WO2011145908A2 - Quantitative analysis method using a nanotube having integrated enzymes - Google Patents

Quantitative analysis method using a nanotube having integrated enzymes Download PDF

Info

Publication number
WO2011145908A2
WO2011145908A2 PCT/KR2011/003730 KR2011003730W WO2011145908A2 WO 2011145908 A2 WO2011145908 A2 WO 2011145908A2 KR 2011003730 W KR2011003730 W KR 2011003730W WO 2011145908 A2 WO2011145908 A2 WO 2011145908A2
Authority
WO
WIPO (PCT)
Prior art keywords
aptamer
analyte
enzyme
antibody
substrate
Prior art date
Application number
PCT/KR2011/003730
Other languages
French (fr)
Korean (ko)
Other versions
WO2011145908A9 (en
WO2011145908A3 (en
Inventor
김중배
오민규
이혜진
김병찬
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Priority to KR1020117011682A priority Critical patent/KR101273453B1/en
Publication of WO2011145908A2 publication Critical patent/WO2011145908A2/en
Publication of WO2011145908A3 publication Critical patent/WO2011145908A3/en
Publication of WO2011145908A9 publication Critical patent/WO2011145908A9/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54313Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
    • G01N33/54326Magnetic particles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/551Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being inorganic
    • G01N33/553Metal or metal coated
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/115Aptamers, i.e. nucleic acids binding a target molecule specifically and with high affinity without hybridising therewith ; Nucleic acids binding to non-nucleic acids, e.g. aptamers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/573Immunoassay; Biospecific binding assay; Materials therefor for enzymes or isoenzymes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/581Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with enzyme label (including co-enzymes, co-factors, enzyme inhibitors or substrates)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/16Aptamers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/914Hydrolases (3)
    • G01N2333/948Hydrolases (3) acting on peptide bonds (3.4)
    • G01N2333/974Thrombin

Definitions

  • the present invention relates to quantitative assays using enzymes, aptamers or antibodies, magnetic beads or substrates, and microtubes. More specifically, binding the analyte binding aptamer or antibody to a magnetic bead or a substrate, put it in a test solution to be analyzed, bind it to an analyte, and then isolate it, for quantitative analysis of the analyte.
  • a complex prepared by binding another aptamer or antibody that selectively binds to the analyte on the surface of the enzyme-encapsulated microtube and binding it to a magnetic bead or a substrate to which the aptamer or antibody is bound is subjected to an enzyme reaction. Quantitative analysis. Through this, diagnosis can be made even when the concentration of the analyte is low, and it is possible to overcome the disadvantage of the conventional detection method, which is difficult to quantify by using the signal amplification effect of the microtubes in which the enzyme is integrated.
  • ELISA Enzyme Linked Immunosoebent Assay
  • RIA Radio Immuno-Assay
  • the conventional ELISA is measured by the antibody to which the enzyme is bound, wherein the enzyme bound to the antibody corresponds to one molecule. Therefore, when the reaction by the enzyme is not large and the activity of the enzyme is inhibited, it is difficult to obtain accurate diagnosis and high signal.
  • both the enzyme and the antibody used for ELISA are sensitive to the surrounding environment such as temperature and are easily left at room temperature or modified by other external factors. As a result, the activity is lowered or severely lost.
  • the diagnosis made by the detection and quantification step generally takes a long time, such safety is a big problem. This is because even though the protein is correctly diagnosed, if the enzyme bound to the antibody loses its activity, it does not show an accurate signal amplification and thus it is difficult to accurately diagnose the protein.
  • diagnostic materials and enzymes that are stable to temperature, long-term storage at room temperature, and capable of continuous use are urgently needed in biotechnology, medical diagnostics, the environment, and various other fields.
  • the present invention has been made to solve the above problems, by binding the aptamer 1 or antibody 1 to the magnetic bead or the substrate to capture the analyte, and then isolate the another aptamer 2 or antibody 2 enzyme Aptamer / antibody-enzyme-integrated microtubes were prepared by binding to the integrated microtubes, and then mixed with the separated analyte-aptamer / antibody1-magnetic beads / substrate to convert the analytes into media.
  • Enzyme-fixed microtube-aptamers / antibodies2-analyte-aptamers / antibodies1-magnetic beads / substrate complexes were prepared and the complexes were separated on a solution, and the amount of the complexes was determined by enzymatic reaction of the separated complexes.
  • the object of the present invention is to provide a quantitative analysis method to be measured.
  • Another object of the present invention is to provide an analyte analysis sensor, which is manufactured according to the method of the analyte quantitative analysis and used in the quantitative analysis.
  • the analyte quantitative analysis method of the present invention is characterized by including the following steps:
  • the binding of the first analyte binding aptamer or antibody and the magnetic bead or the substrate of step (A) may include streptavidin-biotin binding, avidin-biotin binding, EDC [ N-ethyl-N '-(dimethlaminopropyl) carbodiimide hydrochloride] coupling, sulfhydrylamine coupling, or Ni-NTA (nitrilotriacetic acid) -histidine linkage.
  • the binding of the enzyme and the microtube of the step (D) is streptavidin (streptavidin)-biotin (biotin) bond, avidin (avidin)-biotin bond, EDC [N-ethyl-N'- (dimethlaminopropyl) carbodiimide hydrochloride] coupling, sulfhydrylamine coupling, or nitrilotriacetic acid (Ni-NTA) -histidine linkage.
  • step (C) when the analyte-aptamer / antibody 1-magnetic beads / substrate of step (C) is the analyte-aptamer / antibody 1-magnetic beads, it is preferable to magnetically separate from the test solution.
  • the magnetic bead / substrate-aptamer / antibody 1-analyte-aptamer / antibody 2-enzyme-microtubes of the step (G) is a magnetic bead-aptamer / antibody 1-analyte-aptamer / antibody 2
  • the analyte quantitative analysis method of the present invention is to protect the unreacted binding site of the magnetic beads or the substrate surface of the aptamer / antibody 1-magnetic beads / substrate before step (A) and after step (B) It may further comprise.
  • the analyte quantitative analysis method of the present invention protects the unreacted binding sites of the magnetic beads or the substrate surface of the analyte-aptamer / antibody 1-magnetic beads / substrate after step (B) and before step (C). It may further comprise the step.
  • the analyte quantitative analysis of the present invention further comprises the step of protecting the unreacted binding site of the microtube or enzyme in the aptamer / antibody-enzyme-microtube after the step (E) and before the step (F). It can be included as.
  • the magnetic beads or the substrate is a neutral carboxyl group (-COOH) on the surface, its ion (-COO -), a neutral amine group (-NH 2), its ion (-NH - or -NH 3 +), neutral thiol (-SH), and its ion (-S -) preferably has a functional group selected from the group consisting of.
  • the fine tube is neutral carboxyl group (-COOH) on the surface, its ion (-COO -), a neutral amine group (-NH 2), its ion (-NH-or -NH 3 +), neutral thiol group (- SH), and its ion (-S - preferably includes a functional group selected from the group consisting of a).
  • the enzyme of the present invention is preferably integrated by crosslinking on the surface of the microtube.
  • crosslinking between enzymes integrated on the surface of the microtubes of the present invention can be accomplished by salts, amine bond bifunctional compounds, or salt and amine bond bifunctional compounds.
  • the analytical target quantitative analysis of the present invention reacts with a mixture of magnetic beads or a substrate and an EDC [N-ethyl-N '-(dimethlaminopropyl) carbodiimide hydrochloride] solution, followed by an unreacted EDC solution. It may further comprise the step of removing.
  • the analyte for quantitative analysis of the present invention reacts by mixing a microtube and an EDC [N-ethyl-N '-(dimethlaminopropyl) carbodiimide hydrochloride] solution, and then removing the unreacted EDC solution. It may further comprise the step.
  • the quantitative analysis method of the present invention may remove the unreacted EDC solution by centrifugation after the reaction by mixing the microtube and the EDC solution.
  • first analyte binding aptamer or the second analyte binding aptamer is preferably 10 to 250 of the base constituting the sequence.
  • microtube of the step (D) is preferably treated with an acid (acid).
  • analyte quantitative analysis method of the present invention may further comprise the step of washing after the step (A).
  • analyte quantitative analysis method of the present invention may further comprise the step of washing after the step (C).
  • analyte quantitative analysis method of the present invention may further comprise the step of washing after the step (D).
  • analyte quantitative analysis method of the present invention may further comprise the step of washing after the step (G).
  • analyte quantitative analysis method of the present invention may further comprise the step of washing after the step of protecting the unreacted binding site of the magnetic beads or the substrate surface of the aptamer / antibody 1-magnetic beads / substrate.
  • analyte quantitative analysis method of the present invention may further comprise a step of washing after protecting the unreacted binding site of the surface of the microtube in the enzyme-microtube.
  • analyte may be thrombin.
  • the first analyte-binding aptamer is preferably a thrombin specific DNA aptamer of SEQ ID NO: 5'-GGT TGG TGT GGT TGG-3 '.
  • the second analysis target binding aptamer is preferably a thrombin specific DNA aptamer of SEQ ID NO: 5'- AGT CCG TGG TAG GGC AGG TTG GGG TGA CT-3 '.
  • the enzyme is preferably glucose oxidase.
  • the analyte quantitative assay of the present invention is based on the immunogenic capacity and stability between the analyte and a particular aptamer or antibody. Detection of the analyte consists of specific binding by magnetic beads or substrates to which aptamers or antibodies are bound. The use of the aptamer or antibody binding magnetic beads or substrates is useful to isolate a particular analyte in an environment containing various components. And aptamers or antibodies have the advantage of having a strong affinity for the analyte. In addition, since the microtubes in which the enzyme is integrated can maintain activity for a long time, when the enzyme is left at room temperature, it can overcome the conventional disadvantage that the activity is not caused to cause an enzyme reaction.
  • one enzyme molecule does not cause an enzymatic reaction, but a number of enzymes accumulated in the microtubes perform enzymatic reactions and thus show a higher signal than the existing enzymatic reactions.
  • the quantitative analysis using the signal amplification effect by immunomagnetism separation and enzymatic integration of the present invention improves the specificity of binding and the speed, convenience and stability of the separation in detection. It has the effect of improving sensitivity and accuracy.
  • Figure 1 is a schematic diagram showing the process of one embodiment of the analyte quantitative analysis method of the present invention for the analysis of thrombin.
  • 2 is a graph measuring the concentration of optimal aptamer / antibody 2-enzyme-microtubes.
  • 3 is a photograph of the separation result by magnetic force when the target analyte exists and when it is not.
  • 5 is a graph showing the results of thrombin analysis using the present invention quantitative analysis.
  • 6 and 7 are graphs showing the results of electrochemical analysis of thrombin using a voltage current meter.
  • FIG. 8 is a graph showing the results of measuring the thermal stability of the analyte analysis sensor of the present invention.
  • the inventors have discovered that an immunomagnetic approach using analyte detection aptamer or antibody bound to a magnetic bead or substrate can detect and isolate an objective analyte with high efficiency. Furthermore, it was found that the signal amplification effect of the enzyme-integrated microtube can be used to diagnose and quantify the analyte detected and separated.
  • the analyte to be detected and quantified is for all particles that are worth analyzing, such as bioparticles such as proteins, antigens, cells, or inorganic particles.
  • aptamers used in the present invention are single-stranded nucleic acid ligands selected for specific target molecules for desired functions such as peptides, small molecules, binding to nucleic acids and catalysis of various chemical reactions. Aptamers achieve specific binding to target molecules with a high affinity comparable to antigen-antibody conjugates. Aptamers have several advantages over antibodies, making them an attractive alternative to antibodies in affinity analysis of analytes. That is, aptamers are smaller, more stable, easier to modify chemically, can be screened through systematic evolution of ligands by exponential augmentation (SELEX), and can be synthesized in large quantities in vitro.
  • SELEX exponential augmentation
  • the present inventors have developed a method for diagnosing and quantifying a target analyte bound to a magnetic bead or a substrate by binding an aptamer or an antibody capable of recognizing the target analyte to an enzyme-immobilized microtube. This confirmed that the signal amplification of the immobilized enzyme can detect and quantitate up to 1 ng of analyte per ml that could not be detected by the conventional ELISA method.
  • Figure 1 is a schematic diagram showing the process of one embodiment of the analyte quantitative analysis method of the present invention for the analysis of thrombin.
  • the analyte quantitative assay of the present invention first begins by binding an aptamer or an antibody that binds the analyte to a magnetic bead or substrate for capture of the analyte of interest for which presence and amount thereof are to be analyzed.
  • the binding of the magnetic beads or the substrate and the analyte binding aptamer or the antibody may be used without limitation as long as it is a method known in the biosciences for the binding.
  • a neutral carboxyl group (-COOH), its ion (-COO -), a neutral amine group (-NH 2), its ion (-NH - or -NH 3 +), neutral thiol group (-SH), and its ion (-S -) from the group consisting of It is desirable to have selected functional groups.
  • EDC N-ethyl-N '-(dimethlaminopropyl) carbodiimide hydrochloride
  • the magnetic bead or substrate having a functional group As a specific method of binding the magnetic bead or substrate having a functional group to the surface and the aptamer or the antibody, streptavidin-biotin bond, avidin-biotin bond, EDC [N-ethyl- N '-(dimethlaminopropyl) carbodiimide hydrochloride] coupling, sulfhydrylamine coupling, or nitrilotriacetic acid-histidine coupling, and the like, and amide binding is particularly preferred.
  • the amide binding is a reaction formed by binding of a magnetic bead or a carboxyl group (-COOH) of a substrate with an aptamer 5 'end or an amine group (-NH 2 ) of an antibody.
  • bosa serum albumin BSA
  • the aptamer or antibody-bound magnetic beads or substrates obtained through the above process that is, aptamer / antibody-magnetic beads or substrates, were separated by magnetic force and mixed with the test solution containing the analyte to be analyzed.
  • the analyte prepares an analyte-aptamer / antibody 1-magnetic bead / substrate coupled to the aptamer 1 or antibody 1 of the aptamer / antibody-magnetic bead / substrate.
  • the enzyme for generating a signal from the analyte is coupled with another aptamer or antibody that interacts with the analyte.
  • the analyte to be detected or quantitatively analyzed may be the subject of all analyses without any limitation.
  • the analyte-aptamer / antibody 1-magnet bead / substrate is another aptamer 2 or antibody 2 that binds to the analyte for binding to the microtubes in which the enzyme, which is the final analytical signal generator of the present invention, is integrated. Is bonded to the integrated microtube.
  • Microtubes here refer to all materials that are smaller than millimeters in size and have a tube shape.
  • carbon nanotubes are particularly preferable, and in particular, it is more preferable to undergo an acid treatment in which an acid solution is immersed in an acid solution before being integrated into an enzyme.
  • the binding of the microtube and the enzyme is the same as that of the binding of the magnetic bead or the substrate to the aptamer or the antibody in the aptamer / antibody 1-magnetic bead / substrate.
  • streptavidin (biotin) bond avidin (avidin) -biotin bond
  • EDC N-ethyl-N'- (dimethlaminopropyl) carbodiimide hydrochloride] coupling, sulfhydrylamine coupling, or nitrilotriacetic acid (Ni-NTA) -histidine linking, and the like, and amide binding is particularly preferred.
  • This enzyme binds an aptamer or antibody specific for the target analyte.
  • the combination of the aptamer / antibody and the enzyme is a monoantibody-monoenzyme and free form as in the conventional ELISA, it is difficult to fully express the effects of the present invention. That is, if one molecule of an enzyme or antibody bound to the target analyte binds to the target analyte, the enzyme cannot be captured even if it binds to the target analyte.
  • the enzyme in the free form is a high disadvantage of the above-described activity degradation or deactivation acts as a big disadvantage.
  • a large amount of signaling enzymes are first bound to microtubes, and then aptamers or antibodies are bound to the enzymes.
  • These enzymes bound to the microtubes are not free forms, which enhances their stability, and a large amount of enzymes can generate sufficient signals even if some enzymes are inhibited or inactivated.
  • the present invention is particularly characterized by crosslinking between enzymes in order to bind enzymes to microtubes in large quantities.
  • enzymes exist in water one molecule apart, but when salts such as ammonium sulphate are added, agglomeration or precipitation occurs several times.
  • salts that cause this phenomenon include sodium chloride, sodium sulfate, sodium phosphate, potassium chloride, potassium sulfate, and potassium phosphate.
  • an amine-binding bifunctional compound having two or more functional groups that react with the amine group of the enzyme such as glutaraldehyde
  • Bifunctional compounds that cause this phenomenon include glutaraldehyde, bis (imido esters), bis (succinimidyl esters), bis (succinimidyl esters) and diisocyanate. And diacid chloride.
  • BSA bovine serum albumin
  • microtubes in which the aptamer 2 or the antibody 2 is coupled to the enzyme-encapsulated microtubes are separated by a known method such as centrifugation, and then mixed with the analyte-aptamer / antibody 1-magnetic beads / substrate prepared above.
  • the analyte is formed as a complex of microtube-enzyme-aptamer / antibody2-analyte-aptamer / antibody 1-magnet bead / substrate and separated using magnetic force.
  • the separated microtube-enzyme-aptamer / antibody2-analyte-aptamer / antibody 1-magnetic bead / substrate is amplified by the enzyme-specific reaction and thereby rapidly and quantitatively exists and quantifies the target analyte. I can figure it out correctly.
  • the aptamer / antibody 1-magnet bead / substrate preparation step enzyme-microtube production step, magnetic separation step, It is more preferable to wash after protecting the magnetic beads or the unreacted bonded portion of the substrate or the microtube surface. It is, of course, possible to perform the washing step in addition to the above steps.
  • a magnetic bead bound to the first thrombin binding aptamer was produced by EDC coupling method (Mahmoud et al. 2005) as follows. Magnetic beads (10 ⁇ l, 7-12 ⁇ 10 9 beads / ml) were washed with 0.01 M aqueous NaOH solution and deionized water. After washing, the solution was placed on a magnet for 1 minute to remove the washing solution. EDC [N-ethyl-N '-(dimethlaminopropyl) carbodiimide hydrochloride] solution (500 ⁇ l, 20 mg / ml) was then added and incubated at 4 ° C.
  • the amount of bound aptamer was analyzed by measuring the absorbance at 260 nm with a spectrometer.
  • Aptamer bound magnetic beads (Aptamer1-Magnetic beads) were washed three times with 1000 ⁇ l of 10 mM PBS (pH 7.4). Subsequently, in order to protect the unreacted carboxyl group on the surface of the magnetic beads, 1000 ⁇ l of protective solution (0.1% BSA [bovine serum albumin] and 0.05% Tween 20) was added and incubated with stirring (200 rpm) at room temperature.
  • Thrombin was detected using the aptamer1-magnet beads of Example 1 as follows.
  • the aptamer1-magnet beads (10 ⁇ l, 0.7-1.2 ⁇ 10 8 beads) of Example 1 were suspended in a PBS solution (thrombin concentration: 1 ng-1 ug / ml) containing thrombin (Abcam. USA).
  • PBS solution thrombin concentration: 1 ng-1 ug / ml
  • thrombin Abcam. USA
  • the mixture was incubated with stirring (200 rpm) for 1 hour at room temperature. After incubation, the thrombin-aptamer1-magnet bead complex was separated by magnet, and the supernatant was transferred to a separate tube to measure the amount of captured thrombin by Micro BCA method.
  • the thrombin-aptamer1-magnet bead complex was washed five times with 1000 ⁇ l of 10 mM PBS solution (pH 7.4), then 1000 ⁇ l of protective solution (0.1% BSA and 0.05% Tween 20) was added and stirred at room temperature. (200 rpm) and incubated. After incubation, the solution was placed on a magnet for 1 minute to remove the protective solution, washed three times with 1000 ⁇ l of 10 mM PBS solution (pH 7.4), and the thrombin-aptamer1-magnet bead complex was added to 1000 ⁇ l of 10 Resuspend in mM PBS solution (pH 7.4).
  • aptamer2-enzyme-microtubes having a second thrombin binding aptamer were prepared as follows. Carbon nanotubes (multi-walled, outer diameter 30 ⁇ 15 nm, length 1-5 ⁇ m, purity> 95%) Purchased from Newton, MA, USA, 100 mg of the carbon nanotubes were added to an acid solution containing H 2 SO 4 (98%, 7.5 ml) and HNO 3 (70%, 2.5 ml), followed by room temperature. Treatment was continued overnight with stirring at. The treated carbon nanotubes were washed with deionized water and dried in a vacuum oven at 80 ° C.
  • glucose oxidase (Sigma-Aldrich. USA) was coupled to carboxylated carbon nanotubes by the EDC coupling method.
  • acid treated carbon nanotubes (0.1 mg) were suspended in deionized water, followed by MES (2- [N-morpholino] ethane sulfonic acid) buffer (0.1 M, pH 6.5).
  • MES 2- [N-morpholino] ethane sulfonic acid
  • EDC solution 10 mg / ml
  • NHS N-hydroxysuccinimde
  • EDC solution was removed by centrifugation, and then resuspended in PB (phosphate buffer. 0.1 M, pH 7.4) to adjust the concentration to 2 mg / ml. Then, 0.5 ml of glucose oxidase solution (10 mg / ml) was added to 1 ml of the carbon nanotube mixture and incubated with stirring (100 rpm) for 1 hour at room temperature. After incubation, 0.67 ml of a 65% aqueous solution of ammonium sulfate was added and incubated for 30 minutes.
  • PB phosphate buffer. 0.1 M, pH 7.4
  • Enzyme-microtubes prepared for crosslinking were treated with 35 ⁇ l of glutaraldehyde and incubated with stirring (50 rpm) overnight at 4 ° C.
  • the cultured enzyme-microtubes were washed by centrifugation with PB (0.1 M, pH 7.4).
  • the final enzyme-microtubes were washed three times with PB (0.1 M, pH 7.4) and separated by centrifugation.
  • the EDC activity is rerun to bind another thrombin binding Eptamer 2 to the final enzyme-microtube.
  • the final enzyme-microtubes were resuspended in 1 ml of deionized water. Then 0.4 ml of MES buffer (0.1 M, pH 6.5), 0.2 ml of EDC solution (10 mg / ml) and 0.4 ml of NHS solution (50 mg / ml) were mixed and incubated with stirring (200 rpm) for 30 minutes at room temperature. did.
  • the EDC solution was removed and the enzyme-microtubes were then resuspended in 950 ⁇ l of PBS solution (10 mM, pH 7.4) and a second thrombin binding aptamer (29 bases, 5′-NH 2 -AGT CCG TGG TAG 50 ⁇ l, 50 ⁇ M, Geno-Tech Co. Korea) of GGC AGG TTG GGG TGA CT-3 ') and then incubated with stirring (200 rpm) for 1 hour at room temperature. After incubation, the unbound aptamer was removed by centrifugation of the mixed solution of the enzyme-microtube and the second thrombin-bound aptamer.
  • the amount of bound aptamer was analyzed by measuring the absorbance at 260 nm with a spectrometer.
  • Aptamer bound enzyme-microtubes (Aptamer2-enzyme-microtubes) were washed three times with 1000 ⁇ l of 10 mM PBS (pH 7.4). Subsequently, in order to protect the enzyme and the unreacted carboxyl group of the microtube, 1000 ⁇ l of protective solution (0.1% BSA and 0.05% Tween 20) was added and incubated with stirring (200 rpm) at room temperature.
  • thrombin-aptamer1-magnet bead 0.1 mg / ml
  • aptamer-enzyme-microtube 1.5 mg / ml
  • wash buffer 10 mM PBS containing 0.1% BSA and 0.05% Tween 20
  • the concentration of aptamer2-enzyme-microtubes required for the detection of 1 ⁇ g of thrombin the maximum amount that can be detected through 0.1 mg of magnetic beads, the aptamer2-enzyme- of Example 3
  • the experiment was performed while varying the concentration of the microtubes, and the results are shown in FIG. 2.
  • the binding signal aptamer specifically targets the target analyte by confirming that the reaction signal does not increase even when the concentration of the aptamer2-enzyme-microtube increases. It was found that only to combine.
  • thrombin samples of various concentrations (1000 ng, 500 ng, 100 ng, 10 ng, 1 ng or 0 ng / ml) diluted with PBS. It became.
  • the thrombin-aptamer1-magnet beads combined with the various concentrations of analytes thus obtained were quantified by the aptamer2-enzyme-microtubes at the optimized concentrations described in FIG. 2 described above.
  • the complex in the form of the microtube-enzyme-aptamer2-analyte-aptamer1-magnet bead causes an enzymatic reaction according to the addition of glucose by glucose oxidase, an enzyme in the complex (Fig. 1).
  • the signal was amplified, which allowed for a rapid and accurate determination of the presence and quantitation of thrombin.
  • FIG. 3 is a photograph taken a state in which the actual sample is separated.
  • the left BSA control group does not bind to the aptamer that selectively binds to the target analyte because there is no target thrombin and another protein, BSA. Therefore, the aptamer2-enzyme-microtubes do not complex with the aptamer1-magnet beads and the aptamer2-enzyme-microtubes.
  • the aptamer 1-magnetic beads and the aptamer 2-enzyme-microtubes form a sandwich bond by using thrombin as a medium.
  • the complexed magnetic bead-aptamer1-purpose protein (thrombin) -aptamer2-enzyme-microtube complex is separated toward the magnet. Then, the concentration of the target protein can be quantified according to the amount of the aptamer2-enzyme-microtubes thus separated.
  • FIG. 4 is a photograph taken with a scanning electron microscope (SEM) by separating only the samples forming a complex through a washing process after the separation step by magnetic force as shown in FIG. 3.
  • the left sample, BSA Control removes the aptamer2-enzyme-microtubes that were dispersed during the wash. Only Aptamer1-Magnetic Beads can be recovered.
  • Right Example The thrombin sample can remove only the supernatant that is clearly separated and recover the magnetic bead-aptamer1-purpose protein (thrombin) -aptamer2-enzyme-microtube complex.
  • 5 is a mixture of 990 ⁇ l of the reaction solution (glucose 100 mg / ml, 10 mg / ml of o-Dianisidine and 3.79 mg / ml of Peroxidase [Sigma-Aldrich. USA]) into 10 ⁇ l of the complex sample solution in an acrylic cuvette.
  • 6 and 7 show the results of electrochemical analysis using a voltammetry consisting of an Ag / AgCl reference electrode, a glass carbon working electrode, and a platinum counter electrode.
  • Example 4 The analyte analysis of Example 4 was carried out while storing the aptamer 1-magnet beads and the aptamer 2-enzyme-microtubes prepared in Examples 1 and 3 at a high temperature of 40 ° C. As a result of quantifying the analyte at room temperature again with the materials stored at high temperature, it was confirmed from FIG. 8 that the activity was maintained at 90% or more for 100 hours. In the comparative example, ammonium sulfate and glutaraldehyde were not treated. In this case, only one layer of enzyme was formed on the microtube. As a result, it can be easily seen that the stability is lost.
  • the present invention is a nanobiotechnology (K2060100000209E010000210) for the early diagnosis of acute respiratory tract infection and severe sepsis through the use of Battelle Research Institute of Korea Research Foundation, the development of high activity, high-definition nano-analytical target technology of the Korea Science Foundation and its application in ELISA (task No.:R0911491, Assignment No .: 20090082314) and Korea Research Foundation's study on the stability and activity mechanism of trypsin hydrolysis and nanoenzyme coating for biofuel cells (Task No.:R0904822, Assignment No .: 20100016464) Has been done.

