WO2024119369A1 - 气溶胶沉降机理研究装置及其操作方法 - Google Patents

气溶胶沉降机理研究装置及其操作方法 Download PDF

Info

Publication number
WO2024119369A1
WO2024119369A1 PCT/CN2022/136908 CN2022136908W WO2024119369A1 WO 2024119369 A1 WO2024119369 A1 WO 2024119369A1 CN 2022136908 W CN2022136908 W CN 2022136908W WO 2024119369 A1 WO2024119369 A1 WO 2024119369A1
Authority
WO
WIPO (PCT)
Prior art keywords
aerosol
tube
experimental
sedimentation
generator
Prior art date
Application number
PCT/CN2022/136908
Other languages
English (en)
French (fr)
Inventor
刘建昌
陈忆晨
欧阳勇
沈永刚
赵晓晗
魏诗颖
孙浩
林燕
曹志伟
李强
Original Assignee
中广核研究院有限公司
中国广核集团有限公司
中国广核电力股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中广核研究院有限公司, 中国广核集团有限公司, 中国广核电力股份有限公司 filed Critical 中广核研究院有限公司
Priority to PCT/CN2022/136908 priority Critical patent/WO2024119369A1/zh
Publication of WO2024119369A1 publication Critical patent/WO2024119369A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions

