WO2024116837A1 - 送電装置、受電装置、無線電力伝送システム、送電装置の制御方法、および記憶媒体 - Google Patents

送電装置、受電装置、無線電力伝送システム、送電装置の制御方法、および記憶媒体 Download PDF

Info

Publication number
WO2024116837A1
WO2024116837A1 PCT/JP2023/040995 JP2023040995W WO2024116837A1 WO 2024116837 A1 WO2024116837 A1 WO 2024116837A1 JP 2023040995 W JP2023040995 W JP 2023040995W WO 2024116837 A1 WO2024116837 A1 WO 2024116837A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
value
state
information
power receiving
Prior art date
Application number
PCT/JP2023/040995
Other languages
English (en)
French (fr)
Inventor
元 志村
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Publication of WO2024116837A1 publication Critical patent/WO2024116837A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/60Circuit arrangements or systems for wireless supply or distribution of electric power responsive to the presence of foreign objects, e.g. detection of living beings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices

Definitions

  • the present disclosure relates to a power transmission device, a power receiving device, a wireless power transmission system, a control method for a power transmission device, and a storage medium.
  • a power transmitting device can wirelessly transmit power to a power receiving device placed on a charging stand or the like. If the power transmitting device or power receiving device determines that an abnormality has occurred, it performs control to prevent a decrease in power transmission efficiency and the generation of heat, etc.
  • Patent document 1 discloses a process for detecting a foreign object that has entered between the power transmitting coil and the power receiving coil, and a process for detecting a positional deviation between the power transmitting coil and the power receiving coil.
  • the present disclosure has an object to provide a technique that enables power transmission control and power reception control based on a plurality of state detection results related to a power transmitting device and a power receiving device.
  • the power transmission device disclosed herein has a power transmission means for wirelessly transmitting power to a power receiving device using a power transmission antenna, a communication means for communicating with the power receiving device, a detection means for performing a measurement process of physical quantities related to the power transmission device and detecting the state of the power transmission device, and a control means for controlling the power transmission means and the measurement process.
  • control means determines that the power receiving device should request the power transmission device to perform a measurement process again based on information acquired when a first state detection based on the measurement process is performed and information acquired when a second state detection based on a measurement process performed after the first state detection is performed, the control means controls the communication means to transmit to the power receiving device a signal having information on the state detection result related to the first or second state detection and a signal having information on the request to perform the measurement process again.
  • This disclosure provides a technology that enables power transmission control and power reception control based on multiple state detection results related to a power transmission device and a power receiving device.
  • FIG. 1 is a diagram illustrating a configuration example of a wireless power transmission system.
  • FIG. 2 is a diagram illustrating a configuration example of a power transmitting device.
  • FIG. 2 illustrates an example of the configuration of a power receiving device.
  • This is an explanatory diagram illustrating an example of a threshold setting method for state detection using the Power Loss method.
  • 1A and 1B are diagrams illustrating a Q-factor measurement method.
  • 4 is a block diagram showing an example of a functional configuration of a control unit of the power transmitting device.
  • FIG. 11 is a flowchart illustrating an example of processing performed by a power transmitting device. 11 is a flowchart illustrating an example of processing performed by a power receiving device.
  • FIG. 11 is a flowchart illustrating an example of processing performed by a power transmitting device.
  • FIG. 11 is an explanatory diagram of state detection using a waveform decay method.
  • FIG. 11 is a diagram illustrating an example of a process for performing wireless power transmission.
  • FIG. 11 is an explanatory diagram showing an example of a threshold setting method in state detection by the waveform decay method.
  • 13A and 13B are explanatory diagrams showing an example of a method for measuring an indicator of the coupling state between a power transmitting antenna and a power receiving antenna.
  • FIG. 11 is an explanatory diagram showing an example of a threshold setting method in state detection by a coupling state indicator measurement method.
  • 13 is a flowchart illustrating an example of processing performed by a power transmitting device in the second embodiment.
  • 10 is a flowchart illustrating an example of processing performed by a power receiving device in the second embodiment.
  • FIG. 11 is a sequence diagram illustrating an example of processing performed by a power transmitting device and a power receiving device.
  • 13 is a flowchart illustrating an example of processing performed by a power transmitting device according to a third embodiment.
  • 18 is a flowchart illustrating an example of processing following that shown in FIG. 17.
  • FIG. 13 is a sequence diagram illustrating an example of processing by a power transmitting device and a power receiving device in the third embodiment.
  • a wireless charging system to which a wireless power transmission system is applied is shown.
  • wireless power transmission based on the standard established by the Wireless Power Consortium, a standardization organization for wireless charging (hereinafter referred to as the WPC standard) will be described.
  • Fig. 1 is a diagram showing an example of the configuration of a wireless charging system.
  • This system includes a power transmission device 100, a power receiving device 200, and a charging stand 300.
  • the power receiving device 200 may be referred to as RX and the power transmission device 100 as TX.
  • the detailed configurations of TX and RX will be described later with reference to Figures 2 and 3.
  • the charging stand 300 constitutes a part of the TX, hereinafter, when the RX is "placed on the charging stand 300," it may be said that the RX is "placed on the TX.”
  • the spatial range in which the RX can receive power from the TX is shown diagrammatically within the dotted line frame 400 in Figure 1.
  • RX and TX may have the functionality to execute applications other than the wireless charging function.
  • RX is a smartphone and TX is an accessory device for charging the battery of RX.
  • this example is not limiting.
  • FIG. 2 is a functional block diagram showing an example of the configuration of the power transmission device 100 (TX).
  • the TX has a control unit 101, a power supply unit 102, a power transmission unit 103, a first communication unit 104, a power transmission antenna (power transmission coil) 105, a memory 106, a resonant capacitor 107, a switch unit 108, a second communication unit 109, and a user interface unit 110.
  • each functional block element is shown as a separate entity, but any number of functional block elements may be implemented within the same chip.
  • the control unit 101 controls the entire TX by executing a control program stored in the memory 106.
  • the control unit 101 also controls power transmission, including communication for device authentication in the TX.
  • control unit 101 can perform control to execute applications other than wireless power transmission.
  • the control unit 101 is configured to include one or more processors such as a CPU (Central Processing Unit) or an MPU (Microprocessor Unit).
  • processors such as a CPU (Central Processing Unit) or an MPU (Microprocessor Unit).
  • control unit 101 may be configured with hardware such as an application specific integrated circuit (ASIC).
  • ASIC application specific integrated circuit
  • the control unit 101 may also be configured to include an array circuit such as an FPGA (Field Programmable Gate Array) compiled to execute a specified process.
  • the control unit 101 can execute a process of storing information to be stored in the memory 106 during execution of various processes, and a time measurement process using a timer (not shown).
  • the power supply unit 102 supplies power to each functional block element.
  • the power supply unit 102 includes, for example, a power supply connection circuit to a commercial power source and a battery.
  • the battery is charged with power supplied from the commercial power source.
  • the power transmission unit 103 converts the DC or AC power input from the power supply unit 102 into AC power in the frequency band used for wireless power transmission, and inputs the AC power to the power transmission antenna 105, thereby generating electromagnetic waves for the RX to receive power.
  • the power transmission unit 103 includes an inverter and converts the DC voltage supplied by the power supply unit 102 into an AC voltage using a switching circuit with a half-bridge or full-bridge configuration.
  • the power transmission unit 103 includes multiple FETs (Field Effect Transistors) that form a bridge, and a gate driver that controls the ON/OFF of the multiple FETs.
  • FETs Field Effect Transistors
  • the power transmitting unit 103 controls the intensity of the electromagnetic waves (power transmission power) to be output by adjusting the voltage (power transmission voltage) or current (power transmission current), or both, input to the power transmitting antenna 105.
  • the strength of the electromagnetic waves (the magnitude of the transmitted power) is controlled by the magnitude of the transmitted voltage or current.
  • the power transmitting unit 103 controls the strength of the electromagnetic waves to be output (the transmitted power) by adjusting the voltage or current, or both, input to the inverter possessed by the power transmitting unit 103.
  • the voltage input to the inverter is hereinafter referred to as the inverter input voltage.
  • the power transmission unit 103 performs output control of the power of the AC frequency electromagnetic waves so that the power transmission by the power transmission antenna 105 is started or stopped, or the intensity of the electromagnetic waves to be output is controlled based on an instruction signal from the control unit 101.
  • the power transmitting unit 103 is assumed to have a power supply capacity sufficient to output 15 watts (W) of power to the charging unit (206 in FIG. 3) of the power receiving device 200 that complies with the WPC standard.
  • the first communication unit 104 is connected to the control unit 101 and the power transmission unit 103, and communicates with the RX for power transmission control based on the WPC standard.
  • the first communication unit 104 performs frequency shift keying of the electromagnetic waves output from the power transmission antenna 105, and transmits information to the RX to perform communication.
  • the first communication unit 104 also demodulates the electromagnetic waves transmitted from the power transmitting antenna 105 that were modulated by the RX, and acquires the information transmitted by the RX. Communication by the first communication unit 104 is performed by superimposing a communication signal on the electromagnetic waves transmitted from the power transmitting antenna 105.
  • the power transmitting antenna 105 is connected to a resonant capacitor 107.
  • the switch unit 108 When the switch unit 108 is turned on and short-circuited by a control signal from the control unit 101, the power transmitting antenna 105 and the resonant capacitor 107 form a series resonant circuit and resonate at a specific frequency fA.
  • WPC standard first standard
  • a second standard a standard other than the WPC standard
  • the UI unit 110 is connected to the control unit 101 and performs various outputs to the user.
  • the various outputs include screen display, blinking or color changes of LEDs (Light Emitting Diodes), audio output from a speaker, vibration of the TX main unit, and other operations.
  • the UI unit 110 is realized by an LCD panel, a speaker, a vibration motor, etc.
  • FIG. 3 is a block diagram showing an example of the configuration of the power receiving device 200 (RX).
  • the RX has a control unit 201, a UI unit 202, a power receiving unit 203, a first communication unit 204, a power receiving antenna 205, a charging unit 206, a battery 207, and a memory 208.
  • the RX further has a first switch unit 209, a second switch unit 210, a resonant capacitor 211, a second communication unit 212, and a third switch unit 213.
  • a first switch unit 209 a second switch unit 210
  • a resonant capacitor 211 a second communication unit 212
  • a third switch unit 213 a third switch unit 213.
  • the control unit 201 controls each functional block element of the RX by executing a control program stored in the memory 208. Furthermore, the control unit 201 can perform control to execute applications other than wireless power transmission.
  • the control unit 201 is configured to include one or more processors such as a CPU or MPU.
  • the control unit 201 can control the entire RX (e.g., the entire smartphone) in cooperation with the OS (Operating System) that it is running.
  • OS Operating System
  • the UI unit 202 is connected to the control unit 201, and performs various outputs to the user.
  • the various outputs include screen display, blinking or color changes of LEDs, audio output from a speaker, vibration of the RX main unit, and other operations.
  • the UI unit 202 is realized by an LCD panel, a speaker, a vibration motor, etc.
  • the power receiving unit 203 receives AC power (AC voltage and AC current) generated by electromagnetic induction based on electromagnetic waves radiated from the TX power transmitting antenna 105 via the power receiving antenna (power receiving coil) 205.
  • the power receiving unit 203 converts the AC power into DC or AC power of a predetermined frequency and supplies the power to the charging unit 206.
  • the charging unit 206 charges the battery 207.
  • the power receiving unit 203 includes a rectification unit (rectifier, rectification circuit) and a voltage control unit that are necessary to supply power to the load in the RX.
  • the rectifier converts the AC voltage and AC current received from the power transmitting antenna 105 via the power receiving antenna 205 into a DC voltage and DC current.
  • this DC voltage is referred to as the rectifier output voltage.
  • the voltage control unit converts the level of the rectifier output voltage to a predetermined level.
  • the predetermined level is a DC voltage level at which the control unit 201 and the charging unit 206, etc. can operate.
  • the power receiving unit 203 supplies power for charging the battery 207 from the charging unit 206.
  • the power receiving unit 203 is assumed to have a power supply capacity sufficient to output 15 watts of power to the charging unit 206.
  • the first communication unit 204 communicates with the first communication unit 104 of the TX for power reception control based on the WPC standard.
  • the first communication unit 204 is connected to the power receiving antenna 205 and the control unit 201, and demodulates the electromagnetic waves input from the power receiving antenna 205 to obtain the information transmitted from the TX.
  • the first communication unit 204 performs load modulation or amplitude modulation on the input electromagnetic waves and superimposes a signal related to the information to be transmitted to the TX onto the electromagnetic waves, thereby communicating with the TX.
  • the memory 208 stores information about the status of the TX and RX.
  • Information about the status of the RX is acquired by the control unit 201.
  • Information about the status of the TX is acquired by the control unit 101 of the TX, and can be received by the first communication unit 204 or the second communication unit 212.
  • the second communication unit 212 is connected to the control unit 201, and communicates with the TX using a standard different from the WPC standard. For example, the second communication unit 212 communicates with the TX (the second communication unit 109 in FIG. 2) using an antenna different from the receiving antenna 205.
  • the RX can selectively use one of multiple communication standards to communicate with the TX.
  • the frequency band used when receiving power by the receiving antenna 205 is different from the frequency band used by the second communication unit 212 for communication.
  • the first switch unit 209 is provided between the charging unit 206 and the battery 207, and is controlled by the control unit 201.
  • the first switch unit 209 has a function of controlling whether or not the power received by the power receiving unit 203 is to be supplied to the battery 207, and a function of controlling the size of the load.
  • control unit 201 When the control unit 201 turns the first switch unit 209 to the OFF state and opens it, the power received by the power receiving unit 203 is not supplied to the battery 207. When the control unit 201 turns the first switch unit 209 to the ON state and shorts it, the power received by the power receiving unit 203 is supplied to the battery 207.
  • the first switch unit 209 is disposed between the charging unit 206 and the battery 207, but the first switch unit 209 may be disposed between the power receiving unit 203 and the charging unit 206.
  • the first switch unit 209 may be disposed between the power receiving unit 203 and the closed circuit formed by the power receiving antenna 205, the resonant capacitor 211, and the second switch unit 210.
  • the first switch unit 209 has a function of controlling whether or not the power received by the power receiving antenna 205 is supplied to the power receiving unit 203.
  • the first switch unit 209 is shown as a single functional block element, but it is possible to realize the first switch unit 209 as part of the charging unit 206 or the power receiving unit 203.
  • the first switch unit 209 is not limited to being inserted in series between the charging unit 206 and the battery 207, but may be inserted in parallel between the charging unit 206 and the battery 207.
  • the control unit 201 when the control unit 201 turns the first switch unit 209 to the OFF state and opens it, the power received by the power receiving unit 203 is supplied to the battery 207.
  • the control unit 201 turns the first switch unit 209 to the ON state and shorts it, the power received by the power receiving unit 203 is not supplied to the battery 207.
  • the second switch unit 210 On the input side of the power receiving unit 203, the second switch unit 210 is connected in parallel with the resonant capacitor 211.
  • the resonant capacitor 211 is connected to the power receiving antenna 205 via the third switch unit 213.
  • the second switch unit 210 and the third switch unit 213 are controlled by the control unit 201.
  • the third switch unit 213 has a function of controlling whether or not the terminal of the power receiving antenna 205 is opened.
  • the control unit 201 When the control unit 201 turns the third switch unit 213 to the OFF state, the terminal of the power receiving antenna 205 is in an open state. When the control unit 201 turns the third switch unit 213 to the ON state, the power receiving antenna 205 is connected to the power receiving unit 203 via the resonant capacitor 211.
  • the control unit 201 turns the third switch unit 213 to the ON state and the second switch unit 210 is turned ON and short-circuited, the receiving antenna 205 and the resonant capacitor 211 form a series resonant circuit and resonate at a specific frequency fB.
  • the second switch section 210 may be disposed between the power receiving antenna 205 and the resonant capacitor 211.
  • the third switch section 213 When the third switch section 213 is in the ON state and the second switch section 210 is in the ON state, the terminals of the power receiving antenna 205 are shorted.
  • the third switch section 213 may also be disposed between the resonant capacitor 211 and the power receiving section 203.
  • wireless power transmission based on the WPC standard is performed between the transmitting antenna 105 and the receiving antenna 205.
  • the amount of power guaranteed when the receiving device 200 receives power from the transmitting device 100 is specified by a power called Guaranteed Load Power (hereinafter referred to as "GP").
  • GP Guaranteed Load Power
  • GP The value of GP is expressed as the GP value or GP.
  • GP indicates a power value that guarantees output to the load of the power receiving device 200 even if the coupling between the power receiving antenna 205 and the power transmitting antenna 105 weakens due to a change in the positional relationship between the power receiving device 200 and the power transmitting device 100, causing a decrease in power transmission efficiency.
  • the load of the power receiving device 200 is the charging unit 206, the battery 207, etc. in FIG. 3, and the GP value corresponds to the amount of power guaranteed to be output from the power receiving unit 203. Alternatively, the GP value corresponds to the amount of power guaranteed to be output from the rectification unit of the power receiving unit 203.
  • the power transmitting device 100 performs power transmission control so that it can output 5 watts to the load of the power receiving device 200.
  • GP is determined by negotiation between the power transmitting device 100 and the power receiving device 200. This embodiment can be applied to any configuration in which power is transmitted and received at a power determined by mutual negotiation between the power transmitting device and the power receiving device, not limited to GP.
  • an object is present near the power transmitting device 100 when transmitting power from the power transmitting device 100 to the power receiving device 200.
  • the object is an object that may affect the power transmission from the power transmitting device 100 to the power receiving device 200, and is an object (foreign object) different from the power receiving device 200.
  • the electromagnetic waves used for power transmission may affect the foreign object, causing an increase in temperature or destruction of the foreign object.
  • a foreign object is, for example, a paperclip or an IC card.
  • a foreign object is neither a part of a power receiving device or a product in which the power receiving device is incorporated, nor a part of a power transmitting device or a product in which the power transmitting device is incorporated, but is an object that can generate heat when exposed to a power signal transmitted by a power transmitting antenna.
  • Power receiving devices and objects that are an integral part of the product in which the power receiving device is incorporated, or power transmitting devices and objects that are an integral part of the product in which the power transmitting device is incorporated, are not considered foreign objects.
  • the WPC standard prescribes a method for preventing the occurrence of temperature rise and destruction of a foreign object by stopping power transmission when a foreign object is present.
  • the power transmission device 100 is capable of detecting the presence of a foreign object on the charging stand 300.
  • the power loss method is a method for detecting a foreign object based on the difference between the transmitted power in the power transmitting device 100 and the received power in the power receiving device 200.
  • the Q-factor measurement method is a method for detecting a foreign object based on a change in the quality factor (Q-factor, quality coefficient, Q-factor) of the power transmitting antenna 105 (power transmitting coil) in the power transmitting device 100.
  • the Q-factor measurement method is a method for detecting foreign objects by detecting changes in the quality factor (Q-factor, quality coefficient, Q-factor) of the resonant circuit including the power transmitting antenna 105 (power transmitting coil) and the resonant capacitor 107 in the power transmitting device 100.
  • the foreign objects that the power transmission device 100 detects are not limited to objects that are present on the charging stand 300.
  • the power transmission device 100 is capable of detecting foreign objects that are located in the vicinity of the power transmission device 100.
  • the power transmitting device 100 can detect a foreign object located within the range where power can be transmitted.
  • the Quality Factor of the power transmitting antenna 105 and the Quality Factor of the resonant circuit including the power transmitting antenna 105 and the resonant capacitor 107 will be referred to as the Quality Factor related to the power transmitting antenna 105.
  • the horizontal axis represents the transmitted power of the power transmitting device 100
  • the vertical axis represents the received power of the power receiving device 200.
  • point 1000 corresponds to the first transmitted power value Pt1 and the first received power value Pr1
  • point 1001 corresponds to the second transmitted power value Pt2 and the second received power value Pr2.
  • point 1003 corresponds to the third transmitted power value Pt3 and the third received power value Pr3.
  • the foreign object to be detected is a conductive metal piece or the like.
  • the power transmitting device 100 transmits power to the power receiving device 200 at a first transmission power value Pt1, and the power receiving device 200 receives power at a first reception power value Pr1.
  • this state is referred to as a light load state.
  • the power transmitting device 100 stores the first transmission power value Pt1. At this time, the power receiving device 200 performs load control so that the power received is the minimum power. Alternatively, the power receiving device 200 performs load control so that the power received is within a predetermined range or is equal to or less than a threshold.
  • the “power” refers to a power that is approximately 10% of the Reference Power described below.
  • the power receiving device 200 may also disconnect the load from the power receiving antenna 205 so that the received power is not supplied to the load (such as the charging unit 206 or the battery 207 in FIG. 3). Alternatively, the power receiving device 200 may control the load so that a predetermined amount of power is supplied to the load.
  • the power receiving device 200 notifies the power transmitting device 100 of the first received power value Pr1.
  • the power transmitting device 100 which has received a signal relating to the first received power value Pr1 from the power receiving device 200, calculates the power loss between the power transmitting device 100 and the power receiving device 200.
  • a calibration point (hereafter abbreviated as CP) 1000 can be generated that indicates the correspondence between Pt1 and Pr1.
  • the power transmitting device 100 changes the transmission power value to the second transmission power value Pt2 and transmits power to the power receiving device 200, and the power receiving device 200 receives power at the second receiving power value Pr2.
  • this state is referred to as the Connected Load state.
  • the power transmitting device 100 stores the second transmission power value Pt2. At this time, the power receiving device 200 performs load control so that the power received is the maximum power.
  • the "maximum power” is a power value close to the Reference Power described later.
  • the power receiving device 200 performs load control so that the received power is within a predetermined range or is equal to or greater than a threshold.
  • the power receiving device 200 connects the power receiving antenna 205 to a load so that the received power is supplied to the load.
  • the power receiving device 200 notifies the power transmitting device 100 of the second received power value Pr2.
  • the power transmitting device 100 which has received a signal relating to the second received power value Pr2 from the power receiving device 200, calculates the power loss between the power transmitting device 100 and the power receiving device 200.
  • CP1001 can be generated, which shows the correspondence between Pt2 and Pr2.
  • the power transmitting device 100 performs linear interpolation between CP1000 and CP1001 to generate a line segment 1002.
  • the line segment 1002 shows the relationship between the transmitted power and the received power in a state in which no foreign object is detected to exist near the power transmitting device 100 and the power receiving device 200 (hereinafter referred to as the first detection state).
  • the power transmission device 100 can estimate the power value that the power receiving device 200 will receive when transmitting power at a specified transmission power in the first detection state. For example, assume that the power transmission device 100 transmits power at a third transmission power value Pt3. In this case, the power transmission device 100 can estimate the third received power value Pr3 that the power receiving device 200 will receive from a point 1003 on the line segment 1002 that corresponds to Pt3.
  • the power loss between the power transmission device 100 and the power receiving device 200 according to the load can be calculated based on multiple combinations of the transmission power value of the power transmission device 100 and the reception power value of the power receiving device 200 measured while changing the load.
  • the power loss between the power transmission device 100 and the power receiving device 200 according to all loads can be estimated by interpolating multiple combinations of the transmitted power value and the received power value.
  • the calibration process performed by the power transmission device 100 and the power receiving device 200 in this manner in order for the power transmission device 100 to obtain combinations of the transmitted power value and the received power value is called "calibration process using the power loss method.”
  • the calibration process is abbreviated as CAL process.
  • the power transmitting device 100 and the power receiving device 200 can execute the CAL process multiple times.
  • CAL process that is executed again after the CAL process has been executed once is hereinafter referred to as "Recalibration process of the Power Loss method.”
  • RECAL process The recalibration process is abbreviated as RECAL process.
  • the power transmitting device 100 actually transmits power to the power receiving device 200 at the third transmission power value Pt3, and the power transmitting device 100 receives a signal related to the received power value Pr3 * from the power receiving device 200.
  • the signal relating to this received power value Pr3 * is a Received Power Data packet (mode 0) defined in the WPC standard, but other messages may also be used.
  • the Received Power Data packet (mode 0) is denoted as RP0.
  • RP0 includes the value of the received power value Pr3 * .
  • Ploss_FO can be estimated as the power consumed by the foreign object, i.e., the power loss.
  • the second detection state the state in which the presence of a foreign object is detected near the power transmitting device 100 and the power receiving device 200 is referred to as the second detection state.
  • the power transmission device 100 compares the power loss Ploss_FO that would have been consumed by the foreign object with a predetermined threshold value. If the value of the power loss Ploss_FO exceeds the threshold value, the power transmission device 100 can determine that a foreign object is present.
  • the power transmitting device 100 can estimate the power loss Ploss_FO using Plus3 * -Plus3.
  • the second method is basically described, but the contents of this embodiment can also be applied to the first method.
  • Figure 5 (A) is a schematic circuit diagram for explaining the method of measuring the Quality Factor (Q-factor, quality coefficient, Q-factor) using the Q-factor measurement method.
  • the AC power source 901 is a power source that outputs the AC power generated by the power transmission unit 103 of the TX.
  • the power transmission antenna 902 corresponds to the power transmission antenna 105
  • the capacitor 903 corresponds to the resonant capacitor 107.
  • the power transmitting antenna 902 and the capacitor 903 are connected in series.
  • the voltage value V8 is a voltage value of a predetermined frequency generated by the power transmitting unit 103 for operating the wireless power transmission system.
  • the voltage value V9 is a voltage value applied to the power transmitting antenna 902.
  • the TX is assumed to be able to change the frequency related to the voltage value.
  • the voltage values V8 and V9 are the voltage values that the TX measures when it transmits an Analog Ping (hereafter referred to as AP) or a Digital Ping (hereafter referred to as DP) to the RX.
  • AP Analog Ping
  • DP Digital Ping
  • voltage values V8 and V9 are AC voltage values, their effective values (RMS) may also be used.
  • Figure 5 (B) shows an example of the measurement results of V9/V8 versus frequency, with a peak at 100 kHz.
  • the horizontal axis is the frequency axis, and the vertical axis represents the voltage ratio "V9/V8.”
  • V9/V8 represents the quality factor associated with the power transmitting antenna 902.
  • V9/V8 corresponds to the quality factor of the resonant circuit including the power transmitting antenna 902 and the resonant capacitor 903, its value changes when an object is placed near the power transmitting antenna 902.
  • the change in Quality Factor differs depending on whether no object is placed on the TX, whether an RX is placed on the TX, whether a foreign object (such as a metal piece) is placed on the TX, or whether an RX and a foreign object are placed on the TX.
  • TX receives a FOD Status Data packet signal from RX.
  • the FOD Status Data packet includes a Reference Quality Factor Value and a Reference Resonance Frequency Value.
  • the Reference Quality Factor Value is the Quality Factor that can be measured at the terminals of the transmitting antenna of the test TX when the RX is placed on the test TX and there are no foreign objects nearby.
  • the Reference Resonance Frequency Value is the resonant frequency calculated from the inductance value that can be measured at the terminal of the transmitting antenna of the test TX when the RX is placed on the test TX and there is no foreign object nearby.
  • a threshold is set based on the Reference Quality Factor Value. Foreign objects are detected by comparing this threshold with the Quality Factor calculated from the measured V9/V8.
  • a threshold value is set based on the Reference Resonance Frequency Value. Foreign objects are detected by comparing this threshold value with the resonance frequency obtained by measuring V9/V8.
  • the RX and TX in this embodiment communicate for power transmission and reception control based on the WPC standard.
  • the WPC standard specifies multiple phases, including a Power Transfer phase in which power transmission is performed, and one or more phases before power transmission.
  • each phase communication is carried out for the necessary power transmission and reception control.
  • foreign object detection using the Power Loss method is performed in the Power Transfer phase based on data obtained in the Calibration phase.
  • foreign object detection using the Q-value measurement method is performed before power transmission (before sending DP and in the Negotiation phase or Renegotiation phase).
  • the phases before power transmission in the WPC standard include the Selection phase, the Ping phase, and the Identification and Configuration phase (Configuration phase).
  • the Identification and Configuration phase is referred to as the I&C phase.
  • the processing of each phase is explained below.
  • the TX transmits the AP intermittently and detects that an object has been placed on the charging base of the TX. For example, it detects that an RX or a piece of conductor has been placed on the charging base.
  • the TX detects the voltage value or current value, or both, of the transmitting antenna 105 when the AP is transmitted.
  • the TX determines that an object is present and transitions to the Ping phase. Alternatively, if the Quality Factor calculated from the voltage value or current value satisfies a predetermined condition, the TX determines that an object is present and transitions to the Ping phase.
  • the TX transmits a DP with a higher power than the AP.
  • the power of the DP is sufficient to start the control unit of the RX placed on the TX.
  • the RX notifies the TX of the received voltage value.
  • the TX recognizes that the object detected in the Selection phase is the RX.
  • the TX is notified of the received voltage value from the RX, it transitions to the I&C phase.
  • the TX measures the Quality Factor associated with the transmitting antenna 105, for example, using the AP.
  • the above-mentioned Selection phase may be included as part of the above-mentioned Ping phase and may be called the Ping phase.
  • the TX identifies the RX and obtains device configuration information (capability information) from the RX.
  • the RX transmits the ID Data packet and Configuration Data packet signals.
  • the ID Data packet contains the RX's identifier information
  • the Configuration Data packet contains the RX's device configuration information (capability information).
  • the TX receives the ID Data packet and Configuration Data packet signals, it responds with an acknowledgement (positive response ACK).
  • the I&C phase ends.
  • the I&C phase may also be called the Configuration phase.
  • the GP value is determined based on the GP value requested by the RX and the power transmission capability of the TX.
  • the TX also receives a FOD Status Data packet from the RX, which includes the above Reference Quality Factor Value and Reference Resonance Frequency Value.
  • the presence or absence of foreign matter is determined based on a threshold value based on the Reference Quality Factor Value and the Reference Resonance Frequency Value.
  • the TX performs foreign object detection processing using the Q-value measurement method in response to a request from the RX.
  • the WPC standard also prescribes a method of transitioning to the Power Transfer phase once, and then performing processing similar to that of the Negotiation phase again at the request of the RX.
  • the phase in which this processing is performed after transitioning from the Power Transfer phase is called the Renegotiation phase.
  • the CAL process using the Power Loss method is performed.
  • the RX notifies the TX of a specified received power value, and the TX makes adjustments to transmit power efficiently.
  • the specified received power value is, for example, the received power value in a light load state (Light Load state) or a connected load state (Connected Load state).
  • the received power value notified to the TX is used for foreign object detection processing using the Power Loss method.
  • the TX and RX control the start and continuation of power transmission, as well as error processing and stopping of power transmission due to full charge.
  • the TX and RX handle the communication processing for this power transmission and reception control.
  • the transmitting antenna 105 and the receiving antenna 205 used when performing wireless power transmission based on the WPC standard communication is performed by superimposing a signal on the electromagnetic waves transmitted from the transmitting antenna 105 or the receiving antenna 205.
  • the range in which communication based on the WPC standard between the TX and the RX is possible is the same as the range in which the TX can transmit power.
  • the Calibration phase mentioned above may also be called the Power Transfer phase as part of the Power Transfer phase mentioned above.
  • FIG. 6 is a block diagram showing an example of the functional configuration of the control unit 101 of the power transmitting device 100 (TX).
  • the control unit 101 has a communication control unit 301, a power transmission control unit 302, a measurement unit 303, a setting unit 304, and a state detection unit 305.
  • the communication control unit 301 controls communication with the RX based on the WPC standard via the first communication unit 104, or controls communication with the RX via the second communication unit 109.
  • the power transmission control unit 302 controls the power transmission unit 103 to control the power transmission to the RX.
  • the measurement unit 303 measures a waveform attenuation index, which will be described later.
  • the measurement unit 303 also measures the power transmitted to the RX via the power transmission unit 103, and measures the average transmitted power per unit time.
  • the measurement unit 303 also measures the Quality Factor associated with the power transmitting antenna 105.
  • the measurement unit 303 also measures the temperature using temperature sensors arranged at multiple locations on the power transmitting device 100.
  • the measurement unit 303 also measures a quantity (e.g., a coupling coefficient) that represents the electromagnetic coupling state between the power transmitting antenna 105 and the power receiving antenna 205.
  • the setting unit 304 calculates and sets the threshold value for detecting foreign objects in the Q-value measurement method and the threshold value for detecting foreign objects in the Power Loss method using the method described above.
  • the setting unit 304 also sets the threshold value for detecting foreign objects in the waveform attenuation method using a method described later.
  • the setting unit 304 also calculates and sets a threshold value for detecting foreign objects or a threshold value for detecting misalignment between TX and RX, based on the coupling coefficient between the transmitting antenna 105 and the receiving antenna 205 measured by the measuring unit 303, for example.
  • the setting unit 304 also calculates and sets a threshold value for detecting a foreign object or a threshold value for detecting a positional deviation between TX and RX, for example, based on the temperature of the power transmitting device measured by the measurement unit 303.
  • the setting unit 304 also calculates and sets a threshold value for detecting a foreign object or a threshold value for detecting a positional deviation between TX and RX, for example, based on the current value of the power transmitting antenna 105 measured by the measurement unit 303.
  • the status detection unit 305 detects the status of TX and RX. For example, the status detection unit 305 detects a foreign object between TX and RX, and also detects a positional deviation between the transmitting antenna 105 and the receiving antenna 205.
  • state detection processing is possible based on the power loss method, the Q-value measurement method, and the waveform attenuation method. State detection processing is also possible based on the temperature measured by the power transmission device 100, the electromagnetic coupling state (e.g., the coupling coefficient) between the power transmission antenna 105 and the power receiving antenna 205, and the current value of the power transmission antenna 105 measured by the power transmission device 100.
  • the electromagnetic coupling state e.g., the coupling coefficient
  • the status detection unit 305 can detect foreign objects and positional misalignment between the power transmitting antenna 105 and the power receiving antenna 205 using other methods. For example, in a TX equipped with an NFC communication function, the status detection unit 305 performs status detection processing using a function for detecting a counterpart device according to the NFC standard.
  • the state detection unit 305 can also detect state changes on the TX. For example, the state detection unit 305 can detect an increase or decrease in the number of power receiving devices on the TX.
  • the setting unit 304 sets a threshold value that serves as a reference for determining the presence or absence of a foreign object when the TX performs status detection.
  • Status detection is, for example, status detection based on the power loss method, the Q value measurement method, the waveform attenuation method, or status detection based on the temperature measured in the power transmission device 100.
  • the state detection is based on the coupling coefficient between the power transmitting antenna 105 and the power receiving antenna 205, and based on the current value of the power transmitting antenna 105 measured by the power transmitting device 100.
  • the setting unit 304 can set a judgment threshold value required for state detection processing using other methods.
  • the state detection unit 305 can perform foreign object detection processing and positional deviation detection processing between the power transmitting antenna 105 and the power receiving antenna 205 based on the threshold value set by the setting unit 304 and the measurement results by the measurement unit 303.
  • the state detection unit 305 can acquire data such as the waveform attenuation index, the transmission power, and the Quality Factor as the measurement results of the measurement unit 303.
  • the state detection unit 305 can acquire data such as the temperature measured in the power transmission device 100, the coupling coefficient between the power transmission antenna 105 and the power receiving antenna 205, and the current value of the power transmission antenna 105 measured in the power transmission device 100 as the measurement results of the measurement unit 303.
  • the processes performed by the communication control unit 301, power transmission control unit 302, measurement unit 303, setting unit 304, and state detection unit 305 shown in FIG. 6 can be realized using a program executed by a CPU or the like included in the control unit 101.
  • Each process is executed in parallel according to an independent program, with synchronization between the programs achieved by event processing, etc. However, two or more of these processes may be incorporated into the processing of a single program.
  • FIG. 7 is a flowchart showing an example of power transmission control processing executed by the TX. This processing is realized, for example, by the control unit 101 of the TX executing a program read from the memory 106.
  • This process may also be executed when the power of the TX is turned on, when the user of the TX inputs an instruction to start a wireless power transmission application, or when the TX is connected to a commercial power source and receives power. This process may also be started by some other trigger.
  • the TX executes the processes defined as the Selection phase and Ping phase of the WPC standard, and waits for the RX to be placed on it.
  • the TX repeatedly transmits the AP of the WPC standard intermittently, and detects objects that are present within the power transmission range.
  • the TX can detect that an RX, a conductor piece, etc. has been placed on the charging stand 300.
  • the TX detects that an object is present within the power transmission range, it transmits a DP.
  • the TX determines that the detected object is the RX and that the RX has been placed on the charging stand 300.
  • the "specified response” is the Signal Strength (SIG) data packet sent by the RX.
  • This packet contains a Signal Strength Value that indicates the signal strength of the signal (DP) received by the RX.
  • the Signal Strength Value is calculated from the voltage (rectifier output voltage) output by the rectifier (rectifier, rectifier circuit) of the power receiving unit 203 that is measured by the RX.
  • the Signal Strength Value is calculated from the voltage of an open circuit including the receiving antenna 205 (open circuit voltage) measured by the RX, or the received power value measured by the RX.
  • the TX measures the Quality Factor related to the transmitting antenna 105 before transmitting the DP. This measurement result is used when performing foreign object detection processing using the Q-value measurement method.
  • the TX obtains identification information from the RX through communication in the I&C phase defined by the WPC standard.
  • the RX transmits an Identification Packet (ID Packet) to the TX.
  • ID Packet Identification Packet
  • the ID packet contains the Manufacturer Code and Basic Device ID, which are identification information for each individual RX, as well as information that can identify the version of the WPC standard that is supported.
  • the RX sends a Configuration Data Packet to the TX.
  • the Configuration Data Packet contains the following RX capability information:
  • the TX When the TX receives the above packet from the RX, it sends an acknowledgement ACK to the RX, and the I&C phase ends. Note that the TX may obtain the identification information of the RX by a method other than the I&C phase communication of the WPC standard.
  • the identification information for each individual RX may be a Wireless Power ID. Alternatively, it may be any other identification information capable of identifying an individual RX, such as a Bluetooth (registered trademark) Address (hereinafter, referred to as "BD_ADDR") that is unique to the second communication unit 212 of the RX.
  • BD_ADDR Bluetooth (registered trademark) Address
  • BD_ADDR is an 8-byte address used in BLE.
  • BD_ADDR is a public address defined in the BLE standard that indicates, for example, the manufacturer of the RX or individual identification information of the BLE communication function (the function of the second communication unit 212).
  • BD_ADDR may also be a random address.
  • the TX negotiates with the RX to determine the GP based on the request from the RX and the power transmission capability of the TX's own device.
  • communication is performed in the negotiation phase of the WPC standard.
  • the RX notifies the TX of the requested GP value by sending a Specific Request to the TX.
  • the TX determines whether to accept the request based on the power transmission capacity of its own device and other conditions.
  • TX accepts the request, it sends a positive acknowledgement ACK to RX, and if it does not accept the request, it sends a negative acknowledgement NACK or NAK to RX.
  • the determined GP value is the value requested by RX when TX accepts the request from RX.
  • the GP value becomes a predetermined value (e.g., 5 watts) defined in the WPC standard.
  • the TX acquires information indicating that the RX does not support the negotiation phase (e.g., S1302 described below), it does not perform communication in the negotiation phase and sets the GP value to a predetermined value.
  • the predetermined value is, for example, a value (e.g., 5 watts) defined in advance in the WPC standard.
  • the TX also performs foreign object detection processing using the Q-value measurement method in response to a request from the RX.
  • the TX receives an FOD Status Data packet from the RX. This packet includes the Reference Quality Factor Value and Reference Resonance Frequency Value described above.
  • the TX performs foreign object detection using the Q-value measurement method. This foreign object detection is performed based on the following information:
  • a threshold based on the Reference Quality Factor Value and Reference Resonance Frequency Value received by the TX from the RX.
  • the value of the Quality Factor of the transmitting antenna 105 measured by the TX before transmitting the DP is compared with the above threshold value, and the presence or absence of a foreign object and the possibility of its existence are determined based on the comparison result.
  • the TX and RX perform the Calibration phase processing (CAL processing) of the WPC standard.
  • the TX executes CAL processing of the Power Loss method based on the determined Reference Power value or GP value.
  • the RX transmits a signal to the TX that contains information about the received power in a light load state (hereinafter referred to as first reference received power information).
  • a light load state is, for example, a load disconnection state, a load state in which the received power value of the RX is equal to or lower than a first threshold, or a load state in which the received power value of the RX is within a predetermined range (hereinafter referred to as the "first range").
  • the first reference received power information is information indicating 500 milliwatts.
  • the first reference received power information is information contained in the Received Power Data packet (mode 1) defined in the WPC standard, but other messages may also be used.
  • the Received Power Data packet (mode 1) is denoted as RP1.
  • the TX determines whether or not to accept the first reference received power information based on the Control Error Value contained in the Control Error (CE) data packet received from the RX.
  • CE Control Error
  • the TX accepts the first reference received power information, it sends an acknowledgment ACK to the RX. If the TX does not accept the first reference received power information, it sends a negative acknowledgment NAK to the RX.
  • the RX performs processing to transmit to the TX a signal containing information about the received power in a load connection state (hereinafter referred to as second reference received power information).
  • the load connection state is, for example, a maximum load state, a load state in which the transmitted power value is equal to or greater than a second threshold, or a load state in which the power received by the RX is maximum.
  • the load connection state is a load state in which the RX receiving power value is within a predetermined range (hereinafter referred to as the "second range").
  • the second range is a range of power values higher than the first range.
  • the second reference received power information is information indicating 15 watts.
  • the second reference received power information is information contained in the Received Power Data packet (mode 2) defined in the WPC standard, but other messages may also be used.
  • Received Power Data packet (mode 2) is referred to as RP2.
  • TX determines whether or not to accept the second reference received power information based on the Control Error Value contained in the Control Error (CE) data packet received from RX.
  • CE Control Error
  • the TX accepts the second reference received power information, it sends an acknowledgment ACK to the RX. If the TX does not accept the second reference received power information, it sends a negative acknowledgment NAK to the RX. The TX sends an acknowledgment ACK to the second reference received power information from the RX, and completes the CAL process.
  • the above CAL process enables the TX to calculate the amount of power loss between the TX and the RX in the light load state and the load connected state based on the transmission power value of the TX and the received power value contained in the first and second reference received power information.
  • the TX can also calculate the amount of power loss between the TX and the RX for all possible transmission powers by performing an interpolation process between multiple power loss amounts. All possible transmission powers by the TX are, for example, any power within the range of the receiving power received by the RX in this embodiment, from 500 milliwatts to 15 watts.
  • the TX transmits power until the battery 207 of the RX is fully charged.
  • communication is performed in the Power Transfer phase of the WPC standard.
  • the RX repeatedly transmits a Control Error (CE) data packet (hereafter referred to as a "CE packet") to the TX at time intervals of t_interval.
  • t_interval is a value defined by the WPC standard, and is, for example, 250 milliseconds.
  • the CE packet contains a request for how much to increase or decrease the transmission power.
  • the TX adjusts the transmission power by controlling the current or voltage of the transmitting antenna 105 based on the received CE packet.
  • the CE packet contains parameter data for adjusting the transmission power.
  • the RX When the battery 207 is fully charged, the RX sends an End Power Transfer data Packet (hereinafter referred to as the "EPT packet") to the TX to end the Power Transfer phase.
  • EPT packet End Power Transfer data Packet
  • the RX can send an EPT packet for reasons other than full charge. Also, when the Power Transfer phase ends, the TX stops transmitting power to the RX for charging.
  • t_timeout is a value defined by the WPC standard, and is, for example, 1500 milliseconds.
  • the RX may transmit packets other than CE packets to the TX during the Power Transfer phase. For example, there is a Charge Status Data Packet that notifies the TX of the status of the RX's battery 207.
  • This packet contains a Charge Status Value that indicates the percentage to which the battery 207 is charged.
  • the TX receives the Charge Status Data Packet, it notifies the user of the charging status, for example by displaying text or a diagram based on the Charge Status Value via the UI unit 110.
  • TX may be received at any time, and the user may be notified at any time.
  • the TX transmits power to the RX and performs foreign object detection processing using the Power Loss method.
  • the amount of power loss between the TX and RX in the first detection state during the power transmission process is calculated from the difference between the transmitted power value and the received power value using CAL processing.
  • the calculated amount of power loss corresponds to the reference amount of power loss in the absence of a foreign object. If the TX determines that the difference between the amount of power loss between the TX and RX measured during power transmission after CAL processing and the reference amount of power loss is equal to or greater than a threshold value, it determines that the second detection state is present.
  • the RX executes the processes defined as the Selection phase and Ping phase of the WPC standard, and waits for its own device to be placed on the TX.
  • the RX detects that it has been placed on the TX, for example, by detecting a DP from the TX.
  • the RX When the RX detects that its own device has been placed on the TX, in S1302 it transmits a signal including its own device's identification information to the TX using an ID Packet and a Configuration Data Packet.
  • the identification information of the RX may be transmitted by a method other than the I&C phase communication of the WPC standard. Also, other identification information such as BD_ADDR may be used as long as it is information that can identify each individual RX. Also, in S1302, the RX can transmit information other than the identification information to the TX.
  • the RX transmits a signal including information about the GP value requested by the TX, waits for a response from the TX, and then determines the GP.
  • communication takes place in the negotiation phase of the WPC standard.
  • the RX sends a FOD Status Data packet to the TX.
  • This packet contains the Reference Quality Factor Value and the Reference Resonance Frequency Value.
  • the RX and TX perform the calibration phase process (CAL process) of the WPC standard.
  • the process performed by the RX in this phase is as described above.
  • the RX receives power until the battery 207 is fully charged.
  • the RX and TX perform foreign object detection processing using the Power Loss method.
  • the RX repeatedly transmits a CE packet at intervals of t_interval, and finally transmits an EPT packet to the TX to end the processing.
  • the Power Loss method is a method for detecting foreign objects based on the results of measuring the amount of power loss while transmitting power from the TX to the RX. While this method has the disadvantage that the accuracy of foreign object detection decreases when the TX is transmitting a large amount of power, it has the advantage that high power transmission efficiency can be maintained because the foreign object detection process can be performed while continuing power transmission.
  • the TX can detect a foreign object based on the attenuation state of the transmission waveform (voltage waveform or current waveform) related to the power transmission performed by the RX.
  • the TX can detect a foreign object based on the attenuation state of the transmission waveform (voltage waveform or current waveform) related to the power transmission performed by the RX.
  • foreign object detection is possible without using a newly defined foreign object detection signal, etc.
  • FIG. 9 is a diagram explaining the principle of foreign object detection using the waveform attenuation method. It shows an example of foreign object detection using a transmission waveform related to power transmission from a power transmitting device 100 (TX) to a power receiving device 200 (RX).
  • TX power transmitting device 100
  • RX power receiving device 200
  • the horizontal axis represents time
  • the vertical axis represents voltage or current values.
  • the waveform 600 shown in FIG. 9 shows, for example, the change over time in the voltage value of the high-frequency voltage applied to the TX power transmission antenna 105. Alternatively, it shows the change over time in the high-frequency voltage value or current value observed in a circuit including the TX power transmission antenna 105 and the resonant capacitor 107.
  • TX which is transmitting power to RX via the power transmitting antenna 105, stops transmitting power at time T0 .
  • the power supply for power transmission from the power supply unit 102 is stopped, and the power supply for power transmission to the power transmitting antenna 105 is stopped.
  • the frequency f1 of the transmitting wave before the power transmission is stopped at time T0 is a fixed frequency between 87 kHz and 205 kHz used in the WPC standard, for example.
  • Point 601 on the waveform 600 is a point on the envelope of the high frequency voltage, and ( T1 , A1 ) indicates that the voltage value at time T1 is A1 .
  • Point 602 on waveform 600 is a point on the envelope of the high frequency voltage, and (T 2 , A 2 ) indicates that the voltage value at time T 2 is A 2 .
  • the Quality Factor (Q-factor, Q value) of the resonant circuit including the power transmitting antenna 105 and the resonant capacitor 107 can be obtained based on the change in voltage value over time after time T0 .
  • the TX calculates the Quality Factor using Equation 1 based on the time and voltage values at points 601 and 602 on the envelope of the high-frequency voltage, and the frequency f2 of the high-frequency voltage after power transmission is stopped at time T0.
  • Q ⁇ f 2 (T 2 - T 1 ) / ln (A 1 / A 2 ) (Equation 1)
  • Equation 1 ln represents a natural logarithm function. Note that the frequency (f 1 ) of the transmission wave when the TX is transmitting power to the RX may differ from the frequency (f 2 ) of the transmission wave when the TX stops transmitting power to the RX.
  • the value of the Quality Factor decreases when a foreign object is present near TX and RX because the foreign object causes energy loss. Therefore, when looking at the slope of the attenuation of the voltage value, the slope of the line connecting points 601 and 602 is greater when a foreign object is present than when no foreign object is present.
  • the attenuation rate of the amplitude of waveform 600 increases.
  • the presence or absence of a foreign object can be determined based on the attenuation state of the voltage value between points 601 and 602.
  • a value of the Quality Factor that is lower than the reference value means that the waveform attenuation rate (the degree of decrease in the amplitude of the waveform per unit time) is high.
  • the presence or absence of a foreign object can be determined using the voltage value A2 after a predetermined time has elapsed.
  • the presence or absence of a foreign object can be determined using the time ( T2 - T1 ) that has elapsed until the voltage value A1 reaches the predetermined voltage value A2 .
  • waveform attenuation indicators Indicators such as the Quality Factor that represent the attenuation state of the transmitted radio wave are collectively referred to as "waveform attenuation indicators" in this disclosure.
  • the vertical axis in FIG. 9 has been described as the axis representing the voltage value of the high-frequency voltage applied to the TX power transmission antenna 105, the vertical axis in FIG. 9 may also represent the current value flowing through the power transmission antenna 105. As with the voltage value, the attenuation state of the current value during the power transmission stop period changes depending on the presence or absence of a foreign object.
  • the waveform attenuation rate is higher than when no foreign object is present. Therefore, a foreign object can be detected by applying the same method described above to the time change in the current value flowing through the power transmitting antenna 105.
  • the Quality Factor calculated from the current waveform, the slope of the current value attenuation, the current value difference, the current value ratio, the current value absolute value, or the time it takes for the current value to reach a predetermined value can be used as waveform attenuation indicators to determine the presence or absence of a foreign object and detect the foreign object.
  • the present invention is not limited to the example of measuring the waveform attenuation index during the period when the TX temporarily stops power transmission.