Abstract

The present invention relates to a quantitative analysis method which involves analyzing an object using an enzyme, aptamer, antibody, nanotube, and a magnetic bead or a substrate. More particularly, a binding aptamer or antibody to be bonded to an analysis object is bonded to a magnetic bead or a substrate, and the resultant structure is placed into a solution to be analyzed, bonded to the analysis object, and separated from the analysis object by magnetic force; another aptamer or antibody to be selectively bonded to the analysis object is bonded to the surface of the nanotube, on which enzymes are integrated, so as to prepare for a quantitative analysis of the analysis object; and the quantitative analysis is performed, through an enzyme reaction, on a composite body which is prepared by binding the resultant structure to the magnetic bead or substrate to which the aptamer or antibody is bonded. Thus, a low concentration analysis object can be diagnosed, and difficulties in quantitative analysis according to conventional detection methods can be overcome using the signal-amplification effects of a nanotube having integrated enzymes.

Description

효소가 집적된 미세튜브를 이용한 정량분석법Quantitative Analysis Using Enzyme-integrated Microtubes
본 발명은 효소, 앱타머 또는 항체, 자석비드 또는 기판, 및 미세튜브를 이용한 정량분석법에 관한 것이다. 보다 상세하게는 자석비드 (magnetic bead) 또는 기판에 분석대상 결합 앱타머 또는 항체를 결합시키고 이를 분석하고자 하는 피시험 용액에 넣어 분석대상과 결합시킨 후 분리한 다음, 상기 분석대상의 정량분석을 위해 효소가 집적된 미세튜브 표면에 상기 분석대상에 선택적으로 결합하는 또 다른 앱타머 또는 항체를 결합시키고, 이를 상기 앱타머 또는 항체가 결합된 자석비드 또는 기판과 결합시켜 제조한 복합체를 효소반응을 통해 정량분석한다. 이를 통해 분석대상의 농도가 낮아도 진단할 수 있고, 효소가 집적된 미세튜브의 신호증폭효과를 이용하여 정량이 어려웠던 종래 검출법의 단점을 극복할 수 있다.The present invention relates to quantitative assays using enzymes, aptamers or antibodies, magnetic beads or substrates, and microtubes. More specifically, binding the analyte binding aptamer or antibody to a magnetic bead or a substrate, put it in a test solution to be analyzed, bind it to an analyte, and then isolate it, for quantitative analysis of the analyte. A complex prepared by binding another aptamer or antibody that selectively binds to the analyte on the surface of the enzyme-encapsulated microtube and binding it to a magnetic bead or a substrate to which the aptamer or antibody is bound is subjected to an enzyme reaction. Quantitative analysis. Through this, diagnosis can be made even when the concentration of the analyte is low, and it is possible to overcome the disadvantage of the conventional detection method, which is difficult to quantify by using the signal amplification effect of the microtubes in which the enzyme is integrated.
검출하고자 하는 단백질에 결합하는 두 종류의 항체를 이용하여 단백질을 검출 및 정량하는 방법인 ELISA (Enzyme Linked Immunosoebent Assay)는 목적단백질과 그에 결합하는 항체, 효소가 결합된 항체를 이용하여 진단하는 방법으로, 그 방법이 간단하고 비용이 많이 들지 않으며 다량 분석이 가능하여 현재 가장 널리 쓰이고 있는 항원-항체 분석법이다. 특히 이 방법은 방사능면역시헙법 (RIA, Radio Immuno-Assay)과 같이 매우 민감한 반응이면서도 RIA에서처럼 방사능을 사용하지 않는다는 이점이 있어서 그 사용이 증가되고 있다. ELISA (Enzyme Linked Immunosoebent Assay) is a method of detecting and quantifying proteins using two kinds of antibodies that bind to the protein to be detected. This method is the most widely used antigen-antibody assay because it is simple, inexpensive, and can be analyzed in large quantities. In particular, this method has the advantage of using a very sensitive reaction such as RIA (Radio Immuno-Assay) but not using radioactivity as in RIA.
그러나, 종래의 ELISA는 효소가 결합되어 있는 항체에 의해 측정이 이루어지고 이때 항체에 결합되어 있는 효소는 한 분자에 해당한다. 따라서 효소에 의한 반응이 크지 않고 효소의 활성도가 저해되었을 경우 정확한 진단과 높은 신호를 얻기 어렵다. However, the conventional ELISA is measured by the antibody to which the enzyme is bound, wherein the enzyme bound to the antibody corresponds to one molecule. Therefore, when the reaction by the enzyme is not large and the activity of the enzyme is inhibited, it is difficult to obtain accurate diagnosis and high signal.
그리고, ELISA를 하기 위해 사용되는 효소와 항체 모두 온도 등 주위 환경에 민감하여 실온에 방치되거나 다른 외부 요인에 의해 변형되기 쉬우며, 그 결과 활성도가 낮아지거나 심하면 활성도를 완전히 잃게 된다. 그런데, 검출 및 정량단계로 이루어지는 진단은 일반적으로 오랜 시간이 걸리므로 이러한 안전성이 큰 문제가 되고 있다. 이는 정확하게 단백질을 진단하였어도 항체에 결합된 효소가 활성을 잃게 되면 정확한 신호증폭을 나타내지 못하여 정확한 진단이 어렵기 때문이다. 결과적으로, 온도에 안정하고 실온에서도 장기보관이 가능하며 연속 사용이 가능한 진단용 물질과 효소는 생명공학, 의료진단, 환경 분야 및 여러 다양한 분야에 있어서 절실히 요구되는 실정이다.In addition, both the enzyme and the antibody used for ELISA are sensitive to the surrounding environment such as temperature and are easily left at room temperature or modified by other external factors. As a result, the activity is lowered or severely lost. By the way, the diagnosis made by the detection and quantification step generally takes a long time, such safety is a big problem. This is because even though the protein is correctly diagnosed, if the enzyme bound to the antibody loses its activity, it does not show an accurate signal amplification and thus it is difficult to accurately diagnose the protein. As a result, diagnostic materials and enzymes that are stable to temperature, long-term storage at room temperature, and capable of continuous use are urgently needed in biotechnology, medical diagnostics, the environment, and various other fields.
본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로서, 자석비드 또는 기판에 앱타머1 또는 항체1을 결합하여 분석대상을 포획하고 이를 분리한 후, 또 다른 앱타머2 또는 항체2를 효소가 집적된 미세튜브에 결합시켜 앱타머/항체2-효소가 집적된 미세튜브를 제조한 다음, 이를 분리된 상기 분석대상-앱타머/항체1-자석비드/기판과 혼합하여 상기 분석대상을 매개체로 효소가 고정된 미세튜브-앱타머/항체2-분석대상-앱타머/항체1-자석비드/기판 복합체를 제조하고 이 복합체를 용액 상에서 분리한 후, 분리된 복합체의 효소반응을 통하여 그 양을 측정하는 분석대상 정량분석법을 제공하는 것을 그 목적으로 한다.The present invention has been made to solve the above problems, by binding the aptamer 1 or antibody 1 to the magnetic bead or the substrate to capture the analyte, and then isolate the another aptamer 2 or antibody 2 enzyme Aptamer / antibody-enzyme-integrated microtubes were prepared by binding to the integrated microtubes, and then mixed with the separated analyte-aptamer / antibody1-magnetic beads / substrate to convert the analytes into media. Enzyme-fixed microtube-aptamers / antibodies2-analyte-aptamers / antibodies1-magnetic beads / substrate complexes were prepared and the complexes were separated on a solution, and the amount of the complexes was determined by enzymatic reaction of the separated complexes. The object of the present invention is to provide a quantitative analysis method to be measured.
본 발명은 또한 상기 분석대상 정량분석법의 방법에 따라 제조되고 상기 정량분석법에 사용되는 것을 특징으로 하는 분석대상 분석센서를 제공하는 것을 또 다른 목적으로 한다.Another object of the present invention is to provide an analyte analysis sensor, which is manufactured according to the method of the analyte quantitative analysis and used in the quantitative analysis.
본 발명의 분석대상 정량분석법은 상기 상술한 바와 같은 목적을 달성하기 위하여, 다음과 같은 단계를 포함하는 것을 특징으로 한다: In order to achieve the object as described above, the analyte quantitative analysis method of the present invention is characterized by including the following steps:
(A) 자석비드 (magnetic bead) 또는 기판과 제 1 분석대상결합 앱타머 또는 항체를 혼합하여, 상기 제 1 분석대상결합 앱타머 또는 항체가 상기 자석비드 또는 기판의 표면에 결합된 앱타머/항체1-자석비드/기판을 제조하는 단계; (A) a magnetic bead or a substrate mixed with a first analyte binding aptamer or an antibody, wherein the first analyte binding aptamer or antibody is bound to the surface of the magnetic bead or substrate Preparing a 1-magnetic bead / substrate;
(B) 상기 앱타머/항체1-자석비드/기판을 분석대상이 함유된 피시험 용액에 첨가하여, 상기 분석대상이 상기 앱타머/항체1-자석비드/기판의 상기 제 1 분석대상결합 앱타머 또는 항체에 결합된 분석대상-앱타머/항체1-자석비드/기판을 제조하는 단계;  (B) adding the aptamer / antibody-magnetic bead / substrate to the test solution containing the analyte so that the analyte is the first analyte binding app of the aptamer / antibody-magnetic bead / substrate Preparing an analyte-aptamer / antibody1-magnet bead / substrate bound to a tammer or an antibody;
(C) 상기 피시험 용액으로부터 분석대상-앱타머/항체1-자석비드/기판을 분리하는 단계;  (C) separating the analyte-aptamer / antibody 1-magnetic beads / substrate from the test solution;
(D) 효소와 미세튜브를 혼합하여 상기 효소가 상기 미세튜브의 표면에 집적된 효소-미세튜브를 제조하는 단계;  (D) mixing an enzyme and a microtube to prepare an enzyme-microtube in which the enzyme is integrated on the surface of the microtube;
(E) 상기 분석대상에 결합하는 제 2 분석대상결합 앱타머/항체와 상기 효소-미세튜브를 혼합하여, 상기 제 2 분석대상결합 앱타머/항체가 상기 효소-미세튜브의 상기 효소에 결합된 앱타머/항체2-효소-미세튜브를 제조하는 단계;  (E) mixing the second analyte binding aptamer / antibody binding to the analyte and the enzyme-microtube, so that the second analyte binding aptamer / antibody is bound to the enzyme of the enzyme-microtube. Preparing an aptamer / antibody2-enzyme-microtube;
(F) 상기 분석대상-앱타머/항체1-자석비드/기판과 상기 앱타머/항체2-효소-미세튜브를 혼합하여, 상기 앱타머/항체2-효소-미세튜브의 상기 제 2 분석대상결합 앱타머 또는 항체가 상기 분석대상-앱타머/항체1-자석비드/기판의 상기 분석대상에 결합된 자석비드/기판-앱타머/항체1-분석대상-앱타머/항체2-효소-미세튜브를 제조하는 단계;  (F) the second analyte of the aptamer / antibody-enzyme-microtube by mixing the analyte-aptamer / antibody1-magnetic bead / substrate with the aptamer / antibody2-enzyme-microtube Magnetic beads / substrate-aptamers / antibodies1-analytes-aptamers / antibodies-enzymes-microparticles having binding aptamers or antibodies bound to the analytes of the analyte-aptamer / antibody 1-magnetic beads / substrate Manufacturing a tube;
(G) 상기 자석비드/기판-앱타머/항체1-분석대상-앱타머/항체2-효소-미세튜브를 분리하는 단계; 및  (G) separating the magnetic bead / substrate-aptamer / antibody 1-analyte-aptamer / antibody 2-enzyme-microtube; And
(H) 상기 분리된 자석비드/기판-앱타머/항체1-분석대상-앱타머/항체2-효소-미세튜브의 상기 효소를 정량분석 하는 단계. (H) quantitatively analyzing the enzyme of the separated magnetic beads / substrate-aptamers / antibodies-analyte-aptamers / antibodies-enzymes-microtubes.
또한, 상기 단계 (A)의 상기 제 1 분석대상결합 앱타머 또는 항체와 상기 자석비드 또는 기판의 결합은 스트렙타비딘(streptavidin)-바이오틴(biotin) 결합, 아비딘(avidin)-바이오틴 결합, EDC [N-ethyl-N'-(dimethlaminopropyl) carbodiimide hydrochloride] 커플링, 설프하이드릴아민(sulphhydrylamine) 커플링, 또는 Ni-NTA(nitrilotriacetic acid)-히스티딘 결합에 의해 이루어질 수 있다. In addition, the binding of the first analyte binding aptamer or antibody and the magnetic bead or the substrate of step (A) may include streptavidin-biotin binding, avidin-biotin binding, EDC [ N-ethyl-N '-(dimethlaminopropyl) carbodiimide hydrochloride] coupling, sulfhydrylamine coupling, or Ni-NTA (nitrilotriacetic acid) -histidine linkage.
또한, 상기 단계 (D)의 상기 효소와 상기 미세튜브의 결합은 스트렙타비딘(streptavidin)-바이오틴(biotin) 결합, 아비딘(avidin)-바이오틴 결합, EDC [N-ethyl-N'-(dimethlaminopropyl) carbodiimide hydrochloride] 커플링, 설프하이드릴아민(sulphhydrylamine) 커플링, 또는 Ni-NTA(nitrilotriacetic acid)-히스티딘 결합에 의해 이루어질 수 있다.In addition, the binding of the enzyme and the microtube of the step (D) is streptavidin (streptavidin)-biotin (biotin) bond, avidin (avidin)-biotin bond, EDC [N-ethyl-N'- (dimethlaminopropyl) carbodiimide hydrochloride] coupling, sulfhydrylamine coupling, or nitrilotriacetic acid (Ni-NTA) -histidine linkage.
또한, 상기 단계 (C)의 분석대상-앱타머/항체1-자석비드/기판이 분석대상-앱타머/항체1-자석비드인 경우 상기 피시험 용액으로부터 자력으로 분리하는 것이 바람직하다.In addition, when the analyte-aptamer / antibody 1-magnetic beads / substrate of step (C) is the analyte-aptamer / antibody 1-magnetic beads, it is preferable to magnetically separate from the test solution.
또한, 상기 단계 (G)의 자석비드/기판-앱타머/항체1-분석대상-앱타머/항체2-효소-미세튜브가 자석비드-앱타머/항체1-분석대상-앱타머/항체2-효소-미세튜브인 경우 자력으로 분리하는 것이 바람직하다.In addition, the magnetic bead / substrate-aptamer / antibody 1-analyte-aptamer / antibody 2-enzyme-microtubes of the step (G) is a magnetic bead-aptamer / antibody 1-analyte-aptamer / antibody 2 In the case of enzyme-microtubes, it is preferable to separate them by magnetic force.
또한, 본 발명의 분석대상 정량분석법은 상기 단계 (A) 이후 단계 (B) 이전에, 상기 앱타머/항체1-자석비드/기판 중 자석비드 또는 기판 표면의 미반응 결합부위를 보호하는 단계를 추가로 포함할 수 있다.In addition, the analyte quantitative analysis method of the present invention is to protect the unreacted binding site of the magnetic beads or the substrate surface of the aptamer / antibody 1-magnetic beads / substrate before step (A) and after step (B) It may further comprise.
또한, 본 발명의 분석대상 정량분석법은 상기 단계 (B) 이후 단계 (C) 이전에, 상기 분석대상-앱타머/항체1-자석비드/기판 중 자석비드 또는 기판 표면의 미반응 결합부위를 보호하는 단계를 추가로 포함할 수 있다.In addition, the analyte quantitative analysis method of the present invention protects the unreacted binding sites of the magnetic beads or the substrate surface of the analyte-aptamer / antibody 1-magnetic beads / substrate after step (B) and before step (C). It may further comprise the step.