Definitions

  • the present application relates to the field of aerosol technology, and in particular to an aerosol sedimentation mechanism research device and an operating method thereof.
  • the main sedimentation mechanisms of radionuclides in the containment include gravity sedimentation mechanism, thermophoretic sedimentation mechanism and diffusion electrophoretic sedimentation mechanism.
  • Gravity sedimentation refers to the downward movement of aerosols suspended in the atmosphere of the containment under the action of gravity and eventually settling on the inner bottom surface.
  • Thermophoretic sedimentation refers to the process in which aerosols migrate to the inner surface under the influence of the temperature gradient between the atmosphere and the surface (such as the inner wall of the containment) in the containment.
  • Diffusion electrophoretic sedimentation refers to the process in which aerosols are swept toward the wall by the airflow formed by condensed steam. The sedimentation process of aerosols is affected by the thermal environment in the containment.
  • an aerosol sedimentation mechanism research device which can simulate the sedimentation rate of aerosols under different sedimentation mechanisms.
  • Aerosol deposition mechanism research device including:
  • the experimental tube has an inlet end and an outlet end connected to each other, and both the inlet end and the outlet end are provided with an aerosol concentration tester;
  • an aerosol generator for preparing an aerosol, wherein the aerosol generator can be selectively connected to the inlet end;
  • an air compressor selectively connectable to the inlet port
  • a cooling assembly comprising a cooler and a water supply tank connected to each other, wherein the water supply tank has a coolant, the cooler is installed on the outer tube wall of the experimental tube, and the coolant in the water supply tank can flow between the cooler and the water supply tank to adjust the wall temperature of the experimental tube;
  • An exhaust treatment box wherein the outlet end is communicated with the exhaust treatment box, and the exhaust treatment box is used to contain a treatment solution, and the aerosol in the experimental tube can be dissolved in the treatment solution.
  • a steam generator selectively connectable to the inlet end, wherein the steam generator is used to generate steam.
  • a mixing tube is further included, one end of which is connected to the aerosol generator, the air compressor and the steam generator respectively, and the other end of the mixing tube is connected to the inlet end.
  • the experimental tube also includes an inlet transition tube installed at the inlet end, the inlet transition tube is flared, and the inlet transition tube includes a large end and a small end, the large end is connected to the inlet end, and the small end is connected to the mixing tube.
  • the experimental tube is a square tube, and the experimental tube includes a first tube wall and a second tube wall that are arranged opposite to each other.
  • a group of cooling components are installed on the first tube wall and the second tube wall, and the cooling components are used to adjust the wall temperature of the corresponding tube wall.
  • the present application also provides an operating method of an aerosol deposition mechanism research device, using the above-mentioned aerosol deposition mechanism research device, comprising the following steps:
  • step S3 the method further includes:
  • step S1 after calculating the gravity sedimentation rate V grav , verify whether the calculated value is correct by using the gravity sedimentation rate calculation formula
  • step S3 after calculating the thermophoretic electrophoretic sedimentation rate V them , verify whether the calculated value is correct by using the thermophoretic electrophoretic sedimentation rate calculation formula;
  • step S5 after the diffusion electrophoresis sedimentation rate V diff is calculated, the diffusion electrophoresis sedimentation rate formula is used to verify whether the calculated value is correct.
  • step S1 the aerosol generated by the aerosol generator is first mixed in the mixing tube and then enters the experimental tube for experiment;
  • step S3 the aerosol generated by the aerosol generator and the dry air generated by the air compressor are first mixed in the mixing tube and then enter the experimental tube for experiment;
  • step S5 the aerosol generated by the aerosol generator and the steam generated by the steam generator are first mixed in the mixing tube and then enter the experimental tube for experiment.
  • the above-mentioned aerosol sedimentation mechanism research device is provided with aerosol concentration testers at both the inlet and outlet ends of the experimental tube, so as to detect the aerosol concentration at the inlet and outlet ends under different working conditions.
  • the outlet end is connected to the exhaust treatment box.
  • the aerosol in the experimental tube is passed into the exhaust treatment box, so that the aerosol is dissolved in the treatment solution, and the aerosol is treated to prevent it from diffusing into the environment and polluting the environment.
  • the aerosol generator is connected to the inlet end, and the aerosol prepared by the aerosol generator can enter the experimental tube, so that the working condition of the experimental tube meets the requirements of the gravity sedimentation experiment working condition, that is, the sedimentation rate model of the aerosol in the containment under the action of the gravity sedimentation mechanism is simulated, which is convenient for calculating the gravity sedimentation rate of the aerosol.
  • the air compressor is connected to the inlet end, and the cooling component is turned on.
  • the coolant in the water tank circulates between the cooler and the water tank.
  • the cooling component is used to adjust the wall temperature of the experimental tube to reach the first preset temperature, so that the operating conditions of the experimental section meet the requirements of the hot dry sedimentation experiment.
  • the aerosol prepared by the aerosol generator is filled into the experimental tube, and the sedimentation rate model of the aerosol in the containment under the action of the thermophoretic sedimentation mechanism is simulated, which is convenient for calculating the thermophoretic sedimentation rate of the aerosol.
  • FIG1 is a schematic diagram of the overall structure of an aerosol deposition mechanism research device in one embodiment of the present application.
  • FIG2 is a schematic structural diagram of the experimental tube in FIG1 from a first viewing angle
  • FIG3 is a schematic structural diagram of the experimental tube in FIG1 from a second viewing angle
  • FIG. 4 is a schematic structural diagram of the experimental tube in FIG. 1 from a third viewing angle.
  • test pipe 100 The test pipe 100, the mixing pipe 110, the inlet transition pipe 120, the outlet transition pipe 130, the inlet connecting pipe 140, the outlet connecting pipe 150, and the test pipe outlet isolation valve 160;
  • Aerosol generator 200 Aerosol temporary storage tank 210, aerosol isolation valve 220;
  • Air compressor 300 heating element 310, air isolation valve 320;
  • Cooling assembly 400 cooler 410, water supply tank 420, water supply pump 430, water supply isolation valve 440;
  • first and second are used for descriptive purposes only and should not be understood as indicating or implying relative importance or implicitly indicating the number of the indicated technical features. Therefore, the features defined as “first” and “second” may explicitly or implicitly include at least one of the features. In the description of this application, the meaning of "plurality” is at least two, such as two, three, etc., unless otherwise clearly and specifically defined.
  • the terms “installed”, “connected”, “connected”, “fixed” and the like should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between two elements, unless otherwise clearly defined.
  • installed can be a fixed connection, a detachable connection, or an integral connection
  • it can be a mechanical connection or an electrical connection
  • it can be a direct connection or an indirect connection through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between two elements, unless otherwise clearly defined.
  • the specific meanings of the above terms in this application can be understood according to specific circumstances.
  • a first feature being “above” or “below” a second feature may mean that the first and second features are in direct contact, or the first and second features are in indirect contact through an intermediate medium.
  • a first feature being “above”, “above”, and “above” a second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is higher in level than the second feature.
  • a first feature being “below”, “below”, and “below” a second feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature is lower in level than the second feature.
  • the aerosol sedimentation mechanism research device includes an experimental tube 100, an aerosol generator 200, an air compressor 300, a cooling component 400 and an exhaust treatment box 500, the experimental tube 100 has an inlet end and an outlet end connected to each other, and an aerosol concentration tester is provided at the inlet end and the outlet end; the aerosol generator 200 is used to prepare aerosol, and the aerosol generator 200 can be selectively connected to the inlet end; the air compressor 300 can be selectively connected to the inlet end; the cooling component 400 includes a cooler 410 and a water tank 420 connected to each other, and the water tank 420 has a coolant, and the cooler 410 is installed on the outer tube of the experimental tube 100.
  • the coolant in the water supply tank 420 can flow between the cooler 410 and the water supply tank 420 to adjust the wall temperature of the experimental tube 100; the outlet end is connected to the exhaust treatment box 500, and the exhaust treatment box 500 is used to contain the treatment solution.
  • the aerosol in the experimental tube 100 can be dissolved in the treatment solution.
  • the above-mentioned aerosol sedimentation mechanism research device is provided with an aerosol concentration tester at both the inlet and outlet ends of the experimental tube 100, so as to detect the aerosol concentration at the inlet and outlet ends under different working conditions.
  • the outlet end is connected to the exhaust treatment box 500.
  • the aerosol in the experimental tube 100 is passed into the exhaust treatment box 500, so that the aerosol is dissolved in the treatment solution, and the aerosol is treated to prevent it from diffusing into the environment and polluting the environment.
  • the aerosol generator 200 is connected to the inlet end, and the aerosol prepared by the aerosol generator 200 can enter the experimental tube 100, so that the working condition of the experimental tube 100 meets the requirements of the gravity sedimentation experiment working condition, that is, the sedimentation rate model of the aerosol in the containment under the action of the gravity sedimentation mechanism is simulated, which is convenient for calculating the gravity sedimentation rate of the aerosol.
  • the air compressor 300 is connected to the inlet end, and the cooling component 400 is turned on.
  • the coolant in the water tank 420 circulates between the cooler 410 and the water tank 420.
  • the cooling component 400 is used to adjust the wall temperature of the experimental tube 100 to reach a first preset temperature, so that the operating conditions of the experimental section meet the working conditions of the hot dry sedimentation experiment.
  • the aerosol prepared by the aerosol generator 200 is filled into the experimental tube 100, and the sedimentation rate model of the aerosol in the containment under the action of the thermophoretic sedimentation mechanism is simulated, which is convenient for calculating the thermophoretic sedimentation rate of the aerosol.
  • an aerosol temporary storage tank 210 is further provided between the aerosol generator 200 and the experimental tube 100, the aerosol generator 200 is connected to the aerosol temporary storage tank 210, and the aerosol temporary storage tank 210 is connected to the experimental tube 100.
  • the aerosol prepared by the aerosol generator 200 is stored in the aerosol temporary storage tank 210, and when conducting an experiment, the aerosol temporary storage tank 210 is directly connected to the experimental tube 100 to facilitate the introduction of the prepared aerosol.
  • the aerosol temporary storage tank 210 and the experimental tube 100 are connected through an aerosol delivery pipeline, and an aerosol isolation valve 220 is provided on the aerosol delivery pipeline.
  • the aerosol isolation valve 220 is used to open or close the aerosol delivery pipeline. For example, when the experiment is over, the aerosol no longer needs to be introduced into the experimental tube 100, and the aerosol delivery pipeline is closed through the aerosol isolation valve 220.
  • the air compressor 300 and the experimental tube 100 are connected through a dry air delivery pipeline, and a heating element 310 is also provided on the dry air delivery pipeline.
  • the heating element 310 is used to heat the dry air and increase the temperature of the dry air filled into the experimental tube 100 so that it meets the experimental working conditions.
  • an air isolation valve 320 is provided on the dry air delivery pipeline, and the air isolation valve 320 is located between the heating element 310 and the experimental tube 100.
  • the air isolation valve 320 is used to open or close the dry air delivery pipeline. For example, when the experiment is over, dry air is no longer needed in the experimental tube 100, and the dry air delivery pipeline is closed by the air isolation valve 320.
  • the aerosol sedimentation mechanism research device also includes a steam generator 600 that can be selectively connected to the inlet end, and the steam generator 600 is used to generate steam.
  • the steam generated by the steam generator 600 is filled into the experimental tube 100, and the cooling component 400 is turned on to cooperate with the steam generator 600, and the wall temperature of the experimental tube 100 is adjusted to reach the second preset temperature, so that the working conditions of the experimental section meet the working conditions of the hot wet sedimentation experiment.
