WO2024117148A1 - マルチプレクサ - Google Patents

マルチプレクサ Download PDF

Info

Publication number
WO2024117148A1
WO2024117148A1 PCT/JP2023/042644 JP2023042644W WO2024117148A1 WO 2024117148 A1 WO2024117148 A1 WO 2024117148A1 JP 2023042644 W JP2023042644 W JP 2023042644W WO 2024117148 A1 WO2024117148 A1 WO 2024117148A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
data
communication standard
data communication
input
Prior art date
Application number
PCT/JP2023/042644
Other languages
English (en)
French (fr)
Inventor
知久 畔上
健一 行木
智也 福田
Original Assignee
興和株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 興和株式会社 filed Critical 興和株式会社
Publication of WO2024117148A1 publication Critical patent/WO2024117148A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/222Studio circuitry; Studio devices; Studio equipment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast

Definitions

  • the present invention relates to a multiplexer that outputs multiple signal inputs as a single signal.
  • Patent Document 1 discloses a multiplexer that combines data received from a first camera and data received from a second camera and transmits the combined data to an external device.
  • Non-Patent Document 1 various data communication standards have been established for imaging devices such as industrial digital cameras, and the characteristics and device configuration of each imaging device differ depending on the data communication standard adopted.
  • an industrial digital camera that complies with "GigE Vision” one of the data communication standards, is required to have a frame buffer on the data transmission side, and the power supply circuit is large because the power supply inside the camera is generated from a 48V superimposed power supply via a transformer, and as a result, the heat generation of the device is large, so the housing is required to be of a suitable size.
  • a terminal device such as a personal computer via a LAN cable, it is easy to use.
  • an industrial digital camera that complies with "CoaXPress,” another data communication standard, has a small power supply circuit because the power supply inside the camera is generated from a 24V superimposed power supply that does not go through a transformer, and furthermore, since there is no need to install a frame buffer, the housing can be made smaller than that of an industrial digital camera that adopts the "GigE Vision" standard. Therefore, although it has the advantage that it can be used even when the installation environment of the camera is restricted, it has the characteristic that a grabber board is required on the image data receiving side in order to process the image data on the terminal device.
  • imaging devices such as industrial digital cameras
  • terminal devices such as personal computers for image processing and display
  • imaging devices that comply with the "GigE Vision" standard are generally adopted, taking into consideration the feature that they can be directly connected to terminal devices.
  • One solution to this problem is to send image data captured by multiple imaging devices that use a certain data communication standard to the user's terminal device via a multiplexer that can convert the data into another data communication standard.
  • the data transfer speeds stipulated by each data communication standard are different. For example, if the data communication standard for an imaging device is "CoaXPress,” then even when transferring image data at the slowest speed, the data transfer speed is standardized to 1.25 Gbps (effective transfer speed is about 1 Gbps). On the other hand, the "GigE Vision" standard has a maximum data transfer speed of 1 Gbps (effective transfer speed is about 900 Mbps), so there is a problem of insufficient communication bandwidth when converting the image data interface from "CoaXPress" to "GigE Vision.” Naturally, when image data transmitted from multiple imaging devices is combined in a multiplexer, converted into data conforming to a different data communication standard, and transmitted to a single terminal device, the lack of communication bandwidth becomes even more pronounced.
  • the present invention was made in consideration of the above problems, and aims to provide a multiplexer that can convert image data acquired by multiple imaging devices that adopt a certain data communication standard into another data communication standard and output it without causing delays in data transfer or data loss.
  • the present invention provides a multiplexer (Invention 1) comprising an input section to which multiple image signals based on a first data communication standard acquired by multiple imaging devices are input, an output section to which a signal based on a second data communication standard having a slower data transfer rate than the first data communication standard is output, an image processing section to perform image processing on multiple images constituted by the multiple image signals based on the first data communication standard input to the input section, a first storage section to temporarily buffer image signals of the multiple processed images that have been image processed in the image processing section, and a conversion processing section to convert the image signals buffered in the first storage section into signals based on the second data communication standard.
  • a multiplexer (Invention 1) comprising an input section to which multiple image signals based on a first data communication standard acquired by multiple imaging devices are input, an output section to which a signal based on a second data communication standard having a slower data transfer rate than the first data communication standard is output, an image processing section to perform image processing on multiple images constituted by the multiple image signals based on the
  • invention 1 in a system using a plurality of imaging devices adopting a first data communication standard, when converting to a second data communication standard having a slower data transfer rate than the first data communication standard, it is possible to perform interface conversion of image data for a plurality of devices with a single unit without preparing a unit for the conversion for each imaging device. Also, even if the data transfer rate of the first data communication standard is faster than the data transfer rate of the second data communication standard, the input image data can be temporarily stored in the first storage unit, so that overflow due to insufficient bandwidth on the output side can be avoided.
  • the amount of data transferred to the first storage unit can be reduced, so that the loss of data stored in the first storage unit can be prevented.
  • a multiplexer is realized that can convert image data acquired by a plurality of imaging devices adopting a first data communication standard collectively to the second data communication standard and output it without causing delays in data transfer or data loss.
  • the first data communication standard may be CoaXPress
  • the second data communication standard may be GigE Vision (Invention 2).
  • image data input can be accepted from multiple imaging devices that comply with the "CoaXPress” standard, and data to be sent to a terminal device for image processing can be output in the "GigE Vision” standard, allowing for a high degree of freedom in the location of installation of the imaging devices and the construction of an imaging system with a simple device configuration.
  • the image processing unit may set a region of interest for each of the multiple images, and the image corresponding to the set region of interest may be regarded as the processed image (Invention 3).
  • the captured images acquired by the multiple imaging devices include an observation target line formed by reflected light of linear irradiation light irradiated onto the image capture object, and the image processing unit may set the region of interest to a parallelogram shape so that the observation target line is included in the region of interest (Invention 4).
  • the conversion processing unit may calculate numerical data regarding the observation target line from the image signal buffered in the first storage unit (Invention 5).
