WO2024117009A1 - Conductive component for secondary battery, and manufacturing method thereof - Google Patents

Conductive component for secondary battery, and manufacturing method thereof Download PDF

Info

Publication number
WO2024117009A1
WO2024117009A1 PCT/JP2023/042089 JP2023042089W WO2024117009A1 WO 2024117009 A1 WO2024117009 A1 WO 2024117009A1 JP 2023042089 W JP2023042089 W JP 2023042089W WO 2024117009 A1 WO2024117009 A1 WO 2024117009A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
secondary battery
foil
carrying component
materials
Prior art date
Application number
PCT/JP2023/042089
Other languages
French (fr)
Japanese (ja)
Inventor
伸之 船平
恵美 池田
真紀 佐竹
敦也 廣野
山崎 泰成
直生 本多
恭平 渡邉
Original Assignee
株式会社不二越
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社不二越 filed Critical 株式会社不二越
Publication of WO2024117009A1 publication Critical patent/WO2024117009A1/en

Links

Images

Abstract

Provided are: a conductive component which is for a secondary battery and is capable of being bonded without affecting other components even when the conductive component is attached to other components such as an electrode material using a bonding method such as laser welding; and a method for manufacturing said conductive component. The conductive component 100 for a secondary battery is formed from a plurality of foil materials 10, 20, 30 made of aluminum or aluminum alloy. After these plurality of foil materials 10, 20, and 30 are laminated in the thickness direction, the foil materials 10, 20, and 30 adjacent to each other in the thickness direction are bonded to each other by friction stir point welding to form recessed parts 11 and 12.