  • the waveform attenuation index may be measured during the period when the TX temporarily reduces the power supplied from the power supply unit 102 from a predetermined power level to a lower power level.
  • the waveform attenuation index may be measured during a period in which the power transmitted to the power transmitting antenna 105 is temporarily reduced from a predetermined power level to a lower power level.
  • the power transmitting unit 103 may limit the power transmission to the power transmitting antenna 105 (stopping power transmission or reducing the power transmission) as described above based on an instruction signal from the control unit 101.
  • the voltage or current values are measured at two points in time during the period when the TX limits power transmission, but the voltage or current values may be measured at three or more points in time and used to calculate the waveform attenuation index.
  • the transmission waveform shown in FIG. 10 is a transmission waveform when detecting a foreign object using the waveform attenuation method, with the horizontal axis representing time and the vertical axis representing the voltage value or current value of the transmission antenna 105.
  • the RX controls the TX so that it does not communicate (communication by amplitude modulation or load modulation).
  • the TX also controls the RX so that it does not communicate with the RX (communication using frequency shift keying).
  • this period is called the communication prohibition period.
  • the TX transmits power to the RX.
  • the TX After the communication prohibition period has elapsed, the TX transmits power to the RX.
  • this period will be referred to as the power transmission period. If the TX receives a request (packet, command) to execute a foreign object detection operation from the RX, the TX will temporarily suspend power transmission after a specified period has elapsed, or will temporarily reduce the transmission power.
  • this predetermined period will be referred to as the preparation period.
  • the RX controls the TX so that it does not communicate using amplitude modulation or load modulation.
  • the TX controls the RX so that it does not communicate using frequency shift keying.
  • the request (packet, command) to execute the foreign object detection operation may be RP0, RP1, or RP2.
  • the power transmission unit 103 suspends power transmission or temporarily reduces the transmission power, so that the amplitude of the transmitted wave attenuates.
  • the period from the time when power transmission is suspended or the time when the transmission power is temporarily reduced to the time when power transmission is resumed or the return of the transmission power begins is called the transmission power control period.
  • the transmission power control period the period from when the TX temporarily sets the value of the inverter input voltage input to the inverter in the power transmission unit 103 to 0 volts to when the TX increases the value of the inverter input voltage to a predetermined value.
  • the transmission power control period the period from when the TX temporarily reduces the inverter input voltage value to a predetermined first voltage value to when the TX increases the inverter input voltage value to a predetermined second voltage value.
  • the transmission power control period the period from when the TX temporarily sets the inverter output voltage value output by the inverter in the power transmission unit 103 to 0 volts to when the TX increases the inverter output voltage value to a predetermined voltage value.
  • the transmission power control period the period from when the TX temporarily reduces the inverter output voltage to a predetermined first voltage value to when the TX increases the inverter output voltage to a predetermined second voltage value.
  • the control by the TX to temporarily stop power transmission or temporarily reduce the transmission power is called transmission power control.
  • the control by the TX to temporarily set the input voltage or output voltage of the inverter in the power transmission unit 103 to 0 volts or temporarily reduce it to a specified value is called transmission power control.
  • the TX calculates a waveform attenuation index based on the attenuated waveform, and compares the calculated waveform attenuation index with a threshold value to determine whether or not a foreign object is present, or the possibility that a foreign object is present (probability of presence) (hereinafter also referred to as foreign object determination).
  • the RX controls the TX so that it does not communicate using amplitude modulation or load modulation. Also, the TX controls the RX so that it does not communicate using frequency shift keying.
  • the TX can calculate the waveform attenuation index of the transmission wave with higher accuracy.
  • foreign object detection can be performed during the transmission power control period, communication prohibition period, or power transmission period.
  • the TX will resume transmission or control the return of transmission power.
  • the transmission waveform is not stable, so this period becomes a communication prohibited period.
  • the TX transitions to a transmission period in which stable power transmission is performed from the TX to the RX.
  • the TX repeatedly controls the start of power transmission, communication prohibited period, power transmission period, preparation period, and transmission power control period.
  • the TX calculates a waveform attenuation index based on the attenuated waveform at a specified timing, and performs a foreign object determination based on the result of comparing the calculated waveform attenuation index with a threshold value.
  • foreign object determination can be performed based on voltage or current values at two or more points in time during a specified period when power transmission is restricted (including the suspension of power transmission). Also, during the preparation period, power transmission control period, and communication prohibited period, the RX controls the TX so that it does not communicate using amplitude modulation or load modulation.
  • the TX also controls the RX so that it does not communicate with the RX using frequency shift keying.
  • the TX controls the RX so that it does not communicate with the RX for a predetermined period (first period) after receiving an execution request (packet, command) from the RX.
  • the WPC standard specifies the period during which the TX cannot transmit packets to the RX (packet transmission is prohibited) after the TX receives a packet other than an execution request from the RX during the Power Transfer phase.
  • the first period is longer than the above period.
  • the RX controls not to communicate with the TX for a predetermined period (second period) after sending an execution request (packet, command) to the TX.
  • the WPC standard specifies a period during which the RX cannot transmit packets to the TX (packet transmission is prohibited) after the RX transmits a packet other than an execution request to the TX during the Power Transfer phase.
  • the second period is a period longer than the period.
  • the waveform attenuation index is affected by the load caused by these elements.
  • the value of the waveform attenuation index changes depending on the state of the power receiving unit 203, the charging unit 206, and the battery 207.
  • the value of the waveform attenuation index is large, for example, it becomes difficult to distinguish whether this is due to the influence of a foreign object or a change in the state of the power receiving unit 203, the charging unit 206, the battery 207, etc.
  • the control unit 201 of the RX turns off the first switch unit 209 during the preparation period.
  • the RX sends an execution request (packet, command) to the TX, and executes the above processing during the preparation period.
  • the RX executes the above process at the same time as it transmits an execution request packet (command) to the TX. This makes it possible to suppress the influence of the battery 207.
  • the same effect can be obtained by setting it to a light load state.Also, instead of disconnecting the first switch unit 209, the same effect can be obtained by performing load control so that the power received by the RX is minimized.
  • the same effect can be achieved by controlling the load so that the power received by the RX is within a predetermined range or is below a threshold.
  • power refers to power with a value of approximately 10% of the Reference Power.
  • the RX may control the load so that a predetermined power is supplied to the load.
  • the operations in the light load state include the above operations.
  • the RX maintains the above control even during the transmission power control period.
  • the RX releases the above-mentioned control and controls to return to the original state.
  • the control unit 201 turns on the second switch unit 210 to short it, and causes a current to flow through the closed loop formed by the power receiving antenna 205, the resonant capacitor 211, and the second switch unit 210.
  • the RX transmits a request (packet, command) to the TX to perform foreign object detection, and the above process is carried out during the preparation period.
  • the RX executes the above process at the same time as sending an execution request (packet, command) to the TX.
  • the RX maintains the above control even during the transmission power control period. Then, after the power transmission is resumed, the RX releases the above control and performs control to return to the original state.
  • RX may switch to a low power consumption mode or control so that power consumption is constant, with the first switch unit 209 turned ON to short circuit and the second switch unit 210 turned OFF to disconnect.
  • RX sends an execution request (packet, command) to TX and executes the above process during the preparation period. Alternatively, RX executes the above process at the same time as sending an execution request (packet, command) to TX.
  • the RX maintains the above-mentioned control even during the transmission power control period. Then, after power transmission is resumed, the RX releases the above-mentioned control and performs control to return to the original state. If the power consumption in the RX is not constant or if a large amount of power is consumed, the value of the waveform attenuation index based on the attenuated waveform will be affected by fluctuations in power consumption.
  • More accurate foreign object detection is possible by detecting foreign objects using a waveform attenuation index based on the transmission waveform measured with RX power consumption suppressed.
  • the waveform attenuation rate is affected by these elements.
  • the value of the waveform attenuation index changes depending on the state of the power transmission unit 103, the first communication unit 104, and the power supply unit 102.
  • the value of the waveform attenuation index is large, for example, it becomes difficult to distinguish whether this is due to the influence of a foreign object or the influence of the power transmission unit 103, the first communication unit 104, and the power supply unit 102.
  • the control unit 101 When the TX receives a request (packet, command) from the RX to execute a foreign object detection operation, the control unit 101 turns on the switch unit 108 during the preparation period. In other words, the control unit 101 makes the state in which a current flows through the closed loop circuit formed by the power transmitting antenna 105, the resonant capacitor 107, and the switch unit 108.
  • the TX maintains the above-mentioned control even during the transmission power control period. Then, after the power transmission is resumed, the TX releases the above-mentioned control and controls to return to the original state.
  • a switch may be provided between the power transmitting unit 103 and the closed loop circuit formed by the power transmitting antenna 105, resonant capacitor 107, and switch unit 108.
  • the TX When the TX measures the waveform attenuation index and detects a foreign object, it can control the switch to disconnect the closed loop circuit from the power transmission unit, thereby suppressing the above effects.
  • At least one of the following states is realized: a short circuit (connection) state with the switch unit 108 turned ON; a disconnection state between the power transmitting antenna 105 and the power transmitting unit 103 by a switch; and a disconnection state between the closed loop circuit and the power transmitting unit 103 by a switch. This allows for more accurate foreign object detection.
  • the first threshold setting method is a method in which the TX holds a predetermined threshold value, which is a common value that does not depend on the RX to which power is transmitted.
  • This threshold value is a fixed value, or a variable value that the TX determines depending on the situation.
  • the waveform attenuation rate of the transmission waveform during the transmission power control period will be high. Therefore, the value of the waveform attenuation index obtained when no foreign object is present is stored in advance, and this value is set as the threshold value.
  • the TX compares the measured value of Quality Factor with a predetermined threshold value.
  • the threshold value is set based on the measurement value in the first detection state or a value that takes into account the measurement error. If the measurement value of the Quality Factor is smaller than the threshold value, it is determined that "foreign matter is present” or "there is a high possibility that a foreign matter is present.”
  • the measured value of the Quality Factor is above the threshold, it is determined that there is no foreign matter or that there is a low possibility of the presence of a foreign matter.
  • the second threshold setting method is a method in which the TX adjusts and determines the threshold based on information transmitted from the RX.
  • a notable difference from the first threshold setting method is that the value of the waveform attenuation index may differ depending on the RX that is the target of power transmission and is placed on the TX.
  • the electrical characteristics of the RX which is electromagnetically coupled via the TX's transmitting antenna, affect the value of the waveform attenuation index.
  • the Quality Factor measured by the TX when no foreign object is present may differ depending on the RX placed on the TX.
  • the RX therefore retains Quality Factor information for each TX when the RX is placed on the TX in the absence of any foreign object, and notifies the TX of the Quality Factor information.
  • the TX adjusts and determines the threshold for each RX based on the Quality Factor information received from the RX.
  • the TX receives a FOD Status Data Packet containing information on the Reference Quality Factor Value, and adjusts and determines the threshold value in the Q-value measurement method.
  • the Reference Quality Factor Value is the Quality Factor that can be measured at the terminals of the transmitting antenna of the test TX when the RX is placed on the test TX and there are no foreign objects nearby.
  • the TX uses this Reference Quality Factor Value to determine the threshold value, regarding it as equivalent to "Q value information when the RX is placed on the TX in the absence of any foreign object."
  • the TX can adjust and determine the threshold value for foreign object detection using the waveform attenuation method based on the Reference Quality Factor Value.
  • the Reference Quality Factor Value sent from the RX to the TX during the negotiation phase is information used for foreign object detection in the Q-value measurement method, which originally measures the Quality Factor in the frequency domain.
  • the Quality Factor value is used as the waveform decay index
  • the method of deriving the Quality Factor is different
  • the Quality Factor can also be calculated from the waveform in Figure 9, for example, using the above formula 1, using the waveform decay method that measures the Quality Factor in the time domain.
  • the Q value threshold of the waveform attenuation method based on the Reference Quality Factor Value.
  • the value of the waveform attenuation index which takes into account a specified value (a value corresponding to the measurement error) for the Reference Quality Factor Value, may be set as the threshold for foreign object determination.
  • the TX sets the threshold value for the Quality Factor of the waveform attenuation method based on the information already sent from the RX to the TX in the Negotiation phase, eliminating the need to perform new measurements or other processing to set the threshold value. As a result, it becomes possible to set the threshold value in a shorter time. Foreign object determination based on the set threshold value and the measured value of the Quality Factor is as described above.
  • the third threshold setting method is a method in which the TX measures the waveform attenuation index when no foreign object is present, and adjusts and determines the threshold based on the information from the measurement result. Below, the timing for pre-measuring the waveform attenuation rate when no foreign object is present is explained.
  • the timing for measuring the waveform attenuation index in the absence of a foreign object may be either the Negotiation phase, the Calibration phase, or the Power Transfer phase.
  • the waveform attenuation index is measured during the power transfer phase.
  • the timing for measuring the waveform attenuation index in the absence of a foreign object is set to the first stage of the power transfer phase.
  • the reason for this is that the more time that passes from the point at which the Q-value measurement method determines that there is no foreign object, the higher the probability that a foreign object will be present in the vicinity of the TX and RX.
  • the timing is specified by the RX or TX, and the TX measures the waveform attenuation index at that time and sets the value of that waveform attenuation index as the threshold value.
  • the RX notifies the TX (or RX) of the timing by sending a specified packet to the TX (or RX).
  • a value obtained by adding a specified value (a value corresponding to the measurement error) to the waveform attenuation index may be set as the threshold for foreign object determination.
  • the fourth threshold setting method is a method in which the TX adjusts and determines the threshold depending on the transmission power.
  • the value of the waveform attenuation index may differ depending on the transmission power of the TX. This is because the amount of heat generated and the characteristics of the TX's electrical circuitry change depending on the transmission power of the TX, which affects the value of the waveform attenuation index.
  • the TX measures the waveform attenuation index for each transmission power and adjusts and determines the threshold based on the measurement results, enabling more accurate foreign object detection.
  • FIG. 11 is a diagram for explaining a method for setting a threshold value for foreign object determination for each TX transmission power in the waveform attenuation method.
  • the horizontal axis represents the transmission power of the power transmitting device 100
  • the vertical axis represents the waveform attenuation index (waveform attenuation rate) of the voltage waveform or current waveform.
  • point 1100 corresponds to the transmission power value Pt1 and the waveform attenuation index ⁇ 1
  • point 1101 corresponds to the transmission power value Pt2 and the waveform attenuation index ⁇ 2.
  • point 1103 corresponds to the transmission power value Pt3 and the waveform attenuation index ⁇ 3.
  • the RX controls the load so that the RX is in a light load state when power is transmitted from the TX.
  • a light load state no power is supplied to the load of the RX, only power below a threshold is supplied, or power within a predetermined range (hereinafter referred to as the "third range") is supplied.
  • the transmission power value of the TX in this state is Pt1. Then, the RX transmits a packet to the TX requesting that the TX perform measurement of the waveform attenuation index. Then, when the TX receives this packet, it stops transmission while the RX load is controlled to a light load state, or reduces the transmission power, and measures the waveform attenuation index ⁇ 1.
  • the TX recognizes the transmission power value Pt1 and stores in memory CP1100, which is a calibration point that associates the transmission power value Pt1 with the waveform attenuation index ⁇ 1.
  • the load connection state is a state in which, when power is transmitted from the TX, maximum power is supplied to the load of the RX, or power equal to or greater than a threshold is supplied, or power within a specified range (hereinafter referred to as the "fourth range") is supplied.
  • the "fourth range” is a power range greater than the "third range.”
  • the transmission power value of the TX in this state is Pt2. Then, the RX transmits a packet to the TX requesting that it perform a measurement of the waveform attenuation index.
  • the TX When the TX receives the packet, it stops transmission or reduces the transmission power while the RX load is controlled to a load-connected state, and measures the waveform attenuation index ⁇ 2.
  • the TX stores in memory CP1101, which associates the transmission power value Pt2 with the waveform attenuation index ⁇ 2.
  • the TX performs linear interpolation between CP1100 and CP1101 to generate line segment 1102.
  • Line segment 1102 shows the relationship between the transmission power and the waveform attenuation index of the waveform observed by the transmission antenna 105 in the first detection state in which no foreign object is present around the TX and RX. Therefore, based on line segment 1102, the TX can estimate the waveform attenuation index of the waveform observed by the transmission antenna 105 for each transmission power value in the first detection state.
  • the waveform attenuation index is estimated to be ⁇ 3 from point 1103 on line segment 1102 corresponding to Pt3.
  • the TX can calculate a threshold value used to determine the presence or absence of a foreign object for each transmission power value.
  • a waveform attenuation index that is larger than the estimated result of the waveform attenuation index in the first detection state at a certain transmission power value by a predetermined value can be set as the threshold value for determining foreign objects.
  • the CAL processing performed by the power transmitting device 100 and the power receiving device 200 in order for the power transmitting device 100 to obtain a combination of the transmitted power value and the waveform attenuation index is hereinafter referred to as "CAL processing of the waveform attenuation method.”
  • the power transmitting device 100 and the power receiving device 200 can execute the CAL process of the waveform decay method multiple times.
  • CAL process of the waveform decay method that is executed again after executing the CAL process of the waveform decay method once is referred to below as "recalibration process of the waveform decay method.”
  • the recalibration process is abbreviated as RECAL process.
  • measurements were taken at two points, the transmission power values Pt1 and Pt2, but to improve accuracy, measurements may be taken at three or more points to calculate the waveform attenuation index for each transmission power.
  • the RX may perform the light load state control and the load connection state control after notifying the TX by a specified packet that the control will be performed. Also, either of the two controls may be performed first.
  • the calculation process of the threshold value used to determine the presence of a foreign object for each load (or each transmission power value) described in this embodiment may be performed in the calibration phase.
  • the TX acquires data required for foreign object detection using the Power Loss method.
  • the TX acquires data on the received power value and power loss of each RX when the load state of the RX is a light load state and when the load state is connected. Therefore, the measurements of CP1100 and CP1101 in FIG. 11 may be performed together with the measurement of power loss when the RX is in a light load state and when the RX is in a loaded state during the calibration phase.
  • the TX when the TX receives a signal having first reference received power information from the RX, in addition to the predetermined processing to be performed in the calibration phase, the TX measures CP1100.
  • This first reference received power information is the RP1 information defined in the WPC standard, but other messages may also be used.
  • the TX When the TX receives a signal having second reference received power information from the RX, the TX measures CP1101 in addition to the predetermined processing to be performed in the calibration phase.
  • This second reference received power information is the RP2 information defined in the WPC standard, but other messages may be used.
  • the TX adjusts and sets the threshold value of the waveform attenuation index for each transmission power. For example, when using Quality Factor as the waveform attenuation index, the TX compares the measured value of Quality Factor with the threshold value determined by the above method.
  • threshold values are set for each TX transmission power, enabling more accurate foreign object determination.
  • the threshold value for determining whether or not a foreign object is detected is not limited to one, and multiple threshold values can be set in stages.
  • the first threshold value is set as a threshold value for determining whether "there is an abnormal condition”
  • the second threshold value is set as a threshold value for determining whether "there is a high possibility of an abnormal condition”
  • the third threshold value is set as a threshold value for determining whether "there is a low possibility of an abnormal condition”
  • the fourth threshold value is set as a threshold value for determining whether "there is no abnormal condition”.
  • Noise may be introduced during the transmission power control period, or the RX may be misaligned when placed on the TX. In this case, if the value of the waveform attenuation index calculated from the transmission waveform during one transmission power control period is not accurate, it may lead to an erroneous foreign object determination.
  • the TX then performs multiple transmission power controls, measures the waveform attenuation index from the transmission waveform during multiple transmission power control periods, and is able to perform more accurate foreign object determination based on the results of multiple measurements.
  • a first measurement method will be described as a method for measuring an indicator of the coupling state between the transmitting antenna and the receiving antenna.
  • the measurement performed in the first measurement method will be referred to as the first measurement below.
  • power is transmitted by electromagnetically coupling the transmitting antenna 105 and the receiving antenna 205.
  • the k value can decrease if a foreign object (such as a metal piece) gets between the transmitting antenna and the receiving antenna, or if the transmitting antenna and the receiving antenna are misaligned. Or the distance between the transmitting antenna and the receiving antenna becomes too large.
  • a foreign object such as a metal piece
  • a detection process is performed for the coupling state index (including the coupling coefficient) between the transmitting antenna and the receiving antenna to improve the detection accuracy of foreign objects and the detection accuracy when the positional deviation or distance is large.
  • Figure 12 (A) is an equivalent circuit diagram for explaining the first measurement method.
  • the definitions of various quantities related to the power transmitting antenna (power transmitting coil) on the primary side (TX) are shown below.
  • r1 Winding resistance of the transmitting antenna.
  • L1 Self-inductance of the transmitting antenna.
  • V1 The transmitting voltage (input voltage) across the transmitting antenna, measured by the TX.
  • r2 Winding resistance of the receiving antenna.
  • L2 Self-inductance of the receiving antenna.
  • V2 The receiving voltage (output voltage) across the receiving antenna measured by the RX.
  • the coupling coefficient (k) between the power transmitting antenna and the power receiving antenna can be calculated by the following formula 2.
  • k (V2/V1) ⁇ ⁇ (L1/L2) (Equation 2)
  • the RX When the TX calculates the coupling coefficient k, the RX notifies the TX of the measured receiving voltage V2 and the value of the self-inductance L2 of the receiving antenna that the RX holds in advance.
  • the TX calculates the k value using the measured transmitting voltage V1, the value of the self-inductance L1 of the transmitting antenna that the TX holds in advance, and the receiving voltage V2 and self-inductance L2 values received from the RX.
  • RX can notify TX of a constant calculated using either or both of L1 and L2, and V2, and TX can calculate the k value using the constant and V2 received from RX, and the transmission voltage V1 measured by TX.
  • the TX notifies the RX of the measured transmission voltage V1 and the previously stored value of the self-inductance L1 of the transmission antenna.
  • the RX calculates the k value using the measured receiving voltage V2, the previously stored value of the self-inductance L2 of the receiving antenna, and the values of the transmission voltage V1 and self-inductance L1 received from the TX.
  • the TX can notify the RX of a constant calculated using either or both of L1 and L2, and V1, and the RX can calculate the k value using the constant and V1 received from the TX, and the receiving voltage V2 measured by the RX.
  • the transmission voltage V1 is calculated by the TX actually measuring the voltage applied to the transmission antenna, or by the TX calculating it from the set value of the transmission power. Alternatively, the transmission voltage V1 may be set as the set value of the transmission voltage during transmission.
  • the transmission voltage V1 applied to the transmission antenna can be calculated from the transmission voltage (denoted as V3) applied to a circuit (e.g., an inverter) in the TX transmission unit 103 and the voltage across the resonant capacitor 107.
  • a circuit e.g., an inverter
  • the transmission voltage V3 is, for example, the inverter input voltage input to the inverter of the power transmission unit 103 of the TX, or the inverter output voltage output by the inverter.
  • the TX may also calculate the transmission voltage V3 from the set value of the transmission power.
  • the TX may actually measure the transmission voltage V3 and the voltage across the resonant capacitor 107, and use these to determine the transmission voltage V1.
  • the TX may transmit the measured values of the transmission voltage V3 and the voltage across the resonant capacitor 107 to the RX, and the RX may determine the transmission voltage V1, thereby calculating the k value.
  • the RX may control the third switch unit 213 to be turned OFF so that the terminal of the power receiving antenna 205 is in an open state. This makes it possible to open both ends of the power receiving antenna as shown in FIG. 12(A).
  • the first measurement is not affected by the resonant capacitor 211, the power receiving unit 203, the charging unit 206, or the battery 207, so the coupling coefficient k can be measured with higher accuracy.
  • the power receiving voltage V2 applied to the power receiving antenna can be calculated from the power receiving voltage (denoted as V4) applied to the circuit of the RX power receiving unit 203 and the voltage across the resonant capacitor 211.
  • the receiving voltage V4 is, for example, the rectifier input voltage input to the rectifier of the RX receiving unit 203.
  • the receiving voltage V2 applied to the receiving antenna can be calculated from the receiving voltage (denoted as V5) applied to the circuit of the RX receiving unit 203 and the voltage across the resonant capacitor 211.
  • the receiving voltage V5 is, for example, the rectifier output voltage output from the rectifier of the receiving unit 203 of the RX.
  • the RX may actually measure the receiving voltage V4 and the voltage across the resonant capacitor 211, and use these to determine the receiving voltage V2.
  • RX may actually measure the receiving voltage V5 and the voltage across the resonant capacitor 211, and use these to determine the receiving voltage V2.
  • RX may transmit the measured values of the receiving voltage V4 and the voltage across the resonant capacitor 211 to TX, and TX may determine the receiving voltage V2, thereby calculating the k value.
  • the RX may transmit the measured power receiving voltage V5 and the voltage across the resonant capacitor 211 to the TX, and the TX may calculate the power receiving voltage V2 to calculate the k value.
  • the RX when the TX or RX performs the first measurement, the RX may be controlled to be in a light load state or a load-connected state. By keeping the load state of the RX constant, it becomes possible to measure the coupling coefficient k with higher accuracy.
  • the TX or RX may be controlled to perform the first measurement in both a lightly loaded state and a loaded state of the RX.
  • the TX or RX may be controlled to perform the first measurement in each of three or more loaded states of the RX.
  • the coupling states in the loaded states of multiple RXs can be measured, and based on the results, the coupling state can be determined with higher accuracy.
  • Coupled state indicators In addition to the coupling coefficient, there are several other quantities that can be used as indicators of the electromagnetic coupling state between the transmitting antenna and the receiving antenna, and in this disclosure, these are collectively referred to as “coupling state indicators.” Each coupling state indicator has a value that corresponds to the electromagnetic coupling state between the transmitting antenna and the receiving antenna.
  • the coupling state index between the transmitting antenna and the receiving antenna can be calculated using the transmitting voltage V3 applied to a circuit (e.g., an inverter) in the transmitting unit 103 of the TX and the voltage V5 applied to a circuit (e.g., a rectifier) in the receiving unit 203 of the RX.
  • a circuit e.g., an inverter
  • V5 applied to a circuit (e.g., a rectifier) in the receiving unit 203 of the RX.
  • voltage V5 is, for example, the rectifier output voltage output from the rectifier in the power receiving unit 203 of RX, or the voltage applied to a load (charging unit, battery).
  • TX notifies RX of the transmission voltage V3, and RX can calculate the coupling state index using the notified V3 and V4 or V5.
  • the TX notifies the RX of a constant calculated using the electrical characteristics of the transmitting antenna (e.g., L1), and the RX can use this constant to calculate the coupling state index.
  • RX notifies TX of the receiving voltage V4 or V5, and TX calculates the value of the coupling state index using the notified V4 or V5 and V3.
  • RX notifies TX of a constant calculated using the electrical characteristics of the receiving antenna (e.g. L2), and TX can calculate the coupling state index using that constant.
  • TX and RX exchange information on the values of voltages V1 to V5, the values of self-inductances L1 and L2, and constants that represent the electrical characteristics of the transmitting and receiving antennas. The following explains the timing of measuring the voltage values and the timing of sending and receiving each piece of information.
  • each voltage value is performed, for example, during the Ping phase.
  • the TX transmits a DP to the RX. Therefore, any of the voltage values V1, V2, V3, V4, and V5 that are generated when the DP is transmitted can be used.
  • the TX and RX measure one of the values V1 to V5 and store it in memory 106 or memory 208.
  • the TX transmits a predetermined transmission request packet to the RX to request the transmission of a packet containing information on any or all of the voltage values V2, V4, and V5.
  • the RX receives the transmission request packet, it transmits to the TX a predetermined packet containing information on any or all of the voltage values V2, V4, and V5.
  • the TX receives a predetermined packet containing information on any or all of the voltage values V2, V4, and V5 notified from the RX, and stores the information in memory 106.
  • the information contained in the predetermined packet may include not only the receiving voltage of the RX, but also the receiving power, the requested receiving power value, the value of the self-inductance L2, a constant calculated using the electrical characteristics of the receiving antenna, and other information.
  • the TX receives a signal including this information from the RX, and can use this information and the coupling status indicator to perform more appropriate control.
  • the Signal Strength Data packet can be used to notify the TX of the RX information.
  • the specified packet may be an Identification Data packet or an Extended Identification Data packet in the I&C phase.
  • it may be a Configuration Data packet. Or it may be a packet in the Calibration phase or the Power Transfer phase.
  • it may be RP1, RP2, or RP0. Note that this is not limited to the example where the voltage value generated when the TX transmits the DP is used. Any of the voltage values V1 to V5 generated when the TX transmits the AP in the Selection phase may be used.
  • any of the voltage values V1 to V5 that are generated when TX transmits power to RX during the Power Transfer phase may be used.
  • the RX transmits a specified transmission request packet to the TX to request the transmission of a packet containing information on either V1 or V3, or all of the voltage values.
  • the TX receives the transmission request packet, it transmits to the RX a specified packet containing information on either V1 or V3, or all of the voltage values.
  • the RX receives a predetermined packet containing information on either or all of the voltage values V1 and V3 notified from the TX, and stores the information in memory 208.
  • the information contained in the predetermined packet may include not only the TX voltage, but also the transmission power value, the transmittable power value, the value of self-inductance L1, a constant calculated using the electrical characteristics of the transmission antenna, and other information.
  • it may include the results of foreign object detection using a foreign object detection method (power loss method, Q-value measurement method, waveform attenuation method), or information regarding the TX temperature and the current value of the transmitting antenna 105.
  • a foreign object detection method power loss method, Q-value measurement method, waveform attenuation method
  • the RX receives the information from the TX and can use the information and the coupling status indicator to perform more appropriate control.
  • the TX can notify the RX of the information by using a Power Transmitter Capabilities (CAP) Data Packet as a specified packet.
  • CAP Power Transmitter Capabilities
  • the TX can communicate information to the RX using a Power Transmitter Identification (ID) data packet.
  • ID Power Transmitter Identification
  • the RX may control the third switch section 213 between the resonant capacitor 211 and the power receiving section 203 to be turned OFF, so that the terminal of the circuit formed by the power receiving antenna 205 and the resonant capacitor 211 is in an open state.
  • the first measurement is not affected by the power receiving unit 203, the charging unit 206, and the battery 207, making it possible to measure the coupling state index with higher accuracy.
  • the RX may control the load so that the above-mentioned light load state is achieved.
  • the RX may control the load so that the load is in the load connection state described above. This makes it possible to measure the coupling state index while maintaining the load state in a specified state, enabling more accurate state detection.
  • FIG. 12 (B) is an equivalent circuit diagram for explaining the second measurement method.
  • r1, r2, L1, and L2 are the same as in Figure 12(A).
  • the definitions of the quantities related to the transmitting antenna (coil) on the primary side (TX) are shown below.
  • V6 Input voltage (transmission voltage) of the transmission antenna when the receiving antenna side is shorted.
  • V7 Input voltage (transmission voltage) of the transmission antenna when the receiving antenna side is in an open state.
  • I1 The current flowing through the transmitting antenna when the receiving antenna is shorted.
  • I2 The current flowing through the transmitting antenna when the receiving antenna is in an open state.
  • Lsc in Equation 3 represents the inductance of the power transmitting antenna when both ends of the power receiving antenna are short-circuited.
  • the control unit 201 sets the third switch unit 213 and the second switch unit 210 to the ON state (short-circuit state).
  • the inductance value of the power transmitting antenna is measured to obtain the Lsc value.
  • the inductance value of the power transmitting antenna can be calculated from the input voltage V6 and current I1 of the power transmitting antenna.
  • Lopen represents the inductance of the power transmitting antenna when both ends of the power receiving antenna are open.
  • the control unit 201 sets the third switch unit 213 to the OFF state (open state). In this state, the Lopen value can be obtained by measuring the inductance value of the power transmitting antenna.
  • the inductance value of the transmitting antenna can be determined from the input voltage V7 and current I2 of the transmitting antenna.
  • the coupling state index (coupling coefficient) can be determined from the input voltage and current of the transmitting antenna when both ends of the receiving antenna are short-circuited and open.
  • TX can also calculate the coupling state index based on the transmission voltage and current applied to a circuit (e.g., an inverter) included in the power transmission unit 103.
  • the input voltages V6 and V7 represent the transmission voltage applied to a circuit (e.g., an inverter) included in the power transmission unit 103.
  • the transmission voltages V6 and V7 applied to the circuit included in the power transmission unit 103 of the TX are, for example, the inverter input voltage or the inverter output voltage.
  • the input voltages V6 and V7 may also be the voltages applied to both terminals of a series resonant circuit consisting of a power transmission antenna and a resonant capacitor.
  • the transmission voltage applied to a circuit (e.g., an inverter) included in the power transmitting unit 103 and the voltage across the resonant capacitor 107 may be measured, and the voltage applied to the power transmitting antenna may be calculated from the results.
  • a circuit e.g., an inverter
  • the transmission voltage applied to the circuit (e.g., inverter) included in the power transmitting unit 103 may be calculated by the TX from the set value of the transmission power.
  • the current I1 or I2 is not limited to the current flowing through the power transmitting antenna, but may be, for example, a current flowing through a circuit (e.g., an inverter) included in the power transmitting unit 103.
  • the current flowing through a circuit included in the power transmitting unit 103 of the TX is, for example, an inverter input current or an inverter output current.
  • the open and short states of the power receiving antenna have been described as being realized by the control unit 201 controlling the second switch unit 210 and the third switch unit 213. These states may also be realized by the power receiving unit 203.
  • a light load state may be used.
  • a connected load state may be used.
  • the TX can calculate the coupling state index by measuring the input voltages V6 and V7 and the currents I1 and I2. Therefore, information such as the voltage value measured by the RX or the inductance value of the receiving antenna is not required, so there is no need for the RX to notify the TX of this information.
  • the RX when the TX measures the input voltage V6 and the current I1, the RX needs to keep both terminals of the circuit that includes the receiving antenna in SHORT. Also, when the TX measures the input voltage V7 and the current I2, the RX needs to keep both terminals of the circuit that includes the receiving antenna in OPEN.
  • the RX needs to control both terminals of the circuit that contains the receiving antenna to be in a SHORT or OPEN state.
  • the TX performs the measurement.
  • the timing of the measurement is determined by the TX and notified to the RX, or the RX determines and notifies the TX.
  • the RX also notifies the TX when it has completed the control to set both terminals of the circuit that includes the receiving antenna to the SHORT or OPEN state.
  • These notifications are sent by communication based on the WPC standard between the first communication unit 104 of the TX and the first communication unit 204 of the RX, or by communication based on a standard other than the WPC standard between the second communication unit 109 of the TX and the second communication unit 212 of the RX.
  • the input voltages V6, V7 and currents I1, I2 are measured, for example, during the Ping phase.
  • the TX transmits a DP to the RX. Therefore, the values of V6, V7 and currents I1, I2 generated when the DP is transmitted can be used.
  • the TX acquires the values of V6, V7, I1, and I2, stores them in memory 106, and calculates the coupling state index. Note that the present invention is not limited to the example in which the TX uses the voltage values and current values generated when transmitting a DP.
  • V6, V7, I1, and I2 that are generated when the TX transmits to the AP in the Selection phase may be used.
  • the voltage values of V6, V7, I1, and I2 that are generated when the TX transmits power to the RX in the Power Transfer phase may be used.
  • either the first measurement method or the second measurement method can be applied to the method of measuring the coupling status index of the transmitting antenna and the receiving antenna.
  • a method of setting a status determination threshold for the coupling status index obtained by the first or second measurement method is described.
  • the status determination includes a determination regarding the detection of a foreign object between the power transmitting antenna and the power receiving antenna, a determination regarding the detection of a misalignment between the power transmitting antenna and the power receiving antenna, and a determination regarding the detection of the separation between the power transmitting antenna and the power receiving antenna.
  • condition determination threshold It is possible to carry out the first or second measurement and determine the presence or absence of a condition abnormality using a condition determination threshold.
  • the first to fourth threshold setting methods are described below.
  • the first threshold setting method is a method in which the value of the coupling status index in a state where there is no abnormality is set as the threshold for the coupling status index used to detect the status between the transmitting antenna and the receiving antenna.
  • a determination result such as "abnormal status exists,” “high possibility of abnormal status,” “low possibility of abnormal status,” “no abnormal status,” etc. is obtained.
  • the value of the coupling state index between the test TX including the transmitting antenna and the RX including the receiving antenna can be set as the threshold value.
  • the RX holds the value (threshold) of the coupling status index measured in advance in memory, and notifies the TX of the threshold.
  • the TX uses the threshold to perform a determination process regarding status detection.
  • the RX may transmit this threshold to the TX within the FOD Status Data packet defined in the WPC standard.
  • the value of the coupling state index between the transmitting antenna and the receiving antenna at which a certain power transmission efficiency is obtained may be set as the threshold value.
  • state detection for example, the following judgment results are obtained.
  • the RX is placed on the test TX, there are no abnormal conditions between the transmitting antenna and the receiving antenna, and a specified power transmission efficiency is obtained.
  • the value of the coupling condition index between the test TX including the transmitting antenna and the RX including the receiving antenna can be set as the threshold value.
  • the RX holds the previously measured value of the coupling status index in memory as a threshold value, and notifies the TX of the threshold value.
  • the TX uses the threshold value to perform a determination process related to status detection.
  • the RX may transmit this threshold value to the TX within the FOD Status Data packet defined in the WPC standard.
  • the second threshold setting method is a method in which the TX and RX set the coupling status index measured by the first or second measurement method as the threshold in a specified state.
  • the specified state is "a state in which there is no abnormality between the transmitting antenna and the receiving antenna.”
  • the method for checking this state can utilize detection of the state of the TX and RX, such as foreign object detection using the power loss method, foreign object detection using the waveform attenuation method, foreign object detection using the Q value measurement method, or foreign object detection based on the temperature of the TX or RX, which will be described later.
  • detection of the state of the TX and RX such as foreign object detection using the power loss method, foreign object detection using the waveform attenuation method, foreign object detection using the Q value measurement method, or foreign object detection based on the temperature of the TX or RX, which will be described later.
  • this confirmation is performed by a method and means other than the first or second measurement method.
  • the bond condition index is measured using the first or second measurement method, and an appropriate threshold is set based on the measurement result.
  • a foreign object detection process using a Q-value measurement method is executed in the negotiation phase or Renegotiation phase. If the result of the foreign object detection process is that there is "no abnormal state" (or "no foreign object"), the bond state index is measured using the first or second measurement method after the negotiationation phase or Renegotiation phase.
  • the foreign object detection process using the Power Loss method is executed during the Power Transfer phase. After the foreign object detection process is executed, the binding state index is measured using the first or second measurement method, and based on the measurement results, it is possible to set a more appropriate threshold value.
  • the TX can use the AP or DP transmitted by the TX in the Selection phase or Ping phase to perform foreign object detection processing using a Quality Factor measured by the waveform attenuation method, etc.
  • the binding state index is measured using the first or second measurement method after the phase in which the foreign object detection process is performed, and an appropriate threshold value can be set based on the measurement results.
  • the foreign object detection process using the waveform attenuation method described above is performed during the power transfer phase.
  • the binding state index is measured using the first or second measurement method, and a more appropriate threshold value can be set based on the measurement result.
  • FIG. 13 is a diagram for explaining a threshold setting method for state detection using a coupling state index.
  • the horizontal axis represents the transmitted power
  • the vertical axis represents the coupling state index.
  • point 1200 corresponds to the transmission power value Pt1 and the coupling state index value k1
  • point 1201 corresponds to the transmission power value Pt2 and the coupling state index value k2.
  • point 1203 corresponds to the transmission power value Pt3 and the coupling state index value k3.
  • the first or second measurement method described above can be used to calculate each coupling state index value.
  • the charging unit 206 and the battery 207 are connected as loads to the RX power receiving unit 203, so the calculated coupling state index value changes depending on the load state.
  • a light load state is a state in which no power is supplied to the RX load, or only power below a threshold is supplied.
  • the RX transmits a packet to the TX requesting that a measurement of the coupling state indicator be performed.
  • the TX sends a packet to the RX requesting that a coupling status indicator measurement be performed.
  • the TX and RX perform measurements of the transmission voltage on the TX side and the receiving voltage on the RX side.
  • the TX and RX exchange information such as the values of V1 to V7, the self-inductances L1 and L2, or constants calculated using the electrical characteristics of the transmitting and receiving antennas, and the TX or RX calculates the coupling state index value k1.
  • the RX stores in memory CP1200 that associates Pt1 with k1.
  • the RX controls the RX load so that it is in a load-connected state when power is transmitted from the TX.
  • the load-connected state is a state in which maximum power is supplied to the RX load, or power equal to or greater than a threshold is supplied.
  • maximum power refers to a power value close to the Reference Power. Or, it is a load state in which the RX receiving power value is within a predetermined range (hereinafter referred to as the "sixth range").
  • the sixth range is a range of power values higher than the fifth range.
  • the transmission power value of the TX in this state is Pt2. Then, the RX transmits a packet to the TX requesting that a measurement of the coupling status indicator be performed. Alternatively, the TX transmits a packet to the RX requesting that a measurement of the coupling status indicator be performed.
  • the TX and RX measure the transmission voltage on the TX side and the receiving voltage on the RX side.
  • the TX and RX exchange information such as the above values of V1 to V7, the values of self-inductance L1 and L2, or constants calculated using the electrical characteristics of the transmitting antenna and receiving antenna, and the TX or RX calculates the coupling state index value k2.
  • TX When RX calculates the binding state index value k2, it notifies TX of the result. When TX calculates the binding state index value k2, it notifies RX of the result and Pt2. TX stores in memory CP1201 that associates Pt2 and k2.
  • RX stores in memory CP1201 that associates Pt2 and k2. TX then performs linear interpolation between CP1200 and CP1201 to generate line segment 1202.
  • Line 1202 shows the relationship between the transmission power and the coupling state index when there are no abnormal conditions around TX and RX.
  • TX can use line 1202 to estimate the coupling state index value for each transmission power value when there are no abnormal conditions around TX and RX.
  • the transmission power value is Pt3.
  • the coupling state index value k3 can be estimated from point 1203 on line segment 1202 that corresponds to the transmission power value Pt3.
  • the TX can calculate a threshold value used to determine the presence or absence of a state abnormality for each transmission power value.
  • the coupling state index value obtained by adding a predetermined value (a value corresponding to the measurement error) to the estimated result of the coupling state index value when there is no abnormality at a certain transmission power value can be set as the judgment threshold value.
  • the calibration process performed by the power transmission device 100 and the power receiving device 200 in this manner in order for the power transmission device 100 to obtain a combination of the transmission power value and the coupling state index value is called the "CAL process of the coupling state index measurement method.”
  • the power transmission device 100 and the power receiving device 200 can perform the CAL process of the coupling state index measurement method multiple times.
  • the CAL process of the binding status index measurement method that is performed again after the CAL process of the binding status index measurement method has been performed once is referred to as the "recalibration process of the binding status index measurement method" below.
  • the recalibration process is abbreviated as RECAL process.
  • the RX may perform the control to put the load into a light load state and the control to put the load into a connected state after notifying the TX that the control will be performed. Also, either of these two controls may be performed first.
  • the operation for calculating the judgment threshold for state detection for each load (or each transmission power value) is performed, for example, in the calibration phase.
  • the TX acquires data required for foreign object detection using the power loss method.
  • the TX acquires data on the amount of power loss when the RX is in a light load state and when the RX is in a loaded state. Therefore, the measurements of CP1200 and CP1201 in FIG. 13 can be performed together with the measurement of power loss when the RX is in a light load state and when it is in a loaded state during the calibration phase.
  • the TX when the TX receives the first reference received power information from the RX, in addition to the predetermined processing to be performed in the calibration phase, the TX measures CP1200.
  • the first reference received power information is information according to RP1 defined in the WPC standard, but other messages may also be used.
  • the TX receives the second reference received power information from the RX, in addition to the predetermined processing to be performed in the calibration phase, it measures CP1201.
  • the second reference received power information is information by RP2 defined in the WPC standard, but other messages may be used. In this way, there is no need to set aside a separate period for measuring CP1200 and CP1201, so that CP1200 and CP1201 can be measured in a shorter time.
  • the fourth threshold setting method is a method in which the TX or RX sets a threshold in advance for a coupling state indicator that has a value within a predetermined range.
  • the TX or RX holds a predetermined value for this threshold as a common value that is not dependent on the RX that is the target of power transmission.
  • the threshold value may be a fixed value that does not depend on the situation, or a variable value that is determined by the TX or RX depending on the situation. For example, if the coupling state index is the coupling coefficient k, the range of the k value is "0 ⁇ k ⁇ 1".
  • TX or RX will determine that "there is a status abnormality" when “0 ⁇ k ⁇ 0.2” and that "there is a high possibility of a status abnormality” when “0.2 ⁇ k ⁇ 0.5”. TX or RX will determine that "there is a low possibility of a status abnormality” when “0.5 ⁇ k ⁇ 0.8” and that "there is no status abnormality” when "0.8 ⁇ k ⁇ 1".
  • condition data for the k value is stored in advance in memory, and the decision-making process is carried out based on that data.
  • the TX or RX determines that "the specified power transmission efficiency cannot be obtained” or that "the coupling between the transmitting antenna and the receiving antenna is weak.”
  • the TX or RX determines that "there is a high possibility that the specified power transmission efficiency will not be achieved” or "there is a possibility that the coupling between the transmitting antenna and the receiving antenna is weak.”
  • the TX or RX determines that "there is a high possibility that the specified power transmission efficiency is obtained” or "there is a high possibility that the coupling state between the transmitting antenna and the receiving antenna is good.”
  • the TX or RX determines that "a certain power transmission efficiency is obtained” or "the coupling state between the transmitting antenna and the receiving antenna is good" when "0.8 ⁇ k ⁇ 1.”
  • the condition data for the k value is stored in memory in advance, and the determination process is performed based on that data.
  • a judgment threshold for state detection using a binding state index a value obtained by adding a predetermined value (a value corresponding to a measurement error) to the binding state index value calculated based on the measurement results or received information can be set as the judgment threshold.
  • the threshold is not limited to one, and multiple thresholds can be set in stages.
  • the calculation (measurement) of the coupling state index is performed by the RX transmitting a predetermined packet to the TX.
  • the specified packet is a Signal Strength Data packet that RX sends to TX.
  • it may be an Identification Data packet, Extended Identification Data packet, or Configuration Data packet in the I&C phase.
  • it may be a packet in the calibration phase or power transfer phase.
  • it may be RP1, RP2, or RP0.
  • the TX When the TX receives a specified packet from the RX, it calculates the coupling status index between the transmitting antenna and the receiving antenna. The TX then makes a judgment by comparing the calculated coupling status index with the judgment threshold set by the above method.
  • the TX judges that there is no abnormal status, it sends a positive response ACK to the RX, or status information indicating that there is no abnormal status to the RX. If the TX judges that there is a low possibility of an abnormal status or that there is a high possibility of an abnormal status, it sends status information indicating the respective judgment result to the RX.
  • the TX determines that there is an abnormal status, it sends a negative acknowledgement NAK to the RX, or status information indicating that there is an abnormal status to the RX.
  • the TX determines that "a specified power transmission efficiency can be obtained” or "the coupling state between the transmitting antenna and the receiving antenna is good," it transmits an ACK to the RX or status information indicating the determination result to the RX.
  • the TX determines that "there is a high probability that the specified power transmission efficiency is achieved” or "the coupling state between the transmitting antenna and the receiving antenna is likely to be good," it transmits status information indicating the determination result to the RX.
  • the TX determines that "there is a high possibility that the specified power transmission efficiency will not be achieved” or "the coupling between the transmitting antenna and the receiving antenna may be weak," it transmits status information indicating the result of the determination to the RX.
  • the TX determines that "the specified power transmission efficiency cannot be achieved” or that "the coupling between the transmitting antenna and the receiving antenna is weak," it sends a negative response NAK to the RX, or status information indicating the determination result to the RX.
  • the state information is, for example, numerical information according to the state, as follows: Status information "0" corresponds to the determination result that "there is no status abnormality", or "a predetermined power transmission efficiency is obtained", or "the coupling state between the power transmitting antenna and the power receiving antenna is good". - Status information "1” corresponds to the determination result that "there is a low possibility of a status abnormality", or “there is a high possibility of obtaining a specified power transmission efficiency", or “there is a possibility that the coupling state between the transmitting antenna and the power receiving antenna is good”.
  • Status information "2" corresponds to the judgment result that "there is a high possibility of a status abnormality", or “there is a high possibility that the specified power transmission efficiency cannot be obtained", or “there is a possibility that the coupling between the transmitting antenna and the power receiving antenna is weak".
  • Status information "3” corresponds to a determination result of "there is an abnormal status", or “the specified power transmission efficiency is not obtained", or "the coupling between the power transmitting antenna and the power receiving antenna is weak".
  • the calculation (measurement) of the coupling status indicator is performed by the TX transmitting a predetermined packet to the RX.
  • the predetermined packet is a Power Transmitter Capabilities (CAP) Data Packet transmitted by the TX to the RX.
  • CAP Power Transmitter Capabilities
  • the RX receives a specified packet from the TX, it calculates a coupling status index between the transmitting antenna and the receiving antenna.
  • the RX judges the state by comparing the judgment threshold set by the above method with the calculated coupling state index. If the RX judges that there is no abnormal state, it transmits a specified packet including state information indicating the judgment result to the TX.
  • the RX judges that "the possibility of a status abnormality is low” or "the possibility of a status abnormality is high,” it transmits a specified packet containing status information indicating the respective judgment result to the TX. If the RX judges that "there is a status abnormality,” it transmits a specified packet containing status information indicating the judgment result to the TX.