  • the above invention may further include a second memory unit that temporarily buffers the numerical data (Invention 6).
  • the multiplexer according to the present invention can convert image data acquired by multiple imaging devices that use a certain data communication standard into another data communication standard and output it without causing delays in data transfer or data loss.
  • FIG. 1 is a schematic configuration diagram of an imaging system including a multiplexer according to an embodiment of the present invention
  • FIG. 2 is a schematic configuration diagram of a multiplexer according to the embodiment.
  • FIG. 2 is a schematic diagram for explaining the processing of image data in a multiplexer.
  • FIG. 1 is a schematic diagram of an imaging system 100 including a multiplexer 1 according to one embodiment of the present invention.
  • the imaging system 100 is configured by connecting a plurality of imaging devices 2 to the input section 11 of the multiplexer 1 via cables, and in this embodiment, four imaging devices 2 (2a, 2b, 2c, 2d) are connected to the multiplexer 1.
  • the input section 11 of the multiplexer 1 is configured from four input sections, a first input section 11a, a second input section 11b, a third input section 11c, and a fourth input section 11d, with the first imaging device 2a connected to the first input section 11a, the second imaging device 2b connected to the second input section 11b, the third imaging device 2c connected to the third input section 11c, and the fourth imaging device 2d connected to the fourth input section 11d.
  • the imaging system 100 is configured to be able to transfer image data acquired by the imaging device 2 and numerical data based on the image data to the terminal device 200.
  • the number of imaging devices 2 connected to the multiplexer 1 is not particularly limited as long as there is more than one, and the number of input sections 11 provided in the multiplexer 1 is also not particularly limited as long as there is more than one. It is also permissible for the number of imaging devices 2 connected to be less than the number of input sections 11 provided in the multiplexer 1 (i.e., there may be an input section among the multiple input sections 11 to which no imaging device 2 is connected).
  • the imaging devices 2 are industrial digital cameras that comply with the "CoaXPress” standard, and the four imaging devices 2 (2a, 2b, 2c, 2d) are connected to the first input section 11a, the second input section 11b, the third input section 11c, and the fourth input section 11d of the multiplexer 1 using general-purpose coaxial cables.
  • Illumination devices (not shown) that illuminate the respective imaging targets are connected to the four imaging devices 2 (2a, 2b, 2c, 2d), and an illumination control signal that controls the on/off of the illumination is sent from the terminal device 200 to each illumination device via the multiplexer 1 and each imaging device 2.
  • the terminal device 200 performs various processes, such as image processing and image display, based on the image data and numerical data transmitted from the imaging system 100, and also outputs control signals to the imaging system 100 for controlling the imaging device 2 and the lighting device that constitute the imaging system 100.
  • the terminal device 200 may be, for example, a general-purpose personal computer, or it may be an operation terminal dedicated to the imaging system 100.
  • the terminal device 200 is configured to be able to accept image data and numerical data output in accordance with the "GigE Vision" standard, and is connected to the output section 14 of the multiplexer 1 by a general-purpose LAN cable.
  • the operator of the imaging system 100 can issue various instructions to the imaging system 100 by operating the terminal device 200.
  • the multiplexer 1 of this embodiment comprises an input unit 11 to which multiple image signals based on a first data communication standard acquired by multiple imaging devices are input, an output unit 14 to which a signal based on a second data communication standard having a slower data transfer rate than the first data communication standard is output, an image processing unit 16 (16a, 16b, 16c, 16d) that performs image processing on multiple images composed of multiple image signals based on the first data communication standard input to the input unit 11, a first memory unit 12 that temporarily buffers image signals of multiple processed images that have been image processed in the image processing unit 16, a conversion processing unit 13 that converts the image signals buffered in the first memory unit 12 into signals based on the second data communication standard, a second memory unit 17 that temporarily buffers signals based on the second data communication standard generated by the conversion processing unit 13, and a power supply unit 15 that supplies power to the four imaging devices 2 (2a, 2b, 2c, 2d) connected to the multiplexer 1.
  • the first data communication standard is the "CoaXPress
  • the input unit 11 is composed of four input units, a first input unit 11a, a second input unit 11b, a third input unit 11c, and a fourth input unit 11d, each of which is assigned to one of the four imaging devices 2 (2a, 2b, 2c, 2d).
  • the first input unit 11a, the second input unit 11b, the third input unit 11c, and the fourth input unit 11d all have an interface structure (connector) that conforms to the "CoaXPress" standard, and the four imaging devices 2 (2a, 2b, 2c, 2d) are connected via coaxial cables.
  • the first storage unit 12 is a so-called frame memory, a memory device for storing one screen's worth of image data input from the input unit 11, and may be realized by DRAM or SRAM.
  • the image processing units 16 (16a, 16b, 16c, 16d) described later perform image processing on the multiple image data input from the first input unit 11a, the second input unit 11b, the third input unit 11c, and the fourth input unit 11d, and the image data of the multiple processed images is stored independently by the first storage unit 12, and each image data is output independently to the conversion processing unit 13 described later.
  • the image processing units 16 (16a, 16b, 16c, 16d) are processors for performing image processing on input image data, and may be realized by an FPGA, a CPU, or the like.
  • the image processing unit 16a performs image processing on image data input from the first input unit 11a
  • the image processing unit 16b performs image processing on image data input from the first input unit 11b
  • the image processing unit 16c performs image processing on image data input from the first input unit 11a
  • the image processing unit 16d performs image processing on image data input from the first input unit 11a.
  • the image processing units 16a, 16b, 16c, 16d do not need to be independent processors, and the conversion processing unit 13 described later may function as the image processing units 16a, 16b, 16c, 16d.
  • the image processing performed by the image processing unit 16 (16a, 16b, 16c, 16d) is required to compress the data volume of the multiple image data input from the first input unit 11a, the second input unit 11b, the third input unit 11c, and the fourth input unit 11d.
  • the image processing performed by the image processing unit 16 (16a, 16b, 16c, 16d) may include setting a region of interest for each of the multiple images input from each input unit and generating an image corresponding to the set region of interest (an image in which only the region of interest is cut out) as a processed image, binarizing the image, enhancing edges, generating an inverted image, and quantifying features.
  • quantifying features includes using a numerical value obtained by measuring the angle of some object in the image or a numerical value obtained by measuring the dimensions.
  • the conversion processing unit 13 is a processor for converting and synthesizing image data and controlling the imaging device 2, and may be realized by an FPGA, a CPU, or the like.