Description

二次電池用通電部品およびその製造方法Current-carrying component for secondary battery and method of manufacturing same
本発明は、主に自動車等に搭載される二次電池用途の通電部品およびその製造方法に関する。 The present invention relates to current-carrying components for secondary batteries, primarily installed in automobiles, and methods for manufacturing the same.
2枚以上の板材や箔材同士から形成される通電部品、特に自動車等の二次電池用途の通電部品は、バスバー(ブスバー)とも呼ばれており、アルミニウム合金や銅合金など高導電性の材料から形成されている技術が開示されている(特許文献1参照)。 Current-carrying components formed from two or more sheets or foils, particularly those used in secondary batteries in automobiles, are also called bus bars, and technology has been disclosed for forming them from highly conductive materials such as aluminum alloys and copper alloys (see Patent Document 1).
日本国特許第6971990号公報Japanese Patent No. 6971990
しかしながら、レーザ溶接等を用いて複数枚の金属製箔材を積層させた状態で下方にある電極材と接合する場合に、レーザ溶接等による熱や振動が下層にある金属製箔材まで到達し難いので、複数枚の金属製箔材から形成される通電部品と電極材とを互いに接合できないという問題があった。仮に、レーザ溶接等を高出力の状態で接合ができた場合でも、下方にある電極材に対して過大な熱や振動による変形などの影響が発生するという問題もあった。 However, when multiple sheets of metal foil material are laminated and then joined to an electrode material underneath using laser welding or the like, the heat and vibrations from the laser welding or the like have difficulty reaching the metal foil material underneath, so there is a problem in that it is not possible to join the current-carrying component formed from multiple sheets of metal foil material to the electrode material. Even if joining can be achieved using high-power laser welding or the like, there is still the problem of the electrode material underneath being affected by deformation and other effects caused by excessive heat and vibration.
そこで、本発明はレーザ溶接などの接合方法を用いて電極材など他の部品へ取り付ける(接合する)場合でも、当該他の部品に影響を及ぼすこと無く接合できる二次電池用通電部品およびその製造方法を提供することを課題とする。 The present invention aims to provide a current-carrying component for a secondary battery that can be joined to other components, such as electrode materials, without affecting the other components, even when the component is attached (joined) to the other components using a joining method such as laser welding, and a method for manufacturing the same.
本発明の二次電池用通電部品は、複数枚のアルミニウム製またはアルミニウム合金製の箔材から形成する。これらの複数枚の箔材は厚み方向に積層されて、当該箔材の厚み方向に隣接する箔材同士を摩擦かく拌点接合により接合されている。また、これらの箔材を5枚以上として、かつ各箔材の厚さを0.5mm以下としても構わない。さらに、箔材が直線状または曲線状に曲げられた屈曲部をさらに設けることもできる。 The current-carrying component for a secondary battery of the present invention is formed from multiple sheets of aluminum or aluminum alloy foil material. These multiple sheets of foil material are stacked in the thickness direction, and adjacent foil sheets in the thickness direction of the foil material are joined by friction stir spot welding. In addition, there may be five or more sheets of these foil materials, and the thickness of each foil material may be 0.5 mm or less. Furthermore, the foil material may be further provided with a bent portion in which it is bent in a straight or curved shape.
また、当該二次電池用通電部品の製造方法の発明においては、まず複数枚のアルミニウム製またはアルミニウム合金製の箔材を積層させた上で最上層にこれらの箔材と同一成分の板材を設置する(第1工程)。その後、当該板材の上方から摩擦かく拌点接合工具を回転させながら板材および箔材の内部へ挿入する(第2工程)。最後に、摩擦かく拌点接合工具を板材および箔材から抜き出す(第3工程)。 In addition, in the invention of the manufacturing method for the current-carrying component for the secondary battery, first, multiple sheets of aluminum or aluminum alloy foil material are stacked, and then a plate material of the same composition as these foil materials is placed on the top layer (first step). After that, a friction-stir spot welding tool is inserted from above the plate materials into the inside of the plate materials and foil materials while rotating (second step). Finally, the friction-stir spot welding tool is removed from the plate materials and foil materials (third step).
なお、積層させる複数枚のアルミニウム製またはアルミニウム合金製の箔材の各厚みが0.3mm未満である際において、これらの箔材の最上層に板材を設置する場合には、当該板材の厚みを0.5mm超とすることが好ましい。また、これらの箔材の最上層に同一成分の箔材を設置する場合には、当該設置する箔材の厚みを0.3mm以上0.5mm以下とすることが好ましい。 When the thickness of each of the multiple aluminum or aluminum alloy foil materials to be laminated is less than 0.3 mm, if a plate material is placed on the top layer of these foil materials, it is preferable that the thickness of the plate material be more than 0.5 mm. Also, if a foil material of the same composition is placed on the top layer of these foil materials, it is preferable that the thickness of the foil material to be placed be 0.3 mm or more and 0.5 mm or less.
本発明の二次電池用通電部品は、摩擦かく拌点接合方法によって一体化している部分を有するため、当該接合箇所をレーザ溶接で電極材と接合する場合でも電極材への影響を及ぼすことなく接合できる。加えて、摩擦かく拌点接合方法によって一体化している部分の厚みは、接合条件により制御が可能なため、レーザ溶接の様々な条件にも対応ができる。 The current-carrying component for a secondary battery of the present invention has a portion that is integrated by the friction stir spot joining method, so that even when the joining portion is joined to the electrode material by laser welding, the joining can be performed without affecting the electrode material. In addition, the thickness of the portion that is integrated by the friction stir spot joining method can be controlled by the joining conditions, so it can be used under various laser welding conditions.