또한, 본 발명의 분석대상 정량분석법은 상기 단계 (E) 이후 단계 (F) 이전에, 상기 앱타머/항체2-효소-미세튜브 중 미세튜브 또는 효소의 미반응 결합부위를 보호하는 단계를 추가로 포함할 수 있다.In addition, the analyte quantitative analysis of the present invention further comprises the step of protecting the unreacted binding site of the microtube or enzyme in the aptamer / antibody-enzyme-microtube after the step (E) and before the step (F). It can be included as.
또한, 상기 자석비드 또는 기판은 표면에 중성 카르복시기(-COOH), 그의 이온(-COO-), 중성 아민기(-NH2), 그의 이온(-NH- 또는 -NH3 +), 중성 티올기(-SH), 및 그의 이온(-S-)으로 이루어진 군에서 선택된 작용기를 구비하는 것이 바람직하다.Further, the magnetic beads or the substrate is a neutral carboxyl group (-COOH) on the surface, its ion (-COO -), a neutral amine group (-NH 2), its ion (-NH - or -NH 3 +), neutral thiol (-SH), and its ion (-S -) preferably has a functional group selected from the group consisting of.
또한, 상기 미세튜브는 표면에 중성 카르복시기(-COOH), 그의 이온(-COO-), 중성 아민기(-NH2), 그의 이온(-NH- 또는 -NH3 +), 중성 티올기(-SH), 및 그의 이온(-S-)으로 이루어진 군에서 선택된 작용기를 구비하는 것이 바람직하다.Also, the fine tube is neutral carboxyl group (-COOH) on the surface, its ion (-COO -), a neutral amine group (-NH 2), its ion (-NH-or -NH 3 +), neutral thiol group (- SH), and its ion (-S - preferably includes a functional group selected from the group consisting of a).
또한, 본 발명의 효소는 상기 미세튜브 표면에 가교결합에 의해 집적되는 것이 바람직하다.In addition, the enzyme of the present invention is preferably integrated by crosslinking on the surface of the microtube.
또한, 본 발명의 미세튜브 표면에 집적된 효소 사이의 가교결합은 염, 아민 결합 2 관능성 화합물, 또는 염 및 아민 결합 2 관능성 화합물에 의해 이루어질 수 있다.In addition, crosslinking between enzymes integrated on the surface of the microtubes of the present invention can be accomplished by salts, amine bond bifunctional compounds, or salt and amine bond bifunctional compounds.
또한, 본 발명의 분석대상 정량분석법은 상기 단계 (A) 이전에, 자석비드 또는 기판과 EDC [N-ethyl-N'-(dimethlaminopropyl) carbodiimide hydrochloride] 용액을 혼합하여 반응시킨 후, 미반응 EDC 용액을 제거하는 단계를 추가로 포함할 수 있다.In addition, before the step (A), the analytical target quantitative analysis of the present invention reacts with a mixture of magnetic beads or a substrate and an EDC [N-ethyl-N '-(dimethlaminopropyl) carbodiimide hydrochloride] solution, followed by an unreacted EDC solution. It may further comprise the step of removing.
또한, 본 발명의 분석대상 정량분석법은 상기 단계 (D) 이전에, 미세튜브와 EDC [N-ethyl-N'-(dimethlaminopropyl) carbodiimide hydrochloride] 용액을 혼합하여 반응시킨 후, 미반응 EDC 용액을 제거하는 단계를 추가로 포함할 수 있다.In addition, before the step (D), the analyte for quantitative analysis of the present invention reacts by mixing a microtube and an EDC [N-ethyl-N '-(dimethlaminopropyl) carbodiimide hydrochloride] solution, and then removing the unreacted EDC solution. It may further comprise the step.
또한, 본 발명의 분석대상 정량분석법은 상기 미세튜브와 EDC 용액을 혼합하여 반응시킨 후 원심분리로 미반응 EDC 용액을 제거할 수 있다.In addition, the quantitative analysis method of the present invention may remove the unreacted EDC solution by centrifugation after the reaction by mixing the microtube and the EDC solution.
또한, 상기 제 1 분석대상결합 앱타머 또는 제 2 분석대상결합 앱타머는 그 서열을 구성하는 염기의 수가 10 내지 250 개인 것이 바람직하다.In addition, the first analyte binding aptamer or the second analyte binding aptamer is preferably 10 to 250 of the base constituting the sequence.
또한, 상기 단계 (D)의 미세튜브는 산(acid)으로 처리한 것이 바람직하다.In addition, the microtube of the step (D) is preferably treated with an acid (acid).
또한, 본 발명의 분석대상 정량분석법은 상기 단계 (A) 이후 세척하는 단계를 추가로 포함할 수 있다.In addition, the analyte quantitative analysis method of the present invention may further comprise the step of washing after the step (A).
또한, 본 발명의 분석대상 정량분석법은 상기 단계 (C) 이후 세척하는 단계를 추가로 포함할 수 있다.In addition, the analyte quantitative analysis method of the present invention may further comprise the step of washing after the step (C).
또한, 본 발명의 분석대상 정량분석법은 상기 단계 (D) 이후 세척하는 단계를 추가로 포함할 수 있다.In addition, the analyte quantitative analysis method of the present invention may further comprise the step of washing after the step (D).
또한, 본 발명의 분석대상 정량분석법은 상기 단계 (G) 이후 세척하는 단계를 추가로 포함할 수 있다.In addition, the analyte quantitative analysis method of the present invention may further comprise the step of washing after the step (G).
또한, 본 발명의 분석대상 정량분석법은 상기 앱타머/항체1-자석비드/기판 중 자석비드 또는 기판 표면의 미반응 결합부위를 보호하는 단계 이후 세척하는 단계를 추가로 포함할 수 있다.In addition, the analyte quantitative analysis method of the present invention may further comprise the step of washing after the step of protecting the unreacted binding site of the magnetic beads or the substrate surface of the aptamer / antibody 1-magnetic beads / substrate.
또한, 본 발명의 분석대상 정량분석법은 효소-미세튜브 중 미세튜브 표면의 미반응 결합부위를 보호하는 단계 이후 세척하는 단계를 추가로 포함할 수 있다.In addition, the analyte quantitative analysis method of the present invention may further comprise a step of washing after protecting the unreacted binding site of the surface of the microtube in the enzyme-microtube.
또한, 상기 분석대상은 트롬빈일 수 있다.In addition, the analyte may be thrombin.
또한, 상기 제 1 분석대상결합 앱타머는 서열 5'- GGT TGG TGT GGT TGG -3'의 트롬빈 특이성 DNA 앱타머인 것이 바람직하다.In addition, the first analyte-binding aptamer is preferably a thrombin specific DNA aptamer of SEQ ID NO: 5'-GGT TGG TGT GGT TGG-3 '.
또한, 상기 제 2 분석대상결합 앱타머는 서열 5'- AGT CCG TGG TAG GGC AGG TTG GGG TGA CT -3'의 트롬빈 특이성 DNA 앱타머인 것이 바람직하다.In addition, the second analysis target binding aptamer is preferably a thrombin specific DNA aptamer of SEQ ID NO: 5'- AGT CCG TGG TAG GGC AGG TTG GGG TGA CT-3 '.
또한, 상기 효소는 포도당 산화효소 (glucose oxidase)인 것이 바람직하다.In addition, the enzyme is preferably glucose oxidase.
한편, 본 발명의 분석대상 정량분석법에 사용되는 분석센서는 On the other hand, the analytical sensor used in the analytical target quantitative analysis method of the present invention
자석비드 또는 기판 (magnetic bead)와 제 1 분석대상결합 앱타머 또는 항체를 혼합하여, 상기 제 1 분석대상결합 앱타머 또는 항체가 상기 자석비드 또는 기판의 표면에 결합된 앱타머/항체1-자석비드/기판, 및 By mixing a magnetic bead or a substrate (magnetic bead) and the first analyte binding aptamer or antibody, the aptamer / antibody 1-magnet wherein the first analyte binding aptamer or antibody is bound to the surface of the magnetic bead or substrate Beads / substrates, and
효소와 미세튜브를 혼합하여 상기 효소가 상기 미세튜브의 표면에 집적된 효소-미세튜브를 제조하고 목적 분석대상에 결합하는 제 2 분석대상결합 앱타머 또는 항체와 상기 효소-미세튜브를 혼합하여, 상기 제 2 분석대상결합 앱타머 또는 항체가 상기 효소-미세튜브의 상기 효소에 결합된 앱타머/항체2-효소-미세튜브By mixing an enzyme and a microtube to prepare an enzyme-microtubes in which the enzyme is integrated on the surface of the microtube, and mixing the enzyme-microtubes with a second analyte binding aptamer or an antibody which binds to a target analyte, The aptamer / antibody2-enzyme-microtube wherein the second analyte binding aptamer or antibody is bound to the enzyme of the enzyme-microtube
를 포함하는 것을 특징으로 한다.Characterized in that it comprises a.
본 발명의 분석대상 정량분석법은 분석대상과 특정 앱타머 또는 항체 사이의 면역원성 능력과 안정성을 기초로 한다. 분석대상의 검출은 앱타머 또는 항체가 결합된 자석비드 또는 기판에 의해 특이적 결합으로 이루어진다. 상기 앱타머 또는 항체 결합 자석비드 또는 기판의 사용은 다양한 성분을 함유한 환경에서 특정한 분석대상을 분리해 내는 데 유용하다. 그리고 앱타머 또는 항체는 분석 대상에 강한 친화도를 가지는 장점이 있다. 또한, 효소가 집적된 미세튜브는 오랜 기간 동안 활성도를 유지할 수 있으므로, 효소를 실온에 방치할 경우 그 활성도가 떨어져 효소반응을 일으키지 못하는 종래의 단점을 극복할 수 있다. 또한 효소분자 한 개가 효소반응을 일으키는 것이 아니라, 미세튜브에 집적된 수많은 효소들이 효소반응을 함으로써 기존의 효소반응보다 높은 신호를 나타내며 따라서 저 농도의 분석대상까지 검출 및 정량이 가능하다. 이러한 개념을 기초로 한 본 발명의 면역자력학적 분리 및 효소집적에 의한 신호증폭효과를 이용한 정량분석법은 분석대상 검출에 있어서, 결합의 특이성 및 분리의 신속성, 편리성, 안정성을 개선하고, 검출의 민감도와 정확성을 제고하는 효과가 있다.The analyte quantitative assay of the present invention is based on the immunogenic capacity and stability between the analyte and a particular aptamer or antibody. Detection of the analyte consists of specific binding by magnetic beads or substrates to which aptamers or antibodies are bound. The use of the aptamer or antibody binding magnetic beads or substrates is useful to isolate a particular analyte in an environment containing various components. And aptamers or antibodies have the advantage of having a strong affinity for the analyte. In addition, since the microtubes in which the enzyme is integrated can maintain activity for a long time, when the enzyme is left at room temperature, it can overcome the conventional disadvantage that the activity is not caused to cause an enzyme reaction. In addition, one enzyme molecule does not cause an enzymatic reaction, but a number of enzymes accumulated in the microtubes perform enzymatic reactions and thus show a higher signal than the existing enzymatic reactions. Based on this concept, the quantitative analysis using the signal amplification effect by immunomagnetism separation and enzymatic integration of the present invention improves the specificity of binding and the speed, convenience and stability of the separation in detection. It has the effect of improving sensitivity and accuracy.
도 1은 트롬빈을 분석대상으로 한 본 발명 분석대상 정량분석법의 일 실시예의 과정을 도시한 개략도이다.Figure 1 is a schematic diagram showing the process of one embodiment of the analyte quantitative analysis method of the present invention for the analysis of thrombin.
도 2는 최적 앱타머/항체2-효소-미세튜브의 농도를 측정한 그래프이다.2 is a graph measuring the concentration of optimal aptamer / antibody 2-enzyme-microtubes.
도 3은 목적 분석대상이 존재하는 경우와 그렇지 않은 경우 자력에 의한 분리결과를 촬영한 사진이다.3 is a photograph of the separation result by magnetic force when the target analyte exists and when it is not.
도 4는 목적 분석대상이 존재하는 경우와 그렇지 않은 경우 자력에 의한 분리후의 자석비드 및 그 복합체를 촬영한 SEM사진이다.4 is a SEM photograph of a magnetic bead and its composite after separation by magnetic force when the target analyte is present and when it is not.
도 5는 본 발명 정량분석법을 이용한 트롬빈 분석 결과를 나타내는 그래프이다.5 is a graph showing the results of thrombin analysis using the present invention quantitative analysis.
도 6 및 도 7은 전압전류측정기를 이용하여 트롬빈을 전기화학적으로 분석한 결과를 나타낸 그래프이다.6 and 7 are graphs showing the results of electrochemical analysis of thrombin using a voltage current meter.
도 8은 본 발명의 분석대상 분석센서의 열 안정성을 측정한 결과를 나타낸 그래프이다.8 is a graph showing the results of measuring the thermal stability of the analyte analysis sensor of the present invention.
이하, 본 발명의 바람직한 실시 예에 대하여 첨부도면을 이용하여 설명한다. 또한, 하기의 설명은 본 발명의 보다 전반적인 이해를 돕기 위하여 제공된 것일 뿐 이러한 특징 사항들 없이도 본 발명이 실시될 수 있음은 이 기술 분야에서 통상의 지식을 가진 자에게는 자명하다 할 것이다. 그리고 본 발명을 설명함에 있어서, 관련된 공지 기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. In addition, it will be apparent to those skilled in the art that the following description is provided only to provide a more general understanding of the present invention, and the present invention may be practiced without these features. In the following description of the present invention, if it is determined that a detailed description of a related known function or configuration may unnecessarily obscure the subject matter of the present invention, the detailed description thereof will be omitted.
본 발명자는 자석비드 또는 기판에 결합된 분석대상 검출 앱타머 또는 항체를 이용한 면역자력학적 접근이, 높은 효율로 목적분석대상을 검출 및 분리할 수 있음을 발견했다. 나아가 효소가 집적된 미세튜브의 신호증폭효과를 이용하여 검출 및 분리된 분석대상을 진단 및 정량분석할 수 있음을 발견하였다.The inventors have discovered that an immunomagnetic approach using analyte detection aptamer or antibody bound to a magnetic bead or substrate can detect and isolate an objective analyte with high efficiency. Furthermore, it was found that the signal amplification effect of the enzyme-integrated microtube can be used to diagnose and quantify the analyte detected and separated.
본 발명에서 검출 및 정량분석하고자 하는 분석대상은 단백질, 항원, 세포와 같은 바이오 입자 또는 유무기 입자 등 분석할 가치가 있는 모든 입자를 대상으로 한다.In the present invention, the analyte to be detected and quantified is for all particles that are worth analyzing, such as bioparticles such as proteins, antigens, cells, or inorganic particles.
그리고, 본 발명에서 사용된 앱타머는 펩티드, 작은 분자, 핵산과의 결합 및 다양한 화학반응의 촉매작용과 같은 원하는 기능을 위해, 특정 표적분자에 대해 선택된 단일가닥 핵산 리간드이다. 앱타머는 항원-항체 결합체에 비견될 만한 높은 친화도로 표적분자와 특이적 결합을 이룬다. 앱타머는 항체에 비해 여러 장점을 가지고 있어, 분석대상의 친화도 분석에서 항체의 매력적인 대안이 된다. 즉, 앱타머는 보다 작고 안정적이며, 화학적 개질이 보다 용이하고, 지수적 증대 (SELEX)에 의한 리간드의 체계적인 전개(evolution)를 통하여 스크리닝될 수 있으며, 생체 외에서 대량으로 합성될 수 있다. In addition, aptamers used in the present invention are single-stranded nucleic acid ligands selected for specific target molecules for desired functions such as peptides, small molecules, binding to nucleic acids and catalysis of various chemical reactions. Aptamers achieve specific binding to target molecules with a high affinity comparable to antigen-antibody conjugates. Aptamers have several advantages over antibodies, making them an attractive alternative to antibodies in affinity analysis of analytes. That is, aptamers are smaller, more stable, easier to modify chemically, can be screened through systematic evolution of ligands by exponential augmentation (SELEX), and can be synthesized in large quantities in vitro.
