WO2024117802A1 - Metal powder processing apparatus using plasma and processing method thereof - Google Patents

Metal powder processing apparatus using plasma and processing method thereof Download PDF

Info

Publication number
WO2024117802A1
WO2024117802A1 PCT/KR2023/019510 KR2023019510W WO2024117802A1 WO 2024117802 A1 WO2024117802 A1 WO 2024117802A1 KR 2023019510 W KR2023019510 W KR 2023019510W WO 2024117802 A1 WO2024117802 A1 WO 2024117802A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma
electrode body
metal powder
negative electrode
gas
Prior art date
Application number
PCT/KR2023/019510
Other languages
French (fr)
Korean (ko)
Inventor
이용복
Original Assignee
이용복
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이용복 filed Critical 이용복
Publication of WO2024117802A1 publication Critical patent/WO2024117802A1/en

Links

Images

Definitions

  • the plasma generated in the inner area of the electrode body is sprayed in a cone shape through a plasma torch provided in the process chamber and supplied to the central spray area.
  • a 3D (3-Dimension) printer is equipment that uses three-dimensional data about an object to be printed and molds a shape in three dimensions to have the same or similar shape as the object.
  • printing technology using a 3D printer is a technology that manufactures products with a three-dimensional structure by stacking various types of materials such as powder, liquid, wire, and pellets layer by layer. This is a complex process that cannot be realized with existing manufacturing and processing technology. Because shaped parts can be easily manufactured, it has recently been in the world's spotlight as a new processing technology.
  • representative metal 3D printers can be divided into PBF (Powder Bed Fusion) method, DED (Direct Energy Deposition) method, ME (Material Extrusion) method, BJ (Binder Jetting) method, etc.
  • PBF method uses powder ( For example, a 3D shape is formed by repeating the process of laying down one layer (e.g., metal powder, etc.) and melting and pasting it on the sliced 2D area of the 3D shape with a high temperature energy source (e.g., laser beam, electron beam, etc.).
  • a high temperature energy source e.g., laser beam, electron beam, etc.
  • metal powder used in metal 3D printing is known to be relatively expensive, and special metal powder designed for application in fields such as aerospace, defense, and biomechanical is even more expensive. Therefore, metal powder for 3D printing is often reused.
  • new metal powder and recovered metal powder are mixed before 3D printing, and 3D printing is performed using the mixed metal powder. This method is widely used.
  • the plasma generated in the inner area of the electrode body is sprayed in a cone shape through a plasma torch provided in the process chamber and supplied to the central spray area.
  • a process chamber to which metal powder, powder transfer gas, and plasma generation gas are supplied;
  • a plasma torch provided in the process chamber to spray plasma generated in the inner region of the electrode body in a cone shape to perform surface treatment of the metal powder supplied to the central spray region;
  • a cyclone separator that separates the spheroidized metal powder spheroidized according to the surface treatment, the powder transfer gas, and the plasma generating gas; and a storage container for collecting the separated spheroidized metal powder.
  • a metal powder processing device using plasma may be provided, including a storage container for collecting the separated spheroidized metal powder.
  • the plasma torch has a cone shape whose diameter decreases toward the lower end, and the metal powder and powder transfer gas are supplied to the first hollow portion provided in the central portion, 1-1
  • a first negative electrode body provided with a cooling channel; It has a cylindrical tube shape surrounding the first negative electrode body and is inclined corresponding to the outer circumferential surface of the first negative electrode body and is spaced at a preset interval, and the plasma generating gas is supplied to provide a first plasma generation area, 1-2
  • a metal powder processing apparatus using plasma may be provided, including a first power supply means.
  • the plasma torch is provided in the form of a cylindrical tube and includes a second negative electrode body provided with a 2-1 cooling channel;
  • the metal powder and powder transfer gas are supplied to a second hollow part provided in the central part, and the upper part has a cylindrical path corresponding to the diameter of the second negative electrode body so that the second negative electrode body is inserted and the plasma generating gas is supplied.
  • a second positive electrode body having a second plasma generation area having a conical path at the lower end and a 2-2 cooling channel; a second insulator provided on the outer surface of the second positive electrode body; and a second power supply means electrically connected to the second negative electrode body and the second positive electrode body to supply power to generate the plasma.
  • a metal powder processing apparatus using plasma can be provided, including a second power supply means.
  • the metal powder processing apparatus includes at least one additional cyclone separator coupled to a rear end of the cyclone separator to separate relatively smaller-sized powder; and at least one additional storage container for collecting the powder separated through the additional cyclone separator.
  • a metal powder processing device using plasma may be provided, further comprising a.
  • supplying metal powder, powder transfer gas, and plasma generation gas to a process chamber Generating plasma in an area inside the electrode body of a plasma torch provided in the process chamber; performing surface treatment of the metal powder supplied to the central spray area by spraying the generated plasma in a cone shape; Separating the spheroidized metal powder spheroidized according to the surface treatment, the powder transfer gas, and the plasma generating gas through a cyclone separator; And collecting the separated spheroidized metal powder in a storage container.
  • a metal powder processing method using plasma can be provided, including the step.
  • the plasma torch has a cone shape whose diameter decreases toward the lower end, and the metal powder and powder transfer gas are supplied to the first hollow portion provided in the central portion, 1-1
  • a first negative electrode body provided with a cooling channel is provided, has a cylindrical tube shape surrounding the first negative electrode body, and is inclined at a preset interval corresponding to the outer peripheral surface of the first negative electrode body, and the plasma generating gas is supplied to the first negative electrode body.
  • 1 plasma generation area is provided, a first positive electrode body is provided with a 1-2 cooling channel, a first insulator is provided on the outer surface of the first negative electrode body and the first positive electrode body, and the first positive electrode body is provided.
  • a metal powder processing method using plasma may be provided, which includes a first power supply means that is electrically connected to the negative electrode body and the first positive electrode body to supply power.
  • the plasma torch is provided in the form of a cylindrical tube, is provided with a second negative electrode body provided with a 2-1 cooling channel, and the metal powder and powder transfer gas are provided in the central portion. It is supplied to the second hollow part, and the upper part has a cylindrical path corresponding to the diameter of the second negative electrode body and the lower part has a conical path so that the second negative electrode body is inserted and the plasma generating gas is supplied.
  • a second positive electrode body is provided with a 2-2 cooling channel, and a second insulator is provided on the outer surface of the second positive electrode body, and is electrically connected to the second negative electrode body and the second positive electrode body.
  • a method of processing metal powder using plasma may be provided, including a second power supply means that is connected to supply power.
  • the metal powder processing method using plasma further includes the step of circulating and reusing the metal powder transfer gas and the plasma generating gas after collecting the metal powder in the storage container.
  • a metal powder processing method using plasma may be provided.
  • the plasma generated in the inner area of the electrode body is sprayed in a cone shape through a plasma torch provided in the process chamber and supplied to the central spray area.
  • the surface treatment of the metal powder can be effectively performed by separating the plasma generation area and the plasma reaction area, and the metal powder can be effectively spherical to improve the flow of the metal powder, as well as 3D printing.
  • various reactants attached to the surface of the metal powder can be cleaned.
  • FIG. 1 is a diagram illustrating a metal powder processing device using plasma according to an embodiment of the present invention
  • FIGS. 2 to 5 are diagrams for explaining various forms of a plasma torch provided in a metal powder processing apparatus using plasma according to an embodiment of the present invention
  • 6 and 7 are diagrams for explaining another form of a metal powder processing device using plasma according to an embodiment of the present invention.
  • Figure 8 is a flow chart showing the process of processing metal powder using plasma according to another embodiment of the present invention.
  • Figure 1 is a diagram illustrating a metal powder processing device using plasma according to an embodiment of the present invention
  • Figures 2 to 5 show a plasma torch provided in the metal powder processing device using plasma according to an embodiment of the present invention.
  • FIGS. 6 and 7 are drawings for explaining other forms of a metal powder processing apparatus using plasma according to an embodiment of the present invention.
  • the metal powder processing apparatus using plasma includes a process chamber 100, a plasma torch 200, a cyclone separator 300, a storage container 400, etc. It can be included.
  • the process chamber 100 is a chamber in which metal powder, powder transfer gas, and plasma generation gas are supplied to perform spheroidization and cleaning of the metal powder.
  • the inside and outside can be maintained in a sealed state and can be maintained in a vacuum state when necessary.
  • a vacuum pump (not shown) may be provided to maintain the pressure in the range of approximately 10 -3 Torr, and such vacuum pumps may include, for example, a booster pump, a rotary pump, etc.
  • powder transfer gas e.g., argon (Ar) gas, nitrogen (N 2 ) gas, etc.
  • plasma generation gas e.g., argon (Ar) gas, nitrogen (N 2 ) gas, helium (He) gas, mixed gas, etc.
  • the plasma torch 200 is provided in the process chamber 100 and can spray plasma (i.e., thermal plasma) generated in the inner area of the electrode body in a cone shape to perform surface treatment of the metal powder supplied to the central spray area.
  • Thermal plasma is a gas composed of electrons, ions, and neutral particles generated through arc discharge, and the constituent particles can be emitted to have a temperature range of 1000-20000 °C and a speed range of 100-2000 m/s.
  • plasma generation gas is supplied to the area inside the electrode body (i.e., plasma generation area) where thermal plasma is generated, and the thermal plasma generated through this has a cone shape toward the direction of the central spray area (i.e., plasma reaction area). It can be published as .
  • a first negative electrode body 210a, a first positive electrode body 220a, a first insulator 230a, and a first power supply means ( 240a), etc. may be included.
  • the first negative electrode body 210a has a cone shape whose diameter decreases toward the bottom, and metal powder and powder transfer gas can be supplied to the first hollow portion 211a provided in the central portion, and the first power source Power may be supplied by being electrically connected to the supply means 240a.
  • the first hollow portion 211a may be formed penetrating from the upper central portion of the first negative electrode body 210a to the lower portion, and is used to transport metal powder and powder that are introduced into the process chamber 100 and supplied to the upper central portion. Gas may be transferred to the first plasma reaction region B1 located below the first negative electrode body 210a.
  • the first negative electrode body 210a may be provided with a 1-1 cooling channel 212a of a water-cooled structure inside, and the 1-1 cooling channel 212a controls the circulation of the refrigerant inside, During the plasma process, the heated first negative electrode body 210a can be cooled stably and quickly due to the generation of plasma.
  • the first positive electrode body 220a has a cylindrical tube shape surrounding the first negative electrode body 210a and is inclined and spaced apart at a preset interval corresponding to the outer peripheral surface of the first negative electrode body 210a to form a first plasma generation region ( A1) may be provided, and power may be supplied by being electrically connected to the first power supply means 240a.
  • This first plasma generation area (A1) has a uniform diameter or a varying diameter (that is, it narrows from a relatively wide diameter and then narrows again from a relatively wide diameter) along the space between the first negative electrode body (210a) and the first positive electrode body (220a).
  • the plasma generated along this path may be emitted obliquely toward the lower central portion of the first negative electrode body 210a and the first positive electrode body 220a together with the plasma generating gas.
  • the metal powder ( Figure 3(a)) transferred to the central injection area i.e., the first plasma reaction area (B1)
  • the powder surface is cleaned ( Figure 3(b) ))can do.
  • the plasma can be stably generated by dividing the plasma generation area and the reaction area, and the first negative electrode body 210a and the first negative electrode body 210a, as shown in FIG. 4, can be used to maintain a constant reaction with the metal powder. Since the first plasma generation area A1 formed by the positive electrode body 220a is formed in the shape of an inclined cylindrical tube, the plasma emitted into the first plasma reaction area B1 may be emitted in a cone shape.
  • the first positive electrode body 220a may be provided with a 1-2 cooling channel 221a of a water-cooled structure inside, and the 1-2 cooling channel 221a controls the circulation of the refrigerant inside, During the plasma process, the heated first positive electrode body 220a can be cooled stably and quickly due to the generation of plasma.
  • first insulator 230a may be provided on the outer surface of the first negative electrode body 210a and the first positive electrode body 220a, and is in contact with the first hollow portion 211a and the first negative electrode body 210a.
  • first positive electrode body 220a By coating the surface and the outer surface of the first positive electrode body 220a, the inside and outside can be insulated, and through this, it is possible to prevent the metal powder from being contaminated by ions released from the electrode through a plasma reaction.
  • the first insulator 230a is, for example, alumina, zirconia, boron nitride, aluminum nitride, mullite, and rare earth ceramic. At least one selected from among can be used.
  • the first power supply means 240a may be electrically connected to the first negative electrode body 210a and the first positive electrode body 220a to supply power to generate plasma.
  • the plasma torch 200 in another form of the plasma torch 200 as described above, as shown in FIG. 5, it includes a second negative electrode body 210b, a second positive electrode body 220b, a second insulator 230b, and a second power supply means ( 240b), etc. may be included.
  • the second negative electrode body 210b may be provided in the form of a cylindrical tube, and can be inserted and disposed inside the second plasma generation area A2 provided in the second positive electrode body 220b to generate the second plasma. It may be provided with a diameter and thickness corresponding to the area A2, and may be electrically connected to the second power supply means 240b to supply power.
  • the second negative electrode body 210b may be provided with a 2-1 cooling channel 211b of a water-cooled structure inside, and the 2-1 cooling channel 211b is controlled so that the refrigerant circulates inside, During the plasma process, the heated second negative electrode body 210b can be cooled stably and quickly due to the generation of plasma.
  • the second positive electrode body 220b is supplied with metal powder and powder transport gas to the second hollow part 221b provided in the central part, and the upper end is formed with the second negative electrode body 210b so that the second negative electrode body 210b is inserted.
  • ) may be provided with a second plasma generation area (A2) having a cylindrical path corresponding to the diameter and a conical path at the lower end, and may be electrically connected to the second power supply means (240b) to supply power. .
  • plasma may be generated on a cylindrical path at the upper end, and the plasma may be emitted obliquely toward the lower central part of the first positive electrode body 220a along a conical path at the lower end, and this central injection area (That is, the metal powder transferred to the second plasma reaction area (B2)) can be plasma treated to spheroidize the metal powder and at the same time clean the powder surface.
  • a second plasma generation region is formed inside the second positive electrode body 220b so that plasma can be stably generated by dividing the plasma generation region and the reaction region and the reaction with the metal powder can be maintained at a constant level. Since the lower end of (A2) is formed in a cone-shaped path, the plasma emitted into the second plasma reaction area (B2) can be emitted in a cone shape.
  • the second positive electrode body 220b may be provided with a 2-2 cooling channel 222b of a water-cooled structure inside, and the 2-2 cooling channel 222b is controlled so that the refrigerant circulates inside, During the plasma process, the heated second positive electrode body 220a can be cooled stably and quickly due to the generation of plasma.
  • the second insulator 230b may be provided on the outer surface of the second positive electrode body 220b, and the second hollow portion 221b and the surface in contact with the second positive electrode body 220b and the second positive electrode body 220b ) can be coated on the outer surface to insulate the inside and outside, and through this, contamination of the metal powder by ions released from the electrode through plasma reaction can be prevented in advance.
  • the second insulator 230b may use at least one selected from, for example, alumina, zirconia, boron nitride, aluminum nitride, mullite, and rare earth ceramics.
  • the second power supply means 240b may be electrically connected to the second negative electrode body 210b and the second positive electrode body 220b to supply power to generate plasma.
  • each negative electrode body and each positive electrode body of the plasma torch 200 as described above are shown in FIGS. 2 and 3 as having a circular path inside each electrode body, but have a straight path and a partition wall. It goes without saying that not only can it be provided in a form where the input direction and output direction are distinguished based on , but also an applicable structure can be selected and applied among the water cooling channels disclosed previously.
  • the cyclone separator 300 separates the spherical metal powder spheroidized according to surface treatment from the plasma generation gas and powder transfer gas. It has a cylindrical body and is equipped with a diameter that gradually decreases downward, and rotates according to centrifugal force. At the same time as turning movement, it falls according to gravity and takes a spiral shape, thereby maintaining an external swirling flow.
  • the powder particles are separated and can move to the storage container 400 located below depending on their weight.
  • the particle size of this metal powder can be in the size range of approximately 15-45 ⁇ m to be used as a raw material powder for 3D printing in the PBF (powder bed fusion) method, and in the case of DED (direct energy deposition) method, it can be approximately 45 ⁇ m. It can have a size range of -150 ⁇ m.
  • the metal powder having a relatively small weight forms an internal swirling flow along the inner cylindrical tube through an inverted fluid flow to separate the metal powder into a gas (e.g., powder transfer gas, plasma generating gas). etc.) may be discharged together.
  • a gas e.g., powder transfer gas, plasma generating gas.
  • the storage container 400 collects the spheroidized metal powder separated through the cyclone separator 300, and is provided at the lower part of the cyclone separator 300 to collect the spheroidized metal powder that is separated through the cyclone separator 300 and moves downward. and can be saved.
  • the metal powder processing apparatus using plasma may further include at least one additional cyclone separator (300A), at least one additional storage container (400A), etc., as shown in FIG. 6. there is.
  • At least one additional cyclone separator (300A) is coupled to the rear end of the cyclone separator (300) to separate relatively smaller size powder.
  • an additional cyclone separator (300A) may be further provided to collect metal powder of a relatively smaller weight.
  • 1 Metal powders of a relatively smaller size e.g., 1-10 ⁇ m, etc.
  • the size of the primary collected metal powders can be secondaryly separated.
  • At least one additional storage container (400A) collects the powder separated through the additional cyclone separator (300A), and can be additionally provided if an additional cyclone separator (300A) is provided, through which primary collection is carried out.
  • Metal powder with a relatively smaller size e.g., 1-10 ⁇ m, etc.
  • the size of the collected metal powder can be secondaryly collected.
  • the metal powder transfer gas and plasma generation gas are circulated and recovered at the rear end of the cyclone separator 300 for reuse. Additional devices for gas recycling may be provided.
  • the fine powder, powder transfer gas, and plasma generation gas separated through the cyclone separator 300 are moved to the bag chamber 510, and the fine powder is stored in the bag. It can be collected in the back chamber container 520 located at the bottom of the chamber 510, and among these, ultrafine powder and dust can be removed through at least one dust collection filter provided inside the back chamber 510.
  • the powder transport gas and plasma generation gas separated from the fine powder can be flowed into the recycling line through the blower 530 and introduced into the buffer tank 540.
  • the inert gas is supplied to the compressor 550 at a preset flow rate, and the compressor 550 uniformly compresses the supplied inert gas and then supplies it back to the supply gas tank 560, so that the recycled inert gas is stored in the process chamber ( It can be stored in the supply gas tank 560 to be supplied to 100).
  • the plasma generated in the inner area of the electrode body is formed in a cone shape through a plasma torch provided in the process chamber.
  • the surface treatment of the metal powder can be effectively performed by separating the plasma generation area and the plasma reaction area.
  • the metal powder can be treated effectively. Not only can it be effectively spherical, but 3D printing can also clean various reactants attached to the surface of metal powder.
  • Figure 8 is a flow chart showing the process of processing metal powder using plasma according to another embodiment of the present invention.
  • metal powder, powder transfer gas, and plasma generation gas can be supplied to the process chamber 100 (step 810).
  • This process chamber 100 is a chamber where metal powder, powder transfer gas, and plasma generation gas are supplied to perform spheroidization and cleaning of the metal powder, and the inside and outside can be maintained in a sealed state and maintained in a vacuum state when necessary.
  • a vacuum pump (not shown) may be provided to maintain the pressure in the range of approximately 10 -3 Torr, and such vacuum pump may include, for example, a booster pump, a rotary pump, etc.
  • powder transfer gas e.g., argon (Ar) gas, nitrogen (N 2 ) gas, etc.
  • plasma generation gas e.g., Argon (Ar) gas, nitrogen (N 2 ) gas, helium (He) gas, mixed gas, etc.
  • plasma can be generated in the inner area of the electrode body of the plasma torch 200 provided in the process chamber 100 (step 820), and the generated plasma is sprayed in a cone shape to generate metal powder supplied to the central spray area.
  • Surface treatment can be performed (step 830).
  • the plasma torch 200 is provided in the process chamber 100 and sprays plasma (i.e., thermal plasma) generated in the inner area of the electrode body in a cone shape to perform surface treatment of the metal powder supplied to the central spray area.
  • Thermal plasma is a gas composed of electrons, ions, and neutral particles generated through arc discharge, and the constituent particles can be emitted to have a temperature range of 1000-20000 °C and a speed range of 100-2000 m/s.
  • one form of the plasma torch 200 may include a first negative electrode body 210a, a first positive electrode body 220a, a first insulator 230a, a first power supply means 240a, etc.
  • the plasma torch 200 may include a second negative electrode body 210b, a second positive electrode body 220b, a second insulator 230b, and a second power supply means 240b.
  • a third negative electrode body 210c In addition, in another form of the plasma torch 200, a third negative electrode body 210c, a plurality of third positive electrode bodies 220c, a third insulator 230c, a third power supply means 240c, and an inner tube ( 250c), an external tube (260c), etc.
  • the spheroidized metal powder, powder transfer gas, and plasma generation gas spheroidized according to the surface treatment can be separated through the cyclone separator 300 (step 840).
  • this cyclone separator (300) has a cylindrical body with a diameter that gradually decreases downward, and can maintain an external swirl flow by exhibiting a spiral shape while rotating according to centrifugal force and falling according to gravity at the same time.
  • the powder particles are separated and can move to the storage container 400 located below depending on their weight.
  • the particle size of this metal powder can be approximately 15-45 ⁇ m in order to be used as a raw material powder for 3D printing in the PBF method, and in the case of the DED method, it can have a size range of approximately 45-150 ⁇ m. .
  • the metal powder having a relatively small weight forms an internal swirling flow along the inner cylindrical tube through an inverted fluid flow to separate the metal powder into a gas (e.g., powder transfer gas, plasma generating gas). etc.) may be discharged together.
  • a gas e.g., powder transfer gas, plasma generating gas.
  • the separated spheroidized metal powder can be collected in the storage container 400 (step 850).
  • This storage container 400 is provided at the bottom of the cyclone separator 300 and can collect and store the spheroidized metal powder that is separated through the cyclone separator 300 and moves downward.
  • the rear end of the cyclone separator 300 and the process chamber 100 are in communication, so that the metal powder transfer gas and the plasma generation gas can be circulated, recovered, and then reused (step 860).
  • devices for gas recycling may be additionally provided at the rear of the cyclone separator 300, and the fine powder, powder transfer gas, and plasma generation gas separated through the cyclone separator 300 are returned to the back chamber. It is moved to 510, and the fine powder can be collected in the back chamber container 520 located at the lower part of the back chamber 510.
  • the ultra-fine powder and dust are included in at least one item provided inside the back chamber 510. It can be removed through a dust collection filter.
  • the powder transport gas and plasma generation gas separated from the fine powder can be flowed into the recycling line through the blower 530 and introduced into the buffer tank 540.
  • the inert gas is supplied to the compressor 550 at a preset flow rate, and the compressor 550 uniformly compresses the supplied inert gas and then supplies it back to the supply gas tank 560, so that the recycled inert gas is stored in the process chamber ( It can be stored in the supply gas tank 560 to be supplied to 100).
  • the plasma generated in the inner area of the electrode body is formed in a cone shape through a plasma torch provided in the process chamber.
  • the surface treatment of the metal powder can be effectively performed by separating the plasma generation area and the plasma reaction area.
  • the metal powder can be treated effectively. Not only can it be effectively spherical, but 3D printing can also clean various reactants attached to the surface of metal powder.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)