本発明の二次電池用通電部品100の平面図である1 is a plan view of a current-carrying component 100 for a secondary battery according to the present invention; 図1に示す二次電池用通電部品100のA-A線断面図であるA cross-sectional view of the current-carrying component 100 for a secondary battery shown in FIG. 本発明の二次電池用通電部品200の平面図であるFIG. 2 is a plan view of a current-carrying component 200 for a secondary battery according to the present invention. 図3に示す二次電池用通電部品200のB-B線断面図であるBB line cross-sectional view of the current-carrying component 200 for a secondary battery shown in FIG. 本発明の二次電池用通電部品300の平面図であるFIG. 3 is a plan view of a current-carrying component 300 for a secondary battery according to the present invention. 図5に示す二次電池用通電部品300のC-C線断面図である5 is a cross-sectional view of the current-carrying component 300 for a secondary battery taken along line CC in FIG. 本発明の二次電池用通電部品400の平面図であるFIG. 4 is a plan view of a current-carrying component 400 for a secondary battery according to the present invention. 図7に示す二次電池用通電部品400のD-D線断面図である8 is a cross-sectional view of the current-carrying component 400 for a secondary battery shown in FIG. 7 along line D-D. 本発明の二次電池用通電部品500の平面図であるFIG. 1 is a plan view of a current-carrying component 500 for a secondary battery according to the present invention. 図9に示す二次電池用通電部品500のE-E線断面図である9 is a cross-sectional view of the secondary battery current-carrying component 500 taken along line E-E. 本発明の二次電池用通電部品の製造方法における第1工程を示す模式図であるFIG. 1 is a schematic diagram showing a first step in a method for producing an electric current-carrying component for a secondary battery according to the present invention. 本発明の二次電池用通電部品の製造方法における第2工程を示す模式図であるFIG. 2 is a schematic diagram showing a second step in the method for producing an electric current-carrying component for a secondary battery according to the present invention. 本発明の二次電池用通電部品の製造方法における第3工程を示す模式図であるFIG. 1 is a schematic diagram showing a third step in the method for producing an electric-conducting component for a secondary battery according to the present invention. 実施例1および2で使用した試験片の模式平面図である。FIG. 2 is a schematic plan view of a test piece used in Examples 1 and 2. 実施例1および2で使用した試験片(実施例)の模式正面図である。FIG. 2 is a schematic front view of the test piece (Example) used in Examples 1 and 2. 実施例1および2で使用した試験片(比較例)の模式正面図である。FIG. 2 is a schematic front view of a test piece (comparative example) used in Examples 1 and 2.
本発明の第1ないし第5実施形態である二次電池用通電部品について、図面を用いて説明する。本発明の第1実施形態である二次電池用通電部品100の平面図を図1、同平面図のA-A切断線における断面図を図2、第2実施形態である二次電池用通電部品200の平面図を図3、同平面図のB-B切断線における断面図を図4、第3実施形態である二次電池用通電部品300の平面図を図5、同平面図のC-C切断線における断面図を図6、第4実施形態である二次電池用通電部品400の平面図を図7、同平面図のD-D切断線における断面図を図8、第5実施形態である二次電池用通電部品500の平面図を図9、同平面図のE-E切断線における断面図を図10にそれぞれ示す。 The current-carrying components for secondary batteries according to the first to fifth embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a plan view of a current-carrying component for secondary batteries 100 according to the first embodiment of the present invention, FIG. 2 shows a cross-sectional view taken along the A-A line in the plan view, FIG. 3 shows a plan view of a current-carrying component for secondary batteries 200 according to the second embodiment, FIG. 4 shows a cross-sectional view taken along the B-B line in the plan view, FIG. 5 shows a plan view of a current-carrying component for secondary batteries 300 according to the third embodiment, FIG. 6 shows a cross-sectional view taken along the C-C line in the plan view, FIG. 7 shows a plan view of a current-carrying component for secondary batteries 400 according to the fourth embodiment, FIG. 8 shows a cross-sectional view taken along the D-D line in the plan view, FIG. 9 shows a plan view of a current-carrying component for secondary batteries 500 according to the fifth embodiment, and FIG. 10 shows a cross-sectional view taken along the E-E line in the plan view.
本発明の二次電池用通電部品(第1実施形態)100は、図1および図2に示す様に複数の金属(アルミニウムまたはアルミニウム合金)製箔材10,20,30・・・が厚み方向に積層されて形成されている。この二次電池用通電部品100は、図1および図2に示す様に2カ所の接合部11,12を有している。これらの接合部(凹部)11,12の周囲には、図2に示す様に上下方向に隣接している金属製箔材同士が摩擦かく拌点接合方法によってかく拌混錬された一体化部Y11,Y12が形成されている。 The current-carrying component for a secondary battery (first embodiment) 100 of the present invention is formed by stacking a plurality of metal (aluminum or aluminum alloy) foil materials 10, 20, 30, etc. in the thickness direction as shown in Figures 1 and 2. This current-carrying component for a secondary battery 100 has two joints 11, 12 as shown in Figures 1 and 2. Around these joints (recesses) 11, 12, integrated portions Y11, Y12 are formed by mixing and kneading adjacent metal foil materials in the vertical direction by a friction stir spot joining method as shown in Figure 2.