종래의 ELISA는 효소가 결합되어 있는 항체에 의해 측정이 이루어지고 이때 항체에 결합되어 있는 효소는 한 분자에 해당한다. 따라서 효소에 의한 반응이 크지 않고 효소의 활성도가 저해되었을 경우 정확한 진단과 높은 신호를 얻기는 어렵다. 그러나 효소가 고정화된 미세튜브에 목적분석대상을 인식하는 앱타머 또는 항체를 결합시켜 이를 반응에 이용하면 종래의 ELISA에 비해 높은 신호를 낼 수 있고 효소의 안정화 역시 제고된다. Conventional ELISA is measured by the antibody to which the enzyme is bound, wherein the enzyme bound to the antibody corresponds to one molecule. Therefore, if the reaction by the enzyme is not large and the activity of the enzyme is inhibited, it is difficult to obtain accurate diagnosis and high signal. However, when the enzyme is immobilized in the microtube, the aptamer or the antibody that recognizes the target analyte can be combined and used in the reaction to give a higher signal than the conventional ELISA, and the stabilization of the enzyme is also enhanced.
이에 본 발명자는 효소가 고정화된 미세튜브에 목적분석대상을 인식할 수 있는 앱타머 또는 항체를 결합하여 자석비드 또는 기판에 결합된 목적 분석대상을 진단하고 정량하는 데 사용하는 방법을 개발하였다. 이는 고정화된 효소의 신호증폭현상에 의해 기존의 ELISA 방법으로는 검출할 수 없었던 ml 당 1 ng까지의 분석대상도 검출 및 정량이 가능함을 확인하였다.Accordingly, the present inventors have developed a method for diagnosing and quantifying a target analyte bound to a magnetic bead or a substrate by binding an aptamer or an antibody capable of recognizing the target analyte to an enzyme-immobilized microtube. This confirmed that the signal amplification of the immobilized enzyme can detect and quantitate up to 1 ng of analyte per ml that could not be detected by the conventional ELISA method.
도 1은 트롬빈을 분석대상으로 한 본 발명 분석대상 정량분석법의 일 실시예의 과정을 도시한 개략도이다.Figure 1 is a schematic diagram showing the process of one embodiment of the analyte quantitative analysis method of the present invention for the analysis of thrombin.
본 발명의 분석대상 정량분석법은 먼저, 존재 및 그 양을 분석하고자 하는 목적 분석대상의 포획을 위해 자석비드 또는 기판에 상기 분석대상과 결합하는 앱타머 또는 항체를 결합하는 것으로부터 시작된다. 여기서 자석비드 또는 기판과 분석대상결합 앱타머 또는 항체의 결합은 상기 결합을 위해 생명과학 분야에서 공지된 방법이라면 제한 없이 사용될 수 있는데, 먼저 상기 자석비드 또는 기판의 표면에 중성 카르복시기(-COOH), 그의 이온(-COO-), 중성 아민기(-NH2), 그의 이온(-NH- 또는 -NH3 +), 중성 티올기(-SH), 및 그의 이온(-S-)으로 이루어진 군에서 선택된 작용기를 구비하게 하는 것이 바람직하다. 예컨대, 자석비드 또는 기판과 EDC [N-ethyl-N'-(dimethlaminopropyl) carbodiimide hydrochloride] 용액을 혼합하여 반응시킴으로써, 상기 자석비드 또는 기판의 표면에 카르복실기를 작용기로서 구비케 하고, 상기 자석비드 또는 기판을 자력으로 고정시킨 후, 미반응 EDC 용액을 제거한다.The analyte quantitative assay of the present invention first begins by binding an aptamer or an antibody that binds the analyte to a magnetic bead or substrate for capture of the analyte of interest for which presence and amount thereof are to be analyzed. Herein, the binding of the magnetic beads or the substrate and the analyte binding aptamer or the antibody may be used without limitation as long as it is a method known in the biosciences for the binding. First, a neutral carboxyl group (-COOH), its ion (-COO -), a neutral amine group (-NH 2), its ion (-NH - or -NH 3 +), neutral thiol group (-SH), and its ion (-S -) from the group consisting of It is desirable to have selected functional groups. For example, by mixing and reacting a magnet bead or a substrate with an EDC [N-ethyl-N '-(dimethlaminopropyl) carbodiimide hydrochloride] solution, the surface of the magnet bead or substrate is provided with a carboxyl group as a functional group, and the magnet bead or substrate After magnetically fixing, the unreacted EDC solution is removed.
이렇게 표면에 작용기를 구비한 자석비드 또는 기판과 앱타머 또는 항체의 구체적인 결합방법으로는, 스트렙타비딘(streptavidin)-바이오틴(biotin) 결합, 아비딘(avidin)-바이오틴 결합, EDC [N-ethyl-N'-(dimethlaminopropyl) carbodiimide hydrochloride] 커플링, 설프하이드릴아민(sulphhydrylamine) 커플링, 또는 Ni-NTA(nitrilotriacetic acid)-히스티딘 결합 등을 예로 들 수 있고, 특히 아마이드 바인딩 (amide binding)이 바람직하다. 상기 아마이드 바인딩은 자석비드 또는 기판의 카르복실기(-COOH)와 앱타머 5' 말단 또는 항체의 아민기(-NH2)가 결합함으로써 이루어지는 반응이다. As a specific method of binding the magnetic bead or substrate having a functional group to the surface and the aptamer or the antibody, streptavidin-biotin bond, avidin-biotin bond, EDC [N-ethyl- N '-(dimethlaminopropyl) carbodiimide hydrochloride] coupling, sulfhydrylamine coupling, or nitrilotriacetic acid-histidine coupling, and the like, and amide binding is particularly preferred. . The amide binding is a reaction formed by binding of a magnetic bead or a carboxyl group (-COOH) of a substrate with an aptamer 5 'end or an amine group (-NH 2 ) of an antibody.
나아가, 상기 앱타머 또는 항체 결합 후에 자석비드 또는 기판 표면에 존재하는 미반응 작용기가 이후 반응에 예기치 못한 결과를 야기하는 것을 방지하기 위해 BSA (bovime serum albumin) 등으로 보호(blocking)하는 것이 바람직하다.Furthermore, in order to prevent unreacted functional groups present on the surface of the magnet bead or the substrate after the aptamer or antibody binding, it is preferable to block with bosa serum albumin (BSA) or the like to prevent unexpected reactions. .
상기 과정을 거쳐 수득한 앱타머 또는 항체가 결합된 자석비드 또는 기판, 즉 앱타머/항체1-자석비드 또는 기판은 자력으로 분리한 후 분석하고자 하는 분석대상이 함유된 피시험 용액과 혼합하여, 상기 분석대상이 상기 앱타머/항체1-자석비드/기판의 상기 앱타머1 또는 항체1에 결합된 분석대상-앱타머/항체1-자석비드/기판을 제조한다.The aptamer or antibody-bound magnetic beads or substrates obtained through the above process, that is, aptamer / antibody-magnetic beads or substrates, were separated by magnetic force and mixed with the test solution containing the analyte to be analyzed. The analyte prepares an analyte-aptamer / antibody 1-magnetic bead / substrate coupled to the aptamer 1 or antibody 1 of the aptamer / antibody-magnetic bead / substrate.
이처럼 분석대상을 포획한 후에도 마찬가지로, 상기 분석대상 결합 후에 자석비드 또는 기판 표면에 존재하는 미반응 작용기가 이후 반응에 예기치 못한 결과를 야기하는 것을 방지하기 위해 BSA 등으로 보호하는 것이 바람직하다.Likewise, even after capturing the analyte, it is preferable to protect with BSA or the like to prevent unreacted functional groups present on the surface of the magnet bead or the substrate after binding the analyte to cause unexpected results in subsequent reactions.
한편, 분석대상으로부터 신호를 발생시키기 위한 효소를, 상기 분석대상과 상호작용하는 또 다른 앱타머 또는 항체와 결합시킨다.On the other hand, the enzyme for generating a signal from the analyte is coupled with another aptamer or antibody that interacts with the analyte.
본 발명의 정량분석법에서 검출 또는 정량분석하고자 하는 분석대상은 별도의 제한 없이 모든 분석대상을 그 대상으로 할 수 있다.In the quantitative analysis method of the present invention, the analyte to be detected or quantitatively analyzed may be the subject of all analyses without any limitation.
상기 분석대상-앱타머/항체1-자석비드/기판은 본 발명의 최종 분석신호 발생원인 효소가 집적된 미세튜브와의 결합을 위해, 분석대상과 결합하는 또 다른 앱타머2 또는 항체2를 효소가 집적된 미세튜브에 결합시킨다. 여기서 미세튜브란 크기가 밀리미터 단위보다 작고 튜브 형태를 가진 모든 물질을 가리킨다. 본 발명에서는 특히 탄소나노튜브가 바람직하고, 특히 효소로 집적하기 전에 산(acid) 용액에 침지시켰다 꺼내는 산 처리를 거치는 것이 더욱 바람직하다.The analyte-aptamer / antibody 1-magnet bead / substrate is another aptamer 2 or antibody 2 that binds to the analyte for binding to the microtubes in which the enzyme, which is the final analytical signal generator of the present invention, is integrated. Is bonded to the integrated microtube. Microtubes here refer to all materials that are smaller than millimeters in size and have a tube shape. In the present invention, carbon nanotubes are particularly preferable, and in particular, it is more preferable to undergo an acid treatment in which an acid solution is immersed in an acid solution before being integrated into an enzyme.
그리고, 미세튜브와 효소의 결합은 상기 앱타머/항체1-자석비드/기판에서 자석비드 또는 기판과 앱타머 또는 항체의 결합의 경우와 동일하다.The binding of the microtube and the enzyme is the same as that of the binding of the magnetic bead or the substrate to the aptamer or the antibody in the aptamer / antibody 1-magnetic bead / substrate.
즉, 먼저 상기 미세튜브의 표면에 중성 카르복시기(-COOH), 그의 이온(-COO-), 중성 아민기(-NH2), 그의 이온(-NH- 또는 -NH3 +), 중성 티올기(-SH), 및 그의 이온(-S-)으로 이루어진 군에서 선택된 작용기를 구비하게 하는 것이 바람직한데, 예컨대 미세튜브와 EDC [N-ethyl-N'-(dimethlaminopropyl) carbodiimide hydrochloride] 용액을 혼합하여 반응시킴으로써, 상기 미세튜브의 표면에 카르복실기를 작용기로서 구비케 한다.That is, the first neutral carboxyl group (-COOH) on the surface of the fine tube, its ion (-COO -), a neutral amine group (-NH 2), its ion (-NH - or -NH 3 +), neutral thiol group ( -SH), and its ion (-S -) as it is preferable to be provided with a functional group selected from the group consisting of, for example, the fine tube and EDC [N-ethyl-N ' - (dimethlaminopropyl) carbodiimide hydrochloride] and the reaction solution was mixed In this way, the surface of the microtube is provided with a carboxyl group as a functional group.
그리고, 이렇게 표면에 작용기를 구비한 미세튜브와 효소의 구체적인 결합방법으로는, 스트렙타비딘(streptavidin)-바이오틴(biotin) 결합, 아비딘(avidin)-바이오틴 결합, EDC [N-ethyl-N'-(dimethlaminopropyl) carbodiimide hydrochloride] 커플링, 설프하이드릴아민(sulphhydrylamine) 커플링, 또는 Ni-NTA(nitrilotriacetic acid)-히스티딘 결합 등을 예로 들 수 있고, 특히 아마이드 바인딩 (amide binding)이 바람직하다.In addition, as a specific binding method of the enzyme and the microtube having a functional group on the surface, streptavidin (biotin) bond, avidin (avidin) -biotin bond, EDC [N-ethyl-N'- (dimethlaminopropyl) carbodiimide hydrochloride] coupling, sulfhydrylamine coupling, or nitrilotriacetic acid (Ni-NTA) -histidine linking, and the like, and amide binding is particularly preferred.
이러한 효소에 상기 목적 분석대상에 특이적인 앱타머 또는 항체를 결합시킨다. 그러나, 상기 앱타머/항체와 효소의 결합물이 종전 ELISA에서와 같이 단일항체-단일효소의 방식이면서 유리된 형태라면 본 발명의 효과를 충분히 발현하기 어렵다. 즉, 목적 분석대상과 결합하는 항체 또는 앱타머에 결합된 효소가 한 분자라면 상기 효소의 활성 저하 내지는 실활시, 목적 분석대상과 결합하더라도 신호를 포착할 수 없어 정확한 분석이 불가능하다. 특히, 유리 형태의 효소라면 전술한 활성 저하 내지 실활의 가능성이 높아 큰 단점으로 작용한다.This enzyme binds an aptamer or antibody specific for the target analyte. However, if the combination of the aptamer / antibody and the enzyme is a monoantibody-monoenzyme and free form as in the conventional ELISA, it is difficult to fully express the effects of the present invention. That is, if one molecule of an enzyme or antibody bound to the target analyte binds to the target analyte, the enzyme cannot be captured even if it binds to the target analyte. In particular, the enzyme in the free form is a high disadvantage of the above-described activity degradation or deactivation acts as a big disadvantage.
따라서, 본 발명에서는 먼저 미세튜브에 신호발생 효소를 다량 결합시키고, 이 효소에 앱타머 또는 항체를 결합시켰다. 이렇게 미세튜브에 결합된 효소는 유리 형태가 아니어서 안정성이 제고되며, 다량의 효소로 인해 일부 효소가 활성 저해 내지 실활되더라도 충분한 신호를 발생시킬 수 있고, 목적 분석대상의 농도가 극히 낮더라도 검출이 가능한 장점이 있다.Therefore, in the present invention, a large amount of signaling enzymes are first bound to microtubes, and then aptamers or antibodies are bound to the enzymes. These enzymes bound to the microtubes are not free forms, which enhances their stability, and a large amount of enzymes can generate sufficient signals even if some enzymes are inhibited or inactivated. There are possible advantages.
이처럼 미세튜브에 효소를 다량 결합시키기 위해 본 발명은 특히 효소들 사이를 가교결합시키는 것을 특징으로 한다.As such, the present invention is particularly characterized by crosslinking between enzymes in order to bind enzymes to microtubes in large quantities.
일반적으로, 효소는 물 속에서 한 분자씩 떨어져 존재하나 암모늄 설페이트와 같은 염을 첨가하면 수 개씩 뭉쳐 엉김(aggregation) 내지 침전(precipitation)이 일어나게 된다. 이러한 현상을 일으키는 염 종류에는 염화나트륨 (sodium chloride), 황산나트륨 (sodium sulfate), 인산나트륨 (sodium phosphate), 염화칼륨 (potassium chloride), 황산칼륨 (potassium sulfate), 인산칼륨 (potassium phosphate) 등을 예로 들 수 있다In general, enzymes exist in water one molecule apart, but when salts such as ammonium sulphate are added, agglomeration or precipitation occurs several times. Examples of salts that cause this phenomenon include sodium chloride, sodium sulfate, sodium phosphate, potassium chloride, potassium sulfate, and potassium phosphate. have
뿐만 아니라, 글루타르알데히드와 같이 효소의 아민기와 반응하는 작용기를 2 개 이상 가진 아민 결합 2 관능성 화합물을 첨가하면 효소 사이에 개입하여 양쪽 효소들과 서로 결합함으로써 가교결합을 형성할 수 있다. 이러한 현상을 일으키는 2 관능성 화합물 종류에는 글루타르알데히드(glutaraldehyde), 비스(이미도에스테르) [bis(imido esters)], 비스(석신이미딜에스테르) [bis(succinimidyl esters)], 디이소시아네이트(diisocyanate) 및 디애시드클로라이드 (diacid chloride) 등을 들 수 있다.In addition, the addition of an amine-binding bifunctional compound having two or more functional groups that react with the amine group of the enzyme, such as glutaraldehyde, can form crosslinks by intercalating between the enzymes and binding to both enzymes. Bifunctional compounds that cause this phenomenon include glutaraldehyde, bis (imido esters), bis (succinimidyl esters), bis (succinimidyl esters) and diisocyanate. And diacid chloride.