Abstract

The present invention relates to a metal powder processing apparatus using plasma and a processing method thereof, the apparatus comprising: a process chamber, which is supplied with a metal powder, a powder transfer gas, and a plasma generation gas; a plasma torch, which is provided in the process chamber to spray plasma, generated in the inner region of an electrode body, in a cone shape to perform surface treatment of the metal powder supplied to the central spray region; a cyclone separator, which separates a spheroidized metal powder spheroidized by the surface treatment, the powder transfer gas, and the plasma generation gas; and a storage container, which collects the separated spheroidized metal powder, so that a plasma generation area and a plasma reaction area are separated from each other, thereby effectively performing the surface treatment of the metal powder, effectively spheronizing the metal powder for the improvement in the flowabilty of the metal powder, and allowing for the cleaning of various kinds of reactants attached to the surface of the metal powder caused by 3D printing.

Description

플라즈마를 이용한 금속분말 처리장치 및 그 처리방법Metal powder processing device and method using plasma
본 발명은 금속분말, 분말이송가스 및 플라즈마발생가스가 공정챔버의 내부로 공급될 경우 공정챔버에 구비된 플라즈마토치를 통해 전극체내부영역에서 발생된 플라즈마를 고깔형태로 분사시켜 중앙분사영역으로 공급되는 금속분말의 표면처리를 수행함으로써, 플라즈마 생성영역과 플라즈마 반응영역을 분리하여 금속분말의 표면처리를 효과적으로 수행할 수 있고, 금속분말의 흐름도 향상을 위해 금속분말을 효과적으로 구상화시킬 수 있을 뿐만 아니라 3D 프린팅으로 인해 금속분말의 표면에 부착된 각종 반응물을 클리닝할 수 있는 플라즈마를 이용한 금속분말 처리장치 및 그 처리방법에 관한 것이다.In the present invention, when metal powder, powder transfer gas, and plasma generation gas are supplied into the process chamber, the plasma generated in the inner area of the electrode body is sprayed in a cone shape through a plasma torch provided in the process chamber and supplied to the central spray area. By performing surface treatment of the metal powder, it is possible to effectively perform surface treatment of the metal powder by separating the plasma generation area and the plasma reaction area, and not only can the metal powder be effectively spherical to improve the flow of the metal powder, but also 3D It relates to a metal powder processing device and method using plasma that can clean various reactants attached to the surface of metal powder due to printing.
잘 알려진 바와 같이, 3차원(3D, 3-Dimension) 프린터는 인쇄하고자 하는 대상에 대한 3차원 데이터를 이용하여, 그 대상과 동일 또는 유사한 형태를 갖도록 3차원으로 형상물을 성형하는 장비이다.As is well known, a 3D (3-Dimension) printer is equipment that uses three-dimensional data about an object to be printed and molds a shape in three dimensions to have the same or similar shape as the object.
이러한 3D 프린터는 과거에는 대량생산 이전의 모델링이나 샘플 제작과 같은 용도로 활용되었으나, 최근에는 다품종 소량생산 제품을 중심으로 양산 가능한 제품의 성형에도 사용될 수 있는 기술적 기반이 조성됨에 따라 다양한 제조업체에서 사용하고 있다.In the past, these 3D printers were used for purposes such as modeling or sample production before mass production, but recently, as a technological foundation has been created that can be used for molding products that can be mass-produced, focusing on a variety of small-scale production products, they are being used by various manufacturers. there is.
그리고, 3D 프린터를 이용한 프린팅 기술은 분말, 액체, 와이어, 펠렛 등 다양한 형태의 물질을 한 층씩 쌓아올려 3차원 입체구조를 갖는 제품을 제조하는 기술로서, 이는 기존의 제조가공 기술로서는 구현할 수 없는 복잡한 형상의 부품도 손쉽게 제조할 수 있어 최근 새로운 가공기술로 전세계적 각광을 받고 있다.In addition, printing technology using a 3D printer is a technology that manufactures products with a three-dimensional structure by stacking various types of materials such as powder, liquid, wire, and pellets layer by layer. This is a complex process that cannot be realized with existing manufacturing and processing technology. Because shaped parts can be easily manufactured, it has recently been in the world's spotlight as a new processing technology.
한편, 대표적인 금속 3D 프린터는 PBF(Powder Bed Fusion) 방식, DED(Direct Energy Deposition) 방식, ME(Material Extrusion) 방식, BJ(Binder Jetting) 방식 등으로 구분될 수 있는데, 이 중에서 PBF 방식은 분말(예를 들면, 금속분말 등) 한 층을 깔고 3D 형상의 슬라이스(slice)된 2D 영역에 높은 온도의 에너지원(예를 들면, 레이저빔, 전자빔 등)으로 녹여 붙이는 과정을 반복하여 3D 형상을 조형하는 기술을 의미하며, 현재 금속 3D 프린터는 PBF 방식으로 가장 많이 사용되고 있다.Meanwhile, representative metal 3D printers can be divided into PBF (Powder Bed Fusion) method, DED (Direct Energy Deposition) method, ME (Material Extrusion) method, BJ (Binder Jetting) method, etc. Among these, PBF method uses powder ( For example, a 3D shape is formed by repeating the process of laying down one layer (e.g., metal powder, etc.) and melting and pasting it on the sliced 2D area of the 3D shape with a high temperature energy source (e.g., laser beam, electron beam, etc.). This refers to a technology that uses the PBF method, and currently the most widely used metal 3D printer is the PBF method.
상술한 바와 같은 PBF 방식의 금속 3D 프린터로 출력된 성형물은 출력된 후에 금속분말 속에 파묻혀 있는 상태이기 때문에, 성형물을 에워싼 금속분말을 회수하는 작업이 수행될 수 있다.Since the molding printed with the PBF-type metal 3D printer as described above is buried in metal powder after printing, the work of recovering the metal powder surrounding the molding can be performed.
그리고, 회수된 금속분말은 큰 입자를 체(sieve)로 걸러낸 후, 다시 3D 프린터에 공급되어 재사용될 수 있는데, 이렇게 회수된 금속분말은 3D 프린팅 과정에서 더 큰 분말 입자에 부착된 위성 분말(satellite powder)이 분리되기 시작하여 더 작은 단일 입자를 형성하거나, 분말 입자가 서로 융합하여 응집체(aggregate)를 형성하거나, 응집체 입자가 불완전한 미세입자로 부서질 수 있다.In addition, the recovered metal powder can be reused by filtering out large particles through a sieve and then supplying it to the 3D printer. The recovered metal powder can be converted to satellite powder (satellite powder) attached to larger powder particles during the 3D printing process. The satellite powder may begin to separate to form smaller single particles, the powder particles may fuse together to form aggregates, or the aggregate particles may break into incomplete fine particles.
이것은 분말의 유동성(fluidity)과 벌크 밀도에 영향을 미쳐 분말의 입자 크기 분포를 더 넓게 만들고, 분말의 산소 함량을 증가시킬 수 있다. 따라서, 최종 제품의 특성에 영향을 미치는 화학조성, 크기분포, 공극률, 유동성, 형상 및 겉보기밀도 측면에서 금속분말재료의 특성에 대한 고유한 요구사항을 충족시키지 못할 경우 재사용 시 금속분말의 퇴화(degradation)와 흐름도(flow rate)가 나빠져서 3D 프린팅 성형물의 내부에 기공 및 불순물을 형성함으로써, 품질이 저하되는 문제점이 발생할 수 있다.This can affect the fluidity and bulk density of the powder, making the particle size distribution of the powder wider, and increasing the oxygen content of the powder. Therefore, if the unique requirements for the properties of metal powder materials are not met in terms of chemical composition, size distribution, porosity, fluidity, shape, and bulk density that affect the properties of the final product, degradation of the metal powder upon reuse may occur. ) and flow rate may deteriorate, forming pores and impurities inside the 3D printed molded product, which may lead to a decrease in quality.
또한, 금속 3D 프린팅에 사용되는 금속분말의 가격은 상대적으로 매우 비싼 것으로 알려져 있는데, 특히 항공우주, 국방, 바이오메티컬 등의 분야에 적용하기 위해서 설계된 특수금속분말은 더욱 더 비싸다. 따라서, 3D 프린팅용 금속분말을 재사용하곤 하는데, 금속분말의 재사용성을 향상시키기 위해서 3D 프린팅을 수행하기 전에 새로운 금속분말과 회수한 금속분말을 혼합하고, 혼합된 금속분말을 이용하여 3D 프린팅을 수행하는 방식이 널리 이용되고 있다.In addition, the price of metal powder used in metal 3D printing is known to be relatively expensive, and special metal powder designed for application in fields such as aerospace, defense, and biomechanical is even more expensive. Therefore, metal powder for 3D printing is often reused. To improve the reusability of metal powder, new metal powder and recovered metal powder are mixed before 3D printing, and 3D printing is performed using the mixed metal powder. This method is widely used.
이와 같이 금속분말을 혼합함으로써, 금속분말의 산소함량을 감소시키고, 분말의 입자크기분포 및 부피밀도와 같은 물리적특성을 조정할 수는 있지만, 확립된 혼합표준이 없기 때문에, 사용자가 최적의 혼합비율을 결정하는데 경험에 의존하고 있는 실정이다.By mixing metal powder in this way, it is possible to reduce the oxygen content of the metal powder and adjust the physical properties such as particle size distribution and bulk density of the powder, but since there is no established mixing standard, the user must determine the optimal mixing ratio. The reality is that we rely on experience to make decisions.
[선행기술문헌][Prior art literature]
1. 한국등록특허 제10-1901773호(2018.09.18.등록)1. Korean Patent No. 10-1901773 (registered on September 18, 2018)
본 발명은 금속분말, 분말이송가스 및 플라즈마발생가스가 공정챔버의 내부로 공급될 경우 공정챔버에 구비된 플라즈마토치를 통해 전극체내부영역에서 발생된 플라즈마를 고깔형태로 분사시켜 중앙분사영역으로 공급되는 금속분말의 표면처리를 수행함으로써, 플라즈마 생성영역과 플라즈마 반응영역을 분리하여 금속분말의 표면처리를 효과적으로 수행할 수 있고, 금속분말의 흐름도 향상을 위해 금속분말을 효과적으로 구상화시킬 수 있을 뿐만 아니라 3D 프린팅으로 인해 금속분말의 표면에 부착된 각종 반응물을 클리닝할 수 있는 플라즈마를 이용한 금속분말 처리장치 및 그 처리방법을 제공하고자 한다.In the present invention, when metal powder, powder transfer gas, and plasma generation gas are supplied into the process chamber, the plasma generated in the inner area of the electrode body is sprayed in a cone shape through a plasma torch provided in the process chamber and supplied to the central spray area. By performing surface treatment of the metal powder, it is possible to effectively perform surface treatment of the metal powder by separating the plasma generation area and the plasma reaction area, and not only can the metal powder be effectively spherical to improve the flow of the metal powder, but also 3D The object of the present invention is to provide a metal powder processing device and method using plasma that can clean various reactants attached to the surface of metal powder due to printing.
본 발명의 실시예들의 목적은 이상에서 언급한 목적으로 제한되지 않으며, 언급되지 않은 또 다른 목적들은 아래의 기재로부터 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The purposes of the embodiments of the present invention are not limited to the purposes mentioned above, and other purposes not mentioned will be clearly understood by those skilled in the art from the description below. .
본 발명의 일 측면에 따르면, 금속분말, 분말이송가스 및 플라즈마발생가스가 공급되는 공정챔버; 상기 공정챔버에 구비되어 전극체내부영역에서 발생된 플라즈마를 고깔형태로 분사시켜 중앙분사영역으로 공급되는 상기 금속분말의 표면처리를 수행하는 플라즈마토치; 상기 표면처리에 따라 구상화된 구상화 금속분말과 상기 분말이송가스 및 플라즈마발생가스를 분리시키는 사이클론분리기; 및 분리된 상기 구상화 금속분말을 수집하는 저장용기;를 포함하는 플라즈마를 이용한 금속분말 처리장치가 제공될 수 있다.According to one aspect of the present invention, a process chamber to which metal powder, powder transfer gas, and plasma generation gas are supplied; A plasma torch provided in the process chamber to spray plasma generated in the inner region of the electrode body in a cone shape to perform surface treatment of the metal powder supplied to the central spray region; A cyclone separator that separates the spheroidized metal powder spheroidized according to the surface treatment, the powder transfer gas, and the plasma generating gas; and a storage container for collecting the separated spheroidized metal powder. A metal powder processing device using plasma may be provided, including a storage container for collecting the separated spheroidized metal powder.