本発明の二次電池用通電部品(第2実施形態)200は、第1実施形態の二次電池用通電部品100と同様に図3および図4に示す様に複数の金属製箔材110,120,130・・・が厚み方向に積層されて形成されている。この二次電池用通電部品200は、第1実施形態の二次電池用通電部品100と同様に図3および図4に示す様に2カ所の接合部111,112を有している。これらの接合部(凹部)111,112の周囲には、図4に示す様に上下方向に隣接している金属製箔材同士が摩擦かく拌点接合方法によってかく拌混錬された一体化部Y111,Y112が形成されている。 The current-carrying component for a secondary battery (second embodiment) 200 of the present invention is formed by stacking a plurality of metal foil materials 110, 120, 130, etc. in the thickness direction as shown in Figures 3 and 4, similar to the current-carrying component for a secondary battery 100 of the first embodiment. This current-carrying component for a secondary battery 200 has two joints 111, 112 as shown in Figures 3 and 4, similar to the current-carrying component for a secondary battery 100 of the first embodiment. Around these joints (recesses) 111, 112, integrated portions Y111, Y112 are formed by mixing and kneading the metal foil materials adjacent to each other in the vertical direction by a friction-stir spot joining method as shown in Figure 4.
また、二次電池用通電部品(第2実施形態)200の中央には、1箇所以上の長孔(貫通穴)が設けられている。この長孔113,114,115は、電極材等の他の部品に取り付ける(設置する)際に発生する曲げ応力等を緩和すると同時に、当該二次電池用通電部品(第2実施形態)200の通電時に発生する熱を逃がす、すなわち放熱効果として有用である。 In addition, one or more long holes (through holes) are provided in the center of the current-carrying component for secondary batteries (second embodiment) 200. These long holes 113, 114, 115 relieve bending stresses and the like that occur when the current-carrying component for secondary batteries (second embodiment) 200 is attached (installed) to other components such as electrode materials, and at the same time, release heat that is generated when the current-carrying component for secondary batteries (second embodiment) 200 is energized, i.e., are useful for heat dissipation.
本発明の二次電池用通電部品(第3実施形態)300は、第1実施形態の二次電池用通電部品100と同様に図5および図6に示す様に複数の金属製箔材210,220,230・・・が厚み方向に積層されて形成されている。この二次電池用通電部品300は、第1実施形態の二次電池用通電部品100と同様に図5および図6に示す様に2カ所の接合部211,212を有している。これらの接合部(凹部)211,212の周囲には、図6に示す様に上下方向に隣接している金属製箔材同士が摩擦かく拌点接合方法によってかく拌混錬された一体化部Y211,Y212が形成されている。 The current-carrying component for a secondary battery (third embodiment) 300 of the present invention is formed by stacking a plurality of metal foil materials 210, 220, 230, etc. in the thickness direction as shown in Figures 5 and 6, similar to the current-carrying component for a secondary battery 100 of the first embodiment. This current-carrying component for a secondary battery 300 has two joints 211, 212 as shown in Figures 5 and 6, similar to the current-carrying component for a secondary battery 100 of the first embodiment. Around these joints (recesses) 211, 212, integrated portions Y211, Y212 are formed by mixing and kneading the metal foil materials adjacent to each other in the vertical direction by a friction-stir spot joining method as shown in Figure 6.
また、二次電池用通電部品(第3実施形態)300の中央付近には、厚み方向(図6の上方向)に湾曲した屈曲部C1が形成されている。この屈曲部C1は、電極材等の他の部品に取り付ける際に発生する曲げ応力等を緩和すると同時に、電極材等の他の部品に取り付ける際に他の部品との干渉を防ぐと共に限られたスペースに二次電池用通電部品(第3実施形態)300を効率良く配置できる点で有用である。なお、図6に示す屈曲部C1は曲線部分のみから構成されているが、複数の直線部から構成される形状や曲線部と直線部が組み合わされた形状でもよい。 Furthermore, near the center of the current-carrying component for secondary batteries (third embodiment) 300, a bent portion C1 is formed that is curved in the thickness direction (upward in FIG. 6). This bent portion C1 is useful in that it relieves bending stresses that occur when the current-carrying component for secondary batteries (third embodiment) 300 is attached to other components such as electrode materials, prevents interference with other components when the current-carrying component for secondary batteries (third embodiment) 300 is attached to other components such as electrode materials, and allows the current-carrying component for secondary batteries (third embodiment) 300 to be efficiently arranged in a limited space. Note that while the bent portion C1 shown in FIG. 6 is composed only of curved portions, it may have a shape composed of multiple straight portions or a shape that combines curved portions and straight portions.
本発明の二次電池用通電部品(第4実施形態)400は、第1実施形態の二次電池用通電部品100と同様に図7および図8に示す様に複数の金属製箔材310,320,330・・・が厚み方向に積層されることで形成されている。この二次電池用通電部品400は、第1実施形態の二次電池用通電部品100と同様に図7および図8に示す様に2カ所の接合部311,312を有している。これらの接合部(凹部)311,312の周囲には、図8に示す様に上下方向に隣接している金属製箔材同士が摩擦かく拌点接合方法によってかく拌混錬された一体化部Y311,Y312が形成されている。 The current-carrying component for a secondary battery (fourth embodiment) 400 of the present invention is formed by stacking a plurality of metal foil materials 310, 320, 330, etc. in the thickness direction as shown in Figures 7 and 8, similar to the current-carrying component for a secondary battery 100 of the first embodiment. This current-carrying component for a secondary battery 400 has two joints 311, 312 as shown in Figures 7 and 8, similar to the current-carrying component for a secondary battery 100 of the first embodiment. Around these joints (recesses) 311, 312, integrated portions Y311, Y312 are formed by mixing and kneading the metal foil materials adjacent to each other in the vertical direction by a friction-stir spot joining method as shown in Figure 8.
また、二次電池用通電部品(第4実施形態)400の中央には、第2実施形態の二次電池用通電部品200と同様に1箇所以上の長穴(貫通穴)が設けられている。この長穴313,314,315は、電極材等の他の部品に取り付ける(設置する)際に発生する曲げ応力等を緩和すると同時に、当該二次電池用通電部品(第4実施形態)400の通電時に発生する熱を逃がす、すなわち放熱効果として有用である。 Furthermore, the secondary battery current-carrying part (fourth embodiment) 400 has one or more long holes (through holes) in the center, similar to the secondary battery current-carrying part 200 of the second embodiment. These long holes 313, 314, 315 relieve bending stresses and the like that occur when the secondary battery current-carrying part (fourth embodiment) 400 is attached (installed) to other parts such as electrode materials, and at the same time, they are useful for releasing heat that is generated when the secondary battery current-carrying part (fourth embodiment) 400 is energized, i.e., for heat dissipation effects.