  • the aerosol prepared by the aerosol generator 200 is filled into the experimental tube 100, and the sedimentation rate model of the aerosol in the containment under the action of the diffusion electrophoresis sedimentation mechanism is simulated, which is convenient for calculating the diffusion electrophoresis sedimentation rate of the aerosol.
  • the steam generator 600 and the experimental tube 100 are connected through a steam delivery pipeline, and a steam isolation valve 610 is provided on the steam delivery pipeline.
  • the steam isolation valve 610 is used to open or close the steam delivery pipeline. For example, when the experiment is over, steam is no longer needed in the experimental tube 100, and the steam delivery pipeline is closed by the steam isolation valve 610.
  • the aerosol sedimentation mechanism research device further includes a mixing tube 700, one end of which is respectively connected to the aerosol generator 200, the air compressor 300 and the steam generator 600, and the other end of the mixing tube 700 is connected to the inlet end.
  • a gravity sedimentation experiment the aerosol in the aerosol temporary storage tank 210 is first charged into the mixing tube 700 for mixing, and then the aerosol is passed through the mixing tube 700 to enter the experimental tube 100 for experiment.
  • the dry air provided by the air compressor 300 and the aerosol in the aerosol temporary storage tank 210 are first charged into the mixing tube 700 for mixing, and then the mixture of dry air and aerosol is entered into the experimental tube 100 for experiment.
  • the steam provided by the steam generator 600 and the aerosol in the aerosol temporary storage tank 210 are first charged into the mixing tube 700 for mixing, and then the mixture of steam and aerosol is entered into the experimental tube 100 for experiment.
  • the mixing tube 700 is provided to facilitate the uniform mixing of aerosol and dry air, as well as aerosol and steam, and then the mixture enters the experimental tube 100 for experiment, thereby improving the accuracy of the experiment.
  • the experimental tube 100 further includes an inlet transition tube 120 installed at the inlet end, the inlet transition tube 120 is flared, and includes a large end and a small end, the large end is connected to the inlet end, and the small end is connected to the mixing tube 700.
  • the inlet transition tube 120 is arranged between the mixing tube 700 and the experimental tube 100 to allow the aerosol entering the experimental tube 100 to transition.
  • the outlet end of the experimental tube 100 is connected to the exhaust treatment box 500 through the exhaust pipeline, and the experimental tube 100 also includes an outlet transition tube 130 installed at the outlet end, and the outlet transition tube 130 is flared, and the outlet transition tube 130 includes a large end and a small end, the large end is connected to the outlet end, and the small end is connected to the exhaust pipeline.
  • the outlet transition tube 130 is arranged between the exhaust pipeline and the experimental tube 100 to make the discharged aerosol transition.
  • the inlet transition pipe 120 is connected to the mixing pipe 700 via the inlet connecting pipe 140
  • the outlet transition pipe 130 is connected to the exhaust pipe via the outlet connecting pipe 150 .
  • a test pipe outlet isolation valve 160 is provided on the exhaust pipe, and the test pipe outlet isolation valve 160 is used to open or close the exhaust pipe.
  • a muffler 510 is installed on the exhaust treatment box 500 , and the muffler 510 is used to reduce the noise generated in the exhaust treatment box 500 .
  • the experimental tube 100 is a square tube.
  • the experimental tube 100 includes a first tube wall and a second tube wall that are relatively arranged.
  • a group of cooling components 400 are installed on the first tube wall and the second tube wall.
  • the cooling components 400 are used to adjust the wall temperature of the corresponding tube wall. Compared with the existing circular experimental tube 100, it can only ensure that the entire cross-section (circular tube) of the experimental tube 100 is in the same cooling or heating environment.
  • the present application uses a square-shaped experimental tube 100, and cooling components 400 are set on the first tube wall and the second tube wall that are relatively arranged of the experimental tube 100.
  • the wall temperatures of the first tube wall and the second tube wall are adjusted respectively by the cooling components 400 to meet the experimental requirements of different wall temperatures or wall condensation.
  • the cooling assembly 400 further includes a water supply pump 430 , which is used to circulate the condensate between the water supply tank 420 and the cooler 410 , thereby pumping the water in the water supply tank 420 into the cooler 410 .
  • the cooling assembly 400 further includes a water supply isolation valve 440, the water supply tank 420 and the cooler 410 are connected through a liquid supply pipeline, the water supply pump 430 and the water supply isolation valve 440 are both arranged on the liquid supply pipeline, and the water supply isolation valve 440 is arranged between the cooler 410 and the water supply pump 430, and the connection or closing of the liquid supply pipeline is controlled by setting the water supply isolation valve 440. For example, when it is not necessary to provide coolant to the cooler 410, the liquid supply pipeline is closed by the water supply isolation valve 440.
  • the aerosol deposition mechanism research device includes a thermal parameter measuring agent, and the thermal parameter measurement includes the measurement of pressure, pressure difference, water level, temperature and flow rate.
  • the thermal parameter measuring agent includes a pressure gauge, a liquid level gauge and a temperature gauge. In actual measurement, it includes pressure measurement points, pressure difference measurement points, water level measurement points, temperature measurement points and flow measurement points.
  • the pressure measurement points include the aerosol temporary storage tank 210, the outlet of the heating element 310, the upstream of the steam isolation valve 610, the outlet of the mixing tube 700, and the space of the exhaust treatment box 500;
  • the pressure difference measurement points include the pressure difference of the inlet and outlet of the aerosol temporary storage tank 210, the pressure difference of the inlet and outlet of the experimental tube 100, and the pressure difference of the inlet and outlet of the cooler 410;
  • the water level measurement points include the water level of the exhaust treatment box 500 and the water level of the water supply tank 420;
  • the temperature measurement points include the outlet of the aerosol generator 200, the aerosol temporary storage tank 210, the inlet and outlet of the heating element 310, the upstream of the steam isolation valve 610, the outlet of the mixing tube 700, the outlet of the experimental tube 100, the inside of the large water tank, the inlet and outlet of the cooler 410, and the inner walls of the first pipe wall and the second pipe wall of the experimental tube 100;
  • the flow measurement points include the upstream of the
  • the present application also provides an operating method of an aerosol deposition mechanism research device, using the above-mentioned aerosol deposition mechanism research device, comprising the following steps:
  • the operating method of the aerosol sedimentation mechanism research device is as follows: first, the aerosol generator 200 is connected to the experimental tube 100, so that the aerosol can naturally settle in the experimental tube 100 under the action of the gravity sedimentation mechanism, and the sedimentation rate model of the aerosol in the containment under the action of the gravity sedimentation mechanism is simulated.
  • the gravity sedimentation rate V grav By measuring the first aerosol inlet concentration C in1 at the inlet end and the first aerosol outlet concentration C out1 at the outlet end, the gravity sedimentation rate V grav ; Secondly, after the gravity sedimentation experiment is completed, the aerosol generator 200 is turned off, and the experimental residues in the experimental tube 100 are emptied to prevent the experimental residues in the experimental tube 100 from affecting the next experiment; then, the air compressor 300 and the cooling component 400 are turned on, and the wall temperature of the experimental tube 100 is adjusted to reach the first preset temperature, so that the working conditions of the experimental section meet the working conditions of the hot dry sedimentation experiment, and then the aerosol generator 200 is turned on, and aerosol is filled into the experimental tube 100, simulating the sedimentation rate model of the aerosol in the containment under the action of the thermophoresis sedimentation mechanism, and the thermophoresis sedimentation rate Vt hem can be obtained by measuring the second aerosol inlet concentration C in2 at the inlet end and the second aerosol outlet concentration C out2 at the
  • step S3 when performing step S3, the heating element 310 is turned on to heat the dry air so that the temperature of the dry air reaches the requirement of the hot dry precipitation experiment.
  • the method further includes: S4, closing the aerosol generator 200, the air compressor 300, and the cooling component 400, and clearing the experimental residues in the experimental tube 100; S5, turning on the steam generator 600, allowing the steam generated by the steam generator 600 to enter the experimental tube 100, turning on the cooling component 400, adjusting the wall temperature of the experimental tube 100 to reach the second preset temperature, turning on the aerosol generator 200, and using the exhaust treatment box 500 to detect the third aerosol inlet concentration C in3 at the inlet end and the third aerosol outlet concentration C out3 at the outlet end, and calculating the diffusion electrophoresis sedimentation rate V diff of the aerosol in the experimental tube 100 under the diffusion electrophoresis sedimentation mechanism.
  • the aerosol generator 200, the air compressor 300, and the cooling assembly 400 are turned off, and the experimental residues in the experimental tube 100 are emptied to prevent the experimental residues in the experimental tube 100 from affecting the next experiment; finally, the steam generated by the steam generator 600 is filled into the experimental tube 100, and the cooling assembly 400 is turned on to cooperate with the steam generator 600, and the wall temperature of the experimental tube 100 is adjusted to reach the second preset temperature, so that the working conditions of the experimental section meet the working conditions of the hot wet deposition experiment.
  • the aerosol prepared by the aerosol generator 200 is filled into the experimental tube 100, and the sedimentation rate model of the aerosol in the containment under the diffusion electrophoresis sedimentation mechanism is simulated, which is convenient for calculating the diffusion electrophoresis sedimentation rate V diff of the aerosol.
  • the present application first conducts a gravity sedimentation experiment to obtain the gravity sedimentation rate V grav , and then conducts a hot dry natural sedimentation experiment to obtain the sum of the gravity sedimentation rate V grav and the thermophoresis sedimentation rate Vt hem .
  • the thermophoresis sedimentation rate Vt hem can be obtained; finally, a hot wet sedimentation experiment is carried out to obtain the sum of the three sedimentations.
  • the diffusion electrophoresis sedimentation rate V diff is obtained.
  • the operating method of the aerosol sedimentation mechanism research device only requires an aerosol concentration tester to measure the concentrations at the inlet and outlet ends, and the gravity sedimentation rate V grav , the thermophoretic electrophoretic sedimentation rate Vt hem and the diffusion electrophoretic sedimentation rate V diff can be obtained by calculation, thereby reducing the calculation steps and alleviating the calculation pressure.
  • step S1 after calculating the gravity sedimentation rate V grav , the gravity sedimentation rate calculation formula is used to verify whether the calculated value is correct; in step S3, after calculating the thermophoretic electrophoretic sedimentation rate Vt hem , the thermophoretic electrophoretic sedimentation rate calculation formula is used to verify whether the calculated value is correct; in step S5, after calculating the diffusion electrophoretic sedimentation rate V diff , the diffusion electrophoretic sedimentation rate formula is used to verify whether the calculated value is correct.
  • the present application After calculating the gravity sedimentation rate V grav , the thermophoretic electrophoretic sedimentation rate Vt hem and the diffusion electrophoretic electrophoretic sedimentation rate V diff , the present application also has a verification step to verify whether the calculation result of the previous step is accurate, thereby reversely verifying whether the model construction meets the preset requirements.
  • the gravity sedimentation rate calculation formula is: Where, ⁇ p is the aerosol density; r is the radius of the aerosol, Cn is the slip correction factor, ⁇ is the viscosity of the gas, and ⁇ is the dynamic shape factor;
  • the formula for the diffusion electrophoresis sedimentation rate is: Wherein, Ms is the molar mass of water, MNC is the molar mass of non-condensable gas, Xs is the molar fraction of water vapor in the gas, XNC is the molar fraction of non-condensable gas, Wcond is the surface condensed water mass flow rate, and ⁇ b is the density of non-condensable gas.
  • step S1 the aerosol generated by the aerosol generator 200 is first mixed in the mixing tube 700, and then enters the experimental tube 100 for experiment; in step S3, the aerosol generated by the aerosol generator 200 and the dry air generated by the air compressor 300 are first mixed in the mixing tube 700, and then enter the experimental tube 100 for experiment; in step S5, the aerosol generated by the aerosol generator 200 and the steam generated by the steam generator 600 are first mixed in the mixing tube 700, and then enter the experimental tube 100 for experiment. Before the aerosol enters the experimental tube 100, the aerosol can be mixed first to improve the accuracy of the experiment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

