WO2024117805A1 - Amino acid tag for immobilization on carbon nanomaterials and use thereof - Google Patents

Amino acid tag for immobilization on carbon nanomaterials and use thereof Download PDF

Info

Publication number
WO2024117805A1
WO2024117805A1 PCT/KR2023/019524 KR2023019524W WO2024117805A1 WO 2024117805 A1 WO2024117805 A1 WO 2024117805A1 KR 2023019524 W KR2023019524 W KR 2023019524W WO 2024117805 A1 WO2024117805 A1 WO 2024117805A1
Authority
WO
WIPO (PCT)
Prior art keywords
tag
amino acid
protein
carbon nanomaterial
target protein
Prior art date
Application number
PCT/KR2023/019524
Other languages
French (fr)
Korean (ko)
Inventor
유진
박태현
김명진
고휘진
박태신
Original Assignee
서울대학교산학협력단
리셉텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교산학협력단, 리셉텍 주식회사 filed Critical 서울대학교산학협력단
Publication of WO2024117805A1 publication Critical patent/WO2024117805A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/08Tripeptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/08Tripeptides
    • C07K5/0802Tripeptides with the first amino acid being neutral
    • C07K5/0812Tripeptides with the first amino acid being neutral and aromatic or cycloaliphatic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/08Tripeptides
    • C07K5/0815Tripeptides with the first amino acid being basic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/08Tripeptides
    • C07K5/0821Tripeptides with the first amino acid being heterocyclic, e.g. His, Pro, Trp