  • the conversion processing unit 13 provides functions such as various processes for image signals (and various signals generated based on the image signals) input from the imaging device 2, sending and receiving control signals to and from the imaging device 2, controlling the power supply to the imaging device 2, and controlling the on/off of the lighting device.
  • the conversion processing unit 13 can convert multiple image data based on the "CoaXPress” standard input to the input unit 11 into image data based on the "GigE Vision" standard.
  • the conversion processing unit 13 can also generate synthetic image data by synthesizing two or more image data (including processed image data that has been image-processed by the image processing units 16a, 16b, 16c, and 16d) input from the first input unit 11a, the second input unit 11b, the third input unit 11c, and the fourth input unit 11d. Furthermore, the conversion processing unit 13 can calculate numerical data from the image data based on the processing program, for example, some numerical data related to a specific object included in the image, and store the data in the second storage unit 17 described below. In addition, the conversion processing unit 13 can transmit a control signal that issues an imaging instruction, etc. to each imaging device 2 based on a control signal received from the terminal device 200.
  • the second storage unit 17 is a memory device for temporarily buffering image data and numerical data input from the conversion processing unit 13, and may be realized by DRAM or SRAM.
  • the output unit 14 outputs the image data and numerical data converted to the "GigE Vision" standard by the conversion processing unit 13 (or such data temporarily buffered in the second storage unit 17) to the outside of the multiplexer 1.
  • the output unit 14 has an interface structure (connector) that is adopted by the "GigE Vision" standard, and is connected to the terminal device 200 via a LAN cable.
  • the power supply unit 15 is a power supply circuit that outputs power to be supplied to the imaging devices 2 (2a, 2b, 2c, 2d).
  • the conversion processing unit 13 of the multiplexer 1 receives, via the output unit 14, a control signal transmitted from the terminal device 200 when an operator operates the terminal device 200, and based on the control signal, can transmit a control signal to each imaging device 2 (2a, 2b, 2c, 2d) so that the imaging devices 2 realize the following functions.
  • two or more of the imaging devices 2 are caused to capture images simultaneously.
  • the imaging device 2 to be used for imaging is switched.
  • the multiplexer 1 in a system using four imaging devices 2 that employ the "CoaXPress” standard (first data communication standard), when converting to the "GigE Vision” standard (second data communication standard) which has a slower data transfer rate than the "CoaXPress” standard, it is possible to interface convert image data for the four devices with a single unit, without having to prepare a conversion unit for each of the four imaging devices 2. Also, even if the data transfer rate of the "CoaXPress” standard is faster than that of the "GigE Vision” standard, the input image data can be temporarily stored in the first storage unit 12, making it possible to avoid overflow due to insufficient bandwidth on the output side.
  • the amount of data transferred to the first storage unit 12 can be reduced, thereby preventing data loss when stored in the first storage unit 12.
  • image data acquired by four imaging devices 2 conforming to the "CoaXPress” standard can be converted collectively to the "GigE Vision” standard without causing delays in data transfer or data loss.
  • the image processing unit 16 sets a region of interest for each of the multiple images input from the first input unit 11a, the second input unit 11b, the third input unit 11c, and the fourth input unit 11d, and generates an image corresponding to the set region of interest (an image in which only the region of interest is cut out) as a processed image.
  • An imaging system 100 using an industrial digital camera as the imaging device 2 may be used for the purpose of irradiating a linear irradiation light onto an object to be imaged, photographing an observation line formed by the reflected light, and analyzing changes in the observation line.
  • the imaging system 100 is used, for example, to measure the angle or direction of a specific part of the object to be imaged, or to check the linearity of the object to be imaged.
  • the captured image S when the captured image S includes an observation target line L formed by the reflected light of the linear irradiation light irradiated on the imaged object, it is possible to grasp in advance where in the captured image S the observation target line L will appear, and therefore it is also possible to set a region of interest R1 in the region where the observation target line L appears.
  • an operator of the imaging system 100 operates the terminal device 200, so that the image processing unit 16 (16a, 16b, 16c, 16d) sets a region of interest R1 in the captured image S, and an image corresponding to this region of interest is generated as a processed image.
  • This processed image is an image in which the region other than the region of interest R1 has been cut off, and therefore the image data of the processed image has a data volume that is more compressed than the image data input from the input unit 11.
  • the image processing unit 16 (16a, 16b, 16c, 16d) sets the region of interest R2 to a parallelogram shape so that the observation target line L is included in the region of interest R2 , thereby suppressing the amount of data transferred to the first storage unit 12, and thus preventing delays in data transfer and data loss in the multiplexer 1.
  • the setting of the region of interest R2 for example, the size and inclination angle of the parallelogram, can be adjusted by the operator of the imaging system 100 operating the terminal device 200.
  • the imaging system 100 when used for the purpose of irradiating a linear irradiation light onto an object to be imaged, photographing an observation target line formed by the reflected light, and analyzing changes in the observation target line, it is possible to reduce the amount of data output from the output unit 14 by transferring the data to the terminal device 200 as numerical data relating to the observation target line, rather than the image data itself.
  • the conversion processing unit 13 is configured to be able to calculate numerical data relating to the observation target line from the image signal buffered in the first storage unit 12. Specifically, based on the image signal buffered in the first storage unit 12, the conversion processing unit 13 calculates numerical data of the angle that the observation target line forms with respect to a certain reference line, and transfers the angle data to the second storage unit 17. In this way, by outputting numerical data rather than image data from the output unit 14, it is possible to prevent delays in data transfer from the multiplexer 1 to the terminal device 200 and also to reduce the amount of processing performed on the terminal device 200 side.
  • the multiplexer 1 according to the present invention and the imaging system 100 using the same have been described above, but the present invention is not limited to the above embodiment and can be modified in various ways.
  • the first data communication standard is the "CoaXPress” standard and the second data communication standard is the "GigE Vision” standard, but the data communication standards are not necessarily limited to these. If the data transfer speed of the second data communication standard is slower than that of the first data communication standard, a multiplexer having a similar configuration can be expected to achieve the same effect as the multiplexer 1 according to this embodiment.
  • Imaging system 1 Multiplexer 11 Input section 11a First input section 11b Second input section 11c Third input section 11d Fourth input section 12 First memory section 13 Conversion processing section 14 Output section 15 Power supply section 16 (16a, 16b, 16c, 16d) Image processing section 17 Second memory section 2 Imaging device 2a First imaging device 2b Second imaging device 2c Third imaging device 2d Fourth imaging device 3 Coaxial cable 4 LAN cable 200 Terminal device