一种气溶胶沉降机理研究装置包括:实验管(100),气溶胶发生器(200),空气压缩机(300),冷却组件(400)以及排气处理箱(500),实验管(100)具有相连通的进口端和出口端,进口端和出口端均设置有气溶胶浓度测试仪;气溶胶发生器(200)用于制备气溶胶,气溶胶发生器(200)能够可选择性地与进口端连通;空气压缩机(300)能够可选择性地与进口端连通;冷却组件(400)包括相连通的冷却器(410)和给水箱(420),给水箱(420)内具有冷却液,冷却器(410)安装在实验管(100)的外管壁上,给水箱(420)内的冷却液能够在冷却器(410)和给水箱(420)之间流动以调节实验管(100)的壁温;出口端与排气处理箱(500)连通,排气处理箱(500)用于容纳处理溶液,实验管(100)内的气溶胶能够溶于处理溶液中。还公开了一种气溶胶沉降机理研究装置的操作方法。

Description

气溶胶沉降机理研究装置及其操作方法 技术领域
本申请涉及气溶胶技术领域,特别是涉及一种气溶胶沉降机理研究装置及其操作方法。
背景技术
安全壳内放射性核素的主要沉降机理包括重力沉降机理、热电泳沉降机理以及扩散电泳沉降机理等。重力沉降是指在重力的作用下,悬浮在安全壳内大气中的气溶胶会向下运动,最终沉降在内底面上。热电泳沉降是指气溶胶在安全壳内大气与表面(如安全壳内壁等)的温度梯度的影响下,向内表面迁移的过程。扩散电泳沉降是指气溶胶被由冷凝蒸汽形成的气流扫向壁面的过程。气溶胶的沉降过程受安全壳内热工环境影响,在发生事故时,安全壳内的气溶胶在不同的沉降机理作用下逐渐沉降到安全壳内壁面和地板、设备表面等。现需要建立一种气溶胶沉降机理研究装置,从而模拟安全壳内气溶胶在不同的沉降机理作用下的沉降速率模型,便于计算在不同沉降机理下,气溶胶的沉降速率。
发明内容
基于此,提出一种气溶胶沉降机理研究装置,能够模拟气溶胶在不同的沉降机理作用下的沉降速率。
气溶胶沉降机理研究装置,包括:
实验管,具有相连通的进口端和出口端,所述进口端和所述出口端均设置有气溶胶浓度测试仪;
气溶胶发生器,用于制备气溶胶,所述气溶胶发生器能够可选择性地与所述进口端连通;
空气压缩机,能够可选择性地与所述进口端连通;
冷却组件,包括相连通的冷却器和给水箱,所述给水箱内具有冷却液,所述冷却器安装在所述实验管的外管壁上,所述给水箱内的冷却液能够在所述冷却器和所述给水箱之间流动以调节所述实验管的壁温;
排气处理箱,所述出口端与所述排气处理箱连通,所述排气处理箱用于容纳处理溶液,所述实验管内的气溶胶能够溶于所述处理溶液中。
在其中一个实施例中,
还包括与所述进口端可选择性地连通的蒸汽发生器,所述蒸汽发生器用于产生蒸汽。
在其中一个实施例中,还包括混合管,所述混合管的一端分别与所述气溶胶发生器、所述空气压缩机以及所述蒸汽发生器连接,所述混合管的另一端与所述进口端连接。
在其中一个实施例中,所述实验管还包括安装于所述进口端的入口过渡管,所述入口过渡管呈扩口状,所述入口过渡管包括大端和小端,所述大端连接于所述进口端,所述小端与所述混合管连接。
在其中一个实施例中,所述实验管为方形管,所述实验管包括相对设置的第一管壁和第二管壁,所述第一管壁和所述第二管壁上均安装有一组冷却组件,所述冷却组件用于调节对应管壁的壁温。
本申请还提供了一种气溶胶沉降机理研究装置的操作方法,使用上述的气溶胶沉降机理研究装置,包括以下步骤:
S1、将所述气溶胶发生器与所述实验管的所述进口端连通,并将所述实验管的所述出口端与排气处理箱连通,打开所述气溶胶发生器,使所述气溶胶发生器产生的气溶胶流入至所述实验管内,使所述实验管内的气溶胶在重力沉降机理作用下沉降,通过所述气溶胶浓度测试仪检测得到所述进口端的第一气溶胶进入浓度C in1,和所述出口端的第一气溶胶排出浓度C out1,计算得到所述实验管内的气溶胶在重力沉降机理作用下的重力沉降速率V grav
S2、关闭所述气溶胶发生器,清空所述实验管内的实验残留物;
S3、将所述空气压缩机与所述进口端连通,开启所述空气压缩机,使干空气进入所述实验管内,打开所述冷却组件,使所述给水箱内的冷却液在所述给水箱和所述冷却器之间循环流动,调节所述实验管的壁温使之达到第一预设温度后,开启所述气溶胶发生器,使所述实验管内的气溶胶在热电泳沉降机理作用下沉降,检测所述进口端的第二气溶胶进入浓度C in2,以及所述出口端的第二气溶胶排出浓度C out2,计算得到所述实验管内的气溶胶在热电泳沉降机理作用下的热电泳沉降速率Vt hem
在其中一个实施例中,在步骤S3之后还包括:
S4、关闭所述气溶胶发生器、所述空气压缩机、所述冷却组件,清空所述实验管内的实验残留物;
S5、开启蒸汽发生器,使所述蒸汽发生器产生的蒸汽进入至所述实验管中,开启所述 冷却组件,调节使所述实验管的壁温使之达到第二预设温度后,开启所述气溶胶发生器,排气处理箱检测所述进口端的第三气溶胶进入浓度C in3,以及所述出口端的第三气溶胶排出浓度C out3,计算得到所述实验管内的气溶胶在扩散电泳沉降机理作用下的扩散电泳沉降速率V diff
在其中一个实施例中,
在S1中,所述重力沉降速率V grav通过公式C out1=C in1exp(-λ gravt)和
Figure PCTCN2022136908-appb-000001
计算,其中,λ grav为所述实验段内的重力沉降去除因子,t为流动时间,V为所述实验段的体积,A h为所述实验段内水平投影面积;
在S3中,所述热电泳沉降速率V them通过公式C out2=C in2exp(-λ gravthem)t和
Figure PCTCN2022136908-appb-000002
计算,其中,λ them为所述实验段内的热电泳沉降去除因子,t为流动时间,V为所述实验段的体积,A为所述实验段内上、下表面积;
在S5中,所述扩散电泳沉降速率V diff通过公式C out3=C in3exp(-λ gravthemdiff)t和
Figure PCTCN2022136908-appb-000003
计算,其中,λ diff为所述实验段内的扩散电泳沉降去除因子,t为流动时间,V为所述实验段的体积,A为所述实验段内上、下表面积。
在其中一个实施例中,
在步骤S1中,在计算完所述重力沉降速率V grav后,通过重力沉降速率计算公式验证计算的数值是否正确;
在步骤S3中,在计算完所述热电泳沉降速率V them后,通过热电泳沉降速率计算公式验证计算的数值是否正确;
在步骤S5中,在计算完所述扩散电泳沉降速率V diff后,通过扩散电泳沉降速率公式验证计算的数值是否正确。
在其中一个实施例中,
在步骤S1中,先使所述气溶胶发生器产生的气溶胶在混合管中混合后,再进入至所述实验管中进行实验;
在步骤S3中,先使所述气溶胶发生器产生的气溶胶与所述空气压缩机产生的干空气在所述混合管中混合后,再进入至所述实验管中进行实验;
在步骤S5中,先使所述气溶胶发生器产生的气溶胶与所述蒸汽发生器产生的蒸汽在所述混合管中混合后,再进入至所述实验管中进行实验。
上述气溶胶沉降机理研究装置,通过在在实验管的进口端和出口端均设置气溶胶浓度测试仪,从而检测不同工况时,进口端的气溶胶浓度和出口端的气溶胶浓度。将出口端与排气处理箱连通,在实验时,将实验管内的气溶胶通入至排气处理箱中,使气溶胶溶于处理溶液中,对气溶胶进行处理,防止了其扩散至环境中污染环境。将气溶胶发生器与进口端连通,气溶胶发生器制备的气溶胶能够进入实验管内,从而使实验管的工况符合重力沉降实验工况需求,即模拟了安全壳内气溶胶在重力沉降机理作用下的沉降速率模型,便于计算气溶胶的重力沉降速率。将空气压缩机与进口端连通,打开冷却组件,给水箱中的冷却液在冷却器和给水箱之间循环流动,利用冷却组件调节实验管的壁温使之达到第一预设温度,从而使实验段的工况符合热态干式沉降实验工况需求,将气溶胶发生器制备的气溶胶充入至实验管中,模拟了安全壳内气溶胶在热电泳沉降机理作用下的沉降速率模型,便于计算气溶胶的热电泳沉降速率。
附图说明
图1为本申请一实施例中的气溶胶沉降机理研究装置的整体结构示意图;
图2为图1中实验管的第一视角的结构示意图;
图3为图1中实验管的第二视角的结构示意图;
图4为图1中实验管的第三视角的的结构示意图。
附图标记:
实验管100、混合管110、入口过渡管120、出口过渡管130、入口连接管140、出口连接管150、实验管出口隔离阀160;