  • the RX determines that "a specified power transmission efficiency is achieved" or "the coupling state between the transmitting antenna and the receiving antenna is good," it transmits status information indicating the determination result to the TX.
  • the RX determines that "there is a high possibility that the specified power transmission efficiency can be achieved" or "the coupling state between the transmitting antenna and the receiving antenna is likely to be good," it transmits status information indicating the determination result to the TX.
  • the RX determines that "there is a high possibility that the specified power transmission efficiency will not be achieved” or "the coupling between the transmitting antenna and the receiving antenna may be weak," it transmits status information indicating the result of the determination to the TX.
  • the RX determines that "the specified power transmission efficiency cannot be achieved” or that "the coupling between the power transmitting antenna and the power receiving antenna is weak," it transmits status information indicating the determination result to the TX. Examples of the status information are as described above.
  • the TX and RX each have temperature sensors at multiple locations.
  • temperature sensors are placed at a higher density on the transmitting antenna 105 and charging stand 300, and on the receiving antenna 205, compared to other locations.
  • the TX or RX executes a foreign object detection process based on the detected temperature.
  • the TX acquires the detection value of the temperature sensor at a specified timing.
  • the specified timing occurs at a predetermined cycle or when the TX receives a specified packet from the RX. If the temperature sensor detection value is greater than the threshold, the TX determines that there is a high possibility that a foreign object is present.
  • the TX also calculates the rate of temperature rise based on multiple temperature detection values acquired at a specified timing. If the rate of temperature rise is greater than a threshold value, the TX determines that there is a high possibility that a foreign object is present.
  • the determination result is notified to the RX in a specified packet.
  • the TX performs the control to limit the power transmission described above (stopping power transmission or reducing the transmission power).
  • the RX acquires the detection value of the temperature sensor at a specified timing.
  • the specified timing occurs at a predetermined cycle or when the RX receives a specified packet from the TX.
  • the RX determines that there is a high possibility that a foreign object is present.
  • the RX also calculates the temperature rise rate based on multiple temperature detection values acquired at a specified timing.
  • the RX determines that there is a high possibility that a foreign object is present.
  • the RX notifies the TX of the determination result in a specified packet.
  • the RX transmits a specified packet to the TX to request a restriction on power transmission (stopping power transmission or reducing the transmission power).
  • the first current value a current value related to the current flowing through the TX transmitting antenna
  • the second current value a current value related to the current flowing through the RX receiving antenna
  • the TX or RX executes a foreign object detection process based on the detected first or second current value.
  • the TX acquires the first current value at a specified timing.
  • the specified timing occurs at a predetermined cycle or when the TX receives a specified packet from the RX.
  • the TX determines that there is a high possibility that a foreign object is present.
  • the TX also calculates the rate of increase in the current value based on the first current value acquired at a predetermined timing.
  • the TX determines that there is a high possibility that a foreign object is present. The result of this determination is notified to the RX in a specified packet. Alternatively, when the result of this determination is obtained, the TX performs control to limit the power transmission (stopping power transmission or reducing the transmission power).
  • the RX acquires the second current value at a predetermined timing.
  • the predetermined timing occurs at a predetermined cycle or when the RX receives a predetermined packet from the TX.
  • the RX determines that there is a high possibility that a foreign object is present.
  • the RX also calculates the rate of increase in the current value based on the second current value acquired at a specified timing. If the rate of increase in the current value is greater than the threshold value, the RX determines that there is a high possibility that a foreign object is present.
  • the result of this determination is notified to the TX in a specified packet.
  • the RX transmits a specified packet to the TX and performs processing to request a restriction on power transmission (stopping power transmission or reducing the transmission power).
  • the TX and RX may perform a combination of multiple foreign object detection processes.
  • the Q value measurement method, the power loss method, the waveform attenuation method, the coupling status index measurement method, foreign object detection process based on temperature, and foreign object detection process based on the current flowing through the transmitting antenna or the receiving antenna may be combined.
  • the foreign object detection process based on the coupling state indicator measurement method is referred to as the first foreign object detection process
  • the foreign object detection process based on the TX temperature is referred to as the second foreign object detection process
  • the foreign object detection process based on the current flowing through the transmitting antenna is referred to as the third foreign object detection process.
  • the entity that executes the first to third foreign object detection processes is the TX.
  • the TX executes a foreign object detection process selected from the first to third foreign object detection processes, and notifies the RX of the foreign object determination result. If the foreign object determination result is "high possibility of foreign object presence" or "foreign object present", the RX notifies the TX of a packet requesting the execution of a specified foreign object detection process.
  • the specified foreign object detection process is a foreign object detection process based on one or more of the following methods: the Q-value measurement method, the Power Loss method, and the waveform attenuation method.
  • the TX executes the specified foreign object detection process according to an execution request from the RX, and notifies the RX of the foreign object determination result.
  • RX transmits to TX a packet requesting a limit on power transmission or a packet requesting the above-mentioned RECAL processing.
  • a packet requesting a limit on power transmission or a packet requesting the above-mentioned RECAL processing (hereinafter, these packets are referred to as a limit request packet) is, for example, a packet requesting that the GP value be set to a lower value, or RP1 or RP2 requesting RECAL processing using the Power Loss method.
  • it is a packet for requesting a RECAL process of the waveform decay method or a RECAL process of the coupling condition index measurement method.
  • it is an EPT packet for requesting the stop of power transmission.
  • the TX executes a foreign object detection process based on one or more of the Q-value measurement method, the Power Loss method, and the waveform attenuation method, and notifies the RX of the foreign object determination result. If the foreign object determination result is "highly likely to have a foreign object" or "foreign object exists," the RX transmits a packet to the TX requesting the execution of a foreign object detection process selected from the first to third foreign object detection processes.
  • the TX executes one or more of the first through third foreign object detection processes according to the packet, and notifies the RX of the foreign object determination result. If the foreign object determination result is "highly likely to have a foreign object" or "foreign object exists," the RX sends a restriction request packet to the TX.
  • the foreign object detection process based on the temperature of the RX is referred to as the fourth foreign object detection process
  • the foreign object detection process based on the current flowing through the power receiving antenna is referred to as the fifth foreign object detection process.
  • the subject that executes the first, fourth, and fifth foreign object detection processes is the RX.
  • the RX executes a foreign object detection process selected from the first, fourth, or fifth foreign object detection process, and notifies the TX of the foreign object determination result. If the foreign object determination result is "high probability of foreign object presence" or "foreign object present,” the RX notifies the TX of a packet requesting the execution of a specified foreign object detection process.
  • the specified foreign object detection process is a foreign object detection process based on one or more of the following methods: the Q-value measurement method, the Power Loss method, and the waveform attenuation method.
  • the TX executes the specified foreign object detection process in response to a request from the RX, and notifies the RX of the foreign object determination result.
  • the RX sends a restriction request packet to the TX.
  • the TX executes a foreign object detection process based on one or more of the Q-value measurement method, the Power Loss method, and the waveform attenuation method, and notifies the RX of the foreign object determination result.
  • the foreign object determination result is assumed to be "highly likely that a foreign object exists" or "a foreign object exists.”
  • the RX acquires the coupling status indicator, or the temperature detection value of the RX, or the current value flowing through the RX's power receiving antenna, executes a foreign object detection process, and notifies the TX of the foreign object determination result. If the foreign object determination result is "highly likely to have a foreign object" or "foreign object exists," the RX transmits a restriction request packet to the TX.
  • the TX or RX executes the first foreign object detection process, the second or fourth foreign object detection process, the third or fifth foreign object detection process, and other foreign object detection processes at different times.
  • the other foreign object detection processes are foreign object detection processes based on one or more of the Q-value measurement method, the Power Loss method, and the waveform attenuation method.
  • the TX or RX may execute the first foreign object detection process, the second or fourth foreign object detection process, the third or fifth foreign object detection process, and other foreign object detection processes at the same time.
  • the RX (or TX) notifies the TX (or RX) of the timing by transmitting a specified packet to the TX (or RX). For example, when the TX (or RX) receives a specified packet, it executes the second (or fourth) foreign object detection process and foreign object detection process using the Power Loss method.
  • the TX (or RX) receives a specified packet, it executes a second (or fourth) foreign object detection process and a foreign object detection process using the waveform attenuation method.
  • the TX when the TX (or RX) receives a specified packet, it executes the second (or fourth) foreign object detection process, the foreign object detection process using the power loss method, and the foreign object detection process using the waveform attenuation method. Any combination of foreign object detection processes is possible, and the combination can be changed according to the settings of predetermined conditions, etc.
  • the restriction request packet is "a packet requesting a restriction on power transmission, or a packet requesting the above-mentioned RECAL process.”
  • the above-mentioned restriction request packet may be interpreted as two packets, "a packet requesting a restriction on power transmission, and a packet requesting the above-mentioned RECAL process.”
  • one of the multiple foreign object detection processes described above is performed as a state detection process based on a measurement process (CAL process) of a physical quantity related to the power transmission device. Whether or not to limit power transmission or perform RECAL process is determined based on information acquired during the first state detection and information acquired during the second state detection based on a measurement process executed after the measurement process executed during the first state detection.
  • CAL process measurement process
  • the power transmitting device determines that the power receiving device should request the power transmitting device to execute RECAL processing. In this case, the power transmitting device transmits the detection result related to the first or second state detection and information related to the request to execute RECAL processing to the power receiving device. According to this embodiment, it is possible to perform more suitable control based on multiple state detection results in wireless power transmission from the power transmitting device to the power receiving device.
  • condition detection method refers to these methods, and any of these methods may be used.
  • the foreign object detection method is one example of a condition detection method. "The presence of a foreign object" can be said to be "the presence of an abnormal condition.”
  • the expression "detected the presence of a foreign object" in the first embodiment will be expressed as "detected an abnormal condition" below. Note that in this embodiment, explanations of matters similar to those in the first embodiment will be omitted, and differences will be mainly explained. This method of omitting explanations will be the same in the embodiments described below.
  • Figure 14 is a flowchart that explains the operation of the TX.
  • Figure 15 is a flowchart that explains the operation of the RX.
  • Processing starts at S1401 in FIG. 14, and the TX is powered ON at S1402. After the Selection phase and Ping phase, the TX detects the RX at S1403. After the I&C phase, Negotiation phase, and Calibration phase, the TX starts transmitting power to the detected RX in the Power Transfer phase at S1404. Processing then proceeds to S1405.
  • the TX determines whether or not it has received an execution request packet for the state detection method (FIG. 15: S1506) from the RX. The execution request packet will be described later. If the TX has not received the execution request packet (No in S1405), it continues power transmission and repeatedly executes the determination process of S1405. If the TX has received the execution request packet (Yes in S1405), it proceeds to the process of S1406.
  • the TX executes a state detection method, measures a physical quantity related to the TX, and compares the measurement result with a threshold value to determine whether or not a state abnormality exists. For example, when the TX executes the state detection method, it determines the possibility (probability) of a state abnormality in stages. The determination results are shown below.
  • - ⁇ State 1> The physical quantity measured by the TX is significantly lower than the threshold value, and the possibility of a status abnormality is very low.
  • ⁇ State 2> The physical quantity measured by the TX is slightly below the threshold value, and the possibility of an abnormal condition is low.
  • ⁇ State 3> The physical quantity measured by the TX is slightly above the threshold value, and there is a high possibility of an abnormal condition.
  • - ⁇ State 4> The physical quantity measured by the TX is significantly higher than the threshold value, and there is a "high possibility of an abnormal status.” In this example, if the physical quantity measured by TX exceeds a threshold value, it is determined that there is a possibility of a status abnormality.
  • ⁇ State 1> The physical quantity measured by the TX is significantly higher than the threshold, and the possibility of an abnormal condition is very low.
  • - ⁇ State 2> The physical quantity measured by the TX is slightly above the threshold value, and the possibility of a status abnormality is low.
  • ⁇ State 3> The physical quantity measured by the TX is slightly below the threshold value, and there is a high possibility of an abnormal state.
  • ⁇ State 3> and ⁇ State 4> are states in which the physical quantity measured by the TX is outside the range based on the threshold value, and it is determined that there is a possibility of an abnormal state, but power transmission from the TX to the RX is possible.
  • the TX determines whether or not there is a possibility of a status abnormality as a result of executing the status detection method. If the TX determines that there is no possibility of a status abnormality or that the possibility of a status abnormality is low (No in S1407), the TX proceeds to S1405 and continues transmitting power to the RX.
  • a case where it is determined that "the possibility of a status abnormality is low" is when the above-mentioned ⁇ Status 1> or ⁇ Status 2> is detected.
  • the TX determines that there is a possibility of a status abnormality (Yes in S1407), it proceeds to the processing of S1408.
  • a case where it is determined that "the possibility of a status abnormality" is when the above-mentioned ⁇ Status 3> or ⁇ Status 4> is detected.
  • TX transmits a packet to RX requesting permission to notify (communicate) information.
  • TX transmits a packet to RX requesting attention.
  • the packet in question is a response (ATN) defined in the WPC standard.
  • ATN response
  • the RX receives the ATN sent by the TX, it sends a packet to the TX that allows it to send a Data packet.
  • the RX when the RX receives the ATN sent by the TX, it sends a packet to the TX requesting the transmission of a Data packet.
  • the packet is a DSR/poll packet or a DSR/poll Data packet as defined by the WPC standard.
  • the TX determines whether or not it has received a DSR/poll packet or a DSR/poll data packet from the RX. If the TX has not received the packet from the RX (No in S1409), it continues transmitting power and repeats the determination process of S1409. If the TX has received the packet from the RX (Yes in S1409), it proceeds to the process of S1410.
  • the TX transmits a status detection result packet to the RX.
  • the status detection result packet is a packet that includes information indicating the result of the TX executing the status detection method.
  • the TX notifies the RX by including the following first information about the status detection method in the status detection result packet.
  • Information indicating which state detection method was executed ⁇ Information indicating the possibility of a status abnormality.
  • Information indicating the possibility of a status abnormality.
  • Index information (for example, any one of ⁇ State 1> to ⁇ State 4>) that indicates the result of comparing the measured physical quantity with a threshold value.
  • Status detection methods include the Q value measurement method, the power loss method, the waveform attenuation method, the coupling status index measurement method, a foreign object detection method based on temperature, and a foreign object detection method based on the current flowing through the transmitting antenna or the receiving antenna.
  • the first information includes information indicating which of these condition detection methods was used to detect the condition.
  • the first information also includes index information indicating the possibility of a condition abnormality as a result of the condition detection using that condition detection method.
  • the index information can also be considered as information on the result of comparing the measured physical quantity with a threshold value.
  • TX transmits a RECAL processing request packet to RX.
  • the RECAL processing request packet is a packet that includes information requesting RECAL processing.
  • TX notifies RX of the following second information regarding the RECAL processing request by including it in the RECAL processing request packet.
  • Information indicating whether or not to request execution of a RECAL process of the Power Loss method Information indicating whether or not to request execution of RECAL processing of the waveform decay method. Information indicating whether or not to request execution of a RECAL process for the binding status indicator measurement method. Information indicating the type of RECAL process which requests the execution of the power loss method, the waveform decay method, or the coupling condition index measurement method.
  • RECAL process type refers to the first or second RECAL process below.
  • First RECAL process Any existing calibration points or lines that have been interpolated between calibration points are discarded.
  • the RX retransmits RP1 and RP2 to the TX, and the TX creates new calibration points or lines that have been interpolated between calibration points.
  • Second RECAL process The existing calibration points or the line segments obtained by interpolating between the calibration points are maintained.
  • the RX transmits RP2 to the TX, and the TX adds new calibration points to the existing calibration points or the line segments obtained by interpolating between the calibration points.
  • the TX executes the status detection method and determines that "there is a high possibility of a status abnormality" or "there is a very high possibility of a status abnormality.”
  • the occurrence of a status abnormality may cause deviations in calibration points created by CAL processing performed when the probability of a status abnormality is low, or in lines interpolated between calibration points.
  • the second information includes information on whether or not to request execution of RECAL processing. Furthermore, the second information includes information indicating which status detection method the RECAL processing is for.
  • TX receives a RECAL processing execution request packet from RX.
  • the execution request packet is, for example, RP1 or RP2.
  • TX executes RECAL processing based on the information in the received RECAL processing execution request packet.
  • TX increases (increments) the value of variable A by 1. Then, the process proceeds to S1415.
  • the TX determines whether the value of counter variable A is equal to or greater than a predetermined number of times (threshold value). If the TX determines that the value of variable A is equal to or greater than the predetermined number of times (Yes in S1415), the TX proceeds to processing in S1416.
  • the process proceeds to S1405, and the TX continues transmitting power to the RX.
  • the TX performs control to limit the transmission power (control to limit the power received by the RX), and ends the series of processes in S1417.
  • the RX After the I&C phase, the negotiation phase, and the Calibration phase, in S1504 the RX starts receiving power transmitted from the TX in the Power Transfer phase.
  • RX determines whether to request TX to execute the state detection method. If the predetermined conditions are met (Yes in S1505), RX decides to request TX to execute the state detection method, and proceeds to processing in S1506.
  • the RX decides not to request the TX to execute the state detection method, continues receiving power, and repeats the process of S1505.
  • This condition is, for example, that the TX or RX has detected one or more of the following:
  • the "predetermined condition" corresponds to the following case.
  • the transmission power transmitted from TX to RX is to be increased or decreased.
  • information (setting value) regarding the transmission power of the TX or information (setting value) regarding the receiving power of the RX held by the TX or RX is changed.
  • CAL process a measurement process
  • the RX notifies the TX of the RX status (e.g., the power being received by the RX, etc.).
  • predetermined conditions are preset in the RX.
  • the RX decides to perform state detection when one or more of the set “predetermined conditions” are satisfied.
  • predetermined conditions may be based on conditions other than those exemplified, or any arbitrary condition may be set.
  • the timing of executing the state detection method may be determined by the TX, not the RX, and the state detection method may be executed at the appropriate time.
  • the TX can execute the state detection method at an appropriate timing that satisfies the "predetermined conditions.”
  • the RX transmits a request packet for executing the state detection method to the TX, and proceeds to the processing of S1507. Then, in S1507, the RX determines whether or not it has received an ATN (FIG. 14: S1408) from the TX.
  • the process proceeds to S1508. If the RX does not receive an ATN from the TX (No in S1507), the RX continues receiving power, and the determination process of S1507 is repeated until an ATN is received.
  • RX sends a packet (DSR/poll packet or DSR/poll data packet) to TX that allows TX to send a data packet.
  • the RX determines whether or not it has received a status detection result packet (FIG. 14: S1410) from the power transmitting device. If it is determined in S1509 that the RX has received a status detection result packet from the TX, the process proceeds to S1510.
  • S1509 determines whether or not it has received a RECAL processing request packet (FIG. 14: S1411) from TX.
  • S1510 If it is determined in S1510 that the RX has received a RECAL processing request packet from the TX, the process proceeds to S1511. If it is determined that the RECAL processing request packet has not been received, the determination process of S1510 is repeated until the packet is received.
  • the RX sends a packet requesting execution of RECAL processing to the TX.
  • the RX determines whether or not it has received a packet from the TX to perform control to limit the transmission power.
  • the RX determines that the packet has been received from the TX (Yes in S1512), it proceeds to the process of S1513. If the RX does not receive the packet from the TX (No in S1512), it proceeds to S1505 and continues receiving power.
  • the RX performs control to limit the transmission power (control to limit the power received by the RX), and ends the series of processes in S1514.
  • TX transmits a status detection result packet to RX (FIG. 14: S1410) and then transmits an ATN to RX again (S1408).
  • RX when RX receives the ATN sent by TX ( Figure 15: Yes in S1507), it sends a DSR/poll packet or a DSR/poll data packet to TX (S1508).
  • the TX When the TX receives a DSR/poll packet or a DSR/poll data packet (Yes in S1409), it proceeds to the processing of S1411. In other words, the TX sends a RECAL processing request packet to the RX. This is also the case for the TX and RX in the third embodiment described later.
  • At least one of the pieces of information shown in the description of the first or second information above is transmitted from TX to RX.
  • the first or second piece of information is determined based on information indicating the possibility of a status abnormality.
  • the status detection result packet that the TX sends to the RX in S1410 of FIG. 14 includes the following information:
  • the first information includes information indicating the executed state detection method and information indicating that the state is "high possibility of abnormal state.”
  • the first information includes information indicating the executed state detection method and information indicating that the state is "highly likely to be abnormal.”
  • RECAL processing request packet that TX sends to RX in S1411 of FIG. 14 includes the following information:
  • the second information includes information requesting execution of at least one RECAL process among the RECAL processes of the power loss method, the waveform decay method, and the binding condition index measurement method, and information requesting execution of a second RECAL process.
  • the second information includes information requesting execution of at least one RECAL process among the RECAL processes of the power loss method, the waveform decay method, and the binding condition index measurement method, and information requesting execution of the first RECAL process.
  • the TX may transmit the first and second information to the RX in the same packet. This allows the TX and RX to quickly and appropriately execute control according to the determination result when it is determined that "there is a status abnormality" or "there is a high possibility of a status abnormality.”
  • the TX executes the state detection method multiple times and obtains a judgment result of ⁇ State 3> or ⁇ State 4> multiple times. If the judgment result is a state detected as "high possibility of abnormal state” or "very high possibility of abnormal state” (hereinafter also referred to as the second detection state), the RECAL process is executed.
  • the TX executes the state detection method and again determines that it is in the second detection state. In this case, the TX executes the RECAL process again.
  • the CAL process is a process that is executed when the first detection state is detected as having no abnormal state.
  • Executing the RECAL process when in the second detection state means that the CP or the line segment where the interpolation between CPs is performed is changed.
  • the ideal CP or the line segment where the interpolation between CPs is performed created in the CAL process is replaced with the CP or the line segment where the interpolation between CPs is performed in the second detection state.
  • the RECAL process is executed multiple times. In this case, each time the RECAL process is executed, it will deviate from the CP in the first detection state or the line segment that was interpolated between the CPs.
  • the TX and RX limit the power transmitted by the TX or limit the power received by the RX.
  • the method for limiting the power transmitted by the TX or the power received by the RX is as follows.
  • the TX requests to execute RECAL processing using the second information, and controls the transmission power of the TX using predetermined information (hereinafter referred to as the third information).
  • the third information is information for controlling the transmission power of the TX so that it is equal to or lower than a predetermined power value.
  • the TX controls the maximum load power value that can be output (supplied) to the load of the RX so that it is equal to or less than a predetermined power value.
  • the predetermined power value is, for example, 5 (watts).
  • the TX transmits to the RX predetermined information (hereinafter referred to as the fourth information) for switching the TX or RX mode.
  • the fourth information is, for example, information indicating a request to switch to a mode that can transmit power only up to 5 watts.
  • the TX sends a packet to the RX requesting the transmission of an EPT packet. After receiving this packet, the RX sends an EPT packet to the TX, terminating the Power Transfer phase.
  • the TX detects the second detection state multiple times and requests the RX to perform the RECAL process a predetermined number of times or more.
  • the RX When the RX is requested to perform the RECAL process a predetermined number of times or more, it performs control to negotiate with the TX so that the value of GP becomes equal to or less than a predetermined power value.
  • the specified power value is, for example, 5 (watts).
  • the RX transmits to the TX a specified packet containing information requesting that the TX or RX mode be switched to a specified mode.
  • the specified mode is the Basic Power Profile (BPP) mode defined in the WPC standard, which allows power transmission up to a maximum of 5 watts.
  • BPP Basic Power Profile
  • the amount of heat generated by a foreign object increases as the power transmitted from the TX increases. Conversely, if the power transmitted by the TX (power received by the RX) is limited to a specified value or less, the amount of heat generated can be kept within a specified range (safe range).
  • the transmission power of the TX is controlled to be 5 watts or less, or the maximum load power value that the TX can output (supply) to the load of the RX is controlled to be 5 watts or less.
  • the RX transmits an EPT packet to the TX and ends the Power Transfer phase.
  • Fig. 16 is a sequence diagram showing the operations of TX and RX, with the TX operation shown on the left and the RX operation shown on the right.
  • the power of the TX and RX are turned ON, and when the RX is placed on the TX, the Selection phase and the Ping phase are entered.
  • the TX detects that the RX has been placed and starts transmitting power, and the RX starts receiving power.
  • the RX After performing the measurement process (CAL process) related to status detection, the RX requests the TX to perform the status detection method, and the TX performs the status detection method according to the execution request from the RX. If it is determined that there is a possibility of an abnormality in the TX status, the TX transmits a packet containing information on the status detection result to the RX, and transmits a RECAL process request packet.
  • CAL process measurement process
  • RX sends a RECAL processing execution request packet to TX.
  • TX executes RECAL processing according to the execution request packet.
  • TX transmits a status detection result packet to RX. If it is determined in S1509 that RX has received a status detection result packet from TX (Yes in S1509), the process proceeds to S1510.
  • the RX When the RX receives a RECAL processing request packet from the TX (Yes in S1510), the RX recognizes from the second information in the RECAL processing request packet that the TX is requesting that the TX execute the RECAL processing.
  • RX transmits a RECAL processing execution request packet (RP1, RP2) to TX. Having received the execution request packet from RX, TX executes the RECAL processing in S1413 based on the information in the execution request packet.
  • RP1, RP2 RECAL processing execution request packet
  • the value of counter variable A is incremented by 1, and in S1415, if it is determined that the value of variable A is equal to or greater than a predetermined number of times (Yes in S1415), in S1416, the TX performs control to limit the transmission power or the power received by the RX.
  • the process proceeds to S1405, and the TX continues transmitting power. If the RX receives a packet for controlling to limit the transmission power from the TX (Yes in S1512), the process proceeds to S1513, and executes control to limit the power received by the RX.
  • the function of counting the number of times the RECAL process is executed is realized in S1413 and S1414, but it may be realized in other processing positions.
  • the processing from S1413 to S1415 may be executed after S1410 or S1411.
  • the processing from S1413 to S1415 may be executed after a positive (Yes) determination result is obtained in S1407 (before S1408).
  • the RX sends Requested Load Power information to the TX.
  • Requested Load Power is the power that the RX requests the TX to output to the load, and is the power consumed by the RX load.
  • the load is the system to which power is supplied from the RX or the power receiving unit of the RX, such as the charging unit 206 of the RX or the battery 207.
  • the TX has a Potential Load Power value or a Negotiable Load Power value in advance.
  • Potential Load Power is the maximum load power value (Highest Load Power Level) that the TX can negotiate and output (supply) to the RX load.
  • Negotiable Load Power is the maximum load power value (Highest Load Power Level) that the TX can negotiate and output (supply) to the RX load during a specified period or under specified conditions.
  • TX and RX set the value of Requested Load Power as the value of GP and store it in memory.
  • TX receives the Requested Load Power value from RX, and if that value is less than the Negotiable Load Power value, it sends an ACK positive response to RX.
  • the TX and RX set the Requested Load Power value as the GP value and store it in memory.
  • the TX also receives the Requested Load Power value from the RX, and if that value is greater than the Negotiable Load Power value, it sends a negative acknowledgement NAK to the RX.
  • the RX reduces the value of Requested Load Power and again sends information indicating the value of Requested Load Power to the TX. The RX repeats this process until it receives an ACK acknowledgement from the TX.
  • the TX and RX When the RX receives an ACK acknowledgement from the TX, the TX and RX set the Requested Load Power value as the GP value and store it in memory.
  • the TX By setting the GP value below a specified value, the TX's transmission power and the RX's receiving power can be reduced. To do this, the TX sets the Potential Load Power or Negotiable Load Power below a specified value.
  • the RX sets the value of Requested Load Power to a predetermined value or less.
  • the TX or the RX performs the above operation.
  • the TX or RX will perform the above action.
  • the TX sets the Potential Load Power or Negotiable Load Power to a specified value or higher.
  • the RX sets the value of Requested Load Power to a predetermined value or more.
  • the TX or the RX performs the above operation.
  • the status detection methods include the Q-value measurement method, the waveform attenuation method, the coupling status index measurement method, foreign object detection processing based on temperature, and foreign object detection processing based on the current flowing through the power transmitting antenna.
  • the method for determining the possibility (probability) of a TX status abnormality is explained below.
  • the TX executes one of the state detection methods and determines that the state is ⁇ State 3> or ⁇ State 4>.
  • the TX sets a threshold value to be used in the subsequent state detection methods.
  • the threshold value is set based on the physical quantity measured when the state detection method is executed and it is recognized that the state is ⁇ State 3> or ⁇ State 4>.
  • TX determines that it has entered ⁇ State 3> or ⁇ State 4>, it makes a decision about ⁇ State 1> to ⁇ State 4> based on information about the amount and direction (positive or negative) of departure from the measured physical quantity.
  • the above-mentioned state detection method is executed, and if it is determined that there is a "high possibility of a state abnormality" or a "very high possibility of a state abnormality", a RECAL process is executed. If the RECAL process is executed a predetermined number of times or more, control is performed to limit the TX transmission power or the RX receiving power.
  • the TX executes the status detection method again, and the control that is performed when a predetermined condition indicating that the device status has improved is met is described.
  • the operation of the TX is described with reference to Figures 14, 17, and 18, and the operation of the RX is described with reference to Figure 15.
  • the TX executes the status detection method, and if it determines that "there is a high possibility of a status abnormality" or "there is a very high possibility of a status abnormality", it performs the control shown in the second embodiment.
  • the operations up to this point correspond to the processing of S1401 to S1413 in FIG. 17, and a description of these will be omitted.
  • RX determines whether to request TX to execute the state detection method. If a certain condition is met, RX decides to request TX to execute the state detection method described above (Yes in S1505) and proceeds to S1506.
  • the RX transmits a request packet to the TX to execute the status detection method.
  • the RX decides not to request the TX to execute the status detection method (No in S1505) and continues receiving power.
  • the predetermined condition is as explained in the second embodiment.
  • the process proceeds to S1801 in FIG. 18, where the TX determines whether or not it has received a packet requesting execution of the state detection method from the RX (FIG. 15: S1506). If the TX has received a packet requesting execution of the state detection method from the RX (Yes in S1801), the process proceeds to S1802.
  • the TX does not receive a request packet for execution of the state detection method from the RX (No in S1801), the TX continues power transmission and the determination process of S1801 is executed repeatedly.
  • the TX executes the state detection method. Note that the timing for executing the state detection method may be determined by the TX, not by the RX. If the TX determines that the above-mentioned predetermined conditions are satisfied, it may execute the state detection method.
  • the TX measures physical quantities related to the TX and compares the measurement results with thresholds to determine whether or not a status abnormality exists.
  • the TX executes a status detection method, the TX determines the possibility (probability) of a status abnormality in stages.
  • the TX determines whether or not there is a possibility of a status abnormality as a result of executing the status detection method. For example, a determination result of "possibility of status abnormality" corresponds to the case where the above-mentioned ⁇ Status 3> or ⁇ Status 4> is detected.
  • a determination result of "low possibility of abnormal status” corresponds to the detection of the above-mentioned ⁇ Status 1> or ⁇ Status 2>, or the detection of the below-described ⁇ Status 5>.
  • the TX determines whether it has previously determined that the state is highly likely to be an abnormal state and executed RECAL processing. If it is determined in S1804 that the RECAL processing has not previously been executed in a state where the state is highly likely to be an abnormal state (No in S1804), the TX continues transmitting power and transitions to S1801.
  • ⁇ State 5> is a state that satisfies a predetermined condition that indicates that the device condition has improved. For example, it is a state in which a foreign object that was between the TX and RX has been removed. If it is determined in S1805 that ⁇ State 5> has not been detected (No in S1805), the TX continues transmitting power and the process proceeds to S1801.
  • the determination result " ⁇ State 5> was not detected” corresponds to the case where the above-mentioned ⁇ State 1> or ⁇ State 2> is detected. Also, if it is determined that ⁇ State 5> has been detected (Yes in S1805), the process proceeds to S1806.
  • steps S1804 and S1805 may be reversed. If RECAL processing was performed in the past when there was a high possibility of an abnormal state, a CP or a line segment that interpolates between CPs is created.
  • the processing from S1806 onwards is for executing the RECAL processing.
  • the TX transmits the ATN to the RX.
  • the RX continues receiving power and waits until it receives the ATN.
  • the process proceeds to S1508.
  • the RX sends a packet to the TX that allows the TX to send a Data packet.
  • the packet in question is a DSR/poll packet or a DSR/poll data packet as defined by the WPC standard.
  • the TX determines whether or not it has received the DSR/poll packet or DSR/poll data packet sent by the RX. If the TX has not received the packet (No in S1807), it continues transmitting power and waits until it receives the packet.
  • TX receives the packet from RX (Yes in S1807), it proceeds to processing in S1808.
  • TX transmits to RX a status detection result packet that includes information indicating the execution result of the status detection method.
  • TX transmits to RX a RECAL processing request packet that includes information requesting RECAL processing.
  • control described in the second embodiment is performed when it is determined that "there is a high possibility of a status abnormality" or "there is a very high possibility of a status abnormality" at least once. After that, a state that satisfies a predetermined condition indicating that the device's status has improved is detected.
  • This state is called ⁇ State 5>.
  • ⁇ State 5> is the state in which a foreign object that was between TX and RX has been removed.
  • ⁇ State 1> and ⁇ State 2> can occur even if a foreign object is present between TX and RX (because when a foreign object is present, the threshold value CP for judgment and the line segment that interpolates between the CPs are created).
  • ⁇ State 5> corresponds to a state in which the cause of the abnormal condition no longer exists (there is no abnormal condition, or the possibility of an abnormal condition is low). The method for detecting ⁇ State 5> will be described later.
  • the TX transmits a state detection result packet including the following first information to the RX.
  • the first information includes information indicating the state detection method that was executed and information indicating that the current state is ⁇ State 5>.
  • TX transmits a RECAL process request packet including the following second information to RX:
  • the second information includes information requesting execution of a RECAL process based on at least one of the Power Loss method, the waveform decay method, and the binding condition index measurement method, and information requesting execution of the first or second RECAL process.
  • the TX may transmit a state detection result packet including the following first information to the RX in S1808 of FIG.
  • the first information includes information indicating the state detection method that was executed and information indicating that the current state is ⁇ state 1>.
  • the RX can recognize that ⁇ State 5> has been reached by receiving a RECAL processing request packet and a state detection result packet from the TX, which contain the above-mentioned specified information.
  • the TX may transmit the above-mentioned first and second information to the RX in the same packet. This allows the TX and RX to quickly and appropriately execute corresponding control when it is determined that "there is a status abnormality" or "there is a high possibility of a status abnormality.”
  • the TX performs the control described in the second embodiment and executes the RECAL process.
  • ⁇ State 3> or ⁇ State 4> is detected, a CP or a line segment that has been interpolated between CPs is created.
  • the condition detection method can be performed based on a CP or a line segment interpolated between CPs in a state where the condition has improved or where there is a high possibility that the abnormal condition has disappeared, making it possible to detect the condition with higher accuracy.
  • RX receives a status detection result packet from TX (Yes in S1509), and receives a RECAL processing request packet (Yes in S1510). RX recognizes that a request to execute a RECAL has been made based on the second information in the RECAL processing request packet. Then, RX transmits RECAL processing execution request packets (RP1, RP2) to TX (S1511).
  • TX receives a RECAL processing execution request packet (RP1, RP2) from RX.
  • RP1, RP2 RECAL processing execution request packet
  • TX executes RECAL processing based on the information in the execution request packet. Then, in S1812, the series of processes ends.
  • the TX is assumed to have set a first threshold value when executing the Q-value measurement method. In this case, the TX sets a new second threshold value for detecting ⁇ State 5> in addition to the first threshold value set for detecting an abnormal state.
  • the TX determines that the state is ⁇ State 5> when the measured Q value is greater than the second threshold value. Alternatively, the TX stores in memory the Q value measured when ⁇ State 1> or ⁇ State 2> is detected. The TX then calculates the difference between the Q value measured when the state detection method is executed and the stored Q value.
  • the TX stores in memory the Q value measured when ⁇ State 3> or ⁇ State 4> is detected.
  • the TX compares the Q value measured when the state detection method was executed with the stored Q value (memorized value). If the measured Q value is higher than the stored value and the difference between the measured value and the stored value is equal to or greater than a predetermined value, it is determined that the state has reached ⁇ State 5> depending on the value of that difference.
  • the TX When the status detection method is the Power Loss method, the TX performs the control described in the first embodiment and executes the RECAL process when it determines that "there is a high possibility of a status abnormality" or "there is a very high possibility of a status abnormality.”
  • ⁇ State 3> or ⁇ State 4> when ⁇ State 3> or ⁇ State 4> is detected, a CP or a line segment that interpolates between CPs is created, and the Power Loss method is executed using a threshold value that is set based on that.
  • the Power Loss method is executed again in the above state, and the power loss due to the abnormal state (Ploss_FO) calculated by the TX is assumed to be a first value.
  • the power loss due to the abnormal state calculated by the TX is assumed to be smaller than the first threshold value based on the power loss derived based on the CP or the line segment interpolated between the CPs.
  • TX determines that there is no state change, or that there is a high possibility that there will be no state change, and does not transmit a packet including the first to third information items described above to RX.
  • the TX may request the RX to execute a state detection method other than the Power Loss method. Also, it is assumed that the Power Loss method is executed again in the above-mentioned state, and the power loss due to the abnormal state (Ploss_FO) calculated by the TX is a second value.
  • the second value is assumed to be a positive value (power loss).
  • the power loss due to the abnormal state calculated by the TX is assumed to be greater than the first threshold value based on the power loss derived based on the CP or the line segments interpolated between the CPs. In this case, it is determined to be in ⁇ State 3> or ⁇ State 4>, and the same control as in the second embodiment is performed.
  • the Power Loss method is executed based on the threshold set in ⁇ State 3> or ⁇ State 4>.
  • the Power Loss method is executed again in the above-mentioned state, and the power loss due to the abnormal state (Ploss_FO) calculated by the TX is the third value.
  • the threshold value using the Power Loss method has already been set in ⁇ State 3> or ⁇ State 4>.
  • the TX executes the Power Loss method to calculate the power loss due to the abnormal state. If the current state becomes ⁇ State 5>, for example, there is a possibility that the third value will become a negative value.
  • the threshold that has already been set is the threshold for ⁇ State 3> or ⁇ State 4>.
  • the Power Loss method is executed in ⁇ State 5>, the power loss due to the abnormal state calculated by the TX is reduced because the abnormal state is no longer present.
  • the TX In order to detect ⁇ State 5>, the TX sets a second threshold using the CP or a line segment interpolated between CPs.
  • the second threshold is different from the first threshold, and the second threshold is smaller than the first threshold. If the value of power loss due to abnormal status calculated by the TX is smaller than the second threshold, it is determined to be in ⁇ State 5>.
  • the first value is the value of power loss due to an abnormal state calculated by the TX when it is judged to be in ⁇ State 1> or ⁇ State 2>.
  • the third value is the value of power loss due to an abnormal state calculated by the TX when it is determined to be in ⁇ State 5>.
  • the third value is smaller than the first value. If there is a difference between the third value and the first value that is equal to or greater than a predetermined value, it is determined that ⁇ State 5> has occurred depending on the value of that difference.
  • the TX stores a first value in advance, and if the power loss due to an abnormal state (Ploss_FO) calculated when the state detection method is executed is smaller than the first value and there is a difference of a predetermined value or more, it determines that the state has entered ⁇ State 5> according to the value of that difference.
  • Ploss_FO an abnormal state
  • the TX determines that it has entered ⁇ State 5> according to the difference value.
  • the TX determines that it has entered ⁇ State 5> according to the difference value.
  • the TX sets the threshold value based on the fourth threshold setting method when executing the waveform decay method.
  • the threshold value is determined based on the result of the CAL process of the waveform decay method.
  • the TX sets a threshold for detecting ⁇ State 5> using the CP or a line segment that has been interpolated between CPs.
  • the TX stores in memory the value of the waveform attenuation index calculated when it is determined to be in ⁇ State 1> or ⁇ State 2>.
  • the value of the waveform attenuation index calculated by the TX when executing the state detection method is assumed to be greater than the stored value of the waveform attenuation index. If the difference between the values of these waveform attenuation indexes is equal to or greater than a predetermined value, it can be determined that ⁇ State 5> has been reached according to the value of that difference.
  • the TX sets a threshold based on the first threshold setting method, the second threshold setting method, or the third threshold setting method when executing the waveform attenuation method.
  • the TX newly sets a second threshold for detecting ⁇ State 5>, separate from the first threshold set based on the first threshold setting method, the second threshold setting method, or the third threshold setting method.
  • the TX stores in memory the value of the waveform attenuation index calculated when it is determined to be in ⁇ State 1> or ⁇ State 2>.
  • the value of the waveform attenuation index calculated by the TX when executing the state detection method is assumed to be greater than the stored value of the waveform attenuation index. If the difference between the values of these waveform attenuation indexes is equal to or greater than a predetermined value, it can be determined that ⁇ State 5> has been reached according to the value of that difference.
  • the TX is assumed to set a threshold based on the third threshold setting method when performing the combined state indicator measurement method.
  • This threshold is determined based on the results of the CAL process of the binding state index measurement method. In this case, it can be performed in the same way as in the case of the power loss method described above.
  • TX sets the threshold for detecting ⁇ State 5> using CP or a line segment that has been interpolated between CPs.
  • the TX determines that the state is ⁇ State 5>.
  • the TX stores in memory the value of the coupling state index calculated by the TX when the state is determined to be ⁇ State 1> or ⁇ State 2>.
  • the TX sets a threshold based on the first threshold setting method, the second threshold setting method, or the fourth threshold setting method when performing the binding state indicator measurement method.
  • the TX sets a new second threshold for detecting ⁇ State 5> in addition to the first threshold set based on the first, second, or fourth threshold setting method.
  • the TX stores in memory the value of the coupling state index (referred to as the k value) calculated when it is determined to be in ⁇ State 1> or ⁇ State 2>.
  • the value of the binding state index calculated by the TX when executing the state detection method is assumed to be greater than the stored binding state index value. If the difference between the values of these binding state indexes is equal to or greater than a predetermined value, it can be determined that ⁇ State 5> has been reached according to the value of that difference.
  • the TX When the state detection method is a foreign object detection process based on temperature, the TX is assumed to have set a first threshold value when executing the foreign object detection process based on temperature. The TX newly sets a second threshold value for detecting ⁇ state 5> in addition to the first threshold value set for detecting an abnormal state.
  • the TX determines that the state is ⁇ State 5>.
  • the TX stores in memory the measured temperature value when the state is determined to be ⁇ State 1> or ⁇ State 2>.
  • the difference between the measured temperature value and the stored temperature value is assumed to be within a predetermined value. In this case, it can be determined that the state has reached ⁇ State 5> depending on the value of that difference.
  • the TX stores in memory the temperature measurement value when it is determined to be in ⁇ State 3> or ⁇ State 4>. Thereafter, when the TX executes the state detection method, the temperature measurement value is assumed to be lower than the stored temperature value.
  • the TX is assumed to set a first threshold value when executing a foreign object detection process based on a current flowing through the power transmitting antenna.
  • the TX sets a new second threshold for detecting ⁇ State 5> in addition to the first threshold set for detecting abnormal conditions. If the value of the current flowing through the power transmitting antenna measured by the TX becomes smaller than the second threshold, it is determined to be in ⁇ State 5>.
  • the TX stores in memory the value of the current flowing through the power transmitting antenna measured by the TX when it is determined to be in ⁇ State 1> or ⁇ State 2>. Thereafter, the difference between the value of the current flowing through the power transmitting antenna measured by the TX when the state detection method is executed and the stored current value is within a predetermined value.
  • the TX determines that it has entered ⁇ State 5> based on the value of the difference.
  • the TX stores in memory the value of the current flowing through the power transmitting antenna that it measures when it determines that it is in ⁇ State 3> or ⁇ State 4>.
  • the value of the current flowing through the power transmitting antenna measured by the TX when executing the state detection method is assumed to be smaller than the stored current value. If the difference between these current values is equal to or greater than a predetermined value, the TX determines that it has entered ⁇ State 5> according to the difference value.
  • FIG. 19 is a sequence diagram showing the operation of the power transmitting device and the power receiving device in this embodiment. The differences from FIG. 16 will be explained.
  • TX executes the first RECAL process, and then RX decides to request TX to execute the status detection method.
  • RX sends an execution request packet of the status detection method to TX.
  • the TX that receives the execution request packet executes the status detection method specified by the RX. Assume that the TX determines that the possibility of a status abnormality is low. The TX determines that it has previously executed RECAL processing in a state where the possibility of a status abnormality was high.
  • the TX determines that it has detected ⁇ State 5>.
  • the TX then sends an ATN to the RX, and the RX sends a DSR/poll packet or a DSR/poll data packet to the TX.
  • the TX sends a status detection result packet to the RX, and a RECAL processing request packet.
  • the RX sends a RECAL processing execution request packet to the TX, and the TX that receives the execution request packet executes the RECAL processing.
  • a part (or in some cases, the whole) of the configuration in the above embodiment may be replaced with another configuration having a similar function, or may be omitted, or another configuration may be added.
  • the present invention is not limited to the WPC standard, and can be applied to various standards.
  • the power transmitting device and the power receiving device may be, for example, an image input device such as an imaging device (still camera, video camera, etc.) or a scanner, or an image output device such as a printer, copier, or projector.
  • an image input device such as an imaging device (still camera, video camera, etc.) or a scanner
  • an image output device such as a printer, copier, or projector.
  • a storage device such as a hard disk device or a memory device
  • an information processing device such as a personal computer (PC), smartphone, or tablet device.
  • the power receiving device of the present disclosure may also be an information terminal device.
  • the information terminal device has a display unit (display) that displays information to a user and is supplied with power received from the power receiving antenna.
  • the power received from the power receiving antenna is stored in a power storage unit (battery), and power is supplied from the battery to the display unit.
  • the power receiving device may have a communication unit that communicates with other devices different from the power transmitting device.
  • the communication unit may be compatible with communication standards such as NFC communication and the fifth generation mobile communication system (5G).
  • the power receiving device of the present disclosure may also be a vehicle such as an automobile.
  • an automobile which is a power receiving device, may receive power from a charger (power transmitting device) via a power transmitting antenna installed in a parking lot.
  • an automobile which is a power receiving device, may receive power from a charger (power transmitting device) via a power transmitting antenna embedded in the road.
  • Such automobiles supply the received power to a battery.
  • the power from the battery may be supplied to a driving part (motor, electric part) that drives the wheels, or may be used to drive sensors used for driving assistance or a communication part that communicates with external devices.
  • the power receiving device may have, in addition to the wheels, a battery, a motor or sensor that is driven using the received power, and even a communication unit that communicates with devices other than the power transmitting device.
  • the power receiving device may have an accommodation unit for accommodating a person.
  • the senor may be a sensor used to measure the distance between the vehicle and other obstacles.
  • the communication unit may be compatible with the Global Positioning System (Global Positioning Satellite, GPS), for example.
  • the communication unit may be compatible with communication standards such as the fifth generation mobile communication system (5G).
  • the vehicle may be a bicycle or a motorcycle.
  • the power receiving device of the present disclosure may also be an electric tool, a home appliance, etc. These devices that are power receiving devices may have a battery as well as a motor that is driven by the received power stored in the battery.
  • These devices may also have a notification means for notifying the remaining battery level, etc.
  • these devices may have a communication unit for communicating with other devices other than the power transmission device.
  • the communication unit may be compatible with communication standards such as NFC and the fifth generation mobile communication system (5G).
  • the power transmission device of the present disclosure may also be an in-vehicle charger that transmits power to a mobile information terminal device, such as a smartphone or tablet, that supports wireless power transmission inside the vehicle.
  • a mobile information terminal device such as a smartphone or tablet
  • Such an in-vehicle charger may be installed anywhere inside the vehicle.
  • the car charger may be installed in the car's console, instrument panel, or between the passenger seats, in the ceiling, or in the door. However, it is best not to install it in a location that interferes with driving.
  • the power transmission device has been described as an example of an on-board charger, such chargers are not limited to those installed in vehicles, and may also be installed on transport vehicles such as trains, airplanes, and ships. In this case, the charger may also be installed in a position between passenger seats, on the ceiling, or in the door.
  • a vehicle such as an automobile equipped with an on-board charger may be the power transmitting device.
  • the power transmitting device has wheels and a battery, and supplies power to the power receiving device via a power transmitting circuit unit and a power transmitting antenna using the power of the battery.
  • the present disclosure can also be realized by supplying a program that realizes one or more functions of the above-described embodiments to a system or device via a network or storage medium, and having one or more processors in a computer of the system or device read and execute the program.
  • a specific compiler can be used to automatically generate a dedicated circuit on an FPGA from a program for implementing each step.
  • a gate array circuit can be formed in the same way as an FPGA, and implemented as hardware.
  • the power transmitting device determines appropriate control based on multiple state detection results and notifies the power receiving device of multiple pieces of information related to that control, allowing the power transmitting device and the power receiving device to perform more appropriate control.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