Definitions

  • the present invention relates to amino acid tags for immobilization on carbon nanomaterials and their use.
  • a biosensor refers to an analysis device that detects an analyte generated from a biological element or the interaction between an analyte and a biological element through a physical or chemical signal transducer.
  • a biosensor consists of a bio-receptor part for detecting analytes, a sensor part that detects the interaction between analytes and bio-receptors as physical and chemical signals, and a transducer that converts and amplifies the obtained signals into electrical signals. It can be broadly divided into (transducer) parts.
  • bioreceptors include tissues, cells, enzymes, antibodies, nucleic acids, etc., and may be used by imitating conventional biological elements or improving their structure and function using biotechnology.
  • Detection methods used in biosensors include various physical and chemical technologies, including optical, electrochemical, and piezoelectric. Recently, various types of biosensors with portability, economic efficiency, wide detection limits, and multiple detection functions have been developed depending on the purpose. Meanwhile, conductive nanostructures such as conductive polymer nanoparticles, tubes, carbon nanorads, graphene, and fluorescent structures are used as converters, and research on graphene has recently been increasing.
  • the detection methods of these biosensors are broadly classified into optical energy transfer/conversion and electrical conversion methods depending on the type and method of the signal being measured.
  • field-effect transistor (FET)-based biosensor devices that use one of the electrical conversion methods have advantages such as miniaturization, mass production, single cell and single molecule analysis, real-time observation, and low cost.
  • Republic of Korea Patent Publication No. 10-2022-0144284 relates to an ultra-fast and recyclable DNA biosensor for point-of-care detection of SARS-CoV-2, which is spaced apart from a glass substrate and an upper part of the glass substrate.
  • a biosensor including a first electrode and a second electrode disposed, and probe DNA attached to the glass substrate exposed between the first electrode and the second electrode.
  • the purpose of the present invention is to provide an amino acid tag for immobilization on carbon nanomaterials and its use.
  • the present invention provides a tag for fixing to a carbon nanomaterial consisting of a polypeptide consisting of two or more identical amino acid residues, wherein the amino acid residues are phenylalanine, tryptophan, tyrosine, or histidine.
  • the present invention provides a polynucleotide encoding the anchoring tag.
  • the present invention provides an expression vector containing the polynucleotide operably linked to a protein of interest.
  • the present invention provides a composition and kit for producing a target protein that can be immobilized on a carbon nanomaterial containing the immobilization tag or expression vector.
  • the tag for fixing to carbon nanomaterials of the present invention is effectively fixed to carbon nanomaterials such as graphene without any other linker or chemical treatment, by fixing the target protein fused to its C-terminus to the carbon nanomaterial in a directionally oriented manner. , It can be usefully used in the manufacture of biosensors that convert biological signals into electrochemical signals.
  • Figure 1 is a graph showing the photo (A) and the fluorescence intensity quantified as a result of confirming the effect of fixing the streptoamicin protein-fused tag to the graphene sheet according to the type of amino acid residue, prepared in an example of the present invention ( B) is.
  • Figure 2 is a graph showing the photo (A) and the fluorescence intensity quantified as a result of confirming the fixation effect on the graphene sensor according to the type of amino acid residue of the streptoamicin protein-fused tag, prepared in an example of the present invention ( B) is.
  • Figure 3 is a photo (A) showing the results of confirming the fixation effect on the graphene sensor according to the number of amino acids of the tag fused with the scFv for the spike protein of SARS-CoV-2, prepared with tryptophan residue in an example of the present invention. and a graph (B) showing the quantification of fluorescence intensity.
  • Figure 4 confirms the effect of fixation on the graphene sheet according to the number of amino acids of the tag fused with the scFv for the spike protein of SARS-CoV-2, prepared with a tryptophan residue in an embodiment of the present invention, and shows the fluorescence intensity. This is a graph showing the quantified results.
  • Figure 5 is a graph showing the results of confirming changes in the function of the spike protein of SARS-CoV-2 due to a tag made from a tryptophan residue in one embodiment of the present invention.
  • Figure 6 is a graph showing the results of confirming the effect of a biosensor on which the spike protein of SARS-CoV-2 fused with a tag prepared with a tryptophan residue is immobilized in an embodiment of the present invention.
  • the present invention consists of a polypeptide consisting of two or more identical amino acid residues, wherein the amino acid residues are phenylalanine (Phe, F), tryptophan (Trp, W), tyrosine (Tyr, Y) or histidine (Hi, H).
  • Phe, F phenylalanine
  • Trp, W tryptophan
  • Trr, Y tyrosine
  • His, H histidine
  • the term "tag” refers to a peptide sequence that can be linked, attached, or fused to a target protein, and may be used in the same sense as protein tag, peptide tag, fusion tag, tag protein, or marker protein. You can.
  • the tag may have a carbon nanomaterial connected to its N-terminus, and a target protein may be connected to its C-terminus.
  • target protein refers to a protein to be immobilized on a carbon nanomaterial, and can specifically bind to the protein to be detected and convert a biological signal into an electrochemical signal using the carbon nanomaterial. That is, the target protein may include both the protein to be detected and a protein that can bind through antigen-antibody binding, ligand-receptor binding, etc.
  • the target protein may include an antibody or antigen-binding fragment thereof, an antigen, a ligand protein, a receptor protein, etc.
  • the antigen-binding fragment may refer to the portion excluding the Fc (crystallizable fragment) of an antibody that functions to transmit the stimulation of binding to the antigen to cells, complement, etc.
  • the antigen-binding fragment of an antibody may include Fab, scFv, F(ab) 2 , and Fv, and may also include third-generation antibody fragments such as single domain antibodies or minibodies. You can.
  • the tag according to the present invention can be fused with the target protein as described above by a conventional method.
  • the tag can be synthesized at the N-terminus of the polypeptide sequence constituting the target protein by a conventional method.
  • the tag can be expressed in a fused form to the target protein by inserting a polynucleotide sequence encoding the tag to be operably expressed at the 5-terminus of the polynucleotide sequence encoding the target protein.
  • the tag may be composed of two or more identical amino acid residues, specifically, the tag may have 2 to 20 amino acid residues, 2 to 16 amino acid residues, 2 to 13 amino acid residues, 2 to 10 amino acid residues, 2 to 7 amino acid residues, and 2 to 4 amino acid residues. , 5 to 20, 5 to 17, 5 to 14, 5 to 11, 5 to 8, 8 to 20, 8 to 17, 8 to 14, 8 to 11, 11 to 20 , 11 to 17, 11 to 14, 14 to 20, or 14 to 17 identical amino acid residues.
  • the tag may be FF, WW, YY or HH
  • the tag consists of three identical amino acid residues
  • the tag may be FFF, WWW , YYY or HHH.
  • carbon nanomaterial refers to a nanoscale conductive material made of hexagonal carbon, and can be used to make bendable electronic materials.
  • the carbon nanomaterials are used in the manufacture of biosensors and may include all types of carbon nanomaterials known in the art.
  • the carbon nanomaterial may be a graphene material, carbon nanotube, carbon nanowire, or fullerene.
  • the graphene material may be graphene nanoflake, graphene oxide (GO), reduced graphene (rGO), or CVD graphene (chemical vapor deposition graphene).
  • the tag according to the present invention can be modified with phosphorylation, sulfation, acrylation, glycosylation, methylation, farnesylation, etc., as needed.
  • the present invention provides a polynucleotide encoding the anchoring tag.
  • the polynucleotide may be DNA or RNA encoding an anchoring tag having the characteristics described above.
  • the sequence of the polynucleotide is obvious to those skilled in the art as long as the polypeptide sequence constituting the tag is known.
  • the present invention provides an expression vector containing the polynucleotide operably linked to a protein of interest.
  • the term 'expression vector' refers to a means for expressing a target gene in a host cell and may include plasmid vectors, cosmid vectors, bacteriophage vectors, viral vectors, etc.
  • the expression vector may contain elements necessary for producing a peptide from the nucleic acid contained therein.
  • the expression vector may include a signal sequence, origin of replication, marker gene, promoter, transcription termination sequence, etc.
  • the polynucleotide according to the present invention can be operably linked to the target protein and promoter.
  • operably linked means linked for translation in an expression cassette that functions as a unit for expressing an exogenous protein.
  • a target protein and a promoter operably linked to an anchoring tag according to the present invention can produce a polypeptide by translating the anchoring tag and the target protein by the promoter.
  • an expression vector used in prokaryotic cells may include a promoter for transcription, a ribosome binding site for initiation of translation, and termination sequences for transcription and translation.
  • expression vectors used in eukaryotic cells may include a promoter and polyadenylation sequence derived from a mammal or a mammalian virus.
  • any marker gene included in the expression vector can be any one known in the art, and specifically, it may be an antibiotic resistance gene.
  • the antibiotic resistance gene may be a gene showing resistance to antibiotics including ampicillin, gentamicin, carbenicillin, chloramphenicol, streptomycin, kanamycin, neomycin, tetracycline, etc.
  • the polynucleotide included in the expression vector may have the characteristics described above. At this time, the polynucleotide may be operably linked to the gene encoding the target protein. Specifically, the polynucleotide may be operably linked to the 5'-end of the gene encoding the target protein. The polynucleotide may encode the fixation tag according to the present invention.
  • the present invention provides a composition and kit for producing a target protein that can be immobilized on a carbon nanomaterial containing the immobilization tag or expression vector.
  • the immobilization tag or expression vector included in the composition and kit according to the present invention may have the characteristics described above.
  • the kit can be manufactured by conventional manufacturing methods known to those skilled in the art, and may further include buffers, stabilizers, inactive proteins, etc., if necessary.
  • a 3 ⁇ histidine polypeptide with three histidines linked together was synthesized by a conventional method, and FITC was bound to its C-terminus to prepare a 3 ⁇ histidine tag.
  • a 3 ⁇ phenylalanine tag was prepared in the same manner as Example 1, except that phenylalanine was used instead of histidine.
  • a 3 ⁇ tyrosine tag was prepared in the same manner as Example 1, except that tyrosine was used instead of histidine.
  • a 3 ⁇ tryptophan tag was prepared in the same manner as Example 1, except that tryptophan was used instead of histidine.
  • a 6 ⁇ tryptophan tag (SEQ ID NO: 1) was prepared in the same manner as Example 4, except that a polypeptide with 6 tryptophans linked instead of a polypeptide with 3 tryptophans linked was used.
  • a 9 ⁇ tryptophan tag (SEQ ID NO: 2) was prepared in the same manner as Example 4, except that a polypeptide with 9 tryptophans linked instead of a polypeptide with 3 tryptophans linked was used.
  • a 12 ⁇ tryptophan tag (SEQ ID NO: 3) was prepared in the same manner as in Example 4, except that a polypeptide with 12 tryptophan links was used instead of a polypeptide with 3 tryptophan links.
  • a 15 ⁇ tryptophan tag (SEQ ID NO: 4) was prepared in the same manner as Example 4, except that a polypeptide with 15 tryptophans was used instead of a polypeptide with 3 tryptophans connected.
  • the amino acid tags of Examples 1 to 4 were prepared by diluting them in dimethyl sulfoxide (DMSO) to a concentration of 1 mM. Meanwhile, a graphene sheet was manufactured by applying graphene to a semiconductor wafer made of silicon and cutting it. The prepared graphene sheet was washed three times with 99.9% ethanol and three times with distilled water, and treated with the amino acid tag diluted in DMSO in an amount of 10 ⁇ l. This was reacted overnight at 4°C in the dark, and the amino acid tag was fixed to the graphene sheet. After the reaction was completed, the graphene sheet was washed three times with distilled water, and the amino acid tag fixed on the graphene sheet was confirmed using an upright fluorescence microscope. As a result, a picture taken with a fluorescence microscope is shown in Figure 1A, and a graph measuring the fluorescence intensity is shown in Figure 1B.
  • DMSO dimethyl sulfoxide
  • the amino acid tag was immobilized on the graphene sheet, and in particular, the tag prepared using tyrosine or tryptophan had a significantly better immobilization effect on the graphene sheet.
  • the fixation effect of the produced amino acid tag on the graphene sensor according to the type of amino acid was confirmed as follows.
  • the experiment was performed in the same manner as Experimental Example 1, except that a graphene sensor was used instead of a graphene sheet.
  • the graphene sensor was manufactured by performing photoresist work on the graphene sheet manufactured as described above by a conventional method.
  • the tag bound to the graphene sensor was photographed using a fluorescence microscope.
  • a photo of the result is shown in Figure 2A, and a graph measuring the fluorescence intensity is shown in Figure 2B.
  • tags prepared using tyrosine or tryptophan were effectively immobilized on the graphene sensor.
  • the tryptophan tag which was confirmed to be immobilized on graphene with the best binding force, was used to confirm the immobilization effect according to the amino acid length.
  • the experiment was performed in the same manner as Experiment 2 above, except that the amino acid tags prepared in Examples 4 to 6 were used.
  • the tag bound to the graphene sensor was photographed using a fluorescence microscope. A photo of the result is shown in Figure 3A, and a graph measuring the fluorescence intensity is shown in Figure 3B.
  • a polynucleotide encoding 3, 6, or 9 tryptophan tags was inserted into the pET-42 vector to express streptomycin protein at its C-terminus.
  • the recombinant pET-42 vector was transformed into E. coli, and recombinant E. coli expressing streptomycin with a tryptophan tag was selected.
  • the selected E. coli were cultured at 37°C at a speed of 150 rpm using LB culture medium to a total volume of 6 liters using six 2 liter flasks. When the OD 600 reached 0.45 to 0.5, 1 ml of 1 M IPTG was added to each flask and incubated for another 4 hours under the same conditions.
  • the cells were recovered by centrifugation, and histidine binding buffer (20mM Tris-HCl, 0.5M NaCl, 20mM imidazole, pH 8.0) was added to the cells and vortexed. The cells were lysed by sonication, and centrifuged again to obtain the supernatant. The obtained supernatant was filtered through a filter with a pore size of 0.4 ⁇ m, and his-tag affinity chromatography was performed in a conventional manner to obtain the streptomycin protein bound to the tryptophan tag. was purified. Afterwards, a graphene sheet was attached to the bottom of a 96-well plate, and 200 ⁇ l of the purified streptomycin protein was treated.
  • histidine binding buffer (20mM Tris-HCl, 0.5M NaCl, 20mM imidazole, pH 8.0) was added to the cells and vortexed.
  • the cells were lysed by sonication, and centrifuged again to obtain the super
  • scFv SEQ ID NO: 5
  • SEQ ID NO: 5 a polynucleotide encoding 3, 6, 9, 12 or 15 tryptophan tags
  • the pET-42 vector into which the scFv gene was inserted was transformed into E. coli as described above and purified using a Ni column by a conventional method. 100 ⁇ l of the purified protein (1 ⁇ M) was added to a 96-well plate with a graphene sheet attached to the bottom, and left at room temperature for 2 hours.
  • the plate was washed three times with PBS buffer and pretreated with 100 ⁇ l of 2% BSA buffer for 1 hour at room temperature. This was washed again three times with PBS buffer, and 100 ⁇ l of SARS-CoV-2 spike protein (SEQ ID NO: 6) was added to each well. After being left at room temperature for 1 hour, it was washed three times with PBS buffer and treated with a primary antibody against the spike protein of SARS-CoV-2 bound to HRP at a dilution of 1:2000. After reacting at room temperature for 1 hour, the mixture was washed four times with PBS buffer, 50 ⁇ l of TMB solution was added, light was blocked, and reaction was allowed at room temperature for 20 minutes. After the reaction was completed, 50 ⁇ l of 2 M sulfuric acid solution was added to stop the reaction, and the absorbance was measured at a wavelength of 450 nm, and the results are shown in Figure 5.
  • the scFv fused with the tryptophan tag was immobilized on the graphene sheet with excellent anchoring force, and the effect was significantly increased in the tag prepared by connecting 6 or more tryptophans.
  • the spike protein of SARS-CoV-2 could be detected as a biosensor by scFv fused with a tryptophan tag.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Peptides Or Proteins (AREA)
  • Urology & Nephrology (AREA)
  • Nanotechnology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Biotechnology (AREA)

Abstract

The present invention relates to an amino acid tag for immobilization on carbon nanomaterials and a use thereof. Specifically, the tag for immobilization on carbon nanomaterials of the present invention can be effectively fixed to carbon nanomaterials such as graphene without the need for separate linkers or chemical treatments. Accordingly, the tag immobilizes a target protein fused to the C-terminus thereof on carbon nanomaterials, with orientation imparted into the protein, and thus can be advantageously used for constructing a biosensor that converts biological signals into electrochemical signals.