气溶胶发生器200、气溶胶临时储存罐210、气溶胶隔离阀220;
空气压缩机300、加热件310、空气隔离阀320;
冷却组件400、冷却器410、给水箱420、给水泵430、给水隔离阀440;
排气处理箱500、消音器510;
蒸汽发生器600、蒸汽隔离阀610;
混合管700。
具体实施方式
为使本申请的上述目的、特征和优点能够更加明显易懂,下面结合附图对本申请的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本申请。但是本申请能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背 本申请内涵的情况下做类似改进,因此本申请不受下面公开的具体实施例的限制。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“上”、“下”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
本申请实施例提供了一种气溶胶沉降机理研究装置,参阅图1和图2,气溶胶沉降机理研究装置包括实验管100、气溶胶发生器200、空气压缩机300、冷却组件400以及排气处理箱500,实验管100具有相连通的进口端和出口端,进口端和出口端均设置有气溶胶浓度测试仪;气溶胶发生器200用于制备气溶胶,气溶胶发生器200能够可选择性地与进口端连通;空气压缩机300能够可选择性地与进口端连通;冷却组件400包括相连通的冷却器410和给水箱420,给水箱420内具有冷却液,冷却器410安装在实验管100的外管 壁上,给水箱420内的冷却液能够在冷却器410和给水箱420之间流动以调节实验管100的壁温;出口端与排气处理箱500连通,排气处理箱500用于容纳处理溶液,实验管100内的气溶胶能够溶于处理溶液中。
上述气溶胶沉降机理研究装置,通过在实验管100的进口端和出口端均设置气溶胶浓度测试仪,从而检测不同工况时,进口端的气溶胶浓度和出口端的气溶胶浓度。将出口端与排气处理箱500连通,在实验时,将实验管100内的气溶胶通入至排气处理箱500中,使气溶胶溶于处理溶液中,对气溶胶进行处理,防止了其扩散至环境中污染环境。将气溶胶发生器200与进口端连通,气溶胶发生器200制备的气溶胶能够进入实验管100内,从而使实验管100的工况符合重力沉降实验工况需求,即模拟了安全壳内气溶胶在重力沉降机理作用下的沉降速率模型,便于计算气溶胶的重力沉降速率。将空气压缩机300与进口端连通,打开冷却组件400,给水箱420中的冷却液在冷却器410和给水箱420之间循环流动,利用冷却组件400调节实验管100的壁温使之达到第一预设温度,从而使实验段的工况符合热态干式沉降实验工况需求,将气溶胶发生器200制备的气溶胶充入至实验管100中,模拟了安全壳内气溶胶在热电泳沉降机理作用下的沉降速率模型,便于计算气溶胶的热电泳沉降速率。
具体地,请参阅图1,在气溶胶发生器200和实验管100之间还设置有气溶胶临时储存罐210,气溶胶发生器200与气溶胶临时储存罐210连通,气溶胶临时储存罐210与实验管100连通。气溶胶发生器200制备的气溶胶储存在气溶胶临时储存罐210内,当进行实验时,直接将气溶胶临时储存罐210与实验管100连通,便于通入制备好的气溶胶。
具体地,请参阅图1,气溶胶临时储存罐210和实验管100通过气溶胶输送管路连通,在气溶胶输送管路上设置有气溶胶隔离阀220,气溶胶隔离阀220用于开启或者封闭气溶胶输送管路。例如,当实验结束后,实验管100内不再需要通入气溶胶,此时通过气溶胶隔离阀220关闭气溶胶输送管路。
具体地,请参阅图1,空气压缩机300和实验管100通过干空气输送管路连通,在干空气输送管路上还设置有加热件310,加热件310用于加热干空气,提高充入实验管100内的干空气的温度,以使其满足实验工况需求。
具体地,请参阅图1,在干空气输送管路上设置有空气隔离阀320,且空气隔离阀320位于加热件310和实验管100之间,空气隔离阀320用于开启或者封闭干空气输送管路。例如,当实验结束后,实验管100内不再需要通入干空气,此时通过空气隔离阀320关闭干空气输送管路。
具体地,请参阅图1,气溶胶沉降机理研究装置还包括与进口端可选择性地连通的蒸 汽发生器600,蒸汽发生器600用于产生蒸汽。将蒸汽发生器600产生的蒸汽充入至实验管100内,并打开冷却组件400使之与蒸汽发生器600相互配合,调节了实验管100的壁温使之达到第二预设温度,从而使实验段的工况符合热态湿式沉降实验工况需求,将气溶胶发生器200制备的气溶胶充入至实验管100中,模拟了安全壳内气溶胶在扩散电泳沉降机理作用下的沉降速率模型,便于计算气溶胶的扩散电泳沉降速率。
具体地,请参阅图1,蒸汽发生器600和实验管100通过蒸汽输送管路连通,在蒸汽输送管路上设置有蒸汽隔离阀610,蒸汽隔离阀610用于开启或者封闭蒸汽输送管路。例如,当实验结束后,实验管100内不再需要通入蒸汽,此时通过蒸汽隔离阀610关闭蒸汽输送管路。
具体地,请参阅图1,气溶胶沉降机理研究装置还包括混合管700,混合管700的一端分别与气溶胶发生器200、空气压缩机300以及蒸汽发生器600连接,混合管700的另一端与进口端连接。在进行重力沉降实验时,先将气溶胶临时储存罐210内的气溶胶充入至混合管700中进行混合,然后再使气溶胶通过混合管700进入实验管100进行实验。在进行热态干式沉降试验时,先将空气压缩机300提供的干空气和气溶胶临时储存罐210内的气溶胶充入至混合管700中进行混合,然后再使干空气和气溶胶的混合物进入实验管100进行实验。在进行热态湿式沉降试验时,先将蒸汽发生器600提供的蒸汽和气溶胶临时储存罐210内的气溶胶充入至混合管700中进行混合,然后再使蒸汽和气溶胶的混合物进入实验管100进行实验。设置混合管700便于使气溶胶和干空气,以及气溶胶和蒸汽混合均匀后进入实验管100中进行实验,提高了实验的准确性。
具体地,请参阅图1至图3,实验管100还包括安装于进口端的入口过渡管120,入口过渡管120呈扩口状,入口过渡管120包括大端和小端,大端连接于进口端,小端与混合管700连接。在混合管700和实验管100之间设置入口过渡管120,使进入实验管100内的气溶胶进行过渡。
具体地,具体地,请参阅图1至图3,实验管100的出口端通过排气管路与排气处理箱500连通,实验管100还包括安装于出口端的出口过渡管130,出口过渡管130呈扩口状,出口过渡管130包括大端和小端,大端连接于出口端,小端与排气管路连接。在排气管路和实验管100之间设置出口过渡管130,使排出的气溶胶进行过渡。
更具体地,请参阅图1至图3,入口过渡管120通过入口连接管140与混合管700连接,出口过渡管130通过出口连接管150与排气管路连接。
更具体地,请参阅图1至图3,在排气管路上设置有实验管出口隔离阀160,实验管出口隔离阀160用于开启或者封闭排气管路。
更具体地,请参阅图1,在排气处理箱500上安装有消音器510,消音器510用于降低排气处理箱500中产生的噪音。
具体地,请参阅图1、图2以及图4,实验管100为方形管,实验管100包括相对设置的第一管壁和第二管壁,第一管壁和第二管壁上均安装有一组冷却组件400,冷却组件400用于调节对应管壁的壁温。相比于现有的呈圆形的实验管100,其只能保证实验管100整个截面(圆管)处于相同的冷却或加热环境。本申请选用呈方形状的实验管100,在实验管100的相对设置的第一管壁和第二管壁上均设置冷却组件400,通过冷却组件400分别调节第一管壁和第二管壁的壁温,,以满足不同壁面温度或壁面冷凝的实验需求。
具体地,请参阅图1和图2,冷却组件400还包括给水泵430,给水泵430用于使冷凝液在给水箱420和冷却器410之间循环流动,从而将给水箱420中的水泵入至冷却器410中。
具体地,请参阅图1和图2,冷却组件400还包括给水隔离阀440,给水箱420和冷却器410通过供液管路连通,给水泵430和给水隔离阀440均设置在供液管路上,且给水隔离阀440设置于冷却器410和给水泵430之间,通过设置给水隔离阀440控制供液管路的连通或者关闭。例如,当不需要向冷却器410中提供冷却液时,通过给水隔离阀440关闭供液管路。