이러한 화합물들을 첨가하면 상기 미세튜브에 효소를 더 많이 집적할 수 있어 신호 증폭효과를 더욱 더 제고할 수 있다.By adding these compounds, more enzymes can be accumulated in the microtubes, thereby further enhancing the signal amplification effect.
나아가, 상기 앱타머 또는 항체 결합 후에 미세튜브 표면에 존재하는 미반응 작용기가 이후 반응에 예기치 못한 결과를 야기하는 것을 방지하기 위해 BSA (bovime serum albumin) 등으로 보호 (blocking) 하는 것이 바람직하다.Furthermore, in order to prevent the unreacted functional groups present on the surface of the microtubes after the aptamer or antibody binding to cause unexpected results in subsequent reactions, it is preferable to block with BSA (bovime serum albumin).
이렇게 앱타머2 또는 항체2가 결합된 효소가 집적된 미세튜브는 원심분리 등 공지의 방법에 의하여 분리한 후, 상기 제조된 분석대상-앱타머/항체1-자석비드/기판과 함께 혼합되어 목적 분석대상을 매개체로 미세튜브-효소-앱타머/항체2-분석대상-앱타머/항체1-자석비드/기판의 형태의 복합체를 이루게 되고 이를 자력을 이용하여 분리해 낸다. The microtubes in which the aptamer 2 or the antibody 2 is coupled to the enzyme-encapsulated microtubes are separated by a known method such as centrifugation, and then mixed with the analyte-aptamer / antibody 1-magnetic beads / substrate prepared above. The analyte is formed as a complex of microtube-enzyme-aptamer / antibody2-analyte-aptamer / antibody 1-magnet bead / substrate and separated using magnetic force.
분리된 미세튜브-효소-앱타머/항체2-분석대상-앱타머/항체1-자석비드/기판은 상기 효소 고유의 반응을 통해 신호가 증폭되고 이를 통해 목적 분석대상의 존재 및 정량을 신속, 정확하게 파악할 수 있다.The separated microtube-enzyme-aptamer / antibody2-analyte-aptamer / antibody 1-magnetic bead / substrate is amplified by the enzyme-specific reaction and thereby rapidly and quantitatively exists and quantifies the target analyte. I can figure it out correctly.
나아가, 본 발명의 정확한 분석을 위해 각 단계 이후에 완충액 등으로 세척하는 것이 바람직한데, 특히 상기 앱타머/항체1-자석비드/기판 제조단계, 효소-미세튜브 제조단계, 자력에 의한 분리단계, 자석비드 또는 기판 또는 미세튜브 표면의 미반응 결합부위 보호단계 이후 세척하는 것이 더욱 바람직하다. 상기 단계 외에도 세척단계를 수행하는 것이 가능함은 물론이다.Furthermore, it is preferable to wash with a buffer or the like after each step for accurate analysis of the present invention. In particular, the aptamer / antibody 1-magnet bead / substrate preparation step, enzyme-microtube production step, magnetic separation step, It is more preferable to wash after protecting the magnetic beads or the unreacted bonded portion of the substrate or the microtube surface. It is, of course, possible to perform the washing step in addition to the above steps.
이하, 본 발명의 실시예에 대하여 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, the Example of this invention is described.
실시예EXAMPLE
실시예 1: 앱타머1-자석비드의 제조Example 1 Preparation of Aptamer 1-Magnetic Beads
분석대상을 트롬빈으로 한 경우, 제 1 트롬빈결합 앱타머가 결합된 자석비드를 EDC 커플링법 (Mahmoud et al. 2005)으로 다음과 같이 제작하였다. 자석비드 (10 μl, 7-12 × 109 비드/ml)를 0.01 M의 NaOH 수용액 및 탈이온수로 세척했다. 세척 후, 용액을 자석 위에 1 분 동안 놓아 세척용액을 제거했다. 이어서, EDC [N-ethyl-N'-(dimethlaminopropyl) carbodiimide hydrochloride] 용액 (500 μl, 20 mg/ml)을 첨가하고, 4 ℃에서 30 분 동안 교반 (200 rpm)하며 배양했다. 배양 후, EDC 용액을 제거하고 나서 자석비드를 PBS (phosphate buffered saline) 용액 (10 mM, pH 7.4) 1000 μl에 재현탁시키고, 제 1 트롬빈결합 앱타머 (5'-NH2-GGT TGG TGT GGT TGG -3', 20 μl, 100 μM. Geno-Tech Co. 한국)와 혼합한 다음 실온에서 1 시간 동안 교반 (200 rpm)하며 배양했다. 배양 후, 자석비드 및 제 1 트롬빈결합 앱타머의 혼합액을 자석 위에 1 분 동안 놓아, 미결합 앱타머를 제거했다. 결합된 앱타머의 양은 분광계로 260 nm에서 흡광도를 측정하여 분석하였다. 앱타머가 결합된 자석비드 (앱타머1-자석비드)를 1000 μl의 10 mM PBS (pH 7.4)로 3 회 세척하였다. 이어서, 자석비드 표면의 미반응 카르복실기를 보호하기 위해, 1000 μl의 보호용액 (0.1 % BSA [bovine serum albumin] 및 0.05 % Tween 20)을 첨가하고, 실온에서 교반 (200 rpm)하며 배양하였다. 배양 후, 상기 용액을 자석 위에 1 분 동안 놓아 보호용액을 제거하고, 1000 μl의 10 mM PBS 용액 (pH 7.4)으로 3 회 세척하고 나서, 앱타머가 결합된 자석비드 (앱타머1-자석비드)를 10 μl의 10 mM PBS 용액 (pH 7.4)에 재현탁시켰다.When the analyte was used as a thrombin, a magnetic bead bound to the first thrombin binding aptamer was produced by EDC coupling method (Mahmoud et al. 2005) as follows. Magnetic beads (10 μl, 7-12 × 10 9 beads / ml) were washed with 0.01 M aqueous NaOH solution and deionized water. After washing, the solution was placed on a magnet for 1 minute to remove the washing solution. EDC [N-ethyl-N '-(dimethlaminopropyl) carbodiimide hydrochloride] solution (500 μl, 20 mg / ml) was then added and incubated at 4 ° C. for 30 minutes with stirring (200 rpm). After incubation, the EDC solution was removed and the magnetic beads were resuspended in 1000 μl of PBS (phosphate buffered saline) solution (10 mM, pH 7.4), and the first thrombin binding aptamer (5'-NH 2- GGT TGG TGT GGT). TGG-3 ′, 20 μl, 100 μM, Geno-Tech Co. Korea) and incubated with stirring (200 rpm) for 1 hour at room temperature. After incubation, the mixed solution of the magnetic beads and the first thrombin-bound aptamer was placed on the magnet for 1 minute to remove unbound aptamers. The amount of bound aptamer was analyzed by measuring the absorbance at 260 nm with a spectrometer. Aptamer bound magnetic beads (Aptamer1-Magnetic beads) were washed three times with 1000 μl of 10 mM PBS (pH 7.4). Subsequently, in order to protect the unreacted carboxyl group on the surface of the magnetic beads, 1000 μl of protective solution (0.1% BSA [bovine serum albumin] and 0.05% Tween 20) was added and incubated with stirring (200 rpm) at room temperature. After incubation, the solution was placed on a magnet for 1 minute to remove the protective solution, washed three times with 1000 μl of 10 mM PBS solution (pH 7.4), followed by aptamer-coupled magnetic beads (aptamer1-magnetic beads) Was resuspended in 10 μl of 10 mM PBS solution, pH 7.4.
실시예 2: 분석대상-앱타머1-자석비드의 제조Example 2: Preparation of analyte-aptamer1-magnet beads
실시예 1의 앱타머1-자석비드를 이용하여 트롬빈을 다음과 같이 검출하였다. 트롬빈 (Abcam. USA)을 함유한 PBS 용액 (트롬빈 농도 : 1 ng ~ 1 ug/ml)에 실시예 1의 앱타머1-자석비드 (10 μl, 0.7-1.2 × 108 비드)를 현탁시켰다 . 트롬빈 분석대상의 검출을 위해, 혼합액을 실온에서 1 시간 동안 교반 (200 rpm)하면서 배양하였다. 배양 후, 트롬빈-앱타머1-자석비드 복합체를 자석으로 분리하고, 상층액(supernatant)은 포획된 트롬빈의 양을 Micro BCA 법으로 측정하기 위해 별도의 튜브로 옮겼다. 트롬빈-앱타머1-자석비드 복합체를 1000 μl의 10 mM PBS 용액 (pH 7.4)으로 5 회 세척하고 나서, 1000 μl의 보호용액 (0.1 % BSA 및 0.05 % Tween 20)을 첨가하고, 실온에서 교반 (200 rpm)하며 배양하였다. 배양 후, 상기 용액을 자석 위에 1 분 동안 놓아 보호용액을 제거하고, 1000 μl의 10 mM PBS 용액 (pH 7.4)으로 3 회 세척하고 나서, 트롬빈-앱타머1-자석비드 복합체를 1000 μl의 10 mM PBS 용액 (pH 7.4)에 재현탁시켰다. Thrombin was detected using the aptamer1-magnet beads of Example 1 as follows. The aptamer1-magnet beads (10 μl, 0.7-1.2 × 10 8 beads) of Example 1 were suspended in a PBS solution (thrombin concentration: 1 ng-1 ug / ml) containing thrombin (Abcam. USA). For detection of thrombin analyses, the mixture was incubated with stirring (200 rpm) for 1 hour at room temperature. After incubation, the thrombin-aptamer1-magnet bead complex was separated by magnet, and the supernatant was transferred to a separate tube to measure the amount of captured thrombin by Micro BCA method. The thrombin-aptamer1-magnet bead complex was washed five times with 1000 μl of 10 mM PBS solution (pH 7.4), then 1000 μl of protective solution (0.1% BSA and 0.05% Tween 20) was added and stirred at room temperature. (200 rpm) and incubated. After incubation, the solution was placed on a magnet for 1 minute to remove the protective solution, washed three times with 1000 μl of 10 mM PBS solution (pH 7.4), and the thrombin-aptamer1-magnet bead complex was added to 1000 μl of 10 Resuspend in mM PBS solution (pH 7.4).
실시예 3: 앱타머2-효소-미세튜브의 제조Example 3: Preparation of Aptamer2-Enzyme-Microtubes
탄소나노튜브를 미세튜브로 하고, 포도당 산화효소를 집적효소로 한 경우, 제 2 트롬빈결합 앱타머가 결합된 앱타머2-효소-미세튜브를 다음과 같이 제조하였다. 탄소나노튜브 (다수 벽체형, 외경 30 ㅁ 15 nm, 길이 1~5 μm, 순도 > 95 %)를 Nanolab, Inc. (Newton, MA, USA)로부터 구입하고, 상기 탄소나노튜브 100 mg을 H2SO4 (98 %, 7.5 ml) 및 HNO3 (70 %, 2.5 ml)를 함유한 산 용액에 첨가한 후, 실온에서 교반하면서 하룻 밤 동안 처리하였다. 상기 처리한 탄소나노튜브를 탈이온수로 세척하고 80 ℃ 진공오븐에서 건조시켰다. 이어서, EDC 커플링법으로 카르복실화된 탄소나노튜브에 포도당 산화효소 (Sigma-Aldrich. USA)를 다음과 같이 결합시켰다. 탄소나노튜브 표면에 작용기를 도입하기 위해, 산 처리된 탄소나노튜브 (0.1 mg)를 탈이온수에 현탁시키고, 이어서 MES (2-[N-morpholino] ethane sulfonic acid) 완충액 (0.1 M, pH 6.5) 0.4 ml, EDC 용액 (10 mg/ml) 0.2 ml 및 NHS(N-hydroxysuccinimde) 용액 (50 mg/ml) 0.4 ml를 혼합하고, 실온에서 30 분 동안 교반 (200 rpm)하며 배양했다. 배양 후 EDC 용액 등을 원심분리로 제거하고 나서, PB (phosphate buffer. 0.1 M, pH 7.4)에 재현탁하여 농도를 2 mg/ml로 조정하였다. 그런 다음, 포도당 산화효소 용액 (10 mg/ml) 0.5 ml를 탄소나노튜브 혼합액 1 ml에 첨가하고, 실온에서 1 시간 동안 교반 (100 rpm)하면서 배양했다. 배양 후, 암모늄 설페이트 65 % 수용액 0.67 ml를 첨가하고 30 분 동안 배양했다. 가교결합을 위해 제조된 효소-미세튜브를 글루타르알데히드 35 μl로 처리하고, 4 ℃에서 하룻 밤 동안 교반 (50 rpm)하며 배양했다. 상기 배양된 효소-미세튜브를 PB (0.1 M, pH 7.4)로 원심분리를 통하여 세척하였다. 최종 효소-미세튜브를 PB (0.1 M, pH 7.4)으로 3 회 세척하고, 원심분리로 분리하였다.When carbon nanotubes were used as microtubes and glucose oxidase was used as an enzymatic enzyme, aptamer2-enzyme-microtubes having a second thrombin binding aptamer were prepared as follows. Carbon nanotubes (multi-walled, outer diameter 30 ㅁ 15 nm, length 1-5 μm, purity> 95%) Purchased from Newton, MA, USA, 100 mg of the carbon nanotubes were added to an acid solution containing H 2 SO 4 (98%, 7.5 ml) and HNO 3 (70%, 2.5 ml), followed by room temperature. Treatment was continued overnight with stirring at. The treated carbon nanotubes were washed with deionized water and dried in a vacuum oven at 80 ° C. Subsequently, glucose oxidase (Sigma-Aldrich. USA) was coupled to carboxylated carbon nanotubes by the EDC coupling method. To introduce the functional groups on the carbon nanotube surface, acid treated carbon nanotubes (0.1 mg) were suspended in deionized water, followed by MES (2- [N-morpholino] ethane sulfonic acid) buffer (0.1 M, pH 6.5). 0.4 ml, EDC solution (10 mg / ml) 0.2 ml and NHS (N-hydroxysuccinimde) solution (50 mg / ml) were mixed and incubated with stirring (200 rpm) for 30 minutes at room temperature. After incubation, the EDC solution was removed by centrifugation, and then resuspended in PB (phosphate buffer. 0.1 M, pH 7.4) to adjust the concentration to 2 mg / ml. Then, 0.5 ml of glucose oxidase solution (10 mg / ml) was added to 1 ml of the carbon nanotube mixture and incubated with stirring (100 rpm) for 1 hour at room temperature. After incubation, 0.67 ml of a 65% aqueous solution of ammonium sulfate was added and incubated for 30 minutes. Enzyme-microtubes prepared for crosslinking were treated with 35 μl of glutaraldehyde and incubated with stirring (50 rpm) overnight at 4 ° C. The cultured enzyme-microtubes were washed by centrifugation with PB (0.1 M, pH 7.4). The final enzyme-microtubes were washed three times with PB (0.1 M, pH 7.4) and separated by centrifugation.
또 다른 트롬빈결합 엡타머2를 최종 효소-미세튜브에 결합시키기 위해 EDC 활성반응을 재실행한다. 최종 효소-미세튜브를 1 ml의 탈이온수에 재현탁하였다. 이어서 MES 완충액 (0.1 M, pH 6.5) 0.4 ml, EDC 용액 (10 mg/ml) 0.2 ml 및 NHS 용액 (50 mg/ml) 0.4 ml를 혼합하고, 실온에서 30 분 동안 교반 (200 rpm)하며 배양했다. 배양 후, EDC 용액을 제거하고 나서 효소-미세튜브를 PBS 용액 (10 mM, pH 7.4) 950 μl에 재현탁시키고, 제 2 트롬빈결합 앱타머 (29 bases, 5'-NH2-AGT CCG TGG TAG GGC AGG TTG GGG TGA CT-3' 50 μl, 50 μM. Geno-Tech Co. 한국)와 혼합한 다음 실온에서 1 시간 동안 교반 (200 rpm)하며 배양했다. 배양 후, 효소-미세튜브 및 제 2 트롬빈결합 앱타머의 혼합액을 원심분리를 통해 미결합 앱타머를 제거했다. 결합된 앱타머의 양은 분광계로 260 nm에서 흡광도를 측정하여 분석하였다. 앱타머가 결합된 효소-미세튜브 (앱타머2-효소-미세튜브)를 1000 μl의 10 mM PBS (pH 7.4)로 3 회 세척하였다. 이어서, 효소와 미세튜브의 미반응 카르복실기를 보호하기 위해, 1000 μl의 보호용액 (0.1 % BSA 및 0.05 % Tween 20)을 첨가하고, 실온에서 교반 (200 rpm)하며 배양하였다. 배양 후, 원심분리를 통해 보호용액을 제거하고, 1000 μl의 10 mM PBS 용액 (pH 7.4)으로 3 회 세척하고 나서, 0.1 M Tris-HCl 완충액 (0.1 M, pH 7.4)으로 재세척하고, 30 분 동안 Tris-HCl 완충액 (0.1 M, pH 7.4)으로 교반 (100 rpm)하면서 배양하여 보호했다. 앱타머가 결합된 효소-미세튜브를 1000 μl의 10 mM PBS 용액 (pH 7.4)에 재현탁시켰다.The EDC activity is rerun to bind another thrombin binding Eptamer 2 to the final enzyme-microtube. The final enzyme-microtubes were resuspended in 1 ml of deionized water. Then 0.4 ml of MES buffer (0.1 M, pH 6.5), 0.2 ml of EDC solution (10 mg / ml) and 0.4 ml of NHS solution (50 mg / ml) were mixed and incubated with stirring (200 rpm) for 30 minutes at room temperature. did. After incubation, the EDC solution was removed and the enzyme-microtubes were then resuspended in 950 μl of PBS solution (10 mM, pH 7.4) and a second thrombin binding aptamer (29 bases, 5′-NH 2 -AGT CCG TGG TAG 50 μl, 50 μM, Geno-Tech Co. Korea) of GGC AGG TTG GGG TGA CT-3 ') and then incubated with stirring (200 rpm) for 1 hour at room temperature. After incubation, the unbound aptamer was removed by centrifugation of the mixed solution of the enzyme-microtube and the second thrombin-bound aptamer. The amount of bound aptamer was analyzed by measuring the absorbance at 260 nm with a spectrometer. Aptamer bound enzyme-microtubes (Aptamer2-enzyme-microtubes) were washed three times with 1000 μl of 10 mM PBS (pH 7.4). Subsequently, in order to protect the enzyme and the unreacted carboxyl group of the microtube, 1000 μl of protective solution (0.1% BSA and 0.05% Tween 20) was added and incubated with stirring (200 rpm) at room temperature. After incubation, the protective solution was removed by centrifugation, washed three times with 1000 μl of 10 mM PBS solution (pH 7.4), and then washed again with 0.1 M Tris-HCl buffer (0.1 M, pH 7.4), 30 Protected by incubation with stirring (100 rpm) in Tris-HCl buffer (0.1 M, pH 7.4) for minutes. Aptamer bound enzyme-microtubes were resuspended in 1000 μl of 10 mM PBS solution, pH 7.4.