送電装置および受電装置に係る複数の状態検出結果に基づき、送電制御および受電制御を行うために、 無線電力伝送システムは送電装置100と受電装置200を備える。送電装置100は、送電アンテナにより、受電装置200に無線で電力を伝送する。送電装置100は物理量の測定に基づくキャリブレーション処理を実行し、測定値を用いて状態検出を行う。送電装置100は、第1の状態検出にて測定処理を実行した時に取得される情報と、第1の状態検出よりも後に第2の状態検出にて測定処理を実行した時に取得される情報を用いて、再度のキャリブレーション処理の実行要求を行うか否かを決定し、決定した情報を受電装置100に通知する。

Description

送電装置、受電装置、無線電力伝送システム、送電装置の制御方法、および記憶媒体
 本開示は、送電装置、受電装置、無線電力伝送システム、送電装置の制御方法、および記憶媒体に関する。
 無線電力伝送システムにおいて送電装置は、充電台等に載置された受電装置に対して無線で送電を行うことが可能である。送電装置または受電装置は状態に異常が生じたと判断した場合、電力伝送効率の低下や発熱等の発生を防止するための制御を行う。
 特許文献1には、送電コイルと受電コイルとの間に侵入した異物の検出処理や、送電コイルと受電コイルとの間の位置ずれの検出処理が開示されている。
特開2017-38509号公報
 従来の技術では、送電装置が複数の状態検出結果に基づいて適切な制御を判断し、その制御に関する複数の情報を受電装置に通知する方法が確立されていない。
 本開示は、送電装置および受電装置に係る複数の状態検出結果に基づく送電制御および受電制御を行うことを可能とする技術の提供を目的とする。
 本開示の送電装置は、送電アンテナを使用して、受電装置に無線で電力を伝送する送電手段と、前記受電装置と通信する通信手段と、送電装置に係る物理量の測定処理を行い、当該送電装置の状態検出を行う検出手段と、前記送電手段の制御、および前記測定処理に係る制御を行う制御手段と、を有する。前記制御手段は、前記測定処理に基づく第1の状態検出が行われる時に取得される情報、および当該測定処理よりも後に実行される測定処理に基づく第2の状態検出が行われる時に取得される情報から、再度の測定処理の実行を前記受電装置が前記送電装置に要求するように決定した場合、前記第1または第2の状態検出に係る状態検出結果の情報を有する信号と、前記再度の測定処理の実行要求に係る情報を有する信号を、前記通信手段によって前記受電装置に送信する制御を行う。
 本開示によれば、送電装置および受電装置に係る複数の状態検出結果に基づく送電制御および受電制御を行うことを可能とする技術を提供することができる。
無線電力伝送システムの構成例を示す図である。 送電装置の構成例を示す図である。 受電装置の構成例を示す図である。 Power Loss法による状態検出における閾値設定方法の例を説明する説明図である。 (A)、(B)は、Q値計測法の説明図である。 送電装置の制御部の機能構成例を示すブロック図である。 送電装置の処理例を説明するフローチャートである。 受電装置の処理例を説明するフローチャートである。 波形減衰法による状態検出の説明図である。 無線電力伝送を行うための処理例を示す図である。 波形減衰法による状態検出における閾値設定方法の例を示す説明図である。 (A)、(B)は、送電アンテナと受電アンテナの結合状態指標測定法の例を示す説明図である。 結合状態指標測定法による状態検出における閾値設定方法の例を示す説明図である。 第2実施形態における送電装置の処理例を説明するフローチャートである。 第2実施形態における受電装置の処理例を説明するフローチャートである。 送電装置と受電装置の処理例を説明するシーケンス図である。 第3実施形態における送電装置の処理例を説明するフローチャートである。 図17に続く処理例を説明するフローチャートである。 第3実施形態における送電装置と受電装置の処理例を説明するシーケンス図である。
 以下、本開示の実施形態について、添付図面を参照しつつ詳細に説明する。実施形態では無線電力伝送システムを適用した無線充電システムを示す。一例として、無線充電の標準化団体Wireless Power Consortiumが策定する規格(以下、WPC規格と記す)に基づく無線電力伝送について説明する。
[第1実施形態]
 図1乃至図13を参照して、本実施形態について説明する。図1は無線充電システムの構成例を示す図である。
 本システムは、送電装置100、受電装置200、充電台300を備える。以下では、表記を簡潔にするため、受電装置200をRXと呼び、送電装置100をTXと呼ぶ場合がある。TXとRXの詳細な構成については図2および図3を用いて後述する。
 RXは、充電台300に載置された状態で、TXから受電して内蔵バッテリの充電を行う電子機器である。TXは、充電台300に載置されたRXに対して無線送電を行う電子機器である。
 充電台300はTXの一部を構成するので、以下ではRXが「充電台300に戴置された」ことを「TXに載置された」という場合がある。RXがTXから受電可能な空間的範囲を、図1にて点線枠400の範囲で模式的に示す。
 RXとTXは無線充電機能以外のアプリケーションを実行する機能を有しうる。例えば、RXはスマートフォンであり、TXはRXのバッテリを充電するためのアクセサリ機器である。ただし、この例に限定されることはない。
 次に図2を参照して、送電装置100の構成例について説明する。図2は送電装置100(TX)の構成例を示す機能ブロック図である。TXは、制御部101、電源部102、送電部103、第1通信部104、送電アンテナ(送電コイル)105、メモリ106、共振コンデンサ107、スイッチ部108、第2通信部109、ユーザインタフェース部110を有する。
 以下、ユーザインタフェースをUIと表記する。図2では各機能ブロック要素が別体として記載されているが、任意の複数の機能ブロック要素は同一チップ内に実装されてもよい。
 制御部101は、メモリ106に記憶されている制御プログラムを実行することにより、TX全体を制御する。また、制御部101はTXにおける機器認証のための通信を含む送電制御を行う。
 さらに制御部101は、無線電力伝送以外のアプリケーションを実行するための制御を行うことが可能である。制御部101は、CPU(Central Processing Unit)またはMPU(MicroProcessor Unit)等の1つ以上のプロセッサーを含んで構成される。
 あるいは、制御部101は、特定用途向け集積回路(ASIC:Application Specific Integrated Circuit)等のハードウェアで構成されてもよい。
 また、制御部101は、所定の処理を実行するようにコンパイルされたFPGA(Field Programmable Gate Array)等のアレイ回路を含んで構成されてもよい。制御部101は、各種処理の実行中に記憶しておくべき情報をメモリ106に記憶させる処理や、タイマ(不図示)を用いた計時処理を実行することができる。
 電源部102は、各機能ブロック要素への電源供給を行う。電源部102は、例えば、商用電源への電源接続回路やバッテリを備える。バッテリは商用電源から供給される電力により蓄電される。
 送電部103は、電源部102から入力される直流電力または交流電力を、無線電力伝送に用いる周波数帯域の交流電力に変換し、交流電力を送電アンテナ105へ入力することによって、RXに受電させるための電磁波を発生させる。
 例えば、送電部103はインバータを備え、電源部102が供給する直流電圧を、ハーフブリッジ構成またはフルブリッジ構成のスイッチング回路で交流電圧に変換する。送電部103はブリッジを構成する複数のFET(Field Effect Transistor)と、複数のFETのON/OFFを制御するゲートドライバを含む。
 送電部103は、送電アンテナ105に入力する電圧(送電電圧)もしくは電流(送電電流)、またはその両方を調節することにより、出力させる電磁波の強度(送電電力)を制御する。
 送電電圧または送電電流の大小により電磁波の強弱(送電電力の大小)が制御される。あるいは、送電部103は、送電部103が有するインバータに入力する電圧もしくは電流、またはその両方を調節することにより、出力させる電磁波の強度(送電電力)を制御する。インバータに入力する電圧を、以下ではインバータ入力電圧と呼ぶ。
 また、インバータに入力する電流を、以下ではインバータ入力電流と呼ぶ。インバータ入力電圧またはインバータ入力電流の大小により電磁波の強弱が制御される。あるいは、送電部103は、送電部103が有するインバータから出力される電圧もしくは電流、またはその両方を調節することにより、出力させる電磁波の強度(送電電力)を制御する。
 インバータから出力される電圧を、以下ではインバータ出力電圧と呼ぶ。また、インバータから出力される電流を、以下ではインバータ出力電流と呼ぶ。インバータ出力電圧またはインバータ出力電流の大小により電磁波の強弱が制御される。
 送電部103では、制御部101からの指示信号に基づいて、送電アンテナ105による送電の開始もしくは停止、または出力させる電磁波の強度が制御されるように、交流周波数の電磁波の電力に係る出力制御が行われる。
 また、送電部103はWPC規格に対応した受電装置200の充電部(図3:206)に15ワット(W)の電力を出力するだけの電力供給能力があるものとする。
 第1通信部104は制御部101と送電部103に接続され、RXとの間でWPC規格に基づく送電制御のための通信を行う。第1通信部104は、送電アンテナ105から出力される電磁波の周波数偏移変調を行い、RXへ情報を伝送して通信を行う。
 また、第1通信部104は、RXが変調を行った送電アンテナ105から送電される電磁波を復調して、RXが送信した情報を取得する。第1通信部104による通信は、送電アンテナ105から送電される電磁波に通信用の信号が重畳されることにより行われる。
 メモリ106は、制御プログラムの他に、TXおよびRXの状態に関する情報を記憶することができる。TXおよびRXの状態に関する情報とは送電電力値、受電電力値等である。
 TXの状態に関する情報は制御部101により取得される。RXの状態に関する情報はRXの制御部(図3:201)により取得され、第1通信部104、あるいは後述する第2通信部109が受信可能である。
 スイッチ部108は、共振コンデンサ107および送電アンテナ105の直列回路に対して並列に接続されている。制御部101は、スイッチ部108に制御信号を送信して、そのON/OFF制御を行う。
 送電アンテナ105は、共振コンデンサ107と接続されている。制御部101からの制御信号によりスイッチ部108がON状態になって短絡される場合、送電アンテナ105と共振コンデンサ107は直列共振回路を形成し、特定の周波数fAで共振する。
 このとき、送電アンテナ105と共振コンデンサ107、スイッチ部108が形成する閉回路に電流が流れる。一方、制御部101からの制御信号によってスイッチ部108はOFF状態になり、当該回路が開放されると、送電アンテナ105と共振コンデンサ107には送電部103から電力が供給される。
 第2通信部109は制御部101と接続され、RXとの間でWPC規格とは異なる規格による通信を行う。例えば第2通信部109は、送電アンテナ105とは異なるアンテナを用いてRX(図3の第2通信部212)と通信する。
 無線LAN(Local Area Network)、Bluetooth(登録商標) Low Energy(BLE)、NFC(Near Field Communication)が挙げられる。
 送電アンテナ105から送電する際に使用される周波数帯域と、第2通信部109が通信に使用する周波数帯域とは異なる。
 TXとRXとの通信に関し、TXは、複数の通信規格のうちの、いずれかを選択的に用いてRXとの通信を行ってもよい。下記に示す複数の通信を選択的に用いた通信形態が可能である。
・TXの第1通信部104とRXの第1通信部204(図3)との間で行われる、第1の規格(WPC規格)に基づく通信。
・TXの第2通信部109とRXの第2通信部212(図3)との間で行われる、第2の規格(WPC規格以外の規格)に基づく通信。
 UI部110は制御部101と接続され、ユーザに対する各種の出力を行う。各種の出力とは、画面表示、LED(Light Emitting Diode)の点滅や色の変化、スピーカーによる音声出力、TX本体の振動等の動作である。UI部110は液晶パネル、スピーカー、バイブレーションモータ等により実現される。
 次に図3を参照して、受電装置200の構成例について説明する。図3は、受電装置200(RX)の構成例を示すブロック図である。RXは、制御部201、UI部202、受電部203、第1通信部204、受電アンテナ205、充電部206、バッテリ207、メモリ208を有する。
 RXはさらに第1スイッチ部209、第2スイッチ部210、共振コンデンサ211、第2通信部212、第3スイッチ部213を有する。本実施形態では図3の機能ブロック要素を個別の要素とする例を示すが、複数の機能ブロック要素を1つのハードウェアモジュールとして実現してもよい。
 制御部201は、メモリ208に記憶されている制御プログラムを実行することによりRXの各機能ブロック要素を制御する。さらに、制御部201は、無線電力伝送以外のアプリケーションを実行するための制御を行うことができる。
 制御部201はCPUまたはMPU等の1つ以上のプロセッサーを含んで構成される。また、制御部201が実行しているOS(Operating System)との協働によりRX全体(例えばスマートフォン全体)を制御することができる。
 あるいは、制御部201は、ASIC等のハードウェアで構成されるか、または所定の処理を実行するようにコンパイルされたFPGA等のアレイ回路を含んで構成される。制御部201は、各種処理の実行中に記憶しておくべき情報をメモリ208に記憶させ、また、タイマ(不図示)を用いた計時処理の実行が可能である。
 UI部202は制御部201と接続され、ユーザに対する各種の出力を行う。各種の出力とは、画面表示、LEDの点滅や色の変化、スピーカーによる音声出力、RX本体の振動等の動作である。UI部202は液晶パネル、スピーカー、バイブレーションモータ等により実現される。
 受電部203は、受電アンテナ(受電コイル)205を介して、TXの送電アンテナ105から放射された電磁波に基づく電磁誘導により生じた交流電力(交流電圧および交流電流)を受電する。
 そして、受電部203は、交流電力を直流または所定周波数の交流電力に変換して充電部206に電力を供給する。充電部206はバッテリ207の充電を行う。受電部203は、RXにおける負荷に対して電力の供給に必要な整流部(整流器、整流回路)および電圧制御部を含む。
 整流部は、受電アンテナ205を介して受電した、送電アンテナ105からの交流電圧および交流電流を直流電圧および直流電流に変換する。この直流電圧を、以下では整流部出力電圧と呼ぶ。
 またこの直流電流を、以下では整流部出力電流と呼ぶ。電圧制御部は整流部出力電圧のレベルを所定レベルに変換する。所定レベルとは、制御部201および充電部206等の動作が可能な直流電圧のレベルである。
 受電部203は、充電部206からバッテリ207への充電用の電力を供給する。受電部203は充電部206に15ワットの電力を出力するだけの電力供給能力があるものとする。
 第1通信部204は、TXが有する第1通信部104との間で、WPC規格に基づく受電制御のための通信を行う。第1通信部204は受電アンテナ205と制御部201に接続されており、受電アンテナ205から入力された電磁波を復調してTXから送信された情報を取得する。
 第1通信部204は、入力された電磁波に対して負荷変調または振幅変調を行って、TXへ送信すべき情報に関する信号を電磁波に重畳することにより、TXとの間で通信を行う。
 メモリ208は、制御プログラムの他に、TXおよびRXの状態に関する情報等を記憶する。RXの状態に関する情報は制御部201により取得される。またTXの状態に関する情報はTXの制御部101により取得され、第1通信部204または第2通信部212により受信することができる。
 第2通信部212は制御部201と接続され、TXとの間でWPC規格とは異なる規格による通信を行う。例えば第2通信部212は、受電アンテナ205とは異なるアンテナを用いてTX(図2の第2通信部109)と通信する。
 WPC規格以外の規格については上記のとおりであり、TXとRXとの通信に関し、RXは、複数の通信規格のうちの、いずれかを選択的に用いてTXとの通信を行うことが可能である。
 受電アンテナ205で受電する際に使用される周波数帯域と、第2通信部212が通信に使用する周波数帯域とは異なる。
 第1スイッチ部209は充電部206とバッテリ207との間に設けられており、制御部201により制御される。第1スイッチ部209は、受電部203が受電した電力をバッテリ207に供給するか否かを制御する機能と、負荷の大きさを制御する機能を有する。
 制御部201によって第1スイッチ部209がOFF状態となって開放される場合、受電部203が受電した電力はバッテリ207に供給されない。制御部201により第1スイッチ部209がON状態となって短絡される場合、受電部203が受電した電力がバッテリ207に供給される。
 図3の例では第1スイッチ部209が充電部206とバッテリ207との間に配置されているが、第1スイッチ部209は受電部203と充電部206との間に配置されてもよい。
 あるいは第1スイッチ部209は、受電アンテナ205と共振コンデンサ211、および第2スイッチ部210が形成する閉回路と、受電部203との間に配置されてもよい。この場合、第1スイッチ部209は、受電アンテナ205が受電した電力を受電部203に供給するか否かを制御する機能を有する。
 また、図3の例では第1スイッチ部209が1つの機能ブロック要素として記載されているが、第1スイッチ部209を充電部206または受電部203の一部として実現することが可能である。
 また、第1スイッチ部209が充電部206とバッテリ207との間に直列に挿入されている構成に限定されず、第1スイッチ部209は充電部206とバッテリ207との間に並列に挿入されてもよい。
 この場合、制御部201により第1スイッチ部209がOFF状態となって開放される場合、受電部203が受電した電力はバッテリ207に供給される。制御部201により第1スイッチ部209がON状態となって短絡される場合、受電部203が受電した電力はバッテリ207に供給されない。
 受電部203の入力側にて第2スイッチ部210は共振コンデンサ211と並列に接続されている。共振コンデンサ211は第3スイッチ部213を介して受電アンテナ205に接続されている。
 第2スイッチ部210と第3スイッチ部213は、制御部201により制御される。第3スイッチ部213は、受電アンテナ205の端子を開放にするか否かを制御する機能を有する。
 制御部201により第3スイッチ部213がOFF状態となる場合、受電アンテナ205の端子は開放状態になる。制御部201により第3スイッチ部213がON状態となる場合、受電アンテナ205は共振コンデンサ211を介して受電部203と接続される。
 制御部201により第3スイッチ部213がON状態となり、第2スイッチ部210がON状態となって短絡される場合、受電アンテナ205と共振コンデンサ211は直列共振回路を形成し、特定の周波数fBで共振する。
 受電アンテナ205、共振コンデンサ211、第2スイッチ部210が形成する閉回路に電流が流れ、受電部203に電流は流れない。そして第2スイッチ部210がOFF状態となって当該回路が開放されると、受電アンテナ205と共振コンデンサ211により受電された電力は、受電部203へ供給される。
 なお、図3の例に限定されることなく、第2スイッチ部210は、受電アンテナ205と共振コンデンサ211との間に配置されてもよい。第3スイッチ部213がON状態であって、第2スイッチ部210がON状態である場合、受電アンテナ205の端子は短絡される。また、第3スイッチ部213は、共振コンデンサ211と受電部203との間に配置されてもよい。
 本システムでは、送電アンテナ105と受電アンテナ205との間でWPC規格に基づく無線電力伝送が行われる。WPC規格では、受電装置200が送電装置100から受電する際に保証される電力の大きさが、Guaranteed Load Power(以下、「GP」と記す)と呼ばれる電力によって規定される。
 GPの値をGP値、あるいはGPと表記する。例えばGPは、受電装置200と送電装置100との位置関係が変動したことにより受電アンテナ205と送電アンテナ105との間の結合が弱くなり電力伝送効率が低下したとしても、受電装置200の負荷への出力が保証される電力値を示す。
 受電装置200の負荷は図3の充電部206、バッテリ207等であり、GP値は受電部203から出力されることが保証される電力量に相当する。あるいは、GP値は受電部203が有する整流部から出力されることが保証される電力量に相当する。
 例えばGP値を5(ワット)として、受電アンテナ205と送電アンテナ105との位置関係が変動した場合を想定する。この場合、電力伝送効率が低下したとしても、送電装置100は、受電装置200の負荷へ5ワットを出力することができるように送電制御を行う。
 また、GPは送電装置100と受電装置200とが行う交渉により決定される。なお、GPに限らず、送電装置と受電装置とが互いに交渉を行うことにより決定される電力で送受電が行われる構成において、本実施形態を適用可能である。
 また、送電装置100から受電装置200への送電を行う際、送電装置100の近傍に物体が存在する場合を想定する。この場合の物体は、送電装置100から受電装置200への送電に影響しうる物体であって、受電装置200とは異なる物体(異物)である。送電のための電磁波が異物に影響を及ぼし、異物の温度上昇や破壊が発生する可能性がある。
 本開示における異物とは、例えばクリップやICカードである。異物は、受電装置および受電装置が組み込まれた製品の一部または送電装置および送電装置が組み込まれた製品の一部のいずれでもなく、送電アンテナが送電する電力信号にさらされたときに発熱しうる物体である。
 受電装置および受電装置が組み込まれた製品に不可欠な部分の物体または送電装置および送電装置が組み込まれた製品に不可欠な部分の物体は異物には当たらない。
 WPC規格では、異物が存在する場合に送電を停止することで異物の温度上昇や破壊の発生を抑制する方法が規定されている。具体的には、送電装置100は充電台300の上に異物が存在することを検出可能である。
 Power Loss(パワーロス)法は、送電装置100における送電電力と受電装置200における受電電力との差分により異物を検出する方法である。またQ値計測法は、送電装置100における送電アンテナ105(送電コイル)のQuality Factor(Q-factor、品質係数、Q値)の変化により異物を検出する方法である。
 またQ値計測法は、送電装置100における送電アンテナ105(送電コイル)と共振コンデンサ107を含む共振回路のQuality Factor(Q-factor、品質係数、Q値)の変化により異物を検出する方法である。
 ただし、送電装置100が検出する異物については充電台300の上に存在する物体に限定されない。送電装置100は、送電装置100の近傍に位置する異物を検出可能である。
 例えば送電装置100は、送電可能な範囲に位置する異物を検出することができる。以下、送電アンテナ105のQuality Factor、および送電アンテナ105と共振コンデンサ107を含む共振回路のQuality Factorのことを、送電アンテナ105に係るQuality Factorと呼ぶ。
 図4を参照して、WPC規格で規定されているPower Loss法に基づく異物検出について説明する。図4にて横軸は送電装置100の送電電力を表し、縦軸は受電装置200の受電電力を表す。
 直線状の線分1002で示されるグラフ線上にて、点1000は第1送電電力値Pt1および第1受電電力値Pr1に対応し、点1001は第2送電電力値Pt2および第2受電電力値Pr2に対応する。当該グラフ線上にて、点1003は第3送電電力値Pt3および第3受電電力値Pr3に対応する。検出対象の異物は導電性を有する金属片等である。
 まず、送電装置100は第1送電電力値Pt1で受電装置200に対して送電を行い、受電装置200は第1受電電力値Pr1で受電する。以下、この状態をLight Load状態(軽負荷状態)という。
 送電装置100は第1送電電力値Pt1を記憶する。このとき、受電装置200は受電する電力が最小の電力となるように負荷制御を行う。あるいは受電装置200は、受電する電力が予め定められた所定の範囲内の電力、または、閾値以下の電力となるように負荷制御を行う。
 ここで、「予め定められた所定の範囲内の電力」または「閾値以下の電力」において、「電力」とは、後述するReference Powerのおよそ10%の値の電力である。
 また、受電装置200は、受電した電力が負荷(図3の充電部206、バッテリ207等)に供給されないように、受電アンテナ205から負荷を切断してもよい。あるいは、受電装置200は所定の電力が負荷に供給されるように、負荷を制御してもよい。
 これらは、第1スイッチ部209を制御することによって実現できる。続いて受電装置200は、第1受電電力値Pr1を送電装置100に通知する。受電装置200から第1受電電力値Pr1に関する信号を受信した送電装置100は、送電装置100と受電装置200との間の電力損失を算出する。
 このときの電力損失はPt1-Pr1(=Ploss1)である。Pt1とPr1との対応を示すキャリブレーションポイント(以下、CPと略記する)1000を生成することができる。
 続いて、送電装置100は送電電力値を第2送電電力値Pt2に変更し、受電装置200に対して送電を行い、受電装置200は第2受電電力値Pr2で受電する。以下、この状態をConnected Load状態(負荷接続状態)という。
 送電装置100は第2送電電力値Pt2を記憶する。このとき、受電装置200は受電する電力が最大の電力となるように負荷制御を行う。ここで、「最大の電力」とは、後述するReference Powerに近い値の電力である。
 あるいは受電装置200は、受電する電力が予め定められた所定の範囲内の電力、または、閾値以上の電力となるように負荷制御を行う。例えば、受電装置200は受電した電力が負荷に供給されるように、受電アンテナ205と負荷とを接続する。
 これらは、第1スイッチ部209を制御することによって実現できる。続いて、受電装置200は第2受電電力値Pr2を送電装置100に通知する。受電装置200から第2受電電力値Pr2に関する信号を受信した送電装置100は、送電装置100と受電装置200との間の電力損失を算出する。
 このときの電力損失はPt2-Pr2(=Ploss2)である。Pt2とPr2との対応を示すCP1001を生成することができる。
 送電装置100はCP1000とCP1001との間の直線補間処理を実行し、線分1002を生成する。線分1002は、送電装置100と受電装置200の近傍に異物が存在しないとして検出される状態(以下、第1の検出状態という)における送電電力と受電電力との関係を示している。
 送電装置100は線分1002に基づき、第1の検出状態にて所定の送電電力で送電した場合に受電装置200が受電する電力値を推定することができる。例えば、送電装置100が第3送電電力値Pt3で送電した場合を想定する。この場合、送電装置100は線分1002上の、Pt3に対応する点1003から、受電装置200が受電する第3受電電力値Pr3を推定できる。
 以上のように、負荷を変えながら測定された送電装置100の送電電力値と受電装置200の受電電力値との複数の組み合わせに基づいて、負荷に応じた送電装置100と受電装置200との間の電力損失を求めることができる。
 また、送電電力値と受電電力値との複数の組み合わせからの補間処理により、すべての負荷に応じた送電装置100と受電装置200との間の電力損失を推定できる。このように、送電装置100が送電電力値と受電電力値との組み合わせを取得するために送電装置100および受電装置200が行うキャリブレーション処理を、「Power Loss法のCalibration処理」と呼ぶ。
 またCalibration処理を、CAL処理と略記する。また、送電装置100および受電装置200は、CAL処理を複数回実行することができる。一度、CAL処理が実行された後に、再度行われるCAL処理のことを、以下では、「Power Loss法のRecalibration処理」と呼ぶ。またRecalibration処理を、RECAL処理と略記する。
 Power Loss法のCAL処理後、実際に送電装置100が第3送電電力値Pt3で受電装置200に送電し、送電装置100が受電装置200から受電電力値Pr3に関する信号を受信した場合を想定する。
 この受電電力値Pr3に関する信号は、WPC規格で規定されるReceived Power Data packet(mode0)であるが、他のメッセージが用いられてもよい。
 以下、Received Power Data packet(mode0)をRP0と表記する。RP0には、受電電力値Pr3の値が含まれる。送電装置100は、第1の検出状態における受電電力値Pr3から、受電装置200から受信した受電電力値Pr3を減算して、Pr3-Pr3(=Ploss_FO)を算出する。
 Ploss_FOは、送電装置100と受電装置200の近傍に異物が存在する場合、その異物で消費される電力、つまり電力損失と推定することができる。以下、送電装置100と受電装置200の近傍に異物が存在すると検出される状態を、第2の検出状態という。
 第2の検出状態にて送電装置100は、異物で消費されたであろう電力損失Ploss_FOを、あらかじめ決められた閾値と比較する。電力損失Ploss_FOの値が閾値を超えた場合、送電装置100は異物が存在すると判定することができる。
 あるいは、送電装置100は、第1の検出状態における第3受電電力値Pr3を受電装置200から取得し、送電装置100と受電装置200との間の電力損失Pt3-Pr3(=Ploss3)を事前に求めておく。
 次に送電装置100は、第2の検出状態にて受電装置200から受電電力値Pr3を取得し、第2の検出状態での送電装置100と受電装置200との間の電力損失Pt3-Pr3(=Ploss3)を算出する。
 そして送電装置100は、Ploss3-Ploss3を用いて電力損失Ploss_FOを推定することができる。
 以上のように、第2の検出状態におけるPloss_FOの算出方法には2つの方法がある。
・Pr3-Pr3からPloss_FOを算出する第1の方法。
・Ploss3-Ploss3からPloss_FOを算出する第2の方法。
 本実施形態では基本的に第2の方法について述べるが、第1の方法においても本実施形態の内容を適用可能である。
 次に、図5を参照して、WPC規格で規定されているQ値計測法に基づく異物検出について説明する。図5(A)は、Q値計測法によるQuality Factor(Q-factor、品質係数、Q値)の測定方法を説明するための概略回路図である。
 交流電源901は、TXの送電部103が生成する交流電力を出力する電源である。送電アンテナ902は、送電アンテナ105に相当し、コンデンサ903は共振コンデンサ107に相当する。
 送電アンテナ902とコンデンサ903は直列に接続されている。電圧値V8は、送電部103が生成する、無線電力伝送システムを動作させるための所定周波数の電圧値である。電圧値V9は、送電アンテナ902にかかる電圧値である。
 ここでTXは、電圧値に関する周波数を変化させることができるものとする。また、電圧値V8およびV9は、TXがRXに対してAnalog Ping(以下、APと記す)、あるいはDigital Ping(以下、DPと記す)を送信する際にTXが測定する電圧値である。
 なお、電圧値V8およびV9は交流電圧値であるので、それらの実効値(RMS)を用いてもよい。
 図5(B)は周波数に対するV9/V8の測定結果の例として、100kHzにピークを有する特性を示す。横軸は周波数軸であり、縦軸は電圧比「V9/V8」を表す。V9/V8は、送電アンテナ902に係るQuality Factorを表す。
 V9/V8は、送電アンテナ902と共振コンデンサ903を含む共振回路のQuality Factorに相当するので、送電アンテナ902の近傍に物体が載置されると、その値は変化する。
 Quality Factorの変化は、TXに物体が載置されない場合と、TXにRXが載置された場合と、TXに異物(金属片等)が載置された場合と、TXにRXと異物が載置された場合とで、それぞれ異なる。
 NegotiationフェーズにてTXは、FOD Status Data packetの信号をRXから受信する。FOD Status Data packetは、Reference Quality Factor ValueおよびReference Resonance Frequency Valueを含む。
 Reference Quality Factor Valueは、試験用TXにRXが載置され、かつ、異物が近くに存在しない場合の、試験用TXの送電アンテナの端子で測定できるQuality Factorである。
 また、Reference Resonance Frequency Valueは、試験用TXにRXが載置され、かつ、異物が近くに存在しない場合の、試験用TXの送電アンテナの端子で測定できるインダクタンス値から算出される共振周波数である。
 Q値計測法にて、Reference Quality Factor Valueを基準として閾値が設定される。この閾値と、測定されたV9/V8から求められるQuality Factorとを比較することで異物検出が行われる。
 あるいは、Reference Resonance Frequency Valueを基準として閾値が設定される。この閾値と、V9/V8を測定して求められる共振周波数とを比較することで異物検出が行われる。
 本実施形態のRXとTXは、WPC規格に基づく送受電制御のための通信を行う。WPC規格では、電力伝送が実行されるPower Transferフェーズと、電力伝送前の1以上のフェーズとを含む複数のフェーズが規定されている。
 各フェーズにおいて必要な送受電制御のための通信が行われる。例えば、Power Loss法による異物検出は、Calibrationフェーズにより得られたデータに基づき、Power Transferフェーズに実施される。また、Q値計測法による異物検出は、電力伝送前(DPの送信前と、NegotiationフェーズまたはRenegotiationフェーズ)に実施される。
 WPC規格における電力伝送前のフェーズには、Selectionフェーズ、Pingフェーズ、Identification and Configurationフェーズ(Configurationフェーズ)がある。
 また、Negotiationフェーズ、Calibrationフェーズがある。以下では、Identification and ConfigurationフェーズをI&Cフェーズと呼ぶ。以下、各フェーズの処理について説明する。
 SelectionフェーズにてTXはAPを間欠的に送信し、物体がTXの充電台に載置されたことを検出する。例えば、充電台にRXや導体片等が載置されたことが検出される。TXは、APを送信したときの送電アンテナ105の電圧値もしくは電流値または両方を検出する。
 TXは、当該電圧値が閾値を下回る場合、または当該電流値が閾値を超える場合に、物体が存在すると判断し、Pingフェーズに遷移する。あるいは、TXは、当該電圧値または該電流値から求められるQuality Factorが所定の条件を満たす場合、物体が存在すると判断し、Pingフェーズに遷移する。
 PingフェーズにてTXは、APよりも電力が大きいDPを送信する。DPの電力は、TX上に載置されたRXの制御部が起動するのに十分な電力である。RXは受電電圧値をTXへ通知する。
 このように、TXはDPを受信したRXからの応答を受信することにより、Selectionフェーズで検出された物体がRXであることを認識する。TXはRXから受電電圧値の通知を受けると、I&Cフェーズに遷移する。また、TXはDPの送信前に、例えばAPを用いて、送電アンテナ105に係るQuality Factorを測定する。
 この測定結果は、Q値計測法を用いた異物検出処理を実行する際に使用される。なお、WPC規格のバージョンによっては、上述したSelectionフェーズが、上述したPingフェーズの一部として含まれ、Pingフェーズと呼ばれる場合もある。
 I&CフェーズにてTXはRXを識別し、RXから機器構成情報(能力情報)を取得する。RXは、ID Data packetおよびConfiguration Data packetの信号を送信する。
 ID Data packetはRXの識別子情報を含み、Configuration Data packetはRXの機器構成情報(能力情報)を含む。ID Data packetおよびConfiguration Data packetの信号を受信したTXは、アクノリッジ(肯定応答ACK)で応答する。
 そして、I&Cフェーズが終了する。なお、I&Cフェーズは、WPC規格のバージョンによっては、Configurationフェーズと呼ばれる場合もある。Negotiationフェーズでは、RXが要求するGPの値やTXの送電能力等に基づいてGPの値が決定される。
 またTXはRXから、上記Reference Quality Factor ValueおよびReference Resonance Frequency Valueを含むFOD Status Data packetを受信する。
 Q値計測法において、Reference Quality Factor ValueおよびReference Resonance Frequency Valueを基準とした閾値に基づいて、異物の有無の判定が行われる。
 TXは、RXからの要求に従って、Q値計測法を用いた異物検出処理を実行する。またWPC規格では、一旦Power Transferフェーズに移行した後、RXの要求によって再度Negotiationフェーズと同様の処理を行う方法が規定されている。Power Transferフェーズから移行してこれらの処理を行うフェーズのことをRenegotiationフェーズと呼ぶ。
 Calibrationフェーズでは、Power Loss法のCAL処理が実施される。また、RXは所定の受電電力値をTXへ通知し、TXが効率よく送電するための調整を行う。
 所定の受電電力値とは、例えば軽負荷状態(Light Load状態)または負荷接続状態(Connected Load状態)における受電電力値である。TXへ通知された受電電力値は、Power Loss法による異物検出処理のために使用される。
 Power TransferフェーズではTXとRXにより、送電の開始、継続、およびエラー処理や満充電による送電停止等のための制御が行われる。TXとRXは、これらの送受電制御のための通信処理を行う。
 例えば、WPC規格に基づいて無線電力伝送を行う際に使用する送電アンテナ105および受電アンテナ205を用いて、送電アンテナ105または受電アンテナ205から送信される電磁波に信号を重畳して通信が行われる。TXとRXとの間でWPC規格に基づく通信が可能な範囲は、TXの送電可能範囲と同様の範囲である。
 なお、WPC規格のバージョンによっては、上述したCalibrationフェーズも、上述したPower Transferフェーズの一部として、Power Transferフェーズと呼ばれる場合もある。
 次に図6を参照して、TXの制御部の機能について説明する。図6は、送電装置100(TX)の制御部101の機能構成例を示すブロック図である。制御部101は、通信制御部301、送電制御部302、測定部303、設定部304、状態検出部305を有する。通信制御部301は、第1通信部104を介してWPC規格に基づいたRXとの通信制御を行い、または、第2通信部109を介してRXとの通信制御を行う。
 送電制御部302は、送電部103を制御することで、RXへの送電を制御する。測定部303は、後述する波形減衰指標を測定する。また測定部303は、送電部103を介してRXに送電する電力を計測し、単位時間ごとに平均送電電力を測定する。
 また測定部303は、送電アンテナ105に係るQuality Factorの測定を行う。また測定部303は、送電装置100の複数個所に配置された温度センサにより温度の測定を行う。また測定部303は、送電アンテナ105と受電アンテナ205との電磁結合状態を表す量(例えば結合係数)を測定する。
 設定部304は、上述した方法で、Q値計測法における異物検出用の閾値や、Power Loss法における異物検出用の閾値を算出して設定する。また設定部304は、後述する方法で、波形減衰法における異物検出用の閾値を設定する。
 また設定部304は、例えば測定部303により測定された送電アンテナ105と受電アンテナ205との結合係数に基づき、異物検出用の閾値またはTXとRXとの位置ずれ検出用の閾値を算出して設定する。
 また設定部304は、例えば測定部303により測定された送電装置の温度に基づき、異物検出用の閾値またはTXとRXとの位置ずれ検出用の閾値を算出して設定する。また設定部304は、例えば測定部303により測定された送電アンテナ105の電流値に基づき、異物検出用の閾値またはTXとRXとの位置ずれ検出用の閾値を算出して設定する。
 状態検出部305は、TXとRXの状態検出を行う。例えば状態検出部305は、TXとRXとの間に存在する異物の検出を行い、また、送電アンテナ105と受電アンテナ205との位置ずれを検出する。
 より具体的には、Power Loss法、Q値計測法、波形減衰法に基づく状態検出処理が可能である。そして、送電装置100にて測定された温度、送電アンテナ105と受電アンテナ205との電磁結合状態(例えば結合係数)、送電装置100にて測定された送電アンテナ105の電流値に基づく状態検出処理が可能である。
 状態検出部305は、異物検出や、送電アンテナ105と受電アンテナ205との位置ずれの検出処理を、その他の方法で行うことが可能である。例えばNFC通信機能を備えるTXにおいて、状態検出部305は、NFC規格による対向機検出機能を用いて状態検出処理を行う。
 また、状態検出部305は、異物の有無の検出や送電アンテナと受電アンテナとの電磁結合状態の検出以外に、TX上の状態変化を検出可能である。例えば状態検出部305は、TX上の受電装置の数の増減を検出可能である。
 設定部304は、TXが状態検出を行う上で、異物の有無を判定するための基準となる閾値を設定する。状態検出とは、例えばPower Loss法、Q値計測法、波形減衰法に基づく状態検出、送電装置100において測定された温度に基づく状態検出である。
 また状態検出とは送電アンテナ105と受電アンテナ205との結合係数等に基づく状態検出、送電装置100にて測定された送電アンテナ105の電流値に基づく状態検出である。なお、設定部304は、その他の方法を用いた状態検出処理に必要となる判定用閾値を設定することができる。
 状態検出部305は、設定部304により設定された閾値と、測定部303による測定結果に基づいて、異物検出処理や送電アンテナ105と受電アンテナ205との位置ずれの検出処理を行うことができる。
 例えば状態検出部305は、測定部303の測定結果として、波形減衰指標、送電電力、Quality Factorのデータを取得可能である。状態検出部305は、測定部303の測定結果として、送電装置100において測定された温度、送電アンテナ105と受電アンテナ205との結合係数、送電装置100にて測定された送電アンテナ105の電流値等のデータを取得可能である。
 図6に示す通信制御部301、送電制御部302、測定部303、設定部304、状態検出部305が実行する処理については、制御部101の備えるCPU等が実行するプログラムを用いて実現可能である。
 各処理は、それぞれが独立したプログラムにしたがい、イベント処理等によりプログラム間の同期をとりながら並行して実行される。ただし、これらの処理のうち、2つ以上が1つのプログラムによる処理に組み込まれていてもよい。
 続いて、TXおよびRXが実行する送受電制御に係る処理の流れの例を説明する。図7は、TXが実行する送電制御処理例を示すフローチャートである。本処理は、例えばTXの制御部101がメモリ106から読み出したプログラムを実行することによって実現される。
 また本処理は、TXの電源がオンされたことに応じて、TXのユーザが無線電力伝送アプリケーションの開始指示を入力したことに応じて、または、TXが商用電源に接続され電力供給を受けていることに応じて、実行されうる。また、他の契機によって本処理が開始されてもよい。
 図7のS1201でTXは、WPC規格のSelectionフェーズとPingフェーズとして規定されている処理を実行し、RXが載置されるのを待ち受ける。TXは、WPC規格のAPを繰り返し間欠送信し、送電可能範囲内に存在する物体を検出する。
 例えばTXは、充電台300にRXや導体片等が載置されたことを検出可能である。TXは送電可能範囲内に物体が存在することを検出した場合、DPを送信する。
 TXは、DPに対する所定の応答があった場合、検出された物体がRXであり、RXが充電台300に載置されたと判定する。ここで、「所定の応答」とは、RXが送信する、Signal Strength (SIG) data Packetである。
 このパケットは、RXが受信する信号(DP)の信号強度を表すSignal Strength Valueを含む。Signal Strength Valueは、RXが測定する受電部203の整流部(整流器、整流回路)が出力する電圧(整流部出力電圧)から算出される。
 あるいは、Signal Strength Valueは、RXが測定する受電アンテナ205を含む開回路の電圧(開回路電圧)、またはRXが測定する受電電力値等から算出される。また、TXはDPの送信前に、送電アンテナ105に係るQuality Factorの測定を行う。この測定結果は、Q値測定法を用いた異物検出処理を実行する際に使用される。
 RXの載置が検出された後、S1202でTXは、WPC規格で規定されたI&Cフェーズの通信により、RXから識別情報を取得する。I&CフェーズにてRXは、Identification Packet(ID Packet)をTXへ送信する。
 ID Packetには、RXの個体ごとの識別情報であるManufacturer CodeとBasic Device IDの他に、対応しているWPC規格のバージョンを特定可能な情報が格納される。
 さらに、RXは、Configuration Data PacketをTXへ送信する。Configuration Data Packetには、以下に示すRXの能力情報が含まれる。
・RXが対応しているWPC規格のバージョンを特定することが可能な情報。
・RXが負荷に供給できる最大電力を特定する値であるMaximum Power ValueあるいはReference Power。
・RXがWPC規格のNegotiation機能を有するか否かを示す情報。
・TXがRXに対して情報を送信する際に用いる通信の変調方式である周波数偏移変調において使用されるパラメータ。
 TXは、上記パケットをRXから受信すると、肯定応答ACKをRXに送信し、I&Cフェーズが終了する。なお、TXは、WPC規格のI&Cフェーズの通信以外の方法でRXの識別情報を取得してもよい。
 また、RXの個体ごとの識別情報は、Wireless Power IDでもよい。あるいは、RXの第2通信部212に固有のBluetooth(登録商標) Address(以下、「BD_ADDR」と記す)等の、RXの個体を識別可能な任意の他の識別情報であってもよい。
 なお、BD_ADDRは、BLEで使用する8バイトのアドレスである。BD_ADDRは、例えば、RXの製造メーカや、BLEの通信機能(第2通信部212の機能)の個体識別情報を示す、BLE規格で規定されたPublic Addressである。BD_ADDRは、Random Addressであってもよい。
 続いてS1203でTXは、RXからの要求と自装置の送電能力に基づいて、RXとの交渉によってGPを決定する。S1203では、WPC規格のNegotiationフェーズでの通信が行われる。
 まず、RXは、TXに対してSpecific Requestを送信することで、要求するGPの値を通知する。TXは、自装置の送電能力やその他の条件に基づいて、要求を受け入れるか否かを判定する。
 TXは要求を受け入れる場合に肯定応答ACKをRXへ送信し、要求を受け入れない場合には否定応答NACKまたはNAKをRXへ送信する。決定されるGPの値は、TXがRXからの要求を受け入れた場合にRXが要求した値となる。
 TXがRXからの要求を受け入れない場合にGPの値は、WPC規格で定められた所定の値(例えば5ワット)となる。あるいはTXは、RXがNegotiationフェーズに対応していないことを示す情報を取得した場合(例えば後述のS1302)、Negotiationフェーズの通信を行わず、GP値を所定値に決定する。所定値とは、例えばWPC規格で予め規定された値(例えば5ワット)である。
