线性递减进行叠加,环形电极由四片内径相同的电极片组成;
在形成一个非闭合的环形电极的四片电极片中,相邻的电极片之间加载相同幅值、不同相位的射频电压;相邻的环形电极之间加载相同幅值、不同相位的射频电压,并加载直流梯度电压用于驱动离子向离子漏斗出口方向移动;
通过调节射频电压的频率、幅值和直流梯度电压使不同质荷比的离子在离子漏斗中进行传输。
其中,环形电极为圆弧电极,由四片内径相同的圆弧电极片组成。
具体的,由四片内径相等的圆弧电极片形成一个非闭合环形电极,如图10和图13所示,一共包含多组环形电极。共分为第一类组电极和第二类组电极组成,其中第一类组电极为内径25.4mm的环形电极,第二类组电极为电极内径线性递减,第一类组电极的最后一组环形电极内径为2mm。整个离子漏斗装置处在一个低真空系统下。
具体的,离子漏斗位于质谱中第一级真空泵送区域。离子在在大气压下的离子源中产生,随后离子从大气压下通过加热毛细管或孔口进入第一级真空系统中的离子漏斗内。离子漏斗的一组环形电极,包含四个内径相等的圆弧电极片,一共有100组环形电极,圆弧电极片厚度为0.5mm,每组环形电极之间的距离为0.5mm。其中前55组为内径25.4mm的环形电极,后45组环形电极内径从25.4mm线性递减到2mm。在所有电极中,各电极施加所需的射频电压,并在随电极内径减小方向上的电极上施加线性递减的直流电压,使其在离子漏斗内部形成直流梯度电压,以此实现离子的传输和聚焦。
其中,环形电极为半圆柱电极,由四个内径相同的半圆柱电极片在同一径向位置相对放置组成,各个半圆柱电极片半径到半圆柱电极中心点的 距离相等。
具体的,由四个内径相等的半圆柱电极片在同一径向位置相对放置,半圆柱电极片半径到中心点距离相等,如图11和图13所示,一共有多组电极,共分为第一类组电极和第二类组电极组成,第一类组电极半圆柱电极半径为25.4mm,各电极之间径向相对距离为25.4mm,第二类组电极半径及各电极之间径向相对距离由25.4mm线性递减到2mm。整个离子漏斗处在一个低真空系统下。
具体的,离子漏斗位于质谱中第一级真空泵送区域。离子在在大气压下的离子源中产生,随后离子从大气压下通过加热毛细管或孔口进入第一级真空离子漏斗中。离子漏斗的一组电极由四个内径相等的半圆柱电极片在同一径向位置相对放置构成,一共有100组电极,前55组电极组的半圆柱电极片半径和各半圆柱电极之间的径向相对距离为25.4mm,轴向相对距离为0.5mm,半圆柱电极片厚度为0.5mm,后45组半圆柱电极内径和径向相对距离由25.4mm线性递减到2mm。在所有电极中,各电极施加所需的射频电压,并在随电极内径减小方向上的电极上施加线性递减的直流电压,使其在离子漏斗内部形成直流梯度电压,以此实现离子的传输和聚焦。
其中,环形电极为双曲面电极,由四个双曲面电极片在同一径向位置相对放置组成,双曲面电极片到双曲面电极中心点的距离和双曲面电极片顶点到边线距离相等。
具体的,由四个双曲面电极片在同一径向位置相对放置,双曲面到中心点的距离和双曲面顶点到边线距离相等,如图12和图13所示,一共有多组电极,共分为第一类组电极和第二类组电极组成,第一类组电极双曲面电极片到中心点为25.4mm,各双曲面电极径向相对距离为25.4mm,第一类组电极的电极片到中心点距离及各双曲面电极径向相对距离由25.4mm线性递减到2mm。整个离子漏斗处在一个低真空系统下。
具体的,离子漏斗位于质谱中第一级真空泵送区域。离子在在大气压下的离子源中产生,随后离子从大气压下通过加热毛细管或孔口进入第一级真空离子漏斗中。离子漏斗的一组电极由四个相等的双曲面电极片在同 一径向位置相对放置构成,一共有100组电极,前55组电极各双曲面电极径向相对距离为25.4mm,轴向相对距离为0.5mm,双曲面电极厚度为0.5mm,后45组双曲面电极到径向相对距离由25.4mm线性递减到2mm。在所有电极中,各电极施加所需的射频电压,并在随电极内径减小方向上的电极上施加线性递减的直流电压,使其在离子漏斗内部形成直流梯度电压,以此实现离子的传输和聚焦。
具体的,离子漏斗包含三种新型结构,其中一种结构为在同一径向上由四个圆弧电极片形成一个非闭合环形电极,一共有100组非闭合环形电极组成;另外两种结构为同一径向上由四个半圆柱电极结构或双曲面电极结构形成一个四片型电极装置,一共有100组电极。通过这种新型的电极结构,并采用交叉式的射频电压加载方法,在传输离子过程中获得更好的离子聚焦和高效传输效率。同时还能提高对低质荷比离子的传输,有效改善离子漏斗中对低质荷比离子传输效率低的问题。通过将传统离子漏斗的一个圆环电极分成在同一径向方向上的四段电极,并在各电极下施加射频电压和直流电压,同样可以实现较好的离子传输和聚焦效果。
本发明通过上述电极结构,并采用交叉式的射频电压加载方法,在传输离子过程中获得更好的离子聚焦和高效传输效率。同时还能提高对低质荷比离子的传输,有效改善离子漏斗中对低质荷比离子传输效率低的问题。
虽然本公开披露如上,但本公开的保护范围并非仅限于此。本领域技术人员,在不脱离本公开的精神和范围的前提下,可进行各种变更与修改,这些变更与修改均将落入本发明的保护范围。