실시예 4: 분석대상의 분석Example 4: Analysis of an Analysis Subject
포획된 트롬빈의 검출을 위해, 실시예 2의 트롬빈-앱타머1-자석비드 (0.1mg/ml) 1 ml를 실시예 3의 앱타머-효소-미세튜브 (1.5 mg/ml) 1 ml와 함께 1 시간 동안 200 rpm으로 교반하면서 배양했다. 자석장치 위에 1분간 정치한 다음 분리하고, 세척 완충액 (0.1 % BSA 및 0.05 % Tween 20을 함유한 10 mM PBS)으로 3 회 세척 후, 제조된 면역 복합체를 통상적인 GO 분석법 (Bergmeyer et al. 1974) 으로 측정했다.For detection of captured thrombin, 1 ml of thrombin-aptamer1-magnet bead (0.1 mg / ml) of Example 2 was combined with 1 ml of aptamer-enzyme-microtube (1.5 mg / ml) of Example 3 Incubated with stirring at 200 rpm for 1 hour. After standing for 1 minute on a magnetic device, separated and washed three times with wash buffer (10 mM PBS containing 0.1% BSA and 0.05% Tween 20), the prepared immune complexes were subjected to conventional GO assay (Bergmeyer et al. 1974). Was measured.
전체 면역 분석법은 실온에서 수행되었으며, 전기화학적인 방법을 통한 분석도 함께 진행되었다.Total immunoassays were performed at room temperature, and electrochemical analysis was also performed.
구체적으로, 0.1 mg의 자석비드를 통해 검출될 수 있는 최대 양인 1 μg의 트롬빈 검출을 위해 요구되는 앱타머2-효소-미세튜브의 농도를 조사하기 위하여, 실시예 3의 앱타머2-효소-미세튜브의 농도를 변화시켜 가면서 실험하였고, 그 결과를 도 2에 나타내었다. 트롬빈이 존재하지 않는 경우 (다른 분석대상이 존재할 경우)에는 앱타머2-효소-미세튜브의 농도가 증가하여도 그 반응신호가 증가하지 않음을 확인함으로써 분석대상 결합 앱타머가 특이적으로 목적 분석대상에만 결합하는 것을 알 수 있었다.Specifically, to investigate the concentration of aptamer2-enzyme-microtubes required for the detection of 1 μg of thrombin, the maximum amount that can be detected through 0.1 mg of magnetic beads, the aptamer2-enzyme- of Example 3 The experiment was performed while varying the concentration of the microtubes, and the results are shown in FIG. 2. In the absence of thrombin (when other analytes are present), the binding signal aptamer specifically targets the target analyte by confirming that the reaction signal does not increase even when the concentration of the aptamer2-enzyme-microtube increases. It was found that only to combine.
더하여 본 발명에서의 검출한계 및 정량화 능력을 평가하기 위해, PBS로 희석한 다양한 농도 (1000 ng, 500 ng, 100 ng, 10 ng, 1 ng 또는 0 ng/ml)의 트롬빈 샘플에서의 분석이 실시되었다. 이와 같이 수득된 다양한 농도의 분석대상이 결합된 트롬빈-앱타머1-자석비드는 상기 기술된 도 2에서 최적화된 농도의 앱타머2-효소-미세튜브에 의해 정량되었다. In addition, in order to assess the detection limit and quantification capacity in the present invention, analysis was performed on thrombin samples of various concentrations (1000 ng, 500 ng, 100 ng, 10 ng, 1 ng or 0 ng / ml) diluted with PBS. It became. The thrombin-aptamer1-magnet beads combined with the various concentrations of analytes thus obtained were quantified by the aptamer2-enzyme-microtubes at the optimized concentrations described in FIG. 2 described above.
상기 미세튜브-효소-앱타머2-분석대상-앱타머1-자석비드의 형태의 복합체는 상기 복합체 중 효소인 포도당 산화효소에 의해 포도당의 첨가에 따른 효소반응 (도 1)을 일으키며 이때의 반응을 통해 신호가 증폭되고 이를 통해 트롬빈의 존재 및 정량을 신속, 정확하게 파악할 수 있었다. The complex in the form of the microtube-enzyme-aptamer2-analyte-aptamer1-magnet bead causes an enzymatic reaction according to the addition of glucose by glucose oxidase, an enzyme in the complex (Fig. 1). The signal was amplified, which allowed for a rapid and accurate determination of the presence and quantitation of thrombin.
도 3은 실제 시료가 분리된 상태를 촬영한 사진이다. 왼쪽의 BSA대조군은 목적 분석대상인 트롬빈이 존재하지 않고 다른 단백질인 BSA가 존재하기 때문에 목적 분석대상과 선택적으로 결합하는 앱타머와 결합을 이루지 못한다. 따라서 앱타머1-자석비드 및 앱타머2-효소-미세튜브와 복합체를 이루지 못하기 때문에 앱타머2-효소-미세튜브는 함께 분리되지 못하는 것이다. 하지만 오른쪽의 실시예인 목적 분석대상 트롬빈이 존재하는 경우에는 트롬빈을 매개체로 앱타머1-자석비드와 앱타머2-효소-미세튜브가 샌드위치 결합을 이루게 된다. 따라서 자석비드가 자력에 의해 분리되면서 이때 복합체를 이룬 자석비드-앱타머1-목적단백질(트롬빈)-앱타머2-효소-미세튜브 복합체가 자석쪽으로 분리되는 것이다. 그리고, 이렇게 분리된 앱타머2-효소-미세튜브 양에 따라 목적단백질의 농도를 정량할 수 있다.3 is a photograph taken a state in which the actual sample is separated. The left BSA control group does not bind to the aptamer that selectively binds to the target analyte because there is no target thrombin and another protein, BSA. Therefore, the aptamer2-enzyme-microtubes do not complex with the aptamer1-magnet beads and the aptamer2-enzyme-microtubes. However, when the target analysis target thrombin is present in the right embodiment, the aptamer 1-magnetic beads and the aptamer 2-enzyme-microtubes form a sandwich bond by using thrombin as a medium. Therefore, when the magnetic beads are separated by magnetic force, the complexed magnetic bead-aptamer1-purpose protein (thrombin) -aptamer2-enzyme-microtube complex is separated toward the magnet. Then, the concentration of the target protein can be quantified according to the amount of the aptamer2-enzyme-microtubes thus separated.
도 4는 도 3과 같은 자력에 의한 분리단계 후 세척과정을 통해 복합체를 이룬 시료들만 분리해 SEM (Scanning electron microscope:주사전자현미경)으로 촬영한 사진이다. 왼쪽 시료인 BSA대조군시료는 세척과정에서 분산되어 있던 앱타머2-효소-미세튜브는 제거된다. 그리고 앱타머1-자석비드만 회수할 수 있다. 오른쪽 실시예 트롬빈시료는 맑게 분리된 상등액만 제거되고 자석비드-앱타머1-목적단백질(트롬빈)-앱타머2-효소-미세튜브 복합체를 회수할 수 있다. 이를 SEM을 통해 관찰한 결과 목적 분석대상이 없는 경우 아주 미세하고 비특이적 결합으로 인한 미량의 미세튜브 복합체만 보일 뿐 대부분 자석비드만 보이는 반면, 오른쪽에 트롬빈이 존재하는 경우 자석비드와 미세튜브가 서로 엉켜있는 모습을 볼 수 있다. 위쪽 행은 10000 배율로 관찰하였을 때의 모습이고 아래 행은 30000 만배의 고배율로 관찰했을때의 모습이다.4 is a photograph taken with a scanning electron microscope (SEM) by separating only the samples forming a complex through a washing process after the separation step by magnetic force as shown in FIG. 3. The left sample, BSA Control, removes the aptamer2-enzyme-microtubes that were dispersed during the wash. Only Aptamer1-Magnetic Beads can be recovered. Right Example The thrombin sample can remove only the supernatant that is clearly separated and recover the magnetic bead-aptamer1-purpose protein (thrombin) -aptamer2-enzyme-microtube complex. Observation by SEM shows that in the absence of the target analyte, only the microtubule complexes due to very fine and non-specific binding are shown, but mostly the magnetic beads, whereas when thrombin is present on the right, the magnetic beads and the microtubes are entangled with each other. You can see it. The upper row is when viewed at 10000 magnification and the lower row is when viewed at high magnification of 30 million times.
도 5는 상기 복합체 시료 용액 10 μl를 아크릴 큐벳에 넣고 990 μl의 반응액 (포도당 100 mg/ml, o-Dianisidine 10 mg/ml 및 퍼옥시데이즈 [Sigma-Aldrich. USA] 3.79 mg/ml의 혼합물)을 첨가한 본 발명 정량분석법의 결과를 나타내고, 도 6 및 도 7은 Ag/AgCl 기준전극, 유리탄소 작용전극, 백금 상대전극으로 구성된 전압전류측정기로 전기화학적으로 분석한 결과를 나타낸다.5 is a mixture of 990 μl of the reaction solution (glucose 100 mg / ml, 10 mg / ml of o-Dianisidine and 3.79 mg / ml of Peroxidase [Sigma-Aldrich. USA]) into 10 μl of the complex sample solution in an acrylic cuvette. 6 and 7 show the results of electrochemical analysis using a voltammetry consisting of an Ag / AgCl reference electrode, a glass carbon working electrode, and a platinum counter electrode.
실시예 5: 안정성테스트Example 5: Stability Test
실시예 1와 실시예 3에서 제조된 각각의 앱타머1-자석비드와 엡타머2-효소-미세튜브를 40 ℃의 고온에 보관하면서 실시예 4의 분석대상 분석을 수행하였다. 고온에 보관했던 물질들로 다시 상온에서 분석대상을 정량한 결과 그 활성이 100 시간 동안 90 % 이상 유지되는 것을 도 8로부터 확인할 수 있었다. 비교예는 암모늄 설페이트와 글루타르알데하이드 처리를 하지 않은 것으로서 이 경우에는 미세튜브 위에 효소가 한 층으로만 형성된다. 그 결과 쉽게 안정성을 잃어버리는 것을 확인할 수 있다.The analyte analysis of Example 4 was carried out while storing the aptamer 1-magnet beads and the aptamer 2-enzyme-microtubes prepared in Examples 1 and 3 at a high temperature of 40 ° C. As a result of quantifying the analyte at room temperature again with the materials stored at high temperature, it was confirmed from FIG. 8 that the activity was maintained at 90% or more for 100 hours. In the comparative example, ammonium sulfate and glutaraldehyde were not treated. In this case, only one layer of enzyme was formed on the microtube. As a result, it can be easily seen that the stability is lost.
본 발명에서는 목적 분석대상의 존재 여부 및 그 양을 조사하기 위하여, 상기 분석대상에 결합하는 두 종류의 앱타머 또는 항체를 각각 다른 물질에 결합시키고 분석대상을 매개체로 이들을 결합한 복합체를 제조하였다. 이 복합체는 자석비드 또는 기판의 자력에 의해 쉽고 빠르게 분리될 수 있고, 효소가 고정화된 미세튜브에 의해 적은 양으로도 큰 신호 증폭효과를 얻을 수 있다는 장점이 있다. 또한 1 ug의 분석대상부터 0.5 ng까지 넓은 범위의 분석대상을 검출 및 정량할 수 있다는 장점이 있으며, 종래 ELISA의 안정성에 대한 단점을 보완 및 개선함으로서 저 농도의 분석대상을 검출 및 정량할 수 있음을 알 수 있었다. In the present invention, in order to examine the presence and amount of the target analyte, two kinds of aptamers or antibodies which bind to the analyte were respectively bound to different substances, and a complex was prepared by binding them to the analyte. This complex can be easily and quickly separated by the magnetic bead or the magnetic force of the substrate, there is an advantage that can be obtained a large signal amplification effect in a small amount by the microtubule immobilized enzyme. In addition, there is an advantage in that it can detect and quantify a wide range of analytes from 1 ug to 0.5 ng, and it can detect and quantify low concentrations of analytes by supplementing and improving the shortcomings of the stability of the conventional ELISA. And it was found.
이상에서는 본 발명의 바람직한 실시예에 대해서 도시하고 설명하였으나, 본 발명은 상술한 특정의 실시예에 한정되지 아니하며, 당해 기술 분야에서 통상의 지식을 가진 자라면 본원 발명의 요지를 벗어남이 없이 다양한 변형 실시가 가능함을 알 수 있을 것이다. 따라서, 본 발명의 범위는 위의 실시예에 국한해서 해석되어서는 안되며, 후술하는 특허청구범위 뿐만 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 할 것이다. Although the above has been illustrated and described with respect to the preferred embodiment of the present invention, the present invention is not limited to the above-described specific embodiment, those skilled in the art without departing from the gist of the present invention various modifications It will be appreciated that implementation is possible. Therefore, the scope of the present invention should not be construed as being limited to the above embodiments, but should be defined by the claims below and equivalents thereof.
본 발명은 한국연구재단의 바텔연구소 유치활용을 통한 급성 호흡기 감염 및 중증 패혈증 조기진단용 나노바이오 (K2060100000209E010000210), 한국과학재단의 고활성, 고안정 나노-분석대상 원천기술 개발 및 ELISA에서의 응용 (과제번호:R0911491, 과제고유번호: 20090082314) 및 한국연구재단의 트립신 가수분해와 바이오연료전지를 위한 나노효소코팅의 안정성 및 활성 기작에 대한 연구 (과제번호:R0904822, 과제고유번호: 20100016464)의 지원을 받아 수행되었습니다.The present invention is a nanobiotechnology (K2060100000209E010000210) for the early diagnosis of acute respiratory tract infection and severe sepsis through the use of Battelle Research Institute of Korea Research Foundation, the development of high activity, high-definition nano-analytical target technology of the Korea Science Foundation and its application in ELISA (task No.:R0911491, Assignment No .: 20090082314) and Korea Research Foundation's study on the stability and activity mechanism of trypsin hydrolysis and nanoenzyme coating for biofuel cells (Task No.:R0904822, Assignment No .: 20100016464) Has been done.
<110> Korea University Industry and Academy Cooperation<110> Korea University Industry and Academy Cooperation
<120> Quantitative Analysis Using Minute Tube with Accumulated Enzyme<120> Quantitative Analysis Using Minute Tube with Accumulated Enzyme
<130> M09-7373-PCT<130> M09-7373-PCT
<160> 2<160> 2
<170> KopatentIn 1.71<170> KopatentIn 1.71
<210> 1<210> 1
<211> 15<211> 15
<212> DNA<212> DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> Aptamer1 for Thrombin<223> Aptamer 1 for Thrombin
<400> 1<400> 1
ggttggtgtg gttgg ggttggtgtg gttgg
1515
<210> 2<210> 2
<211> 29<211> 29
<212> DNA<212> DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> Aptamer2 for Thrombin<223> Aptamer2 for Thrombin
<400> 2<400> 2
agtccgtggt agggcaggtt ggggtgact agtccgtggt agggcaggtt ggggtgact
2929