또한, 본 발명의 일 측면에 따르면, 상기 플라즈마토치는, 하단부로 갈수록 직경이 감소하는 원뿔형태를 가지면서 상기 금속분말 및 분말이송가스가 중앙부에 구비되는 제 1 중공부로 공급되며, 제 1-1 냉각채널이 구비된 제 1 음전극체; 상기 제 1 음전극체를 감싸는 원통관형태를 가지면서 상기 제 1 음전극체의 외주면에 대응하여 경사지게 기 설정된 간격만큼 이격되면서 상기 플라즈마발생가스가 공급되어 제 1 플라즈마 생성영역이 구비되며, 제 1-2 냉각채널이 구비된 제 1 양전극체; 상기 제 1 음전극체 및 제 1 양전극체의 외부 표면에 구비되는 제 1 절연체; 및 상기 제 1 음전극체 및 제 1 양전극체와 전기적으로 연결되어 상기 플라즈마를 발생시키는 전력을 공급하는 제 1 전원공급수단;을 포함하는 플라즈마를 이용한 금속분말 처리장치가 제공될 수 있다.In addition, according to one aspect of the present invention, the plasma torch has a cone shape whose diameter decreases toward the lower end, and the metal powder and powder transfer gas are supplied to the first hollow portion provided in the central portion, 1-1 A first negative electrode body provided with a cooling channel; It has a cylindrical tube shape surrounding the first negative electrode body and is inclined corresponding to the outer circumferential surface of the first negative electrode body and is spaced at a preset interval, and the plasma generating gas is supplied to provide a first plasma generation area, 1-2 A first positive electrode body provided with a cooling channel; a first insulator provided on the outer surfaces of the first negative electrode body and the first positive electrode body; and a first power supply means electrically connected to the first negative electrode body and the first positive electrode body to supply power to generate the plasma. A metal powder processing apparatus using plasma may be provided, including a first power supply means.
또한, 본 발명의 일 측면에 따르면, 상기 플라즈마토치는, 원통관형태로 제공되며, 제 2-1 냉각채널이 구비된 제 2 음전극체; 상기 금속분말 및 분말이송가스가 중앙부에 구비되는 제 2 중공부로 공급되며, 상기 제 2 음전극체가 삽입되고 상기 플라즈마발생가스가 공급되도록 상단부는 상기 제 2 음전극체의 직경에 대응하여 원통형경로를 가지면서 하단부는 원뿔형경로를 가지는 제 2 플라즈마 생성영역이 구비되며, 제 2-2 냉각채널이 구비된 제 2 양전극체; 상기 제 2 양전극체의 외부 표면에 구비되는 제 2 절연체; 및 상기 제 2 음전극체 및 제 2 양전극체와 전기적으로 연결되어 상기 플라즈마를 발생시키는 전력을 공급하는 제 2 전원공급수단;을 포함하는 플라즈마를 이용한 금속분말 처리장치가 제공될 수 있다.In addition, according to one aspect of the present invention, the plasma torch is provided in the form of a cylindrical tube and includes a second negative electrode body provided with a 2-1 cooling channel; The metal powder and powder transfer gas are supplied to a second hollow part provided in the central part, and the upper part has a cylindrical path corresponding to the diameter of the second negative electrode body so that the second negative electrode body is inserted and the plasma generating gas is supplied. A second positive electrode body having a second plasma generation area having a conical path at the lower end and a 2-2 cooling channel; a second insulator provided on the outer surface of the second positive electrode body; and a second power supply means electrically connected to the second negative electrode body and the second positive electrode body to supply power to generate the plasma. A metal powder processing apparatus using plasma can be provided, including a second power supply means.
또한, 본 발명의 일 측면에 따르면, 상기 금속분말 처리장치는, 상기 사이클론분리기의 후단에 결합되어 상대적으로 더 작은 크기의 분말을 분리시키는 적어도 하나의 추가사이클론분리기; 및 상기 추가사이클론분리기를 통해 분리시킨 분말을 수집하는 적어도 하나의 추가저장용기;를 더 포함하는 플라즈마를 이용한 금속분말 처리장치가 제공될 수 있다.Additionally, according to one aspect of the present invention, the metal powder processing apparatus includes at least one additional cyclone separator coupled to a rear end of the cyclone separator to separate relatively smaller-sized powder; and at least one additional storage container for collecting the powder separated through the additional cyclone separator. A metal powder processing device using plasma may be provided, further comprising a.
본 발명의 다른 측면에 따르면, 금속분말, 분말이송가스 및 플라즈마발생가스를 공정챔버로 공급하는 단계; 상기 공정챔버에 구비되는 플라즈마토치의 전극체내부영역에서 플라즈마를 발생시키는 단계; 상기 발생된 플라즈마를 고깔형태로 분사시켜 중앙분사영역으로 공급되는 상기 금속분말의 표면처리를 수행하는 단계; 상기 표면처리에 따라 구상화된 구상화 금속분말과 상기 분말이송가스 및 플라즈마발생가스를 사이클론분리기를 통해 분리시키는 단계; 및 분리된 상기 구상화 금속분말을 저장용기에 수집하는 단계:를 포함하는 플라즈마를 이용한 금속분말 처리방법이 제공될 수 있다.According to another aspect of the present invention, supplying metal powder, powder transfer gas, and plasma generation gas to a process chamber; Generating plasma in an area inside the electrode body of a plasma torch provided in the process chamber; performing surface treatment of the metal powder supplied to the central spray area by spraying the generated plasma in a cone shape; Separating the spheroidized metal powder spheroidized according to the surface treatment, the powder transfer gas, and the plasma generating gas through a cyclone separator; And collecting the separated spheroidized metal powder in a storage container. A metal powder processing method using plasma can be provided, including the step.
또한, 본 발명의 다른 측면에 따르면, 상기 플라즈마토치는, 하단부로 갈수록 직경이 감소하는 원뿔형태를 가지면서 상기 금속분말 및 분말이송가스가 중앙부에 구비되는 제 1 중공부로 공급되며, 제 1-1 냉각채널이 구비된 제 1 음전극체가 구비되고, 상기 제 1 음전극체를 감싸는 원통관형태를 가지면서 상기 제 1 음전극체의 외주면에 대응하여 경사지게 기 설정된 간격만큼 이격되면서 상기 플라즈마발생가스가 공급되어 제 1 플라즈마 생성영역이 구비되며, 제 1-2 냉각채널이 구비된 제 1 양전극체가 구비되며, 상기 제 1 음전극체 및 제 1 양전극체의 외부 표면에 구비되는 제 1 절연체가 구비되고, 상기 제 1 음전극체 및 제 1 양전극체와 전기적으로 연결되어 전력을 공급하는 제 1 전원공급수단이 구비되는 플라즈마를 이용한 금속분말 처리방법이 제공될 수 있다.In addition, according to another aspect of the present invention, the plasma torch has a cone shape whose diameter decreases toward the lower end, and the metal powder and powder transfer gas are supplied to the first hollow portion provided in the central portion, 1-1 A first negative electrode body provided with a cooling channel is provided, has a cylindrical tube shape surrounding the first negative electrode body, and is inclined at a preset interval corresponding to the outer peripheral surface of the first negative electrode body, and the plasma generating gas is supplied to the first negative electrode body. 1 plasma generation area is provided, a first positive electrode body is provided with a 1-2 cooling channel, a first insulator is provided on the outer surface of the first negative electrode body and the first positive electrode body, and the first positive electrode body is provided. A metal powder processing method using plasma may be provided, which includes a first power supply means that is electrically connected to the negative electrode body and the first positive electrode body to supply power.
또한, 본 발명의 다른 측면에 따르면, 상기 플라즈마토치는, 원통관형태로 제공되며, 제 2-1 냉각채널이 구비된 제 2 음전극체가 구비되고, 상기 금속분말 및 분말이송가스가 중앙부에 구비되는 제 2 중공부로 공급되며, 상기 제 2 음전극체가 삽입되고 상기 플라즈마발생가스가 공급되도록 상단부는 상기 제 2 음전극체의 직경에 대응하여 원통형경로를 가지면서 하단부는 원뿔형경로를 가지는 제 2 플라즈마 생성영역이 구비되며, 제 2-2 냉각채널이 구비된 제 2 양전극체가 구비되며, 상기 제 2 양전극체의 외부 표면에 구비되는 제 2 절연체가 구비되고, 상기 제 2 음전극체 및 제 2 양전극체와 전기적으로 연결되어 전력을 공급하는 제 2 전원공급수단이 구비되는 플라즈마를 이용한 금속분말 처리방법이 제공될 수 있다.In addition, according to another aspect of the present invention, the plasma torch is provided in the form of a cylindrical tube, is provided with a second negative electrode body provided with a 2-1 cooling channel, and the metal powder and powder transfer gas are provided in the central portion. It is supplied to the second hollow part, and the upper part has a cylindrical path corresponding to the diameter of the second negative electrode body and the lower part has a conical path so that the second negative electrode body is inserted and the plasma generating gas is supplied. A second positive electrode body is provided with a 2-2 cooling channel, and a second insulator is provided on the outer surface of the second positive electrode body, and is electrically connected to the second negative electrode body and the second positive electrode body. A method of processing metal powder using plasma may be provided, including a second power supply means that is connected to supply power.
또한, 본 발명의 다른 측면에 따르면, 상기 플라즈마를 이용한 금속분말 처리방법은, 상기 저장용기에 수집하는 단계 이후에, 상기 금속분말이송가스 및 플라즈마발생가스를 순환시켜 재사용하는 단계;를 더 포함하는 플라즈마를 이용한 금속분말 처리방법이 제공될 수 있다.In addition, according to another aspect of the present invention, the metal powder processing method using plasma further includes the step of circulating and reusing the metal powder transfer gas and the plasma generating gas after collecting the metal powder in the storage container. A metal powder processing method using plasma may be provided.
본 발명은 금속분말, 분말이송가스 및 플라즈마발생가스가 공정챔버의 내부로 공될 경우 공정챔버에 구비된 플라즈마토치를 통해 전극체내부영역에서 발생된 플라즈마를 고깔형태로 분사시켜 중앙분사영역으로 공급되는 금속분말의 표면처리를 수행함으로써, 플라즈마 생성영역과 플라즈마 반응영역을 분리하여 금속분말의 표면처리를 효과적으로 수행할 수 있고, 금속분말의 흐름도 향상을 위해 금속분말을 효과적으로 구상화시킬 수 있을 뿐만 아니라 3D 프린팅으로 인해 금속분말의 표면에 부착된 각종 반응물을 클리닝할 수 있다.In the present invention, when metal powder, powder transfer gas, and plasma generation gas are supplied into the process chamber, the plasma generated in the inner area of the electrode body is sprayed in a cone shape through a plasma torch provided in the process chamber and supplied to the central spray area. By performing surface treatment of the metal powder, the surface treatment of the metal powder can be effectively performed by separating the plasma generation area and the plasma reaction area, and the metal powder can be effectively spherical to improve the flow of the metal powder, as well as 3D printing. As a result, various reactants attached to the surface of the metal powder can be cleaned.
도 1은 본 발명의 일 실시예에 따른 플라즈마를 이용한 금속분말 처리장치를 예시한 도면이고,1 is a diagram illustrating a metal powder processing device using plasma according to an embodiment of the present invention;
도 2 내지 도 5는 본 발명의 일 실시예에 따른 플라즈마를 이용한 금속분말 처리장치에 구비되는 플라즈마토치의 다양한 형태를 설명하기 위한 도면이고,2 to 5 are diagrams for explaining various forms of a plasma torch provided in a metal powder processing apparatus using plasma according to an embodiment of the present invention;
도 6 및 도 7은 본 발명의 일 실시예에 따른 플라즈마를 이용한 금속분말 처리장치의 다른 형태에 대해 설명하기 위한 도면이며,6 and 7 are diagrams for explaining another form of a metal powder processing device using plasma according to an embodiment of the present invention;
도 8은 본 발명의 다른 실시예에 따라 플라즈마를 이용하여 금속분말을 처리하는 과정을 나타낸 플로우차트이다.Figure 8 is a flow chart showing the process of processing metal powder using plasma according to another embodiment of the present invention.
본 발명의 실시예들에 대한 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.Advantages and features of the embodiments of the present invention and methods for achieving them will become clear by referring to the embodiments described in detail below along with the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below and may be implemented in various different forms. The present embodiments are merely provided to ensure that the disclosure of the present invention is complete and to be understood by those skilled in the art in the technical field to which the present invention pertains. It is provided to fully inform those who have the scope of the invention, and the present invention is only defined by the scope of the claims. Like reference numerals refer to like elements throughout the specification.
본 발명의 실시예들을 설명함에 있어서 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. 그리고 후술되는 용어들은 본 발명의 실시예에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다. In describing embodiments of the present invention, if a detailed description of a known function or configuration is judged to unnecessarily obscure the gist of the present invention, the detailed description will be omitted. The terms described below are defined in consideration of functions in the embodiments of the present invention, and may vary depending on the intention or custom of the user or operator. Therefore, the definition should be made based on the contents throughout this specification.
이하, 첨부된 도면을 참조하여 본 발명의 실시예를 상세히 설명하기로 한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the attached drawings.