Description

탄소 나노소재에의 고정화를 위한 아미노산 태그 및 이의 용도Amino acid tags for immobilization on carbon nanomaterials and uses thereof
본 발명은 탄소 나노소재에의 고정화를 위한 아미노산 태그 및 이의 용도에 관한 것이다.The present invention relates to amino acid tags for immobilization on carbon nanomaterials and their use.
바이오센서는 생물학적 요소로부터 발생한 분석 물질 또는 분석 물질과 생물학적 요소의 상호작용을 물리적 또는 화학적 신호 변환기를 통해 검출하는 분석 장치를 나타낸다. 바이오센서는 분석 물질의 검출을 위한 바이오 수용체(bio-receptor) 부분, 분석 물질과 바이오 수용체 사이의 상호작용을 물리적 및 화학적 신호로 검출하는 센서 부분, 수득된 신호를 전기적 신호로 변환 및 증폭하는 변환기(transducer) 부분으로 크게 나눌 수 있다. 이때, 바이오 수용체로는 조직, 세포, 효소, 항체, 핵산 등이 있고, 생물공학 기술을 이용하여 종래의 생물학적 요소를 모방하거나 구조 및 기능을 개선하여 사용하기도 한다.A biosensor refers to an analysis device that detects an analyte generated from a biological element or the interaction between an analyte and a biological element through a physical or chemical signal transducer. A biosensor consists of a bio-receptor part for detecting analytes, a sensor part that detects the interaction between analytes and bio-receptors as physical and chemical signals, and a transducer that converts and amplifies the obtained signals into electrical signals. It can be broadly divided into (transducer) parts. At this time, bioreceptors include tissues, cells, enzymes, antibodies, nucleic acids, etc., and may be used by imitating conventional biological elements or improving their structure and function using biotechnology.
바이오센서에 활용하는 검출 방식으로는 여러 물리화학적 기술이 이용되고, 광학, 전기화학적, 압전성 등이 이에 포함된다. 최근에는 목적에 따라 휴대성, 경제성, 넓은 검출 한계, 다중 검출 기능 등을 갖춘 다양한 형태의 바이오센서가 개발되고 있다. 한편, 변환기로는 전도성 고분자 나노입자나 튜브, 카본나노라드, 그래핀 등과 같은 전도성 나노 구조체, 형광 구조체 등이 사용되며, 최근에는 그래핀에 대한 연구가 증가하고 있는 추세이다.Detection methods used in biosensors include various physical and chemical technologies, including optical, electrochemical, and piezoelectric. Recently, various types of biosensors with portability, economic efficiency, wide detection limits, and multiple detection functions have been developed depending on the purpose. Meanwhile, conductive nanostructures such as conductive polymer nanoparticles, tubes, carbon nanorads, graphene, and fluorescent structures are used as converters, and research on graphene has recently been increasing.
이들 바이오센서의 감지 방법은 측정하는 신호의 종류 및 방법에 따라 크게 광 에너지 전이/변환 및 전기 변환 방식으로 분류된다. 특히 전기 변환 방식 중 하나를 사용하는 전계유발 효과 트랜지스터(field-effect transistor, FET) 기반 바이오센서 장치는 소형화, 대량생산, 단일세포, 단분자 분석, 실시간 관찰 및 저렴한 비용 등과 같은 장점이 있다. The detection methods of these biosensors are broadly classified into optical energy transfer/conversion and electrical conversion methods depending on the type and method of the signal being measured. In particular, field-effect transistor (FET)-based biosensor devices that use one of the electrical conversion methods have advantages such as miniaturization, mass production, single cell and single molecule analysis, real-time observation, and low cost.
이와 함께, 최근 바이오마커 기술이 발달함에 따라, 바이오마커에 의해 특정되는 전기적 신호를 인식 및 증폭하여 검사 및 진단할 수 있는 전자 센서의 기술이 현실화되고 있다. 뿐만 아니라, 가정 내 방역 시스템 구축의 일환으로 병원을 방문하지 않고 질병을 진단하는 기술에 대한 요구도 증대되고 있는 실정이다. 이와 관련하여, 대한민국 공개특허 제10-2022-0144284호는 SARS-CoV-2의 현장 진료 감지를 위한 초고속 및 재활용 가능한 DNA 바이오센서에 관한 것으로, 유리기판과, 상기 유리기판의 상부에 상호 이격되어 배치되는 제1전극 및 제2전극과, 상기 제1전극과 제2전극의 사이에 노출된 상기 유리기판에 부착된 프로브 DNA를 포함하는 바이오센서를 개시하고 있다.In addition, as biomarker technology has recently developed, electronic sensor technology that can detect and amplify electrical signals specified by biomarkers for inspection and diagnosis is becoming a reality. In addition, as part of establishing an at-home quarantine system, the demand for technology to diagnose diseases without visiting a hospital is increasing. In this regard, Republic of Korea Patent Publication No. 10-2022-0144284 relates to an ultra-fast and recyclable DNA biosensor for point-of-care detection of SARS-CoV-2, which is spaced apart from a glass substrate and an upper part of the glass substrate. Disclosed is a biosensor including a first electrode and a second electrode disposed, and probe DNA attached to the glass substrate exposed between the first electrode and the second electrode.
본 발명의 목적은 탄소 나노소재에의 고정화를 위한 아미노산 태그 및 이의 용도를 제공하는 것이다.The purpose of the present invention is to provide an amino acid tag for immobilization on carbon nanomaterials and its use.
상기 목적을 달성하기 위하여, 본 발명은 2개 이상의 동일한 아미노산 잔기로 구성되는 폴리펩타이드로 구성되고, 상기 아미노산 잔기는 페닐알라닌, 트립토판, 티로신 또는 히스티딘인 탄소 나노소재에의 고정용 태그를 제공한다.In order to achieve the above object, the present invention provides a tag for fixing to a carbon nanomaterial consisting of a polypeptide consisting of two or more identical amino acid residues, wherein the amino acid residues are phenylalanine, tryptophan, tyrosine, or histidine.
또한, 본 발명은 상기 고정용 태그를 암호화하는 폴리뉴클레오티드를 제공한다.Additionally, the present invention provides a polynucleotide encoding the anchoring tag.
또한, 본 발명은 목적 단백질과 작동가능하게 연결된 상기 폴리뉴클레오티드를 포함하는 발현벡터를 제공한다.Additionally, the present invention provides an expression vector containing the polynucleotide operably linked to a protein of interest.
나아가, 본 발명은 상기 고정용 태그 또는 발현벡터를 포함하는 탄소 나노소재에의 고정가능한 목적 단백질 생산용 조성물 및 키트를 제공한다.Furthermore, the present invention provides a composition and kit for producing a target protein that can be immobilized on a carbon nanomaterial containing the immobilization tag or expression vector.
본 발명의 탄소 나노소재에의 고정용 태그는, 다른 링커나 화학적 처리 없이 그래핀과 같은 탄소 나노소재에 효과적으로 고정되어, 이의 C-말단에 융합된 목적 단백질을 방향성을 갖도록 탄소 나노소재에 고정함으로써, 생체 신호를 전기화학적 신호로 변환시키는 바이오센서의 제조에 유용하게 사용될 수 있다.The tag for fixing to carbon nanomaterials of the present invention is effectively fixed to carbon nanomaterials such as graphene without any other linker or chemical treatment, by fixing the target protein fused to its C-terminus to the carbon nanomaterial in a directionally oriented manner. , It can be usefully used in the manufacture of biosensors that convert biological signals into electrochemical signals.
도 1은 본 발명의 일 실시예에서 제조된, 스트렙토아미신 단백질이 융합된 태그의 아미노산 잔기 종류에 따른 그래핀 시트에의 고정효과를 확인한 결과 사진(A) 및 형광 강도를 정량화하여 나타낸 그래프(B)이다.Figure 1 is a graph showing the photo (A) and the fluorescence intensity quantified as a result of confirming the effect of fixing the streptoamicin protein-fused tag to the graphene sheet according to the type of amino acid residue, prepared in an example of the present invention ( B) is.
도 2는 본 발명의 일 실시예에서 제조된, 스트렙토아미신 단백질이 융합된 태그의 아미노산 잔기 종류에 따른 그래핀 센서에의 고정효과를 확인한 결과 사진(A) 및 형광 강도를 정량화하여 나타낸 그래프(B)이다.Figure 2 is a graph showing the photo (A) and the fluorescence intensity quantified as a result of confirming the fixation effect on the graphene sensor according to the type of amino acid residue of the streptoamicin protein-fused tag, prepared in an example of the present invention ( B) is.
도 3은 본 발명의 일 실시예에서 트립토판 잔기로 제조된, SARS-CoV-2의 스파이크 단백질에 대한 scFv와 융합된 태그의 아미노산 갯수에 따른 그래핀 센서에의 고정효과를 확인한 결과 사진(A) 및 형광 강도를 정량화하여 나타낸 그래프(B)이다.Figure 3 is a photo (A) showing the results of confirming the fixation effect on the graphene sensor according to the number of amino acids of the tag fused with the scFv for the spike protein of SARS-CoV-2, prepared with tryptophan residue in an example of the present invention. and a graph (B) showing the quantification of fluorescence intensity.
도 4는 본 발명의 일 실시예에서 트립토판 잔기로 제조된, SARS-CoV-2의 스파이크 단백질에 대한 scFv와 융합된 태그의 아미노산 갯수에 따른 그래핀 시트에의 고정효과를 확인하고, 형광 강도를 정량화하여 나타낸 결과 그래프이다.Figure 4 confirms the effect of fixation on the graphene sheet according to the number of amino acids of the tag fused with the scFv for the spike protein of SARS-CoV-2, prepared with a tryptophan residue in an embodiment of the present invention, and shows the fluorescence intensity. This is a graph showing the quantified results.
도 5는 본 발명의 일 실시예에서 트립토판 잔기로 제조된 태그에 의한 SARS-CoV-2의 스파이크 단백질의 기능 변화를 확인한 결과 그래프이다.Figure 5 is a graph showing the results of confirming changes in the function of the spike protein of SARS-CoV-2 due to a tag made from a tryptophan residue in one embodiment of the present invention.
도 6은 본 발명의 일 실시예에서 트립토판 잔기로 제조된 태그가 융합된 SARS-CoV-2의 스파이크 단백질이 고정된 바이오센서의 효과를 확인한 결과 그래프이다.Figure 6 is a graph showing the results of confirming the effect of a biosensor on which the spike protein of SARS-CoV-2 fused with a tag prepared with a tryptophan residue is immobilized in an embodiment of the present invention.