Claims (29)

  1. (A) 자석비드 (magnetic bead) 또는 기판과 제 1 분석대상결합 앱타머 또는 항체를 혼합하여, 상기 제 1 분석대상결합 앱타머 또는 항체가 상기 자석비드 또는 기판의 표면에 결합된 앱타머/항체1-자석비드/기판을 제조하는 단계; (A) a magnetic bead or a substrate mixed with a first analyte binding aptamer or an antibody, wherein the first analyte binding aptamer or antibody is bound to the surface of the magnetic bead or substrate Preparing a 1-magnetic bead / substrate;
    (B) 상기 앱타머/항체1-자석비드/기판을 분석대상이 함유된 피시험 용액에 첨가하여, 상기 분석대상이 상기 앱타머/항체1-자석비드/기판의 상기 제 1 분석대상결합 앱타머 또는 항체에 결합된 분석대상-앱타머/항체1-자석비드/기판을 제조하는 단계;  (B) adding the aptamer / antibody-magnetic bead / substrate to the test solution containing the analyte so that the analyte is the first analyte binding app of the aptamer / antibody-magnetic bead / substrate Preparing an analyte-aptamer / antibody1-magnet bead / substrate bound to a tammer or an antibody;
    (C) 상기 피시험 용액으로부터 분석대상-앱타머/항체1-자석비드/기판을 분리하는 단계;  (C) separating the analyte-aptamer / antibody 1-magnetic beads / substrate from the test solution;
    (D) 효소와 미세튜브를 혼합하여 상기 효소가 상기 미세튜브의 표면에 집적된 효소-미세튜브를 제조하는 단계;  (D) mixing an enzyme and a microtube to prepare an enzyme-microtube in which the enzyme is integrated on the surface of the microtube;
    (E) 상기 분석대상에 결합하는 제 2 분석대상결합 앱타머 또는 항체와 상기 효소-미세튜브를 혼합하여, 상기 제 2 분석대상결합 앱타머 또는 항체가 상기 효소-미세튜브의 상기 효소에 결합된 앱타머/항체2-효소-미세튜브를 제조하는 단계;  (E) the second analyte-binding aptamer or antibody which binds to the analyte and the enzyme-microtube are mixed so that the second analyte-binding aptamer or antibody is bound to the enzyme of the enzyme-microtube. Preparing an aptamer / antibody2-enzyme-microtube;
    (F) 상기 분석대상-앱타머/항체1-자석비드/기판과 상기 앱타머/항체2-효소-미세튜브를 혼합하여, 상기 앱타머/항체2-효소-미세튜브의 상기 제 2 분석대상결합 앱타머 또는 항체가 상기 분석대상-앱타머/항체1-자석비드/기판의 상기 분석대상에 결합된 자석비드/기판-앱타머/항체1-분석대상-앱타머/항체2-효소-미세튜브를 제조하는 단계;  (F) the second analyte of the aptamer / antibody-enzyme-microtube by mixing the analyte-aptamer / antibody1-magnetic bead / substrate with the aptamer / antibody2-enzyme-microtube Magnetic beads / substrate-aptamers / antibodies1-analytes-aptamers / antibodies-enzymes-microparticles having binding aptamers or antibodies bound to the analytes of the analyte-aptamer / antibody 1-magnetic beads / substrate Manufacturing a tube;
    (G) 상기 자석비드/기판-앱타머/항체1-분석대상-앱타머/항체2-효소-미세튜브를 분리하는 단계; 및  (G) separating the magnetic bead / substrate-aptamer / antibody 1-analyte-aptamer / antibody 2-enzyme-microtube; And
    (H) 상기 분리된 자석비드/기판-앱타머/항체1-분석대상-앱타머/항체2-효소-미세튜브의 상기 효소를 정량분석 하는 단계 (H) quantitatively analyzing the enzyme of the separated magnetic beads / substrate-aptamers / antibodies-analyte-aptamers / antibodies-enzymes-microtubes
    를 포함하는 분석대상 정량분석법.Quantitative analysis method comprising a.
  2. 청구항 1에 있어서, The method according to claim 1,
    상기 단계 (A)의 상기 제 1 분석대상결합 앱타머 또는 항체와 상기 자석비드 또는 기판의 결합은 스트렙타비딘(streptavidin)-바이오틴(biotin) 결합, 아비딘(avidin)-바이오틴 결합, EDC [N-ethyl-N'-(dimethlaminopropyl) carbodiimide hydrochloride] 커플링, 설프하이드릴아민(sulphhydrylamine) 커플링, 또는 Ni-NTA(nitrilotriacetic acid)-히스티딘 결합에 의해 이루어지는 것을 특징으로 하는 분석대상 정량분석법.The binding of the first analyte binding aptamer or antibody to the magnetic beads or the substrate of step (A) may include streptavidin-biotin binding, avidin-biotin binding, EDC [N− Ethyl-N '-(dimethlaminopropyl) carbodiimide hydrochloride] coupling, sulfhydrylamine coupling, or analyte quantitative analysis characterized in that it is made by nitrilotriacetic acid (H-NTA) -histidine bond.
  3. 청구항 1에 있어서, The method according to claim 1,
    상기 단계 (D)의 상기 효소와 상기 미세튜브의 결합은 스트렙타비딘(streptavidin)-바이오틴(biotin) 결합, 아비딘(avidin)-바이오틴 결합, EDC [N-ethyl-N'-(dimethlaminopropyl) carbodiimide hydrochloride] 커플링, 설프하이드릴아민(sulphhydrylamine) 커플링, 또는 Ni-NTA(nitrilotriacetic acid)-히스티딘 결합에 의해 이루어지는 것을 특징으로 하는 분석대상 정량분석법.The binding of the enzyme and the microtube of the step (D) is streptavidin (biotin) bond, avidin (avidin) -biotin bond, EDC [N-ethyl-N '-(dimethlaminopropyl) carbodiimide hydrochloride Analyte quantitative analysis characterized in that it is by coupling, sulfhydrylamine coupling, or nitrilotriacetic acid (Ni-NTA) -histidine binding.
  4. 청구항 1에 있어서, The method according to claim 1,
    상기 단계 (A) 이후 단계 (B) 이전에, After step (A) and before step (B),
    상기 앱타머/항체1-자석비드/기판 중 자석비드 또는 기판 표면의 미반응 결합부위를 보호하는 단계Protecting the unreacted binding portion of the magnetic bead or the substrate surface of the aptamer / antibody 1-magnetic bead / substrate
    를 추가로 포함하는 것을 특징으로 하는 분석대상 정량분석법.The quantitative analysis method characterized in that it further comprises.
  5. 청구항 1에 있어서, The method according to claim 1,
    상기 단계 (B) 이후 단계 (C) 이전에, After step (B) and before step (C),
    상기 분석대상-앱타머/항체1-자석비드/기판 중 자석비드 또는 기판 표면의 미반응 결합부위를 보호하는 단계Protecting unreacted binding sites of the magnetic beads or the substrate surface of the analyte-aptamer / antibody 1-magnetic beads / substrate;
    를 추가로 포함하는 것을 특징으로 하는 분석대상 정량분석법.The quantitative analysis method characterized in that it further comprises.
  6. 청구항 1에 있어서, The method according to claim 1,
    상기 단계 (E) 이후 단계 (F) 이전에, After step (E) and before step (F),
    상기 앱타머/항체2-효소-미세튜브 중 미세튜브 또는 효소의 미반응 결합부위를 보호하는 단계Protecting the unreacted binding site of the microtube or enzyme in the aptamer / antibody-enzyme-microtube
    를 추가로 포함하는 것을 특징으로 하는 분석대상 정량분석법.The quantitative analysis method characterized in that it further comprises.
  7. 청구항 1에 있어서, The method according to claim 1,
    상기 자석비드 또는 기판은 표면에 중성 카르복시기(-COOH), 그의 이온(-COO-), 중성 아민기(-NH2), 그의 이온(-NH- 또는 -NH3 +), 중성 티올기(-SH), 및 그의 이온(-S-)으로 이루어진 군에서 선택된 작용기를 구비한 것을 특징으로 하는 분석대상 정량분석법.The magnetic beads or the substrate is a neutral carboxyl group (-COOH) on the surface, its ion (-COO -), a neutral amine group (-NH 2), its ion (-NH-or -NH 3 +), neutral thiol group (- SH), and its ion (-S -) in analyte quantitation method comprising the functional group selected from the group consisting of.
  8. 청구항 1에 있어서, The method according to claim 1,
    상기 미세튜브는 표면에 중성 카르복시기(-COOH), 그의 이온(-COO-), 중성 아민기(-NH2), 그의 이온(-NH- 또는 -NH3 +), 중성 티올기(-SH), 및 그의 이온(-S-)으로 이루어진 군에서 선택된 작용기를 구비한 것을 특징으로 하는 분석대상 정량분석법.It said fine tube is a neutral carboxyl group (-COOH), its ion (-COO -) on the surface, a neutral amine group (-NH 2), its ion (-NH - or -NH 3 +), neutral thiol (-SH) , and its ion (-S -) in analyte quantitation method comprising the functional group selected from the group consisting of.
  9. 청구항 1에 있어서, The method according to claim 1,
    상기 단계 (A) 이전에, Before step (A),
    자석비드 또는 기판과 EDC [N-ethyl-N'-(dimethlaminopropyl) carbodiimide hydrochloride] 용액을 혼합하여 반응시킨 후, 상기 자석비드 또는 기판을 자력으로 고정시키고, 미반응 EDC 용액을 제거하는 단계After reacting the magnetic beads or the substrate and the EDC [N-ethyl-N '-(dimethlaminopropyl) carbodiimide hydrochloride] solution by mixing, magnetically fixing the magnetic beads or the substrate, and removing the unreacted EDC solution
    를 추가로 포함한 것을 특징으로 하는 분석대상 정량분석법.The quantitative analysis method characterized in that it further comprises.
  10. 청구항 1에 있어서, The method according to claim 1,
    상기 단계 (D) 이전에, Prior to step (D),
    미세튜브와 EDC [N-ethyl-N'-(dimethlaminopropyl) carbodiimide hydrochloride] 용액을 혼합하여 반응시킨 후, 미반응 EDC 용액을 제거하는 단계Reacting the microtubes with an EDC [N-ethyl-N '-(dimethlaminopropyl) carbodiimide hydrochloride] solution and then removing the unreacted EDC solution
    를 추가로 포함한 것을 특징으로 하는 분석대상 정량분석법.The quantitative analysis method characterized in that it further comprises.
  11. 청구항 1에 있어서, The method according to claim 1,
    상기 제 1 분석대상결합 앱타머 또는 제 2 분석대상결합 앱타머는 그 서열을 구성하는 염기의 수가 10 내지 250 개인 것을 특징으로 하는 분석대상 정량분석법.The first analyte binding aptamer or the second analyte binding aptamer is a quantitative analysis method, characterized in that the number of bases constituting the sequence is 10 to 250.
  12. 청구항 1에 있어서, The method according to claim 1,
    상기 단계 (D)의 미세튜브는 산(acid)으로 처리한 것을 특징으로 하는 분석대상 정량분석법.The microtube of step (D) is quantitative analysis method, characterized in that the treatment with acid (acid).
  13. 청구항 1에 있어서, The method according to claim 1,
    상기 분석대상은 트롬빈인 것을 특징으로 하는 분석대상 정량분석법.The analyte is quantitative analysis method, characterized in that the thrombin.
  14. 청구항 13에 있어서, The method according to claim 13,
    상기 제 1 분석대상결합 앱타머는 서열 5'- GGT TGG TGT GGT TGG -3'의 트롬빈 특이성 DNA 앱타머인 것을 특징으로 하는 분석대상 정량분석법.The first analyte binding aptamer is a thrombin specific DNA aptamer of SEQ ID NO: 5'- GGT TGG TGT GGT TGG-3 '.
  15. 청구항 13에 있어서, The method according to claim 13,
    상기 제 2 분석대상결합 앱타머는 서열 5'- AGT CCG TGG TAG GGC AGG TTG GGG TGA CT -3'의 트롬빈 특이성 DNA 앱타머인 것을 특징으로 하는 분석대상 정량분석법.The second analyte binding aptamer is a thrombin specific DNA aptamer of SEQ ID NO: 5'- AGT CCG TGG TAG GGC AGG TTG GGG TGA CT-3 '.
  16. 청구항 13에 있어서, The method according to claim 13,
    상기 효소는 포도당 산화효소 (glucose oxidase)인 것을 특징으로 하는 분석대상 정량분석법.The enzyme is a quantitative analysis method characterized in that the glucose oxidase (glucose oxidase).
  17. 자석비드 또는 기판 (magnetic bead)와 제 1 분석대상결합 앱타머 또는 항체를 혼합하여, 상기 제 1 분석대상결합 앱타머 또는 항체가 상기 자석비드 또는 기판의 표면에 결합된 앱타머/항체1-자석비드/기판, 및 By mixing a magnetic bead or a substrate (magnetic bead) and the first analyte binding aptamer or antibody, the aptamer / antibody 1-magnet wherein the first analyte binding aptamer or antibody is bound to the surface of the magnetic bead or substrate Beads / substrates, and
    효소와 미세튜브를 혼합하여 상기 효소가 상기 미세튜브의 표면에 집적된 효소-미세튜브를 제조하고 목적 분석대상에 결합하는 제 2 분석대상결합 앱타머 또는 항체와 상기 효소-미세튜브를 혼합하여, 상기 제 2 분석대상결합 앱타머 또는 항체가 상기 효소-미세튜브의 상기 효소에 결합된 앱타머/항체2-효소-미세튜브By mixing an enzyme and a microtube to prepare an enzyme-microtubes in which the enzyme is integrated on the surface of the microtube, and mixing the enzyme-microtubes with a second analyte binding aptamer or an antibody which binds to a target analyte, The aptamer / antibody2-enzyme-microtube wherein the second analyte binding aptamer or antibody is bound to the enzyme of the enzyme-microtube
    를 포함하는 청구항 1 내지 청구항 16 중 어느 한 청구항의 분석대상 정량분석법에 사용되는 분석센서.Analysis sensor used in the analytical target quantitative analysis method of any one of claims 1 to 16 comprising a.
  18. 청구항 17에 있어서, The method according to claim 17,
    상기 제 1 분석대상결합 앱타머 또는 항체와 상기 자석비드 또는 기판의 결합은 스트렙타비딘(streptavidin)-바이오틴(biotin) 결합, 아비딘(avidin)-바이오틴 결합, EDC [N-ethyl-N'-(dimethlaminopropyl) carbodiimide hydrochloride] 커플링, 설프하이드릴아민(sulphhydrylamine) 커플링, 또는 Ni-NTA(nitrilotriacetic acid)-히스티딘 결합에 의해 이루어지는 것을 특징으로 하는 분석센서.The binding of the first analyte binding aptamer or antibody to the magnetic beads or the substrate may include streptavidin-biotin binding, avidin-biotin binding, EDC [N-ethyl-N '-( dimethlaminopropyl) carbodiimide hydrochloride] coupling, sulfhydrylamine coupling, or Ni-NTA (nitrilotriacetic acid)-histidine coupling.
  19. 청구항 17에 있어서, The method according to claim 17,
    상기 효소와 상기 미세튜브의 결합은 스트렙타비딘(streptavidin)-바이오틴(biotin) 결합, 아비딘(avidin)-바이오틴 결합, EDC [N-ethyl-N'-(dimethlaminopropyl) carbodiimide hydrochloride] 커플링, 설프하이드릴아민(sulphhydrylamine) 커플링, 또는 Ni-NTA(nitrilotriacetic acid)-히스티딘 결합에 의해 이루어지는 것을 특징으로 하는 분석센서.The combination of the enzyme and the microtube is streptavidin-biotin bonds, avidin-biotin bonds, EDC [N-ethyl-N '-(dimethlaminopropyl) carbodiimide hydrochloride] coupling, sulfhigh Analytical sensor characterized in that it is made by the sulphhydrylamine coupling, or Ni-NTA (nitrilotriacetic acid) -histidine bond.
  20. 청구항 17에 있어서, The method according to claim 17,
    상기 앱타머/항체1-자석비드/기판 중 자석비드 또는 기판 표면의 미반응 결합부위는 보호처리된 것을 특징으로 하는 분석센서.And an unreacted binding portion of the magnetic bead or the substrate surface of the aptamer / antibody 1-magnetic bead / substrate is protected.
  21. 청구항 17에 있어서, The method according to claim 17,
    상기 앱타머/항체2-효소-미세튜브 중 미세튜브 또는 효소의 미반응 결합부위는 보호처리된 것을 특징으로 하는 분석센서.The unreacted binding site of the microtube or enzyme in the aptamer / antibody-enzyme-microtube is protected.
  22. 청구항 17에 있어서, The method according to claim 17,
    상기 자석비드 또는 기판은 표면에 중성 카르복시기(-COOH), 그의 이온(-COO-), 중성 아민기(-NH2), 그의 이온(-NH- 또는 -NH3+), 중성 티올기(-SH), 및 그의 이온(-S-)으로 이루어진 군에서 선택된 작용기를 구비한 것을 특징으로 하는 분석센서.The magnet bead or substrate has a neutral carboxyl group (-COOH), an ion thereof (-COO-), a neutral amine group (-NH2), an ion thereof (-NH- or -NH3 +), a neutral thiol group (-SH), And a functional group selected from the group consisting of ions (-S-) thereof.
  23. 청구항 17에 있어서, The method according to claim 17,
    상기 미세튜브는 표면에 중성 카르복시기(-COOH), 그의 이온(-COO-), 중성 아민기(-NH2), 그의 이온(-NH- 또는 -NH3+), 중성 티올기(-SH), 및 그의 이온(-S-)으로 이루어진 군에서 선택된 작용기를 구비한 것을 특징으로 하는 분석센서.The microtube has a neutral carboxyl group (-COOH), an ion thereof (-COO-), a neutral amine group (-NH2), an ion thereof (-NH- or -NH3 +), a neutral thiol group (-SH), and Analytical sensor characterized in that it comprises a functional group selected from the group consisting of ions (-S-).
  24. 청구항 17에 있어서, The method according to claim 17,
    상기 제 1 분석대상결합 앱타머 또는 제 2 분석대상결합 앱타머는 그 서열을 구성하는 염기의 수가 10 내지 250 개인 것을 특징으로 하는 분석센서.The first analyte binding aptamer or the second analyte binding aptamer is an analysis sensor, characterized in that the number of bases constituting the sequence is 10 to 250.
  25. 청구항 17에 있어서, The method according to claim 17,
    상기 미세튜브는 산(acid)으로 처리한 것을 특징으로 하는 분석센서.The microtube is an analysis sensor, characterized in that the treatment with acid (acid).
  26. 청구항 17에 있어서, The method according to claim 17,
    상기 분석대상은 트롬빈인 것을 특징으로 하는 분석센서.The analyte sensor, characterized in that the analysis target is thrombin.
  27. 청구항 26에 있어서, The method of claim 26,
    상기 제 1 분석대상결합 앱타머는 서열 5'- GGT TGG TGT GGT TGG -3'의 트롬빈 특이성 DNA 앱타머인 것을 특징으로 하는 분석센서.The first analyte binding aptamer is a thrombin specific DNA aptamer of SEQ ID NO: 5'- GGT TGG TGT GGT TGG-3 '.
  28. 청구항 26에 있어서, The method of claim 26,
    상기 제 2 분석대상결합 앱타머는 서열 5'- AGT CCG TGG TAG GGC AGG TTG GGG TGA CT -3'의 트롬빈 특이성 DNA 앱타머인 것을 특징으로 하는 분석센서.The second analyte binding aptamer is a thrombin specific DNA aptamer of SEQ ID NO: 5'- AGT CCG TGG TAG GGC AGG TTG GGG TGA CT-3 '.
  29. 청구항 26에 있어서, The method of claim 26,
    상기 효소는 포도당 산화효소 (glucose oxidase)인 것을 특징으로 하는 분석센서.The enzyme is an analysis sensor, characterized in that glucose oxidase (glucose oxidase).
PCT/KR2011/003730 2010-05-20 2011-05-20 Quantitative analysis method using a nanotube having integrated enzymes WO2011145908A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020117011682A KR101273453B1 (en) 2010-05-20 2011-05-20 Quantitative Analysis Using Minute Tube with Accumulated Enzyme

