WO2024116930A1 - バルブ - Google Patents

バルブ Download PDF

Info

Publication number
WO2024116930A1
WO2024116930A1 PCT/JP2023/041620 JP2023041620W WO2024116930A1 WO 2024116930 A1 WO2024116930 A1 WO 2024116930A1 JP 2023041620 W JP2023041620 W JP 2023041620W WO 2024116930 A1 WO2024116930 A1 WO 2024116930A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
operating pressure
operating
sensor
time
Prior art date
Application number
PCT/JP2023/041620
Other languages
English (en)
French (fr)
Inventor
竜太郎 丹野
裕也 鈴木
朋貴 中田
よしの 藤居
Original Assignee
株式会社フジキン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジキン filed Critical 株式会社フジキン
Publication of WO2024116930A1 publication Critical patent/WO2024116930A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/12Actuating devices; Operating means; Releasing devices actuated by fluid
    • F16K31/122Actuating devices; Operating means; Releasing devices actuated by fluid the fluid acting on a piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K37/00Special means in or on valves or other cut-off apparatus for indicating or recording operation thereof, or for enabling an alarm to be given

Definitions

  • the present invention relates to a technology for monitoring the operation time of a valve.
  • ALD Advanced Deposition
  • Patent Document 1 discloses a gate valve control method in which, in a compressed air gate valve in which a valve element is opened and closed by pressurized air supplied based on an opening/closing command from a higher-level device, a pressure sensor detects the pressure value of the pressurized air, a vibration sensor detects the vibration condition generated when the valve element is opened and closed by the pressurized air, a position sensor detects that the valve element has reached an open or closed position and sends an opening/closing signal to the higher-level device, and measures the opening/closing time from when the higher-level device issues an opening/closing command to when it receives the opening/closing signal, and notifies the higher-level device of the pressure value of the pressurized air, the opening/closing time of the valve element and the vibration condition.
  • Patent Document 2 discloses a shutoff valve control system including a shutoff valve, an air cylinder that controls the rotation of a valve stem of the shutoff valve, and an electromagnetic valve that supplies and exhausts air from an air supply source to the cylinder of the air cylinder, and a control means for controlling the opening of the shutoff valve, the shutoff valve control system including a pressure sensor that detects the internal pressure of the cylinder, a determination means that determines whether the system is normal or abnormal based on the pressure characteristics of the internal cylinder pressure actually measured by the pressure sensor when air is supplied from the air supply source to the cylinder of the air cylinder under the control of the control means, and a storage means that pre-stores the pressure characteristics of the internal cylinder pressure during initial normal operation of the system and the pressure characteristics of a failure prediction boundary, and the determination means determines that the system is normal if the actually measured pressure characteristics are within a range between the pressure characteristics during normal operation and the pressure characteristics of the failure prediction boundary, and determines that the system is abnormal if the actually measured pressure characteristics are outside
  • a faster valve response speed means that the valve is open for a longer period of time, and therefore the process gas flow rate is greater than the specified amount.
  • a slower valve response speed means that the valve is open for a shorter period of time, and therefore the process gas flow rate is less than the specified amount.
  • one of the objectives of the present invention is to monitor changes in operating time due to changes in the valve actuator over time for a single valve.
  • the valve of the present invention comprises an operating pressure chamber into which an operating pressure is introduced to open and close the valve, an operating pressure sensor that detects changes in the operating pressure within the operating pressure chamber, and a position sensor that detects the internal operation of the valve corresponding to the change in operating pressure, and monitors the operation time of the valve as the time from a predetermined point in time when the operating pressure changes to a predetermined point in time when the corresponding operation is detected by the position sensor based on data detected by the position sensor and the operating pressure sensor.
  • the device may further include an operating pressure adjustment mechanism that adjusts the flow area of the operating pressure introduction passage that communicates with the operating pressure chamber based on the difference between the operating time and a predetermined reference value when a change in the operating time is detected.
  • the device may further include an atmospheric chamber that communicates with the outside and through which air is drawn in and exhausted in response to the introduction of operating pressure to the operating pressure chamber and the exhaust of operating pressure from the operating pressure chamber, and an exhaust pressure adjustment mechanism that adjusts the flow path area of an air exhaust passage that communicates from the atmospheric chamber to the outside based on the difference between the operating time and a predetermined reference value when a change in the operating time is detected.
  • the valve of the present invention makes it possible to monitor changes in operating time due to changes in the valve actuator over time, etc., using the valve alone.
  • FIG. 1 is an external perspective view showing a valve according to an embodiment of the present invention.
  • FIG. 2 is a vertical cross-sectional view showing the internal structure of the valve according to the embodiment, illustrating a valve open state.
  • 3A and 3B are enlarged partial vertical cross-sectional views showing the internal structure of the valve according to the present embodiment, in which FIG. FIG. 2 is a perspective view showing a bonnet of the valve according to the embodiment.
  • FIG. 2 is a partially enlarged cross-sectional view showing an actuator portion of the valve according to the embodiment.
  • FIG. 4 is a functional block diagram showing the functions of a valve according to the embodiment.
  • FIG. 11 is a functional block diagram showing functions of a valve according to a modified example of the embodiment and a server configured to be able to communicate with the valve.
  • 4 is a graph showing the relationship between the operating pressure and the position sensor output, which is the basis for calculating the operating time of the valve according to the present embodiment.
  • FIG. 4 is a process flow diagram showing the
  • the valve V according to this embodiment is an air-operated direct diaphragm valve that has a built-in sensor for detecting the internal operation of the valve V and communicates with other terminals, etc.
  • the other terminals referred to here include so-called computers such as servers, as well as other devices and equipment such as fluid control devices and flow rate control devices.
  • the valve V in this embodiment is a device capable of acquiring data regarding its internal operation, and as shown in Figures 1 and 2, it comprises a valve body portion 1, a first bonnet portion 2, a second bonnet portion 4, and an actuator portion 5.
  • the valve body 1 is composed of a base portion 11 in which a flow path for a process gas is formed, a cylindrical portion 12 having a substantially cylindrical shape provided on the base portion 11, and an annular seat 13.
  • the base portion 11 has a rectangular shape in a plan view, and when a unitized fluid control device is configured with a plurality of valves V, this becomes the portion that is installed on a substrate or a manifold block.
  • the cylindrical portion 12 has a hollow shape with an open end face on the side where a portion of the first bonnet portion 2 is disposed, and the hollow interior forms a recess 12a in which a portion of the first bonnet portion 2 is housed.
  • the inflow passage 111, the outflow passage 113, and the valve chamber 112 integrally form a flow path through which the fluid flows.
  • the annular sheet 13 is provided on the periphery of the inlet passage 111.
  • a diaphragm 22 is provided on the sheet 13, which allows or blocks the flow of fluid in the inlet passage 111 and the outlet passage 113 by coming into contact with and moving away from the sheet 13.
  • the first bonnet portion 2 is disposed on the cylindrical portion 12 of the valve body portion 1 .
  • the first bonnet portion 2 includes a first bonnet body 21 , a diaphragm 22 , a disk 23 , a sensor bonnet 24 , a diaphragm holder 25 , and a holder adapter 26 .
  • the diaphragm 22 is a spherical shell-shaped member made of a metal such as stainless steel or a Ni-Co alloy, or a fluororesin, with a convex central portion 221, and separates the inlet passage 111 and outlet passage 113 from the space in which the first bonnet portion 2 operates.
  • the first bonnet body 21 is interposed between the cylindrical portion 12 and the second bonnet body 41 .
  • This first bonnet body 21 has an approximately cylindrical shape and has a through hole 21a in the center along the longitudinal direction, through which the sensor bonnet 24 passes.
  • the lower end of the first bonnet body 21 abuts against the pressing adapter 26, pressing the pressing adapter 26 downward.
  • the first bonnet body 21 is open at one end opposite the base portion 11, and is provided with a slit 21b that penetrates from the outside to the through hole 21a.
  • the central portion 221 of the diaphragm 22 is a movable portion that is displaced by the supply of driving fluid
  • the peripheral portion 222 is a non-movable portion that is not displaced even when the driving fluid is supplied.
  • the peripheral portion 222 of the diaphragm 22 abuts against the holding adapter 26 (described later) and is sandwiched between the holding adapter 26 and a protrusion 121a (see Figures 3(a) and (b)) that faces upward inside the recess 12a of the valve body portion 1.
  • the disk 23 is provided above the diaphragm 22 and is supported by the sensor bonnet 24 so that it can move up and down, and presses against the center of the diaphragm 22 in conjunction with the sliding stem 43.
  • An O-ring O1 is attached to the outer peripheral surface of the disk 23, and this O-ring O1 seals the disk 23 and the inner peripheral surface of the sensor bonnet 24.
  • the upper part of the disk 23 has a smaller outer diameter, and is inserted into the magnet holder M10.
  • the magnet holder M10 is a roughly circular ring-shaped member with a portion cut out, and a magnet is attached to the cut-out portion.
  • This magnet together with a magnetic body M2 attached to a sensor holder 241 fitted into a recess in the sensor bonnet 24, constitutes the magnetic sensor M described below.
  • the magnet holder M10 also has a recess on its outer periphery, and a positioning member such as a bolt that passes through the sensor holder 241 presses against this recess, preventing the magnet holder M10 from shifting out of position.
  • a lock nut 231 is fitted above the magnet holder M10 at the top end of the disk 23 to prevent the magnet holder M10 from slipping out.