이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.
본 발명은 2개 이상의 동일한 아미노산 잔기로 구성되는 폴리펩타이드로 구성되고, 상기 아미노산 잔기는 페닐알라닌(Phe, F), 트립토판(Trp, W), 티로신(Tyr, Y) 또는 히스티딘(His, H)인 탄소 나노소재에의 고정용 태그를 제공한다.The present invention consists of a polypeptide consisting of two or more identical amino acid residues, wherein the amino acid residues are phenylalanine (Phe, F), tryptophan (Trp, W), tyrosine (Tyr, Y) or histidine (Hi, H). Provides a tag for fixing to carbon nanomaterials.
본 명세서에서 사용된 용어, "태그(tag)"는 목적 단백질에 연결, 부착 또는 융합될 수 있는 펩타이드 서열을 의미하며, 단백질 태그, 펩타이드 태그, 융합 태그, 태그 단백질 또는 표지 단백질 등과 같은 의미로 사용될 수 있다. 상기 태그는 이의 N-말단에 탄소 나노소재가 연결될 수 있고, 이의 C-말단에 목적 단백질이 연결될 수 있다.As used herein, the term "tag" refers to a peptide sequence that can be linked, attached, or fused to a target protein, and may be used in the same sense as protein tag, peptide tag, fusion tag, tag protein, or marker protein. You can. The tag may have a carbon nanomaterial connected to its N-terminus, and a target protein may be connected to its C-terminus.
상기 용어, "목적 단백질(target protein)"은 탄소 나노소재에 고정화하고자 하는 단백질로서, 검출하고자 하는 단백질과 특이적으로 결합하여 생체 신호를 탄소 나노소재에 의해 전기화학적 신호로 변환할 수 있다. 즉, 상기 목적 단백질은 검출하고자 하는 단백질과 항원-항체 결합, 리간드-수용체 결합 등으로 결합할 수 있는 단백질을 모두 포함할 수 있다. 예를 들면, 상기 목적 단백질은 항체 또는 이의 항원 결합 단편, 항원, 리간드 단백질, 수용체 단백질 등을 포함할 수 있다. 이때, 상기 항원 결합 단편은 항원과의 결합 자극을 세포나 보체 등에 전달하는 기능을 하는 항체의 Fc(crystallizable fragment)를 제외한 부분을 의미할 수 있다. 일례로, 항체의 항원 결합 단편은 Fab, scFv, F(ab)2 및 Fv를 모두 포함할 수 있고, 단일 도메인 항체(single domain antibody)나 소형 항체(minibody) 등과 같은 3세대 항체 절편도 포함할 수 있다.The term "target protein" refers to a protein to be immobilized on a carbon nanomaterial, and can specifically bind to the protein to be detected and convert a biological signal into an electrochemical signal using the carbon nanomaterial. That is, the target protein may include both the protein to be detected and a protein that can bind through antigen-antibody binding, ligand-receptor binding, etc. For example, the target protein may include an antibody or antigen-binding fragment thereof, an antigen, a ligand protein, a receptor protein, etc. At this time, the antigen-binding fragment may refer to the portion excluding the Fc (crystallizable fragment) of an antibody that functions to transmit the stimulation of binding to the antigen to cells, complement, etc. For example, the antigen-binding fragment of an antibody may include Fab, scFv, F(ab) 2 , and Fv, and may also include third-generation antibody fragments such as single domain antibodies or minibodies. You can.
본 발명에 다른 태그는 상술한 바와 같은 목적 단백질과 통상적인 방법으로 융합될 수 있다. 예를 들면, 상기 태그는 목적 단백질을 구성하는 폴리펩티드 서열의 N-말단에 통상적인 방법으로 합성될 수 있다. 또한, 상기 태그는 목적 단백질을 암호화하는 폴리뉴클레오티드 서열의 5-말단에 작동가능하게 발현되도록 태그를 암호화하는 폴리뉴클레오티드 서열이 삽입됨으로써, 목적 단백질에 융합된 형태로 발현될 수 있다.The tag according to the present invention can be fused with the target protein as described above by a conventional method. For example, the tag can be synthesized at the N-terminus of the polypeptide sequence constituting the target protein by a conventional method. In addition, the tag can be expressed in a fused form to the target protein by inserting a polynucleotide sequence encoding the tag to be operably expressed at the 5-terminus of the polynucleotide sequence encoding the target protein.
상기 태그는 2개 이상의 동일한 아미노산 잔기로 구성될 수 있고, 구체적으로, 상기 태그는 2 내지 20개, 2 내지 16개, 2 내지 13개, 2 내지 10개, 2 내지 7개, 2 내지 4개, 5 내지 20개, 5 내지 17개, 5 내지 14개, 5 내지 11개, 5 내지 8개, 8 내지 20개, 8 내지 17개, 8 내지 14개, 8 내지 11개, 11 내지 20개, 11 내지 17개, 11 내지 14개, 14 내지 20개 또는 14 내지 17개의 동일한 아미노산 잔기로 구성될 수 있다. 예를 들어, 상기 태그가 2개의 동일한 아미노산 잔기로 구성되는 경우, 상기 태그는 FF, WW, YY 또는 HH일 수 있고, 상기 태그가 3개의 동일한 아미노산 잔기로 구성되는 경우, 상기 태그는 FFF, WWW, YYY 또는 HHH일 수 있다.The tag may be composed of two or more identical amino acid residues, specifically, the tag may have 2 to 20 amino acid residues, 2 to 16 amino acid residues, 2 to 13 amino acid residues, 2 to 10 amino acid residues, 2 to 7 amino acid residues, and 2 to 4 amino acid residues. , 5 to 20, 5 to 17, 5 to 14, 5 to 11, 5 to 8, 8 to 20, 8 to 17, 8 to 14, 8 to 11, 11 to 20 , 11 to 17, 11 to 14, 14 to 20, or 14 to 17 identical amino acid residues. For example, if the tag consists of two identical amino acid residues, the tag may be FF, WW, YY or HH, and if the tag consists of three identical amino acid residues, the tag may be FFF, WWW , YYY or HHH.
본 명세서에서 사용된 용어, "탄소 나노소재"는 육각형 모양의 탄소로 이루어진 나노스케일의 전도성 소재를 의미하며, 구부러지는 전자소재를 만드는데 사용될 수 있다. 상기 탄소 나노소재는 바이오센서의 제조에 사용되는 것으로 통상의 기술분야에 알려진 모든 종류의 탄소 나노소재를 포함할 수 있다. 일례로, 상기 탄소 나노소재는 그래핀 소재, 탄소나노튜브, 탄소나노와이어 또는 플러렌일 수 있다. 이때, 상기 그래핀 소재는 그래핀 나노플래이크, 그래핀 산화물(GO), 환원 그래핀(rGO) 또는 CVD 그래핀(chemical vapor deposition graphene)일 수 있다.As used herein, the term “carbon nanomaterial” refers to a nanoscale conductive material made of hexagonal carbon, and can be used to make bendable electronic materials. The carbon nanomaterials are used in the manufacture of biosensors and may include all types of carbon nanomaterials known in the art. For example, the carbon nanomaterial may be a graphene material, carbon nanotube, carbon nanowire, or fullerene. At this time, the graphene material may be graphene nanoflake, graphene oxide (GO), reduced graphene (rGO), or CVD graphene (chemical vapor deposition graphene).
본 발명에 따른 태그는 필요에 따라 인산화(phosphorylation), 황화(sulfation), 아크릴화(acrylation), 당화(glycosylaton), 메틸화(methylation), 파네실화(farnesylation) 등으로 수식(modification)될 수 있다.The tag according to the present invention can be modified with phosphorylation, sulfation, acrylation, glycosylation, methylation, farnesylation, etc., as needed.
또한, 본 발명은 상기 고정용 태그를 암호화하는 폴리뉴클레오티드를 제공한다.Additionally, the present invention provides a polynucleotide encoding the anchoring tag.
상기 폴리뉴클레오티드는 상술한 바와 같은 특징을 갖는 고정용 태그를 암호화하는 DNA 또는 RNA일 수 있다. 상기 폴리뉴클레오티드의 서열은 태그를 구성하는 폴리펩티드 서열이 알려져 있는 한, 통상의 기술자에게 자명하다.The polynucleotide may be DNA or RNA encoding an anchoring tag having the characteristics described above. The sequence of the polynucleotide is obvious to those skilled in the art as long as the polypeptide sequence constituting the tag is known.
또한, 본 발명은 목적 단백질과 작동가능하게 연결된 상기 폴리뉴클레오티드를 포함하는 발현벡터를 제공한다.Additionally, the present invention provides an expression vector containing the polynucleotide operably linked to a protein of interest.
본 명세서에서 사용된 용어, '발현벡터(expression vector)'는 숙주세포에서 목적 유전자를 발현시키기 위한 수단으로 플라스미드 벡터, 코스미드 백터, 박테리오파지 벡터, 바이러스 벡터 등을 모두 포함할 수 있다. 상기 발현벡터는 이에 포함되는 핵산으로부터 펩티드를 생성하기 위해 필요한 요소를 포함할 수 있다. 구체적으로, 상기 발현벡터는 신호서열, 복제기점, 마커 유전자, 프로모터, 전사 종결 서열 등을 포함할 수 있다. 이때, 본 발명에 따른 폴리뉴클레오티드는 목적 단백질 및 프로모터와 작동가능하게 연결될 수 있다.As used herein, the term 'expression vector' refers to a means for expressing a target gene in a host cell and may include plasmid vectors, cosmid vectors, bacteriophage vectors, viral vectors, etc. The expression vector may contain elements necessary for producing a peptide from the nucleic acid contained therein. Specifically, the expression vector may include a signal sequence, origin of replication, marker gene, promoter, transcription termination sequence, etc. At this time, the polynucleotide according to the present invention can be operably linked to the target protein and promoter.
본 명세서에서 사용된 "작동가능하게 연결된"은 이종(exogenous) 단백질을 발현하기 위한 단위로서 기능하는 발현 카세트에서 번역(translation)되도록 연결된 것을 의미한다. 예를 들면, 본 발명에 따른 고정용 태그와 작동 가능하게 연결된 목적 단백질 및 프로모터는 상기 프로모터에 의해 고정용 태그와 목적 단백질을 번역하여 폴리펩티드를 생산할 수 있다.As used herein, “operably linked” means linked for translation in an expression cassette that functions as a unit for expressing an exogenous protein. For example, a target protein and a promoter operably linked to an anchoring tag according to the present invention can produce a polypeptide by translating the anchoring tag and the target protein by the promoter.
일례로, 원핵세포에 사용되는 발현벡터는 전사를 진행시키는 프로모터, 해독의 개시를 위한 라이보좀 결합 자리, 및 전사와 해독의 종결서열을 포함할 수 있다. 한편, 진핵세포에 사용되는 발현벡터는 포유동물 또는 포유동물 바이러스로부터 유래된 프로모터 및 폴리아데닐화 서열을 포함할 수 있다.For example, an expression vector used in prokaryotic cells may include a promoter for transcription, a ribosome binding site for initiation of translation, and termination sequences for transcription and translation. Meanwhile, expression vectors used in eukaryotic cells may include a promoter and polyadenylation sequence derived from a mammal or a mammalian virus.