 またTXは、RXからの要求に従って、Q値測定法を用いた異物検出処理を実行する。TXはRXから、FOD Status Data packetを受信する。このパケットは上述したReference Quality Factor ValueおよびReference Resonance Frequency Valueを含む。
 そして、TXはQ値測定法による異物検出を実行する。この異物検出は、以下の情報に基づいて行われる。
・TXがDPの送信前に測定した、送電アンテナ105に係るQuality Factorおよび共振周波数。
・TXがRXから受信したReference Quality Factor ValueおよびReference Resonance Frequency Valueを基準とする閾値。
 Q値測定法による異物検出処理ではRXからのTXへの要求にしたがい、TXがDPの送信前に測定した、送電アンテナ105のQuality Factorの値と、上記閾値とが比較され、比較結果に基づいて異物の有無や存在の可能性が判定される。
 続いてS1204でTXとRXは、WPC規格のCalibrationフェーズの処理(CAL処理)を行う。TXは、Calibrationフェーズにおいて、決定したReference Powerの値またはGPの値に基づいてPower Loss法のCAL処理を実行する。
 まず、RXは、TXに対し、軽負荷状態における受電電力に関する情報(以下、第1の基準受電電力情報という)を有する信号を送信する。軽負荷状態は、例えば負荷切断状態や、RXの受電電力値が第1の閾値以下となる負荷状態、あるいはRXの受電電力値が予め定められた所定範囲(以下、「第1の範囲」という)内となる負荷状態である。
 本実施形態では、第1の基準受電電力情報は500ミリワットを示す情報とする。第1の基準受電電力情報は、WPC規格で規定されるReceived Power Data packet(mode1)に含まれる情報であるが、他のメッセージが用いられてもよい。
 以下、Received Power Data packet(mode1)をRP1と表記する。TXは、RXから受信するControl Error(CE) data Packetの中に含まれる、Control Error Valueに基づいて、第1の基準受電電力情報を受け入れるか否かを判定する。
 TXは第1の基準受電電力情報を受け入れる場合、肯定応答ACKをRXへ送信する。また、TXは第1の基準受電電力情報を受け入れない場合、否定応答NAKをRXへ送信する。
 次に、RXは、TXに対し、負荷接続状態における受電電力に関する情報(以下、第2の基準受電電力情報という)を有する信号を送信するための処理を行う。負荷接続状態は、例えば最大負荷状態や、送電電力値が第2の閾値以上になる負荷状態、あるいは、RXが受電する電力が最大の電力となる負荷状態である。
 ここで、「最大の電力」とは、Reference Powerに近い値の電力である。あるいは負荷接続状態は、RXの受電電力値が予め定められた所定範囲(以下、「第2の範囲」という)内になる負荷状態である。ここで、第2の範囲は第1の範囲よりも高い電力値の範囲である。
 本実施形態では、第2の基準受電電力情報を、15ワットを示す情報とする。第2の基準受電電力情報は、WPC規格で規定されるReceived Power Data packet(mode2)に含まれる情報であるが、他のメッセージが用いられてもよい。
 以下、Received Power Data packet(mode2)をRP2と表記する。TXは、RXから受信するControl Error(CE) data Packetの中に含まれる、Control Error Valueに基づいて、第2の基準受電電力情報を受け入れるか否かを判定する。
 TXは第2の基準受電電力情報を受け入れる場合、肯定応答ACKをRXへ送信する。また、TXは第2の基準受電電力情報を受け入れない場合、否定応答NAKをRXへ送信する。TXは、RXからの第2の基準受電電力情報に対して肯定応答ACKを送信し、CAL処理を完了する。
 以上のCAL処理により、TXは、TXの送電電力値、および、第1および第2の基準受電電力情報に含まれる受電電力値に基づいて、軽負荷状態と負荷接続状態におけるTXとRXとの間の電力損失量を算出することが可能となる。
 またTXは、複数の電力損失量の間の補間処理を行うことで、TXが取り得るすべての送電電力におけるTXとRXとの間の電力損失量を算出することができる。TXが取り得るすべての送電電力とは、例えば本実施形態にてRXが受電する受電電力が500ミリワットから15ワットとされる範囲における、任意の電力である。
 その後、S1205でTXは、RXのバッテリ207が満充電となるまで送電を行う。S1205では、WPC規格のPower Transferフェーズでの通信が行われる。
 RXは、TXに対してt_intervalの時間間隔で繰り返しControl Error(CE) data Packet(以下、「CEパケット」という)を送信する。t_intervalはWPC規格で定義される値であり、例えば250ミリ秒である。
 CEパケットには、送電電力をどのくらい上げ下げするかの要求が含まれる。TXは、受信したCEパケットに基づいて送電アンテナ105の電流または電圧を制御することで送電電力を調整する。
 つまり、CEパケットは、送電電力を調整するためのパラメータのデータを含む。この処理を繰り返すことで、RXの要求に応じた適切な電力での送電がほぼリアルタイムに行われる。
 RXは、バッテリ207が満充電となるとEnd Power Transfer data Packet(以下、「EPTパケット」という)をTXに送信して、Power Transferフェーズを終了させる。
 RXは、満充電以外の理由でEPTパケットを送信することが可能である。また、TXはPower Transferフェーズが終了すると、RXに対する充電のための送電を停止する。
 またTXは、最後にCEパケットを受信してからt_timeoutの時間が経過した後で、次のCEパケットが受信できなかった場合、RXが充電台300から取り去られたと判断する。この場合、Power Transferフェーズを終了する。t_timeoutはWPC規格で定義される値であり、例えば1500ミリ秒である。
 RXはPower Transferフェーズ中にCEパケット以外のパケットをTXに送信してもよい。例えば、RXのバッテリ207の状態をTXに通知するCharge Status Data Packetがある。
 このパケットには、バッテリ207が何パーセント充電されたかを表すCharge Status Valueが格納される。TXは、Charge Status Data Packetを受信すると、例えばUI部110により、Charge Status Valueに基づいて文字や図で表示を行うことでユーザに充電状態を通知する。
 Charge Status Data Packetに関してTXは、いつ受信してもよいし、任意のタイミングでユーザへの通知を行ってもよい。
 Power TransferフェーズにてTXはRXへの送電を行うとともに、Power Loss法による異物検出処理を行う。例えばCAL処理により、送電電力値と受電電力値との差分から、送電処理中の第1の検出状態におけるTXとRXとの間の電力損失量が算出される。
 算出された電力損失量は、異物が存在しない状態における、基準の電力損失量に相当する。そしてTXは、CAL処理後の送電中に測定された、TXとRXとの間の電力損失量と、基準の電力損失量との差分が閾値以上であると判定した場合、第2の検出状態と判断する。
 図8を参照して、RXが実行する受電制御に係る処理の流れの例を説明する。本処理は、例えばRXの制御部201がメモリ208から読み出したプログラムを実行することによって実現される。
 S1301でRXは、WPC規格のSelectionフェーズとPingフェーズとして規定される処理を実行し、自装置がTXに載置されるのを待つ。RXは、例えば、TXからのDPを検出することによって、TXに載置されたことを検出する。
 RXは自装置がTXに載置されたことを検知すると、S1302にてID PacketとConfiguration Data Packetにより、自装置の識別情報を含む信号をTXへ送信する。
 なお、RXの識別情報は、WPC規格のI&Cフェーズの通信以外の方法で送信されてもよい。また、RXの各個体を識別可能な情報であれば、BD_ADDR等の他の識別情報が用いられてもよい。また、RXは、S1302において、識別情報以外の情報をTXへ送信することが可能である。
 続いてS1303でRXは、TXに対して要求するGP値の情報を含む信号を送信し、TXからの応答を待ってGPを決定する。S1303では、WPC規格のNegotiationフェーズでの通信が行われる。
 RXは、TXに対してFOD Status Data packetを送信する。このパケットは、Reference Quality Factor ValueおよびReference Resonance Frequency Valueを含む。
 続いてS1304でRXとTXは、WPC規格のCalibrationフェーズの処理(CAL処理)を行う。当該フェーズでRXが実施する処理については上述の通りである。その後、S1305でRXは、バッテリ207が満充電となるまで受電する。
 Power TransferフェーズにてRXとTXは、Power Loss法による異物検出処理を行う。S1305では、RXはt_intervalの間隔でCEパケットを繰り返し送信し、最後にEPTパケットをTXに送信して処理を終了する。
 以上のように、Power Loss法は、TXからRXへの送電中に、電力損失量の測定結果に基づいて異物検出を行う方法である。この方法は、TXが大きな電力を送電しているときに異物検出の精度が低下するという短所がある反面で、送電を継続しつつ異物検出処理を行えるので、高い送電効率を保つことができるという長所がある。
 ところで、Power Transferフェーズ中における、Power Loss法による異物検出のみでは、異物の誤検出が発生する可能性や、異物が存在するにも関わらず「異物無し」と判定される誤判定が発生する可能性がある。
 例えば、Power Transferフェーズでの送電中に、TXとRXの近傍に異物が存在する場合を想定する。この場合、異物からの発熱等が大きくなる可能性があるので、Power Transferフェーズにおける異物検出精度の向上が求められる。
 そこで、波形減衰法を用いた異物検出方法について説明する。この方法では、TXはRXに対して行う送電に係る送電波形(電圧波形または電流波形)の減衰状態に基づいて異物検出を行うことが可能である。すなわち新たに規定される異物検出用信号等を用いることなく、異物検出が可能となる。
 図9は、波形減衰法による異物検出原理を説明する図である。送電装置100(TX)から受電装置200(RX)への送電に係る送電波形を用いた異物検出の例を示す。図9にて横軸は時間軸であり、縦軸は電圧値または電流値を表す。
 図9に示す波形600は、例えばTXの送電アンテナ105に印加される高周波電圧の電圧値の時間経過に伴う変化を示している。あるいは、TXの送電アンテナ105と共振コンデンサ107を含む回路で観測される高周波の電圧値あるいは電流値の時間経過に伴う変化を示している。
 送電アンテナ105を介してRXに送電を行っているTXは、時刻Tにおいて送電を停止する。時刻Tでは、電源部102からの送電用の電力供給が停止され、送電アンテナ105への送電用の電力供給が停止される。
 時刻Tにおいて送電を停止するよりも前の送電波形の周波数fは、例えばWPC規格で使用される87kHzから205kHzまでの間にある、固定された周波数である。波形600上の点601は、高周波電圧の包絡線上の点であり、(T,A)は、時刻Tにおける電圧値がAであることを示す。
 波形600上の点602は、高周波電圧の包絡線上の点であり、(T,A)は、時刻Tにおける電圧値がAであることを示す。
 送電アンテナ105と共振コンデンサ107を含む共振回路のQuality Factor(Q-factor、Q値)は、時刻T以降の電圧値の時間変化に基づいて求めることが可能である。
 例えば、高周波電圧の包絡線上の点601および602における時刻、電圧値、および時刻Tにおいて送電を停止した後の高周波電圧の周波数fに基づいて、TXは式1によりQuality Factorを算出する。
 Q=π・f・(T-T)/ln(A/A) (式1)
 式1中、lnは自然対数関数を表す。なお、TXがRXに送電している時の送電波形の周波数(f)と、TXがRXへの送電を停止した時の送電波形の周波数(f)は異なる場合がある。
 Quality Factorの値は、TXとRXの近傍に異物が存在する場合に低下するが、その理由は異物によってエネルギー損失が発生するからである。よって、電圧値の減衰の傾きに着目すると、異物が存在しない場合よりも、異物が存在する場合の方が、点601と点602を結ぶ直線の傾きは大きくなる。
 異物によるエネルギー損失が発生する場合、波形600の振幅の減衰率が高くなる。例えば波形減衰法では、点601と点602との間の電圧値の減衰状態に基づいて異物の有無の判定を行うことができる。
 実際に異物の有無を判定する上では、減衰状態を表す何らかの数値の比較によって判定をすることが可能となる。例えば、Quality Factorを用いて判定を行う場合、Quality Factorの値が基準値よりも低くなることは、波形減衰率(単位時間当たりの波形の振幅の減少度合い)が高くなることを意味する。
 別例として、(A-A)/(T-T)により算出される、点601と点602を結ぶ直線の傾きを用いて判定を行う方法がある。また、電圧値の減衰状態を測定する時刻(TおよびT)が固定であるとした場合、電圧値の差(A-A)や、電圧値の比(A/A)を用いて、異物の有無の判定を行うことができる。
 あるいは、送電を停止した直後の電圧値Aが一定であるとした場合、所定の時間経過後の電圧値Aを用いて、異物の有無の判定を行うことができる。あるいは、電圧値Aが所定の電圧値Aとなるまでの経過時間(T-T)を用いて、異物の有無の判定を行うことができる。
 波形減衰法では、送電停止期間中の波形の減衰状態によって異物の有無を判定することが可能である。送電波形の減衰状態を表すQuality Factor等の指標を、本開示では「波形減衰指標」と総称する。
 また図9の縦軸を、TXの送電アンテナ105に印加される高周波電圧の電圧値の軸として説明したが、図9の縦軸を、送電アンテナ105を流れる電流値としてもよい。電圧値の場合と同様に、送電停止期間中の電流値の減衰状態が異物の有無によって変化する。
 異物が存在する場合には、異物が存在しない場合よりも波形減衰率が高くなる。よって、送電アンテナ105を流れる電流値の時間変化に関して、上述と同様の方法を適用して異物を検出することができる。
 すなわち、電流波形より算出されるQuality Factor、電流値の減衰の傾き、電流値の差、電流値の比、電流値の絶対値、または電流値が所定値になるまでの時間等を波形減衰指標として用いて異物の有無を判定し、異物検出を行うことができる。
 また、電圧値の減衰状態と電流値の減衰状態の両方に基づく方法がある。この方法では、電圧値の波形減衰指標と電流値の波形減衰指標とから算出される評価値を用いて異物の有無を判定することができる。
 なお、TXが送電を一時停止した期間の波形減衰指標を測定する例に限定されることはない。TXが電源部102から供給される電力を所定の電力レベルからそれより低い電力レベルまで一時的に下げた期間の波形減衰指標を測定してもよい。
 つまり、送電アンテナ105への送電電力を所定の電力レベルからそれより低い電力レベルまで一時的に下げた期間の波形減衰指標を測定してもよい。また、上述した送電アンテナ105への送電の制限(送電停止または送電電力の低下)は、制御部101の指示信号に基づいて送電部103が行ってもよい。
 また、上述の例では、TXが送電を制限する期間における2つの時点での電圧値または電流値が測定される構成としたが、3つ以上の時点での電圧値または電流値の測定が行われ、それらを用いて波形減衰指標を算出してもよい。
 図10を参照して、波形減衰法による送電波形に基づく異物検出方法について説明する。図10に示す送電波形は、波形減衰法による異物検出を行う際の送電波形であり、横軸は時間を表し、縦軸は送電アンテナ105の電圧値または電流値を表す。
 TXが送電を開始した直後の過渡応答期間には、送電波形が安定しない。よって、この過渡応答期間中にRXは、TXに対して通信(振幅変調または負荷変調による通信)を行わないように制御する。
 また、TXはRXに対して通信(周波数偏移変調による通信)を行わないように制御する。以降、この期間を通信禁止期間と呼ぶ。ただし、通信禁止期間中、TXはRXに対して送電を行う。
 そして通信禁止期間の経過後にTXはRXに対して送電を行う。以降、この期間を送電期間と呼ぶ。TXは、RXから異物検出動作の実行要求(パケット、コマンド)を受信した場合、所定期間の経過後に送電を一時停止するか、または送電電力を一時的に低下させる。
 以降、この所定期間を準備期間と呼ぶ。準備期間中にRXはTXに対して振幅変調あるいは負荷変調による通信を行わないように制御する。また、TXはRXに対して周波数偏移変調による通信を行わないように制御する。
 準備期間中に通信を行わないように制御することで、送電波形の乱れを抑制し、TXは後述する送電波形の波形減衰指標の算出を、より高精度に行うことが可能となる。異物検出動作の実行要求(パケット、コマンド)はRP0、RP1、またはRP2であってもよい。
 TXが当該実行要求を受信した場合、送電部103は、送電を一時停止させるか、または送電電力を一時的に低下させるので、送電波形の振幅は減衰する。送電を一時停止させる時点、または送電電力を一時的に低下させる時点から、送電の再開時点、または送電電力の復帰を開始する時点までの期間を、送電電力制御期間と呼ぶ。
 ここで、「送電再開」とは、TXが送電電力を所定の値まで上昇させることを示す。あるいはTXが、送電部103が有するインバータに入力されるインバータ入力電圧の値を一時的に0ボルトにした時点から、インバータ入力電圧の値を所定の値まで上昇させる時点までの期間を、送電電力制御期間と呼ぶ。
 あるいはTXが、インバータ入力電圧の値を一時的に所定の第1の電圧値に低下させた時点から、インバータ入力電圧の値を所定の第2の電圧値まで上昇させる時点までの期間を、送電電力制御期間と呼ぶ。
 あるいはTXが、送電部103が有するインバータが出力するインバータ出力電圧の値を一時的に0ボルトにした時点から、インバータ出力電圧の値を所定の電圧値まで上昇させる時点までの期間を、送電電力制御期間と呼ぶ。
 あるいはTXが、インバータ出力電圧の値を一時的に所定の第1の電圧値に低下させた時点から、インバータ出力電圧の値を所定の第2の電圧値まで上昇させる時点までの期間を、送電電力制御期間と呼ぶ。
 また、TXが送電を一時的に停止させるか、あるいは送電電力を一時的に低下させる制御を、送電電力制御と呼ぶ。また、TXが、送電部103が有するインバータの入力電圧あるいは出力電圧を一時的に0ボルトにするか、あるいは一時的に所定の値に低下させる制御を、送電電力制御と呼ぶ。
 TXは減衰波形に基づく波形減衰指標を算出し、算出した波形減衰指標と閾値を比較することにより、異物の有無、あるいは異物が存在する可能性(存在確率)を判定(以下、異物判定ともいう)する。
 送電電力制御期間中にRXはTXに対して振幅変調あるいは負荷変調による通信を行わないように制御する。また、TXはRXに対して周波数偏移変調による通信を行わないように制御する。
 送電電力制御期間中に通信を行わないように制御することで、送電波形の乱れを抑制し、TXは送電波形の波形減衰指標の算出を、より高精度に行うことが可能となる。また、異物判定は、送電電力制御期間中、通信禁止期間、または送電期間に実施することができる。
 送電電力制御期間の経過後、異物が検出されない場合にTXは送電の再開または送電電力の復帰の制御を行う。当該制御が開始された直後の過渡応答期間には、送電波形が安定しないので、当該期間は通信禁止期間となる。その後、TXからRXに対して安定して送電を行う送電期間に移行する。
 以上のように、TXは、送電開始、通信禁止期間、送電期間、準備期間、送電電力制御期間の制御を繰り返し行う。TXは、所定のタイミングで減衰波形に基づく波形減衰指標を算出し、算出した波形減衰指標と閾値との比較結果に基づいて異物判定を行う。
 つまり、送電が制限(送電停止を含む)される所定期間にて2以上の時点における電圧値または電流値に基づいて異物判定を行うことができる。また、準備期間、送電電力制御期間、通信禁止期間には、RXはTXに対して振幅変調あるいは負荷変調による通信を行わないように制御する。
 また、TXはRXに対して周波数偏移変調による通信を行わないように制御する。つまり、TXは、RXから実行要求(パケット、コマンド)を受信してから所定の期間(第1の期間)にはRXに対して通信を行わないように制御する。
 WPC規格では、Power Transferフェーズ中にTXがRXから実行要求以外のパケットを受信した後の、TXがRXに対してパケットの送信を行うことができない(パケットの送信が禁止されている)期間が規定されている。
 第1の期間は、当該期間よりも長い期間である。また、RXはTXに対して実行要求(パケット、コマンド)を送信してから所定の期間(第2の期間)には、TXに対して通信を行わないように制御する。
 WPC規格では、Power Transferフェーズ中にRXがTXに対して実行要求以外のパケットを送信した後の、RXがTXに対してパケットの送信を行うことができない(パケットの送信が禁止されている)期間が規定されている。第2の期間は、当該期間よりも長い期間である。
 ところで、送電電力制御期間にて、受電装置200の受電アンテナ205と共振コンデンサ211に、受電部203、充電部206、およびバッテリ207等の要素が接続されていると、波形減衰指標は、これらの要素による負荷の影響を受ける。
 すなわち、受電部203、充電部206、およびバッテリ207の状態によって、波形減衰指標の値が変化することになる。その結果、例えば波形減衰指標の値が大きい場合でも、それが異物による影響であるのか、あるいは受電部203、充電部206、バッテリ207等の状態変化によるのかを区別することが困難になる。
 そこで、波形減衰指標を測定して異物検出を行う場合、RXの制御部201は準備期間中に第1スイッチ部209をOFFにする。RXはTXに対して実行要求(パケット、コマンド)を送信し、準備期間に上記処理を実行する。
 あるいは、RXはTXに対して実行要求パケット(コマンド)を送信したと同時に、上記処理を実行する。これにより、バッテリ207による影響を抑制することが可能である。
 また、第1スイッチ部209を切断した状態の代わりに、Light Load状態(軽負荷状態)とすることによっても同様の効果が得られる。また、第1スイッチ部209を切断した状態の代わりに、RXは受電する電力が最小の電力となるように負荷制御を行うことによっても同様の効果が得られる。
 あるいは、第1スイッチ部209を切断した状態の代わりに、RXは受電する電力が予め定められた所定の範囲内の電力、または、閾値以下の電力となるように負荷制御を行うことによっても同様の効果が得られる。
 ここで、「予め定められた所定の範囲内の電力」または「閾値以下の電力」において、「電力」とは、Reference Powerのおよそ10%の値の電力である。あるいは、第1スイッチ部209を切断した状態の代わりに、RXは所定の電力が負荷に供給されるように、負荷を制御してもよい。
 これらは、第1スイッチ部209を制御することによって実現できる。Light Load状態における動作として、上述の動作も含まれるものとする。RXは、上述した制御を送電電力制御期間中も維持する。
 そしてRXは、送電再開以降のタイミングで、上述した制御を解除し、元の状態に戻すように制御する。あるいは、制御部201は第2スイッチ部210をONにして短絡し、受電アンテナ205、共振コンデンサ211、および第2スイッチ部210で形成される閉ループに電流が流れる状態とする。
 これにより、受電部203、充電部206、およびバッテリ207の影響を抑制することが可能になる。RXはTXに対して異物検出実行要求(パケット、コマンド)を送信し、準備期間に上記処理が実施される。
 あるいは、RXはTXに対して実行要求(パケット、コマンド)を送信したと同時に、上記処理を実行する。RXは、上述した制御を送電電力制御期間中も維持する。そしてRXは、送電再開以降のタイミングで、上述した制御を解除し、元の状態に戻すように制御する。
 第1スイッチ部209を切断した状態、または第2スイッチ部210をONにして短絡(接続)した状態で測定される送電波形に基づく波形減衰指標を取得することで、より精度の高い異物検出が可能となる。あるいは、第1スイッチ部209の切断、および第2スイッチ部210の短絡(接続)の両方を実施することで、さらに精度の高い異物検出が可能である。
 あるいは、RXは準備期間中に、第1スイッチ部209をONにして短絡し、第2スイッチ部210をOFFにして切断した状態において、低消費電力モードに移行させるか、または消費電力が一定になるように制御を行ってもよい。
 RXはTXに対して実行要求(パケット、コマンド)を送信し、準備期間に上記処理を実行する。あるいは、RXはTXに対して実行要求(パケット、コマンド)を送信したと同時に、上記処理を実行する。
 RXは、上述した制御を送電電力制御期間中も維持する。そしてRXは、送電再開以降のタイミングで、上述した制御を解除し、元の状態に戻すように制御する。RXでの消費電力が一定でない場合や、大きな電力が消費される場合には、減衰波形に基づく波形減衰指標の値が消費電力の変動の影響を受ける。
 当該影響を抑制するために、RXで動作するソフトウェアアプリケーションの動作の制限もしくは停止、または、RXが有するハードウェア機能ブロックを低消費電力モードもしくは動作停止モードの設定が有効である。
 RXの消費電力を抑制した状態で測定される送電波形に基づく波形減衰指標を用いて異物検出を行うことで、より精度の高い異物検出が可能となる。
 またTXにおいても同様に、波形減衰指標の測定時に、送電装置100の送電アンテナ105と共振コンデンサ107に、送電部103、第1通信部104、および電源部102等の要素が接続されていると、波形減衰率は、これらの要素の影響を受ける。
 すなわち、送電部103、第1通信部104、および電源部102の状態によって、波形減衰指標の値が変化することになる。その結果、例えば波形減衰指標の値が大きい場合でも、それが異物による影響であるのか、あるいは送電部103、第1通信部104、および電源部102の影響であるのかを区別することが困難になる。
 そこで、TXがRXから異物検出動作の実行要求(パケット、コマンド)を受信した場合、準備期間中に制御部101はスイッチ部108をONにする。つまり制御部101は、送電アンテナ105、共振コンデンサ107、およびスイッチ部108で形成される閉ループ回路に電流が流れる状態とする。
 これにより、TXにおける波形減衰指標の測定時に、送電部103、第1通信部104、および電源部102による影響を抑制することが可能になる。あるいは、送電アンテナ105と送電部103との間にスイッチ(不図示)を設け、準備期間中にスイッチを切断することで電源部102、送電部103、および第1通信部104による影響を抑制することが可能になる。
 TXは、上述した制御を送電電力制御期間中も維持する。そしてTXは、送電再開以降のタイミングで、上述した制御を解除し、元の状態に戻すように制御する。あるいは、送電アンテナ105、共振コンデンサ107、スイッチ部108で形成される閉ループ回路と、送電部103との間にスイッチを設けてもよい。
 TXは波形減衰指標を測定して異物検出を行うときに当該スイッチの制御により閉ループ回路と送電部とを切断して、上記の影響を抑制することが可能である。
 以上のように、スイッチ部108をONにした短絡(接続)状態、および、送電アンテナ105と送電部103に係るスイッチによる切断状態、および、閉ループ回路と送電部103に係るスイッチによる切断状態の、少なくとも1つ以上の状態が実現される。このことで、より精度の高い異物検出が可能である。
 次に、波形減衰法に基づくTXとRXの状態検出や異物判定のための、波形減衰指標に対する閾値の設定方法について説明する。波形減衰指標の測定値と閾値を比較し、比較結果に基づいて異物判定が可能である。
 第1の閾値設定方法は、閾値として、送電対象となるRXに依存しない共通の値である、予め定められた値をTXが保持する方法である。この閾値は固定値、または、状況に応じてTXが決定する可変値である。
 送電電力制御期間中の送電波形は、異物が存在すると波形減衰率が高くなる。よって、異物が存在しない状態で取得される波形減衰指標の値を予め保持しておき、この値が閾値として設定される。
 波形減衰指標の測定値と閾値との比較により、「異物有り」あるいは「異物が存在する可能性が高い」と判定することができる。例えば、波形減衰指標としてQuality Factorを採用する場合、TXはQuality Factorの測定値と、予め定められた閾値とを比較する。
 閾値は第1の検出状態での測定値または当該測定値に対して測定誤差を加味した値に基づいて設定される。Quality Factorの測定値が閾値よりも小さい場合、「異物有り」あるいは「異物が存在する可能性が高い」と判定される。
 Quality Factorの測定値が閾値以上である場合、「異物無し」あるいは「異物が存在する可能性は低い」と判定される。
 第2の閾値設定方法は、RXから送信される情報に基づいてTXが閾値を調整して決定する方法である。第1の閾値設定方法との相違点として留意すべきことは、波形減衰指標の値が、TXに載置される、送電対象のRXによって異なる可能性があるということである。
 その理由は、TXの送電アンテナを介して電磁的に結合するRXの電気特性が、波形減衰指標の値に影響を与えるからである。例えば、波形減衰指標としてQuality Factorを採用する場合、異物が存在しないときにTXが測定するQuality Factorは、TXに載置されるRXによって異なる可能性がある。
 そこでRXは、異物が存在しない状態でTXに載置された際のQuality Factorの情報をTXごとに保持しておき、Quality Factorの情報をTXに通知する。TXはRXから受信したQuality Factorの情報に基づいてRXごとに閾値を調整して決定する。
 より具体的には、TXは、Negotiationフェーズにおいて、Reference Quality Factor Valueの情報を有するFOD Status Data Packetを受信し、Q値計測法における閾値を調整して決定する。
 Reference Quality Factor Valueは、試験用TXにRXが載置され、かつ、異物が近くに存在しない場合の、試験用TXの送電アンテナの端子で測定できるQuality Factorである。
 TXは、このReference Quality Factor Valueが、「異物が存在しない状態でRXがTXに載置された際のQ値情報」に相当するとみなして、閾値の決定に用いる。つまりTXは、波形減衰法による異物判定用の閾値を、Reference Quality Factor Valueに基づいて調整して決定することができる。
 なお、NegotiationフェーズにてRXからTXに送信されるReference Quality Factor Valueは、本来周波数領域でQuality Factorを計測する、Q値計測法における異物検出に用いる情報である。
 しかし、波形減衰指標としてQuality Factorの値を用いる場合、Quality Factorの導出方法は異なるが、時間領域でQuality Factorを計測する波形減衰法によっても、例えば図9の波形から上記式1によってQuality Factorを求めることができる。
 そのため、Reference Quality Factor Valueに基づいて、波形減衰法のQ値の閾値を設定することは可能である。なお、Reference Quality Factor Valueに対して所定値(測定誤差に対応する値)を加味した波形減衰指標の値を、異物判定用の閾値として設定してもよい。
 このようにNegotiationフェーズにおいて既にRXからTXに送信された情報に基づき、TXが波形減衰法のQuality Factorの閾値を設定することで、閾値設定のための新たな測定等の処理を行う必要がなくなる。この結果、より短時間で閾値の設定が可能となる。設定後の閾値とQuality Factorの測定値に基づく異物判定については上述のとおりである。
 第3の閾値設定方法は、異物が存在しない状態でTXが波形減衰指標を測定し、その測定結果の情報に基づいて、TXが閾値を調整して決定する方法である。以下、異物が無い状態での波形減衰率を予め測定するタイミングについて説明する。
 WPC規格でのNegotiationフェーズにおいて、Q値計測法による異物検出が行われた結果、異物が無いと判定された場合、Calibrationフェーズ、Power Transferフェーズと進む。つまり、フェーズがNegotiationフェーズ以降に進んだということは、Q値計測法による異物検出の結果として、異物が無いと判定されたことを意味している。
 Negotiationフェーズ、Calibrationフェーズ、Power Transferフェーズのいずれかにおいて、異物が無い状態での波形減衰指標を測定できる可能性が高い。よって、異物が無い状態での波形減衰指標を測定するタイミングとしては、Negotiationフェーズ、Calibrationフェーズ、Power Transferフェーズのいずれかでよい。
 例えばPower Transferフェーズにて波形減衰指標の測定を実施する場合を想定する。異物が無い状態での波形減衰指標を測定するタイミングは、Power Transferフェーズの最初の段階に設定される。
 その理由は、Q値計測法により異物が無いと判定された時点から時間が経過するほど、TXとRXの近傍に異物が入る確率が高くなるからである。当該タイミングはRXまたはTXが指定し、TXはそのときの波形減衰指標を測定し、当該波形減衰指標の値を閾値として設定する。
 当該タイミングをRX(またはTX)が指定する場合は、RX(またはTX)がTX(またはRX)に対して所定のパケットを送信することでタイミングを通知する。なお、当該波形減衰指標に対して所定値(測定誤差に対応する値)を加味した値を異物判定用の閾値として設定してもよい。
 第4の閾値設定方法は、TXが送電電力に応じて閾値を調整して決定する方法である。波形減衰指標の値はTXの送電電力によって異なる可能性がある。その理由は、TXの送電電力の大小によって、発熱量、TXの電気回路の諸特性等が変化し、それらが波形減衰指標の値に影響を与えるからである。
 TXは送電電力ごとの波形減衰指標を測定し、測定結果に基づいて閾値を調整して決定することで、より高精度な異物判定を行うことができる。
 図11は、波形減衰法におけるTXの送電電力ごとの異物判定用の閾値設定方法を説明するための図である。図11にて、横軸は送電装置100の送電電力を表し、縦軸は電圧波形または電流波形の波形減衰指標(波形減衰率)を表す。
 直線状の線分1102で示されるグラフ線上にて、点1100は送電電力値Pt1および波形減衰指標δ1に対応し、点1101は送電電力値Pt2および波形減衰指標δ2に対応する。当該グラフ線上にて、点1103は送電電力値Pt3および波形減衰指標δ3に対応する。
 まず、RXは、TXから送電があった場合にRXが軽負荷状態になるように負荷を制御する。軽負荷状態ではRXの負荷に電力が供給されないか、あるいは、閾値未満の電力しか供給されないか、あるいは所定範囲(以下、「第3の範囲」という)内の電力が供給される状態となる。
 この状態でのTXの送電電力値をPt1とする。そして、RXはTXに対して、波形減衰指標の測定の実行を要求することを示すパケットを送信する。そして、TXは、当該パケットを受信したら、RXの負荷が軽負荷状態に制御されている状態で送電を停止させるか、または送電電力を低下させて、波形減衰指標δ1を測定する。
 このとき、TXは送電電力値Pt1を認識しており、送電電力値Pt1と波形減衰指標δ1とを関連付けるキャリブレーションポイントであるCP1100をメモリに記憶しておく。
 次にRXは負荷接続状態の制御を行う。負荷接続状態は、TXから送電があった場合にRXの負荷に最大電力が供給されるか、あるいは閾値以上の電力が供給されるか、あるいは所定範囲(以下、「第4の範囲」という)内の電力が供給される状態である。
 ここで、「第4の範囲」は、「第3の範囲」よりも大きな電力の範囲である。この状態でのTXの送電電力値をPt2とする。そして、RXはTXに対して、波形減衰指標の測定の実行を要求することを示すパケットを送信する。
 そしてTXは、当該パケットを受信したら、RXの負荷が負荷接続状態に制御されている状態で送電を停止させるか、または送電電力を低下させて、波形減衰指標δ2を測定する。
 このとき、TXは、送電電力値Pt2と波形減衰指標δ2とを関連づけるCP1101をメモリに記憶しておく。続いて、TXはCP1100とCP1101との間を直線補間して線分1102を生成する。
 線分1102は、TXとRXの周辺に異物が存在しない第1の検出状態における送電電力と送電アンテナ105で観測される波形の波形減衰指標との関係を示している。よって、TXは線分1102に基づき、第1の検出状態における、送電電力値ごとの送電アンテナ105で観測される波形の波形減衰指標を推定することができる。
 例えば、送電電力値Pt3の場合、Pt3に対応する線分1102上の点1103から、波形減衰指標がδ3と推定される。TXは推定結果に基づき、送電電力値ごとの、異物有無の判定に用いる閾値を算出することが可能である。
 例えば、ある送電電力値における、第1の検出状態での波形減衰指標の推定結果に対して、所定値(測定誤差に対応する値)だけ大きい波形減衰指標を、異物判定用の閾値として設定することができる。
 送電装置100が送電電力値と波形減衰指標との組み合わせを取得するために、送電装置100と受電装置200とが行うCAL処理を、以下では「波形減衰法のCAL処理」と呼ぶ。
 また、送電装置100および受電装置200は、波形減衰法のCAL処理を複数回実行することができる。一度、波形減衰法のCAL処理を実行した後に、再度行う波形減衰法のCAL処理のことを、以下では、「波形減衰法のRecalibration処理」と呼ぶ。
 またRecalibration処理を、RECAL処理と略記する。なお、上述の例では、送電電力値Pt1とPt2の2ポイントの測定を行ったが、より精度を高めるために、3以上の複数のポイントで測定を実施して各送電電力の波形減衰指標を算出してもよい。
 RXは、軽負荷状態の制御と、負荷接続状態の制御とを、TXに当該制御を実行することを所定のパケットで通知した後に行ってもよい。また、当該2つの制御はいずれが先に行われてもよい。
 本実施形態で述べた、負荷ごと(または送電電力値ごと)の異物判定に用いる閾値の算出処理は、Calibrationフェーズにおいて行われてもよい。上述したように、TXはCalibrationフェーズにて、Power Loss法による異物検出を行う際に必要となるデータを取得する。
 その際、TXは、RXの負荷状態が軽負荷状態の場合と負荷接続状態の場合における、それぞれのRXの受電電力値および電力損失に関するデータを取得する。そこで、図11におけるCP1100とCP1101の測定は、Calibrationフェーズにおいて、RXが軽負荷状態になったときと負荷接続状態になったときに、電力損失の測定と一緒に行われてもよい。
 例えばTXは、RXから第1の基準受電電力情報を有する信号を受信した際に、Calibrationフェーズで行うべき所定の処理に加えて、CP1100の測定を行う。この第1の基準受電電力情報は、WPC規格で規定されるRP1の情報であるが、他のメッセージが用いられてもよい。
 またTXは、RXから第2の基準受電電力情報を有する信号を受信した際に、Calibrationフェーズで行うべき所定の処理に加えて、CP1101の測定を行う。この第2の基準受電電力情報は、WPC規格で規定されるRP2の情報であるが、他のメッセージが用いられてもよい。
 CP1100とCP1101の測定を行う期間を別途設ける必要はなくなるので、より短時間でCP1100とCP1101の測定を実行できる。
 このようにTXが各送電電力で測定した波形減衰指標の情報に基づき、TXが各送電電力の波形減衰指標の閾値を調整して設定する。例えば、波形減衰指標としてQuality Factorを用いる場合、TXはQuality Factorの測定値と、上記方法で決定した閾値とを比較する。
 Q値の測定値が閾値よりも小さい場合、「異物有り」または「異物が存在する可能性有り」と判定される。Quality Factorの測定値が閾値以上である場合、「異物無し」または「異物が存在する可能性は低い」と判定される。以上により、TXの各送電電力における閾値が設定されて、より高精度な異物判定が可能となる。
 以上の方法により設定される異物判定用の閾値は1つとは限らない。複数の閾値を段階的に設定することができる。例えば、第1の閾値は「状態異常有り」の判定用閾値、第2の閾値は「状態異常の可能性が高い」の判定用閾値、第3の閾値は「状態異常の可能性が低い」の判定用閾値、第4の閾値は「状態異常無し」の判定用閾値として設定される。
 また、異物検出処理を1回実行するだけでは正確性を期すことができない可能性がある。例えば、波形減衰法の異物検出の実行にて、1回の送電電力制御を行い、そのときの波形減衰指標から異物判定を行う場合、送電電力制御期間中の送電波形の振幅や位相に乱れが生じる可能性がある。
 送電電力制御期間におけるノイズの混入や、TXに載置されるRXの位置ずれ等が起こりうる。この場合、1回の送電電力制御期間中の送電波形から求められる波形減衰指標の値が正確でないときには、異物判定にて誤判定を招く可能性がある。
 そこで、TXは複数回の送電電力制御を行い、複数の送電電力制御期間中での送電波形から波形減衰指標を測定し、複数回の測定結果に基づいて、より高精度な異物判定を行うことが可能となる。
 次に、送電アンテナと受電アンテナの結合状態指標測定法として、第1の測定方法について説明する。第1の測定方法において実施する測定を、以下、第1の測定と呼ぶ。無線電力伝送では、送電アンテナ105と受電アンテナ205を電磁結合させて送電が行われる。
 送電アンテナ105に交流電流を流して、受電アンテナ205を貫く磁束を変化させることによって受電アンテナ205に電圧が誘起される。送電アンテナと受電アンテナとの結合状態を表す指標である結合係数(kと表記し、その値をk値という)は、例えば送電アンテナで発生した磁束の全て(100%)が受電アンテナを貫くときに「k=1」となる。
 また送電アンテナで発生した磁束の70%が受電アンテナを貫くときに「k=0.7」となる。この場合、送電アンテナで発生した残り(30%)の磁束は漏れ磁束(漏洩磁束)となる。
 これは送電アンテナで発生した磁束のうち、受電アンテナを貫かなかった磁束である。したがって、送電アンテナと受電アンテナとの結合状態が良好であってk値が大きいとき、TXからRXに送電される電力の伝送効率は高い。逆に結合状態が良好でなく、k値が小さいとき、TXからRXに送電される電力の伝送効率は低い。
 k値が低下する要因としては、送電アンテナと受電アンテナとの間に異物(金属片等)が入ることや、送電アンテナと受電アンテナとの位置ずれがある。あるいは送電アンテナと受電アンテナの距離が大きくなることが挙げられる。
 送電アンテナと受電アンテナとの間に異物が入ると、異物に熱が発生する可能性がある。また、送電アンテナと受電アンテナとの位置ずれや離間が発生すると漏れ磁束(漏洩磁束)が多くなるので、周囲に大きなノイズを発生させる可能性がある。
 k値が小さい場合には、より安全で高品質な無線電力伝送を実現するための適切な制御が必要である。本実施形態では、異物の検出精度や前記位置ずれや前記距離が大きい場合の検知精度を向上させるために、送電アンテナと受電アンテナとの結合状態指標(結合係数を含む)の検出処理が実行される。
 図12を参照して、送電アンテナと受電アンテナの結合状態指標測定法について説明する。図12(A)は、第1の測定方法を説明するための等価回路図である。1次側(TX)の送電アンテナ(送電コイル)に関する諸量の定義を下記に示す。
・r1:送電アンテナの巻き線抵抗。
・L1:送電アンテナの自己インダクタンス。
・V1:TXが測定した、送電アンテナにかかる送電電圧(入力電圧)。
 また、2次側(RX)の受電アンテナ(受電コイル)に関する諸量の定義を下記に示す。
・r2:受電アンテナの巻き線抵抗。
・L2:受電アンテナの自己インダクタンス。
・V2:RXが測定した、受電アンテナにかかる受電電圧(出力電圧)。
 送電アンテナと受電アンテナとの結合係数(k)は、下記式2により算出できる。
 k=(V2/V1)・√(L1/L2)   (式2)
 TXが結合係数kを算出する場合、RXは測定した受電電圧V2と、予めRXが保持している受電アンテナの自己インダクタンスL2の値をTXに通知する。TXは測定した送電電圧V1と、予め保持している送電アンテナの自己インダクタンスL1の値と、RXから受信した受電電圧V2と自己インダクタンスL2の値を用いてk値を算出する。
 あるいは、RXはL1,L2のすべて、またはいずれかを用いて算出される定数と、V2をTXに通知し、TXはRXから受信した当該定数とV2と、TXが測定した送電電圧V1とを用いてk値を算出することができる。
 一方、RXが結合係数kを算出する場合、TXは測定した送電電圧V1と、予め保持している送電アンテナの自己インダクタンスL1の値をRXに通知する。RXは測定した受電電圧V2と、予め保持している受電アンテナの自己インダクタンスL2の値と、TXから受信した送電電圧V1と自己インダクタンスL1の値を用いてk値を算出する。
 あるいは、TXはL1,L2のすべて、またはいずれかを用いて算出される定数と、V1をRXに通知し、RXはTXから受信した当該定数とV1と、RXが測定した受電電圧V2とを用いてk値を算出することができる。
 送電電圧V1については、TXが送電アンテナにかかる電圧を実際に測定するか、またはTXが送電電力の設定値から算出する。あるいは送電電圧V1を送電時の送電電圧の設定値としてもよい。
 また、TXの送電部103が有する回路(例えばインバータ)にかかる送電電圧(V3と記す)と、共振コンデンサ107の両端にかかる電圧から送電アンテナにかかる送電電圧V1を求めることができる。
 ここで、送電電圧V3とは、例えばTXの送電部103が有するインバータに入力されるインバータ入力電圧、あるいはインバータが出力するインバータ出力電圧である。この場合、送電電圧V3についてもTXが送電電力の設定値から算出してもよい。
 あるいは、TXが、送電電圧V3と共振コンデンサ107の両端にかかる電圧を実際に測定して、それらを用いて送電電圧V1を求めてもよい。あるいは、TXは、測定した送電電圧V3と共振コンデンサ107の両端にかかる電圧の値をRXに送信し、RXが送電電圧V1を求めることで、k値を算出してもよい。
 また、TXまたはRXが第1の測定を実施する際、RXは第3スイッチ部213をOFFにして、受電アンテナ205の端子が開放状態になるように制御してもよい。これにより、図12(A)で示すように受電アンテナの両端を開放状態にすることが可能となる。
 第1の測定にて共振コンデンサ211、受電部203、充電部206、バッテリ207による影響を受けることが無いので、より高精度に結合係数kの測定が可能となる。また、RXの受電部203が有する回路にかかる受電電圧(V4と記す)と、共振コンデンサ211の両端にかかる電圧から受電アンテナにかかる受電電圧V2を求めることができる。
 ここで、受電電圧V4とは、例えばRXの受電部203が有する整流部に入力される整流部入力電圧である。あるいはRXの受電部203が有する回路にかかる受電電圧(V5と記す)と、共振コンデンサ211の両端にかかる電圧から受電アンテナにかかる受電電圧V2を求めることができる。
 ここで、受電電圧V5とは、例えばRXの受電部203が有する整流部から出力される整流部出力電圧である。この場合、RXが、受電電圧V4と共振コンデンサ211の両端にかかる電圧を実際に測定して、それらを用いて受電電圧V2を求めてもよい。
 あるいは、RXが、受電電圧V5と共振コンデンサ211の両端にかかる電圧を実際に測定して、それらを用いて受電電圧V2を求めてもよい。あるいは、RXは、測定した受電電圧V4と共振コンデンサ211の両端にかかる電圧の値をTXに送信し、TXが受電電圧V2を求めることで、k値を算出してもよい。