さらに、二次電池用通電部品(第4実施形態)400の中央付近には、第3実施形態の二次電池用通電部品300の場合と同様に厚み方向(図8の上方向)に湾曲した屈曲部C2が形成されている。この屈曲部C2は、電極材等の他の部品に取り付ける際に発生する曲げ応力等を緩和すると同時に、電極材等の他の部品に取り付ける際に他の部品との干渉を防ぐと共に限られたスペースに二次電池用通電部品(第3実施形態)300を効率良く配置できる点で有用である。なお、図8に示す屈曲部C2は曲線部分のみから構成されているが、複数の直線部のみから構成される形状や曲線部と直線部が組み合わされた形状でもよい。 Furthermore, near the center of the current-carrying component for secondary batteries (fourth embodiment) 400, a bent portion C2 is formed that is bent in the thickness direction (upward in FIG. 8) in the same manner as the current-carrying component for secondary batteries 300 of the third embodiment. This bent portion C2 is useful in that it relieves bending stresses and the like that occur when the current-carrying component for secondary batteries (fourth embodiment) 300 is attached to other components such as electrode materials, prevents interference with other components when the current-carrying component for secondary batteries (third embodiment) 300 is attached to other components such as electrode materials, and allows the current-carrying component for secondary batteries (third embodiment) 300 to be efficiently arranged in a limited space. Note that while the bent portion C2 shown in FIG. 8 is composed only of curved portions, it may also be composed only of multiple straight portions or may have a shape that combines curved portions and straight portions.
本発明の二次電池用通電部品(第5実施形態)500は、第1実施形態の二次電池用通電部品100と同様に図9および図10に示す様に複数の金属製箔材410,420,430・・・が厚み方向に積層されることで形成されている。この二次電池用通電部品500は、第1実施形態の二次電池用通電部品100と同様に図9および図10に示す様に2カ所の接合部411,412を有している。これらの接合部(凹部)411,412の周囲には、図10に示す様に上下方向に隣接している金属製箔材同士が摩擦かく拌点接合方法によってかく拌混錬された一体化部Y411,Y412が形成されている。 The current-carrying component for a secondary battery (fifth embodiment) 500 of the present invention is formed by stacking a plurality of metal foil materials 410, 420, 430, etc. in the thickness direction as shown in Figures 9 and 10, similar to the current-carrying component for a secondary battery 100 of the first embodiment. This current-carrying component for a secondary battery 500 has two joints 411, 412 as shown in Figures 9 and 10, similar to the current-carrying component for a secondary battery 100 of the first embodiment. Around these joints (recesses) 411, 412, integrated portions Y411, Y412 are formed by mixing and kneading the metal foil materials adjacent to each other in the vertical direction by a friction-stir spot joining method as shown in Figure 10.
また、この接合部411,412はいずれも二次電池用通電部品(第5実施形態)500の表面側から裏面側へ抜ける、いわゆる貫通穴であり、それぞれ直径の異なる小径部411a,412a(直径d1)と大径部411b,412b(直径d2)から形成されている。これは、二次電池用通電部品(第5実施形態)500の厚さが増えた場合において、接合部411,412の内側を段付き形状とすることで、各金属製箔材410,420,430・・・同士を確実に接合して、一体化する点で有用であると同時にバスバーの位置決め穴として有用である。なお、この段付き形状は前述の図3ないし図8に示す第2ないし第4実施形態である二次電池用通電部品200,300,400に適用してもよい。 The joints 411, 412 are so-called through holes that pass from the front side to the back side of the current-carrying component for secondary batteries (fifth embodiment) 500, and are formed of small diameter parts 411a, 412a (diameter d1) and large diameter parts 411b, 412b (diameter d2) with different diameters. This is useful in that when the thickness of the current-carrying component for secondary batteries (fifth embodiment) 500 increases, the inside of the joints 411, 412 are stepped to reliably join and integrate the metal foil materials 410, 420, 430... and are also useful as positioning holes for the busbars. This stepped shape may also be applied to the current-carrying components for secondary batteries 200, 300, 400 of the second to fourth embodiments shown in Figures 3 to 8 described above.
次に、本発明の二次電池用通電部品の製造方法、特に摩擦かく拌点接合方法による複数枚の金属製箔材同士の接合方法について、図面を用いて説明する。本発明の二次電池用通電部品の製造方法における第1工程ないし第3工程の模式図を図11ないし図13にそれぞれ示す。まず、複数枚の金属製箔材510,520,530・・・を図11に示す様に厚さ方向に重ねた(積層させた)上で、最上層に同じ材質の板材Bをさらに設置する(第1工程:図11)。 Next, the manufacturing method of the current-carrying component for a secondary battery of the present invention, in particular the method of joining multiple sheets of metal foil material together by the friction stir spot joining method, will be described with reference to the drawings. Schematic diagrams of the first to third steps in the manufacturing method of the current-carrying component for a secondary battery of the present invention are shown in Figures 11 to 13, respectively. First, multiple sheets of metal foil material 510, 520, 530... are stacked (laminated) in the thickness direction as shown in Figure 11, and then a plate material B of the same material is further placed on the top layer (first step: Figure 11).