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0047750 2010-05-20
KR20100047750 2010-05-20

Publications (3)

Publication Number Publication Date
WO2011145908A2 true WO2011145908A2 (en) 2011-11-24
WO2011145908A3 WO2011145908A3 (en) 2012-05-31
WO2011145908A9 WO2011145908A9 (en) 2012-06-21

Family

ID=44992236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/003730 WO2011145908A2 (en) 2010-05-20 2011-05-20 Quantitative analysis method using a nanotube having integrated enzymes

Country Status (2)

Country Link
KR (1) KR101273453B1 (en)
WO (1) WO2011145908A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104597240A (en) * 2015-02-02 2015-05-06 广西医科大学 Biosensing method for detecting leukemia by graphene/mimetic peroxidase double-signal amplification
CN110865183A (en) * 2019-11-25 2020-03-06 润方(长春)生物科技有限公司 Method for preparing HRP (horse radish peroxidase) labeled antibody by using magnetic beads

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101495665B1 (en) * 2014-05-09 2015-02-26 한국생명공학연구원 Method for magnetic transfer multi-fluorescence immunoassay

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020042632A (en) * 1999-07-30 2002-06-05 엔. 레이 앤더슨 Microarrays and their manufacture
JP2004532968A (en) * 2000-06-14 2004-10-28 ボード・オブ・リージェンツ,ザ・ユニヴァーシティ・オヴ・テキサス・システム Systems and methods for cell subpopulation analysis
JP2005341865A (en) * 2004-06-02 2005-12-15 Kyoto Univ Nucleic acid probe, method for detecting nucleic acid, device for analyzing nucleic acid and method for controlling reaction rate
KR100941416B1 (en) * 2005-04-30 2010-02-11 삼성전자주식회사 Bio-disc, bio-driver apparatus, and assay method using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020042632A (en) * 1999-07-30 2002-06-05 엔. 레이 앤더슨 Microarrays and their manufacture
JP2004532968A (en) * 2000-06-14 2004-10-28 ボード・オブ・リージェンツ,ザ・ユニヴァーシティ・オヴ・テキサス・システム Systems and methods for cell subpopulation analysis
JP2005341865A (en) * 2004-06-02 2005-12-15 Kyoto Univ Nucleic acid probe, method for detecting nucleic acid, device for analyzing nucleic acid and method for controlling reaction rate
KR100941416B1 (en) * 2005-04-30 2010-02-11 삼성전자주식회사 Bio-disc, bio-driver apparatus, and assay method using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104597240A (en) * 2015-02-02 2015-05-06 广西医科大学 Biosensing method for detecting leukemia by graphene/mimetic peroxidase double-signal amplification
CN104597240B (en) * 2015-02-02 2016-06-15 广西医科大学 Graphene/class peroxidase leukemic bio-sensing method of dual signal amplification detection
CN110865183A (en) * 2019-11-25 2020-03-06 润方(长春)生物科技有限公司 Method for preparing HRP (horse radish peroxidase) labeled antibody by using magnetic beads
CN110865183B (en) * 2019-11-25 2022-11-18 润方(长春)生物科技有限公司 Method for preparing HRP (horse radish peroxidase) labeled antibody by using magnetic beads

Also Published As

Publication number Publication date
KR20110130384A (en) 2011-12-05
WO2011145908A9 (en) 2012-06-21
WO2011145908A3 (en) 2012-05-31
KR101273453B1 (en) 2013-06-11

Similar Documents

Publication Publication Date Title
Zhang et al. Robust immunosensing system based on biotin-streptavidin coupling for spatially localized femtogram mL− 1 level detection of interleukin-6
JP5031208B2 (en) Assay
Eletxigerra et al. Amperometric magnetoimmunoassay for the direct detection of tumor necrosis factor alpha biomarker in human serum
Chen et al. An ultra-sensitive chemiluminescence immunosensor of carcinoembryonic antigen using HRP-functionalized mesoporous silica nanoparticles as labels
US10488408B2 (en) Detection of target molecules in a sample by using a magnetic field
CN112782156B (en) Chitinase 3-like protein 1 kit and preparation method thereof
KR20130051647A (en) Method for analysis of biomaterials using magnetic bead
US20090087869A1 (en) Sandwich immunoassay and method of detecting an antigen by using the same
de Ávila et al. Disposable electrochemical magnetoimmunosensor for the determination of troponin T cardiac marker
CN113156119A (en) Method for detecting coronavirus by adopting angiotensin converting enzyme II (ACE2)
KR101988600B1 (en) Non-specific reaction inhibitor, and method and kit for inhibiting non-specific reaction
BR112014020513B1 (en) METHODS AND SYSTEMS FOR BIOASSESS SIGNAL AMPLIFICATION
CN110806487A (en) Kit for detecting human heparin binding protein and preparation method thereof
JP2010107363A (en) Method and reagent kit for measuring troponin i
US11268956B2 (en) Method for producing antibody reagent
WO2011145908A2 (en) Quantitative analysis method using a nanotube having integrated enzymes
WO2020080833A1 (en) Biomaterial-detecting microparticle and biomaterial detection method using same
Lei Electrical detection of sandwich immunoassay on indium tin oxide interdigitated electrodes
Tang et al. Multiplexed electrochemical immunoassay for two immunoglobulin proteins based on Cd and Cu nanocrystals
AU2021104366A4 (en) KIT FOR DETECTING DUST MITE COMPONENT-SPECIFIC IMMUNOGLOBULIN E (sIgE)
CN115651964A (en) Magnetic probe and preparation and application for detecting matrix metalloproteinase
JP3684454B2 (en) Heterogeneous immunoassay using a precipitable solid phase
CN112485419A (en) Zinc transporter 8 antibody detection kit
Palandra et al. Application of immunoaffinity mass spectrometry (IA-MS) for protein biomarker quantification
CN115598344B (en) Detection kit for fecal pancreatic elastase 1 and preparation method thereof

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20117011682

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11783790

Country of ref document: EP

Kind code of ref document: A2