  • a diaphragm retainer 25 is connected to the lower end of the disk 23.
  • the underside of the diaphragm retainer 25 is a convex surface that bulges downward, and the underside of the diaphragm retainer 25 abuts against the center 221 of the diaphragm 22 and presses against the diaphragm 22 in conjunction with the sliding stem 43.
  • the lower end of the diaphragm retainer 25 abuts against the center 221 of the diaphragm 22 whether the valve is open or closed.
  • the contact area between the diaphragm retainer 25 and the diaphragm 22 is the same whether the valve is open or closed.
  • the heat transfer area of the diaphragm 22 is constant whether the valve is open or closed, enabling accurate temperature measurement by the temperature sensor T described below.
  • the sensor bonnet 24 has a substantially cylindrical shape, covers the valve chamber 112 and is accommodated within the first bonnet body 21 .
  • a through hole 241a is formed in the center, through which the disk 23 is inserted.
  • the sensor bonnet 24 is provided with a communication hole 241d that communicates with the pressure sensor P and the temperature sensor T.
  • the temperature sensor T is provided inside the sensor bonnet 24, but the temperature sensor T may be located inside the valve body 1, and in particular, at least the temperature detection portion of the temperature sensor T may be mounted inside the valve body 1. According to this configuration, by simply installing the valve V, the temperature inside the valve V can be accurately measured without the need for a separate installation work of a temperature sensor.
  • a flexible cable 60 that is connected to the pressure sensor P, temperature sensor T, and magnetic sensor M inside the sensor bonnet 24 extends outward from the side of the sensor bonnet 24.
  • a magnetic body M2 held by a sensor holder 241 is attached to the inner peripheral surface of the sensor bonnet 24, and together with the magnet attached to the disk 23, forms a magnetic sensor M, which will be described later.
  • the sensor bonnet 24 is made of aluminum.
  • Aluminum has a higher thermal conductivity than, for example, SUS (Steel Use Stainless), and therefore can transmit the fluid temperature to the temperature sensor T inside the sensor bonnet 24 more accurately. Furthermore, since the sensor bonnet 24 is made of aluminum, it is not magnetized, and therefore the effect of the magnetic sensor M on the temperature sensor T and pressure sensor P can be reduced.
  • the pressing adapter 26 abuts against the peripheral portion 222 of the diaphragm 22, and clamps the diaphragm 22 between the protrusion 121a in the recess 12a of the valve body portion 1. It also presses down on the peripheral portion 222 from above, preventing the fluid flowing through the inflow passage 111 and outflow passage 113 from leaking out from the vicinity of the peripheral portion 222.
  • the holding adapter 26 does not touch the moving part of the diaphragm 22, in other words the central part 221, whether the diaphragm 22 is open or closed. Furthermore, the contact area between the holding adapter 26 and the diaphragm 22 is the same when the valve is open and when it is closed. With this configuration, the heat transfer area of the diaphragm 22 can be made constant when the valve is open and when it is closed. In addition, because the heat conducted from the diaphragm 22 is constant, accurate temperature measurement by the temperature sensor T described below is possible regardless of whether the valve is open or closed.
  • Second bonnet part 4 The second bonnet portion 4 is disposed on the first bonnet portion 2 . As shown in FIG. 2 , the second bonnet portion 4 includes a second bonnet body 41 , a stem 43 , and a spring 44 .
  • the second bonnet body 41 is interposed between the stem 43 and the sensor bonnet 24 .
  • the second bonnet body 41 has a generally cylindrical shape and is provided at its center with a through-hole 41a extending in the longitudinal direction, through which the stem 43 and the disk 23 are inserted. As shown in Figures 2 and 3, the stem 43 and the disk 23 abut within the through-hole 41a. When the stem 43 is displaced downward, the disk 23 is pressed downward, causing the diaphragm 22 to abut against the seat 13.
  • the stem 43 moves up and down in response to the supply and stop of operating pressure, and causes the diaphragm 22 to contact and separate from the seat 13 via the disk 23 and the diaphragm presser 25 .
  • a rod 431 is connected to the upper part of the stem 43.
  • the rod 431 protrudes from the upper part of the second bonnet part 4 and is inserted into the actuator part 5. Note that since the rod 431 is connected to the stem 43 and moves up and down integrally, the rod 431 may be treated as synonymous with the stem 43.
  • the stem 43 has an expanded diameter portion at its lower portion, and receives the biasing force of the spring 44 on the upper surface side of the expanded diameter portion.
  • the spring 44 is wound around the outer periphery of the stem 43 and abuts against the upper surface of the enlarged portion formed at the bottom of the stem 43, biasing the stem 43 downward, i.e., in the direction of pressing down on the diaphragm 22.
  • Actuator part 5 2 and 5 the actuator unit 5 is a cylindrical member with a bottom and a supply port 51 to which a supply source of driving fluid is connected.
  • the supply port 51 is an opening communicating with an operating pressure introduction passage 511 formed above the rod 431.
  • the operating pressure introduction passage 511 branches off in the radial direction from the axial direction of the rod 431 and communicates with an operating pressure chamber 52.
  • the inside of the actuator unit 5 is divided into upper and lower spaces by a partition member 58 through which the rod 431 slidably passes, and in the upper space a piston 54-1 that engages with the rod 431 is provided so as to be able to slide vertically. In the lower space a piston 54-2 that engages with the rod 431 is also provided so as to be able to slide vertically.
  • the piston 54-1 divides the space above the actuator portion 5 into an operating pressure chamber 52-1 and an atmospheric chamber 55-1
  • the piston 54-2 divides the space below the actuator portion 5 into an operating pressure chamber 52-2 and an atmospheric chamber 55-2.
  • the operating pressure chamber 52-1 communicates with an operating pressure introduction passage 511 formed in the center of the rod 431 via a branch passage 511a
  • the operating pressure chamber 52-2 communicates with an operating pressure introduction passage 511 formed in the center of the rod 431 via a branch passage 511b.
  • the opening on the upper end side of the operating pressure introduction passage 511 of the rod 431 communicates with a supply port 51 formed in the center of the upper side of the actuator unit 5.
  • the driving fluid supplied through the operating pressure introduction passage 511 is supplied to the operating pressure chamber 52.
  • the atmospheric chamber 55-1 is connected to the atmosphere through an air exhaust passage 551-1 formed in the actuator section 5.
  • the atmospheric chamber 55-2 is also connected to the atmosphere through an air exhaust passage 551-2 formed in the actuator section 5.
  • An O-ring O2 is provided between the piston 54 and the inner wall of the actuator unit 5, and between the rod 431 and the piston 54, to ensure airtightness of the operating pressure chamber 52.
  • This O-ring O2 slides up and down in conjunction with the up and down movement of the piston 54.
  • the actuator unit 5 is equipped with an operating pressure adjustment mechanism 56 that can adjust the rate at which the operating pressure in the operating pressure chamber 52 increases in response to changes in operating time, and an exhaust pressure adjustment mechanism 57 that can adjust the rate at which the air in the atmospheric chamber 55 is exhausted in response to changes in operating time.
  • the operating pressure adjustment mechanism 56 is provided near the supply port 51, midway through the operating pressure introduction passage 511, and is provided to adjustably limit the amount of driving fluid introduced into the operating pressure chamber 52 or the amount of driving fluid discharged from the operating pressure chamber 52.
  • this operating pressure adjustment mechanism 56 adjusts the flow path area of the operating pressure introduction path 511 connecting from the supply port 51 to the operating pressure chamber 52 by closing or opening it so as to obtain a predetermined flow path area, based on control by the control unit 70 (see FIG. 6 ).
  • the operating pressure adjustment mechanism 56 is composed of a screw hole formed so as to cross the operating pressure introduction path 511 and a screw member that screws into this screw hole, and the flow path area can be adjusted to an arbitrary amount by the amount that the screw member screws into the screw hole.
  • other structures may be adopted for the operating pressure adjustment mechanism 56 as long as the flow passage area can be adjusted to an arbitrary amount.
  • this control may be performed by a system or manually.
  • the operating pressure adjustment mechanism 56 may be provided in the supply port 51 and may close or open the opening area of the supply port 51 in place of the operating pressure introduction passage 511.
  • the operating pressure introduction passage 511 branches radially from the axial direction of the rod 431 and communicates with the operating pressure chamber 52, but in this embodiment, the operating pressure adjustment mechanism 56 is provided at a position close to the supply port 51 just before the operating pressure introduction passage 511 branches radially.
  • the exhaust pressure adjustment mechanism 57 is provided midway through the air exhaust passages 551-1, 551-2 to adjustably limit the amount of air exhausted from the atmospheric chambers 55-1, 55-2 to the outside through the air exhaust passages 551-1, 551-2, or the amount of air sucked into the atmospheric chambers 55-1, 55-2 through the air exhaust passages 551-1, 551-2.
  • the exhaust pressure adjustment mechanism 57 adjusts the flow path area of the air discharge path 551 communicating with the atmospheric chamber 55 by blocking or opening it so as to obtain a predetermined flow path area based on the control of the control unit 70.
  • the exhaust pressure adjustment mechanism 57 is configured by a screw hole formed so as to cross the air discharge paths 551-1 and 551-2 and a screw member screwed into the screw hole.
  • the flow path area can be adjusted to an arbitrary amount depending on the amount to which the screw member is screwed into the screw hole.
  • the screw member is provided with a pin portion and a groove portion on which no thread is formed at the tip and the middle, respectively, and the pin portion and the groove portion appear in the air discharge paths 551-1 and 551-2 to open the flow path, or conversely, come off the air discharge paths 551-1 and 551-2 to block the flow path according to the advancement and retreat of the screw member into the screw hole.
  • other structures may be adopted for the exhaust pressure adjustment mechanism 57 as long as the ventilation volume can be adjusted to a desired volume, and the ventilation volume may be adjusted by the exhaust pressure adjustment mechanism 57 having the air exhaust passages 551-1 and 551-2 provided separately. This control may be performed by a system or manually.