その後、板材Bの上方から摩擦かく拌点接合工具Tを回転させながら、摩擦かく拌点接合工具Tを板材B側から金属製箔材510,520,530・・・側に向けて内部に挿入することで金属製箔材510,520,530・・・を互いに接合する(第2工程:図12)。板材Bはツールの外周部の外へ押し出され、隣接する金属製箔材510と接合する。 Then, while rotating the friction stir spot welding tool T from above the plate material B, the friction stir spot welding tool T is inserted from the plate material B side toward the metal foil materials 510, 520, 530... side to join the metal foil materials 510, 520, 530... to each other (second step: Figure 12). The plate material B is pushed out of the outer periphery of the tool and joined to the adjacent metal foil material 510.
最後に、摩擦かく拌点接合工具Tを金属製箔材510,520,530・・・および板材Bから抜き出す(第3工程:図13)。この摩擦かく拌点接合工具Tを抜き出した箇所が二次電池用通電部品600の接合部(接合箇所)511として形成される。同時に、この接合部(凹部)511の周囲には、図13に示す様に上下方向に隣接している金属製箔材同士が摩擦かく拌点接合方法によってかく拌混錬された一体化部Y511が形成されている。 Finally, the friction stir spot welding tool T is removed from the metal foil materials 510, 520, 530, and plate material B (third step: FIG. 13). The area where the friction stir spot welding tool T was removed is formed as the joint (joint) 511 of the secondary battery current-carrying component 600. At the same time, an integrated portion Y511 is formed around the joint (recess) 511, in which adjacent metal foil materials in the vertical direction are mixed and kneaded by the friction stir spot welding method, as shown in FIG. 13.
なお、図11ないし図13に示す二次電池用通電部品の製造方法に関する本実施形態において、積層させる複数枚のアルミニウム製またはアルミニウム合金製の箔材の各厚みが0.3mm未満の場合には、図11に示す「板材B」の厚みを0.5mm超とすることもできる。また、当該「板材B」に替えて、積層させる複数枚の箔材と同一成分の箔材を最上層に更に設置しても構わない。この場合、最上層に設置する箔材の厚みは0.3mm以上とすることが好ましい。 Note that in this embodiment of the manufacturing method for a current-carrying component for a secondary battery shown in Figures 11 to 13, if the thickness of each of the multiple aluminum or aluminum alloy foil materials to be stacked is less than 0.3 mm, the thickness of "plate material B" shown in Figure 11 can be more than 0.5 mm. Also, instead of "plate material B", a foil material of the same composition as the multiple foil materials to be stacked may be further placed in the uppermost layer. In this case, it is preferable that the thickness of the foil material placed in the uppermost layer is 0.3 mm or more.
また、本実施形態の図2における一体化部Y11,Y12、図4における一体化部Y111,Y112、図6における一体化部Y211,Y212、図8における一体化部Y311,Y312、図10における一体化部Y411,Y412、図13における一体化部Y511は、厚さ方向に積層している全ての金属製箔材が一体化している断面の形態を示しているが、摩擦かく拌点接合により接合されている金属製箔材の接合形態は、これらに図示された形態に限定されない。 In addition, in this embodiment, integrated parts Y11 and Y12 in FIG. 2, integrated parts Y111 and Y112 in FIG. 4, integrated parts Y211 and Y212 in FIG. 6, integrated parts Y311 and Y312 in FIG. 8, integrated parts Y411 and Y412 in FIG. 10, and integrated part Y511 in FIG. 13 show cross-sectional shapes in which all of the metal foil materials stacked in the thickness direction are integrated, but the joining shape of the metal foil materials joined by friction stir spot joining is not limited to the shapes shown in these figures.
すなわち、本発明の二次電池用通電部品における接合部は、例えば表層部に近い複数枚の金属製箔材同士は一体化されており(物理的に一体化されている)、下層部に近い残りの金属製箔材同士は密着(圧着)している形態でも構わない。 In other words, the joints in the current-carrying component for a secondary battery of the present invention may be in a form in which, for example, multiple sheets of metal foil material near the surface layer are integrated (physically integrated) with each other, and the remaining sheets of metal foil material near the lower layer are in close contact (pressed) with each other.
(実施例1)
本発明の通電部品(実施例)と従来の通電部品(比較例)を使用して、二次電池に組付けられた際の通電性能を確認する試験(以下、通電試験という)を行ったので、その試験結果について図面を用いて説明する。本実施例の通電試験に使用した試験片は、両端に2枚のアルミニウム合金(A1050)製の板材(幅20mm×長さ40mm×厚さ1.2mm)を使用して、これら2枚の板材の端部に橋渡しする形態で、同じアルミニウム合金(A1050)製の箔材または板材を設置した上で、前述した2枚の板材と重なる部分を摩擦撹拌接合により接合した試験片を作製した。通電試験に使用した試験片(実施例および比較例は共通)の平面図を図14、同実施例の正面図を図15、同比較例の正面図を図16にそれぞれ示す。
Example 1
A test (hereinafter, referred to as a current test) was conducted to confirm the current performance when the current-carrying part of the present invention (Example) and the conventional current-carrying part (Comparative Example) were assembled into a secondary battery, and the test results will be described with reference to the drawings. The test piece used in the current-carrying test of this embodiment was made by using two aluminum alloy (A1050) plate materials (width 20 mm x length 40 mm x thickness 1.2 mm) at both ends, and installing a foil or plate material made of the same aluminum alloy (A1050) in a form that bridges the ends of these two plate materials, and then joining the overlapping parts of the two plate materials by friction stir welding to produce a test piece. A plan view of the test piece used in the current-carrying test (common to the Example and Comparative Example) is shown in FIG. 14, a front view of the Example in FIG. 15, and a front view of the Comparative Example in FIG. 16, respectively.
通電試験で使用した実施例には、前述した橋渡しする材料として、アルミニウム合金製の箔材(幅20mm×長さ64mm×厚さ0.3mm)を7枚積層させた状態で、2枚の板材と重なる部分に摩擦撹拌接合で一体化した試験片(板材と箔材が接合した箇所が接合部となる)とした。一方、比較例は前述した橋渡しする材料として、1枚のアルミニウム合金製の板材(幅20mm×長さ64mm×厚さ2.0mm)を置いた状態で、2枚の板材と重なる部分に摩擦撹拌接合で接合した試験片(2枚の板材同士が接合した箇所が接合部となる)とした。なお、実施例および比較例ともに両端側の2枚の板材には、図14に示す様に通電装置と接続するための穴(通電装置接続用穴)を加工した。 In the example used in the current test, seven sheets of aluminum alloy foil (width 20 mm x length 64 mm x thickness 0.3 mm) were stacked as the bridging material described above, and the test piece was integrated by friction stir welding at the overlapping part of the two sheets (the joint was where the sheet and foil were joined). On the other hand, in the comparative example, one aluminum alloy plate (width 20 mm x length 64 mm x thickness 2.0 mm) was placed as the bridging material described above, and the test piece was joined by friction stir welding at the overlapping part of the two sheets (the joint was where the two sheets were joined). In both the example and the comparative example, holes (holes for connecting the current device) were machined in the two sheets at both ends as shown in Figure 14 for connecting to the current device.