Claims (10)

  1. 一种电极结构射频相位可调的离子漏斗,其特征在于,包括叠加而成的第一类组电极和第二类组电极,所述第一类组电极由内径相等的多组环形电极进行叠加,所述第二类组电极由多组环形电极的内径呈线性递减进行叠加,所述环形电极由四片内径相同的电极片组成;
    在形成一个非闭合的所述环形电极的四片所述电极片中,相邻的所述电极片之间加载相同幅值、不同相位的射频电压;相邻的所述环形电极之间加载相同幅值、不同相位的射频电压,并加载直流梯度电压用于驱动离子向离子漏斗出口方向移动;
    通过调节射频电压的频率、幅值和直流梯度电压使不同质荷比的离子在离子漏斗中进行传输。
  2. 根据权利要求1所述的电极结构射频相位可调的离子漏斗,其特征在于,所述环形电极为圆弧电极,由四片内径相同的圆弧电极片组成。
  3. 根据权利要求1所述的电极结构射频相位可调的离子漏斗,其特征在于,所述环形电极为半圆柱电极,由四个内径相同的半圆柱电极片在同一径向位置相对放置组成,各个所述半圆柱电极片半径到半圆柱电极中心点的距离相等。
  4. 根据权利要求1所述的电极结构射频相位可调的离子漏斗,其特征在于,所述环形电极为双曲面电极,由四个双曲面电极片在同一径向位置相对放置组成,双曲面电极片到双曲面电极中心点的距离和双曲面电极片顶点到边线距离相等。
  5. 一种电极结构射频相位可调的离子漏斗的电压加载方法,其特征在于,包括步骤:
    S1:将离子漏斗的环形电极分为四段,并在分段后的离子漏斗电极结构上分别按照第一预设加载流程、第二预设加载流程、第三预设加载流程和第四预设加载流程施加射频电压;其中,射频幅值和频率相同;
    S2:经第一预设加载流程在同一轴向方向上的相邻电极施加相位相反的射频电压,并在同一径向方向上相邻电极施加相位相同的射频电压;
    S3:经第二预设加载流程在同一轴向方向上的相邻电极施加相位相反的射频电压,并在同一径向方向上相邻电极也施加相位相反的射频电压;
    S4:经第三预设加载流程在同一轴向方向上的相邻电极施加相位相反的射频电压,在同一径向方向上相邻电极之间的射频电压相位相差
    S5:经第四预设加载流程在同一轴向方向上的相邻电极射频电压相位相差在同一径向方向上相邻电极之间的射频电压相位相差
    S6:在同一轴向位置的电极施加相同的直流电压,沿电极内径减小的径向方向上通过电阻施加线性递减的直流电压,形成离子漏斗的直流梯度电压。
  6. 根据权利要求5所述的电极结构射频相位可调的离子漏斗的电压加载方法,其特征在于,所述离子漏斗的电极结构包括圆弧电极、半圆柱电极和双曲面电极。
  7. 根据权利要求6所述的电极结构射频相位可调的离子漏斗的电压加载方法,其特征在于,所述第一预设加载流程为:
    在圆弧电极结构中,对第一圆弧电极片和第三圆弧电极片施加相同相位射频电压,在第二圆弧电极片和第四圆弧电极片施加与第一圆弧电极片和第三圆弧电极片相反相位的射频电压;
    在径向方向上,对与第一圆弧电极片和第三圆弧电极片同一径向方向上的相邻电极施加相同相位的射频电压,与第二圆弧电极片和第四圆弧电极片同一径向方向上的相邻电极也施加相同相位的射频电压,并同时在同一轴向位置的圆弧电极施加相同的直流电压,在沿电极内径减小的径向方向上通过电阻施加线性递减的直流电压,形成离子漏斗的直流梯度电压;