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Studio Devices (AREA)

Abstract

本発明のマルチプレクサ100は、複数の撮像装置2によってそれぞれ取得された第1のデータ通信規格に基づく複数の画像信号が入力される入力部11と、第1のデータ通信規格よりもデータ転送速度が遅い第2のデータ通信規格に基づく信号を出力する出力部14と、入力部11に入力された第1のデータ通信規格に基づく複数の画像信号によって構成される複数の画像に対して画像処理を行う画像処理部16と、画像処理部16において画像処理された複数の処理済み画像の画像信号を一時的にバッファする第1記憶部12と、第1記憶部12にバッファされた画像信号を第2のデータ通信規格に基づく信号に変換する変換処理部13と、を備える。このようなマルチプレクサであれば、あるデータ通信規格が採用された複数の撮像装置によって取得された画像データを、データ転送の遅延やデータの欠落を生じさせることなく、別のデータ通信規格に変換して出力することができる。

Description

マルチプレクサ
 本発明は、複数の信号入力を一つの信号として出力するマルチプレクサに関する。
 従来、半導体等の工業製品の製造現場や、研究機関、大学、病院等において、産業用デジタルカメラ等の撮像装置で撮像された画像データを、画像処理や画像表示を行うための端末装置(例えば、汎用のパーソナルコンピュータや専用の処理端末等)に送信する際、複数台の撮像装置で撮像された画像データを一つにまとめて、あるいはそれらの画像データから一つを選択して出力するマルチプレクサと呼ばれる機構が用いられている。例えば特許文献1には、第1のカメラから受信するデータと第2のカメラから受信するデータとを合成し、合成したデータを外部機器に対して送信するマルチプレクサが開示されている。
 ところで、非特許文献1に示されているように、産業用デジタルカメラ等の撮像装置のデータ通信規格としては種々のものが制定されており、採用されているデータ通信規格によってそれぞれの撮像装置の特徴や装置構成は異なるものとなる。例えば、データ通信規格の一つである「GigE Vision」に準拠した産業用デジタルカメラは、当該規格ではデータの送信側にフレームバッファを備えることが求められ、またトランスを経由した48V重畳電源からカメラ内部の電源を作るため電源回路が大きく、その結果装置の発熱量も大きくなるため、筐体には相応の大きさが求められるものの、LANケーブルでパーソナルコンピュータ等の端末装置に直接接続することができるので、使い勝手がよいという特徴がある。また、別のデータ通信規格である「CoaXPress」に準拠した産業用デジタルカメラは、トランスを経由しない24V重畳電源からカメラ内部の電源を作るため電源回路が小さく、さらにフレームバッファを搭載する必要がないので、「GigE Vision」規格を採用した産業用デジタルカメラよりも筐体を小さなものにすることができる。そのため、カメラの設置環境が制限されている場合であっても使用することができるという利点を有するものの、画像データを端末装置で処理するためには、画像データの受信側にグラバボードを必要とするという特徴がある。
 産業用デジタルカメラ等の撮像装置で取得した画像データを画像処理や画像表示を行うためにパーソナルコンピュータ等の端末装置に送信するシステムにおいては、端末装置に直接接続することができるという特徴が考慮されて、一般的には「GigE Vision」規格に準拠した撮像装置が採用されることが多くなっている。
 一方、撮像装置の設置スペースに制限がある場合には、筐体が小さい撮像装置、例えば「CoaXPress」規格に準拠した産業用デジタルカメラを採用したいというニーズがある。このように「CoaXPress」規格に準拠した撮像装置を採用した場合、端末装置で画像データを受け入れるためには「CoaXPress」用グラバボードを別途用意するか、ホスト側装置が持っている別のメディア、例えば「GigE Vision」などへ変換する方法が考えられるが、「CoaXPress」用グラバボードを用意することはコスト増になるし、変換装置を使用する場合には、複数台の撮像装置を用いたシステムにおいて、その変換のためのユニットを撮像装置1台毎に用意することがやはり大きなコスト増になるという問題がある。
 このような問題に対しては、あるデータ通信規格が採用された複数の撮像装置によって取得された画像データを、まとめて別のデータ通信規格に変換することができるマルチプレクサを中継して、ユーザの端末装置へと送信することが一つの解決策となる。
国際公開2017/183706号
「マシンビジョン用インターフェース標準規格」(2014年1月発行、日本インダストリアルイメージング協会、http://jiia.org/wp-content/themes/jiia/pdf/fsf.pdf)
 ところで、データ通信規格によって定められているデータ転送速度はそれぞれ異なっており、例えば撮像装置のデータ通信規格が「CoaXPress」であれば、最も低速で画像データを転送する場合においても、そのデータ転送速度は1.25Gbps(実効転送速度は1Gbps程度)に規格化されている。一方、「GigE Vision」規格であればデータ転送速度は最大でも1Gbps(実効転送速度は900Mbps程度)であるため、「CoaXPress」から「GigE Vision」へと画像データのインターフェース変換をすると、通信帯域が不足するという問題がある。当然ながら、複数台の撮像装置から送信された画像データをマルチプレクサでまとめて別のデータ通信規格に沿ったデータへと変換し、1台の端末装置へと送信する場合、通信帯域の不足はより顕著なものになるし、そもそも複数台の撮像装置から送信された画像データをマルチプレクサでまとめる処理を行う際、メモリコントローラを介して画像データをバッファメモリに記憶する必要が生じるが、このメモリコントローラの帯域幅が限られているために、全ての画像データをバッファメモリに記憶することにすら支障が生じてしまい、データの欠落が生じてしまうという問題がある。
 本発明は、上記課題に鑑みてなされたものであり、あるデータ通信規格が採用された複数の撮像装置によって取得された画像データを、データ転送の遅延やデータの欠落を生じさせることなく、別のデータ通信規格に変換して出力することができるマルチプレクサを提供することを目的とする。