具体地,气溶胶沉降机理研究装置包括热工参数测量剂,热工参数测量包括压力、压差、水位、温度和流量的测量,热工参数测量剂包括压力表、液位表以及温度表。在实际测量时,包括压力测量点、压差测量点、水位测点、温度测点以及流量测点。其中,压力测量点包括气溶胶临时储存罐210、加热件310出口、蒸汽隔离阀610上游、混合管700出口、排气处理箱500空间;压差测点包括气溶胶临时储存罐210进出口的压差、实验管100的进出口的压差、冷却器410进出口的压差;水位测点包括排气处理箱500的水位、给水箱420的水位;温度测点包括气溶胶发生器200出口、气溶胶临时储存罐210、加热件310进出口、蒸汽隔离阀610上游、混合管700出口、实验管100出口、大水箱内、冷却器410进出口,实验管100的第一管壁和第二管壁的内壁处;流量测点包括空气隔离阀320上游、蒸汽隔离阀610上游、给水隔离阀440上游(即给水泵430的出口)。
本申请还提供了一种气溶胶沉降机理研究装置的操作方法,使用上述的气溶胶沉降机理研究装置,包括以下步骤:
S1、将气溶胶发生器200与实验管100的进口端连通,并将实验管100的出口端与排气处理箱500连通,打开气溶胶发生器200,使气溶胶发生器200产生的气溶胶流入至实验管100内,使实验管100内的气溶胶在重力沉降机理作用下沉降,通过气溶胶浓度测试 仪检测得到进口端的第一气溶胶进入浓度C in1,和出口端的第一气溶胶排出浓度C out1,计算得到实验管100内的气溶胶在重力沉降机理作用下的重力沉降速率V grav
S2、关闭气溶胶发生器200,清空实验管100内的实验残留物;
S3、将空气压缩机300与进口端连通,开启空气压缩机300,使干空气进入实验管100内,打开冷却组件400,使给水箱420内的冷却液在给水箱420和冷却器410之间循环流动,调节实验管100的壁温使之达到第一预设温度后,开启气溶胶发生器200,使实验管100内的气溶胶在热电泳沉降机理作用下沉降,检测进口端的第二气溶胶进入浓度C in2,以及出口端的第二气溶胶排出浓度C out2,计算得到实验管100内的气溶胶在热电泳沉降机理作用下的热电泳沉降速率Vt hem
上述气溶胶沉降机理研究装置的操作方法,首先,将气溶胶发生器200和实验管100连通,使气溶胶能够在实验管100内受重力沉降机理作用下自然沉降,模拟了安全壳内气溶胶在重力沉降机理作用下的沉降速率模型,通过测量进口端的第一气溶胶进入浓度C in1,和出口端的第一气溶胶排出浓度C out1,即可得到重力沉降速率V grav;其次,在进行完重力沉降实验后,关闭气溶胶发生器200,并且清空实验管100内的实验残留物,防止实验管100内的实验残留物影响下一次实验;然后,开启空气压缩机300和冷却组件400,调节实验管100的壁温使之达到第一预设温度,从而使实验段的工况符合热态干式沉降实验工况需求,然后打开气溶胶发生器200,向实验管100内充入气溶胶,模拟了安全壳内气溶胶在热电泳沉降机理作用下的沉降速率模型,通过测量进口端的第二气溶胶进入浓度C in2,和出口端的第二气溶胶排出浓度C out2,即可得到热电泳沉降速率Vt hem
具体地,在进行步骤S3时,打开加热件310,加热干空气,从而使干空气的温度达到热态干式沉降实验的要求。
具体地,在步骤S3之后还包括:S4、关闭气溶胶发生器200、空气压缩机300、冷却组件400,清空实验管100内的实验残留物;S5、开启蒸汽发生器600,使蒸汽发生器600产生的蒸汽进入至实验管100中,开启冷却组件400,调节使实验管100的壁温使之达到第二预设温度后,开启气溶胶发生器200,排气处理箱500检测进口端的第三气溶胶进入浓度C in3,以及出口端的第三气溶胶排出浓度C out3,计算得到实验管100内的气溶胶在扩散电泳沉降机理作用下的扩散电泳沉降速率V diff。在进行完热态干式沉降实验后,关闭气溶胶发生器200、空气压缩机300、冷却组件400,并且清空实验管100内的实验残留物,防止实验管100内的实验残留物影响下一次实验;最后,将蒸汽发生器600产生的蒸汽充入至实验管100内,并打开冷却组件400使之与蒸汽发生器600相互配合,调节了实验管100的壁温使之达到第二预设温度,从而使实验段的工况符合热态湿式沉降实验工况需求, 将气溶胶发生器200制备的气溶胶充入至实验管100中,模拟了安全壳内气溶胶在扩散电泳沉降机理作用下的沉降速率模型,便于计算气溶胶的扩散电泳沉降速率V diff
具体地,在S1中,重力沉降速率V grav通过公式C out1=C in1exp(-λ gravt)和
Figure PCTCN2022136908-appb-000004
计算,其中,λ grav为实验管100内的重力沉降去除因子,t为流动时间,V为实验管100的体积,A h为实验管100内水平投影面积;在S3中,热电泳沉降速率V them通过公式C out2=C in2exp(-λ gravthem)t和
Figure PCTCN2022136908-appb-000005
计算,其中,λ them为实验管100内的热电泳沉降去除因子,t为流动时间,V为实验管100的体积,A为实验管100内上、下表面积;在S5中,扩散电泳沉降速率V diff通过公式C out3=C in3exp(-λ gravthemdiff)t和
Figure PCTCN2022136908-appb-000006
计算,其中,λ diff为实验管100内的扩散电泳沉降去除因子,t为流动时间,V为实验段的体积,A为实验管100内上、下表面积。本申请根据三种沉降机理的作用机制,先做重力沉降实验,得到重力沉降速率V grav,再开展热态干式自然沉降实验,得到重力沉降速率V grav和热电泳沉降速率Vt hem之和,根据第一个实验将重力沉降速率V grav去除后,就可以得到热电泳沉降速率Vt hem;最后开展热态湿式沉降实验,得到三种沉降之和,去除重力沉降速率V grav和热电泳沉降速率Vt hem后,就得到扩散电泳沉降速率V diff。而且本申请提供的气溶胶沉降机理研究装置的操作方法,只需要气溶胶浓度测试仪测量进口端和出口端的浓度,即可通过计算得到重力沉降速率V grav、热电泳沉降速率Vt hem以及扩散电泳沉降速率V diff,减少了计算步骤,减轻了计算压力。
更具体地,在进行重力沉降实验时,实验管100内的气溶胶在重力沉降机理作用下,气溶以及胶浓度变化可表示为
Figure PCTCN2022136908-appb-000007
根据C in1、C out1、流动时间t,可以推导得到公式C out1=C in1exp(-λ gravt)。
更具体地,在进行热态干式沉降实验时,实验管100内的气溶胶在热电泳沉降机理作用下,气溶胶浓度变化可表示为
Figure PCTCN2022136908-appb-000008
根据C in2、C out2、流动时间t,可以推导得到公式C out2=C in2exp(-λ gravthem)t。
更具体地,在进行热态湿式沉降实验时,实验管100内的气溶胶在扩散电泳沉降机理作用下,气溶胶浓度变化可表示为
Figure PCTCN2022136908-appb-000009
根据C in3、C out3、流动时间t,可以推导得到公式C out3=C in3exp(-λ gravthemdiff)t。
具体地,在步骤S1中,在计算完重力沉降速率V grav后,通过重力沉降速率计算公式验证计算的数值是否正确;在步骤S3中,在计算完热电泳沉降速率Vt hem后,通过热电泳沉降速率计算公式验证计算的数值是否正确;在步骤S5中,在计算完扩散电泳沉降速率V diff后,通过扩散电泳沉降速率公式验证计算的数值是否正确。本申请在计算得到重力沉降速率V grav、热电泳沉降速率Vt hem以及扩散电泳沉降速率V diff,后,还具有验证步骤,验证上一步的计算结果是否准确,从而反向验证模型构造是否符合预设需求。
具体地,重力沉降速率计算公式为
Figure PCTCN2022136908-appb-000010
其中,ρ p为气溶胶密度;r为气溶胶的半径,Cn为滑移修正因子,μ为气体的粘度,φ为动力形状因子;
具体地,热电泳沉降速率计算公式为