도 1은 본 발명의 일 실시예에 따른 플라즈마를 이용한 금속분말 처리장치를 예시한 도면이고, 도 2 내지 도 5는 본 발명의 일 실시예에 따른 플라즈마를 이용한 금속분말 처리장치에 구비되는 플라즈마토치의 다양한 형태를 설명하기 위한 도면이고, 도 6 및 도 7은 본 발명의 일 실시예에 따른 플라즈마를 이용한 금속분말 처리장치의 다른 형태에 대해 설명하기 위한 도면이다.Figure 1 is a diagram illustrating a metal powder processing device using plasma according to an embodiment of the present invention, and Figures 2 to 5 show a plasma torch provided in the metal powder processing device using plasma according to an embodiment of the present invention. are drawings for explaining various forms, and FIGS. 6 and 7 are drawings for explaining other forms of a metal powder processing apparatus using plasma according to an embodiment of the present invention.
도 1 내지 도 7을 참조하면, 본 발명의 일 실시예에 따른 플라즈마를 이용한 금속분말 처리장치는 공정챔버(100), 플라즈마토치(200), 사이클론분리기(300), 저장용기(400) 등을 포함할 수 있다.1 to 7, the metal powder processing apparatus using plasma according to an embodiment of the present invention includes a process chamber 100, a plasma torch 200, a cyclone separator 300, a storage container 400, etc. It can be included.
공정챔버(100)는 금속분말, 분말이송가스 및 플라즈마발생가스가 공급되어 금속분말의 구상화 및 클리닝이 수행되는 챔버로서, 내외부가 밀폐된 상태로 유지될 수 있으며, 필요에 따라 진공상태로 유지될 수 있는데, 대략 10-3 Torr의 압력범위로 유지시킬 수 있도록 진공펌프(도시 생략됨)를 구비할 수 있으며, 이러한 진공펌프는 예를 들면, 부스터펌프, 로터리펌프 등을 포함할 수 있다.The process chamber 100 is a chamber in which metal powder, powder transfer gas, and plasma generation gas are supplied to perform spheroidization and cleaning of the metal powder. The inside and outside can be maintained in a sealed state and can be maintained in a vacuum state when necessary. A vacuum pump (not shown) may be provided to maintain the pressure in the range of approximately 10 -3 Torr, and such vacuum pumps may include, for example, a booster pump, a rotary pump, etc.
이러한 공정챔버(100)에는 3D 프린팅 작업 후에 회수된 금속분말이 투입되면서 분말이송가스(예를 들면, 아르곤(Ar)가스, 질소(N2)가스 등) 및 플라즈마발생가스(예를 들면, 아르곤(Ar)가스, 질소(N2)가스, 헬륨(He)가스, 혼합가스 등)가 함께 공급될 수 있는데, 이들은 플라즈마토치(200)의 내부로 공급될 수 있다.The metal powder recovered after the 3D printing operation is input into this process chamber 100, and powder transfer gas (e.g., argon (Ar) gas, nitrogen (N 2 ) gas, etc.) and plasma generation gas (e.g., argon (Ar) gas, nitrogen (N 2 ) gas, helium (He) gas, mixed gas, etc.) may be supplied together, and these may be supplied into the interior of the plasma torch 200.
플라즈마토치(200)는 공정챔버(100)에 구비되어 전극체내부영역에서 발생된 플라즈마(즉, 열플라즈마)를 고깔형태로 분사시켜 중앙분사영역으로 공급되는 금속분말의 표면처리를 수행할 수 있는데, 열플라즈마는 아크방전을 통해 발생시킨 전자, 이온 및 중성입자로 구성된 기체로서, 구성입자가 1000-20000 ℃의 온도범위와 100-2000 m/s의 속도범위를 갖도록 출사될 수 있다.The plasma torch 200 is provided in the process chamber 100 and can spray plasma (i.e., thermal plasma) generated in the inner area of the electrode body in a cone shape to perform surface treatment of the metal powder supplied to the central spray area. , Thermal plasma is a gas composed of electrons, ions, and neutral particles generated through arc discharge, and the constituent particles can be emitted to have a temperature range of 1000-20000 ℃ and a speed range of 100-2000 m/s.
여기에서, 열플라즈마가 발생되는 전극체내부영역(즉, 플라즈마 생성영역)에는 플라즈마발생가스가 공급되고, 이를 통해 발생되는 열플라즈마는 중앙분사영역(즉, 플라즈마 반응영역)의 방향을 향해 고깔형태로 출사될 수 있다.Here, plasma generation gas is supplied to the area inside the electrode body (i.e., plasma generation area) where thermal plasma is generated, and the thermal plasma generated through this has a cone shape toward the direction of the central spray area (i.e., plasma reaction area). It can be published as .
상술한 바와 같은 플라즈마토치(200)의 일 형태에서는, 도 2에 도시한 바와 같이 제 1 음전극체(210a), 제 1 양전극체(220a), 제 1 절연체(230a), 제 1 전원공급수단(240a) 등을 포함할 수 있다.In one form of the plasma torch 200 as described above, as shown in FIG. 2, a first negative electrode body 210a, a first positive electrode body 220a, a first insulator 230a, and a first power supply means ( 240a), etc. may be included.
여기에서, 제 1 음전극체(210a)는 하단부로 갈수록 직경이 감소하는 원뿔형태를 가지면서 금속분말 및 분말이송가스가 중앙부에 구비되는 제 1 중공부(211a)로 공급될 수 있으며, 제 1 전원공급수단(240a)에 전기적으로 연결되어 전력이 공급될 수 있다.Here, the first negative electrode body 210a has a cone shape whose diameter decreases toward the bottom, and metal powder and powder transfer gas can be supplied to the first hollow portion 211a provided in the central portion, and the first power source Power may be supplied by being electrically connected to the supply means 240a.
여기에서, 제 1 중공부(211a)는 제 1 음전극체(210a)의 중앙부 상부에서 하부로 관통 형성될 수 있는데, 공정챔버(100)의 내부로 투입되어 중앙부 상부로 공급되는 금속분말 및 분말이송가스가 제 1 음전극체(210a)의 하부에 위치하는 제 1 플라즈마 반응영역(B1)으로 이송될 수 있다.Here, the first hollow portion 211a may be formed penetrating from the upper central portion of the first negative electrode body 210a to the lower portion, and is used to transport metal powder and powder that are introduced into the process chamber 100 and supplied to the upper central portion. Gas may be transferred to the first plasma reaction region B1 located below the first negative electrode body 210a.
또한, 제 1 음전극체(210a)는 내부에 수냉구조의 제 1-1 냉각채널(212a)이 구비될 수 있는데, 이러한 제 1-1 냉각채널(212a)은 내부에 냉매가 순환되도록 제어함으로써, 플라즈마공정이 수행되는 중에 플라즈마의 발생으로 인해 가열된 제 1 음전극체(210a)를 안정적이고 빠르게 냉각시킬 수 있다.In addition, the first negative electrode body 210a may be provided with a 1-1 cooling channel 212a of a water-cooled structure inside, and the 1-1 cooling channel 212a controls the circulation of the refrigerant inside, During the plasma process, the heated first negative electrode body 210a can be cooled stably and quickly due to the generation of plasma.
그리고, 제 1 양전극체(220a)는 제 1 음전극체(210a)를 감싸는 원통관형태를 가지면서 제 1 음전극체(210a)의 외주면에 대응하여 경사지게 기 설정된 간격만큼 이격되어 제 1 플라즈마 생성영역(A1)이 구비될 수 있으며, 제 1 전원공급수단(240a)에 전기적으로 연결되어 전력이 공급될 수 있다.In addition, the first positive electrode body 220a has a cylindrical tube shape surrounding the first negative electrode body 210a and is inclined and spaced apart at a preset interval corresponding to the outer peripheral surface of the first negative electrode body 210a to form a first plasma generation region ( A1) may be provided, and power may be supplied by being electrically connected to the first power supply means 240a.
이러한 제 1 플라즈마 생성영역(A1)은 제 1 음전극체(210a) 및 제 1 양전극체(220a)가 이격된 사이공간을 따라 균일한 직경 또는 변화되는 직경(즉, 상대적으로 넓은 직경에서 좁아지다가 다시 넓어지는 형태)으로 형성될 수 있는데, 이 경로상에 발생된 플라즈마는 플라즈마발생가스와 함께 제 1 음전극체(210a) 및 제 1 양전극체(220a)의 하부 중앙부를 향해 경사지게 출사될 수 있으며, 이 중앙분사영역(즉, 제 1 플라즈마 반응영역(B1))으로 이송되는 금속분말(도 3의 (a))을 플라즈마처리하여 금속분말을 구상화함과 동시에 그 분말표면을 클리닝(도 3의 (b))할 수 있다.This first plasma generation area (A1) has a uniform diameter or a varying diameter (that is, it narrows from a relatively wide diameter and then narrows again from a relatively wide diameter) along the space between the first negative electrode body (210a) and the first positive electrode body (220a). The plasma generated along this path may be emitted obliquely toward the lower central portion of the first negative electrode body 210a and the first positive electrode body 220a together with the plasma generating gas. The metal powder (Figure 3(a)) transferred to the central injection area (i.e., the first plasma reaction area (B1)) is plasma treated to spheroidize the metal powder and at the same time, the powder surface is cleaned (Figure 3(b) ))can do.
상술한 바와 같이 플라즈마 생성영역과 반응영역을 구분하여 플라즈마를 안정적으로 생성시킬 수 있고, 금속분말과의 반응을 일정하게 유지할 수 있도록 도 4에 도시한 바와 같이 제 1 음전극체(210a) 및 제 1 양전극체(220a)가 이루는 제 1 플라즈마 생성영역(A1)이 경사진 원통관형태로 형성됨으로써, 제 1 플라즈마 반응영역(B1)으로 출사되는 플라즈마는 고깔형태로 출사될 수 있다.As described above, the plasma can be stably generated by dividing the plasma generation area and the reaction area, and the first negative electrode body 210a and the first negative electrode body 210a, as shown in FIG. 4, can be used to maintain a constant reaction with the metal powder. Since the first plasma generation area A1 formed by the positive electrode body 220a is formed in the shape of an inclined cylindrical tube, the plasma emitted into the first plasma reaction area B1 may be emitted in a cone shape.
그리고, 제 1 양전극체(220a)는 내부에 수냉구조의 제 1-2 냉각채널(221a)이 구비될 수 있는데, 이러한 제 1-2 냉각채널(221a)은 내부에 냉매가 순환되도록 제어함으로써, 플라즈마공정이 수행되는 중에 플라즈마의 발생으로 인해 가열된 제 1 양전극체(220a)를 안정적이고 빠르게 냉각시킬 수 있다.In addition, the first positive electrode body 220a may be provided with a 1-2 cooling channel 221a of a water-cooled structure inside, and the 1-2 cooling channel 221a controls the circulation of the refrigerant inside, During the plasma process, the heated first positive electrode body 220a can be cooled stably and quickly due to the generation of plasma.
또한, 제 1 절연체(230a)는 제 1 음전극체(210a) 및 제 1 양전극체(220a)의 외부 표면에 구비될 수 있는데, 제 1 중공부(211a) 및 제 1 음전극체(210a)가 접하는 면과 제 1 양전극체(220a)의 외부면에 코팅되어 내외부를 절연시킬 수 있으며, 이를 통해 플라즈마반응으로 전극으로부터 떨어져 나온 이온에 의해 금속분말이 오염되는 것을 미연에 방지할 수 있다.In addition, the first insulator 230a may be provided on the outer surface of the first negative electrode body 210a and the first positive electrode body 220a, and is in contact with the first hollow portion 211a and the first negative electrode body 210a. By coating the surface and the outer surface of the first positive electrode body 220a, the inside and outside can be insulated, and through this, it is possible to prevent the metal powder from being contaminated by ions released from the electrode through a plasma reaction.
여기에서, 제 1 절연체(230a)는 예를 들면, 알루미나(alumina), 지르코니아(zirconia), 질화붕소(boron nitride), 질화알루미늄(aluminum nitride), 뮬라이트(mullite) 및 희토류 세라믹(rare earth ceramic) 중에서 선택된 적어도 하나를 사용할 수 있다.Here, the first insulator 230a is, for example, alumina, zirconia, boron nitride, aluminum nitride, mullite, and rare earth ceramic. At least one selected from among can be used.
한편, 제 1 전원공급수단(240a)은 제 1 음전극체(210a) 및 제 1 양전극체(220a)와 전기적으로 연결되어 플라즈마를 발생시키는 전력을 공급할 수 있다.Meanwhile, the first power supply means 240a may be electrically connected to the first negative electrode body 210a and the first positive electrode body 220a to supply power to generate plasma.
상술한 바와 같은 플라즈마토치(200)의 다른 형태에서는, 도 5에 도시한 바와 같이 제 2 음전극체(210b), 제 2 양전극체(220b), 제 2 절연체(230b), 제 2 전원공급수단(240b) 등을 포함할 수 있다.In another form of the plasma torch 200 as described above, as shown in FIG. 5, it includes a second negative electrode body 210b, a second positive electrode body 220b, a second insulator 230b, and a second power supply means ( 240b), etc. may be included.
여기에서, 제 2 음전극체(210b)는 원통관형태로 제공될 수 있는데, 제 2 양전극체(220b)에 구비되는 제 2 플라즈마 생성영역(A2)의 내부에 삽입 배치될 수 있도록 제 2 플라즈마 생성영역(A2)에 대응되는 직경 및 두께로 제공될 수 있으며, 제 2 전원공급수단(240b)에 전기적으로 연결되어 전력이 공급될 수 있다.Here, the second negative electrode body 210b may be provided in the form of a cylindrical tube, and can be inserted and disposed inside the second plasma generation area A2 provided in the second positive electrode body 220b to generate the second plasma. It may be provided with a diameter and thickness corresponding to the area A2, and may be electrically connected to the second power supply means 240b to supply power.
그리고, 제 2 음전극체(210b)는 내부에 수냉구조의 제 2-1 냉각채널(211b)이 구비될 수 있는데, 이러한 제 2-1 냉각채널(211b)은 내부에 냉매가 순환되도록 제어함으로써, 플라즈마공정이 수행되는 중에 플라즈마의 발생으로 인해 가열된 제 2 음전극체(210b)를 안정적이고 빠르게 냉각시킬 수 있다.In addition, the second negative electrode body 210b may be provided with a 2-1 cooling channel 211b of a water-cooled structure inside, and the 2-1 cooling channel 211b is controlled so that the refrigerant circulates inside, During the plasma process, the heated second negative electrode body 210b can be cooled stably and quickly due to the generation of plasma.