  • the valve V is equipped with a pressure sensor P, a temperature sensor T, a magnetic sensor M, and an operating pressure sensor D as sensors for detecting operation inside the device.
  • the pressure sensor P, the temperature sensor T, and the magnetic sensor M are provided inside the sensor bonnet 24, face the through hole 241a of the sensor bonnet 24 via the communication hole 241d of the sensor bonnet 24 shown in Figure 4, and communicate with the space defined by the diaphragm 22, the disk 23, and the sensor bonnet 24. This allows the pressure sensor P to detect the pressure within that space.
  • a seal member such as a packing is provided at the location where the pressure sensor P communicates with the communication hole 241d to ensure an airtight state.
  • the temperature sensor T measures the temperature of the space defined by the diaphragm 22, the disk 23, and the sensor bonnet 24.
  • the valve V having the temperature sensor T allows the temperature of the fluid to be measured while controlling the fluid.
  • a magnetic body M2 is attached to the through hole 241e of the sensor bonnet 24, and this magnetic body M2, together with the magnet attached to the disk 23, forms a magnetic sensor M and serves as a position sensor that detects the position of the stem 43 as an internal operation of the valve V.
  • This magnetic sensor M can detect the opening and closing operation of the valve and the amount of movement of the stem 43 as described below. That is, the magnet held by the magnet holder M10 slides in response to the up and down movement of the disk 23, while the magnetic body M2 is fixed in the first bonnet part 2 together with the sensor bonnet 24.
  • the operation of the disk 23 and the diaphragm presser 25, and therefore the opening and closing operation of the valve and the amount of movement of the stem 43 can be detected based on the change in the magnetic field generated between the magnet held by the magnet holder M10, which moves up and down in response to the up and down movement of the disk 23, and the magnetic body M2, which is fixed in position.
  • the magnetic sensor M is used, but the present invention is not limited to this, and in other embodiments, other types of sensors, such as an optical position sensor, can also be used.
  • the operating pressure sensor D is provided in the actuator section 5 and detects the operating pressure in the operating pressure chamber 52 via a communication hole 53 that is connected to the operating pressure chamber 52.
  • One end of a flexible cable 60 for communication is connected to each of the pressure sensor P, temperature sensor T, magnetic sensor M, and operating pressure sensor D (specifically, the magnetic sensor M is connected to the magnetic body M2), and the other end of the flexible cable 60 is connected to a circuit board provided on the outside of the valve V. Furthermore, the circuit board is provided with a roughly rectangular connector for connecting to an external terminal, which allows data measured by the pressure sensor P, temperature sensor T, and magnetic sensor M to be extracted.
  • the type and shape of the connector can be designed appropriately according to various standards.
  • the data detected by each sensor may be transmitted to a specified device or server via wireless communication.
  • data detected by the pressure sensor P, temperature sensor T, magnetic sensor M, and operating pressure sensor D can be output to the outside.
  • Such data can serve as information for understanding the opening and closing operation of the valve and its operation time, leaks due to damage to the diaphragm 22, deterioration over time of the valve V, individual differences, etc.
  • the operation time determination unit 71 calculates the operation time of the valve V based on the data detected by the magnetic sensor M and the operating pressure sensor D, and monitors the operation time. Furthermore, the calculated operation time can be compared with a predetermined reference value to determine whether it is appropriate or not. A more specific determination process will be described with reference to Fig. 8.
  • Fig. 8 shows an image of calculation of the operation time, with the horizontal axis showing the time change and the vertical axis showing the output value of the operating pressure sensor D and the output value of the position sensor (magnetic sensor M).
  • This time lag that is, the time from a predetermined time point when the operating pressure changes to a predetermined time point when the corresponding operation is detected by the position sensor (magnetic sensor M), corresponds to the operation time of the opening and closing operation of the valve V, and time t1 in Fig. 8 shows the operation time during the valve opening operation, and time t2 shows the operation time during the valve closing operation.
  • the operating pressure that is the start point of the operating time and the position sensor output that is the end point are arbitrary predetermined values, and the values on the axes shown on the left and right in FIG. 8 are merely examples.
  • the reference value may be a value that is stored in advance in an appropriate storage unit, or may be a value that is measured and stored as the operating time in an initial state at the start of use of the valve V.
  • the reference value may also be a design value of the operating time of the valve V.
  • the operating time tends to become faster due to aging, mainly due to wear of the O-ring O2, etc.
  • the timing of the valve opening and closing operations in response to the control signal of valve V deviates from the initial state, and the flow rate of the process gas does not match the specified amount.
  • the time that the valve is open and fluid is flowing i.e., the valve open time
  • the valve open time is lengthened, and the flow rate of the process gas is increased above the specified amount.
  • the valve open time is shortened, and the flow rate of the process gas is reduced below the specified amount.
  • the operation time determination unit 71 compares the operation times for the valve opening and closing operations calculated based on the change in operating pressure and the change in the position sensor output with reference values for appropriate operation times stored in a specified table, and determines that the operation times are appropriate if they are within the allowable range, and determines that the operation times are inappropriate if they are beyond the allowable range.
  • FIG. 9 shows a process flow for adjusting the operation time for the valve opening operation.
  • the operation time determination unit 71 calculates the operation time for the valve opening operation and the valve closing operation from the output changes of the operating pressure sensor D and the magnetic sensor M (S101), and then determines whether each operation time is within an acceptable range based on a predetermined reference value (S102).
  • control of the operating pressure adjustment mechanism 56 and/or the exhaust pressure adjustment mechanism 57 is performed during the valve opening operation or the valve closing operation, whichever operation has a larger operating time difference. For example, if the operating time difference during the valve opening operation is larger than the operating time difference during the valve closing operation, the operating time difference occurring during the valve opening operation is adjusted by the operating pressure adjustment mechanism 56 and/or the exhaust pressure adjustment mechanism 57 during the valve opening operation.
  • narrowing the flow path area of the operating pressure introduction path 511 reduces the rate at which the operating pressure in the operating pressure chamber 52 rises, and as a result, the operation time is delayed and the valve V is opened at the correct timing.
  • narrowing the flow path area of the air exhaust path 551 reduces the rate at which air is exhausted from the atmospheric chamber 55, and as a result, the operation time is delayed. This makes it possible to correct the difference in the valve opening time of the valve V caused by the difference in operation time, and to allow the specified amount of process gas to flow.
  • the area of the operating pressure inlet passage 511 narrowed by the operating pressure adjustment mechanism 56 or the area of the air exhaust passage 551 narrowed by the exhaust pressure adjustment mechanism 57 is determined by multiplying a predetermined coefficient according to the amount of change from the normal operating time, or based on a numerical value associated in advance in a predetermined table.
  • the difference in operation time between the valve-opening operation and the valve-closing operation can be adjusted by the operating pressure adjustment mechanism 56 and/or the exhaust pressure adjustment mechanism 57.
  • the time lag between the valve opening operation and the valve closing operation can be offset, and the difference in either the valve opening operation or the valve closing operation can be adjusted by the operating pressure adjustment mechanism 56 and/or the exhaust pressure adjustment mechanism 57.
  • the difference in operation time between the valve opening operation and the valve closing operation can be adjusted individually by the operation pressure adjustment mechanism 56 and/or the exhaust pressure adjustment mechanism 57.
  • the valve V according to this embodiment described above can monitor the change in operating time due to the aging of the valve actuator, etc., for the valve alone.
  • the flow area of the operating pressure introduction path 511 and/or the air discharge path 551 can be adjusted based on the change in operating time, thereby making it possible to set the operating time to an appropriate speed.
  • the operating time is adjusted by controlling the operating pressure adjustment mechanism 56 and/or the exhaust pressure adjustment mechanism 57 based on the result of the determination process by the operating time determination unit 71, but this is not limited to the above.
  • the operating time can also be adjusted by controlling the operating pressure adjustment mechanism 56 and/or the exhaust pressure adjustment mechanism 57 in response to an arbitrary operation by an administrator, etc.
  • valve V in response to a control signal tends to become faster mainly due to wear and tear on the O-ring O2 and other changes over time, but as the changes over time progress, the operating time tends to become slower due to increased leakage within the actuator part 5. For this reason, it is possible to monitor changes in the operating time, detect the timing at which the operating time begins to slow down, and determine whether there is an abnormality in valve V.
  • valve body portion 11 base portion 12 cylindrical portion 12a recess 13 sheet 2 first bonnet portion 21 first bonnet body 21a through hole 21b slit 22 diaphragm 23 disk 24 sensor bonnet 25 diaphragm retainer 26 retainer adapter 4 second bonnet portion 41 second bonnet body 43 stem 431 rod 44 spring 5 actuator portion 51 supply port 511 operating pressure introduction path 52 operating pressure chamber 53 communication hole 54 piston 55 atmospheric chamber 551 air exhaust path 56 operating pressure adjustment mechanism 57 exhaust pressure adjustment mechanism 58 separation wall 60 flexible cable 70 control portion 71 operating time determination portion 72 communication processing portion 80 server 81 operating time determination portion D operating pressure sensor M magnetic sensor (position sensor) O1, O2 O-ring P Pressure sensor T Temperature sensor V Valve