 あるいは、RXは、測定した受電電圧V5と共振コンデンサ211の両端にかかる電圧の値をTXに送信し、TXが受電電圧V2を求めることで、k値を算出してもよい。
 あるいは、TXまたはRXが第1の測定を実施する際、RXは軽負荷状態または負荷接続状態となるように制御してもよい。RXの負荷の状態を一定にすることで、より高精度に結合係数kの測定が可能となる。
 あるいは、TXまたはRXは、RXが軽負荷状態のときと、負荷接続状態のときの両方の状態において、第1の測定を実施するように制御してもよい。あるいは、TXまたはRXは、RXが3つ以上のそれぞれの負荷状態において、第1の測定を実施するように制御してもよい。複数のRXの負荷状態における結合状態を測定し、それらに基づいて、より高精度に結合状態を判定することができる。
 送電アンテナと受電アンテナとの電磁結合状態を表す指標としては、結合係数以外にも複数の量があり、本開示では、それらを総称して「結合状態指標」と呼ぶ。結合状態指標はいずれも、送電アンテナと受電アンテナとの電磁結合状態に対応する値を有する。
 結合係数以外の、その他の結合状態指標を用いる場合にも同様に本実施形態の内容を適用可能である。
 例えば、結合状態指標として、TXの送電部103が有する回路(例えばインバータ)にかかる送電電圧V3と、RXの受電部203が有する回路(例えば整流部)にかかる受電電圧V4を用いる方法がある。
 これらの電圧の値を用いて送電アンテナと受電アンテナとの結合状態指標の算出処理を行うことができる。あるいは、TXの送電部103が有する回路(例えばインバータ)にかかる送電電圧V3と、RXの受電部203が有する回路(例えば整流部)にかかる電圧V5を用いて送電アンテナと受電アンテナとの結合状態指標の算出が可能である。
 ここで、電圧V5は、例えばRXの受電部203が有する整流部から出力される整流部出力電圧、あるいは、負荷(充電部、バッテリ)に印加される電圧である。TXは送電電圧V3をRXに通知し、RXは通知されたV3と、V4あるいはV5を用いて結合状態指標を算出することが可能となる。
 このとき、TXは送電アンテナの電気特性(例えばL1)を用いて算出される定数をRXに通知し、RXは当該定数を用いて結合状態指標を算出することができる。
 あるいは、RXは受電電圧V4または電圧V5をTXに通知し、TXは通知されたV4またはV5と、V3を用いて結合状態指標の値を算出する。このとき、RXは受電アンテナの電気特性(例えばL2)を用いて算出される定数をTXに通知し、TXは当該定数を用いて結合状態指標を算出することができる。
 TXとRXは、電圧V1からV5の値、自己インダクタンスL1,L2の値、あるいは送電アンテナや受電アンテナの電気特性を表す定数の情報を送受し合う。以下、電圧値の測定のタイミングと、各情報の送受のタイミングについて説明する。
 各電圧値の測定は、例えばPingフェーズに実行される。Pingフェーズでは、TXはRXに対してDPを送信する。よって、DPの送信時に発生するV1,V2,V3,V4,V5のいずれかの電圧値を用いることができる。
 PingフェーズにてTXおよびRXは、V1からV5のいずれかの値を測定してメモリ106またはメモリ208に記憶保持する。
 TXは、RXに対して、V2、V4、V5のいずれか、あるいはすべての電圧値の情報を含むパケットの送信を要求するための所定の送信要求パケットを送信する。RXは、当該送信要求パケットを受信した場合、TXに対して、V2、V4、V5のいずれか、あるいはすべての電圧値の情報を有する所定パケットを送信する。
 TXは、RXから通知されたV2、V4、V5のいずれか、あるいはすべての電圧値の情報を有する所定パケットを受信し、当該情報をメモリ106に記憶する。所定パケットが有する情報には、RXの受電電圧だけでなく、受電電力や、要求する受電電力値、自己インダクタンスL2の値、受電アンテナの電気特性を用いて算出される定数等の情報が含まれてもよい。
 また、RXの温度に関する情報が含まれてもよい。TXは、RXから当該情報を含む信号を受信し、当該情報と結合状態指標とを用いて、より適切な制御を行うことができる。所定パケットとしては、Signal Strength Data packetを使用して、RXの情報をTXに通知することができる。
 あるいは所定パケットは、I&Cフェーズにおける、Identification Data packetまたはExtended Identification Data packetpacketであってもよい。
 またはConfiguration Data packetであってもよい。あるいは、CalibrationフェーズやPower TransferフェーズにおけるPacketであってもよい。
 つまりRP1、RP2、RP0でもよい。なお、TXがDPの送信時に発生する電圧値を用いる例に限定されることはない。SelectionフェーズにてTXがAPの送信時に発生するV1からV5のいずれかの電圧値を用いてもよい。
 あるいは、Power TransferフェーズにてTXがRXに対して送電する時に発生するV1からV5のいずれかの電圧値を用いてもよい。
 RXは、TXに対して、V1、V3のいずれか、あるいはすべての電圧値の情報を含むパケットの送信を要求するための所定の送信要求パケットを送信する。TXは、当該送信要求パケットを受信した場合、RXに対して、V1、V3のいずれか、あるいはすべての電圧値の情報を有する所定パケットを送信する。
 RXは、TXから通知されたV1、V3のいずれか、あるいはすべての電圧値の情報を有する所定パケットを受信し、当該情報をメモリ208に記憶する。所定パケットが有する情報には、TXの電圧だけでなく、送電電力値や送電可能な電力値、自己インダクタンスL1の値、送電アンテナの電気特性を用いて算出される定数等の情報が含まれてもよい。
 また、あるいは異物検出方法(Power Loss法、Q値計測法、波形減衰法)による異物検出結果や、TXの温度や送電アンテナ105の電流値に関する情報が含まれてもよい。
 RXは、TXから当該情報を受信し、当該情報と結合状態指標とを用いて、より適切な制御を行うことができる。また、所定パケットとして、Power Transmitter Capabilities (CAP) Data Packetを使用して、TXの情報をRXに通知することができる。
 あるいは、Power Transmitter Identification (ID) data Packetを使用して、TXの情報をRXに通知することができる。
 なお、TXがDPの送信時に発生する電圧値を用いる例に限定されることはない。SelectionフェーズにてTXがAPの送信時に発生するV1からV5のいずれかの電圧値を用いてもよい。あるいは、Power TransferフェーズにてTXがRXに対して送電する時に発生するV1からV5のいずれかの電圧値を用いてもよい。
 RXは第1の測定を実施する際、共振コンデンサ211と受電部203との間にある第3スイッチ部213をOFFにして、受電アンテナ205と共振コンデンサ211で構成される回路の端子が開放状態になるように制御してもよい。
 これにより、第1の測定の実施において受電部203、充電部206、バッテリ207による影響を受けることがないので、より高精度に結合状態指標の測定が可能となる。あるいは、RXは第1の測定方法を実施する際、上述した軽負荷状態となるように負荷を制御してもよい。
 RXは第1の測定方法を実施する際、上述した負荷接続状態となるように、負荷を制御してもよい。これにより、負荷の状態を所定の状態に保った状態で結合状態指標の測定することが可能となり、より高精度な状態検出が可能となる。
 次に、送電アンテナと受電アンテナの結合状態指標測定法の別例として、第2の測定方法について説明する。第2の測定方法において実施する測定を、以下、第2の測定と呼ぶ。図12(B)は、第2の測定方法を説明するための等価回路図である。
 r1,r2とL1,L2については図12(A)と同じである。1次側(TX)の送電アンテナ(コイル)に関する諸量の定義を下記に示す。
・V6:受電アンテナ側がショート状態のときの送電アンテナの入力電圧(送電電圧)。
・V7:受電アンテナ側がオープン状態のときの送電アンテナの入力電圧(送電電圧)。
・I1:受電アンテナ側がショート状態のときの送電アンテナに流れる電流。
・I2:受電アンテナ側がオープン状態のときの送電アンテナに流れる電流。
 結合係数kは、下記式3により算出することができる。
 k=√(1-Lsc/Lopen)   (式3)
 式3中のLscは、受電アンテナの両端を短絡させた場合の、送電アンテナのインダンクタンスを表す。例えば制御部201は第3スイッチ部213および第2スイッチ部210をON状態(短絡状態)にする。
 この状態で送電アンテナのインダクタンス値を測定することでLsc値を取得できる。送電アンテナのインダクタンス値は、送電アンテナの入力電圧V6および電流I1から求めることができる。
 式3中のLopenは、受電アンテナの両端を開放させた場合の、送電アンテナのインダンクタンスを表す。例えば制御部201は第3スイッチ部213をOFF状態(開放状態)にする。この状態で送電アンテナのインダクタンス値を測定することでLopen値を取得できる。
 送電アンテナのインダクタンス値は、送電アンテナの入力電圧V7および電流I2から求めることができる。第2の測定方法では、結合状態指標(結合係数)を、受電アンテナの両端を短絡にした場合と開放にした場合におけるそれぞれの、送電アンテナの入力電圧と電流から求めることが可能である。
 またTXは、送電部103が含む回路(例えばインバータ)にかかる送電電圧と電流に基づいて結合状態指標を算出することが可能である。この場合、入力電圧V6,V7は送電部103が含む回路(例えばインバータ)にかかる送電電圧を表す。
 ここで、TXの送電部103が含む回路にかかる送電電圧V6,V7とは、例えばインバータ入力電圧、あるいはインバータ出力電圧である。また入力電圧V6,V7は送電アンテナと共振コンデンサから成る直列共振回路の両端子にかかる電圧であってもよい。
 あるいは、送電部103が含む回路(例えばインバータ)にかかる送電電圧と、共振コンデンサ107の両端にかかる電圧を測定し、その結果から送電アンテナにかかる電圧を算出してもよい。
 つまり、送電部103が含む回路(例えばインバータ)にかかる送電電圧と、共振コンデンサ107の両端にかかる電圧の測定結果から、結合状態指標を求めることが可能である。この場合の送電部103が含む回路(例えばインバータ)にかかる送電電圧は、TXが送電電力の設定値から算出してもよい。
 また、図12(B)にて電流I1またはI2は送電アンテナに流れる電流に限定されず、例えば送電部103が含む回路(例えばインバータ)に流れる電流であってもよい。ここで、TXの送電部103が含む回路に流れる電流とは、例えばインバータ入力電流、あるいはインバータ出力電流である。
 受電アンテナのオープン状態およびショート状態については、制御部201が第2スイッチ部210および第3スイッチ部213の制御により実現する例を説明した。これらの状態は受電部203で実現されてもよい。
 またショート状態に代えて、Light Load状態(軽負荷状態)としてもよい。またオープン状態に代えて、Connected Load状態(負荷接続状態)としてもよい。
 第2の測定方法にてTXは、入力電圧V6,V7および電流I1,I2を測定することによって結合状態指標の算出が可能である。よってRXが測定する電圧値や受電アンテナのインダクタンス値等の情報は必要ないので、RXからTXに対する当該情報の通知は不要である。
 ただし、TXが入力電圧V6および電流I1を測定するときに、RXは受電アンテナが含まれる回路の両端子をSHORT(短絡)にする必要がある。また、TXが入力電圧V7および電流I2を測定するときに、RXは受電アンテナが含まれる回路の両端子をOPEN(開放)にする必要がある。
 つまり、TXが入力電圧および電流を測定するタイミングに応じて、RXは受電アンテナが含まれる回路の両端子をSHORT(短絡)またはOPEN(開放)の状態に制御することが必要である。
 当該制御が完了したら、TXは測定を実施する。測定のタイミングについては、TXが決定してRXに通知するか、または、RXが決定してTXに通知する。またRXは、受電アンテナが含まれる回路の両端子をSHORT(短絡)またはOPEN(開放)の状態に制御する制御が完了したら、TXに通知する。
 これらの通知は、TXの第1通信部104とRXの第1通信部204との間で行うWPC規格に基づく通信、または、TXの第2通信部109とRXの第2通信部212との間で行うWPC規格以外の規格による通信によって実施される。
 入力電圧V6,V7および電流I1,I2の測定は、例えばPingフェーズに実行される。Pingフェーズでは、TXはRXに対してDPを送信する。よって、DPの送信時に発生するV6,V7や電流I1,I2の値を用いることができる。
 Pingフェーズにおいて、TXはV6,V7,I1,I2の値を取得してメモリ106に保持し、結合状態指標を算出する。なお、TXがDPの送信時に発生する前記電圧値、電流値を用いる例に限定されることはない。
 例えばSelectionフェーズにてTXがAPの送信時に発生するV6,V7,I1,I2の値を用いてもよい。あるいは、Power TransferフェーズにてTXがRXに対して送電する時に発生するV6,V7,I1,I2の電圧値を用いてもよい。
 本開示では、送電アンテナと受電アンテナの結合状態指標測定法に関し、第1の測定方法および第2の測定方法のいずれも適用可能である。以下では第1または第2の測定方法により取得される結合状態指標に対する状態判定用閾値の設定方法について説明する。
 状態判定とは、送電アンテナと受電アンテナとの間の異物検出に関する判定や、送電アンテナと受電アンテナとの位置ずれの検出に関する判定や、送電アンテナと受電アンテナとが離れていることの検出に関する判定等である。
 第1または第2の測定を実施して、状態判定用閾値を用いて状態異常の有無を判定することが可能である。以下、第1乃至第4の閾値設定方法について説明する。
 第1の閾値設定方法は、送電アンテナと受電アンテナとの間の状態検出のために用いられる結合状態指標に対し、状態異常が無い状態での結合状態指標の値を閾値として設定する方法である。状態検出では、例えば「状態異常有り」、「状態異常の可能性が高い」、「状態異常の可能性が低い」、「状態異常無し」等の判定結果が得られる。
 試験用TXにRXが載置され、かつ、送電アンテナと受電アンテナとの間の状態異常が無い場合を想定する。この場合、送電アンテナを含む試験用TXと受電アンテナを含むRXとの結合状態指標の値を閾値とすることができる。
 事前に測定された当該結合状態指標の値(閾値)はRXがメモリに保持しており、RXは閾値をTXに通知する。TXは当該閾値を用いて状態検出に関する判定処理を行う。この閾値については、RXがTXに対して、WPC規格で規定されるFOD Status Data packet内に含めて送信してもよい。
 あるいは、所定の電力伝送効率が得られる送電アンテナと受電アンテナとの結合状態指標の値を閾値として設定してもよい。状態検出では、例えば、以下の判定結果が得られる。
・「所定の電力伝送効率が得られない」、または、「送電アンテナと受電アンテナとの結合が弱い」。
・「所定の電力伝送効率が得られない可能性が高い」、または、「送電アンテナと受電アンテナとの結合が弱い可能性がある」。
・「所定の電力伝送効率が得られる可能性が高い」、または、「送電アンテナと受電アンテナとの結合状態が良好である可能性がある」。
・「所定の電力伝送効率が得られる」、または、「送電アンテナと受電アンテナとの結合状態が良好である」。
 ここで、RXが試験用TXに載置され、かつ、送電アンテナと受電アンテナとの間の状態異常が無く、所定の電力伝送効率が得られる場合を想定する。この場合、送電アンテナを含む試験用TXと受電アンテナを含むRXとの結合状態指標の値を閾値とすることができる。
 RXは事前に測定された当該結合状態指標の値を閾値としてメモリに保持しており、閾値をTXに通知する。TXは当該閾値を用いて状態検出に関する判定処理を行う。この閾値については、RXがTXに対して、WPC規格で規定されるFOD Status Data packet内に含めて送信してもよい。
 第2の閾値設定方法は、所定の状態において、TXとRXが、第1または第2の測定方法で測定した結合状態指標を閾値として設定する方法である。所定の状態とは、「送電アンテナと受電アンテナとの間に状態異常が無い状態」である。
 当該状態を確認する方法においてPower Loss法による異物検出や、波形減衰法による異物検出や、Q値計測法による異物検出や、後述するTXまたはRXの温度に基づく異物検出等の、TXとRXの状態検出を利用することができる。
 その結果、状態異常が無いと判断された場合、高い確率で「送電アンテナと受電アンテナとの間に状態異常が無い状態」であることを確認できる。つまり、この確認は、第1または第2の測定方法以外の方法および手段により実行される。
 その結果、「状態異常無し」(または「異物無し」)と判定された場合には、第1または第2の測定方法を用いて結合状態指標が測定され、測定結果に基づいて適切な閾値が設定される。
 例えばWPC規格では、NegotiationフェーズまたはRenegotiationフェーズにQ値計測法を用いた異物検出処理が実行される。異物検出処理の結果、「状態異常無し」(または「異物無し」)と判定された場合、NegotiationフェーズまたはRenegotiationフェーズ以降において第1または第2の測定方法を用いて結合状態指標が測定される。
 測定結果に基づいて、より適切な閾値を設定することが可能である。また、Power Loss法による異物検出処理は、Power Transferフェーズ中に実行される。当該異物検出処理の実行後に、第1または第2の測定方法を用いて結合状態指標が測定され、測定結果に基づいて、より適切な閾値を設定することが可能である。
 あるいは、TXは、SelectionフェーズやPingフェーズにてTXが送信するAPあるいはDPを用いて、波形減衰法により測定したQuality Factor等を用いて異物検出処理を実行することができる。
 この場合、異物検出処理が実行されたフェーズ以降に第1または第2の測定方法を用いて結合状態指標が測定され、測定結果に基づいて適切な閾値を設定することが可能である。
 あるいは、上述した波形減衰法による異物検出処理は、Power Transferフェーズ中に実行される。当該異物検出処理の実行後に、第1または第2の測定方法を用いて結合状態指標が測定され、測定結果に基づいて、より適切な閾値を設定することが可能である。
 次に、図13を参照して、第3の閾値設定方法について説明する。図13は、結合状態指標を用いた状態検出における閾値設定方法を説明するための図である。図13にて横軸は送電電力を表し、縦軸は結合状態指標を表す。
 直線状の線分1202で示されるグラフ線上にて、点1200は送電電力値Pt1および結合状態指標値k1に対応し、点1201は送電電力値Pt2および結合状態指標値k2に対応する。
 当該グラフ線上にて、点1203は送電電力値Pt3および結合状態指標値k3に対応する。各結合状態指標値の算出には、上述した第1の測定方法あるいは第2の測定方法を用いることが可能である。
 図3に示したように、RXの受電部203には充電部206、バッテリ207が負荷として接続されるので、負荷の状態によって、算出される結合状態指標値は変化する。負荷の状態によって状態異常の有無を判定するためには、結合状態指標に対する閾値を設定する必要がある。
 まずRXは、TXから送電があった場合、負荷が軽負荷状態となるように制御する。軽負荷状態はRXの負荷に電力が供給されない状態か、または閾値以下の電力しか供給されない状態である。
 あるいはRXの受電電力値が予め定められた所定範囲(以下、「第5の範囲」という)内になる負荷状態である。この状態でのTXの送電電力値をPt1とする。そして、RXはTXに対して、結合状態指標の測定の実行を要求することを示すパケットを送信する。
 あるいは、TXはRXに対して、は結合状態指標の測定の実行を要求することを示すパケットを送信する。TXとRXは、その状態でTX側の送電電圧およびRX側の受電電圧の測定を実施する。
 TXとRXは、上記V1からV7の値や、自己インダクタンスL1,L2の値、あるいは送電アンテナや受電アンテナの電気特性を用いて算出される定数等の情報のやり取りを行い、TXまたはRXは結合状態指標値k1を算出する。
 RXが結合状態指標値k1を算出した場合、その結果をTXに通知する。TXが結合状態指標値k1を算出した場合、その結果と、Pt1をRXに通知する。このときにTXは送電電力値Pt1を認識しており、Pt1とk1とを関連付けるCP1200をメモリに記憶しておく。
 またあるいは、RXはPt1とk1とを関連付けるCP1200をメモリに記憶しておく。次にRXは、TXから送電があった場合にRXの負荷が負荷接続状態となるように制御する。負荷接続状態は、RXの負荷に最大の電力が供給されるか、または閾値以上の電力が供給される状態である。
 ここで、「最大の電力」とは、Reference Powerに近い値の電力である。あるいはRXの受電電力値が予め定められた所定範囲(以下、「第6の範囲」という)内になる負荷状態である。
 ここで、第6の範囲は第5の範囲よりも高い電力値の範囲である。この状態でのTXの送電電力値をPt2とする。そして、RXはTXに対して、結合状態指標の測定の実行を要求することを示すパケットを送信する。あるいは、TXはRXに対して、結合状態指標の測定の実行を要求することを示すパケットを送信する。
 TXとRXは、その状態でTX側の送電電圧およびRX側の受電電圧の測定を実施する。TXとRXは、上記V1からV7の値や、自己インダクタンスL1,L2の値、あるいは送電アンテナや受電アンテナの電気特性を用いて算出される定数等の情報のやり取りを行い、TXまたはRXは結合状態指標値k2を算出する。
 RXが結合状態指標値k2を算出した場合、その結果をTXに通知する。TXが結合状態指標値k2を算出した場合、その結果と、Pt2をRXに通知する。TXは、Pt2とk2とを関連づけるCP1201をメモリに記憶しておく。
 またあるいは、RXはPt2とk2とを関連付けるCP1201をメモリに記憶しておく。続いて、TXは、CP1200とCP1201との間の直線補間を行い、線分1202を生成する。
 線分1202は、TXとRXの周辺に状態異常がない状態における送電電力と結合状態指標との関係を示している。TXは線分1202を用いて、TXとRXの周辺に状態異常がない状態における、送電電力値ごとの結合状態指標値を推定することができる。
 例えば、送電電力値がPt3の場合を想定する。この場合、送電電力値Pt3に対応する線分1202上の点1203から、結合状態指標値k3を推定できる。推定結果に基づいてTXは、送電電力値ごとに、状態異常の有無の判定に用いる閾値を算出することが可能となる。
 例えば、ある送電電力値における状態異常無しの場合の結合状態指標値の推定結果に対して所定値(測定誤差に対応する値)を加味した結合状態指標値を、判定用閾値として設定することができる。
 このように、送電装置100が送電電力値と結合状態指標値との組み合わせを取得するために送電装置100と受電装置200とが行うCalibration処理を、「結合状態指標測定法のCAL処理」と呼ぶ。また、送電装置100および受電装置200は、結合状態指標測定法のCAL処理を複数回実行することができる。
 一度、結合状態指標測定法のCAL処理を実行した後に、再度行う結合状態指標測定法のCAL処理のことを、以下では、「結合状態指標測定法のRecalibration処理」と呼ぶ。
 またRecalibration処理を、RECAL処理と略記する。なお、RXは、負荷に対して軽負荷状態となる制御と、負荷接続状態となる制御を、TXに対して制御を行うことを通知した後に行ってもよい。また、これらの2つの制御はいずれが先に行われてもよい。
 本実施形態において、負荷ごと(または送電電力値ごと)の状態検出の判定用閾値を算出するための動作は、例えばCalibrationフェーズに行われる。当該フェーズにてTXは、Power Loss法による異物検出を行う際に必要となるデータを取得する。
 その際、TXは、RXの負荷状態が軽負荷状態である場合と、RXの負荷状態が負荷接続状態である場合における、それぞれの電力損失量のデータを取得する。そこで、図13におけるCP1200とCP1201の測定は、CalibrationフェーズにてRXが軽負荷状態になった場合と負荷接続状態になった場合に、電力損失の測定と一緒に行うことができる。
 すなわち、TXは、RXから第1の基準受電電力情報を受信した際、Calibrationフェーズで行うべき所定の処理に加えて、CP1200の測定を行う。第1の基準受電電力情報は、WPC規格で規定されるRP1による情報であるが、他のメッセージが用いられてもよい。
 またTXは、RXから第2の基準受電電力情報を受信した際、Calibrationフェーズで行うべき所定の処理に加えて、CP1201の測定を行う。第2の基準受電電力情報は、WPC規格で規定されるRP2による情報であるが、他のメッセージが用いられてもよい。このように、CP1200とCP1201の測定を行う期間を別途設ける必要がないので、より短時間でCP1200とCP1201の測定が可能となる。
 第4の閾値設定方法は、TXまたはRXが、所定の範囲内の値を有する結合状態指標に対して予め閾値を設定する方法である。この閾値については、送電対象となるRXに依存しない共通の値として、予め定められた所定の値をTXあるいはRXが保持する。
 なお、閾値は状況に依らない固定値であってもよいし、状況に応じてTXあるいはRXが決定する可変値であってもよい。例えば、結合状態指標を結合係数kとすると、k値の範囲は「0≦k≦1」である。
 例えば、TXまたはRXは「0≦k<0.2」の場合に「状態異常有り」と判断し、「0.2≦k<0.5」の場合に「状態異常の可能性が高い」と判断する。TXまたはRXは「0.5≦k<0.8」の場合に「状態異常の可能性が低い」と判断し、「0.8≦k≦1」の場合に「状態異常無し」と判断する。
 k値に対する条件のデータは予めメモリに保持されており、当該データに基づいて判断処理が実行される。
 あるいは、TXまたはRXは、例えば、「0≦k<0.2」の場合に「所定の電力伝送効率が得られない」、または「送電アンテナと受電アンテナとの結合が弱い」と判断する。
 TXまたはRXは、「0.2≦k<0.5」の場合に「所定の電力伝送効率が得られない可能性が高い」、または「送電アンテナと受電アンテナとの結合が弱い可能性がある」と判断する。
 TXまたはRXは、「0.5≦k<0.8」の場合に「所定の電力伝送効率が得られる可能性が高い」、または「送電アンテナと受電アンテナとの結合状態が良好である可能性がある」と判断する。
 TXまたはRXは、「0.8≦k≦1」の場合に「所定の電力伝送効率が得られる」、または「送電アンテナと受電アンテナとの結合状態が良好である」と判断する。k値に対する条件のデータは予めメモリに保持されており、当該データに基づいて判断処理が実行される。
 また、結合状態指標を用いた状態検出に関する判定用閾値の設定においても、測定結果または受信情報に基づいて算出される結合状態指標値に対して所定値(測定誤差に対応する値)を加味した値を判定用閾値として設定することができる。なお、閾値は1つとは限らず、複数の閾値を段階的に設定可能であることは上述した通りである。
 次に、第1または第2の測定方法を用いて送電アンテナと受電アンテナとの結合状態を算出するタイミングについて説明する。結合状態指標の算出(測定)は、RXがTXに所定のパケットを送信することで実行される。
 ここで、所定のパケットは、RXがTXに送信するSignal Strength Data packetである。あるいは、I&Cフェーズにおける、Identification Data packetまたはExtended Identification Data packetまたはConfiguration Data packetであってもよい。
 あるいは、CalibrationフェーズやPower TransferフェーズにおけるPacketであってもよい。つまりRP1、RP2、RP0でもよい。
 TXは、所定のパケットをRXから受信した場合、送電アンテナと受電アンテナとの結合状態指標を算出する。そして、TXは上記方法で設定した判定用閾値と、算出した結合状態指標とを比較することによって判定を行う。
 TXは、「状態異常無し」と判定した場合、RXに対して肯定応答ACK、または「状態異常無し」を示す状態情報をRXに送信する。TXは「状態異常の可能性が低い」と判定した場合や、「状態異常の可能性が高い」と判定した場合、それぞれの判定結果を示す状態情報をRXに送信する。
 TXは、「状態異常有り」と判定した場合、RXに対して否定応答NAK、または「状態異常有り」を示す状態情報をRXに送信する。
 あるいは、TXは、「所定の電力伝送効率が得られる」、または「送電アンテナと受電アンテナとの結合状態が良好である」と判定した場合、RXに対して肯定応答ACK、または判定結果を示す状態情報をRXに送信する。
 TXは、「所定の電力伝送効率が得られる可能性が高い」、または「送電アンテナと受電アンテナとの結合状態が良好である可能性がある」と判定した場合、判定結果を示す状態情報をRXに送信する。
 TXは、「所定の電力伝送効率が得られない可能性が高い」、または「送電アンテナと受電アンテナとの結合が弱い可能性がある」と判定した場合、判定結果を示す状態情報をRXに送信する。
 TXは、「所定の電力伝送効率が得られない」、または「送電アンテナと受電アンテナとの結合が弱い」と判定した場合、RXに対して否定応答NAK、または、判定結果を示す状態情報をRXに送信する。
 状態情報とは、例えば、状態に応じた数値情報であり、以下の通りである。
・「状態異常無し」、または、「所定の電力伝送効率が得られる」、または、「送電アンテナと受電アンテナとの結合状態が良好である」、の判定結果に対応する状態情報「0」。
・「状態異常の可能性が低い」、または、「所定の電力伝送効率が得られる可能性が高い」、または、「送電アンテナと受電アンテナとの結合状態が良好である可能性がある」、の判定結果に対応する状態情報「1」。
・「状態異常の可能性が高い」、または、「所定の電力伝送効率が得られない可能性が高い」、または、「送電アンテナと受電アンテナとの結合が弱い可能性がある」、の判定結果に対応する状態情報「2」。
・「状態異常有り」、または、「所定の電力伝送効率が得られない」、または、「送電アンテナと受電アンテナとの結合が弱い」、の判定結果に対応する状態情報「3」。
 あるいは、結合状態指標の算出(測定)は、TXがRXに所定のパケットを送信することで実行される。所定のパケットは、TXがRXに送信するPower Transmitter Capabilities (CAP) Data Packetである。
 あるいは、Power Transmitter Identification (ID) data Packetである。RXは、所定のパケットをTXから受信した場合、送電アンテナと受電アンテナとの結合状態指標を算出する。
 そして、RXは上記方法で設定した判定用閾値と、算出した結合状態指標とを比較することによって状態の判定を行う。RXは、「状態異常無し」と判定した場合、TXに対して当該判定結果を示す状態情報を含む所定のパケットを送信する。
 RXは「状態異常の可能性が低い」と判定した場合や、「状態異常の可能性が高い」と判定した場合、それぞれの判定結果を示す状態情報を含む所定のパケットをTXに送信する。RXは、「状態異常有り」と判定した場合、当該判定結果を示す状態情報を含む所定のパケットをTXに送信する。
 あるいは、RXは、「所定の電力伝送効率が得られる」、または「送電アンテナと受電アンテナとの結合状態が良好である」と判定した場合、TXに対して判定結果を示す状態情報を送信する。
 RXは、「所定の電力伝送効率が得られる可能性が高い」、または「送電アンテナと受電アンテナとの結合状態が良好である可能性がある」と判定した場合、判定結果を示す状態情報をTXに送信する。
 RXは、「所定の電力伝送効率が得られない可能性が高い」、または「送電アンテナと受電アンテナとの結合が弱い可能性がある」と判定した場合、判定結果を示す状態情報をTXに送信する。
 RXは、「所定の電力伝送効率が得られない」、または「送電アンテナと受電アンテナとの結合が弱い」と判定した場合、判定結果を示す状態情報をTXに送信する。状態情報の例は上述したとおりである。
 次に、TXまたはRXの温度に基づく異物検出方法について説明する。TXとRXはそれぞれ、複数の個所に温度センサを有するものとする。特に送電アンテナ105および充電台300や、受電アンテナ205には、その他の箇所に比べてより高い密度で温度センサが配置される。
 TXとRXとの間に存在する異物を、より高精度に検出することが可能となる。TXまたはRXは検出温度に基づく異物検出処理を実行する。TXは、所定のタイミングで、温度センサの検出値を取得する。
 所定のタイミングは、予め定められた所定の周期ごとに発生するか、または、TXがRXから所定のパケットを受信したときに発生する。温度センサの検出値が閾値より大きい場合、TXは異物が存在する可能性が高いと判定する。
 またTXは、所定のタイミングで取得した複数の温度検出値に基づいて温度上昇率を算出する。TXは温度上昇率が閾値より大きい場合、異物が存在する可能性が高いと判定する。
 当該判定結果は所定のパケットでRXに通知される。あるいは、当該判定結果が取得された場合、TXは上述した送電を制限する制御(送電の停止または送電電力の低下)を行う。
 続いて、RXの温度に基づく異物検出処理について説明する。RXは、所定のタイミングで温度センサの検出値を取得する。所定のタイミングは、予め定められた所定の周期ごとに発生するか、または、RXがTXから所定のパケットを受信したときに発生する。
 温度センサの検出値が閾値より大きい場合、RXは異物が存在する可能性が高いと判定する。またRXは、所定のタイミングで取得した複数の温度検出値に基づいて温度上昇率を算出する。
 RXは温度上昇率が閾値より大きい場合、異物が存在する可能性が高いと判定する。RXは判定結果を所定のパケットでTXに通知する。あるいは、当該判定結果が取得された場合、RXはTXに対して所定のパケットを送信して、送電の制限(送電の停止または送電電力の低下)を要求する処理を行う。
 次に、TXの送電アンテナに流れる電流に係る電流値(以下、第1の電流値という)、またはRXの受電アンテナに流れる電流に係る電流値(以下、第2の電流値という)に基づく異物検出方法について説明する。
 TXまたはRXは検出した第1または第2の電流値に基づいて異物検出処理を実行する。TXは、所定のタイミングで第1の電流値を取得する。所定のタイミングは、予め定められた所定の周期ごとに発生するか、または、TXがRXから所定のパケットを受信したときに発生する。
 第1の電流値が閾値より大きい場合、TXは異物が存在する可能性が高いと判定する。またTXは、所定のタイミングで取得した第1の電流値に基づいて電流値の上昇率を算出する。
 TXは電流値の上昇率が閾値より大きい場合、異物が存在する可能性が高いと判定する。当該判定結果は所定のパケットでRXに通知される。あるいは、当該判定結果が取得された場合、TXは送電を制限する制御(送電の停止または送電電力の低下)を行う。
 続いて、RXにおける第2の電流値に基づく異物検出処理について説明する。RXは、所定のタイミングで第2の電流値を取得する。所定のタイミングは、予め定められた所定の周期ごとに発生するか、または、RXがTXから所定のパケットを受信したときに発生する。
 第2の電流値が閾値より大きい場合、RXは異物が存在する可能性が高いと判定する。またRXは、所定のタイミングで取得した第2の電流値に基づいて電流値の上昇率を算出する。RXは電流値の上昇率が閾値より大きい場合、異物が存在する可能性が高いと判定する。
 当該判定結果は所定のパケットでTXに通知される。あるいは、当該判定結果が取得された場合、RXはTXに対して所定のパケットを送信して、送電の制限(送電の停止または送電電力の低下)を要求する処理を行う。以上のように第1または第2の電流値を測定し、測定結果に基づいて、より高精度の異物検出が可能である。
 TXまたはRXの状態異常の検出を行うにあたり、TXとRXは複数の異物検出処理を組み合わせて実行してもよい。つまり、Q値計測法、Power Loss法、波形減衰法、結合状態指標測定法、温度に基づく異物検出処理、送電アンテナまたは受電アンテナに流れる電流に基づく異物検出処理を組み合わせてもよい。
 結合状態指標測定法に基づく異物検出処理を、第1の異物検出処理と表記し、TXの温度に基づく異物検出処理を、第2の異物検出処理と表記し、送電アンテナに流れる電流に基づく異物検出処理を、第3の異物検出処理と表記する。
 第1乃至第3の異物検出処理を実行する主体をTXとする。この場合、TXは第1乃至第3の異物検出処理から選択した異物検出処理を実行し、異物判定結果をRXに通知する。異物判定結果が、「異物が存在する可能性が高い」または「異物が存在する」である場合、RXはTXに対して、所定の異物検出処理の実行を要求するパケットを通知する。
 所定の異物検出処理とは、Q値計測法、Power Loss法、波形減衰法のうち、1つ以上の方法に基づく異物検出処理である。TXは、RXからの実行要求にしたがって、所定の異物検出処理を実行し、異物判定結果をRXに通知する。
 RXは、異物判定結果が、「異物が存在する可能性が高い」または「異物が存在する」である場合、送電の制限を要求するパケット、あるいは上述のRECAL処理を要求するパケットをTXに送信する。送電の制限を要求するパケット、あるいは上述のRECAL処理を要求するパケット(以下、これらのパケットを制限要求パケットという)は、例えば、GP値をより低い値に設定することを要求するパケット、または、Power Loss法のRECAL処理を要求するRP1,RP2である。
 あるいは、波形減衰法のRECAL処理または結合状態指標測定法のRECAL処理を要求するためのパケットである。あるいは、送電の停止を要求するEPTパケットである。
 あるいは、TXは、Q値計測法、Power Loss法、波形減衰法のうち、1つ以上の方法に基づく異物検出処理を実行し、異物判定結果をRXに通知する。RXは、異物判定結果が、「異物が存在する可能性が高い」または「異物が存在する」である場合、TXに対して、第1乃至第3の異物検出処理から選択される異物検出処理の実行を要求するパケットを送信する。
 TXは当該パケットにしたがって第1乃至第3の異物検出処理のいずれか、または複数の処理を実行し、異物判定結果をRXに通知する。RXは、異物判定結果が、「異物が存在する可能性が高い」または「異物が存在する」である場合、制限要求パケットをTXに送信する。
 また、RXの温度に基づく異物検出処理を、第4の異物検出処理と表記し、受電アンテナに流れる電流に基づく異物検出処理を、第5の異物検出処理と表記する。第1、第4、第5の異物検出処理を実行する主体をRXとする。
 この場合、RXは第1、第4、第5の異物検出処理から選択した異物検出処理を実行し、異物判定結果をTXに通知する。異物判定結果が、「異物が存在する可能性が高い」または「異物が存在する」である場合、RXはTXに対して所定の異物検出処理の実行を要求するパケットを通知する。
 所定の異物検出処理とは、Q値計測法、Power Loss法、波形減衰法のうち、1つ以上の方法に基づく異物検出処理である。TXは、RXからの要求にしたがって、所定の異物検出処理を実行し、異物判定結果をRXに通知する。
 RXは、異物検出処理の判定結果が、「異物が存在する可能性が高い」または「異物が存在する」である場合、制限要求パケットをTXに送信する。
 あるいは、TXは、Q値計測法、Power Loss法、波形減衰法のうち、1つ以上の方法に基づく異物検出処理を実行し、異物判定結果をRXに通知する。当該異物判定結果は、「異物が存在する可能性が高い」または「異物が存在する」であるとする。
 この場合、RXは結合状態指標、あるいはRXの温度検出値、あるいはRXの受電アンテナに流れる電流値を取得して異物検出処理を実行し、異物判定結果をTXに通知する。RXは、異物判定結果が、「異物が存在する可能性が高い」または「異物が存在する」である場合、制限要求パケットをTXに送信する。
 上述の例にてTXまたはRXは、第1の異物検出処理と、第2もしくは第4の異物検出処理と、第3もしくは第5の異物検出処理と、その他の異物検出処理とを異なるタイミングで実行する。その他の異物検出処理とは、Q値計測法、Power Loss法、波形減衰法のうち、1つ以上の方法に基づく異物検出処理である。
 この例に限定されることなく、TXまたはRXは、第1の異物検出処理と、第2もしくは第4の異物検出処理と、第3もしくは第5の異物検出処理と、その他の異物検出処理とを同じタイミングで実行してもよい。
 当該タイミングをRX(またはTX)が指定する場合、RX(またはTX)はTX(またはRX)に対して所定のパケットを送信することでタイミングを通知する。例えば、TX(またはRX)は所定のパケットを受信した場合、第2(または第4)の異物検出処理と、Power Loss法による異物検出処理を実行する。
 あるいは、TX(またはRX)は所定のパケットを受信し場合、第2(または第4)の異物検出処理と、波形減衰法による異物検出処理を実行する。
 あるいは、TX(またはRX)は所定のパケットを受信した場合、第2(または第4)の異物検出処理と、Power Loss法による異物検出処理と、波形減衰法による異物検出処理を実行する。異物検出処理については任意の組み合わせが可能であり、予め定められた条件等の設定内容に応じて組み合わせの変更が可能である。
 また、上述の例では、制限要求パケットは、「送電の制限を要求するパケット、あるいは上述のRECAL処理を要求するパケット」とした。これに限らず、上述の制限要求パケットは、「送電の制限を要求するパケット、およびRECAL処理を要求するパケット」の二つのパケットと読み換えてもよい。
 本実施形態では、送電装置に係る物理量の測定処理(CAL処理)に基づく状態検出処理として、上述した複数の異物検出処理のいずれかが行われる。第1の状態検出時に取得される情報と、第1の状態検出にて実行される測定処理よりも後に実行される測定処理に基づく第2の状態検出時に取得される情報に基づいて、送電の制限、あるいはRECAL処理を実行するか否かが決定される。
 送電装置は、RECAL処理の実行を受電装置が送電装置に要求するように決定したとする。この場合、送電装置は第1または第2の状態検出に係る検出結果とRECAL処理の実行要求に係る情報を、受電装置に送信する。本実施形態によれば、送電装置から受電装置への無線電力伝送において、複数の状態検出結果に基づいて、より好適な制御を行うことが可能である。
[第2実施形態]
 次に第2実施形態について説明する。第1実施形態では、Q値計測法、Power Loss法、波形減衰法、結合状態指標測定法、温度に基づく異物検出方法、送電アンテナまたは受電アンテナに流れる電流に基づく異物検出方法を説明した。
 本開示の「状態検出方法」は、これらの方法を指すものとし、いずれの方法を用いてもよい。異物検出方法は状態検出方法の一例である。「異物が存在する」ことは、「状態異常が存在する」ことと換言できる。
 例えば、第1実施形態で「異物が存在することを検出」という表記について、以下では「状態異常を検出」と記載する。なお、本実施形態にて第1実施形態と同様の事項については説明を省略し、主に相違点を説明する。このような説明の省略方法は後述の実施形態でも同じである。
 TXが状態検出方法を実行し、状態異常が検出された場合のTXとRXの動作について説明する。図14はTXの動作を説明するフローチャートである。図15はRXの動作を説明するフローチャートである。
 図14のS1401で処理が開始し、S1402でTXは電源がONとなる。Selectionフェーズ、Pingフェーズを経て、S1403でTXはRXを検出する。I&Cフェーズ、Negotiationフェーズ、Calibrationフェーズを経て、S1404でTXは、検出したRXに対してPower Transferフェーズで送電を開始する。次にS1405の処理に進む。
 S1405でTXは、状態検出方法の実行要求パケット(図15:S1506)をRXから受信したか否かを判定する。当該実行要求パケットについては後述する。TXは、当該実行要求パケットを受信していない場合(S1405でNo)、送電を継続し、S1405の判定処理を繰り返し実行する。また、TXは、当該実行要求パケットを受信した場合(S1405でYes)、S1406の処理に進む。
 S1406でTXは、状態検出方法を実行し、TXに係る物理量の測定を行い、その測定結果と閾値とを比較して、状態異常が存在するか否かを判定する。例えば、TXは状態検出方法を実行した場合、状態異常の可能性(確率)を段階的に判定する。判定結果を以下に示す。
・<状態1>:TXが測定した物理量が閾値に対して大きく下回っており、「状態異常の可能性がとても低い」状態。
・<状態2>:TXが測定した物理量が閾値に対してわずかに下回っており、「状態異常の可能性が低い」状態。
・<状態3>:TXが測定した物理量が閾値に対してわずかに上回っており、「状態異常の可能性が高い」状態。
・<状態4>:TXが測定した物理量が閾値に対して大きく上回っており、「状態異常の可能性がとても高い」状態。
 この例では、TXが測定した物理量が閾値に対して上回ると、状態異常の可能性があると判定される。
 別の例では、TXが測定した物理量が閾値に対して下回ると、状態異常の可能性があると判定される。判定結果を以下に示す。
・<状態1>:TXが測定した物理量が閾値に対して大きく上回っており、「状態異常の可能性がとても低い」状態。
・<状態2>:TXが測定した物理量が閾値に対してわずかに上回っており、「状態異常の可能性が低い」状態。
・<状態3>:TXが測定した物理量が閾値に対してわずかに下回っており、「状態異常の可能性が高い」状態。
・<状態4>:TXが測定した物理量が閾値に対して大きく下回っており、「状態異常の可能性がとても高い」状態。
 この例での<状態3>や<状態4>は、TXが測定した物理量が閾値に基づく範囲外であり、状態異常の可能性があると判定されるが、TXからRXへの送電は可能である状態とする。
 S1406の次にS1407でTXは、状態検出方法を実行した結果、状態異常の可能性があるか否かを判定する。TXは、状態異常の可能性がないか、あるいは状態異常の可能性が低いと判定した場合(S1407でNo)、S1405に移行し、TXはRXに対する送電を継続する。
 例えば、「状態異常の可能性が低い」と判定される場合とは、上記<状態1>または<状態2>が検出された場合である。一方、TXは、状態異常の可能性があると判定した場合(S1407でYes)、S1408の処理に進む。例えば、「状態異常の可能性がある」と判定される場合とは、上記<状態3>または<状態4>が検出された場合である。
 S1408でTXは、RXに対して情報の通知(通信)を行うことの許可を求めるパケットを送信する。あるいはS1408でTXは、RXに対して注意(Attention)を要求するパケットを送信する。
 例えば、当該パケットはWPC規格で定められる応答(ATN)である。RXはTXが送信したATNを受信すると、TXに対してData packetの送信を許可するパケットを送信する。
 あるいは、RXはTXが送信したATNを受信すると、TXに対してData packetの送信を要求するパケットを送信する。具体的には、当該パケットは、WPC規格で定められる、DSR/poll PacketあるいはDSR/poll Data Packetである。
 S1409でTXは、RXからDSR/poll PacketあるいはDSR/poll Data Packetを受信したか否かを判定する。TXは、当該パケットをRXから受信しない場合(S1409でNo)、送電を継続し、S1409の判定処理を繰り返し実行する。また、TXはRXから当該パケットを受信した場合(S1409でYes)、S1410の処理に進む。
 S1410でTXは、RXに対して状態検出結果パケットを送信する。状態検出結果パケットは、TXが状態検出方法を実行した結果を示す情報を含むパケットである。例えばTXは、RXに対して、状態検出方法に関する以下の第1の情報を、状態検出結果パケットに含めて通知する。
・いずれの状態検出方法を実行したかを表す情報。
・状態異常の可能性を表す情報。
・測定された物理量と閾値とを比較した結果を表す指標情報(例えば<状態1>~<状態4>のいずれか)。
 状態検出方法として、Q値計測法、Power Loss法、波形減衰法、結合状態指標測定法、温度に基づく異物検出方法、送電アンテナまたは受電アンテナに流れる電流に基づく異物検出方法がある。