또한, 제 2 양전극체(220b)는 금속분말 및 분말이송가스가 중앙부에 구비되는 제 2 중공부(221b)로 공급되며, 제 2 음전극체(210b)가 삽입되도록 상단부는 제 2 음전극체(210b)의 직경에 대응하여 원통형경로를 가지면서 하단부는 원뿔형경로를 가지는 제 2 플라즈마 생성영역(A2)이 구비될 수 있으며, 제 2 전원공급수단(240b)에 전기적으로 연결되어 전력이 공급될 수 있다.In addition, the second positive electrode body 220b is supplied with metal powder and powder transport gas to the second hollow part 221b provided in the central part, and the upper end is formed with the second negative electrode body 210b so that the second negative electrode body 210b is inserted. ) may be provided with a second plasma generation area (A2) having a cylindrical path corresponding to the diameter and a conical path at the lower end, and may be electrically connected to the second power supply means (240b) to supply power. .
이러한 제 2 플라즈마 생성영역(A2)에서는 상단부 원통형경로 상에서 플라즈마가 발생될 수 있고, 하단부 원뿔형경로를 따라 제 1 양전극체(220a)의 하부 중앙부를 향해 플라즈마가 경사지게 출사될 수 있으며, 이 중앙분사영역(즉, 제 2 플라즈마 반응영역(B2))으로 이송되는 금속분말을 플라즈마처리하여 금속분말을 구상화함과 동시에 그 분말표면을 클리닝할 수 있다.In this second plasma generation area A2, plasma may be generated on a cylindrical path at the upper end, and the plasma may be emitted obliquely toward the lower central part of the first positive electrode body 220a along a conical path at the lower end, and this central injection area (That is, the metal powder transferred to the second plasma reaction area (B2)) can be plasma treated to spheroidize the metal powder and at the same time clean the powder surface.
상술한 바와 같이 플라즈마 생성영역과 반응영역을 구분하여 플라즈마를 안정적으로 생성시킬 수 있고, 금속분말과의 반응을 일정하게 유지할 수 있도록 제 2 양전극체(220b)의 내부에 형성되는 제 2 플라즈마 생성영역(A2)의 하단부가 원뿔형경로로 형성됨으로써, 제 2 플라즈마 반응영역(B2)으로 출사되는 플라즈마는 고깔형태로 출사될 수 있다.As described above, a second plasma generation region is formed inside the second positive electrode body 220b so that plasma can be stably generated by dividing the plasma generation region and the reaction region and the reaction with the metal powder can be maintained at a constant level. Since the lower end of (A2) is formed in a cone-shaped path, the plasma emitted into the second plasma reaction area (B2) can be emitted in a cone shape.
그리고, 제 2 양전극체(220b)는 내부에 수냉구조의 제 2-2 냉각채널(222b)이 구비될 수 있는데, 이러한 제 2-2 냉각채널(222b)은 내부에 냉매가 순환되도록 제어함으로써, 플라즈마공정이 수행되는 중에 플라즈마의 발생으로 인해 가열된 제 2 양전극체(220a)를 안정적이고 빠르게 냉각시킬 수 있다.In addition, the second positive electrode body 220b may be provided with a 2-2 cooling channel 222b of a water-cooled structure inside, and the 2-2 cooling channel 222b is controlled so that the refrigerant circulates inside, During the plasma process, the heated second positive electrode body 220a can be cooled stably and quickly due to the generation of plasma.
또한, 제 2 절연체(230b)는 제 2 양전극체(220b)의 외부 표면에 구비될 수 있는데, 제 2 중공부(221b) 및 제 2 양전극체(220b)가 접하는 면과 제 2 양전극체(220b)의 외부면에 코팅되어 내외부를 절연시킬 수 있으며, 이를 통해 플라즈마반응으로 전극으로부터 떨어져 나온 이온에 의해 금속분말이 오염되는 것을 미연에 방지할 수 있다.Additionally, the second insulator 230b may be provided on the outer surface of the second positive electrode body 220b, and the second hollow portion 221b and the surface in contact with the second positive electrode body 220b and the second positive electrode body 220b ) can be coated on the outer surface to insulate the inside and outside, and through this, contamination of the metal powder by ions released from the electrode through plasma reaction can be prevented in advance.
여기에서, 제 2 절연체(230b)는 예를 들면, 알루미나, 지르코니아, 질화붕소, 질화알루미늄, 뮬라이트 및 희토류 세라믹 중에서 선택된 적어도 하나를 사용할 수 있다.Here, the second insulator 230b may use at least one selected from, for example, alumina, zirconia, boron nitride, aluminum nitride, mullite, and rare earth ceramics.
한편, 제 2 전원공급수단(240b)은 제 2 음전극체(210b) 및 제 2 양전극체(220b)와 전기적으로 연결되어 플라즈마를 발생시키는 전력을 공급할 수 있다.Meanwhile, the second power supply means 240b may be electrically connected to the second negative electrode body 210b and the second positive electrode body 220b to supply power to generate plasma.
상술한 바와 같은 플라즈마토치(200)의 각 음전극체와 각 양전극체에 구비되는 수냉채널은 도 2 및 도 3에 각 전극체 내부에 원형경로를 갖는 것으로 하여 도시되어 있지만, 직선형 경로를 가지면서 격벽을 기준으로 입력방향과 출력방향이 구분되는 형태로 구비될 수 있을 뿐만 아니라 종래에 개시된 수냉채널 중 적용 가능한 구조를 선택하여 적용할 수 있음은 물론이다.The water cooling channels provided in each negative electrode body and each positive electrode body of the plasma torch 200 as described above are shown in FIGS. 2 and 3 as having a circular path inside each electrode body, but have a straight path and a partition wall. It goes without saying that not only can it be provided in a form where the input direction and output direction are distinguished based on , but also an applicable structure can be selected and applied among the water cooling channels disclosed previously.
사이클론분리기(300)는 표면처리에 따라 구상화된 구상화 금속분말을 플라즈마발생가스 및 분말이송가스와 분리시키는 것으로, 원통형의 몸체를 가지면서 직경이 하방으로 갈수록 점차 감소하도록 구비되며, 원심력에 따른 선회운동(turning movement)과 동시에 중력에 따라 낙하하면서 나선형(spiral) 형태를 나타내어 외부선회류 흐름을 유지할 수 있다.The cyclone separator 300 separates the spherical metal powder spheroidized according to surface treatment from the plasma generation gas and powder transfer gas. It has a cylindrical body and is equipped with a diameter that gradually decreases downward, and rotates according to centrifugal force. At the same time as turning movement, it falls according to gravity and takes a spiral shape, thereby maintaining an external swirling flow.
이러한 사이클론분리기(300)의 하단부 역삼각형 지점에 도달하면 분말입자의 분리현상이 발생하고, 무게에 따라 하부에 위치하는 저장용기(400)로 이동할 수 있다.When the inverted triangle point at the bottom of the cyclone separator 300 is reached, the powder particles are separated and can move to the storage container 400 located below depending on their weight.
이러한 금속분말의 입자크기는 PBF(powder bed fusion)방식의 3D 프린팅을 위한 원료분말로 사용하기 위해서 대략 15-45 ㎛의 크기범위를 가질 수 있으며, DED(direct energy deposition)방식의 경우에는 대략 45-150 ㎛의 크기범위를 가질 수 있다.The particle size of this metal powder can be in the size range of approximately 15-45 ㎛ to be used as a raw material powder for 3D printing in the PBF (powder bed fusion) method, and in the case of DED (direct energy deposition) method, it can be approximately 45 ㎛. It can have a size range of -150 ㎛.
이러한 사이클론분리기(300)는 상대적으로 작은 무게를 갖는 금속분말은 반전 유체 흐름을 통해 내부 원통관을 따라 내부선회류를 형성하여 금속분말을 분리시킨 가스(예를 들면, 분말이송가스, 플라즈마발생가스 등을 포함함)와 함께 배출될 수 있다.In this cyclone separator 300, the metal powder having a relatively small weight forms an internal swirling flow along the inner cylindrical tube through an inverted fluid flow to separate the metal powder into a gas (e.g., powder transfer gas, plasma generating gas). etc.) may be discharged together.
저장용기(400)는 사이클론분리기(300)를 통해 분리된 구상화 금속분말을 수집하는 것으로, 사이클론분리기(300)의 하부에 구비되어 사이클론분리기(300)를 통해 분리되어 하향 이동하는 구상화 금속분말을 수집 및 저장할 수 있다.The storage container 400 collects the spheroidized metal powder separated through the cyclone separator 300, and is provided at the lower part of the cyclone separator 300 to collect the spheroidized metal powder that is separated through the cyclone separator 300 and moves downward. and can be saved.
한편, 본 발명의 일 실시예에 따른 플라즈마를 이용한 금속분말 처리장치는 도 6에 도시한 바와 같이 적어도 하나의 추가사이클론분리기(300A), 적어도 하나의 추가저장용기(400A) 등을 더 포함할 수 있다.Meanwhile, the metal powder processing apparatus using plasma according to an embodiment of the present invention may further include at least one additional cyclone separator (300A), at least one additional storage container (400A), etc., as shown in FIG. 6. there is.
여기에서, 적어도 하나의 추가사이클론분리기(300A)는 사이클론분리기(300)의 후단에 결합되어 상대적으로 더 작은 크기의 분말을 분리시킬 수 있는데, 상술한 바와 같은 사이클론분리기(300)에서 금속분말과 가스를 분리하여 분리된 금속분말을 1차 수집한 후에, 추가적으로 상대적으로 더 작은 무게의 금속분말을 수집하기 위해 추가사이클론분리기(300A)를 더 구비할 수 있으며, 이러한 추가사이클론분리기(300A)를 통해 1차 수집된 금속분말의 크기보다 상대적으로 더 작은 크기(예를 들면, 1-10 ㎛ 등)의 금속분말을 2차 분리할 수 있다.Here, at least one additional cyclone separator (300A) is coupled to the rear end of the cyclone separator (300) to separate relatively smaller size powder. In the cyclone separator (300) as described above, metal powder and gas After separating and first collecting the separated metal powder, an additional cyclone separator (300A) may be further provided to collect metal powder of a relatively smaller weight. Through this additional cyclone separator (300A), 1 Metal powders of a relatively smaller size (e.g., 1-10 ㎛, etc.) than the size of the primary collected metal powders can be secondaryly separated.
또한, 적어도 하나의 추가저장용기(400A)는 추가사이클론분리기(300A)를 통해 분리시킨 분말을 수집하는 것으로, 추가사이클론분리기(300A)가 구비될 경우 추가로 구비될 수 있으며, 이를 통해 1차 수집된 금속분말의 크기보다 상대적으로 더 작은 크기(예를 들면, 1-10 ㎛ 등)의 금속분말을 2차 수집할 수 있다.In addition, at least one additional storage container (400A) collects the powder separated through the additional cyclone separator (300A), and can be additionally provided if an additional cyclone separator (300A) is provided, through which primary collection is carried out. Metal powder with a relatively smaller size (e.g., 1-10 ㎛, etc.) than the size of the collected metal powder can be secondaryly collected.
한편, 본 발명의 일 실시예에 따른 플라즈마를 이용한 금속분말 처리장치는 도 7에 도시한 바와 같이 사이클론분리기(300)의 후단에는 금속분말이송가스 및 플라즈마발생가스를 순환시켜 회수한 후 재사용하기 위해 가스 리사이클링(gas recycling)을 위한 장치들이 추가로 구비될 수 있는데, 사이클론분리기(300)를 통해 분리된 미세분말과 분말이송가스 및 플라즈마발생가스는 백챔버(510)로 이동되고, 미세분말은 백챔버(510)의 하부에 위치하는 백챔버용기(520)에 수거될 수 있으며, 이중 극미세분말 및 분진은 백챔버(510) 내부에 구비되는 적어도 하나의 집진필터를 통해 제거될 수 있다.Meanwhile, in the metal powder processing device using plasma according to an embodiment of the present invention, as shown in FIG. 7, the metal powder transfer gas and plasma generation gas are circulated and recovered at the rear end of the cyclone separator 300 for reuse. Additional devices for gas recycling may be provided. The fine powder, powder transfer gas, and plasma generation gas separated through the cyclone separator 300 are moved to the bag chamber 510, and the fine powder is stored in the bag. It can be collected in the back chamber container 520 located at the bottom of the chamber 510, and among these, ultrafine powder and dust can be removed through at least one dust collection filter provided inside the back chamber 510.
이 후, 미세분말과 분리된 분말이송가스 및 플라즈마발생가스는 블로워(530)를 통해 리사이클링 라인으로 유동시켜 버퍼탱크(540)로 유입시킬 수 있으며, 버퍼탱크(540)에 유입되어 일시적으로 저장되는 불활성가스는 기 설정된 유량만큼 압축기(550)로 공급되고, 압축기(550)는 공급되는 불활성가스를 균일하게 압축한 후에, 다시 공급가스탱크(560)로 공급함으로써, 리사이클링된 불활성가스는 공정챔버(100)에 공급하기 위해 공급가스탱크(560)에 저장될 수 있다.Afterwards, the powder transport gas and plasma generation gas separated from the fine powder can be flowed into the recycling line through the blower 530 and introduced into the buffer tank 540. The inert gas is supplied to the compressor 550 at a preset flow rate, and the compressor 550 uniformly compresses the supplied inert gas and then supplies it back to the supply gas tank 560, so that the recycled inert gas is stored in the process chamber ( It can be stored in the supply gas tank 560 to be supplied to 100).