 上記目的を達成するために、本発明は、複数の撮像装置によってそれぞれ取得された第1のデータ通信規格に基づく複数の画像信号が入力される入力部と、前記第1のデータ通信規格よりもデータ転送速度が遅い第2のデータ通信規格に基づく信号を出力する出力部と、前記入力部に入力された前記第1のデータ通信規格に基づく複数の画像信号によって構成される複数の画像に対して画像処理を行う画像処理部と、前記画像処理部において画像処理された複数の処理済み画像の画像信号を一時的にバッファする第1記憶部と、前記第1記憶部にバッファされた画像信号を前記第2のデータ通信規格に基づく信号に変換する変換処理部と、を備える、マルチプレクサを提供する(発明1)。
 かかる発明(発明1)によれば、第1のデータ通信規格が採用された複数台の撮像装置を用いたシステムにおいて、第1のデータ通信規格よりもデータ転送速度が遅い第2のデータ通信規格に変換するにあたって、その変換のためのユニットを撮像装置1台毎に用意することなく、複数台分の画像データを1台のユニットでインターフェース変換することができる。また、第1のデータ通信規格のデータ転送速度が第2のデータ通信規格のデータ転送速度よりも速くとも、入力された画像データを第1記憶部に一時的に保存することができるので、出力側の帯域不足によるオーバーフローを回避することができる。さらに、第1記憶部に一時的に保存するデータを、入力部から入力された画像データそのものではなく、画像処理部によって画像処理された画像のデータにすることで、第1記憶部へと転送されるデータ量を抑えることができるため、第1記憶部に保存するデータの欠落を防ぐことができる。このようにして、第1のデータ通信規格が採用された複数の撮像装置によって取得された画像データを、データ転送の遅延やデータの欠落を生じさせることなく、まとめて第2のデータ通信規格に変換して出力することができるマルチプレクサが実現される。
 上記発明(発明1)においては、前記第1のデータ通信規格がCoaXPressであり、前記第2のデータ通信規格がGigE Visionであってもよい(発明2)。
 かかる発明(発明2)によれば、複数台の「CoaXPress」規格に準拠した撮像装置からの画像データ入力を受け入れ、画像処理用の端末装置に対して送信するデータを「GigE Vision」規格で出力することができるので、撮像装置の設置場所の自由度が高く、かつ装置構成がシンプルな撮像システムを構築することができる。
 上記発明(発明1,2)においては、前記画像処理部が、前記複数の画像に対してそれぞれ関心領域を設定し、設定された前記関心領域に対応する画像を前記処理済み画像としてもよい(発明3)。
 上記発明(発明3)においては、前記複数の撮像装置が取得する撮像画像には、撮像対象物に対して照射した線状照射光の反射光によって形成される観察対象線が含まれており、前記画像処理部が、前記観察対象線が前記関心領域に含まれるように、前記関心領域を平行四辺形状に設定してもよい(発明4)。
 上記発明(発明4)においては、前記変換処理部が、前記第1記憶部にバッファされた画像信号から前記観察対象線に関する数値データを算出してもよい(発明5)。
 上記発明(発明5)においては、前記数値データを一時的にバッファする第2記憶部を更に備えていてもよい(発明6)。
 本発明に係るマルチプレクサによれば、あるデータ通信規格が採用された複数の撮像装置によって取得された画像データを、データ転送の遅延やデータの欠落を生じさせることなく、別のデータ通信規格に変換して出力することができる。
本発明の一実施形態に係るマルチプレクサを備えた撮像システムの概略構成図である。 同実施形態に係るマルチプレクサの概略構成図である。 マルチプレクサにおける画像データの処理内容を説明するための模式図である。
 以下、本発明の実施形態を、図面を参照しながら詳細に説明する。なお、以下で説明される実施形態は例示であり、本発明はこれら実施形態に限定されるものではない。
 図1は、本発明の一実施形態に係るマルチプレクサ1を備えた撮像システム100の概略構成図である。撮像システム100は、マルチプレクサ1の入力部11に複数台の撮像装置2がケーブルを介して接続されて構成されており、本実施形態においては4台の撮像装置2(2a、2b、2c、2d)がマルチプレクサ1に接続されている。具体的には、マルチプレクサ1の入力部11は、第1入力部11a、第2入力部11b、第3入力部11c及び第4入力部11dの4つの入力部から構成され、第1入力部11aには第1撮像装置2aが、第2入力部11bには第2撮像装置2bが、第3入力部11cには第3撮像装置2cが、第4入力部11dには第4撮像装置2dが接続されている。マルチプレクサ1の出力部14に端末装置200を接続することにより、撮像システム100は、撮像装置2が取得した画像データや、当該画像データに基づく数値データ等を端末装置200へと転送可能に構成されている。なお、マルチプレクサ1に接続される撮像装置2の数は、複数であれば特に限定されるものではなく、マルチプレクサ1に設けられる入力部11の数も、複数であれば特に限定されるものではない。マルチプレクサ1に設けられた入力部11の数よりも接続されている撮像装置2の数が少ないことも許容される(すなわち、複数の入力部11のうち撮像装置2が接続されていない入力部が存在していてもよい)。
 本実施形態において、撮像装置2は「CoaXPress」規格に準拠した産業用デジタルカメラであり、4台の撮像装置2(2a、2b、2c、2d)とマルチプレクサ1の第1入力部11a、第2入力部11b、第3入力部11c及び第4入力部11dとは、それぞれ汎用の同軸ケーブルを用いて接続されている。4台の撮像装置2(2a、2b、2c、2d)には、それぞれの撮像対象を照明する照明装置(不図示)が接続されており、照明のオンオフを制御する照明制御信号が、端末装置200からマルチプレクサ1及び各撮像装置2を経て各照明装置へと送られる。
 端末装置200は、撮像システム100から送信された画像データや数値データに基づいて画像処理や画像表示の他、各種の処理を行うものであり、また、撮像システム100を構成する撮像装置2や照明装置の制御のための制御信号を撮像システム100に対して出力するものでもある。端末装置200は例えば汎用のパーソナルコンピュータであってよく、撮像システム100専用の操作端末であってもよい。端末装置200は、「GigE Vision」規格で出力された画像データや数値データを受け入れ可能に構成されており、マルチプレクサ1の出力部14に汎用のLANケーブルで接続されている。撮像システム100のオペレータが端末装置200を操作することにより、撮像システム100に対して各種指示を行うことができる。