 第1の情報には、これらの状態検出方法のうち、どの方法を用いて状態検出を行ったかを示す情報が含まれる。また、その状態検出方法による状態検出の結果、状態異常の可能性を表す指標情報が第1の情報に含まれる。指標情報は、測定された物理量と閾値とを比較した結果の情報ともいえる。
 次にS1411でTXは、RXに対してRECAL処理要求パケットを送信する。RECAL処理要求パケットは、RECAL処理を要求する情報を含むパケットである。例えばTXは、RXに対して、RECAL処理要求に関する以下の第2の情報を、RECAL処理要求パケットに含めて通知する。
・Power Loss法のRECAL処理の実行を要求するか否かを示す情報。
・波形減衰法のRECAL処理の実行を要求するか否かを示す情報。
・結合状態指標測定法のRECAL処理の実行を要求するか否かを示す情報。
・Power Loss法、または波形減衰法、または結合状態指標測定法の実行の要求をするRECAL処理の種類を表す情報。
 ここで、「RECAL処理の種類」は、以下の第1または第2のRECAL処理を表す。
・第1のRECAL処理
 すでに存在するキャリブレーションポイント、あるいはキャリブレーションポイント間の補間処理を行った線分は破棄される。RXはTXにRP1、RP2を再度送信し、TXは新たなキャリブレーションポイントを作成し、あるいはキャリブレーションポイント間の補間を行った線分を作成する。
・第2のRECAL処理
 すでに存在するキャリブレーションポイント、あるいはキャリブレーションポイント間の補間を行った線分は維持される。RXはTXにRP2を送信し、TXはすでに存在するキャリブレーションポイント、あるいはキャリブレーションポイント間の補間を行った線分に対して新たなキャリブレーションポイントを追加する。
 例えば、TXが状態検出方法を実行し、「状態異常の可能性が高い」または「状態異常の可能性がとても高い」と判定した場合を想定する。
 「状態異常の可能性が低い」状態のときに実行されたCAL処理にて作成されたキャリブレーションポイント、あるいはキャリブレーションポイント間の補間が行われた線分に関して、状態異常の発生によって、ずれが生じる可能性がある。
 そこで、状態異常の可能性に応じて、RECAL処理を行う必要がある。したがって第2の情報は、RECAL処理の実行を要求するか否かの情報を含む。そして第2の情報は、どの状態検出方法のRECAL処理であるかを示す情報を含む。
 次にS1412でTXはRXから、RECAL処理の実行要求パケットを受信する。当該実行要求パケットは、例えばRP1、RP2である。S1413でTXは、受信したRECAL処理の実行要求パケット内の情報に基づいて、RECAL処理を実行する。
 RECAL処理を実行した回数を計数するカウンタの変数をAと表記する。S1414でTXは、変数Aの値を1だけ増加させる(インクリメント)。次にS1415の処理に進む。
 S1415でTXは、カウンタの変数Aの値が所定の回数(閾値)以上であるか否かを判定する。TXは判定の結果、変数Aの値が所定の回数以上であると判定した場合(S1415でYes)、S1416の処理に進む。
 また、変数Aの値が所定の回数未満であると判定した場合(S1415でNo)、S1405に移行し、TXはRXに対する送電を継続する。S1416でTXは、送電電力を制限する制御(RXが受電する電力を制限する制御)を行い、S1417で一連の処理を終了する。
 続いて、図15を参照して、RXの動作について説明する。S1501で処理が開始し、S1502でRXは電源がONとなる。S1503でRXがTXに載置されると、Selectionフェーズ、Pingフェーズを経て、RXはTXによって検出される。
 I&Cフェーズ、Negotiationフェーズ、Calibrationフェーズを経て、S1504でRXは、Power TransferフェーズにてTXから送電される電力の受電を開始する。
 次にS1505でRXは、状態検出方法の実行をTXに要求するか否かを判断する。RXは、所定の条件を満たす場合(S1505でYes)に、TXに対して状態検出方法の実行を要求することを決定し、S1506の処理に進む。
 一方、RXは、所定の条件を満たさない場合(S1505でNo)、TXに対して状態検出方法の実行を要求しないことを決定して受電を継続し、S1505の処理が繰り返し実行される。
 ここでS1505における「所定の条件」について説明する。この条件は、例えばTXまたはRXが以下に示すいずれか1つ以上の検出をしたことである。
・TXとRXとの間の通信にエラーが発生したこと。
・TXからRXへの送電電力の低下が観測されたこと。
・取得されたキャリブレーションデータが異常値であること。
・TXまたRXにおいて温度の上昇が観測されること。
・状態検出方法において状態異常が存在する可能性が高いこと。
・状態検出方法において状態異常が存在する可能性が高いことを示す情報をRXがTXから受信したこと。
 あるいは、「所定の条件」は以下の場合に相当する。
・TXからRXに対して送電する送電電力をより高くするか、または低くする場合。
・TXまたはRXが保持する、TXの送電電力に関する情報(設定値)あるいはRXの受電電力に関する情報(設定値)が変更される場合。
・状態検出方法の実行において使用される閾値を設定するための測定処理(CAL処理)を実施する場合。
・RXがTXに対して、RXの状態(例えば、RXが受電している受電電力等)を通知する場合。
 RXでは、上述した「所定の条件」が予め設定されている。RXは、設定された「所定の条件」のうちの1つ以上を満たす場合に状態検出を行うと決定する。なお、「所定の条件」としては、例示した事項以外に基づく条件が設定されてもよいし、また、任意の条件が設定されてもよい。
 状態検出方法を実行するタイミングについては、RXが決定するのではなく、TXが決定し、状態検出方法を適時に実行してもよい。TXは「所定の条件」を満たす適切なタイミングで状態検出方法を実行することが可能である。
 S1506でRXは、TXに対して、状態検出方法の実行要求パケットを送信し、S1507の処理に進む。そして、S1507でRXは、TXからATN(図14:S1408)を受信したか否かを判定する。
 RXがTXからATNを受信した場合(S1507でYes)、S1508の処理に進む。また、RXがTXからATNを受信しない場合(S1507でNo)、RXは受電を継続し、ATNを受信するまでS1507の判定処理が繰り返し実行される。
 S1508でRXはTXに対して、TXがData Packetの送信を許可するパケット(DSR/poll PacketあるいはDSR/poll Data Packet)を送信する。
 S1509でRXは、送電装置から状態検出結果パケット(図14:S1410)を受信したか否かを判定する。S1509でRXがTXから状態検出結果パケットを受信したと判定された場合、S1510の処理に進む。
 状態検出結果パケットが受信されていないと判定された場合には当該パケットが受信されるまでS1509の判定処理が繰り返し実行される。S1510でRXは、TXからRECAL処理要求パケット(図14:S1411)を受信したか否かを判定する。
 S1510でRXがTXからRECAL処理要求パケットを受信したと判定された場合、S1511の処理に進む。RECAL処理要求パケットが受信されていないと判定された場合には当該パケットが受信されるまでS1510の判定処理が繰り返し実行される。
 S1511でRXはTXに対して、RECAL処理の実行要求パケットを送信する。次のS1512でRXは、送電電力を制限する制御を行うためのパケットをTXから受信したか否かを判定する。
 TXの判定の結果、RXは、TXから当該パケットを受信した場合(S1512でYes)、S1513の処理に進む。またRXは、TXから当該パケットを受信しない場合(S1512でNo)、S1505に移行して受電を継続する。
 S1513でRXは、送電電力を制限するための制御(RXが受電する電力を制限するための制御)を行い、S1514で一連の処理を終了する。
 本実施形態において、例えばTXはRXに対して、状態検出結果パケットを送信(図14:S1410)した後、再度、RXに対してATNを送信する(S1408)場合を想定する。
 この場合、RXはTXが送信したATNを受信すると(図15:S1507でYes)、TXに対して、DSR/poll PacketあるいはDSR/poll Data Packetを送信する(S1508)。
 TXはDSR/poll PacketあるいはDSR/poll Data Packetを受信すると(S1409でYes)、S1411の処理に進む。つまりTXはRXに対して、RECAL処理要求パケットを送信する。このことは、後述する第3実施形態におけるTXとRXでも同様である。
 上述の第1または第2の情報を説明した箇所で示した情報については、少なくとも1つの情報が、TXからRXに対して送信される。第1または第2の情報の情報は、状態異常の可能性を表す情報に基づいて決定される。
 例えば、状態異常の可能性がある(<状態3>または<状態4>)と判定された場合、図14のS1410でTXがRXに送信する状態検出結果パケットは、以下の情報を含む。
・<状態3>の場合
 第1の情報は、実行した状態検出方法を示す情報、および、「状態異常の可能性が高い」状態であることを示す情報を含む。
・<状態4>の場合
 第1の情報は、実行した状態検出方法を示す情報、および、「状態異常の可能性がとても高い」状態であることを示す情報を含む。
 また、図14のS1411でTXがRXに送信するRECAL処理要求パケットは、以下の情報を含む。
・<状態3>の場合
・第2の情報は、Power Loss法、波形減衰法、結合状態指標測定法の各RECAL処理のうち、少なくとも1つのRECAL処理を実行することを要求する情報、および、第2のRECAL処理を実行することを要求する情報を含む。
・<状態4>の場合
・第2の情報は、Power Loss法、波形減衰法、結合状態指標測定法の各RECAL処理のうち、少なくとも1つのRECAL処理を実行することを要求する情報、および、第1のRECAL処理を実行することを要求する情報を含む。
 あるいは、TXは第1および第2の情報を同一のパケットでRXに送信してもよい。これにより、「状態異常有り」あるいは「状態異常の可能性が高い」と判定された場合にTXとRXは、当該判定結果に応じた制御を、早期に、かつ適切に実行することが可能となる。
 次に、TXが状態検出方法を複数回実行した結果、<状態3>または<状態4>の判定結果が複数回取得された場合の制御について説明する。判定の結果、「状態異常の可能性が高い」あるいは「状態異常の可能性がとても高い」として検出される状態(以下、第2の検出状態ともいう)である場合にRECAL処理が実行される。
 そしてTXは状態検出方法を実行し、再度、第2の検出状態であると判定したとする。この場合、TXは再度、RECAL処理を実行する。本来、CAL処理は、状態異常が無いとして検出される第1の検出状態のときに実行される処理である。
 第2の検出状態である場合にRECAL処理を実行することは、CPあるいはCP間の補間を行った線分が変更されることを意味する。つまり、CAL処理で作成された理想的なCPあるいはCP間の補間を行った線分は、第2の検出状態におけるCPあるいはCP間の補間を行った線分に置換されることになる。
 状態異常の可能性が有ることが複数回検出されると、RECAL処理は複数回実行される。この場合、RECAL処理が実行されるたびに、第1の検出状態でのCPあるいはCP間の補間を行った線分から外れていくことになる。
 その結果、状態検出方法を実行する上で基準となるCP、あるいはCP間の補間を行った線分の信頼度が低下すると、高精度な状態異常検出ができなくなる可能性がある。
 そこで、TXが第2の検出状態を複数回検出し、RECAL処理(第1または第2のRECAL処理)を所定の回数以上実行しなければならない場合、TXとRXは、TXが送電する電力を制限し、あるいは、RXが受電する電力を制限する。TXが送電する電力を制限する方法、あるいは、RXが受電する電力を制限する方法は、以下の通りである。
 TXは第2の情報でRECAL処理を実行することを要求し、かつ所定の情報(以下、第3の情報という)でTXの送電電力を制御する。第3の情報は、TXの送電電力が所定の電力値以下になるように制御するための情報である。
 あるいは、TXはRXの負荷へ出力(供給)可能な最大負荷電力値を所定の電力値以下になるように制御する。ここで所定の電力値とは、例えば5(ワット)である。あるいは、TXは、TXまたはRXのモードを切り替えるための所定の情報(以下、第4の情報という)をRXに送信する。第4の情報は、例えば電力伝送を最大5ワットまでしかできないモードへの切り替えを要求することを示す情報である。
 あるいは、RECAL処理を所定の回数以上実行しなければならない場合、TXはRXに対して、EPTパケットの送信を要求するパケットを送信する。当該パケットを受信したRXはTXに対して、EPTパケットを送信し、Power Transferフェーズを終了させる。
 あるいは、TXは第2の検出状態を複数回検出し、RECAL処理を所定の回数以上RXに要求する。RXは所定の回数以上のRECAL処理の実行を要求されると、GPの値が所定の電力値以下になるようにTXと交渉する制御を行う。
 ここで所定の電力値とは、例えば5(ワット)である。あるいは、RXは、TXまたはRXのモードを、所定のモードに切り替えることを要求する情報を所定のPacketに含めてTXに送信する。所定のモードとは、電力伝送を最大5ワットまでしかできない、WPC規格で規定されるBasic Power Profile(BPP)のモードである。
 ここで、GPを5ワット以下になるように設定することの意味について説明する。TXとRXとの間に異物が存在する状態でTXがRXに対して送電を行う場合、異物が発熱する可能性がある。
 異物の発熱量は、TXからの送電電力が大きいほど、大きくなる。逆に言うと、TXの送電電力(RXの受電電力)を所定値以下に制限すれば、発熱量を所定範囲(安全な範囲)内に抑えることができる。
 WPC規格では、異物検出が実行されて、異物が存在する可能性がある場合においても、GPが5ワット以下であればTXからRXへの送電が認められるケースが存在する。よって、上記所定の電力値を5(ワット)として送電制御を行うことが可能である。
 同様の理由により、TXの送電電力が5ワット以下になるように制御されるか、あるいは、TXがRXの負荷へ出力(供給)可能な最大負荷電力値が5ワット以下になるように制御される。あるいは、所定の回数以上のRECAL処理の実行を要求された場合にRXは、TXに対してEPTパケットを送信し、Power Transferフェーズを終了させる。
 図14から図16を参照して、上述したTXとRXの動作について説明する。図16は、TXとRXの動作を表すシーケンス図であり、TXの動作を左側に示し、RXの動作を右側に示す。
 図16の例ではTXとRXの電源がONとなり、RXがTXに載置されるとSelectionフェーズ、Pingフェーズに移行する。TXはRXの載置を検知して送電を開始し、RXは受電を開始する。
 状態検出に係る測定処理(CAL処理)の実行後、RXは状態検出方法の実行をTXに要求し、TXはRXからの実行要求にしたがって状態検出方法を実行する。TXの状態異常の可能性があると判定された場合、TXはRXに対して、状態検出結果の情報を有するパケットを送信し、RECAL処理要求パケットを送信する。
 RXはTXに対してRECAL処理の実行要求パケットを送信する。TXは当該実行要求パケットにしたがってRECAL処理を実行する。
 図14のS1410でTXはRXに対して状態検出結果パケットを送信する。S1509でRXがTXからの状態検出結果パケットを受信したと判定された場合(S1509でYes)、S1510の処理に進む。
 RXがTXからRECAL処理要求パケットを受信した場合(S1510でYes)、RXはRECAL処理要求パケット内の第2の情報により、RECAL処理の実行をTXから要求されていることを認識する。
 S1511でRXはTXに対して、RECAL処理実行要求パケット(RP1、RP2)を送信する。当該実行要求パケットをRXから受信したTXは、当該実行要求パケット内の情報に基づいてS1413でRECAL処理を実行する。
 S1414でカウンタの変数Aの値が1増加されて、S1415で、変数Aの値が所定の回数以上であると判定された場合(S1415でYes)、S1416でTXは、送電電力あるいはRXが受電する電力を制限する制御を行う。
 変数Aの値が所定の回数未満であると判定された場合(S1415でNo)、S1405に移行し、TXは送電を継続する。RXは、TXから送電電力を制限する制御を行うためのパケットを受信した場合(S1512でYes)、S1513に移行してRXが受電する電力を制限するための制御を実行する。
 図14、図15のフローチャートにて、RECAL処理の実行回数を計数する機能は、S1413、S1414で実現されるが、これ以外の処理位置で実現してもよい。例えば、S1413からS1415の処理は、S1410またはS1411の後に実行されてもよい。また、S1413からS1415の処理は、S1407で肯定(Yes)の判定結果が得られた後(S1408の前)に実行されてもよい。
 その理由は、上述の処理位置でS1413からS1415の処理を実行してもTXは、それらの時点で、その後の動作によって、状態異常が無い状態でのCPあるいはCP間の補間を行った線分から外れていってしまうことを認識できるからである。
 ここで、TXの送電電力あるいはRXの受電電力に係る、GPの決定方法について説明する。送電電力を制限する制御の動作は、当該方法に基づいて実施される。NegotiationフェーズあるいはRenegotiationフェーズにてTXとRXとが交渉を行ってGPを決定する方法がある。
 RXはTXに対して、Requested Load Powerの情報を送信する。Requested Load Powerとは、RXがTXに要求する、負荷へ出力する電力であり、RXの負荷で消費される電力である。
 負荷とは、RXあるいはRXの受電部から電力が供給されるシステムのことであり、例えばRXの充電部206、バッテリ207が挙げられる。一方、TXは、Potential Load Powerの値、またはNegotiable Load Powerの値を予め有する。
 Potential Load Powerとは、TXが交渉可能であって、RXの負荷へ出力(供給)可能な最大負荷電力値(Highest Load Power Level)である。
 また、Negotiable Load Powerとは、所定の期間中あるいは所定の条件下にて、TXが交渉可能であって、RXの負荷へ出力(供給)可能な最大負荷電力値(Highest Load Power Level)である。
 Requested Load Powerの値が、Negotiable Load Powerの値よりも小さい場合に交渉が成立する。TXとRXはRequested Load Powerの値をGPの値として設定してメモリに保持する。
 つまり、TXは、RXからRequested Load Powerの値を受信し、その値がNegotiable Load Powerの値よりも小さい場合、肯定応答ACKをRXに送信する。
 TXとRXはRequested Load Powerの値をGPの値として設定してメモリに保持する。またTXは、RXからRequested Load Powerの値を受信し、その値がNegotiable Load Powerの値よりも大きい場合、否定応答NAKをRXに送信する。
 RXはRequested Load Powerの値を小さくして、再度TXに対してRequested Load Powerの値を示す情報を送信する。RXは、TXから肯定応答ACKを受信するまで、この処理を繰り返す。
 RXがTXから肯定応答ACKを受信すると、TXとRXはRequested Load Powerの値をGPの値として設定してメモリに保持する。
 GPの値を所定の値以下に設定することで、TXの送電電力やRXの受電電力を低下させることができる。そのためにTXは、Potential Load PowerまたはNegotiable Load Powerを所定の値以下に設定する。
 あるいは、RXは、Requested Load Powerの値を所定の値以下に設定する。本開示において、TXがRXに対して、TXの送電電力やRXの受電電力を低下させることを要求する場合、TXあるいはRXは上記の動作を行う。
 あるいは、RXがTXに対して、TXの送電電力やRXの受電電力を低下させることを要求する場合、TXあるいはRXは上記の動作を行う。
 また、GPの値を所定の値以上に設定することで、TXの送電電力やRXの受電電力を増加させることができる。そのためにTXは、Potential Load PowerまたはNegotiable Load Powerを所定の値以上に設定する。
 あるいは、RXは、Requested Load Powerの値を所定の値以上に設定する。本開示において、TXがRXに対して、TXの送電電力やRXの受電電力を増加させることを要求する場合、TXあるいはRXは上記の動作を行う。
 状態検出方法においては、Q値計測法、波形減衰法、結合状態指標測定法、温度に基づく異物検出処理、送電アンテナに流れる電流に基づく異物検出処理が行われる。この場合の、TXの状態異常の可能性(確率)の判定方法について説明する。
 例えば、TXはいずれかの状態検出方法を実行し、<状態3>あるいは<状態4>と判定したとする。この場合、TXは、以降の状態検出方法で用いる閾値を設定する。状態検出方法を実行して<状態3>あるいは<状態4>であると認識された時に測定される物理量を基準として閾値が設定される。
 つまりTXは、<状態3>あるいは<状態4>になったと判定した時に測定された物理量から離れる量および方向(プラス方向またはマイナス方向)の情報に基づいて、<状態1>から<状態4>に関する判定を行う。
 本実施形態では、上記状態検出方法が実行され、「状態異常の可能性が高い」または「状態異常の可能性がとても高い」と判定された場合、RECAL処理が実行される。RECAL処理が所定の回数以上実行される場合には、TXの送電電力またはRXの受電電力を制限する制御が行われる。
[第3実施形態]
 次に第3実施形態について説明する。本実施形態では、TXが状態検出方法を実行し、すくなくとも1回、「状態異常の可能性が高い」あるいは「状態異常の可能性がとても高い」と判定された場合、第2実施形態で説明した制御が行われる。
 その後、再度TXが状態検出方法を実行し、装置の状態が改善されたことを示す所定の条件を満たす場合に行われる制御について説明する。図14、図17、図18を参照してTXの動作を説明し、図15を参照してRXの動作を説明する。
 TXは状態検出方法を実行し、「状態異常の可能性が高い」あるいは「状態異常の可能性がとても高い」と判定した場合に、第2実施形態で示した制御を行う。ここまでの動作は、図17のS1401~S1413の処理に対応する動作であり、それらの説明を割愛する。
 図15のS1505でRXはTXに対し、状態検出方法の実行を要求するか否かを判断する。RXは、所定の条件を満たす場合、TXに対して上述した状態検出方法の実行を要求することを決定し(S1505でYes)、S1506へ進む。
 そしてS1506でRXはTXに対し、状態検出方法の実行要求パケットを送信する。一方、RXは、所定の条件を満たさない場合、TXに対して状態検出方法の実行を要求しないことを決定し(S1505でNo)、受電を継続する。所定の条件については第2実施形態で説明した通りである。
 図17のS1413の次に図18のS1801の処理に進み、TXはRXから状態検出方法の実行要求パケット(図15:S1506)を受信したか否かを判定する。TXがRXから状態検出方法の実行要求パケットを受信した場合(S1801でYes)、S1802の処理に進む。
 また、TXがRXから状態検出方法の実行要求パケットを受信しない場合(S1801でNo)、TXは送電を継続し、S1801の判定処理が繰り返し実行される。
 S1802でTXは状態検出方法を実行する。なお、状態検出方法を実行するタイミングについては、RXが決定するのではなく、TXが決定してもよい。TXは上述した所定の条件を満たすと判定した場合、状態検出方法を実行してもよい。
 TXは、TXに係る物理量の測定を行い、その測定結果と閾値とを比較して、状態異常が存在するか否かを判定する。本実施形態では、TXが状態検出方法を実行した場合、TXは状態異常の可能性(確率)を段階的に判定するものとする。
 状態異常の可能性(確率)の判定については、第2実施形態で説明した通りである。S1802の次にS1803の処理に進む。
 S1803でTXは、状態検出方法を実行した結果、状態異常の可能性があるか否かを判定する。例えば、「状態異常の可能性有り」の判定結果は、上記<状態3>または<状態4>が検出される場合に相当する。
 状態異常の可能性が有ると判定された場合(S1803でYes)、図18のノードBから図14のノードBを介してS1408の処理に移行する。図14のノードBはS1407の判定結果でYesとなった後に接続されるノードである。
 一方、「状態異常の可能性が無い」または「状態異常の可能性が低い」と判定された場合(S1803でNo)、S1804の処理に進む。例えば、「状態異常の可能性が低い」の判定結果は、上記<状態1>または<状態2>が検出される場合、あるいは、後述する<状態5>が検出される場合に相当する。
 S1804でTXは、以前に、状態異常の可能性が高い状態と判定し、かつRECAL処理を実行したことがあるか否かを判定する。S1804で、以前に、状態異常の可能性が高い状態にてRECAL処理を実行したことが無いと判定された場合(S1804でNo)、TXは送電を継続し、S1801に移行する。
 また、状態異常の可能性が高い状態にてRECAL処理を実行したことがあると判定された場合(S1804でYes)、S1805の処理に進む。S1805でTXは、後述する<状態5>が検出されたか否かを判定する。
 <状態5>とは、装置の状態が改善されたことを示す所定の条件を満たす状態である。例えば、TXとRXとの間に存在していた異物が取り除かれた状態である。S1805で、<状態5>が検出されなかったと判定された場合(S1805でNo)、TXは送電を継続し、S1801に移行する。
 例えば、「<状態5>が検出されなかった」の判定結果は、上記<状態1>または<状態2>が検出される場合に相当する。また、<状態5>が検出されたと判定された場合(S1805でYes)、S1806の処理に進む。
 なお、S1804とS1805の処理の実行順序は、逆でもよい。過去において状態異常の可能性が高い状態にてRECAL処理が実行されていた場合、CPあるいはCP間の補間を行った線分が作成されている。
 よって、例えばS1805で<状態5>が検出されたと判定された場合には、RECAL処理を実行する必要がある。その理由は、装置の状態が改善された状態(状態異常の可能性が低い状態)において、CPあるいはCP間の補間を行った線分を作成しなければ、それ以後に高精度な状態検出を行えなくなるからである。
 S1806以降の処理は、RECAL処理を実行するための処理である。S1806でTXは、ATNをRXに送信する。図15のS1507でRXは、TXが送信したATNを受信しない場合(S1507でNo)、受電を継続し、ATNを受信するまで待機する。
 そして、RXはTXが送信したATNを受信した場合(S1507でYes)、S1508の処理に進む。S1508でRXはTXに対して、TXがData packetの送信を許可するパケットを送信する。
 当該パケットは、WPC規格で定められる、DSR/poll PacketあるいはDSR/poll Data Packetである。
 S1807でTXは、RXが送信したDSR/poll PacketあるいはDSR/poll Data Packetを受信したか否かを判定する。TXは当該パケットを受信しない場合(S1807でNo)、送電を継続し、当該パケットを受信するまで待機する。
 そして、TXはRXから当該パケットを受信すると(S1807でYes)、S1808の処理に進む。S1808でTXはRXに対して、状態検出方法の実行結果を示す情報を含む状態検出結果パケットを送信する。次にS1809でTXはRXに対して、RECAL処理を要求する情報を含むRECAL処理要求パケットを送信する。
 本実施形態では、すくなくとも1回、「状態異常の可能性が高い」あるいは「状態異常の可能性がとても高い」と判定された場合に第2実施形態で説明した制御が行われる。その後、装置の状態が改善されたことを示す所定の条件を満たす状態が検出される。
 この状態を<状態5>とする。例えば、TXとRXとの間に存在していた異物が取り除かれた状態である。<状態1>や<状態2>は、TXとRXとの間に異物が存在していても発生し得る状態である(異物が存在した状態で、判定用の閾値であるCPやCP間を補間する線分が作成されるため)。
 これに対し、<状態5>は、状態異常を引き起こしている原因が存在しなくなった状態(状態異常が無いか、あるいは状態異常の可能性が低い状態)に相当する。なお、<状態5>の検出方法については後述する。
 TXは、<状態5>が検出された場合、以下の第1の情報を含む状態検出結果パケットをRXに送信する。
・第1の情報は、実行した状態検出方法を示す情報、および、現在の状態が<状態5>であることを示す情報を含む。
 また、TXは、<状態5>が検出された場合、以下の第2の情報を含むRECAL処理要求パケットをRXに送信する。
・第2の情報は、Power Loss法、波形減衰法、結合状態指標測定法のうち、少なくとも1つの方法に基づくRECAL処理を実行することを要求する情報、および、第1もしくは第2のRECAL処理を実行することを要求する情報を含む。
 あるいは、TXは、<状態5>が検出された場合、図18のS1808で、以下の第1の情報を含む状態検出結果パケットをRXに送信してもよい。
・第1の情報は、実行した状態検出方法を示す情報、および、現在の状態が<状態1>であることを示す情報を含む。
 <状態5>が検出された場合にRXは、TXから上述した所定の情報を含むRECAL処理要求パケットと状態検出結果パケットを受信することで、<状態5>となったことを認識可能である。
 TXは、上述した第1および第2の情報を同一のパケットでRXに送信してもよい。これにより、「状態異常有り」あるいは「状態異常の可能性が高い」と判定された場合、TXとRXはそれに応じた制御を、早期に、かつ適切に実行することが可能となる。
 TXは、当該判定が行われた段階で、第2実施形態で説明した制御を行い、RECAL処理を実行する。つまり、<状態3>または<状態4>が検出された場合にCPあるいはCP間の補間を行った線分が作成される。
 その後、<状態5>が検出された場合には、状態が改善されたか、あるいは状態異常が無くなった可能性が高い。よって、状態が変化したことにより、RECAL処理が実行される。
 状態が改善されたか、あるいは状態異常が無くなった可能性の高い状態におけるCPあるいはCP間の補間を行った線分を基準として、状態検出方法を実行できるので、より高精度な状態検出が可能となる。
 図15にてRXはTXから、状態検出結果パケットを受信し(S1509でYes)、RECAL処理要求パケットを受信する(S1510でYes)。RXは、RECAL処理要求パケット内の第2の情報により、RECALの実行を要求されていることを認識する。そして、RXはTXに対して、RECAL処理の実行要求パケット(RP1、RP2)を送信する(S1511)。
 図18のS1810でTXはRXから、RECAL処理の実行要求パケット(RP1、RP2)を受信する。S1811でTXは、当該実行要求パケット内の情報に基づいて、RECAL処理を実行する。そしてS1812で一連の処理を終了する。
 次に、<状態5>の検出方法について、状態検出方法ごとに説明する。
・状態検出方法がQ値計測法である場合
 TXはQ値計測法を実行する上で、第1の閾値を設定しているものとする。この場合、TXは、状態異常を検出するために設定された第1の閾値とは別に、<状態5>を検出するための第2の閾値を新たに設定する。
 TXはQ値の測定値が、第2の閾値よりも大きくなった場合に<状態5>と判定する。あるいは、TXは<状態1>または<状態2>が検出される時に測定されるQ値をメモリに記憶しておく。その後、TXは状態検出方法を実行した時に測定されるQ値と、記憶されているQ値との差を算出する。
 差の値が所定の値以内である場合、その差の値に応じて<状態5>になったことが判定される。あるいは、TXは<状態3>または<状態4>が検出される時に測定されるQ値をメモリに記憶しておく。
 その後、TXは状態検出方法を実行した時に測定されるQ値と、記憶されているQ値(記憶値)とを比較する。Q値の測定値が記憶値よりも高く、かつ測定値と記憶値との差が所定の値以上である場合、その差の値に応じて<状態5>になったと判定される。
・状態検出方法がPower Loss法である場合
 TXは、「状態異常の可能性が高い」あるいは「状態異常の可能性がとても高い」と判定した段階で、第1実施形態で説明した制御を行い、RECAL処理を実行する。
 つまり、<状態3>または<状態4>が検出された場合にCPあるいはCP間の補間を行った線分が作成され、それを基準として設定された閾値を用いてPower Loss法が実行される。
 上述した状態で再度Power Loss法が実行されて、TXが算出する、状態異常による電力損失(Ploss_FO)が第1の値であったとする。CPあるいはCP間の補間を行った線分に基づいて導出される電力損失に基づく第1の閾値よりも、TXが算出する、状態異常による電力損失が小さいとする。
 この場合、<状態1>または<状態2>と判定される。TXは、状態変化が無いか、あるいは状態変化が無い可能性が高いと判定し、上述した第1乃至第3の情報を含むパケットをRXに送信しないものとする。
 あるいは、TXが<状態2>を検出した場合、Power Loss法とは異なる状態検出方法を実行することをRXに対して要求してもよい。また、上述した状態で再度Power Loss法が実行されて、TXが算出する、状態異常による電力損失(Ploss_FO)が第2の値であったとする。
 第2の値をプラスの値(電力損失有り)であるとする。CPあるいはCP間の補間を行った線分に基づいて導出される電力損失に基づく第1の閾値よりも、TXが算出する状態異常による電力損失が大きいとする。この場合、<状態3>または<状態4>と判定され、第2実施形態と同様の制御が行われる。
 一方、<状態5>が検出された場合に、<状態3>または<状態4>にて設定された閾値に基づいてPower Loss法を実行する場合を想定する。上述した状態で再度Power Loss法が実行され、TXが算出する、状態異常による電力損失(Ploss_FO)が第3の値であったとする。
 この場合、Power Loss法による閾値は<状態3>または<状態4>にて既に設定されている。TXは、Power Loss法を実行して、状態異常による電力損失を算出する。現在の状態が<状態5>になった場合、例えば第3の値がマイナスの値になる可能性がある。
 その理由は、既に設定されている閾値が<状態3>または<状態4>における閾値であることに依る。つまり<状態5>でPower Loss法を実行すると、TXが算出する状態異常による電力損失は、状態異常が無くなったことによって減少するからである。
 そこでTXは、<状態5>を検出するために、CPあるいはCP間の補間を行った線分を用いて、第2の閾値を設定する。第2の閾値と第1の閾値とは異なり、第2の閾値は第1の閾値よりも小さい。TXが算出する、状態異常による電力損失の値が第2の閾値よりも小さい場合、<状態5>と判定される。
 別の方法として、第1の値と第3の値を比較し、その比較結果から判定する方法がある。第1の値は、<状態1>または<状態2>と判定される時の、TXが算出する、状態異常による電力損失の値である。
 これに対して、第3の値は、<状態5>と判定される時の、TXが算出する、状態異常による電力損失の値である。第3の値は第1の値よりも小さい。第3の値と第1の値との間に所定の値以上の差が生じている場合、その差の値に応じて<状態5>になったと判定される。
 つまり、TXは第1の値を予め記憶しておき、状態検出方法を実行した時に算出される、状態異常による電力損失(Ploss_FO)が第1の値よりも小さく、かつ、所定の値以上の差が生じている場合、その差の値に応じて<状態5>になったと判定する。
 あるいは、状態異常による電力損失(Ploss_FO)が第1の値よりも小さく、かつ、値がマイナスの値である場合、TXはその差の値に応じて<状態5>になったと判定する。
 あるいは、状態異常による電力損失(Ploss_FO)が第1の値よりも小さく、かつ、所定の値以上の差が生じており、かつ、値がマイナスの値である場合、TXはその差の値に応じて<状態5>になったと判定する。
・状態検出方法が波形減衰法である場合
 TXは、波形減衰法を実行する上で、閾値を第4の閾値設定方法に基づいて、閾値を設定しているものとする。つまり、閾値は波形減衰法のCAL処理の結果に基づいて決定される。
 この場合、上述したPower Loss方法の場合と同様に行うことができる。TXは、CPあるいはCP間の補間を行った線分を用いて、<状態5>を検出するための閾値を設定する。
 TXが算出する波形減衰指標の値(Q値とする)が閾値よりも大きい場合、<状態5>と判定される。あるいは、TXは、<状態1>または<状態2>と判定される時に算出される波形減衰指標の値をメモリに記憶しておく。
 その後、状態検出方法の実行時にTXが算出する波形減衰指標の値が、記憶している波形減衰指標の値よりも大きいとする。それらの波形減衰指標の値の差が所定の値以上である場合、その差の値に応じて<状態5>になったと判定することができる。
 あるいは、TXは、波形減衰法を実行する上で、第1の閾値設定方法、第2の閾値設定方法、または第3の閾値設定方法に基づいて閾値を設定しているものとする。TXは、第1の閾値設定方法、第2の閾値設定方法、または第3の閾値設定方法に基づいて設定された第1の閾値とは別に、<状態5>を検出するための第2の閾値を新たに設定する。
 そして、TXが算出する波形減衰指標の値(Q値とする)が第2の閾値よりも大きい場合、<状態5>と判定される。あるいは、TXは、<状態1>または<状態2>と判定される時に算出される波形減衰指標の値をメモリに記憶しておく。
 その後、状態検出方法の実行時にTXが算出する波形減衰指標の値が、記憶している波形減衰指標の値よりも大きいとする。それらの波形減衰指標の値の差が所定の値以上である場合、その差の値に応じて<状態5>になったと判定することができる。
・状態検出方法が結合状態指標測定法である場合
 TXは、結合状態指標測定法を実行する上で、第3の閾値設定方法に基づいて閾値を設定しているものとする。
 この閾値は、結合状態指標測定法のCAL処理の結果に基づいて決定される。この場合、上述したPower Loss方法の場合と同様に行うことができる。TXは、CPあるいはCP間の補間を行った線分を用いて、<状態5>を検出するための閾値を設定する。
 TXは、結合状態指標(結合係数とする)の値が閾値よりも大きい場合、<状態5>と判定する。あるいは、TXは、<状態1>または<状態2>と判定される時の、TXが算出する結合状態指標の値をメモリに記憶しておく。
 その後、状態検出方法の実行時にTXが算出する結合状態指標の値が、記憶している結合状態指標の値よりも大きくなったとする。それらの結合状態指標の値の差が所定の値以上である場合、その差の値に応じて<状態5>になったと判定することができる。
 あるいは、TXは、結合状態指標測定法を実行する上で、第1の閾値設定方法、第2の閾値設定方法、または第4の閾値設定方法に基づいて、閾値を設定しているものとする。TXは第1、第2、または第4の閾値設定方法に基づいて設定された第1の閾値とは別に、<状態5>を検出するための第2の閾値を新たに設定する。
 TXが算出する結合状態指標(結合係数とする)の値が、第2の閾値よりも大きい場合、<状態5>と判定される。あるいは、TXは<状態1>または<状態2>と判定される時に算出される結合状態指標の値(k値とする)をメモリに記憶しておく。
 その後、状態検出方法の実行時にTXが算出する結合状態指標の値が、記憶している結合状態指標の値よりも大きいとする。それらの結合状態指標の値の差が所定の値以上である場合、その差の値に応じて<状態5>になったと判定することができる。
・状態検出方法が温度に基づく異物検出処理である場合
 TXは、温度に基づく異物検出処理を実行する上で、第1の閾値を設定しているものとする。TXは、状態異常を検出するために設定された第1の閾値とは別に、<状態5>を検出するための第2の閾値を新たに設定する。
 TXは測定された温度の値が、第2の閾値よりも小さくなった場合、<状態5>と判定する。あるいは、TXは、<状態1>または<状態2>と判定される時の、温度の測定値をメモリに記憶しておく。
 その後、TXが状態検出方法を実行した時の、温度の測定値と、記憶している温度の値との差が、所定の値以内であるとする。この場合、その差の値に応じて<状態5>になったと判定することができる。
 あるいは、TXは、<状態3>または<状態4>と判定される時の、温度の測定値をメモリに記憶しておく。その後、TXが状態検出方法を実行した時の、温度の測定値が、記憶している温度の値よりも低いとする。
 この場合、それらの温度の値の差が所定の値以上である場合、その差の値に応じて<状態5>になったと判定することができる。
・状態検出方法が送電アンテナに流れる電流に基づく異物検出処理である場合
 TXは、送電アンテナに流れる電流に基づく異物検出処理を実行する上で、第1の閾値を設定しているものとする。
 TXは、状態異常を検出するために設定された第1の閾値とは別に、<状態5>を検出するための第2の閾値を新たに設定する。TXが測定する送電アンテナに流れる電流の値が、第2の閾値よりも小さくなった場合、<状態5>と判定される。
 あるいは、TXは、<状態1>または<状態2>と判定される時の、TXが測定する送電アンテナに流れる電流の値をメモリに記憶しておく。その後、状態検出方法の実行時にTXが測定する送電アンテナに流れる電流の値と、記憶している電流の値との差が、所定の値以内である場合であるとする。
 この場合、TXはその差の値に応じて<状態5>になったと判定する。あるいは、TXは、<状態3>または<状態4>と判定される時にTXが測定する送電アンテナに流れる電流の値をメモリに記憶しておく。
 その後、状態検出方法の実行時にTXが測定する送電アンテナに流れる電流の値が、記憶している電流の値よりも小さいとする。それらの電流の値の差が所定の値以上である場合、TXはその差の値に応じて<状態5>になったと判定する。
 図19は本実施形態における送電装置と受電装置の動作を表すシーケンス図である。図16との相違点を説明する。TXは最初のRECAL処理を実行し、その後にRXは、状態検出方法の実行をTXに要求することを決定する。RXは状態検出方法の実行要求パケットをTXに送信する。
 当該実行要求パケットを受信したTXは、RXから指定された状態検出方法を実行する。TXが状態異常の可能性は低いと判定したとする。TXは現時点より前に、状態異常の可能性が高い状態でRECAL処理を実行したことがあると判定する。
 TXは<状態5>を検出したと判定する。そしてTXはRXに対してATNを送信し、RXはDSR/poll PacketあるいはDSR/poll Data PacketをTXに送信する。
 TXはRXに対し、状態検出結果パケットを送信し、RECAL処理要求パケットを送信する。RXはTXに対してRECAL処理の実行要求パケットを送信し、当該実行要求パケットを受信したTXはRECAL処理を実行する。
 本実施形態では、「状態異常の可能性が高い」または「状態異常の可能性がとても高い」と判定されて第2実施形態に示した制御が行われた後に、装置の状態が改善されたことが検出された場合に適切な制御を行うことができる。
[本開示の適用分野]
 前記実施形態における構成の一部(場合によっては全部)を、他の同様の機能を果たす他の構成と置き換え、または省略してもよく、別の構成を追加してもよい。またWPC規格に限定されることなく、各種規格への適用が可能である。
 また、送電装置および受電装置は、例えば、撮像装置(スチルカメラやビデオカメラ等)やスキャナ等の画像入力装置であってもよいし、プリンタやコピー機、プロジェクタ等の画像出力装置であってもよい。
 また、ハードディスク装置やメモリ装置等の記憶装置であってもよいし、パーソナルコンピュータ(PC)やスマートフォン、タブレット機器等の情報処理装置であってもよい。
 また、本開示の受電装置は、情報端末機器でもよい。例えば、情報端末機器は、受電アンテナから受けた電力が供給される、情報をユーザに表示する表示部(ディスプレイ)を有している。
 なお、受電アンテナから受けた電力は蓄電部(バッテリ)に蓄積され、そのバッテリから表示部に電力が供給される。この場合、受電装置は、送電装置とは異なる他の装置と通信する通信部を有していてもよい。通信部は、NFC通信や、第5世代移動通信システム(5G)等の通信規格に対応していてもよい。
 また、本開示の受電装置が自動車等の車両であってもよい。例えば、受電装置である自動車は、駐車場に設置された送電アンテナを介して充電器(送電装置)から電力を受けとってもよい。また、受電装置である自動車は、道路に埋め込まれた送電アンテナを介して充電器(送電装置)から電力を受けとってもよい。
 このような自動車は、受電した電力をバッテリに供給する。バッテリの電力は、車輪を駆動する発動部(モータ、電動部)に供給されてもよいし、運転補助に用いられるセンサの駆動や外部装置との通信を行う通信部の駆動に用いられてもよい。
 つまり、この場合、受電装置は、車輪の他、バッテリや、受電した電力を用いて駆動するモータやセンサ、さらには送電装置以外の装置と通信を行う通信部を有してもよい。さらに、受電装置は、人を収容する収容部を有してもよい。
 例えば、センサとしては、車間距離や他の障害物との距離を測るために使用されるセンサ等がある。通信部は、例えば、全地球測位システム(Global Positioning System、Global Positioning Satellite、GPS)に対応していてもよい。
 また、通信部は、第5世代移動通信システム(5G)等の通信規格に対応していてもよい。また、車両としては、自転車や自動二輪車であってもよい。
 また、本開示の受電装置は、電動工具、家電製品等でもよい。受電装置であるこれらの機器は、バッテリの他、バッテリに蓄積された受電電力によって駆動するモータを有してもよい。
 また、これらの機器は、バッテリの残量等を通知する通知手段を有してもよい。また、これらの機器は、送電装置とは異なる他の装置と通信する通信部を有してもよい。通信部は、NFCや、第5世代移動通信システム(5G)等の通信規格に対応していてもよい。
 また、本開示の送電装置は、自動車の車両内で、無線電力伝送に対応するスマートフォンやタブレット等の携帯情報端末機器に対して送電を行う車載用充電器であってもよい。このような車載用充電器は、自動車内の何所に設けられていてもよい。
 例えば、車載用充電器は、自動車のコンソールに設置されてもよいし、インストルメントパネル(インパネ、ダッシュボード)や、乗客の座席間の位置や天井、ドアに設置されてもよい。ただし、運転に支障をきたすような場所に設置されないほうがよい。
 また、送電装置が車載用充電器の例で説明したが、このような充電器が、車両に配置されるものに限らず、電車や航空機、船舶等の輸送機に設置されてもよい。この場合の充電器も、乗客の座席間の位置や天井、ドアに設置されてもよい。
 また、車載用充電器を備えた自動車等の車両が、送電装置であってもよい。この場合、送電装置は、車輪と、バッテリとを有し、バッテリの電力を用いて、送電回路部や送電アンテナにより受電装置に電力を供給する。
[その他の実施形態]
 本開示は、上述の実施形態の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサーがプログラムを読出し実行する処理でも実現可能である。
 また、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。また、本開示にてフローチャートを参照して説明した処理の一部をハードウェアにより実現してもよい。
 例えば、所定のコンパイラを用いることで、各ステップを実現するためのプログラムからFPGA上に自動的に専用回路を生成すればよい。また、FPGAと同様にしてGate Array回路を形成し、ハードウェアとして実現してもよい。
 前記実施形態によれば、送電装置が複数の状態検出結果に基づいて適切な制御を判断し、その制御に関する複数の情報を受電装置に通知することで、送電装置と受電装置がより好適な制御を行うことができる。
 本出願は、2022年11月30日に出願された日本特許出願第2022-191548号の利益を主張するものである。また、上記日本特許出願の内容は本明細書において参照によりその全体が本明細書に組み込まれる。
 