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Fluid-Driven Valves (AREA)
  • Indication Of The Valve Opening Or Closing Status (AREA)

Abstract

【課題】バルブ単体でバルブアクチュエータの経時変化等による動作時間の変化を監視する。 【解決手段】バルブVを開閉させる操作圧が導入される操作圧室52と、操作圧室52内の操作圧の変化を検出する操作圧センサDと、操作圧の変化に対応したバルブVの内部動作を検出する磁気センサMと、を備え、磁気センサMと操作圧センサDから検出されたデータに基づき、操作圧が変化する所定の時点からこれに応じた動作が磁気センサMによって検出される所定の時点までの時間をバルブVの動作時間として監視するバルブV。

Description

バルブ
 本発明は、バルブの動作時間を監視する技術に関する。
 半導体プロセスにおいて、半導体ウエハの表面に薄膜を形成する成膜処理では薄膜の微細化が求められており、近年では、原子レベルや分子レベルの厚さで薄膜を形成するALD (Atomic Layer Deposition)という成膜方法が使われている。
 このような半導体プロセスでは、ユーザが指示した流量のプロセスガスを正確に処理チャンバに供給することが重要であり、今まで以上の高頻度な開閉動作が要求される。しかし、そのような高頻度な開閉動作による負荷により流体の漏出を引き起こしやすくなる場合あり、このため流体制御装置における流体の露出等の不具合、故障を容易に検知できるセンサ付きバルブで故障の有無を診断するシステム等の技術が開示されている。
 この点、特許文献1では、上位装置からの開閉指令に基づいて供給された加圧空気により弁体が開閉する圧空式のゲートバルブにおいて、前記加圧空気の圧力値を圧力センサで検出し、前記加圧空気により前記弁体を開閉させたときに発生した振動状況を振動センサで検出し、前記弁体が開位置又は閉位置に来たことを位置センサで検出して開閉信号を前記上位装置に送ると共に、前記上位装置が開閉指令を出してから開閉信号を受けるまでの開閉時間を計測し、前記加圧空気の圧力値、前記弁体の開閉時間及び振動状況を前記上位装置に通知するゲートバルブの制御方法が開示されている。
 また、特許文献2では、遮断弁と、該遮断弁の弁軸を回転制御するエアーシリンダーおよび該エアーシリンダーのシリンダーにエア供給源からのエアーの供給および排気を行う電磁弁を有し、前記遮断弁の開度を制御する制御手段とを備えた遮断弁制御システムであって、前記シリンダーの内圧を検出する圧力センサーと、前記制御手段の制御により、前記エアーシリンダーの前記シリンダーに前記エア供給源からのエアーの供給を行った場合に前記圧力センサーで実測した前記シリンダー内圧の圧力特性に基づいてシステムの正常/異常を判定する判定手段と、システムの初期の正常作動時の前記シリンダー内圧の圧力特性と故障予知境界の圧力特性を予め記憶する記憶手段とを備え、前記判定手段は、前記実測の圧力特性が前記正常作動時の圧力特性と前記故障予知境界の圧力特性の間の範囲内にある場合は正常と判定し、前記正常作動時の圧力特性及び前記故障予知境界の圧力特性の間の範囲外にある場合は、異常と判定する遮断弁制御システムが開示されている。
特開2020-176689号公報 特開2012-052652号公報
 しかしながら、位置センサによって、ピストンやステムのストローク量を観察してアクチュエータ内部の故障等を検知したり、バルブが開状態もしくは閉状態のどちらにあるかを検知したりする技術は開示されているものの、Oリングの摩耗等、バルブアクチュエータの経時変化によるバルブの動作時間を確認する手段はこれまで開示されていなかった。
 ここで、バルブの応答速度が速くなるということは、バルブが開いている時間が長くなるため、プロセスガスの流量が指定量より増えているということになる。一方、バルブの応答速度が遅くなるということは、バルブが開いている時間が短くなるため、プロセスガスの流量が指定量より減っているということになる。このような状況は、上述のようにガス流量の精密な制御が必要な場面では大きな問題となる。
 そこで、本発明は、バルブ単体でバルブアクチュエータの経時変化等による動作時間の変化を監視することを目的の一つとする。
 上記目的を達成するため、本発明に係るバルブは、バルブを開閉させる操作圧が導入される操作圧室と、前記操作圧室内の操作圧の変化を検出する操作圧センサと、前記操作圧の変化に対応したバルブの内部動作を検出する位置センサと、を備え、前記位置センサと前記操作圧センサから検出されたデータに基づき、前記操作圧が変化する所定の時点からこれに応じた動作が前記位置センサによって検出される所定の時点までの時間を前記バルブの動作時間として監視する。
 前記動作時間の変化を検出した場合に、前記動作時間と所定の基準値との差異に基づいて、前記操作圧室内に連通する操作圧導入路の流路面積を調整する操作圧調整機構、をさらに備えるものとしてもよい。
 外部と連通し、前記操作圧室への操作圧の導入及び前記操作圧室からの操作圧の排出に応じて空気が吸排される大気室と、前記動作時間の変化を検出した場合に、前記動作時間と所定の基準値との差異に基づいて、前記大気室から外部に連通する空気排出路の流路面積を調整する排気圧調整機構と、をさらに備えるものとしてもよい。
 本発明に係るバルブによれば、バルブ単体でバルブアクチュエータの経時変化等による動作時間の変化を監視できる。
本発明の実施形態に係るバルブを示した外観斜視図である。 本実施形態に係るバルブの内部構造を示した縦断面図であって、弁開状態を示す図である。 本実施形態に係るバルブの内部構造を示した部分拡大縦断面図であって、(a)弁開状態、(b)弁閉状態を示す。 本実施形態に係るバルブが有するボンネットを示した斜視図である。 本実施形態に係るバルブが有するアクチュエータ部を示した部分拡大断面図である。 本実施形態に係るバルブの機能を示した機能ブロック図である。 本実施形態の変形例に係るバルブ、及び当該バルブと通信可能に構成されたサーバが備える機能を示した機能ブロック図である。 本実施形態に係るバルブの動作時間の算出根拠となる操作圧と位置センサ出力の関係を示したグラフである。 本実施形態に係るバルブによって実行される処理の流れを示した処理フロー図である。
 以下、本発明の実施形態に係るバルブについて、図を参照して説明する。
 なお、以下の説明では、便宜的に図面上での方向によって部材等の方向を上下左右と指称することがあるが、これらは本発明の実施あるいは使用の際の部材等の方向を限定するものではない。また、各部の名称に付した符号について、同一の機能を奏するものについては同じ符号を付しつつ、個別に言及する場合にハイフンと共に付した番号により区別する。
 図1に示されるように、本実施形態に係るバルブVは、バルブVの内部動作を検出するセンサを内蔵し、他の端末等と通信を実行するエア作動式のダイレクトダイヤフラムバルブである。
 なお、ここにいう他の端末には、サーバ等の所謂コンピュータのほか、他の流体制御装置や流量制御装置などの機器や装置が含まれる。
 本実施形態に係るバルブVは内部動作に関するデータを取得可能な機器であって、図1および図2に示されるように、バルブボディ部1、第1ボンネット部2、第2ボンネット部4、アクチュエータ部5を備える。
●バルブボディ部1
 図1および図2に示されるように、バルブボディ部1は、プロセスガスの流路が形成された基台部11と、基台部11上に設けられた略円筒形状の円筒部12と、環状のシート13からなる。
 基台部11は平面視矩形状からなり、複数のバルブVによってユニット化された流体制御装置を構成する場合には、基板あるいはマニホールドブロック上に設置される部分となる。
 円筒部12は、第1ボンネット部2の一部が配設される側の端面が開口した中空形状からなり、中空の内部は第1ボンネット部2の一部が収容される凹部12aを構成する。凹部12aの下方及び基台部11内には、流体が流入する流入路111と流体が流出する流出路113、及び当該流入路111と流出路113に連通する弁室112が形成されている。流入路111、流出路113、及び弁室112は、流体が流通する流路を一体的に構成している。
 環状のシート13は、流入路111の周縁に設けられている。シート13上には、シート13に当接離反することによって流入路111および流出路113において流体を流通させたり、流通を遮断させたりするダイヤフラム22が設けられている。
●第1ボンネット部2
 図2に示されるように、第1ボンネット部2は、バルブボディ部1の円筒部12上に配設される。