 本実施形態に係るマルチプレクサ1は、図2に示すように、複数の撮像装置によってそれぞれ取得された第1のデータ通信規格に基づく複数の画像信号が入力される入力部11と、第1のデータ通信規格よりもデータ転送速度が遅い第2のデータ通信規格に基づく信号を出力する出力部14と、入力部11に入力された第1のデータ通信規格に基づく複数の画像信号によって構成される複数の画像に対して画像処理を行う画像処理部16(16a、16b、16c、16d)と、画像処理部16において画像処理された複数の処理済み画像の画像信号を一時的にバッファする第1記憶部12と、第1記憶部12にバッファされた画像信号を第2のデータ通信規格に基づく信号に変換する変換処理部13と、変換処理部13によって生成された第2のデータ通信規格に基づく信号を一時的にバッファする第2記憶部17と、マルチプレクサ1に接続された4台の撮像装置2(2a、2b、2c、2d)に対して電力を供給する電源部15と、を備える。本実施形態においては、第1のデータ通信規格が「CoaXPress」規格であり、第2のデータ通信規格が「GigE Vision」規格である。
 入力部11は、4台の撮像装置2(2a、2b、2c、2d)にそれぞれ1つずつ割り当てられた、第1入力部11a、第2入力部11b、第3入力部11c及び第4入力部11dの4つの入力部から構成されている。第1入力部11a、第2入力部11b、第3入力部11c及び第4入力部11dは、いずれも「CoaXPress」規格が採用するインターフェース構造(コネクタ)を有し、同軸ケーブルで4台の撮像装置2(2a、2b、2c、2d)が接続される。
 第1記憶部12は、いわゆるフレームメモリと呼ばれる、入力部11から入力された画像データを1画面分記憶するためのメモリデバイスであり、DRAMやSRAMによって実現されるものであってよい。本実施形態においては、第1入力部11a、第2入力部11b、第3入力部11c及び第4入力部11dから入力された複数の画像データに対して、後述する画像処理部16(16a、16b、16c、16d)がそれぞれ画像処理を行い、その画像処理された複数の処理済み画像の画像データを、第1記憶部12がそれぞれ独立して記憶し、後述する変換処理部13に対してそれぞれの画像データを独立して出力する。
 画像処理部16(16a、16b、16c、16d)は、入力された画像データに対して画像処理を行うためのプロセッサであり、FPGAやCPU等によって実現されるものであってよい。本実施形態においては、第1入力部11aから入力された画像データに対して画像処理部16aが、第1入力部11bから入力された画像データに対して画像処理部16bが、第1入力部11aから入力された画像データに対して画像処理部16cが、第1入力部11aから入力された画像データに対して画像処理部16dが、それぞれ画像処理を行う。なお、画像処理部16a、16b、16c、16dはそれぞれが独立したプロセッサである必要はなく、後述する変換処理部13が画像処理部16a、16b、16c、16dとして機能してもよい。
 ここで、画像処理部16(16a、16b、16c、16d)が行う画像処理は、第1入力部11a、第2入力部11b、第3入力部11c及び第4入力部11dから入力された複数の画像データのデータ量を圧縮する処理であることが求められる。例えば、画像処理部16(16a、16b、16c、16d)が行う画像処理としては、各入力部から入力された複数の画像に対してそれぞれ関心領域を設定し、設定された関心領域に対応する画像(関心領域部分のみが切り出された画像)を処理済み画像として生成することや、画像の2値化、エッジ強調、反転画像の生成等の処理をすること、特徴量を数値化すること等が想定される。なお、特徴量の数値化には、画像中の何らかの対象物の角度を計測して得られた数値や、寸法を計測して得られた数値を用いることが含まれる。
 変換処理部13は、画像データの変換処理・合成処理や、撮像装置2の制御を行うためのプロセッサであり、FPGAやCPU等によって実現されるものであってよい。変換処理部13は、例えば、撮像装置2から入力される画像信号(やその画像信号に基づいて生成された各種の信号)に対する各種の処理、撮像装置2との間の制御信号の送受信、撮像装置2に対する電力供給の制御、照明装置に対するオンオフの制御等の機能を提供する。本実施形態においては、変換処理部13は、入力部11に入力された「CoaXPress」規格に基づく複数の画像データを「GigE Vision」規格に基づく画像データに変換することができる。また、変換処理部13は、第1入力部11a、第2入力部11b、第3入力部11c及び第4入力部11dから入力された画像データ(画像処理部16a、16b、16c、16dによって画像処理された処理済み画像データを含む)のうち、2以上の画像データを合成して合成画像データを生成することができる。さらに、変換処理部13は、処理プログラムに基づいて画像データから数値データを算出、例えば画像中に含まれている所定のオブジェクトに関する何らかの数値データを算出して、後述する第2記憶部17に記憶させることができる。加えて、変換処理部13は、端末装置200から受信した制御信号に基づいて、各撮像装置2に対して撮像指示等を与える制御信号を送信することができる。
 第2記憶部17は、変換処理部13から入力された画像データや数値データを一時的にバッファするためのメモリデバイスであり、DRAMやSRAMによって実現されるものであってよい。
 出力部14は、変換処理部13で「GigE Vision」規格に変換された画像データや数値データ(あるいは第2記憶部17に一時的にバッファされたそれらのデータ)をマルチプレクサ1の外部へと出力する。出力部14は「GigE Vision」規格が採用するインターフェース構造(コネクタ)を有し、LANケーブルで端末装置200に接続される。
 電源部15は、撮像装置2(2a、2b、2c、2d)に供給する電力を出力する電源回路である。
 マルチプレクサ1の変換処理部13は、オペレータが端末装置200を操作することによって端末装置200から送信された制御信号を、出力部14を介して受信し、当該制御信号に基づいて、撮像装置2(2a、2b、2c、2d)が次のような機能を実現するよう、各撮像装置2に対して制御信号を送信することができる。
(1)4つの撮像装置2(2a、2b、2c、2d)のうち、いずれか1台の撮像装置2に撮像させる。
(2)4つの撮像装置2(2a、2b、2c、2d)のうち、いずれか2台以上の撮像装置2に同時に撮像させる。
(3)撮像する撮像装置2を切り替える。