또한, 상기 발현벡터에 포함되는 마커 유전자로는 통상의 기술분야에 알려진 것을 모두 사용할 수 있으며, 구체적으로 항생제 내성 유전자일 수 있다. 구체적으로, 상기 항생제 내성 유전자는 암피실린, 겐타마이신, 카베니실린, 클로람페니콜, 스트렙토마이신, 카나마이신, 네오마이신, 테트라사이클린 등을 포함하는 항생제에 대해 내성을 나타내는 유전자일 수 있다.Additionally, any marker gene included in the expression vector can be any one known in the art, and specifically, it may be an antibiotic resistance gene. Specifically, the antibiotic resistance gene may be a gene showing resistance to antibiotics including ampicillin, gentamicin, carbenicillin, chloramphenicol, streptomycin, kanamycin, neomycin, tetracycline, etc.
상기 발현벡터에 포함되는 폴리뉴클레오티드는 상술한 바와 같은 특징을 가질 수 있다. 이때, 상기 폴리뉴클레오티드는 목적 단백질을 암호화하는 유전자와 작동가능하게 연결될 수 있고, 구체적으로, 상기 폴리뉴클레오티드는 목적 단백질을 암호화하는 유전자의 5'-말단에 작동가능하게 연결될 수 있다. 상기 폴리뉴클레오티드는 본 발명에 따른 고정용 태그를 암호화하는 것일 수 있다.The polynucleotide included in the expression vector may have the characteristics described above. At this time, the polynucleotide may be operably linked to the gene encoding the target protein. Specifically, the polynucleotide may be operably linked to the 5'-end of the gene encoding the target protein. The polynucleotide may encode the fixation tag according to the present invention.
본 발명은 상기 고정용 태그 또는 발현벡터를 포함하는 탄소 나노소재에의 고정가능한 목적 단백질 생산용 조성물 및 키트를 제공한다.The present invention provides a composition and kit for producing a target protein that can be immobilized on a carbon nanomaterial containing the immobilization tag or expression vector.
본 발명에 따른 조성물 및 키트에 포함되는 고정용 태그 또는 발현벡터는 상기 서술한 바와 같은 특징을 가질 수 있다. 또한, 상기 키트는 당업자에게 알려진 종래의 제조방법에 의해 제조될 수 있으며, 필요에 따라 버퍼, 안정화제, 불활성 단백질 등을 더 포함할 수 있다.The immobilization tag or expression vector included in the composition and kit according to the present invention may have the characteristics described above. In addition, the kit can be manufactured by conventional manufacturing methods known to those skilled in the art, and may further include buffers, stabilizers, inactive proteins, etc., if necessary.
이하, 본 발명을 하기 실시예에 의해 상세히 설명한다, 단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐, 이들에 의해 본 발명이 제한되는 것은 아니다. 본 발명의 청구범위에 기재된 기술적 사상과 실질적으로 동일한 구성을 갖고 동일한 작용 효과를 이루는 것은 어떠한 것이라도 본 발명의 기술적 범위에 포함된다.Hereinafter, the present invention will be described in detail through the following examples. However, the following examples are only for illustrating the present invention and are not intended to limit the present invention thereto. Anything that has substantially the same structure as the technical idea described in the claims of the present invention and achieves the same operation and effect is included in the technical scope of the present invention.
실시예 1. 3×히스티딘 태그의 제조Example 1. Preparation of 3×histidine tag
3개의 히스티딘이 연결된 3×히스티딘 폴리펩타이드를 통상적인 방법으로 합성하고, 이의 C-말단에 FITC를 결합시켜, 3×히스티딘 태그를 제조하였다.A 3×histidine polypeptide with three histidines linked together was synthesized by a conventional method, and FITC was bound to its C-terminus to prepare a 3×histidine tag.
실시예 2. 3×페닐알라닌 태그의 제조Example 2. Preparation of 3×phenylalanine tag
히스티딘 대신 페닐알라닌을 사용한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 3×페닐알라닌 태그를 제조하였다.A 3×phenylalanine tag was prepared in the same manner as Example 1, except that phenylalanine was used instead of histidine.
실시예 3. 3×티로신 태그의 제조Example 3. Preparation of 3×tyrosine tag
히스티딘 대신 티로신을 사용한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 3×티로신 태그를 제조하였다.A 3×tyrosine tag was prepared in the same manner as Example 1, except that tyrosine was used instead of histidine.
실시예 4. 3×트립토판 태그의 제조Example 4. Preparation of 3×tryptophan tag
히스티딘 대신 트립토판을 사용한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 3×트립토판 태그를 제조하였다.A 3×tryptophan tag was prepared in the same manner as Example 1, except that tryptophan was used instead of histidine.
실시예 5. 6×트립토판 태그의 제조Example 5. Preparation of 6×tryptophan tag
3개의 트립토판이 연결된 폴리펩타이드 대신 6개의 트립토판이 연결된 폴리펩타이드를 사용한 것을 제외하고는, 상기 실시예 4와 동일한 방법으로 6×트립토판 태그(서열번호 1)를 제조하였다.A 6×tryptophan tag (SEQ ID NO: 1) was prepared in the same manner as Example 4, except that a polypeptide with 6 tryptophans linked instead of a polypeptide with 3 tryptophans linked was used.
실시예 6. 9×트립토판 태그의 제조Example 6. Preparation of 9×tryptophan tag
3개의 트립토판이 연결된 폴리펩타이드 대신 9개의 트립토판이 연결된 폴리펩타이드를 사용한 것을 제외하고는, 상기 실시예 4와 동일한 방법으로 9×트립토판 태그(서열번호 2)를 제조하였다.A 9×tryptophan tag (SEQ ID NO: 2) was prepared in the same manner as Example 4, except that a polypeptide with 9 tryptophans linked instead of a polypeptide with 3 tryptophans linked was used.
실시예 7. 12×트립토판 태그의 제조Example 7. Preparation of 12×tryptophan tag
3개의 트립토판이 연결된 폴리펩타이드 대신 12개의 트립토판이 연결된 폴리펩타이드를 사용한 것을 제외하고는, 상기 실시예 4와 동일한 방법으로 12×트립토판 태그(서열번호 3)를 제조하였다.A 12×tryptophan tag (SEQ ID NO: 3) was prepared in the same manner as in Example 4, except that a polypeptide with 12 tryptophan links was used instead of a polypeptide with 3 tryptophan links.
실시예 8. 15×트립토판 태그의 제조Example 8. Preparation of 15×tryptophan tag
3개의 트립토판이 연결된 폴리펩타이드 대신 15개의 트립토판이 연결된 폴리펩타이드를 사용한 것을 제외하고는, 상기 실시예 4와 동일한 방법으로 15×트립토판 태그(서열번호 4)를 제조하였다.A 15×tryptophan tag (SEQ ID NO: 4) was prepared in the same manner as Example 4, except that a polypeptide with 15 tryptophans was used instead of a polypeptide with 3 tryptophans connected.
실험예 1. 아미노산 종류에 따른 그래핀 시트에의 고정효과 확인Experimental Example 1. Confirmation of fixation effect on graphene sheet according to amino acid type
상기 제작된 아미노산 태그의 아미노산 종류에 따른 그래핀 시트에의 고정효과를 다음과 같이 확인하였다.The effect of fixing the produced amino acid tag to the graphene sheet according to the type of amino acid was confirmed as follows.
먼저, 실시예 1 내지 4의 아미노산 태그를 DMSO(dimethyl sulfoxide)에 희석하여 1 mM의 농도가 되도록 준비하였다. 한편, 실리콘으로 제조된 반도체 웨이퍼에 그래핀을 도포 및 절단하여 그래핀 시트를 제조하였다. 상기 제조된 그래핀 시트를 99.9% 에탄올로 3회 세척하고, 증류수로 3회 세척하고, 상기 DMSO에 희석된 아미노산 태그를 10 ㎕의 양으로 처리하였다. 이를 4℃의 암조건에서 하룻밤동안 반응시켜, 아미노산 태그를 그래핀 시트에 고정시켰다. 반응이 끝난 후, 그래핀 시트를 증류수로 3회 세척하고, 정립 형광현미경을 사용하여 그래핀 시트 위에 고정된 아미노산 태그를 확인하였다. 그 결과, 형광현미경으로 촬영한 결과 사진을 도 1A에, 형광강도를 측정한 그래프를 도 1B에 나타내었다.First, the amino acid tags of Examples 1 to 4 were prepared by diluting them in dimethyl sulfoxide (DMSO) to a concentration of 1 mM. Meanwhile, a graphene sheet was manufactured by applying graphene to a semiconductor wafer made of silicon and cutting it. The prepared graphene sheet was washed three times with 99.9% ethanol and three times with distilled water, and treated with the amino acid tag diluted in DMSO in an amount of 10 μl. This was reacted overnight at 4°C in the dark, and the amino acid tag was fixed to the graphene sheet. After the reaction was completed, the graphene sheet was washed three times with distilled water, and the amino acid tag fixed on the graphene sheet was confirmed using an upright fluorescence microscope. As a result, a picture taken with a fluorescence microscope is shown in Figure 1A, and a graph measuring the fluorescence intensity is shown in Figure 1B.
도 1에 나타난 바와 같이, 아미노산 태그가 그래핀 시트에 고정되었으며, 특히 티로신 또는 트립토판을 사용하여 제조된 태그가 그래핀 시트에의 고정 효과가 유의적으로 우수하였다.As shown in Figure 1, the amino acid tag was immobilized on the graphene sheet, and in particular, the tag prepared using tyrosine or tryptophan had a significantly better immobilization effect on the graphene sheet.
실험예 2. 아미노산 종류에 따른 그래핀 센서에의 고정효과 확인Experimental Example 2. Confirmation of fixation effect on graphene sensor according to amino acid type
상기 제작된 아미노산 태그의 아미노산 종류에 따른 그래핀 센서에의 고정효과를 다음과 같이 확인하였다. 실험은 그래핀 시트를 사용한 대신 그래핀 센서를 사용한 것을 제외하고는 상기 실험예 1과 동일한 방법으로 수행되었다. 이때, 그래핀 센서는 상술한 바와 같이 제조된 그래핀 시트에 통상적인 방법으로 포토레지스트 작업을 수행하여 제조하였다. 그 결과, 그래핀 센서에 태그가 결합한 것을 형광현미경으로 촬영한 결과 사진을 도 2A에, 형광강도를 측정한 그래프를 도 2B에 나타내었다.The fixation effect of the produced amino acid tag on the graphene sensor according to the type of amino acid was confirmed as follows. The experiment was performed in the same manner as Experimental Example 1, except that a graphene sensor was used instead of a graphene sheet. At this time, the graphene sensor was manufactured by performing photoresist work on the graphene sheet manufactured as described above by a conventional method. As a result, the tag bound to the graphene sensor was photographed using a fluorescence microscope. A photo of the result is shown in Figure 2A, and a graph measuring the fluorescence intensity is shown in Figure 2B.