これらの実施例および比較例の各試験片の両端に設けられた穴に通電装置のケーブルを接続した後、以下の2条件で試験片に対して所定の時間だけ連続して通電を行い、その時間内に測定された電圧(通電電圧)の変化を測定した。通電試験における実施例と比較例の通電電圧値(最高電圧値)および当該通電電圧値から算出した電気抵抗値を表1に示す。
通電条件1:電流値400A×通電時間1000秒間
通電条件2:電流値900A×通電時間30秒間
After connecting the cables of the current-carrying device to the holes provided at both ends of each test piece of the Examples and Comparative Examples, current was continuously applied to the test pieces for a predetermined time under the following two conditions, and the change in voltage (current-carrying voltage) measured during that time was measured. Table 1 shows the current-carrying voltage values (maximum voltage values) of the Examples and Comparative Examples in the current-carrying test and the electrical resistance values calculated from the current-carrying voltage values.
Current condition 1: current value 400A x current application time 1000 seconds Current condition 2: current value 900A x current application time 30 seconds
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
通電試験結果は、表1に示す様に通電量が400A、通電時間が1000秒間の場合、実施例および比較例ともに電圧値は0.26V(電気抵抗値は0.65mΩ)であった。また、通電量が900A、通電時間が30秒間の場合、実施例の電圧値は0.56V(電気抵抗値は0.62mΩ)であり、比較例の電圧値は0.57V(電気抵抗値は0.63mΩ)であった。いずれの通電条件でも実施例と比較例の間に電圧値(電気抵抗値)の差異は見られなかった。 As shown in Table 1, the results of the current test were that when the current flow rate was 400 A and the current flow time was 1000 seconds, the voltage value was 0.26 V (electrical resistance value was 0.65 mΩ) for both the Example and Comparative Example. When the current flow rate was 900 A and the current flow time was 30 seconds, the voltage value for the Example was 0.56 V (electrical resistance value was 0.62 mΩ) and the voltage value for the Comparative Example was 0.57 V (electrical resistance value was 0.63 mΩ). No difference in voltage value (electrical resistance value) was observed between the Example and Comparative Example under any of the current flow conditions.
(実施例2)
次に、実施例1で使用した2種類の通電部品を用いて、二次電池に組付けられた際の耐横荷重を確認する試験を行ったので、その試験結果について説明する。本試験では、実施例および比較例ともに実施例1で使用した同じ寸法の試験片を用いて、同試験片の両端部をアムスラー試験機に取り付けられている上下方向にある2箇所の把持具に固定した後、2カ所の把持具を互いに接近させていく圧縮試験モードにより所定のストローク(上下方向の把持具間の距離)時における荷重値を測定した。同試験機のストローク距離が0.8mm,0.9mmおよび1.0mm時において測定された実施例および比較例の荷重値などの結果を表2に示す。なお、アムスラー試験機の把持具の移動速度は1mm/秒とした。
Example 2
Next, a test was conducted to confirm the lateral load resistance when the two types of current-carrying parts used in Example 1 were assembled into a secondary battery, and the test results will be described. In this test, both the Example and the Comparative Example used test pieces of the same dimensions as those used in Example 1, and both ends of the test pieces were fixed to two gripping tools in the vertical direction attached to the Amsler tester, and then the load value at a predetermined stroke (the distance between the gripping tools in the vertical direction) was measured in a compression test mode in which the two gripping tools were moved closer to each other. The results of the load values and the like of the Example and the Comparative Example measured when the stroke distance of the tester was 0.8 mm, 0.9 mm, and 1.0 mm are shown in Table 2. The movement speed of the gripping tools of the Amsler tester was set to 1 mm/sec.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
本試験の結果、実施例は表2に示す様にストロークが0.8mmおよび0.9mmにおける荷重値は、80Nおよび198Nであり、同じストローク時における比較例の測定値に比べて、30~40N低い値を示した。また、ストロークが1.0mm時においては、試験片中央部のアルミニウム合金製の箔材が変形(湾曲)して、接合部や両端の把持部での変形は確認されなかった。 As a result of this test, as shown in Table 2, the load values for the Example at strokes of 0.8 mm and 0.9 mm were 80 N and 198 N, respectively, which were 30 to 40 N lower than the measured values for the Comparative Example at the same stroke. Furthermore, at a stroke of 1.0 mm, the aluminum alloy foil material in the center of the test piece was deformed (bent), and no deformation was observed at the joint or the gripped parts at both ends.
これに対して、比較例はストロークが0.8mmおよび0.9mmにおける荷重値は、111Nおよび240Nであり、同じストローク時における実施例の測定値に比べて、30~40N高い値を示した。ストロークが1.0mm時においては、両端の把持部が変形し、接合部の破断が確認された。 In contrast, the load values for the comparative example at strokes of 0.8 mm and 0.9 mm were 111 N and 240 N, respectively, which were 30 to 40 N higher than the measured values for the example at the same stroke. At a stroke of 1.0 mm, the gripping portions at both ends were deformed, and fracture of the joints was confirmed.
以上の試験結果より、実施例(アルミニウム合金製箔材を積層させて接合した通電部品)は比較例(アルミニウム合金製板材同士を接合した通電部品)に比べて、横方向の負荷に対する荷重値が小さい。そのため、実施例(通電部品)を電極材と接合する際に電極材の高さや長さなどのバラツキにフレキシブルに対応し、実施例が電極材と接合された状態でも電極材の動きに追従しやすいという利点がある。
 