    在半圆柱电极结构中,对第一半圆柱电极片和第三半圆柱电极片施加相同相位射频电压,在第二半圆柱电极片和第四半圆柱电极片施加与第一半圆柱电极片和第三半圆柱电极片相反相位的射频电压;
    在径向方向上,对与第一半圆柱电极片和第三半圆柱电极片同一径向方向上的相邻电极施加相同相位的射频电压,与第二半圆柱电极片和第四半圆柱电极片同一径向方向上的相邻电极也施加相同相位的射频电压,并同时在同一轴向位置的半圆柱电极施加相同的直流电压,在沿电极内径减小的径向方向上通过电阻施加线性递减的直流电压,形成离子漏斗的直流梯度电压;
    在双曲面电极结构中,对第一双曲面电极片和第三双曲面电极片施加相同相位射频电压,在第二双曲面电极片和第四双曲面电极片施加与第一双曲面电极片和第三双曲面电极片相反相位的射频电压;
    在径向方向上,对与第一双曲面电极片和第三双曲面电极片同一径向方向上的相邻电极施加相同相位的射频电压,与第二双曲面电极片和第四双曲面电极片同一径向方向上的相邻电极也施加相同相位的射频电压,并同时在同一轴向位置的双曲面电极施加相同的直流电压,在沿电极内径减小的径向方向上通过电阻施加线性递减的直流电压,形成离子漏斗的直流梯度电压。
  8. 根据权利要求6所述的电极结构射频相位可调的离子漏斗的电压加载方法,其特征在于,所述第二预设加载流程为:
    在圆弧电极结构中,对第一圆弧电极片和第三圆弧电极片施加相同相位的射频电压,在第二圆弧电极片和第四圆弧电极片施加与第一圆弧电极片和第三圆弧电极片相反相位的射频电压;
    在径向方向上,对与第一圆弧电极片和第三圆弧电极片同一径向方向上的相邻电极施加相反相位的射频电压,与第二圆弧电极片和第四圆弧电极片同一径向方向上的相邻电极也施加相反相位的射频电压,并同时在同一轴向位置的圆弧电极施加相同的直流电压,在沿电极内径减小的径向方向上通过电阻施加线性递减的直流电压,形成离子漏斗的直流梯度电压;
    在半圆柱电极结构中,对第一半圆柱电极片和第三半圆柱电极片施加相同相位的射频电压,在第二半圆柱电极片和第四半圆柱电极片施加与第一半圆柱电极片和第三半圆柱电极片相反相位的射频电压;
    在径向方向上,对与第一半圆柱电极片和第三半圆柱电极片同一径向方向上的相邻电极施加相反相位的射频电压,与第二半圆柱电极片和第四半圆柱电极片同一径向方向上的相邻电极也施加相反相位的射频电压,并同时在同一轴向位置的半圆柱电极施加相同的直流电压,在沿电极内径减小的径向方向上通过电阻施加线性递减的直流电压,形成离子漏斗的直流梯度电压;
    在双曲面电极结构中,对第一双曲面电极片和第三双曲面电极片施加相同相位的射频电压,在第二双曲面电极片和第四双曲面电极片施加与第一双曲面电极片和第三双曲面电极片相反相位的射频电压;
    在径向方向上,对与第一双曲面电极片和第三双曲面电极片同一径向方向上的相邻电极施加相反相位的射频电压,与第二双曲面电极片和第四双曲面电极片同一径向方向上的相邻电极也施加相反相位的射频电压,并同时在同一轴向位置的双曲面电极施加相同的直流电压,在沿电极内径减小的径向方向上通过电阻施加线性递减的直流电压,形成离子漏斗的直流梯度电压。