 以上説明したようなマルチプレクサ1によれば、「CoaXPress」規格(第1のデータ通信規格)が採用された4台の撮像装置2を用いたシステムにおいて、「CoaXPress」規格よりもデータ転送速度が遅い「GigE Vision」規格(第2のデータ通信規格)に変換するにあたって、その変換のためのユニットを4台の撮像装置2それぞれに対して用意することなく、4台分の画像データを1台のユニットでインターフェース変換することができる。また、「CoaXPress」規格のデータ転送速度が「GigE Vision」規格のデータ転送速度よりも速くとも、入力された画像データを第1記憶部12に一時的に保存することができるので、出力側の帯域不足によるオーバーフローを回避することができる。さらに、第1記憶部12に一時的に保存するデータを、入力部11(第1入力部11a、第2入力部11b、第3入力部11c及び第4入力部11d)から入力された画像データそのものではなく、画像処理部16(16a、16b、16c、16d)によって画像処理された画像のデータにすることで、第1記憶部12へと転送されるデータ量を抑えることができるため、第1記憶部12に保存するデータの欠落を防ぐことができる。このようにして、「CoaXPress」規格に準拠した4台の撮像装置2によって取得された画像データを、データ転送の遅延やデータの欠落を生じさせることなく、まとめて「GigE Vision」規格に変換することができる。
 また、このようなマルチプレクサ1を活用することにより、複数台の「CoaXPress」規格に準拠した撮像装置2からの画像データ入力を受け入れ、端末装置200に対して送信するデータを「GigE Vision」規格で出力することができるので、撮像装置2の設置場所の自由度が高く、かつ装置構成がシンプルな撮像システム100を構築することができる。
 本実施形態においては、画像処理部16(16a、16b、16c、16d)は、第1入力部11a、第2入力部11b、第3入力部11c及び第4入力部11dから入力された複数の画像に対してそれぞれ関心領域を設定し、設定された関心領域に対応する画像(関心領域部分のみが切り出された画像)を処理済み画像として生成する。産業用デジタルカメラを撮像装置2として用いた撮像システム100は、撮像対象物に対して線状照射光を照射し、その反射光によって形成される観察対象線を撮影し、その観察対象線の変化を解析する目的で使われることがある。具体的には、例えば、撮像対象物の所定の部分の角度や向きを計測したり、撮像対象物の直線性を確認したりするために、撮像システム100が用いられる。
 例えば、図3(a)に示すように、撮像対象物に対して照射した線状照射光の反射光によって形成される観察対象線Lが撮像画像Sに含まれている場合、事前に撮像画像Sのどのあたりに観察対象線Lが出現するのかを把握することは可能であるため、その観察対象線Lが出現する領域に対して関心領域Rを設定することも可能である。例えば、撮像システム100のオペレータが端末装置200を操作することにより、画像処理部16(16a、16b、16c、16d)が撮像画像Sに対して関心領域Rを設定し、この関心領域に対応する画像を処理済み画像として生成される。この処理済み画像は、すなわち関心領域R以外の領域が切り捨てられた画像であるため、当該処理済み画像の画像データは、入力部11から入力された画像データよりもデータ量が圧縮されたものになる。
 さらに、図3(b)に示すように、撮像画像Sに出現する観察対象線Lが含まれる関心領域Rを平行四辺形状に設定するようにすれば、画像処理部16(16a、16b、16c、16d)が生成する関心領域に対応する画像(処理済み画像)のデータ量は、図3(a)に示すような矩形状の関心領域に対応する画像よりも、より小さくすることができる。このように、画像処理部16(16a、16b、16c、16d)が、観察対象線Lが関心領域Rに含まれるように、関心領域Rを平行四辺形状に設定することにより、第1記憶部12へと転送されるデータ量を抑えることができるため、マルチプレクサ1におけるデータ転送の遅延やデータの欠落の発生を防ぐことができる。関心領域Rの設定、例えば平行四辺形の大きさや傾斜角度等は、撮像システム100のオペレータが端末装置200を操作することにより調整することができる。
 さらに、撮像システム100が、撮像対象物に対して線状照射光を照射し、その反射光によって形成される観察対象線を撮影し、その観察対象線の変化を解析する目的で使われる場合、端末装置200へと転送するデータを画像データそのものではなく、当該観察対象線に関する数値データとすることにより、出力部14から出力されるデータ量を少なくすることが可能である。
 本実施形態においては、変換処理部13が、第1記憶部12にバッファされた画像信号から観察対象線に関する数値データを算出することができるように構成されている。具体的には、第1記憶部12にバッファされた画像信号に基づいて、変換処理部13が、ある基準線に対して観察対象線が形成する角度の数値データを算出し、その角度データを第2記憶部17に転送する。このように、画像データではなく、数値データを出力部14から出力するようにすれば、マルチプレクサ1から端末装置200へのデータ転送の遅延を防ぐことができるとともに、端末装置200側で行う処理を少なくすることも可能となる。
 以上、本発明に係るマルチプレクサ1及びそれを用いた撮像システム100について説明してきたが、本発明は上記実施形態に限定されることなく、種々の変更実施が可能である。例えば、本実施形態においては、第1のデータ通信規格が「CoaXPress」規格であり、第2のデータ通信規格が「GigE Vision」規格であるが、データ通信規格は必ずしもこれらに限られるものではなく、第1のデータ通信規格よりも第2のデータ通信規格のデータ転送速度が遅いものであれば、同様の構成を備えたマルチプレクサとすることにより、本実施形態に係るマルチプレクサ1と同様の効果を奏することが期待できる。また、上記の説明においては、4つの撮像装置2(2a、2b、2c、2d)がマルチプレクサ1に接続されていることを前提に説明したが、マルチプレクサ1に接続される撮像装置2の数は当然これに限られるものではなく、複数の撮像装置2が接続されていれば、同様の処理が可能である。
100 撮像システム
1 マルチプレクサ
 11 入力部
  11a 第1入力部
  11b 第2入力部
  11c 第3入力部
  11d 第4入力部
 12 第1記憶部
 13 変換処理部
 14 出力部
 15 電源部
 16(16a、16b、16c、16d) 画像処理部
 17 第2記憶部
2 撮像装置
 2a 第1撮像装置
 2b 第2撮像装置
 2c 第3撮像装置
 2d 第4撮像装置
3 同軸ケーブル
4 LANケーブル
200 端末装置