도 2에 나타난 바와 같이, 티로신 또는 트립토판을 사용하여 제조된 태그가 그래핀 센서에 효과적으로 고정되었다.As shown in Figure 2, tags prepared using tyrosine or tryptophan were effectively immobilized on the graphene sensor.
실험예 3. 아미노산 길이에 따른 그래핀 센서에의 고정효과 확인Experimental Example 3. Confirmation of fixation effect on graphene sensor according to amino acid length
상기 실험예를 통해 가장 우수한 결합력으로 그래핀에 고정되는 것으로 확인된 트립토판 태그를 사용하여 아미노산 길이에 따른 고정효과를 확인하였다. 실험은 실시예 4 내지 6에서 제조된 아미노산 태그를 사용한 것을 제외하고는 상기 실험예 2와 동일한 방법으로 수행되었다. 그 결과, 그래핀 센서에 태그가 결합한 것을 형광현미경으로 촬영한 결과 사진을 도 3A에, 형광강도를 측정한 그래프를 도 3B에 나타내었다.Through the above experimental example, the tryptophan tag, which was confirmed to be immobilized on graphene with the best binding force, was used to confirm the immobilization effect according to the amino acid length. The experiment was performed in the same manner as Experiment 2 above, except that the amino acid tags prepared in Examples 4 to 6 were used. As a result, the tag bound to the graphene sensor was photographed using a fluorescence microscope. A photo of the result is shown in Figure 3A, and a graph measuring the fluorescence intensity is shown in Figure 3B.
도 3에 나타난 바와 같이, 트립토판을 6개 이상 연결하여 제조된 태그에서 그래핀 센서에의 고정효과가 현저히 증가하였다.As shown in Figure 3, the fixation effect on the graphene sensor was significantly increased in the tag manufactured by connecting six or more tryptophans.
실험예 4. 아미노산 길이의 최적화Experimental Example 4. Optimization of amino acid length
트립토판 갯수에 따른 그래핀 시트와의 고정효과를 다음과 같은 방법으로 확인하였다.The fixation effect with the graphene sheet according to the number of tryptophan was confirmed in the following manner.
먼저, 3개, 6개 또는 9개의 트립토판 태그를 암호화하는 폴리뉴클레오타이드를, 이의 C-말단에 스트렙토마이신(streptomysin) 단백질이 발현되도록 pET-42 벡터에 유전자를 삽입하였다. 재조합 pET-42 벡터를 대장균에 형질전환하여 트립토판 태그가 결합된 스트렙토마이신을 발현하는 재조합 대장균을 선별하였다. 선별된 대장균을 2 ℓ 플라스크 6개를 사용하여 총 6 ℓ가 되도록 LB 배양배지를 사용하여 37℃에서 150 rpm의 속도로 배양하였다. OD600이 0.45 내지 0.5에 도달하면, 1 ㎖의 1 M IPTG를 각각의 플라스크에 첨가하고, 동일한 조건에서 4시간 동안 더 배양하였다. 배양이 끝난 세포를 원심분리로 회수하고, 세포에 히스티딘 결합 완충액(histidine binding buffer, 20 mM Tris-HCl, 0.5 M NaCl, 20 mM 이미다졸, pH 8.0)을 첨가하고 볼텍싱(voltexing)하였다. 이를 음파처리(sonication)하여 세포를 용해시키고, 다시 원심분리하여 상층액을 수득하였다. 수득된 상층액을 0.4 ㎛의 포어(pore) 사이즈를 갖는 필터로 여과하고, 히스-태그 친화성 크로마토그래피(his-tag affinity chromatograpy)를 통상적인 방법으로 수행하여, 트립토판 태그가 결합된 스트렙토마이신 단백질을 정제하였다. 이후, 96웰 플레이트 바닥에 그래핀 시트를 부착하고, 200 ㎕의 상기 정제된 스트렙토마이신 단백질을 처리하였다. 이를 4℃에서 하룻밤 동안 보관한 후, PBS를 사용하여 웰을 3회 세척하였다. 여기에 BSA 용액을 첨가하여 1시간 동안 전처리하고, HRP 결합된 스트렙타비딘에 대한 1차 항체를 사용하여 그래핀 시트에 대한 트립토판 태그의 고정효과를 형광발색을 통해 확인하였다. 그 결과, 형광강도를 측정한 그래프를 도 4에 나타내었다.First, a polynucleotide encoding 3, 6, or 9 tryptophan tags was inserted into the pET-42 vector to express streptomycin protein at its C-terminus. The recombinant pET-42 vector was transformed into E. coli, and recombinant E. coli expressing streptomycin with a tryptophan tag was selected. The selected E. coli were cultured at 37°C at a speed of 150 rpm using LB culture medium to a total volume of 6 liters using six 2 liter flasks. When the OD 600 reached 0.45 to 0.5, 1 ml of 1 M IPTG was added to each flask and incubated for another 4 hours under the same conditions. After culturing, the cells were recovered by centrifugation, and histidine binding buffer (20mM Tris-HCl, 0.5M NaCl, 20mM imidazole, pH 8.0) was added to the cells and vortexed. The cells were lysed by sonication, and centrifuged again to obtain the supernatant. The obtained supernatant was filtered through a filter with a pore size of 0.4 ㎛, and his-tag affinity chromatography was performed in a conventional manner to obtain the streptomycin protein bound to the tryptophan tag. was purified. Afterwards, a graphene sheet was attached to the bottom of a 96-well plate, and 200 ㎕ of the purified streptomycin protein was treated. After storing it at 4°C overnight, the wells were washed three times using PBS. BSA solution was added thereto and pretreated for 1 hour, and the fixation effect of the tryptophan tag on the graphene sheet was confirmed through fluorescence using a primary antibody against HRP-conjugated streptavidin. As a result, a graph measuring the fluorescence intensity is shown in Figure 4.
도 4에 나타난 바와 같이, 트립토판을 6개 이상 연결하여 제조된 태그에서 그래핀 시트에의 고정효과가 현저히 증가하였다.As shown in Figure 4, the fixation effect on the graphene sheet was significantly increased in the tag manufactured by connecting six or more tryptophans.
실험예 5. 아미노산 태그의 항체 결합력에 대한 영향확인Experimental Example 5. Confirmation of effect of amino acid tag on antibody binding ability
아미노산 태그가 결합된 항체의 표적 단백질과의 결합력에 변화가 있는지 여부를 다음과 같은 방법으로 확인하였다.Whether there was a change in the binding affinity of the amino acid tag-conjugated antibody to the target protein was confirmed using the following method.
구체적으로, 3개, 6개, 9개, 12개 또는 15개의 트립토판 태그를 암호화하는 폴리뉴클레오타이드를, 이의 C-말단에 SARS-CoV-2의 스파이크 단백질에 특이적으로 결합하는 scFv(서열번호 5)가 발현되도록 pET-42 벡터에 유전자를 삽입하였다. scFv 유전자가 삽입된 pET-42 벡터를 상기 기재된 바와 같이 대장균에 형질전환하고, 통상적인 방법으로 Ni 컬럼을 사용하여 정제하였다. 100 ㎕의 상기 정제된 단백질(1 μM)을 그래핀 시트가 바닥에 부착된 96웰 플레이트에 첨가하고, 2시간 동안 상온에서 방치하였다. 이후, 상기 플레이트를 PBS 완충액으로 3회 세척하고, 100 ㎕의 2% BSA 완충액을 처리하여 상온에서 1시간 동안 전처리하였다. 이를 다시 PBS 완충액으로 3회 세척하고, SARS-CoV-2의 스파이크 단백질(서열번호 6)을 웰당 100 ㎕씩 첨가하였다. 상온에서 1시간 동안 방치한 후, PBS 완충액으로 3회 세척하고, HRP가 결합된 SARS-CoV-2의 스파이크 단백질에 대한 1차 항체를 1:2000으로 희석하여 처리하였다. 상온에서 1시간 동안 반응시킨 후, PBS 완충액으로 4회 세척하고, 50 ㎕의 TMB 용액을 첨가하여 상온에서 빛을 차단하고 20분 동안 반응시켰다. 반응이 끝난 후, 50 ㎕의 2 M 황산용액을 첨가하여 반응을 정지시키고, 450 ㎚의 파장에서 흡광도를 측정한 결과를 도 5에 나타내었다.Specifically, a polynucleotide encoding 3, 6, 9, 12 or 15 tryptophan tags is added to its C-terminus as an scFv (SEQ ID NO: 5) that specifically binds to the spike protein of SARS-CoV-2. ) was inserted into the pET-42 vector to express the gene. The pET-42 vector into which the scFv gene was inserted was transformed into E. coli as described above and purified using a Ni column by a conventional method. 100 μl of the purified protein (1 μM) was added to a 96-well plate with a graphene sheet attached to the bottom, and left at room temperature for 2 hours. Afterwards, the plate was washed three times with PBS buffer and pretreated with 100 μl of 2% BSA buffer for 1 hour at room temperature. This was washed again three times with PBS buffer, and 100 μl of SARS-CoV-2 spike protein (SEQ ID NO: 6) was added to each well. After being left at room temperature for 1 hour, it was washed three times with PBS buffer and treated with a primary antibody against the spike protein of SARS-CoV-2 bound to HRP at a dilution of 1:2000. After reacting at room temperature for 1 hour, the mixture was washed four times with PBS buffer, 50 ㎕ of TMB solution was added, light was blocked, and reaction was allowed at room temperature for 20 minutes. After the reaction was completed, 50 μl of 2 M sulfuric acid solution was added to stop the reaction, and the absorbance was measured at a wavelength of 450 nm, and the results are shown in Figure 5.
도 5에 나타난 바와 같이, 트립토판 태그와 융합된 scFv가 그래핀 시트에 우수한 고정력으로 고정되었으며, 이는 트립토판을 6개 이상 연결하여 제조된 태그에서 그 효과가 현저히 증가하였다.As shown in Figure 5, the scFv fused with the tryptophan tag was immobilized on the graphene sheet with excellent anchoring force, and the effect was significantly increased in the tag prepared by connecting 6 or more tryptophans.
실험예 6. 그래핀 센서 반응 확인Experimental Example 6. Confirmation of graphene sensor response
상기 실험예 5에서 정제된 트립토판 태그가 융합된 scFv를 그래핀 센서에 10 ㎕ 처리하고, 2시간 동안 상온에서 방치하였다. 이후, 상기 센서를 PBS 완충액으로 3회 세척하고, 1 ㎕의 SARS-CoV-2 단백질을 처리하였다. 단백질이 처리된 그래핀 센서의 소스, 드레인 및 게이트 전극에 프로브를 접지하고 소스미터를 이용하여 전류를 측정하였다. 그 결과, 측정된 전류 신호를 도 6에 나타내었다.10 ㎕ of scFv fused with the tryptophan tag purified in Experimental Example 5 was applied to the graphene sensor and left at room temperature for 2 hours. Afterwards, the sensor was washed three times with PBS buffer and treated with 1 μl of SARS-CoV-2 protein. The probe was grounded to the source, drain, and gate electrodes of the protein-treated graphene sensor, and the current was measured using a source meter. As a result, the measured current signal is shown in Figure 6.
도 6에 나타난 바와 같이, 트립토판 태그가 융합된 scFv에 의해 SARS-CoV-2의 스파이크 단백질을 바이오 센서로 검출할 수 있음을 알 수 있었다.As shown in Figure 6, it was found that the spike protein of SARS-CoV-2 could be detected as a biosensor by scFv fused with a tryptophan tag.