  9. 根据权利要求6所述的电极结构射频相位可调的离子漏斗的电压加载方法,其特征在于,所述第三预设加载流程为:
    在圆弧电极结构中,对第一圆弧电极片和第三圆弧电极片施加相同相位的射频电压,在第二圆弧电极片和第四圆弧电极片施加与第一圆弧电极片和第三圆弧电极片相反相位的射频电压;
    在径向方向上,每相邻的圆弧电极的射频电压相位相差并同时在同一轴向位置的圆弧电极施加相同的直流电压,在沿电极内径减小的径向方向上通过电阻施加线性递减的直流电压,形成离子漏斗的直流梯度电压;
    在半圆柱电极结构中,对第一半圆柱电极片和第三半圆柱电极片施加相同相位的射频电压,在第二半圆柱电极片和第四半圆柱电极片施加与第一半圆柱电极片和第三半圆柱电极片相反相位的射频电压;
    在径向方向上,每相邻的半圆柱电极的射频电压相位相差并同时在同一轴向位置的半圆柱电极施加相同的直流电压,在沿电极内径减小的径向方向上通过电阻施加线性递减的直流电压,形成离子漏斗的直流梯度电 压;
    在双曲面电极结构中,对第一双曲面电极片和第三双曲面电极片施加相同相位的射频电压,在第二双曲面电极片和第四双曲面电极片施加与第一双曲面电极片和第三双曲面电极片相反相位的射频电压;
    在径向方向上,每相邻的双曲面电极的射频电压相位相差并同时在同一轴向位置的双曲面电极施加相同的直流电压,在沿电极内径减小的径向方向上通过电阻施加线性递减的直流电压,形成离子漏斗的直流梯度电压。
  10. 根据权利要求6所述的电极结构射频相位可调的离子漏斗的电压加载方法,其特征在于,所述第四预设加载流程为:
    在圆弧电极结构中,四个圆弧电极片施加相位相差的射频电压,在径向方向上,每相邻的圆弧电极的射频电压相位也相差并同时在同一轴向位置的圆弧电极施加相同的直流电压,在沿电极内径减小的径向方向上通过电阻施加线性递减的直流电压,形成离子漏斗的直流梯度电压;
    在半圆柱电极结构中,四个半圆柱电极片施加相位相差的射频电压,在径向方向上,每相邻的半圆柱电极的射频电压相位也相差并同时在同一轴向位置的半圆柱电极施加相同的直流电压,在沿电极内径减小的径向方向上通过电阻施加线性递减的直流电压,形成离子漏斗的直流梯度电压;
    在双曲面电极结构中,四个双曲面电极片施加相位相差的射频电压,在径向方向上,每相邻的双曲面电极的射频电压相位也相差并同时在同一轴向位置的双曲面电极施加相同的直流电压,在沿电极内径减小的径向方向上通过电阻施加线性递减的直流电压,形成离子漏斗的直流梯度电压。
PCT/CN2023/078349 2022-12-06 2023-02-27 一种电极结构射频相位可调的离子漏斗及电压加载方法 WO2024119632A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211553858.1 2022-12-06
CN202211553858.1A CN115954258A (zh) 2022-12-06 2022-12-06 一种电极结构射频相位可调的离子漏斗及电压加载方法