Claims (6)

  1.  複数の撮像装置によってそれぞれ取得された第1のデータ通信規格に基づく複数の画像信号が入力される入力部と、
     前記第1のデータ通信規格よりもデータ転送速度が遅い第2のデータ通信規格に基づく信号を出力する出力部と、
     前記入力部に入力された前記第1のデータ通信規格に基づく複数の画像信号によって構成される複数の画像に対して画像処理を行う画像処理部と、
     前記画像処理部において画像処理された複数の処理済み画像の画像信号を一時的にバッファする第1記憶部と、
     前記第1記憶部にバッファされた画像信号を前記第2のデータ通信規格に基づく信号に変換する変換処理部と、を備える、マルチプレクサ。
  2.  前記第1のデータ通信規格がCoaXPressであり、
     前記第2のデータ通信規格がGigE Visionである、請求項1に記載のマルチプレクサ。
  3.  前記画像処理部が、前記複数の画像に対してそれぞれ関心領域を設定し、設定された前記関心領域に対応する画像を前記処理済み画像とする、請求項1又は2に記載のマルチプレクサ。
  4.  前記複数の撮像装置が取得する撮像画像には、撮像対象物に対して照射した線状照射光の反射光によって形成される観察対象線が含まれており、
     前記画像処理部が、前記観察対象線が前記関心領域に含まれるように、前記関心領域を平行四辺形状に設定する、請求項3に記載のマルチプレクサ。
  5.  前記変換処理部が、前記第1記憶部にバッファされた画像信号から前記観察対象線に関する数値データを算出する、請求項4に記載のマルチプレクサ。
  6.  前記数値データを一時的にバッファする第2記憶部を更に備える、請求項5に記載のマルチプレクサ。
PCT/JP2023/042644 2022-11-30 2023-11-29 マルチプレクサ WO2024117148A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022191207 2022-11-30
JP2022-191207 2022-11-30

Publications (1)

Publication Number Publication Date
WO2024117148A1 true WO2024117148A1 (ja) 2024-06-06

Family

ID=91323779

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/042644 WO2024117148A1 (ja) 2022-11-30 2023-11-29 マルチプレクサ

Country Status (1)

Country Link
WO (1) WO2024117148A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010239221A (ja) * 2009-03-30 2010-10-21 Panasonic Corp 画像通信システム
WO2017183706A1 (ja) * 2016-04-22 2017-10-26 興和株式会社 マルチプレクサ、及び該マルチプレクサを備えた撮影装置
US10452926B2 (en) * 2016-12-29 2019-10-22 Uber Technologies, Inc. Image capture device with customizable regions of interest
WO2022091741A1 (ja) * 2020-10-29 2022-05-05 興和株式会社 マルチプレクサ及び撮像システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010239221A (ja) * 2009-03-30 2010-10-21 Panasonic Corp 画像通信システム
WO2017183706A1 (ja) * 2016-04-22 2017-10-26 興和株式会社 マルチプレクサ、及び該マルチプレクサを備えた撮影装置
US10452926B2 (en) * 2016-12-29 2019-10-22 Uber Technologies, Inc. Image capture device with customizable regions of interest
WO2022091741A1 (ja) * 2020-10-29 2022-05-05 興和株式会社 マルチプレクサ及び撮像システム

Similar Documents

Publication Publication Date Title
JP7470150B2 (ja) リアルタイムビデオ伸び計
US10200603B2 (en) Data processing system for transmitting compressed multimedia data over camera interface
WO2019085605A1 (zh) 一种基于cpu+gpu+fpga架构的自动光学检测系统
KR100962753B1 (ko) 영상 캡처 장치 출력 공유 방법 및 영상 캡처 장치 출력 공유 시스템
JP2007129573A (ja) 撮像装置
EP1465401A2 (en) Transferring data from a digital imaging apparatus
CN201349262Y (zh) 多目相机
WO2024117148A1 (ja) マルチプレクサ
US7955264B2 (en) System and method for providing communication between ultrasound scanners
KR20110068863A (ko) 정보 처리 시스템 및 방법, 정보 처리 장치 및 방법, 컴퓨터 판독 가능한 매체 및 촬상 장치 및 방법
US20230370186A1 (en) Multiplexer and imaging system
CN105898122B (zh) 一种光电感知系统
WO2020258031A1 (zh) 控制方法、图像传输系统、显示装置及无人机系统
EP2132620A2 (en) Universal interface for medical imaging receptors
JP7495903B2 (ja) Av伝送装置
CN216905094U (zh) 一种多输出预览接口的8k超高清视频编码器
CN113873163A (zh) 一种多路超高清视频采集传输系统及方法
US11381774B2 (en) Microscope system and method for operating a microscope system
US11516127B2 (en) System controller, controlling an IP switch including plural SDN switches
US20240064320A1 (en) Systems and methods for scaling video streams
US20240121519A1 (en) Information processing device, information processing method, and program
US20070153092A1 (en) Video camera apparatus for whole space monitor
CN221042979U (zh) 摄像组件、电子设备
JP2018163321A (ja) マルチディスプレイシステム、映像表示システム、表示装置、映像表示制御コントローラ
KR20070089384A (ko) 저장된 로우(raw) 이미지 신호를 이용하는 이미지 튜닝시스템 및 이미지 튜닝 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23897795

Country of ref document: EP

Kind code of ref document: A1