 この第1ボンネット部2は、第1ボンネットボディ21、ダイヤフラム22、ディスク23、センサボンネット24、ダイヤフラム押さえ25、および押さえアダプタ26を備える。
 図3(a)および(b)に示すように、ダイヤフラム22は、ステンレス、Ni-Co系合金等の金属やフッ素系樹脂からなる、中央部221が凸状に膨出した球殻状の部材であり、流入路111および流出路113と第1ボンネット部2が動作する空間とを隔離している。
 第1ボンネットボディ21は、円筒部12と第2ボンネットボディ41の間に介装される。
 この第1ボンネットボディ21は略円筒形状からなり、中心部には、センサボンネット24が貫通される貫通孔21aが長さ方向に沿って設けられており、第1ボンネットボディ21の下端部は押さえアダプタ26と当接し、押さえアダプタ26を下方に押圧している。
 第1ボンネットボディ21には、基台部11とは反対側の一端が開口すると共に、外側から貫通孔21a側へ貫通したスリット21bが設けられている。
 このダイヤフラム22は、操作圧としての駆動流体が供給されてダイヤフラム押さえ25による押圧から開放されると、自身の復元力や流路内の圧力によって中央部221がシート13から離反する方向に変位してシート13から離反する。その結果、弁室112が開放され、流入路111と流出路113が連通した状態となる。一方、操作圧としての駆動流体が排出され、ダイヤフラム22がダイヤフラム押さえ25によって押圧されると、ダイヤフラム22の中央部221がシート13に当接する方向に変位してシート13に当接する。その結果、弁室112が遮断され、流入路111と流出路113が遮断された状態となる。
 すなわち、ダイヤフラム22の中央部221は、駆動流体の供給により変位する可動部となっており、周縁部222は、駆動流体が供給されても変位しない非可動部である。
 ダイヤフラム22の周縁部222は、後述する押さえアダプタ26と当接し、この押さえアダプタ26とバルブボディ部1の凹部12a内部に上向きに設けられている突起部121a(図3(a)および(b)参照)とに挟持されている。
 ディスク23は、ダイヤフラム22の上側に設けられ、センサボンネット24により上下動可能に支持されると共に、摺動するステム43に連動してダイヤフラム22の中央部を押圧する。
 ディスク23の外周面上にはOリングO1が取り付けられており、このOリングO1はディスク23とセンサボンネット24の内周面をシールしている。
 ディスク23の上部は外径が小さくなっており、マグネットホルダM10に貫挿されている。マグネットホルダM10は一部が切り欠かれた略円環状の部材であり、切り欠かれた部分に磁石が取り付けられている。この磁石は、センサボンネット24の凹部にはめ込まれているセンサホルダ241に取り付けられた磁性体M2と共に後述する磁気センサMを構成する。また、マグネットホルダM10は外周に凹部を備え、センサホルダ241を貫通するボルト等の位置決め部材が当該凹部を押圧することで、マグネットホルダM10の位置ずれが防止される。ディスク23上端部であってマグネットホルダM10の上方にはロックナット231が嵌められていて、マグネットホルダM10が抜け出るのを防止している。
 ディスク23の下端にはダイヤフラム押さえ25が連結されている。ダイヤフラム押さえ25は、下面側が下に膨らんだ凸面となっていて、その下面側においてダイヤフラム22の中央部221に当接し、摺動するステム43に連動してダイヤフラム22を押圧する。
 図3(a)および(b)に示されるように、ダイヤフラム押さえ25の下端は、弁開時および弁閉時のいずれにおいても、ダイヤフラム22の中央部221に当接している。すなわち、ダイヤフラム押さえ25とダイヤフラム22の接触面積は、弁開時と弁閉時とで同一面積である。この構成によれば、弁開時と弁閉時とでダイヤフラム22の伝熱面積を一定にし、後述する温度センサTによる正確な測温が可能である。
 図2および図4に示されるように、センサボンネット24は、略円筒状からなり、弁室112を覆って第1ボンネットボディ21内に収容される。
 センサボンネット24の内部には、ディスク23が貫挿される貫挿孔241aが中心部に形成されている。
 また、センサボンネット24には、圧力センサPおよび温度センサTに連通する連通孔241dが設けられている。連通孔241dを介して圧力センサPおよび温度センサTが設けられていることにより、ダイヤフラム22、ディスク23およびセンサボンネット24によって画定された空間内の圧力および温度を測定することができる。
 なお、本実施形態では、温度センサTはセンサボンネット24内部に設けられているものとしたが、温度センサTはバルブボディ部1の内側にあればよく、特に、少なくとも温度センサTの温度の検出部分がバルブボディ部1の内側に載置されていればよい。この構成によれば、バルブVを設置するだけで、別途温度センサの設置作業等を行うことなく、当該バルブV内の温度を正確に測定することができる。
 また、センサボンネット24の側面から、センサボンネット24内部の圧力センサP、温度センサTおよび磁気センサMと接続されるフレキシブルケーブル60が外側へ伸び出ている。
 センサボンネット24の内周面には、センサホルダ241に保持された磁性体M2が取り付けられていて、ディスク23に取り付けられた磁石と共に後述する磁気センサMを構成する。
 センサボンネット24は、アルミ材から構成されている。アルミ材は、例えばSUS(Steel Use Stainless)等に比べて熱伝導率が高いため、センサボンネット24内部の温度センサTに、流体温度をより正確に伝達することができる。また、アルミ材からなるセンサボンネット24によれば、磁化しないため、温度センサTおよび圧力センサPに対する磁気センサMの影響を小さくすることができる。
 押さえアダプタ26は、ダイヤフラム22の周縁部222と当接し、ダイヤフラム22をバルブボディ部1の凹部12a内の突起部121aとの間で挟持する。また、周縁部222を上方から押さえつけ、流入路111および流出路113を流れる流体が、周縁部222近傍から外部に漏出するのを防止している。
 押さえアダプタ26は、ダイヤフラム22の弁開時および弁閉時のいずれにおいても、ダイヤフラム22の可動部分、言い換えれば中央部221に触れない。また、押さえアダプタ26とダイヤフラム22との接触面積は、弁開時および弁閉時で同一である。この構成によれば、弁開時と弁閉時とでダイヤフラム22の伝熱面積を一定にすることができる。ひいては、ダイヤフラム22からの伝導熱が一定になるため、弁の開閉状態に関わらず、後述する温度センサTによる正確な測温が可能である。
●第2ボンネット部4
 第2ボンネット部4は、第1ボンネット部2上に配設される。
 図2に示されるように、この第2ボンネット部4は、第2ボンネットボディ41、ステム43、バネ44を備える。
 第2ボンネットボディ41は、ステム43とセンサボンネット24の間に介装される。
 この第2ボンネットボディ41は略円柱形状からなり、中心部には、ステム43とディスク23が貫挿される貫挿孔41aが長さ方向に沿って設けられている。図2及び図3に示されるように、貫挿孔41a内ではステム43とディスク23が当接しており、ステム43が下方に変位するとディスク23が下方へ押圧され、これによりダイヤフラム22がシート13に当座する。
 ステム43は、操作圧の供給と停止に応じて上下動し、ディスク23およびダイヤフラム押さえ25を介してダイヤフラム22をシート13に当接離反させる。
 ステム43の上部にはロッド431が連結されている。ロッド431は、第2ボンネット部4の上部から突出し、アクチュエータ部5内に挿入されている。なお、ロッド431はステム43と連結されて一体に昇降するため、ロッド431をステム43と同義で扱う場合がある。
 ステム43は、下部に拡径部が設けられており、当該拡径部の上面側においてバネ44の付勢力を受ける。
 バネ44は、ステム43の外周面上に巻回されており、ステム43の下部に形成されている拡径部の上面に当接してステム43を下方、即ちダイヤフラム22を押下する方向に付勢している。
●アクチュエータ部5
 アクチュエータ部5は、図2及び図5に示すように、駆動流体の供給源が接続される供給口51を有する有底円筒形の部材である。供給口51は、ロッド431の上方に形成された操作圧導入路511に連通する開口部であり、操作圧導入路511は、ロッド431の軸方向から径方向に分岐して操作圧室52に連通している。
 アクチュエータ部5の内部は、ロッド431に摺動自在に貫通する隔壁部材58により上下の空間に隔てられ、上側の空間には、ロッド431と係合するピストン54-1が上下方向に摺動自在に設けられている。下側の空間にも、ロッド431と係合するピストン54-2が上下方向に摺動自在に設けられている。