Publications (1)

Publication Number Publication Date
WO2024119632A1 true WO2024119632A1 (zh) 2024-06-13

Family

ID=87281579

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/078349 WO2024119632A1 (zh) 2022-12-06 2023-02-27 一种电极结构射频相位可调的离子漏斗及电压加载方法

Country Status (2)

Country Link
CN (1) CN115954258A (zh)
WO (1) WO2024119632A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103515183A (zh) * 2012-06-20 2014-01-15 株式会社岛津制作所 离子导引装置和离子导引方法
US20160189946A1 (en) * 2013-06-17 2016-06-30 Shimadzu Corporation Ion transport apparatus and mass spectrometer using the same
CN111627793A (zh) * 2020-05-28 2020-09-04 华东师范大学 一种传输出射离子的两级差分离子漏斗
CN114334599A (zh) * 2020-09-29 2022-04-12 株式会社岛津制作所 离子导引装置及离子导引方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103515183A (zh) * 2012-06-20 2014-01-15 株式会社岛津制作所 离子导引装置和离子导引方法
US20160189946A1 (en) * 2013-06-17 2016-06-30 Shimadzu Corporation Ion transport apparatus and mass spectrometer using the same
CN111627793A (zh) * 2020-05-28 2020-09-04 华东师范大学 一种传输出射离子的两级差分离子漏斗
CN114334599A (zh) * 2020-09-29 2022-04-12 株式会社岛津制作所 离子导引装置及离子导引方法

Also Published As

Publication number Publication date
CN115954258A (zh) 2023-04-11

Similar Documents

Publication Publication Date Title
JP6160692B2 (ja) イオンガイド装置及びイオンガイド方法
US9406495B2 (en) Linear ion beam bonding apparatus and array structure thereof
JP2012028336A (ja) イオンガイド装置、イオン誘導方法、及び、質量分析方法
CN111627793B (zh) 一种传输出射离子的两级差分离子漏斗
US20190074170A1 (en) Sub-atmospheric pressure laser ionization source using an ion funnel
US10770279B2 (en) Ion transfer apparatus
WO2024119632A1 (zh) 一种电极结构射频相位可调的离子漏斗及电压加载方法
EP3806134A1 (en) Ion guide for mass spectrometer and ion source using same
US20180218891A1 (en) Apparatus and Methods For Focussing Electrons
Dvorson et al. Double-gated Spindt emitters with stacked focusing electrode
US11127578B2 (en) Ion guiding device and related method
JPWO2012081122A1 (ja) イオンガイド及び質量分析装置
CN109841489B (zh) 一种减小射频四极杆传输质量歧视的装置
US11508565B2 (en) Ion guide device and ion guide method
CN108807132B (zh) 一种离子导引装置及导引方法
CN112185797B (zh) 一种常压高温离子冷却聚焦装置
US20240038521A1 (en) Axially progressive lens for transporting charged particles
CN112951702A (zh) 一种用于质谱仪的离子操控及传输装置
WO2024014208A1 (ja) イオンガイドおよび質量分析計
CN112185799B (zh) 一种可切换式离子聚焦筛选及碎裂装置
US20240096613A1 (en) Ion guide
Помозов et al. Influence of features of the electric field in the diaphragm system on the transportation of the flow of charged particles at atmospheric pressure
CN113594020B (zh) 一种直线式同轴反射便携飞行时间质谱及其应用
EP1220291B1 (en) Mass spectrometer and method of mass spectrometry
EP3715841A2 (en) Ion source for an ion mobility spectrometer and corresponding method of analyzing a vapor sample