From the above test results, the Example (current-carrying component in which aluminum alloy foil materials are laminated and bonded) has a smaller load value against a lateral load than the Comparative Example (current-carrying component in which aluminum alloy plate materials are bonded together). Therefore, when bonding the Example (current-carrying component) to the electrode material, it has the advantage of being able to flexibly accommodate variations in the height and length of the electrode material, and to easily follow the movement of the electrode material even in a state in which the Example is bonded to the electrode material.
10,20,30  金属製箔材
11,12     接合部
100       二次電池用通電部品
411a      凹部の小径部
411b      凹部の大径部
d1        小径部の直径
d2        大径部の直径
B         板材
C1,C2     屈曲部
T         摩擦かく拌点接合工具
Y11,Y12   かく拌混錬された一体化部
 
 

 
 
10, 20, 30 Metal foil material 11, 12 Joint portion 100 Current-carrying part for secondary battery 411a Small diameter portion of recess 411b Large diameter portion of recess d1 Diameter of small diameter portion d2 Diameter of large diameter portion B Plate material C1, C2 Bent portion T Friction stir spot joining tool Y11, Y12 Stirred and kneaded integrated portion



Claims (7)

  1. 複数枚のアルミニウム製またはアルミニウム合金製の箔材から形成される二次電池用通電部品であり、前記複数枚の箔材は厚み方向に積層されており、かつ前記厚み方向に隣接する前記箔材同士が摩擦かく拌点接合により接合された接合部を有していることを特徴とする二次電池用通電部品。 A current-carrying component for a secondary battery formed from multiple sheets of aluminum or aluminum alloy foil material, the multiple sheets of foil material being stacked in the thickness direction, and the foil materials adjacent in the thickness direction have joints joined by friction stir spot welding.
  2. 前記箔材は5枚以上であって、かつ前記箔材の各厚さは0.5mm以下であることを特徴とする請求項1に記載の二次電池用通電部品。 The current-carrying component for a secondary battery according to claim 1, characterized in that there are five or more sheets of foil material, and each sheet of foil material has a thickness of 0.5 mm or less.
  3. 前記箔材が直線状または曲線状に曲げられた屈曲部をさらに設けたことを特徴とする請求項1または2に記載の二次電池用通電部品。 The current-carrying component for a secondary battery according to claim 1 or 2, characterized in that the foil material further has a bent portion bent in a straight or curved shape.
  4. 請求項1に記載の二次電池用通電部品の製造方法であって、前記複数枚のアルミニウム製またはアルミニウム合金製の箔材を積層させた上で最上層に前記箔材と同一成分の板材を設置する第1工程と、前記第1工程後に前記板材の上方から摩擦かく拌点接合工具を回転させながら前記板材および箔材の内部へ挿入する第2工程と、前記第2工程後に前記摩擦かく拌点接合工具を前記板材および箔材の内部から抜き出す第3工程と、を有することを特徴とする二次電池用通電部品の製造方法。 The method for manufacturing a current-carrying part for a secondary battery according to claim 1, characterized in that it comprises a first step of stacking the plurality of aluminum or aluminum alloy foil materials and then placing a plate material of the same composition as the foil material on the top layer, a second step of inserting a friction-stir spot welding tool into the inside of the plate material and the foil material from above the plate material while rotating the tool after the first step, and a third step of removing the friction-stir spot welding tool from the inside of the plate material and the foil material after the second step.
  5. 請求項1に記載の二次電池用通電部品の製造方法であって、前記複数枚のアルミニウム製またはアルミニウム合金製の箔材を積層させた上で前記複数枚の箔材と同一成分の箔材を最上層に設置する第1工程と、前記第1工程後に前記最上層に設置した箔材の上方から摩擦かく拌点接合工具を回転させながら前記複数枚の箔材の内部へ挿入する第2工程と、前記第2工程後に前記摩擦かく拌点接合工具を前記最上層に設置した箔材および前記複数枚の箔材の内部から抜き出す第3工程と、を有することを特徴とする二次電池用通電部品の製造方法。 The method for manufacturing a current-carrying part for a secondary battery according to claim 1, characterized in that it comprises a first step of stacking the plurality of aluminum or aluminum alloy foil materials and then placing a foil material of the same composition as the plurality of foil materials in the uppermost layer, a second step of inserting a friction stir spot welding tool into the interior of the plurality of foil materials from above the foil material placed in the uppermost layer after the first step while rotating the tool, and a third step of removing the friction stir spot welding tool from the foil material placed in the uppermost layer and from the interior of the plurality of foil materials after the second step.
  6. 前記箔材の各厚みが0.3mm未満であって、前記板材の厚みが0.5mm超であることを特徴とする請求項4に記載の二次電池用通電部品の製造方法。 The method for manufacturing a current-carrying component for a secondary battery according to claim 4, characterized in that the thickness of each of the foil materials is less than 0.3 mm, and the thickness of the plate material is more than 0.5 mm.
  7. 前記複数枚の箔材の各厚みが0.3mm未満であって、前記最上層に設置した箔材の厚みが0.3mm以上0.5mm以下であることを特徴とする請求項5に記載の二次電池用通電部品の製造方法。
     
     
     
     
    The method for manufacturing an electrical conductive component for a secondary battery according to claim 5, characterized in that the thickness of each of the plurality of foil materials is less than 0.3 mm, and the thickness of the foil material placed on the top layer is 0.3 mm or more and 0.5 mm or less.



PCT/JP2023/042089 2022-11-28 2023-11-23 Conductive component for secondary battery, and manufacturing method thereof WO2024117009A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022-189144 2022-11-28

Publications (1)

Publication Number Publication Date
WO2024117009A1 true WO2024117009A1 (en) 2024-06-06

Family

ID=

Similar Documents

Publication Publication Date Title
US9147506B2 (en) Bus bar and method of manufacturing the bus bar
JP2013514188A (en) Conductive composite component and method of manufacturing the same
US10193126B2 (en) Battery terminal, method for manufacturing battery terminal, and battery
JP6003108B2 (en) Joining method and joining part manufacturing method
US10249857B2 (en) Battery bus bar design and laser welding
DE102013200428A1 (en) MATERIALS AND METHOD FOR CONNECTING BATTERY CELL CONNECTIONS AND INTERCONNECTION COMBINATION RAILS
JP2008183620A (en) Projection weld and method for creating the same
US6770833B2 (en) Micro-welding electrode
WO2024117009A1 (en) Conductive component for secondary battery, and manufacturing method thereof
US20190363328A1 (en) Robust Reaction Metallurgical Joining
JPS63250082A (en) Manufacture of flexible connection terminal composed of laminated thin plate conductors
JP6875212B2 (en) Manufacturing method of terminal plate
JP2018092743A (en) Friction stir welding method
JP3555698B2 (en) Resistance welding method for aluminum material and T-shaped aluminum structure
US20240173800A1 (en) Laser welding metal foil stack to metal substrate
CN117121283A (en) Inter-cell connecting piece and method for contacting at least two galvanic cells
EP4138204B1 (en) Bus bar
JPH1052766A (en) Cold pressure welding method for metal foil
EP4135119B1 (en) Bus bar
JP7484752B2 (en) Method for manufacturing a power distribution member and a power distribution member
EP4138205B1 (en) Bus bar
US11195662B2 (en) Film capacitor with a film winding core having metallikon electrodes and busbars on its ends
JP7327290B2 (en) Busbar joining method and busbar joining structure
JPH08332576A (en) Resistance welding method for metallic member with hollow cross section
JP6811063B2 (en) Resistance spot welding method and resistance spot welding joint manufacturing method