 ピストン54-1は、アクチュエータ部5の上側の空間を操作圧室52-1と大気室55-1とに区画しており、ピストン54-2は、アクチュエータ部5の下側の空間を操作圧室52-2と大気室55-2とに区画している。
 操作圧室52-1は、ロッド431の中心部に形成された操作圧導入路511と分岐路511aを介して連通しており、操作圧室52-2は、ロッド431の中心部に形成された操作圧導入路511と分岐路511bを介して連通している。ロッド431の操作圧導入路511の上端側の開口は、アクチュエータ部5の上側の中心部に形成された供給口51と連通している。操作圧導入路511を通じて供給される駆動流体は操作圧室52に供給される。
 大気室55-1は、アクチュエータ部5内に形成された空気排出路551-1を通じて大気と連通している。大気室55-2も、アクチュエータ部5内に形成された空気排出路551-2を通じて大気と連通している。この大気室55-1、55-2は、操作圧室52への操作圧の導入、又は操作圧室52からの操作圧の排出に応じて動作するピストン54の変位に応じて、空気を吸排する。
 ピストン54とアクチュエータ部5の内壁との間や、ロッド431とピストン54の間には、操作圧室52の気密性を確保するためにOリングO2が設けられている。このOリングO2は、ピストン54の上下動に伴って上下に摺動する。
 ここで、操作圧の供給と停止に伴う弁の開閉動作について言及する。供給口51に導入管(図示省略)を介して接続された三方弁から駆動流体が供給されると、駆動流体は操作圧導入路511を介して操作圧室52に導入される。これに応じて、ピストン54が上昇すると、ステム43とセンサボンネット24はバネ44の付勢力に抗して上方に押し上げられ、空気排出路551を介して大気室55内の空気が外部へ排出される。これにより、ダイヤフラム22がシート13から離反して開弁した状態となり、流体が流通する。
 一方、三方弁において駆動流体の供給が遮断されると共に、導入管(図示省略)を介して供給口51、操作圧導入路511が大気に開放されると、操作圧室52内の操作圧が操作圧導入路511を介して外部に排出される。これに応じて操作圧室52の圧力が下がると、ピストン54が下降し、ステム43とセンサボンネット24がバネ44の付勢力に従って下方に押し下げられる。また、空気排出路551を通じて外部の空気が大気室55に流入する。これにより、ダイヤフラム22がシート13に当接して閉弁した状態となって、流体の流通が遮断される。
 アクチュエータ部5には、動作時間の変化に応じて操作圧室52内の操作圧の昇圧速度を調整可能な操作圧調整機構56と、動作時間の変化に応じて大気室55内の空気の排気速度を調整可能な排気圧調整機構57とを備える。
 操作圧調整機構56は、供給口51の近傍であって、操作圧導入路511の中途に設けられ、操作圧室52に導入される駆動流体又は操作圧室52から排出される駆動流体の量を調整可能に制限するために設けられている。
 この操作圧調整機構56は、バルブVの動作時間の変化が検出されたとき、制御部70(図6参照)による制御に基づき、供給口51から操作圧室52に繋がる操作圧導入路511の流路面積を所定の流路面積となるように塞いだり開放したりして調整する。具体的な例では、操作圧調整機構56は、操作圧導入路511を横切るように形成されたネジ穴とこのネジ穴に螺合するネジ部材によって構成され、ネジ部材がネジ穴に螺合する量によって流路面積を任意の量に調整できる。
 なお、本実施形態にかかわらず、操作圧調整機構56は、流路面積を任意の量に調整できる限り、他の構造を採用できる。また、この制御はシステムによるものでもよいし、手動によるものであってもよい。
 なお、この操作圧調整機構56は、供給口51に設けられ、操作圧導入路511に代えて供給口51の開口面積を塞いだり開放したりするようになっていてもよい。また、操作圧導入路511はロッド431の軸方向から径方向に分岐して操作圧室52に連通しているが、本実施形態において、操作圧調整機構56は、操作圧導入路511が径方向に分岐する手前の供給口51に近い位置に設けられている。
 排気圧調整機構57は、空気排出路551-1、551-2の中途に設けられ、空気排出路551-1、551-2を通じて大気室55-1、55-2から外部へ排出される空気の通気量、又は空気排出路551-1、551-2を通じて大気室55-1、55-2へ吸引される空気の通気量を調整可能に制限するために設けられている。
 この排気圧調整機構57は、バルブVの動作時間の変化が検出されたとき、制御部70による制御に基づき、大気室55に連通する空気排出路551の流路面積を所定の流路面積となるように塞いだり開放したりして調整する。具体的には例えば、空気排出路551-1、551-2を横切るように形成されたネジ穴とこのネジ穴に螺合するネジ部材によって構成される。そして、ネジ部材がネジ穴に螺合する量によって流路面積を任意の量に調整できる。即ち、ネジ部材には、先端部と中途にそれぞれネジが形成されていないピン部と溝部が設けられ、ピン部と溝部はネジ部材のネジ穴への進退に応じて空気排出路551-1、551-2に現れて流路を開放したり、逆に空気排出路551-1、551-2から外れて流路を遮断したりする。
 なお、本実施形態にかかわらず、排気圧調整機構57は、通気量を任意の量に調整できる限り、他の構造を採用でき、空気排出路551-1、551-2が別個に設けられた排気圧調整機構57によって通気量を調整されるようになっていてもよい。また、この制御はシステムによるものでもよいし、手動によるものであってもよい。
●センサ
 バルブVは、機器内の動作を検出するためのセンサとして、圧力センサPと、温度センサTと、磁気センサMと、操作圧センサDを備えている。このうち、圧力センサPと、温度センサTと、磁気センサMは、センサボンネット24の内部に備えられており、図4に示すセンサボンネット24の連通孔241dを介してセンサボンネット24の貫挿孔241aに面していて、ダイヤフラム22、ディスク23およびセンサボンネット24によって画定された空間に連通している。これにより圧力センサPは、当該空間内の圧力を検出することができる。
 なお、圧力センサPが連通孔241dに通じる箇所にはパッキン等のシール部材が介装されており、気密状態が担保されている。
 温度センサTは、ダイヤフラム22、ディスク23およびセンサボンネット24によって画定された空間の温度を測定する。温度センサTを有するバルブVによれば、流体の制御と共に流体の温度を測定することができる。
 センサボンネット24の貫通孔241eには磁性体M2が取り付けられており、この磁性体M2は、ディスク23に取り付けられた磁石と共に磁気センサMを構成し、バルブVの内部動作としてステム43の位置を検出する位置センサの役割を果たしている。
 この磁気センサMによって以下の通り、弁の開閉動作、及びステム43の移動量を検知することができる。即ち、マグネットホルダM10に保持される磁石がディスク23の上下動に応じて摺動するのに対し、磁性体M2はセンサボンネット24と共に第一ボンネット部2内に固定されている。この結果、ディスク23の上下動に従って上下動するマグネットホルダM10に保持される磁石と、位置が固定されている磁性体M2との間に発生する磁界の変化に基づき、ディスク23およびダイヤフラム押さえ25の動作、ひいては弁の開閉動作、及びステム43の移動量を検知することができる。
 なお、本実施形態では磁気センサMを用いたが、これに限らず、他の実施形態においては、光学式の位置センサ等、他の種類のセンサを用いることもできる。
 操作圧センサDは、アクチュエータ部5に備えられており、操作圧室52内に連通する連通孔53を介して操作圧室52内の操作圧を検出する。
 圧力センサP、温度センサT、磁気センサM、及び操作圧センサDには夫々、可撓性を有する通信用のフレキシブルケーブル60の一端が接続しており(磁気センサMについては、詳細には磁性体M2に接続している)、フレキシブルケーブル60の他端は、バルブVの外側に設けられた回路基板に接続している。さらに、回路基板には外部端子接続用の略矩形状のコネクタが設けられており、これにより、圧力センサP、温度センサT、および磁気センサMによって測定されたデータを抽出することができる。コネクタの種類や形状は、各種の規格に応じて適宜に設計し得る。なお、各センサが検出したデータは無線通信により所定の機器やサーバに送信できるようになっていてもよい。