Claims (11)

  1. 2개 이상의 동일한 아미노산 잔기로 구성되는 폴리펩타이드로 구성되고,Consists of a polypeptide consisting of two or more identical amino acid residues,
    상기 아미노산 잔기는 페닐알라닌, 트립토판, 티로신 또는 히스티딘인 탄소 나노소재에의 고정용 태그.A tag for fixing to a carbon nanomaterial wherein the amino acid residue is phenylalanine, tryptophan, tyrosine, or histidine.
  2. 제1항에 있어서, 상기 아미노산 잔기는 2 내지 20개인, 탄소 나노소재에의 고정용 태그.The tag for fixing to a carbon nanomaterial according to claim 1, wherein the number of amino acid residues is 2 to 20.
  3. 제1항에 있어서, 상기 태그는 이의 N-말단에 탄소 나노소재가 연결되는, 탄소 나노소재에의 고정용 태그.The tag for fixing to a carbon nanomaterial according to claim 1, wherein the tag is connected to a carbon nanomaterial at its N-terminus.
  4. 제1항에 있어서, 상기 태그는 이의 C-말단에 목적 단백질이 연결되는, 탄소 나노소재에의 고정용 태그.The tag for fixing to a carbon nanomaterial according to claim 1, wherein a target protein is linked to the C-terminus of the tag.
  5. 제4항에 있어서, 상기 목적 단백질은 항체 또는 이의 항원 결합 단편, 항원, 리간드 단백질 또는 수용체 단백질인, 탄소 나노소재에의 고정용 태그.The tag for fixing to a carbon nanomaterial according to claim 4, wherein the target protein is an antibody, an antigen-binding fragment thereof, an antigen, a ligand protein, or a receptor protein.
  6. 제1항에 있어서, 상기 탄소 나노소재는 그래핀 소재, 탄소나노튜브, 탄소나노와이어 또는 플러렌인, 탄소 나노소재에의 고정용 태그.The tag for fixing to a carbon nanomaterial according to claim 1, wherein the carbon nanomaterial is a graphene material, carbon nanotube, carbon nanowire, or fullerene.
  7. 제1항의 고정용 태그를 암호화하는 폴리뉴클레오티드.A polynucleotide encoding the anchoring tag of claim 1.
  8. 목적 단백질을 암호화하는 유전자와 작동가능하게 연결된 제7항의 폴리뉴클레오티드를 포함하는 발현벡터.An expression vector comprising the polynucleotide of claim 7 operably linked to a gene encoding a target protein.
  9. 제8항에 있어서, 목적 단백질을 암호화하는 유전자의 5'-말단에 연결된, 발현벡터.The expression vector according to claim 8, which is linked to the 5'-end of the gene encoding the target protein.
  10. 제1항의 고정용 태그 또는 제8항의 발현벡터를 포함하는 탄소 나노소재에의 고정가능한 목적 단백질 생산용 조성물.A composition for producing a target protein that can be immobilized on a carbon nanomaterial, comprising the immobilization tag of claim 1 or the expression vector of claim 8.
  11. 제1항의 고정용 태그 또는 제8항의 발현벡터를 포함하는 탄소 나노소재에의 고정가능한 목적 단백질 생산용 키트.A kit for producing a target protein that can be immobilized on a carbon nanomaterial containing the immobilization tag of claim 1 or the expression vector of claim 8.
PCT/KR2023/019524 2022-11-30 2023-11-30 Amino acid tag for immobilization on carbon nanomaterials and use thereof WO2024117805A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20220164606 2022-11-30
KR10-2022-0164606 2022-11-30