 

Claims (13)

  1.  送電アンテナを使用して、受電装置に無線で電力を伝送する送電手段と、
     前記受電装置と通信する通信手段と、
     送電装置に係る物理量の測定処理を行い、当該送電装置の状態検出を行う検出手段と、
     前記送電手段の制御、および前記測定処理に係る制御を行う制御手段と、を有し、
     前記制御手段は、前記測定処理に基づく第1の状態検出が行われる時に取得される情報、および当該測定処理よりも後に実行される測定処理に基づく第2の状態検出が行われる時に取得される情報から、再度の測定処理の実行を前記受電装置が前記送電装置に要求するように決定した場合、前記第1または第2の状態検出に係る状態検出結果の情報を有する信号と、前記再度の測定処理の実行要求に係る情報を有する信号を、前記通信手段によって前記受電装置に送信する制御を行う
     ことを特徴とする送電装置。
  2.  前記制御手段は、前記状態検出が行われた時に送電装置に係る状態異常の可能性があると判断した場合、前記通信手段によって、状態検出結果を示す第1の情報を有する信号を前記受電装置に送信し、前記受電装置が送電装置に再度の測定処理の実行を要求するための第2の情報を有する信号を前記受電装置に送信する制御を行い、前記通信手段が、前記再度の測定処理の実行を要求する実行要求を前記受電装置から受信した場合、前記再度の測定処理を実行する制御を行う
     ことを特徴とする請求項1に記載の送電装置。
  3.  前記制御手段は、前記再度の測定処理を実行した回数を計数し、当該回数が閾値以上である場合、前記送電手段による送電を制限する制御を行う
     ことを特徴とする請求項2に記載の送電装置。
  4.  前記制御手段は、前記送電手段による送電を制限する制御において、送電装置の送電電力もしくは前記受電装置の受電電力を所定の値以下に制御するか、または、前記受電装置に対して、送電停止の要求を送電装置に送信することを要求する信号を送信する
     ことを特徴とする請求項3に記載の送電装置。
  5.  前記制御手段は、前記検出手段により測定される物理量と閾値とを比較することにより、送電装置に係る状態異常の可能性があると判断した場合、前記再度の測定処理の実行を要求するための実行要求を前記受電装置が送電装置に送信することを要求する情報を有する信号を、前記通信手段により前記受電装置に送信する制御を行う
     ことを特徴とする請求項1乃至4のいずれか1項に記載の送電装置。
  6.  前記制御手段は、前記検出手段により測定される物理量と閾値とを比較することにより、送電装置に係る状態異常の可能性が低い状態であると判断し、または送電装置に係る状態異常の可能性がある状態から状態異常の可能性が無いかまたは低い状態に移行したと判断した場合であって、かつ、送電装置に係る状態異常の可能性が高い状態で前記再度の測定処理を実行したことがある場合、前記再度の測定処理の実行を要求するための実行要求を前記受電装置が送電装置に送信することを要求する情報を有する信号を、前記通信手段により前記受電装置に送信する制御を行う
     ことを特徴とする請求項1乃至4のいずれか1項に記載の送電装置。
  7.  前記検出手段は、前記送電アンテナに係る品質係数に基づく状態検出方法、送電電力値と受電電力値との差分に基づく状態検出方法、前記送電手段による送電波形の減衰を表す指標に基づく状態検出方法、前記送電アンテナと前記受電装置が有する受電アンテナとの電磁的な結合状態を表す指標に基づく状態検出方法、前記送電装置または受電装置の温度に基づく状態検出方法、および前記送電アンテナまたは受電アンテナに流れる電流に基づく状態検出方法のうち、複数の状態検出方法を実行する
     ことを特徴とする請求項1に記載の送電装置。
  8.  前記制御手段は、いずれかの前記状態検出方法を実行し、状態検出結果の情報を有する信号を前記通信手段により前記受電装置に送信した後に、前記再度の測定処理の実行を要求するための実行要求を前記受電装置が送電装置に送信することを要求する情報を有する信号を、前記通信手段により前記受電装置に送信する制御を行う
     ことを特徴とする請求項7に記載の送電装置。
  9.  請求項1に記載の送電装置から、受電アンテナを使用して無線で電力を受電する受電手段と、
     前記送電装置と通信する通信手段と、
     前記受電手段を制御する制御手段と、を備える
     ことを特徴とする受電装置。
  10.  前記制御手段は、前記状態検出結果の情報を有する信号と、前記再度の測定処理の実行要求に係る情報を有する信号を、前記通信手段が受信した場合、前記送電装置に対して前記再度の測定処理の実行を要求する実行要求を、前記通信手段により前記送電装置に送信する制御を行う
     ことを特徴とする請求項9に記載の受電装置。
  11.  送電装置および受電装置を備える無線電力伝送システムであって、
     前記送電装置は、
     送電アンテナを使用して、前記受電装置に無線で電力を伝送する送電手段と、
     前記受電装置と通信する第1の通信手段と、
     送電装置に係る物理量の測定処理を行い、当該送電装置の状態検出を行う検出手段と、
     前記送電手段の制御、および前記測定処理に係る制御を行う第1の制御手段と、を有し、
     前記受電装置は、
     前記送電装置から、受電アンテナを使用して無線で電力を受電する受電手段と、
     前記送電装置と通信する第2の通信手段と、
     前記受電手段を制御する第2の制御手段と、を備えており、
     前記第1の制御手段は、前記測定処理に基づく第1の状態検出が行われる時に取得される情報、および当該測定処理よりも後に実行される測定処理に基づく第2の状態検出が行われる時に取得される情報から、再度の測定処理の実行を前記受電装置が前記送電装置に要求するように決定した場合、前記第1または第2の状態検出に係る状態検出結果の情報を有する信号と、前記再度の測定処理の実行要求に係る情報を有する信号を、前記第1の通信手段によって前記受電装置に送信する制御を行い、
     前記第2の制御手段は、前記状態検出結果の情報を有する信号と、前記再度の測定処理の実行要求に係る情報を有する信号を、前記通信手段が受信した場合、前記送電装置に対して前記再度の測定処理の実行を要求する実行要求を、前記第2の通信手段により前記送電装置に送信する制御を行う
     ことを特徴とする無線電力伝送システム。
  12.  受電装置に対して無線電力伝送を行う送電装置にて実行される制御方法であって、
     送電アンテナを使用して、送電手段により前記受電装置に無線で電力を伝送する工程と、
     通信手段により前記受電装置と通信する工程と、
     送電装置に係る物理量の測定処理を行い、検出手段が前記送電装置の状態検出を行う検出工程と、
     制御手段が前記送電手段の制御、および前記測定処理に係る制御を行う制御工程と、を有し、
     前記制御工程にて前記制御手段は、前記測定処理に基づく第1の状態検出が行われる時に取得される情報、および当該測定処理よりも後に実行される測定処理に基づく第2の状態検出が行われる時に取得される情報から、再度の測定処理の実行を前記受電装置が前記送電装置に要求するように決定した場合、前記第1または第2の状態検出に係る状態検出結果の情報を有する信号と、前記再度の測定処理の実行要求に係る情報を有する信号を、前記通信手段によって前記受電装置に送信する制御を行う
     ことを特徴とする送電装置の制御方法。
  13.  受電装置に対して無線電力伝送を行う送電装置のコンピュータに、以下の各工程を実行させるためのコンピュータプログラムを記憶する記憶媒体:
     送電アンテナを使用して、送電手段により前記受電装置に無線で電力を伝送する工程と、
     通信手段により前記受電装置と通信する工程と、
     送電装置に係る物理量の測定処理を行い、検出手段が前記送電装置の状態検出を行う検出工程と、
     制御手段が前記送電手段の制御、および前記測定処理に係る制御を行う制御工程と、を有し、
     前記制御工程において、前記測定処理に基づく第1の状態検出が行われる時に取得される情報、および当該測定処理よりも後に実行される測定処理に基づく第2の状態検出が行われる時に取得される情報に基づき、再度の測定処理の実行を前記受電装置が前記送電装置に要求するように決定した場合、前記第1または第2の状態検出に係る状態検出結果の情報を有する信号と、前記再度の測定処理の実行要求に係る情報を有する信号を、前記通信手段によって前記受電装置に送信する制御を行う。
     
     

     
PCT/JP2023/040995 2022-11-30 2023-11-14 送電装置、受電装置、無線電力伝送システム、送電装置の制御方法、および記憶媒体 WO2024116837A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-191548 2022-11-30
JP2022191548A JP2024078925A (ja) 2022-11-30 2022-11-30 送電装置、受電装置、無線電力伝送システム、送電装置の制御方法、およびプログラム

Publications (1)

Publication Number Publication Date
WO2024116837A1 true WO2024116837A1 (ja) 2024-06-06

Family

ID=91323640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/040995 WO2024116837A1 (ja) 2022-11-30 2023-11-14 送電装置、受電装置、無線電力伝送システム、送電装置の制御方法、および記憶媒体

Country Status (2)

Country Link
JP (1) JP2024078925A (ja)
WO (1) WO2024116837A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014007838A (ja) * 2012-06-22 2014-01-16 Sony Corp 処理装置、処理方法、及び、プログラム
JP2021164282A (ja) * 2020-03-31 2021-10-11 キヤノン株式会社 送電装置および受電装置、それらの制御方法、プログラム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014007838A (ja) * 2012-06-22 2014-01-16 Sony Corp 処理装置、処理方法、及び、プログラム
JP2021164282A (ja) * 2020-03-31 2021-10-11 キヤノン株式会社 送電装置および受電装置、それらの制御方法、プログラム

Also Published As

Publication number Publication date
JP2024078925A (ja) 2024-06-11

Similar Documents

Publication Publication Date Title
US11177860B2 (en) Apparatus and method for performing data stream transmission in wireless power transfer system
US11750040B2 (en) Apparatus and method for detecting foreign object in wireless power transmitting system
US11664852B2 (en) Device and method for performing authentication in wireless power transmission system
US10805888B2 (en) Device and method for performing authentication in wireless power transmission system
US11664688B2 (en) Apparatus and method for performing power calibration in wireless power transmission system
US9666359B2 (en) Vehicle, power receiving device, power transmitting device, and contactless power supply system
US20190248251A1 (en) Wireless charging device and system for transportation equipment
US11316384B2 (en) Device and method for performing power calibration in wireless power transmission system
US11637648B2 (en) Apparatus and method for supporting changeable communication speed in wireless power transmission system
US20180241223A1 (en) Wireless power transfer system and driving method therefor
US10998775B2 (en) Apparatus and method for performing power control in wireless power transfer system
US11558083B2 (en) Device and method for performing authentication in wireless power transfer system
US11005307B2 (en) Apparatus and method for performing power control in wireless power transfer system
EP3282556B1 (en) Non-contact power-feeding system
US11228206B2 (en) Wireless power transmitter, wireless power receiver, and control methods thereof
EP4009489A1 (en) Wireless power reception apparatus, wireless power transmission apparatus, and power calibration method using same
US10886973B2 (en) Device and method for performing authentication in wireless power transfer system
CN111869048A (zh) 无线功率传输系统中支持提高的通信速度的装置和方法
WO2024116837A1 (ja) 送電装置、受電装置、無線電力伝送システム、送電装置の制御方法、および記憶媒体
WO2024095593A1 (ja) 送電装置、受電装置、無線電力伝送システム、無線電力伝送の制御方法、および記憶媒体
KR20180104904A (ko) 근거리 무선 통신 기능이 통합된 차량용 무선 전력 송신기 및 그를 이용한 전자 결재 방법
WO2023149238A1 (ja) 送電装置および受電装置
WO2024062770A1 (ja) 送電装置、送電装置の制御方法、および記憶媒体
WO2023210445A1 (ja) 受電装置、送電装置、それらの制御方法、およびプログラム
JP2014121101A (ja) 非接触給電装置