따라서, 본 발명의 일 실시예에 따르면, 금속분말, 분말이송가스 및 플라즈마발생가스가 공정챔버의 내부로 공급될 경우 공정챔버에 구비된 플라즈마토치를 통해 전극체내부영역에서 발생된 플라즈마를 고깔형태로 분사시켜 중앙분사영역으로 공급되는 금속분말의 표면처리를 수행함으로써, 플라즈마 생성영역과 플라즈마 반응영역을 분리하여 금속분말의 표면처리를 효과적으로 수행할 수 있고, 금속분말의 흐름도 향상을 위해 금속분말을 효과적으로 구상화시킬 수 있을 뿐만 아니라 3D 프린팅으로 인해 금속분말의 표면에 부착된 각종 반응물을 클리닝할 수 있다.Therefore, according to one embodiment of the present invention, when metal powder, powder transfer gas, and plasma generation gas are supplied into the process chamber, the plasma generated in the inner area of the electrode body is formed in a cone shape through a plasma torch provided in the process chamber. By performing surface treatment of the metal powder supplied to the central spraying area by spraying it, the surface treatment of the metal powder can be effectively performed by separating the plasma generation area and the plasma reaction area. In order to improve the flow of the metal powder, the metal powder can be treated effectively. Not only can it be effectively spherical, but 3D printing can also clean various reactants attached to the surface of metal powder.
도 8은 본 발명의 다른 실시예에 따라 플라즈마를 이용하여 금속분말을 처리하는 과정을 나타낸 플로우차트이다.Figure 8 is a flow chart showing the process of processing metal powder using plasma according to another embodiment of the present invention.
도 8을 참조하면, 금속분말, 분말이송가스 및 플라즈마발생가스를 공정챔버(100)로 공급할 수 있다(단계810).Referring to FIG. 8, metal powder, powder transfer gas, and plasma generation gas can be supplied to the process chamber 100 (step 810).
이러한 공정챔버(100)는 금속분말, 분말이송가스 및 플라즈마발생가스가 공급되어 금속분말의 구상화 및 클리닝이 수행되는 챔버로서, 내외부가 밀폐된 상태로 유지될 수 있으며, 필요에 따라 진공상태로 유지될 수 있는데, 대략 10-3 Torr의 압력범위로 유지시킬 수 있도록 진공펌프(도시 생략됨)를 구비할 수 있으며, 이러한 진공펌프는 예를 들면, 부스터펌프, 로터리펌프 등을 포함할 수 있다.This process chamber 100 is a chamber where metal powder, powder transfer gas, and plasma generation gas are supplied to perform spheroidization and cleaning of the metal powder, and the inside and outside can be maintained in a sealed state and maintained in a vacuum state when necessary. A vacuum pump (not shown) may be provided to maintain the pressure in the range of approximately 10 -3 Torr, and such vacuum pump may include, for example, a booster pump, a rotary pump, etc.
또한, 공정챔버(100)에는 3D 프린팅 작업 후에 회수되는 금속분말이 투입되면서 분말이송가스(예를 들면, 아르곤(Ar)가스, 질소(N2)가스 등) 및 플라즈마발생가스(예를 들면, 아르곤(Ar)가스, 질소(N2)가스, 헬륨(He)가스, 혼합가스 등)가 함께 공급될 수 있는데, 이들은 플라즈마토치(200)의 내부로 공급될 수 있다.In addition, the metal powder recovered after the 3D printing operation is input into the process chamber 100, and powder transfer gas (e.g., argon (Ar) gas, nitrogen (N 2 ) gas, etc.) and plasma generation gas (e.g., Argon (Ar) gas, nitrogen (N 2 ) gas, helium (He) gas, mixed gas, etc.) may be supplied together, and these may be supplied into the interior of the plasma torch 200.
그리고, 공정챔버(100)에 구비되는 플라즈마토치(200)의 전극체내부영역에서 플라즈마를 발생시킬 수 있으며(단계820), 발생된 플라즈마를 고깔형태로 분사시켜 중앙분사영역으로 공급되는 금속분말의 표면처리를 수행할 수 있다(단계830).In addition, plasma can be generated in the inner area of the electrode body of the plasma torch 200 provided in the process chamber 100 (step 820), and the generated plasma is sprayed in a cone shape to generate metal powder supplied to the central spray area. Surface treatment can be performed (step 830).
이를 위해 플라즈마토치(200)에서는 공정챔버(100)에 구비되어 전극체내부영역에서 발생된 플라즈마(즉, 열플라즈마)를 고깔형태로 분사시켜 중앙분사영역으로 공급되는 금속분말의 표면처리를 수행할 수 있는데, 열플라즈마는 아크방전을 통해 발생시킨 전자, 이온 및 중성입자로 구성된 기체로서, 구성입자가 1000-20000 ℃의 온도범위와 100-2000 m/s의 속도범위를 갖도록 출사될 수 있다.To this end, the plasma torch 200 is provided in the process chamber 100 and sprays plasma (i.e., thermal plasma) generated in the inner area of the electrode body in a cone shape to perform surface treatment of the metal powder supplied to the central spray area. Thermal plasma is a gas composed of electrons, ions, and neutral particles generated through arc discharge, and the constituent particles can be emitted to have a temperature range of 1000-20000 ℃ and a speed range of 100-2000 m/s.
이를 위해 플라즈마토치(200)의 일 형태에서는, 제 1 음전극체(210a), 제 1 양전극체(220a), 제 1 절연체(230a), 제 1 전원공급수단(240a) 등을 포함할 수 있다.To this end, one form of the plasma torch 200 may include a first negative electrode body 210a, a first positive electrode body 220a, a first insulator 230a, a first power supply means 240a, etc.
그리고, 플라즈마토치(200)의 다른 형태에서는, 제 2 음전극체(210b), 제 2 양전극체(220b), 제 2 절연체(230b), 제 2 전원공급수단(240b) 등을 포함할 수 있다.In another form, the plasma torch 200 may include a second negative electrode body 210b, a second positive electrode body 220b, a second insulator 230b, and a second power supply means 240b.
또한, 플라즈마토치(200)의 또 다른 형태에서는, 제 3 음전극체(210c), 복수의 제 3 양전극체(220c), 제 3 절연체(230c), 제 3 전원공급수단(240c), 내부튜브(250c), 외부튜브(260c) 등을 포함할 수 있다.In addition, in another form of the plasma torch 200, a third negative electrode body 210c, a plurality of third positive electrode bodies 220c, a third insulator 230c, a third power supply means 240c, and an inner tube ( 250c), an external tube (260c), etc.
상술한 바와 같은 일 형태, 다른 형태 및 또 다른 형태의 구체적인 설명에 대해서는 본 발명의 일 실시예에서 상세하게 설명하였으므로 여기에서는 생략하기로 한다.Since the detailed description of one form, another form, and another form as described above has been described in detail in an embodiment of the present invention, it will be omitted here.
다음에, 표면처리에 따라 구상화된 구상화 금속분말과 분말이송가스 및 플라즈마발생가스를 사이클론분리기(300)를 통해 분리시킬 수 있다(단계840).Next, the spheroidized metal powder, powder transfer gas, and plasma generation gas spheroidized according to the surface treatment can be separated through the cyclone separator 300 (step 840).
이러한 사이클론분리기(300)에서는 원통형의 몸체를 가지면서 직경이 하방으로 갈수록 점차 감소하도록 구비되며, 원심력에 따른 선회운동과 동시에 중력에 따라 낙하하면서 나선형 형태를 나타내어 외부선회류 흐름을 유지할 수 있다.In this cyclone separator (300), it has a cylindrical body with a diameter that gradually decreases downward, and can maintain an external swirl flow by exhibiting a spiral shape while rotating according to centrifugal force and falling according to gravity at the same time.
이러한 사이클론분리기(300)의 하단부 역삼각형 지점에 도달하면 분말입자의 분리현상이 발생하고, 무게에 따라 하부에 위치하는 저장용기(400)로 이동할 수 있다.When the inverted triangle point at the bottom of the cyclone separator 300 is reached, the powder particles are separated and can move to the storage container 400 located below depending on their weight.
이러한 금속분말의 입자크기는 PBF방식의 3D 프린팅을 위한 원료분말로 사용하기 위해서 대략 15-45 ㎛의 크기범위를 가질 수 있으며, DED방식의 경우에는 대략 45-150 ㎛의 크기범위를 가질 수 있다.The particle size of this metal powder can be approximately 15-45 ㎛ in order to be used as a raw material powder for 3D printing in the PBF method, and in the case of the DED method, it can have a size range of approximately 45-150 ㎛. .
이러한 사이클론분리기(300)는 상대적으로 작은 무게를 갖는 금속분말은 반전 유체 흐름을 통해 내부 원통관을 따라 내부선회류를 형성하여 금속분말을 분리시킨 가스(예를 들면, 분말이송가스, 플라즈마발생가스 등을 포함함)와 함께 배출될 수 있다.In this cyclone separator 300, the metal powder having a relatively small weight forms an internal swirling flow along the inner cylindrical tube through an inverted fluid flow to separate the metal powder into a gas (e.g., powder transfer gas, plasma generating gas). etc.) may be discharged together.
이어서, 분리된 상기 구상화 금속분말을 저장용기(400)에 수집할 수 있다(단계850). 이러한 저장용기(400)에서는 사이클론분리기(300)의 하부에 구비되어 사이클론분리기(300)를 통해 분리되어 하향 이동하는 구상화 금속분말을 수집 및 저장할 수 있다.Subsequently, the separated spheroidized metal powder can be collected in the storage container 400 (step 850). This storage container 400 is provided at the bottom of the cyclone separator 300 and can collect and store the spheroidized metal powder that is separated through the cyclone separator 300 and moves downward.
상술한 바와 같은 본 발명의 다른 실시예에서는 사이클론분리기(300)와 저장용기(400)만을 구비하는 것으로 하여 설명하였지만, 적어도 하나의 추가사이클론분리기(300A), 적어도 하나의 추가저장용기(400A) 등을 더 포함할 수 있다.In another embodiment of the present invention as described above, it has been described as having only the cyclone separator 300 and the storage container 400, but at least one additional cyclone separator 300A, at least one additional storage container 400A, etc. It may further include.
한편, 사이클론분리기(300)의 후단과 공정챔버(100)가 연통되어 금속분말이송가스 및 플라즈마발생가스를 순환시켜 회수한 후 재사용할 수 있다(단계860).Meanwhile, the rear end of the cyclone separator 300 and the process chamber 100 are in communication, so that the metal powder transfer gas and the plasma generation gas can be circulated, recovered, and then reused (step 860).
여기에서, 사이클론분리기(300)의 후단에는 가스 리사이클링(gas recycling)을 위한 장치들이 추가로 구비될 수 있는데, 사이클론분리기(300)를 통해 분리된 미세분말과 분말이송가스 및 플라즈마발생가스는 백챔버(510)로 이동되고, 미세분말은 백챔버(510)의 하부에 위치하는 백챔버용기(520)에 수거될 수 있으며, 이중 극미세분말 및 분진은 백챔버(510) 내부에 구비되는 적어도 하나의 집진필터를 통해 제거될 수 있다.Here, devices for gas recycling may be additionally provided at the rear of the cyclone separator 300, and the fine powder, powder transfer gas, and plasma generation gas separated through the cyclone separator 300 are returned to the back chamber. It is moved to 510, and the fine powder can be collected in the back chamber container 520 located at the lower part of the back chamber 510. Of these, the ultra-fine powder and dust are included in at least one item provided inside the back chamber 510. It can be removed through a dust collection filter.
이 후, 미세분말과 분리된 분말이송가스 및 플라즈마발생가스는 블로워(530)를 통해 리사이클링 라인으로 유동시켜 버퍼탱크(540)로 유입시킬 수 있으며, 버퍼탱크(540)에 유입되어 일시적으로 저장되는 불활성가스는 기 설정된 유량만큼 압축기(550)로 공급되고, 압축기(550)는 공급되는 불활성가스를 균일하게 압축한 후에, 다시 공급가스탱크(560)로 공급함으로써, 리사이클링된 불활성가스는 공정챔버(100)에 공급하기 위해 공급가스탱크(560)에 저장될 수 있다.Afterwards, the powder transport gas and plasma generation gas separated from the fine powder can be flowed into the recycling line through the blower 530 and introduced into the buffer tank 540. The inert gas is supplied to the compressor 550 at a preset flow rate, and the compressor 550 uniformly compresses the supplied inert gas and then supplies it back to the supply gas tank 560, so that the recycled inert gas is stored in the process chamber ( It can be stored in the supply gas tank 560 to be supplied to 100).
따라서, 본 발명의 다른 실시예에 따르면, 금속분말, 분말이송가스 및 플라즈마발생가스가 공정챔버의 내부로 공급될 경우 공정챔버에 구비된 플라즈마토치를 통해 전극체내부영역에서 발생된 플라즈마를 고깔형태로 분사시켜 중앙분사영역으로 공급되는 금속분말의 표면처리를 수행함으로써, 플라즈마 생성영역과 플라즈마 반응영역을 분리하여 금속분말의 표면처리를 효과적으로 수행할 수 있고, 금속분말의 흐름도 향상을 위해 금속분말을 효과적으로 구상화시킬 수 있을 뿐만 아니라 3D 프린팅으로 인해 금속분말의 표면에 부착된 각종 반응물을 클리닝할 수 있다.Therefore, according to another embodiment of the present invention, when metal powder, powder transfer gas, and plasma generation gas are supplied into the process chamber, the plasma generated in the inner area of the electrode body is formed in a cone shape through a plasma torch provided in the process chamber. By performing surface treatment of the metal powder supplied to the central spraying area by spraying it, the surface treatment of the metal powder can be effectively performed by separating the plasma generation area and the plasma reaction area. In order to improve the flow of the metal powder, the metal powder can be treated effectively. Not only can it be effectively spherical, but 3D printing can also clean various reactants attached to the surface of metal powder.
이상의 설명에서는 본 발명의 다양한 실시예들을 제시하여 설명하였으나 본 발명이 반드시 이에 한정되는 것은 아니며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능함을 쉽게 알 수 있을 것이다.In the above description, various embodiments of the present invention have been presented and explained, but the present invention is not necessarily limited thereto, and those skilled in the art will understand various embodiments without departing from the technical spirit of the present invention. It will be easy to see that branch substitutions, transformations, and changes are possible.
[부호의 설명][Explanation of symbols]
100 : 공정챔버100: Process chamber
200 : 플라즈마토치200: Plasma torch
300 : 사이클론분리기300: Cyclone separator
400 : 저장용기400: storage container