Publications (1)

Publication Number Publication Date
WO2024117805A1 true WO2024117805A1 (en) 2024-06-06

Family

ID=91324431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/019524 WO2024117805A1 (en) 2022-11-30 2023-11-30 Amino acid tag for immobilization on carbon nanomaterials and use thereof

Country Status (2)

Country Link
KR (1) KR20240087564A (en)
WO (1) WO2024117805A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100748408B1 (en) * 2005-06-28 2007-08-10 한국화학연구원 Carbon nanotube biosensors with aptamers as molecular recognition elements and method for sensing target material using the same
KR101288921B1 (en) * 2012-07-11 2013-08-07 서울대학교산학협력단 Method of functionalization of single-walled carbon nanotube field-effect transistor, trimethylamine sensor using the same, and measuring method of seafood freshness using the same
KR101798295B1 (en) * 2015-11-05 2017-11-17 성균관대학교산학협력단 Manufacturing method of biosensor platform using graphene and protein, biosensor platform made by the same, and field effect transistor type biosensor comprising the same
WO2021231948A1 (en) * 2020-05-15 2021-11-18 Hememics Biotechnologies, Inc. Multiplex biosensor for rapid point-of-care diagnostics
WO2022178313A1 (en) * 2021-02-18 2022-08-25 The Johns Hopkins University Detecting diseases in subjects using extracelluar vesicles

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100748408B1 (en) * 2005-06-28 2007-08-10 한국화학연구원 Carbon nanotube biosensors with aptamers as molecular recognition elements and method for sensing target material using the same
KR101288921B1 (en) * 2012-07-11 2013-08-07 서울대학교산학협력단 Method of functionalization of single-walled carbon nanotube field-effect transistor, trimethylamine sensor using the same, and measuring method of seafood freshness using the same
KR101798295B1 (en) * 2015-11-05 2017-11-17 성균관대학교산학협력단 Manufacturing method of biosensor platform using graphene and protein, biosensor platform made by the same, and field effect transistor type biosensor comprising the same
WO2021231948A1 (en) * 2020-05-15 2021-11-18 Hememics Biotechnologies, Inc. Multiplex biosensor for rapid point-of-care diagnostics
WO2022178313A1 (en) * 2021-02-18 2022-08-25 The Johns Hopkins University Detecting diseases in subjects using extracelluar vesicles

Also Published As

Publication number Publication date
KR20240087564A (en) 2024-06-19

Similar Documents

Publication Publication Date Title
Haque et al. Real-time sensing and discrimination of single chemicals using the channel of phi29 DNA packaging nanomotor
JP3741718B2 (en) Highly specific surfaces for biological reactions, how to make them, and how to use them
AU2007227415B2 (en) Apparatus for microarray binding sensors having biological probe materials using carbon nanotube transistors
EP3039155B1 (en) Molecule detection using boronic acid substituted probes
Shao et al. Nanotube–antibody biosensor arrays for the detection of circulating breast cancer cells
Haque et al. Incorporation of a viral DNA-packaging motor channel in lipid bilayers for real-time, single-molecule sensing of chemicals and double-stranded DNA
WO2019203493A1 (en) Multiwell electrode-based biosensor
WO2010137903A2 (en) Method for screening for a drug candidate substance which inhibits target protein-protein interaction for developing a novel concept drug
CN113677805A (en) Surface immobilized bistable polynucleotide devices for sensing and quantifying molecular events
JP2001512691A (en) An electrochemical reporter system for examining immunoassay analysis and molecular biological processes
EP1682525B1 (en) N-sulfonylaminocarbonyl containing compounds
WO2024117805A1 (en) Amino acid tag for immobilization on carbon nanomaterials and use thereof
US20220214354A1 (en) Means and methods for single molecule peptide sequencing
WO2017200167A1 (en) Nanobiosensor for detecting allergies, manufacturing method therefor, and detection system comprising same
US20230417750A1 (en) Single-molecule electronic multiplex nanopore immunoassays for biomarker detection
WO2013111953A2 (en) Method for detecting and quantifying target proteins or target cells using aptamer chips
WO2023146117A1 (en) Kit for analyzing interactomes, and method for analyzing interactomes by using same
US20230104998A1 (en) Single-molecule protein and peptide sequencing
WO2022131846A1 (en) Method for detecting target material by using graphene oxide and aptamer/g-quadruplex-hexane-structure-based hybridization chain reaction
WO2018048194A1 (en) Composition and method for improving sensitivity and specificity of detection of nucleic acids using dcas9 protein and grna binding to target nucleic acid sequence
WO2011145908A2 (en) Quantitative analysis method using a nanotube having integrated enzymes
Weiss-Wichert et al. A new analytical device based on gated ion channels: a peptide-channel biosensor
WO2019059643A1 (en) Dna aptamer specifically binding to cfp10, and use thereof
WO2009116803A2 (en) Biosensor for detecting a trace amount of sample and production method therefor
WO2019212248A1 (en) Bacteriophage-based sers-active gold nanohalo structure and manufacturing method therefor