Figure PCTCN2022136908-appb-000011
其中,C s为滑移修正系数,Cn为滑移修正因子,μ g为气体的粘度,ρ g为气体的密度,α=k g/k p,k g和k p分别为气体和气溶胶的热导率,C T为热量修正系数,C M为动量修正系数,T 0为实验管100内空气湿度,
Figure PCTCN2022136908-appb-000012
λ为分子自由程,d P为气溶胶的直径;
具体地,扩散电泳沉降速率公式为
Figure PCTCN2022136908-appb-000013
其中,M s为水的摩尔质量,M NC为不可凝气体的摩尔质量,X s为气体中水蒸气所占的摩尔份额,X NC为不可凝气体所占的摩尔份额,W cond为表面凝结水质量流量,ρ b为不可凝气体的密度。
具体地,在步骤S1中,先使气溶胶发生器200产生的气溶胶在混合管700中混合后,再进入至实验管100中进行实验;在步骤S3中,先使气溶胶发生器200产生的气溶胶与空气压缩机300产生的干空气在混合管700中混合后,再进入至实验管100中进行实验;在步骤S5中,先使气溶胶发生器200产生的气溶胶与蒸汽发生器600产生的蒸汽在混合管700中混合后,再进入至实验管100中进行实验。在气溶胶进入实验管100前,可以先将气溶胶混合,提高实验准确度。
可以理解的上,在进行步骤S1至步骤S5时,排气回路一直处于连通状态,实验管100内的气溶胶一直通过出口排和排气回路排入至排气处理箱500中的处理溶液中。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛 盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 气溶胶沉降机理研究装置,其特征在于,包括:
    实验管,具有相连通的进口端和出口端,所述进口端和所述出口端均设置有气溶胶浓度测试仪;
    气溶胶发生器,用于制备气溶胶,所述气溶胶发生器能够可选择性地与所述进口端连通;
    空气压缩机,能够可选择性地与所述进口端连通;
    冷却组件,包括相连通的冷却器和给水箱,所述给水箱内具有冷却液,所述冷却器安装在所述实验管的外管壁上,所述给水箱内的冷却液能够在所述冷却器和所述给水箱之间流动以调节所述实验管的壁温;
    排气处理箱,所述出口端与所述排气处理箱连通,所述排气处理箱用于容纳处理溶液,所述实验管内的气溶胶能够溶于所述处理溶液中。
  2. 根据权利要求1所述的气溶胶沉降机理研究装置,其特征在于,还包括与所述进口端可选择性地连通的蒸汽发生器,所述蒸汽发生器用于产生蒸汽。
  3. 根据权利要求2所述的气溶胶沉降机理研究装置,其特征在于,还包括混合管,所述混合管的一端分别与所述气溶胶发生器、所述空气压缩机以及所述蒸汽发生器连接,所述混合管的另一端与所述进口端连接。
  4. 根据权利要求3所述的气溶胶沉降机理研究装置,其特征在于,所述实验管还包括安装于所述进口端的入口过渡管,所述入口过渡管呈扩口状,所述入口过渡管包括大端和小端,所述大端连接于所述进口端,所述小端与所述混合管连接。
  5. 根据权利要求1所述的气溶胶沉降机理研究装置,其特征在于,所述实验管为方形管,所述实验管包括相对设置的第一管壁和第二管壁,所述第一管壁和所述第二管壁上均安装有一组冷却组件,所述冷却组件用于调节对应管壁的壁温。
  6. 气溶胶沉降机理研究装置的操作方法,其特征在于,使用如权利要求1-5任一项所述的气溶胶沉降机理研究装置,包括以下步骤:
    S1、将所述气溶胶发生器与所述实验管的所述进口端连通,并将所述实验管的所述出口端与排气处理箱连通,打开所述气溶胶发生器,使所述气溶胶发生器产生的气溶胶流入至所述实验管内,使所述实验管内的气溶胶在重力沉降机理作用下沉降,通过所述气溶胶浓度测试仪检测得到所述进口端的第一气溶胶进入浓度C in1,和所述出口端的第一气溶胶 排出浓度C out1,计算得到所述实验管内的气溶胶在重力沉降机理作用下的重力沉降速率V grav
    S2、关闭所述气溶胶发生器,清空所述实验管内的实验残留物;
    S3、将所述空气压缩机与所述进口端连通,开启所述空气压缩机,使干空气进入所述实验管内,打开所述冷却组件,使所述给水箱内的冷却液在所述给水箱和所述冷却器之间循环流动,调节所述实验管的壁温使之达到第一预设温度后,开启所述气溶胶发生器,使所述实验管内的气溶胶在热电泳沉降机理作用下沉降,检测所述进口端的第二气溶胶进入浓度C in2,以及所述出口端的第二气溶胶排出浓度C out2,计算得到实验管内的气溶胶在热电泳沉降机理作用下的热电泳沉降速率Vt hem
  7. 根据权利要求6所述的气溶胶沉降机理研究装置的操作方法,其特征在于,在步骤S3之后还包括:
    S4、关闭所述气溶胶发生器、所述空气压缩机、所述冷却组件,清空所述实验管内的实验残留物;
    S5、开启蒸汽发生器,使所述蒸汽发生器产生的蒸汽进入至所述实验管中,开启所述冷却组件,调节使所述实验管的壁温使之达到第二预设温度后,开启所述气溶胶发生器,排气处理箱检测所述进口端的第三气溶胶进入浓度C in3,以及所述出口端的第三气溶胶排出浓度C out3,计算得到所述实验管内的气溶胶在扩散电泳沉降机理作用下的扩散电泳沉降速率V diff
  8. 根据权利要求7所述的气溶胶沉降机理研究装置的操作方法,其特征在于,
    在S1中,所述重力沉降速率V grav通过公式C out1=C in1exp(-λ gravt)和
    Figure PCTCN2022136908-appb-100001
    计算,其中,λ grav为所述实验段内的重力沉降去除因子,t为流动时间,V为所述实验段的体积,A h为所述实验段内水平投影面积;
    在S3中,所述热电泳沉降速率V them通过公式C out2=C in2exp(-λ gravthem)t和
    Figure PCTCN2022136908-appb-100002
    计算,其中,λ them为所述实验段内的热电泳沉降去除因子,t为流动时间,V为所述实验段的体积,A为所述实验段内上、下表面积;
    在S5中,所述扩散电泳沉降速率V diff通过公式C out3=C in3exp(-λ gravthemdiff)t和
    Figure PCTCN2022136908-appb-100003
    计算,其中,λ diff为所述实验段内的扩散电泳沉降去除因子,t为流动时间,V为所述实验段的体积,A为所述实验段内上、下表面积。
  9. 根据权利要求8所述的气溶胶沉降机理研究装置的操作方法,其特征在于,
    在步骤S1中,在计算完所述重力沉降速率V grav后,通过重力沉降速率计算公式验证计算的数值是否正确;
    在步骤S3中,在计算完所述热电泳沉降速率V them后,通过热电泳沉降速率计算公式验证计算的数值是否正确;
    在步骤S5中,在计算完所述扩散电泳沉降速率V diff后,通过扩散电泳沉降速率公式验证计算的数值是否正确。
  10. 根据权利要求7所述的气溶胶沉降机理研究装置的操作方法,其特征在于,
    在步骤S1中,先使所述气溶胶发生器产生的气溶胶在混合管中混合后,再进入至所述实验管中进行实验;
    在步骤S3中,先使所述气溶胶发生器产生的气溶胶与所述空气压缩机产生的干空气在所述混合管中混合后,再进入至所述实验管中进行实验;
    在步骤S5中,先使所述气溶胶发生器产生的气溶胶与所述蒸汽发生器产生的蒸汽在所述混合管中混合后,再进入至所述实验管中进行实验。
PCT/CN2022/136908 2022-12-06 2022-12-06 气溶胶沉降机理研究装置及其操作方法 WO2024119369A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/136908 WO2024119369A1 (zh) 2022-12-06 2022-12-06 气溶胶沉降机理研究装置及其操作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/136908 WO2024119369A1 (zh) 2022-12-06 2022-12-06 气溶胶沉降机理研究装置及其操作方法