Claims (8)

  1. 금속분말, 분말이송가스 및 플라즈마발생가스가 공급되는 공정챔버;A process chamber supplied with metal powder, powder transfer gas, and plasma generation gas;
    상기 공정챔버에 구비되어 전극체내부영역에서 발생된 플라즈마를 고깔형태로 분사시켜 중앙분사영역으로 공급되는 상기 금속분말의 표면처리를 수행하는 플라즈마토치;A plasma torch provided in the process chamber to spray plasma generated in the inner region of the electrode body in a cone shape to perform surface treatment of the metal powder supplied to the central spray region;
    상기 표면처리에 따라 구상화된 구상화 금속분말과 상기 분말이송가스 및 플라즈마발생가스를 분리시키는 사이클론분리기; 및A cyclone separator that separates the spheroidized metal powder spheroidized according to the surface treatment, the powder transfer gas, and the plasma generating gas; and
    분리된 상기 구상화 금속분말을 수집하는 저장용기;A storage container for collecting the separated spheroidized metal powder;
    를 포함하는 플라즈마를 이용한 금속분말 처리장치.A metal powder processing device using plasma comprising a.
  2. 청구항 1에 있어서,In claim 1,
    상기 플라즈마토치는,The plasma torch is,
    하단부로 갈수록 직경이 감소하는 원뿔형태를 가지면서 상기 금속분말 및 분말이송가스가 중앙부에 구비되는 제 1 중공부로 공급되며, 제 1-1 냉각채널이 구비된 제 1 음전극체;A first negative electrode body having a cone shape whose diameter decreases toward the bottom, through which the metal powder and powder transport gas are supplied to a first hollow portion provided in the central portion, and provided with a 1-1 cooling channel;
    상기 제 1 음전극체를 감싸는 원통관형태를 가지면서 상기 제 1 음전극체의 외주면에 대응하여 경사지게 기 설정된 간격만큼 이격되면서 상기 플라즈마발생가스가 공급되어 제 1 플라즈마 생성영역이 구비되며, 제 1-2 냉각채널이 구비된 제 1 양전극체;It has a cylindrical tube shape surrounding the first negative electrode body and is inclined corresponding to the outer circumferential surface of the first negative electrode body and is spaced at a preset interval, and the plasma generating gas is supplied to provide a first plasma generation area, 1-2 A first positive electrode body provided with a cooling channel;
    상기 제 1 음전극체 및 제 1 양전극체의 외부 표면에 구비되는 제 1 절연체; 및a first insulator provided on the outer surfaces of the first negative electrode body and the first positive electrode body; and
    상기 제 1 음전극체 및 제 1 양전극체와 전기적으로 연결되어 상기 플라즈마를 발생시키는 전력을 공급하는 제 1 전원공급수단;a first power supply means electrically connected to the first negative electrode body and the first positive electrode body to supply power to generate the plasma;
    을 포함하는 플라즈마를 이용한 금속분말 처리장치.A metal powder processing device using plasma comprising a.
  3. 청구항 1에 있어서,In claim 1,
    상기 플라즈마토치는,The plasma torch is,
    원통관형태로 제공되며, 제 2-1 냉각채널이 구비된 제 2 음전극체;a second negative electrode body provided in the form of a cylindrical tube and provided with a 2-1 cooling channel;
    상기 금속분말 및 분말이송가스가 중앙부에 구비되는 제 2 중공부로 공급되며, 상기 제 2 음전극체가 삽입되고 상기 플라즈마발생가스가 공급되도록 상단부는 상기 제 2 음전극체의 직경에 대응하여 원통형경로를 가지면서 하단부는 원뿔형경로를 가지는 제 2 플라즈마 생성영역이 구비되며, 제 2-2 냉각채널이 구비된 제 2 양전극체;The metal powder and powder transfer gas are supplied to a second hollow part provided in the central part, and the upper part has a cylindrical path corresponding to the diameter of the second negative electrode body so that the second negative electrode body is inserted and the plasma generating gas is supplied. A second positive electrode body having a second plasma generation area having a conical path at the lower end and a 2-2 cooling channel;
    상기 제 2 양전극체의 외부 표면에 구비되는 제 2 절연체; 및a second insulator provided on the outer surface of the second positive electrode body; and
    상기 제 2 음전극체 및 제 2 양전극체와 전기적으로 연결되어 상기 플라즈마를 발생시키는 전력을 공급하는 제 2 전원공급수단;a second power supply means electrically connected to the second negative electrode body and the second positive electrode body to supply power to generate the plasma;
    을 포함하는 플라즈마를 이용한 금속분말 처리장치.A metal powder processing device using plasma comprising a.
  4. 청구항 2 또는 청구항 3에 있어서,In claim 2 or claim 3,
    상기 금속분말 처리장치는,The metal powder processing device,
    상기 사이클론분리기의 후단에 결합되어 상대적으로 더 작은 크기의 분말을 분리시키는 적어도 하나의 추가사이클론분리기; 및At least one additional cyclone separator coupled to the rear end of the cyclone separator to separate relatively smaller-sized powder; and
    상기 추가사이클론분리기를 통해 분리시킨 분말을 수집하는 적어도 하나의 추가저장용기;At least one additional storage container for collecting the powder separated through the additional cyclone separator;
    를 더 포함하는 플라즈마를 이용한 금속분말 처리장치.A metal powder processing device using plasma, further comprising:
  5. 금속분말, 분말이송가스 및 플라즈마발생가스를 공정챔버로 공급하는 단계;Supplying metal powder, powder transfer gas, and plasma generation gas to the process chamber;
    상기 공정챔버에 구비되는 플라즈마토치의 전극체내부영역에서 플라즈마를 발생시키는 단계;Generating plasma in an area inside the electrode body of a plasma torch provided in the process chamber;
    상기 발생된 플라즈마를 고깔형태로 분사시켜 중앙분사영역으로 공급되는 상기 금속분말의 표면처리를 수행하는 단계;performing surface treatment of the metal powder supplied to the central spray area by spraying the generated plasma in a cone shape;
    상기 표면처리에 따라 구상화된 구상화 금속분말과 상기 분말이송가스 및 플라즈마발생가스를 사이클론분리기를 통해 분리시키는 단계; 및Separating the spheroidized metal powder spheroidized according to the surface treatment, the powder transfer gas, and the plasma generating gas through a cyclone separator; and
    분리된 상기 구상화 금속분말을 저장용기에 수집하는 단계:Step of collecting the separated spheroidized metal powder in a storage container:
    를 포함하는 플라즈마를 이용한 금속분말 처리방법.A metal powder processing method using plasma comprising.
  6. 청구항 5에 있어서,In claim 5,
    상기 플라즈마토치는,The plasma torch is,
    하단부로 갈수록 직경이 감소하는 원뿔형태를 가지면서 상기 금속분말 및 분말이송가스가 중앙부에 구비되는 제 1 중공부로 공급되며, 제 1-1 냉각채널이 구비된 제 1 음전극체가 구비되고, 상기 제 1 음전극체를 감싸는 원통관형태를 가지면서 상기 제 1 음전극체의 외주면에 대응하여 경사지게 기 설정된 간격만큼 이격되면서 상기 플라즈마발생가스가 공급되어 제 1 플라즈마 생성영역이 구비되며, 제 1-2 냉각채널이 구비된 제 1 양전극체가 구비되며, 상기 제 1 음전극체 및 제 1 양전극체의 외부 표면에 구비되는 제 1 절연체가 구비되고, 상기 제 1 음전극체 및 제 1 양전극체와 전기적으로 연결되어 전력을 공급하는 제 1 전원공급수단이 구비되는It has a conical shape whose diameter decreases toward the bottom, and the metal powder and powder transfer gas are supplied to the first hollow portion provided in the central portion, and a first negative electrode body provided with a 1-1 cooling channel is provided, and the first negative electrode body is provided. It has a cylindrical tube shape surrounding the negative electrode body and is inclined at a preset interval corresponding to the outer peripheral surface of the first negative electrode body, and the plasma generating gas is supplied to provide a first plasma generation area, and a 1-2 cooling channel is provided. A first positive electrode body is provided, and a first insulator is provided on the outer surface of the first negative electrode body and the first positive electrode body, and is electrically connected to the first negative electrode body and the first positive electrode body to supply power. Equipped with a first power supply means that
    플라즈마를 이용한 금속분말 처리방법.Metal powder processing method using plasma.
  7. 청구항 5에 있어서,In claim 5,
    상기 플라즈마토치는,The plasma torch is,
    원통관형태로 제공되며, 제 2-1 냉각채널이 구비된 제 2 음전극체가 구비되고, 상기 금속분말 및 분말이송가스가 중앙부에 구비되는 제 2 중공부로 공급되며, 상기 제 2 음전극체가 삽입되고 상기 플라즈마발생가스가 공급되도록 상단부는 상기 제 2 음전극체의 직경에 대응하여 원통형경로를 가지면서 하단부는 원뿔형경로를 가지는 제 2 플라즈마 생성영역이 구비되며, 제 2-2 냉각채널이 구비된 제 2 양전극체가 구비되며, 상기 제 2 양전극체의 외부 표면에 구비되는 제 2 절연체가 구비되고, 상기 제 2 음전극체 및 제 2 양전극체와 전기적으로 연결되어 전력을 공급하는 제 2 전원공급수단이 구비되는It is provided in the form of a cylindrical tube, and is provided with a second negative electrode body provided with a 2-1 cooling channel. The metal powder and powder transfer gas are supplied to a second hollow portion provided in the central portion, the second negative electrode body is inserted, and the second negative electrode body is inserted into the second negative electrode body. A second positive electrode is provided with a second plasma generation area where the upper part has a cylindrical path corresponding to the diameter of the second negative electrode body and the lower part has a conical path so that the plasma generation gas is supplied, and a 2-2 cooling channel is provided. A sieve is provided, a second insulator is provided on the outer surface of the second positive electrode body, and a second power supply means is electrically connected to the second negative electrode body and the second positive electrode body to supply power.
    플라즈마를 이용한 금속분말 처리방법.Metal powder processing method using plasma.
  8. 청구항 6 또는 청구항 7에 있어서,In claim 6 or claim 7,
    상기 플라즈마를 이용한 금속분말 처리방법은,The metal powder processing method using the plasma,
    상기 저장용기에 수집하는 단계 이후에, 상기 금속분말이송가스 및 플라즈마발생가스를 순환시켜 재사용하는 단계;After collecting in the storage container, circulating and reusing the metal powder transfer gas and plasma generating gas;
    를 더 포함하는 플라즈마를 이용한 금속분말 처리방법.A metal powder processing method using plasma further comprising:
PCT/KR2023/019510 2022-12-01 2023-11-30 Metal powder processing apparatus using plasma and processing method thereof WO2024117802A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220165548A KR102625404B1 (en) 2022-12-01 2022-12-01 Apparatus for processing metal powder using plasma and its processing method
KR10-2022-0165548 2022-12-01