 このような構成からなるバルブVによれば、圧力センサP、温度センサT、磁気センサM及び操作圧センサDによって検出されたデータを外部へ出力させることができる。そして、このようなデータは、弁の開閉動作とその動作時間、ダイヤフラム22の破損等によるリーク、バルブVの経年劣化や個体差などを把握するための情報となり得る。
●制御部
 図6に示すように、本実施形態にかかるバルブVは、センサによって検出されたデータを処理する制御部70を有する。制御部70は、機能ブロックとして動作時間判定部71を有する。なお、図7に示す別の実施例のように、バルブVは通信処理部72を備え、サーバ80の通信処理部82と通信を行ってもよい。図7の例においては、バルブVとサーバ80とは、ネットワークを介して接続されている。そして、このサーバ80が動作時間判定部71に対応する動作時間判定部81および通信処理部82を有するものとしてもよい。
 動作時間判定部71は、磁気センサMと操作圧センサDによって検出されたデータに基づいてバルブVの動作時間を算出し、当該動作時間を監視している。さらに、算出した動作時間を所定の基準値と比較して適否を判定できる。
 より具体的な判定の処理について、図8を参照して説明する。図8は、動作時間の算出イメージを示したものであり、横軸は時間変化を示し、縦軸は操作圧センサDの出力値と位置センサ(磁気センサM)の出力値を示している。このグラフによれば、弁開動作時、操作圧室52に操作圧が導入されると、一定のタイムラグ(応答時間)の後にステム43が上昇して位置センサ(磁気センサM)が所定の出力値を示すことが把握される。また、弁閉動作時、操作圧室52内の操作圧が排出されると、一定のタイムラグ(応答時間)の後にステム43が下降して位置センサ(磁気センサM)が所定の出力値を示すことが把握される。このタイムラグ、即ち操作圧が変化する所定の時点からこれに応じた動作が位置センサ(磁気センサM)によって検出される所定の時点までの時間がバルブVの開閉動作の動作時間に該当し、図8における時間t1が弁開動作時の動作時間、時間t2が弁閉動作時の動作時間を示す。
 なお、動作時間の起点となる操作圧および終点となる位置センサ出力は任意の所定値であり、図8の左右に示す軸の値はあくまで例示である。
 また、基準値は、適宜の記憶部にあらかじめ記憶されている値であってもよいし、バルブVの使用開始時の初期状態における動作時間を計測して格納した値であってもよい。また、バルブVの動作時間の設計値であってもよい。
 ここで、動作時間は、主にOリングO2の摩耗等の経年変化によって速くなる傾向にある。動作時間が速くなると、バルブVの制御信号に対する弁開動作及び弁閉動作のタイミングが初期の状態からずれてしまい、プロセスガスの流量が指定量どおりにならなくなる。すなわち、弁開時の動作時間が速くなることで、弁が開いて流体が流通している時間、つまり弁開時間を長くし、プロセスガスの流量を指定量よりも増大させる。また、弁閉時の動作時間が速くなることで、弁開時間を短くし、プロセスガスの流量を指定量よりも低減させる。
 これに対して動作時間判定部71は、操作圧の変化と位置センサ出力の変化に基づいて算出された弁開動作及び弁閉動作それぞれの動作時間を、所定のテーブルに保持した適切な動作時間の基準値と比較し、許容範囲内であれば適切なものと判定し、許容範囲を超える場合には不適切な状態と判定する。
 そして、動作時間判定部71によりバルブVの動作時間が不適切であると判定された場合や、動作時間を確認した上で動作時間を任意の時間に調整したい場合には、制御部70により操作圧調整機構56又は排気圧調整機構57を制御して動作時間を調整できる。これによりバルブVが開弁状態にある時間が調整され、指定量どおりの量のプロセスガスを流通させられる。
 なお、調整すべき時間量は、操作圧の変化から磁気センサMの出力の変化に基づいて検出された弁開動作又は弁閉動作までの動作時間と基準値との差異に基づいて算出される。
●処理フロー
 動作時間判定部71による判定処理の結果に基づいた制御について、図9を参照して説明する。
 図9は弁開動作について動作時間を調整する処理の流れを示している。
 動作時間判定部71は、操作圧センサDと磁気センサMの出力変化から弁開動作及び弁閉動作における動作時間を算出した上(S101)、所定の基準値からみて、それぞれの動作時間が許容範囲にあるかどうかを判定する(S102)。
 判定の結果、動作時間が許容範囲から外れるとき、即ち動作時間が基準値よりも速い場合には、制御部70は、操作圧調整機構56によって操作圧導入路511の流路面積を所定面積だけ閉塞して狭める(S103)。なお、この制御部70による制御においては、操作圧調整機構56による調整に代えて、あるいは操作圧調整機構56による調整と合わせて、排気圧調整機構57を制御してもよい。この場合には、排気圧調整機構57によって空気排出路551の流路面積を所定面積だけ閉塞して狭める。
 一の実施例において、操作圧調整機構56及び/又は排気圧調整機構57の制御は、弁開動作と弁閉動作のうち、動作時間のずれが大きい方の動作において実行する。例えば、弁開動作における動作時間のずれが弁閉動作における動作時間のずれよりも大きい場合には、弁開動作時において、弁開動作で生じている動作時間のずれを操作圧調整機構56及び/又は排気圧調整機構57により調整する。
 駆動流体供給源からは駆動流体が一定の圧力で供給されているため、操作圧導入路511の流路面積が狭まることで操作圧室52内の操作圧の上昇速度が落ち、その結果、動作時間を遅らせて正常なタイミングでバルブVを弁開させられる。空気排出路551についても同様に、流路面が狭まることで大気室55内の空気の排出速度が落ち、その結果、動作時間を遅らせられる。これにより、動作時間のずれによって生じるバルブVの弁開時間のずれを修正し、指定量どおりのプロセスガスを流通させられる。
 なお、操作圧調整機構56によって狭められる操作圧導入路511の面積あるいは排気圧調整機構57によって狭められる空気排出路551の面積は、正常な動作時間からの変化量に応じて、所定の係数を乗じたり、予め所定のテーブルで対応付けられた数値に基づいたりして決定される。
 なお、別の実施例においては、上述した一の実施例とは逆に、弁開動作と弁閉動作のうち、動作時間のずれが小さい方の動作において、動作時間のずれを操作圧調整機構56及び/又は排気圧調整機構57により調整することもできる。
 また、弁開動作および弁閉動作のそれぞれの動作時間のずれを相殺し、弁開動作又は弁閉動作のいずれかにおいて差分を操作圧調整機構56及び/又は排気圧調整機構57により調整することもできる。
 また、さらに別の実施例においては、弁開動作と弁閉動作それぞれにおいて、動作時間のずれを操作圧調整機構56及び/又は排気圧調整機構57により個別に調整することもできる。
 以上の本実施形態に係るバルブVによれば、バルブ単体でバルブアクチュエータの経時変化等による動作時間の変化を監視できる。また、動作時間の変化に基づいて操作圧導入路511及び/又は空気排出路551の流路面積を調整し、これにより動作時間を適切な速度にできる。
 なお、図9の例では、動作時間判定部71による判定処理の結果に基づいて操作圧調整機構56及び/又は排気圧調整機構57を制御して動作時間を調整したが、これに限らず、管理者等の任意の操作に応じて、操作圧調整機構56及び/又は排気圧調整機構57を制御し、動作時間を調整することもできる。
 また、バルブVの制御信号に対する動作時間は、主にOリングO2の摩耗等の経年変化によって速くなる傾向にあるが、さらに経年変化が進むと、アクチュエータ部5内でのリークが進むなどして動作時間が遅くなる傾向がみられる。そのため、動作時間の変化を監視し、動作時間が遅くなり始めたタイミングを検出してバルブVの異常を判定することもできる。
1 バルブボディ部
 11 基台部
 12 円筒部
  12a 凹部
  13シート
2 第1ボンネット部
 21 第1ボンネットボディ
  21a 貫通孔
  21b スリット
 22 ダイヤフラム
 23 ディスク
 24 センサボンネット
 25 ダイヤフラム押さえ
 26 押さえアダプタ
4 第2ボンネット部
 41 第2ボンネットボディ
 43 ステム
 431 ロッド
 44 バネ
5 アクチュエータ部
 51 供給口
 511 操作圧導入路
 52 操作圧室
 53 連通孔
 54 ピストン
 55 大気室
 551 空気排出路
 56 操作圧調整機構
 57 排気圧調整機構
 58 隔離壁
 60 フレキシブルケーブル
70 制御部
71 動作時間判定部
72 通信処理部
80 サーバ
81 動作時間判定部
D 操作圧センサ
M 磁気センサ(位置センサ)
O1、O2 Oリング
P 圧力センサ
T 温度センサ
V バルブ