Publications (1)

Publication Number Publication Date
WO2024119369A1 true WO2024119369A1 (zh) 2024-06-13

Family

ID=91378438

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/136908 WO2024119369A1 (zh) 2022-12-06 2022-12-06 气溶胶沉降机理研究装置及其操作方法

Country Status (1)

Country Link
WO (1) WO2024119369A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090321534A1 (en) * 2005-12-02 2009-12-31 Nfd, Llc Aerosol or gaseous decontaminant generator and application thereof
CN113477023A (zh) * 2021-06-10 2021-10-08 中国科学院合肥物质科学研究院 一种适用于实验室放射性气体处理的净化系统及方法
CN114993893A (zh) * 2022-04-19 2022-09-02 中国核电工程有限公司 一种安全壳内气溶胶行为研究实验装置
CN115032123A (zh) * 2022-03-21 2022-09-09 哈尔滨工程大学 一种研究不同热工条件下管道内气溶胶沉积特性的实验装置
CN115223737A (zh) * 2022-06-29 2022-10-21 南华大学 一种测试振动事故下压水堆气溶胶沉降的装置及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090321534A1 (en) * 2005-12-02 2009-12-31 Nfd, Llc Aerosol or gaseous decontaminant generator and application thereof
CN113477023A (zh) * 2021-06-10 2021-10-08 中国科学院合肥物质科学研究院 一种适用于实验室放射性气体处理的净化系统及方法
CN115032123A (zh) * 2022-03-21 2022-09-09 哈尔滨工程大学 一种研究不同热工条件下管道内气溶胶沉积特性的实验装置
CN114993893A (zh) * 2022-04-19 2022-09-02 中国核电工程有限公司 一种安全壳内气溶胶行为研究实验装置
CN115223737A (zh) * 2022-06-29 2022-10-21 南华大学 一种测试振动事故下压水堆气溶胶沉降的装置及方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GUBAIDULLIN, DA ET AL.: "Aerosol Deposition on Resonances at Nonlinear Oscillations in a Closed Cross-Section Jump Tube", CONTINUUM MECHANICS AND THERMODYNAMICS, 16 September 2022 (2022-09-16), pages 1473 - 1479, XP037943828, ISSN: 1432-0959, DOI: 10.1007/s00161-022-01151-2 *
YOULIN GU, CHEN GUOLONG, HU YIHUA, HE HAIHAO, DING WANYING, CAO HAO: "Research progress on the deposition and diffusion of aerosols(invited)", INFRARED AND LASER ENGINEERING, CN, vol. 51, no. 7, 25 July 2022 (2022-07-25), CN , pages 20220313 - 20220313-11, XP093178225, ISSN: 1007-2276, DOI: 10.3788/IRLA20220313 *

Similar Documents

Publication Publication Date Title
CN101344408B (zh) 气体泄漏检测装置及其方法
CN101025394A (zh) 一种集料相对密度及吸水率的测试方法和仪器
CN108827853B (zh) 基于核磁共振的致密储层岩电测量装置及测量方法
CN104460788B (zh) 恒温恒湿变形测定仪
CN103592199B (zh) 湿蒸汽中液相水含量在线检测装置及检测方法
CN107132103A (zh) 一种真空恒温油气分离系统
CN111276269A (zh) 验证贯穿件窄缝的气溶胶滞留效率的装置及方法
CN106197517A (zh) 一种气固两相流模拟测试装置及相对浓度校验方法
CN102721791A (zh) 烟气排放连续监测系统的检定方法及检定装置
WO2024119369A1 (zh) 气溶胶沉降机理研究装置及其操作方法
CN206930512U (zh) 一种真空恒温油气分离系统
CN114486404A (zh) 直接测定固定污染源废气颗粒物的等速采样方法
JP2011196997A (ja) 蒸気管の損失計測システム及び計測方法
JP3398863B2 (ja) 骨材の表乾密度、吸水率、表面水率の測定方法及びそれに使用する高温骨材冷却装置
CN210775377U (zh) 一种烟气取样分析及校准系统
CN105159360B (zh) 一种pVTt标准容器内温度的快速平衡方法及装置
CN106782020A (zh) 传热过程强化自组装实验装置及使用方法
CN108627538B (zh) 全尺寸通风受限空间燃烧热释放速率测量方法
RU124497U1 (ru) Стенд для проведения испытаний скважинных газопесочных сепараторов
CN107870221A (zh) 一种用于检测覆膜砂浇铸时释放烟气的检测设备及方法
CN107870012A (zh) 一种热平衡法测试复杂环境下介质流量的装置及方法
Bomberg et al. On validation of hygric characteristics for heat, air, moisture models
CN105181027B (zh) 管内气液两相逆向流动检测装置
CN114166686A (zh) 一种焦炉煤气中焦油含量的检测系统及检测方法
RU2787158C1 (ru) Способ определения эффективности отбора проб аэрозоля в линии для отбора проб

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22967531

Country of ref document: EP

Kind code of ref document: A1