Publications (1)

Publication Number Publication Date
WO2024117802A1 true WO2024117802A1 (en) 2024-06-06

Family

ID=89542839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/019510 WO2024117802A1 (en) 2022-12-01 2023-11-30 Metal powder processing apparatus using plasma and processing method thereof

Country Status (2)

Country Link
KR (1) KR102625404B1 (en)
WO (1) WO2024117802A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050108699A (en) * 2004-05-13 2005-11-17 재단법인서울대학교산학협력재단 Apparatus and method for carbon nanotubes production using a thermal plasma torch
KR100788412B1 (en) * 2007-03-13 2007-12-24 호서대학교 산학협력단 Thermal plasma device
KR20180003141A (en) * 2016-06-30 2018-01-09 경북대학교 산학협력단 Metal powder 3d printer using plasma treatment
JP2018536092A (en) * 2015-11-16 2018-12-06 レニショウ パブリック リミテッド カンパニーRenishaw Public Limited Company Additive manufacturing method and apparatus
KR102465825B1 (en) * 2022-09-06 2022-11-09 이용복 Apparatus for manufacturing metal power using thermal plasma and its manufacturing method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5799153B1 (en) * 2014-10-23 2015-10-21 株式会社金星 Plasma torch, plasma spraying apparatus, and plasma torch control method
CA3091111C (en) * 2015-10-29 2024-04-09 Ap&C Advanced Powders & Coatings Inc. Metal powder atomization manufacturing processes
KR101901773B1 (en) 2017-03-09 2018-09-28 원광이엔텍 주식회사 3D printing powder recovery apparatus using air compressor and air pressure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050108699A (en) * 2004-05-13 2005-11-17 재단법인서울대학교산학협력재단 Apparatus and method for carbon nanotubes production using a thermal plasma torch
KR100788412B1 (en) * 2007-03-13 2007-12-24 호서대학교 산학협력단 Thermal plasma device
JP2018536092A (en) * 2015-11-16 2018-12-06 レニショウ パブリック リミテッド カンパニーRenishaw Public Limited Company Additive manufacturing method and apparatus
KR20180003141A (en) * 2016-06-30 2018-01-09 경북대학교 산학협력단 Metal powder 3d printer using plasma treatment
KR102465825B1 (en) * 2022-09-06 2022-11-09 이용복 Apparatus for manufacturing metal power using thermal plasma and its manufacturing method

Also Published As

Publication number Publication date
KR102625404B1 (en) 2024-01-15

Similar Documents

Publication Publication Date Title
US6414834B1 (en) Dielectric covered electrostatic chuck
US4246208A (en) Dust-free plasma spheroidization
WO2013095070A1 (en) Method for manufacturing sputtering target using cold spray and cold spray device
WO2012046898A1 (en) Solid state powder coating device
US20110129399A1 (en) High purity and free flowing metal oxides powder
WO2015093649A1 (en) Heating device and coating mechanism comprising same
JP4488651B2 (en) Method and apparatus for producing ceramic or metal spherical powder by thermal plasma
CN1608832A (en) Device and process for producing a three-dimensional object
WO2021015542A1 (en) 3d printer with residual powder removal device
WO2014126273A1 (en) Device for manufacturing high-purity mox nanostructure and manufacturing method therefor
WO2024117802A1 (en) Metal powder processing apparatus using plasma and processing method thereof
WO2013183914A1 (en) Apparatus for charging and method for charging raw material
JPS6241282B2 (en)
CN107224944A (en) Particulate manufacture device and manufacture method
US4188413A (en) Electrostatic-fluidized bed coating of wire
WO2013058458A1 (en) Method and apparatus for manufacturing a low melting point nano glass powder
CN1293225C (en) Method for thermal coating of surface of interior space and device for carrying out said method
EP1209137A1 (en) Method for preparing eutectic ceramics
WO2011136570A2 (en) Apparatus and method for manufacturing silicon nanopowder
US3643727A (en) Process and apparatus for lining conductive tubes with insulating material
RU2645169C2 (en) Method and apparatus for producing metal powder by centrifugal spraying
WO2019045162A1 (en) 3d printing apparatus having wiper-type powder supply part
WO2022154154A1 (en) Waste separator scrap oil extraction device and method for producing recycled raw materials using same
JPS6059283B2 (en) Inert gas continuous metal spray equipment
WO2023042977A1 (en) Plasma powder deposition apparatus and deposition method using same