Claims (3)

  1.  バルブを開閉させる操作圧が導入される操作圧室と、
     前記操作圧室内の操作圧の変化を検出する操作圧センサと、
     前記操作圧の変化に対応したバルブの内部動作を検出する位置センサと、を備え、
     前記位置センサと前記操作圧センサから検出されたデータに基づき、前記操作圧が変化する所定の時点からこれに応じた動作が前記位置センサによって検出される所定の時点までの時間を前記バルブの動作時間として監視する、
     バルブ。
     
  2.  前記動作時間の変化を検出した場合に、前記動作時間と所定の基準値との差異に基づいて、前記操作圧室内に連通する操作圧導入路の流路面積を調整する操作圧調整機構、をさらに備える、
     請求項1記載のバルブ。
     
  3.  外部と連通し、前記操作圧室への操作圧の導入及び前記操作圧室からの操作圧の排出に応じて空気が吸排される大気室と、
     前記動作時間の変化を検出した場合に、前記動作時間と所定の基準値との差異に基づいて、前記大気室から外部に連通する空気排出路の流路面積を調整する排気圧調整機構と、をさらに備える、
     請求項1又は2記載のバルブ。
PCT/JP2023/041620 2022-11-30 2023-11-20 バルブ WO2024116930A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022192441 2022-11-30
JP2022-192441 2022-11-30

Publications (1)

Publication Number Publication Date
WO2024116930A1 true WO2024116930A1 (ja) 2024-06-06

Family

ID=91323709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/041620 WO2024116930A1 (ja) 2022-11-30 2023-11-20 バルブ

Country Status (2)

Country Link
TW (1) TW202424375A (ja)
WO (1) WO2024116930A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05346185A (ja) * 1992-06-11 1993-12-27 Ckd Corp 空気圧制御による制御弁開閉速度及び流量調節装置
JP2008121859A (ja) * 2006-11-15 2008-05-29 Ckd Corp 真空弁
WO2020031628A1 (ja) * 2018-08-10 2020-02-13 株式会社フジキン 流体制御機器、流体制御機器の異常検知方法、異常検知装置、及び異常検知システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05346185A (ja) * 1992-06-11 1993-12-27 Ckd Corp 空気圧制御による制御弁開閉速度及び流量調節装置
JP2008121859A (ja) * 2006-11-15 2008-05-29 Ckd Corp 真空弁
WO2020031628A1 (ja) * 2018-08-10 2020-02-13 株式会社フジキン 流体制御機器、流体制御機器の異常検知方法、異常検知装置、及び異常検知システム

Also Published As

Publication number Publication date
TW202424375A (zh) 2024-06-16

Similar Documents

Publication Publication Date Title
US8210196B2 (en) Vacuum control system and vacuum control method
JP5086166B2 (ja) 真空圧力制御システム
JP5271191B2 (ja) バタフライバルブ
JP4765746B2 (ja) 遮断弁装置及びこれを組み込んだ質量流量制御装置
US8033801B2 (en) Liquid chemical supply system and liquid chemical supply control device
US11867589B2 (en) Systems and methods for control and monitoring of actuated valves
WO2015111391A1 (ja) 圧力式流量制御装置及びその流量制御開始時のオーバーシュート防止方法
CN103047471B (zh) 具有复位装置的导频操作的流体调节器及其相关方法
US10838435B2 (en) Pressure-type flow rate control device
US20200248685A1 (en) Vacuum pressure proportional control valve
WO2015064035A1 (ja) 圧力式流量制御装置
JP2000193106A (ja) 流量コントロ―ルバルブ
KR102242231B1 (ko) 유량 제어 장치 및 유량 제어 장치의 유량 제어 방법
US20180112796A1 (en) Methods and apparatus of stabilizing a valve positioner when testing a solenoid valve
JP2007146908A (ja) 真空調圧システム
WO2024116930A1 (ja) バルブ
JP2020517867A (ja) 力センサを備えた真空弁
US11187346B2 (en) Valve device, its control device, control methods using the same, fluid control device and semiconductor manufacturing apparatus
JP2020020371A (ja) アクチュエータおよびこれを用いたバルブ装置
KR102361101B1 (ko) 밸브 장치 및 유체 제어 장치
JP5261545B2 (ja) 真空制御システムおよび真空制御方法
JP2024079471A (ja) バルブ制御装置、バルブ制御システム、バルブ制御方法、およびバルブ制御プログラム
KR102625999B1 (ko) 유체 제어 장치
JP7412734B2 (ja) 電磁弁ユニット
WO2023188822A1 (ja) バルブ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23897578

Country of ref document: EP

Kind code of ref document: A1